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ABSTRACT 

This research consists of two distinct but related elements in the realm of atomic 

photoionization. The first was to explore the photoionization in superheavy elements. Employing 

the fully Relativistic Random Phase Approximation (RRPA), we calculated the photoionization 

cross sections for the Oganesson (Og), the heaviest element, since the influence of relativity 

becomes more significant as the atomic number increases. The results revealed the importance of 

relativistic interactions along with the predominant influence of interchannel coupling on the 

photoionization cross sections. Encouraged by the ability of the RRPA to deal with the 

combination of relativistic and many-body correlation effects, we proceeded to investigate the 

angle-dependent time delay in the photoionization process using the RRPA. Specifically, we 

investigated the time delay in argon. The matrix elements calculated using RRPA were used to 

calculate the phases of the various photoionization amplitudes, and the energy derivative of these 

phases provided us with the time delay information. We computed a weighted average of the time 

delays associated with dipole and quadrupole components, averaged over photoelectron spin and 

orientation of the residual ion, considering different transitions involved in the photoionization 

process. Time delay in photoionization exhibits angular dependence, a phenomenon explored in 

previous calculations considering only dipole transitions. In the nonrelativistic dipole 

approximation, time delay for atomic ns-states is angle-independent. However, incorporating 

relativistic effects, such as spin-flip transitions and non-dipole (quadrupole) effects, introduces 

angular dependence to the time delay. This is especially prominent when dominant dipole 

photoionization channels (without spin-flip) vanish at specific angles due to angular momentum 

geometry. In these instances, quadrupole and spin-flip transitions dominate. When the dipole 

amplitude vanishes, time delay results from a combination of spin-flip dipole and quadrupole time 



delays. Relativistic expressions have been formulated to delineate the conditions where quadrupole 

and/or spin-flip channels influence the time delay. We focus on the 3s subshell in argon to highlight 

the complex effects of spin-flip and quadrupole transitions. Of particular interest is the presence 

of a significant Cooper minimum in the cross section, leading to notably long time delays. Our 

goal is to explore these dynamics and understand the intricate processes in photoionization. 
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1 INTRODUCTION  

The realm of atomic photoionization is a captivating arena where the fundamental 

properties of atoms and molecules are probed through their interactions with photons. Within this 

domain, two remarkable frontiers have emerged, each offering unique insights into the behavior 

of matter at the atomic and subatomic levels. This dissertation explores these frontiers, focusing 

on the phenomena of attosecond time delay and the intriguing world of superheavy elements in 

the context of atomic photoionization. Attosecond physics, an area of study where we delve into 

time intervals as short as 10−18seconds, has enshanced our understanding of how electrons move 

within atoms. Simultaneously, we venture into the realm of superheavy elements, which are 

elements with atomic numbers exceeding 103. These elements reside at the edge of the periodic 

table and exhibit unique properties due to their extremely relativistic nature. Investigating the 

photoionization and structural properties of superheavy elements like Oganesson (Og, Z=118) 

forms a central part of our research. Superheavy elements, unlike their counterparts at the low end 

of the Periodic Table, are uniquely influenced by the combined effects of relativistic and 

correlation factors. These two factors play a critical role in understanding the fundamental 

properties of superheavy elements, making their study distinct from lighter elements [1]. Due to 

the significant strength of relativistic effects, especially in heavy and superheavy elements, 

theoretical models must be based on the Dirac equation, which accounts for relativistic corrections, 

rather than the non-relativistic Schrödinger equation. In this context, the focus of the study is on 

the photoionization process of the ground states of these superheavy atoms, and researchers are 

employing the relativistic-random-phase approximation (RRPA) [23,25] to explore this 

phenomenon. Relativistic effects become increasingly important as the atomic number (Z) of 

elements increases. For superheavy atoms, where Z is extremely high, these effects cannot be 
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neglected. Relativistic corrections to the electronic structure and behavior of electrons within the 

atom are substantial and need to be accurately accounted for in theoretical calculations. For heavy 

and superheavy atoms, calculations based on the Dirac equation [2,3] are essential to accurately 

model the electronic structure and interactions. RRPA is an advanced theoretical method used to 

study the excited states of atomic and molecular systems in the presence of relativistic effects and 

many-body electron-electron correlations. By employing RRPA, researchers can explore the 

interplay between relativistic effects and the complex electron-electron interactions within 

superheavy atoms. This approach allows for a detailed investigation of processes like 

photoionization, shedding light on the behavior of electrons in these extreme atomic environments. 

In the framework of the relativistic random-phase approximation (RRPA), electron transitions 

resulting from photoionization are described using complex dipole matrix elements [4]. This 

complexity in the photoionization matrix element is a fundamental aspect of the RRPA model. In 

a transition from an initial bound state to a continuum state the dipole matrix element is inherently 

complex. This complexity is vital for accurately describing the intricate quantum interactions 

involved in the photoionization process. The derivative of the phase of this complex matrix 

element with respect to energy, denoted as dδ(E)/dE, serves as a measure of the time delay 

occurring in various dipole photoionization channels. This derivative quantity provides valuable 

information about the temporal aspects of the photoionization process, allowing researchers to 

analyze the subtle delays in the release of the photoelectron wave packet after the absorption of a 

brief electromagnetic pulse. Time delay in atomic photoionization indeed refers to the minor 

temporal delay that is observed in the release of the photoelectron wave packet following the 

absorption of a short electromagnetic pulse. This phenomenon provides valuable insights into the 

intricate dynamics of electron behavior at the quantum level and is a crucial concept in the study 
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of ultrafast processes in atomic and molecular physics. The interest in attosecond time delay in 

atomic and molecular photoionization was sparked by precise experimental measurements at the 

attosecond level [5]. Researchers were captivated by the opportunity to understand the behavior of 

electrons during transitions within atoms and molecules on an incredibly fast timescale. This 

curiosity led to numerous experimental and theoretical investigations [6] aimed at unraveling the 

complexities of attosecond time delay in atomic and molecular photoionization processes. 

Researchers have achieved remarkable precision in measuring the relative time delay of 

photoemission between neighboring valence atomic subshells, specifically in the context of argon 

[7,8]. Research interest in the time delay has surged due to pioneering experiments by various 

researchers [9]. Subsequent studies [10] have primarily focused on the valence electron shells of 

noble gas atoms. Relativistic random phase approximation (RRPA) calculations for the angular 

dependence of time delay of s-subshells of noble gas atoms for the angular distribution of time 

delay including both dipole and quadrupole channels have been performed as a function of the 

angle between the photoelectron momentum and photon polarization and the transition from dipole 

to quadrupole time delay is exhibited in the present work. 
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2 THEORY  

2.1 Photoionization 

Photoionization is a process in which an atom or molecule absorbs a photon with enough 

energy to remove an electron from its atomic or molecular orbital, leading to a positively charged 

ion. The probability of photoionization depends on the energy of the photon and the ionization 

energy of the atom or molecule. The initial investigations into photoionization were performed in 

the 1920s [11], primarily focusing on the alkali metals since the ionization potentials of these 

metals fall within the wavelength range of 2000 to 3000 Å. This spectral region provided a 

convenient and straightforward range for conducting the measurements [12]. Photoionization is 

the phenomenon in which an atom or molecule in state i is ionized by the absorption of a photon 

with energy h𝜈, resulting in the formation of a positively charged ion in state j. Here, the atom or 

molecule is denoted as 𝑋(𝑖), and the ion as 𝑋(𝑗)+: 

h𝜈 + 𝑋(𝑖) →  𝑋(𝑗)+ +  𝑒−                                                                                         (2.1) 

and the relation for the energies is: 

𝜀 = ℎ𝜈 − 𝐼𝑖𝑗                                                                                                             (2.2) 

where, 𝜀 represents the kinetic energy of the emitted photoelectron, ℎ𝜈 is the energy of the photon, 

and 𝐼𝑖𝑗 refers to the minimum energy required to remove an electron from the atom, leaving behind 

the ion. This energy is commonly known as the binding energy of the electron [13]. 

 

2.1.1 The interaction Hamiltonian 

The Hamiltonian for an N-electron atom with nuclear charge Z in the nonrelativistic 

approximation is described by: 
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 𝐻 = ∑ (
𝑝𝑖

2

2𝑚
−

𝑍𝑒2

𝑟𝑖
) + ∑

𝑒2

|𝑟𝑖−𝑟𝑗|

𝑁
𝑖>𝑗=1

𝑁
𝑖=1   ,            𝑝 =  −𝑖ℏ𝛻.                                                          (2.3) 

The first term describes the kinetic and potential energy in the attractive Coulomb field generated 

by the nucleus, m is the particle mass, 𝑝 is the momentum operator, Z represents the nuclear charge, 

e is the electron charge, and 𝑟𝑖 is the distance between the i-th electron and the nucleus. This term 

represents the attractive interaction between the negatively charged electrons and the positively 

charged nucleus. The last term describes the repulsive electrostatic potential energy between the 

i-th electron and the j-th electron, and depends on the inverse of the distance between them. The 

interaction between this atom and external electromagnetic radiation is explained by incorporating 

additional terms obtained by substituting 𝑝𝑖 by 𝑝𝑖 + (
|𝑒|

𝑐⁄ ) 𝐴(𝑟𝑖, 𝑡) where 𝐴(𝑟𝑖, 𝑡) is the vector 

potential for the radiation. The interaction Hamiltonian is: 

𝐻𝑖𝑛𝑡 = ∑ {
+|𝑒|

2𝑚𝑐
[𝑝𝑖 . 𝐴(𝑟𝑖, 𝑡) + 𝐴(𝑟𝑖, 𝑡). 𝑝𝑖] +

|𝑒|2

2𝑚𝑐2
|𝐴(𝑟𝑖, 𝑡)|2}

𝑁

𝑖=1

                                          (2.4) 

where 𝐴(𝑟𝑖, 𝑡) is the vector potential for the radiation. Simplifying the interaction Hamiltonian, as 

outlined in equation (2.4) can make dealing with the ionization of a single photon and an electron 

from an outer-subshell much easier. We can achieve this by disregarding the third term in the 

equation (2.4), which is related to processes that involve the absorption of two photons. Further, 

this term is second order in the (small) vector potential A and is insignificant when compared to 

single-photon processes. The impact of this term would be relatively small as it is second-order in 

the coupling constant |e|/c, resulting in a negligible effect on the ionization process [14]. 

Additionally, in our approach, we adopt the Coulomb gauge for the vector potential A, where we 

set the ∇ ∙ 𝐴 = 0. The Coulomb gauge formalism offers a significant advantage in physics due to 

the instantaneous electrostatic interaction between charges. However, it is important to note that 

in higher-order calculations involving point charges or situations where atoms or molecules 
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interact with radiation, the conventional Coulomb gauge formalism can introduce certain 

ambiguities [15]. The variable A represents a transverse radiation field. Additionally, it is 

noteworthy that p and A now have commutative properties, allowing us to combine the first and 

second terms in equation (2.4): 

If we consider 𝑝⃗ =  −𝑖ℏ∇⃗⃗⃗, operating on an arbitrary function F: 

{(∇⃗⃗⃗. 𝐴(𝑟𝑖, 𝑡) + 𝐴(𝑟𝑖, 𝑡). ∇⃗⃗⃗)}𝐹 = ∇⃗⃗⃗. (𝐴(𝑟𝑖, 𝑡)𝐹) + 𝐴(𝑟𝑖, 𝑡). ∇⃗⃗⃗𝐹 = 

   ( ∇⃗⃗⃗. 𝐴(𝑟𝑖, 𝑡)) 𝐹 + 𝐴(𝑟𝑖, 𝑡). ∇⃗⃗⃗𝐹 + 𝐴(𝑟𝑖, 𝑡). ∇⃗⃗⃗𝐹 = 2 𝐴(𝑟𝑖, 𝑡). ∇⃗⃗⃗𝐹                                                       (2.5) 

The first term vanishes but the two remaining terms add up. And this will be the perturbation, the 

interaction Hamiltonian. To proceed further, we introduce a specific form for A as follows: 

 𝐴(𝑟𝑖, 𝑡) = (
2𝜋𝑐2ℏ

𝜔𝑉
)

1/2

𝜖̂𝑒𝑖(𝑘.𝑟𝑖−𝜔𝑡)                                                                                                      (2.6) 

where V is the spatial volume, 𝜖̂ is the polarization unit vector, 𝑘 and 𝜔 are the wave vector and 

angular frequency of the incident radiation. This classical expression for A is capable of accurately 

predicting photoabsorption transition rates. Remarkably, these rates are found to be in agreement 

with those obtained through the quantum theory of radiation. This significant finding further 

establishes the harmony between classical and quantum frameworks when it comes to 

comprehending and explaining photoabsorption phenomena [16]. Using the electric dipole 

approximation, which is a commonly used technique in physics, the term 𝑒𝑖(𝑘.𝑟𝑖) is simplified to 

unity. While the electric dipole approximation is often suitable for many cases, it should not be 

applied without critical evaluation. Certain scenarios challenge its validity. For instance, 

photoionization of excited atoms with larger radii, photoionization of inner subshells requiring 

short wavelength radiation, and calculations involving differential cross sections or other 

measurable quantities that rely on the overlap of electric dipole and higher multipole amplitudes 
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all demand careful scrutiny of the electric dipole approximation. In such situations, it becomes 

necessary to assess the validity and potential limitations of the electric dipole approximation before 

relying on its application. Therefore, expanding the vector potential A in terms of position vector 

r yields a series of multipole moments of increasing order, keeping only the lowest-order term 

provides a good approximation [17]: 

𝑒𝑥𝑝(±𝑖(𝑘. 𝑟 − 𝜔𝑡)) = 𝑒𝑥𝑝 (±2𝜋𝑖
|𝑟|

𝜆
𝑘̂. 𝑟̂) 𝑒∓𝑖𝜔𝑡 ≈ (1 + 𝒪 (

|𝑟|

𝜆
)) 𝑒∓𝑖𝜔𝑡                               (2.7) 

In order to simplify the equation (2.4) by truncating the Taylor expansion (equation 2.7) to just the 

first term assuming that |𝑟| ≪ 𝜆
2𝜋⁄  , where 𝜆 is the wavelength. Upon applying these conventions 

and approximations and substituting the relevant equations, the resulting expression for the 

interaction Hamiltonian is as follows: 

 𝐻𝑖𝑛𝑡 =
+|𝑒|

𝑚𝑐
(

2𝜋𝑐2ℏ

𝜔𝑉
)

1/2

∑ 𝜖̂.𝑁
𝑖=1 𝑝𝑖  𝑒−𝑖𝜔𝑡                                                                                 (2.8) 

Hint thus has the form of a harmonically time-dependent perturbation. Within perturbation theory, 

the interaction Hamiltonian is expanded in terms of the perturbation parameter, which represents 

the strength of the interaction. The expansion allows us to analyze the effects of the external 

radiation on the atomic or molecular system and calculate the photoionization cross section. The 

photoionization cross section is a measure of the probability of ionization and is obtained by 

evaluating the matrix elements of the interaction Hamiltonian between the initial and final states 

of the system. By employing perturbation theory and calculating the matrix elements of the 

interaction Hamiltonian, we can quantitatively study the photoionization process and understand 

the dynamics of ionization. This approach enables us to investigate how the incident radiation 

interacts with the atomic or molecular system and provides valuable insights into the underlying 

physics of photoionization phenomena. 
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The probability of photoionizing an atom by an incident photon of energy ℏω is represented 

by the cross section of the system. This cross section provides valuable information about the 

system's interaction with the radiation. The transition probability, denoted as Pif in Equation (2.9), 

describes the probability per unit time for a transition to take place between the initial state i and 

the final state f: 

𝑃𝑖𝑓 =
2𝜋

ℏ
|⟨Ψ𝑓|𝐻̂𝑖𝑛𝑡|Ψ𝑖⟩|

2
𝛿(𝐸𝑓 − 𝐸𝑖 − ℏω)                                                                                       (2.9) 

where |Ψ𝑖⟩ and |Ψ𝑓⟩ represents the initial state and final state wave functions and the squared 

matrix elements give the transition rate. Ei is the energy of the initial state and Ef is the energy of 

the final state. The Dirac function δ represents energy conservation, indicating that a transition 

occurs when 𝐸𝑓 = 𝐸𝑖 + ℏω. This probability is determined using Fermi's golden rule, which is a 

fundamental principle derived from time-dependent perturbation theory. Fermi's golden rule 

allows us to analyze and understand the dynamics of transitions in quantum systems subjected to 

external perturbations, such as the interaction with x-ray photons [18].  

Hence, taking into account the interaction Hamiltonian as described in equation (2.8), the cross 

section for the transition from the initial state i to the final state f can be expressed as: 

𝜎𝑖𝑓(ω) =
4𝜋2ω𝛼0

2

3
|⟨Ψ𝑓| ∑ 𝑟𝑘𝑘 |Ψ𝑖⟩|

2
𝛿(𝐸𝑓 − 𝐸𝑖 − ℏω)                                                               (2.10) 

Where 𝛼0 is the fine structure constant and ⟨Ψ𝑓| ∑ 𝑟𝑘𝑘 |Ψ𝑖⟩ is the dipole matrix elements. The 

dipole matrix elements play a crucial role in the calculation of the cross section for photoionization. 

They represent the transition probabilities between initial and final states induced by the interaction 

of the system with the electromagnetic radiation. Therefore, accurate evaluation of these matrix 

elements is essential in understanding and predicting the photoionization cross section of a system. 
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 2.1.2   Relativistic effects in the photoionization cross section 

Relativistic effects can significantly influence atomic photoionization cross sections. The motion 

of electrons at high speeds and their interaction with heavy atomic nuclei introduce relativistic 

corrections that impact the photoionization process. In the presence of high-energy photons or 

heavy atomic nuclei, relativistic corrections become important. These corrections arise from the 

relativistic motion of electrons, which can lead to changes in the energy levels and wave functions 

of the atomic system. One important relativistic effect is the relativistic increase in electron mass, 

known as mass-energy equivalence. This effect causes the energy levels of the electrons to shift, 

resulting in changes in the photoionization cross sections. Additionally, relativistic corrections can 

lead to spin-orbit coupling, where the motion of the electron's spin becomes coupled to its orbital 

motion, affecting the angular distribution of the photoelectrons. Reference [19] provides a detailed 

analysis of recent examples that emphasize the notable influence of the spin-orbit interaction on 

various aspects of atomic photoionization. Furthermore, the relativistic treatment of the 

electromagnetic interaction between the incident photon and the atomic electrons requires the 

incorporation of relativistic wave equations, such as the Dirac equation. These equations account 

for the spin and relativistic effects of the electrons, leading to more accurate calculations of the 

photoionization cross sections. In Coulomb gauge, the nonrelativistic interaction between the 

radiation field and the electron momentum can be described by the term exp(ik.r)p, where p 

represents the electron momentum operator and k is the wave number of the photon. On the other 

hand, the relativistic interaction is given by exp(ik.r )𝛼, where 𝛼 denotes the components of the 

4x4 Dirac matrices. These expressions emphasize the distinction between the nonrelativistic and 

relativistic approaches of the interaction between the radiation field and the electron momentum 

[20]. Relativistic effects play a crucial role in understanding and accurately calculating atomic 
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photoionization cross sections, especially in situations involving high photon energies or heavy 

atomic nuclei.  

 

2.2 Relativistic random phase approximation (RRPA): 

The Relativistic Random Phase Approximation (RRPA) is a theoretical method used to describe 

the electronic structure and photoionization processes in relativistic systems. It is an extension of 

the Random Phase Approximation (RPA) to include relativistic effects. The Relativistic Random 

Phase Approximation (RRPA) and the Random Phase Approximation (RPA) are both theoretical 

methods used to study the electronic structure and properties of many-body systems. However, 

there are some differences between the two approaches, and the RRPA offers advantages over the 

RPA in certain scenarios. The primary distinction is that the RRPA incorporates relativistic effects, 

via the Dirac equation, which are important in systems where the velocities of the electrons 

approach the speed of light [60]. In contrast, the standard RPA does not account for relativistic 

corrections. The RRPA is specifically designed to treat atomic transitions in highly charged ions 

and atoms, where both electron correlation and relativity are significant. These systems involve 

strong Coulomb interactions and relativistic velocities, making the inclusion of relativistic effects 

crucial. The RPA, on the other hand, is more commonly applied to non-relativistic systems. The 

RRPA involves solving the relativistic Dirac equation for the electrons and includes the effects of 

electron-electron correlations. It provides a description of the electronic excitations and ionization 

processes, including the energy levels, transition probabilities, and spectral properties. By 

incorporating relativistic effects into the RPA framework, the RRPA allows for more accurate 

calculations of photoionization spectra and cross sections in relativistic systems. It is particularly 

relevant in studies involving heavy elements or high-energy processes where relativistic effects 
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cannot be neglected. The RRPA is a method explicitly based on the Dirac equation [21], making 

it inherently relativistic. It is specifically designed to incorporate relativistic effects in the study of 

atomic transitions in highly charged ions and atoms. One advantage of the RRPA is that it includes 

ground state correlations, which account for the interactions between electrons in the initial state. 

Additionally, it incorporates interchannel couplings of the final state, allowing for configuration 

interaction in the continuum. This means that the RRPA considers the coupling between different 

final states during the photoionization process [22]. By including these correlations and couplings, 

the RRPA improves upon the limitations of Hartree calculations and provides a more accurate 

description of the electronic structure and dynamics, particularly in systems where both electron 

correlation and relativistic effects are important. By linearizing the time-dependent Dirac-Fock 

(DF) equations, the RRPA theory is derived. These equations represent how an atom reacts to a 

time-dependent external field. The Dirac Hamiltonian for a single electron is described by [23]:  

ℎ0 = 𝛼⃗. 𝑝⃗ + 𝛽𝑚 − 𝑍𝑒2

𝑚⁄                                                                                                                  (2.11) 

 The DF equations for a ground state of an N-electron closed-shell atom is given by: 

(ℎ0 + 𝑉)𝑢𝑖 = 𝜖𝑖𝑢𝑖              𝑖 = 1, 2, … , 𝑁                                                                                        (2.12) 

where 𝜖𝑖 is the orbital eigenvalue and natural units ℏ = 𝑐 = 1, 𝑒2

ℏ𝑐⁄ = 𝛼 = 1/137.036 are 

employed. The DF potential 𝑉(𝑟) is given by: 

𝑉𝑢(𝑟) =  ∑ 𝑒2 ∫
𝑑3𝑟′

|𝑟 − 𝑟′⃗⃗⃗|
[(𝑢𝑗

†𝑢𝑗)
′
𝑢 − (𝑢𝑗

†𝑢)
′
𝑢𝑗]  .                                                                   (2.13)

𝑁

𝑗=1

 

When a time-dependent external field, represented as 𝜈+𝑒−𝑖𝜔𝑡+ 𝜈−𝑒𝑖𝜔𝑡, is applied, it induces a 

time-dependent perturbation in each of the DF orbitals 𝑢𝑖(𝑟). As a result, the DF orbitals can be 

expressed as a series expansion that includes the first harmonic as follows: 

𝑢𝑖(𝑟) ⟶ 𝑢𝑖(𝑟) +  𝑤𝑖+(𝑟)𝑒−𝑖𝜔𝑡 +  𝑤𝑖−(𝑟)𝑒𝑖𝜔𝑡 + ⋯,                                                                   (2.14) 
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Here 𝑢𝑖(𝑟) represents the unperturbed DF orbital, and 𝑤𝑖+, 𝑤𝑖− and so on, correspond to the 

perturbations induced by the external field at the respective harmonics. The omitted terms in the 

expansion correspond to higher harmonics. This expansion allows for the incorporation of the 

time-dependent perturbation induced by the external field into the description of the DF orbitals, 

enabling the study of the system's response to the applied field at different frequencies. If we 

consider the Dirac-Coulomb Hamiltonian for N electron atom in a central field of the nucleus of 

charge Z is [24]: 

𝐻𝐷𝐶 = ∑ 𝐻𝐷(𝑟𝑖)

𝑁

𝑖

+ 𝑈(𝑟𝑖) = ∑(𝑐𝛼𝑖. 𝑝𝑖 + 𝛽𝑖𝑐
2 + 𝑉𝑛𝑢𝑐(𝑟𝑖)) + 𝜙(𝑟𝑖) .                                    (2.15)

𝑁

𝑖

 

By expanding equation (2.15) in powers of the external field 𝜈±, considering only the first-order 

terms, yields the following expression: 

(ℎ0 + 𝑉 − 𝜖𝑖 ∓ 𝜔)𝑤𝑖± = (𝜈± − 𝑉±
(1)

)𝑢𝑖 + ∑ 𝜆𝑖𝑗±𝑢𝑗

𝑗

        𝑖 = 1, 2, … , 𝑁                                (2.16) 

The solutions to these inhomogeneous equations (2.16) can be expressed as an expansion using 

the complete set of solutions to the homogeneous equations. The homogeneous equations are 

obtained by omitting the "driving" term 𝜈± from the right-hand side. By considering the solutions 

to the homogeneous equations, the solutions to the inhomogeneous equations can be constructed 

and analyzed in terms of this complete set of solutions [23]: 

(ℎ0 + 𝑉 − 𝜖𝑖)𝑤𝑖± + 𝑉±
(1)

𝑢𝑖 − ∑ 𝜆𝑖𝑗±𝑢𝑗

𝑗

= ±𝜔𝑤𝑖±           𝑖 = 1, 2, … , 𝑁                                   (2.17) 

In order to maintain the orthogonality of the perturbed orbitals 𝑤𝑖±(𝑟) to the occupied orbitals 

𝑢𝑖(𝑟), Lagrange multipliers 𝜆𝑖𝑗± are introduced in Equation (2.16),  and V represents the DF 

potential, while 𝑉±
(1)

 corresponds to the first-order perturbation of the expansion of V, and 
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incorporates electron-electron correlations. The inclusion of 𝑉±
(1)

allows for the consideration of 

the effects of electron-electron interactions and correlations on the perturbed orbitals:  

 𝑉±
(1)

𝑢𝑖 = ∑ 𝑒2 ∫
𝑑3𝑟′

|𝑟 − 𝑟′⃗⃗⃗|
[(𝑢𝑗

†𝑤𝑗±)
′
𝑢𝑖 + (𝑤𝑗∓

† 𝑢𝑗)
′
𝑢𝑖 − (𝑤𝑗∓

† 𝑢𝑖)
′
𝑢𝑗 − (𝑢𝑗

†𝑢𝑖)
′
𝑤𝑗±]          (2.18) 

𝑁

𝑗=1

 

Studying the eigenvalue problem is essential as it allows for the expansion of any solution to the 

inhomogeneous equation (2.16) using eigenfunctions derived from Eq. (2.17). The positive 

frequency components 𝑤𝑖+ of the eigenfunctions describe the excited states of the atom (including 

the continuum), incorporating correlations in the final state, while the negative frequency 

components 𝑤𝑖− capture the effects of correlations in the ground state. These eigenfunctions are 

subject to an orthogonality constraint [25]: 

∫ 𝑑3𝑟   𝑤𝑖∓
† 𝑢𝑗 = 0,            𝑖, 𝑗 = 1, 2, … , 𝑁                                                                                       (2.19) 

The transition amplitude from the ground state to the excited state, characterized by the RRPA 

functions 𝑤𝑖±(𝑟) with frequency 𝜔, can be determined by the perturbations 𝜈± in terms of vector 

potential 𝐴: 

𝜈+ = 𝑒 𝛼⃗. 𝐴 ⃗⃗⃗⃗ ,              𝜈− = 𝜈+
†                                                                                                               (2.20) 

This perturbation represents the electron-photon interaction in the Coulomb gauge. The amplitude 

of this transition is given by: 

 𝑇 = ∑ 𝑒 ∫ 𝑑3𝑟 ( 𝑤𝑖+
†

𝑁

𝑖=1

𝛼⃗. 𝐴 ⃗⃗⃗⃗ 𝑢𝑖 + 𝑢𝑖
†𝛼⃗. 𝐴 ⃗⃗⃗⃗ 𝑤𝑖−).                                                                                 (2.21) 
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2.3 Cross section and angular distribution 

The differential cross section for photoionization describes the probability of a photon 

interacting with an atom or molecule and causing ionization with the photoelectron emerging in a 

particular solid angle range. In terms of the transition amplitude which is described in Eq. (2.21), 

differential cross section can be expressed using the following formula: 

 
𝑑𝜎

𝑑Ω
=

𝛼𝐸𝑝

2𝜋𝜔
|𝑇|2                                                                                                                                      (2.22) 

Where E represents the energy of the photoelectron, p represents its momentum, and 𝜔 is the 

energy of the incident photon. Keeping in mind that the multipole transition amplitude in a single-

electron approximation is given by: 

𝑇𝐽𝑀
(𝜆)

= ∫ 𝑑3𝑟  𝑤𝑖
†𝛼⃗ . 𝑎⃗𝐽𝑀

(𝜆)
𝑢𝑖 = 𝑖 (

2𝜋2

𝐸𝑝
)

1
2

(
(2𝐽 + 1)(𝐽 + 1)

𝐽
)

1
2 𝜔𝐽

(2𝐽 + 1)‼
∑(𝜒𝜈

†

𝜅̅𝑚̅

Ω𝜅̅𝑚̅(𝑝̂)) 

(−1)𝑗−𝑚̅ ( 𝑗 𝐽 𝑗

−𝑚 𝑀 𝑚
) 𝑖1−𝑙𝑒𝑖𝛿

𝑘 ⟨𝑎||𝑄𝐽
(𝜆)

||𝑎⟩ (−1)𝑗+𝑗+𝐽                                                           (2.23) 

Where E and 𝑝̂ are the photoelectron energy and momentum direction. 𝜔 is the photon frequency, 

and 𝛿𝑘 is the phase of the continuum wave with 𝑘̅ = ∓(𝑗 + 1/2) for 𝑗 = (𝑙 ±
1

2
). The spherical 

spinor which is a function of Clebsch-Gordan coefficients and spherical harmonics 𝑌𝑙𝑚, and two 

component spinors 𝜒𝜐. The spherical spinor is defined as: 

 𝛺𝑘𝑚(𝑛̂) =  ∑ 𝐶𝑙,𝑀−𝜈,1/2𝜈
𝑗𝑀

 𝑌𝑙𝑚−𝜈(𝑛̂)𝜈=±1 2⁄  𝜒𝜈                                                                        (2.24) 

and  𝜈 = ±
1

2
  is the photoelectron spin polarization. 

The reduced matrix element of an electric or magnetic multipole operator between initial state a 

and final state 𝑎 is equal to: 

⟨𝑎| |𝑄𝐽
(𝜆)

| |𝑎⟩ = (−1)𝑗+1/2[ 𝑗 ] [ 𝑗 ] (
𝑗 𝑗 𝐽

−1/2 1/2 0
) × 𝜋(𝑙, 𝑙, 𝐽 − 𝜆 + 1)𝑅𝐽

(𝜆)(𝑎, 𝑎)                      (2.25) 
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 𝑅𝐽
(𝜆)

(𝑎, 𝑎) is the radial integral and 𝜋 is the parity factor. By summing over spins of the continuum electron 

and summing over the entire closed subshell 𝑛𝜅, we consider the total contribution from all possible spin 

states of the outgoing electron and sum over all the electrons within the closed subshell 𝑛𝜅:  

 
𝑑𝜎𝑛𝜅

𝑑Ω
=

𝛼𝜋

2𝜔
∑ 𝐴𝐿 𝑃𝐿(cos 𝜃)              

∞

𝐿=0

                                                                                               (2.26) 

where 𝜃 is the angle between the electron and photon momentum vectors and 𝐴𝐿 is given by [23, 

25]: 

𝐴𝐿 = ∑ 𝐵(𝐽, 𝐽′, 𝜅, 𝜅′, 𝐿, 𝑗) (
(𝐽 + 1)(𝐽′ + 1)

𝐽𝐽′
)

1
2

(
𝜔𝐽+𝐽′

(2𝐽 − 1)‼ (2𝐽′ − 1)‼
)

𝐽,𝐽′,𝜆,𝜆′,𝜅,𝜅′  

 

     × (𝑖𝐽−𝜆−𝑙+1𝑒𝑖𝛿
𝑘 ⟨𝑎||𝑄𝐽

(𝜆)||𝑎⟩) (𝑖𝐽′−𝜆′−𝑙′+1𝑒𝑖𝛿𝜅′ ⟨𝑎′| |𝑄
𝐽′

(𝜆′)| |𝑎⟩).                                                      (2.27) 

 𝐴𝐿 is a function of 𝜔 which depends on the reduced matrix elements ⟨𝑎| |𝑄𝐽
(𝜆)

| |𝑎⟩ of the multipole 

moment operator 𝑄𝐽
(𝜆)

 and 𝜆=1 (0) represents electric (magnetic) multipole. 𝐽 and 𝐽′ are the total 

angular momenta of the electron of initial and final states. When integrating equation (2.26) over 

the directions in which the outgoing electrons propagate, the obtained result is an expression that 

accounts for the contributions from all possible photoelectron emission angles. This integration 

allows for a comprehensive analysis of the system's behavior in terms of the specific quantities 

and parameters. Upon performing the integration over the outgoing electron directions of equation 

(2.26), the resulting expression is obtained: 

𝜎𝑛𝑘(𝜔) =
2𝜋2𝛼

𝜔
𝐴0 =

2𝜋2𝛼

𝜔
∑  

(𝐽 + 1)

𝐽(2𝐽 + 1)
𝐽𝜆𝑘

 
𝜔2𝐽

[(2𝐽 − 1)‼]2
⟨𝑎||𝑄𝐽

(𝜆)||𝑎⟩                                           (2.28) 

In our formulation, Eqs. (2.27) and (2.28) were initially expressed in terms of the single-electron 

reduced matrix element. However, we have the flexibility to substitute the single-particle reduced 

matrix elements with the corresponding many-particle expressions given by: 
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⟨𝑎||𝑄𝐽
(𝜆)||𝑎⟩

𝑅𝑅𝑃𝐴
= ∑  (⟨𝑏+||𝑄𝐽

(𝜆)||𝑏⟩) + (⟨𝑏−||𝑄𝐽
(𝜆)||𝑏⟩)

𝑏

,                                                       (2.29) 

⟨𝑏±| |𝑄𝐽
(𝜆)

| |𝑏⟩ being the reduced matrix elements in the many-particle expressions. By employing these 

many-particle expressions, we can obtain the results within the framework of the RRPA. This substitution 

allows us to consider the collective behavior of the system and incorporate the interactions between multiple 

particles, providing a more comprehensive description of the physical phenomena under investigation.  

 

2.3.1 Electric dipole transitions 

In the electric dipole approximation, the differential cross section for photoionization of an 

unpolarized target by incident linearly polarized light can be expressed as follows [27]: 

[
𝑑𝜎𝑛𝑘

𝑑Ω
]𝑙𝑖𝑛 𝑝𝑜𝑙 =

𝜎𝑛𝑘(𝜔)

4𝜋
[1 + 𝛽𝑛𝑘(𝜔)𝑝2(cos 𝜃)]                                                                               (2.30)  

In this context 𝜎𝑛𝑘(𝜔) represents the total photoionization cross section, 𝛽 denotes the asymmetry 

parameter, and (𝜃) is the angle of the photoelectron momentum with respect to the polarization 

vector of the incident light, 𝑝2(cos 𝜃) ≡
1

2
(3𝑐𝑜𝑠2(𝜃) − 1) and  𝑛𝜅 is initial state for 

photoionization of a closed-shell atom.   An electric dipole interaction has the potential to excite 

electrons in the subshell 𝑛𝜅 to states with κ = −κ, κ ± 1. This phenomenon arises from the 

interaction between the electric dipole and the electrons, which results in transitions between 

angular momentum states within the n𝜅 subshell. 𝜅 is defined as κ = ∓ (𝑗 +
1

2
) where 𝑗 = 𝑙 ± 1/2.  

The parameters n and 𝜅 represent the principal and angular quantum numbers, respectively. These 

quantum numbers describe the energy level and the specific orbital characteristics of an electron 

within an atom. Additionally, the parameters j and 𝑙 correspond to the total and orbital angular 

momentum quantum numbers. To calculate the electric dipole cross-section, a shorthand notation 
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represented for the reduced matrix element as 𝐷𝑗→𝑗 = 𝑖1−𝑙𝑒𝑖𝛿𝜅 ⟨𝜅||𝑄𝐽
(𝜆)

||𝜅⟩
𝑅𝑅𝑃𝐴

. This notation 

allows us to denote the interaction between the initial and final states through the multipole 

moment operator, denoted by 𝑄𝐽
(𝜆)

 , [23, 25]: 

𝜎𝑛𝑘 =
4𝜋2𝛼

3
𝜔 (|𝐷𝑗→𝑗−1|

2
+ |𝐷𝑗→𝑗|

2
+ |𝐷𝑗→𝑗+1|

2
)                                                                      (2.31) 

where 𝛼 is the fine structure constant and 𝜔 is the photon energy. Electric dipole asymmetry 

parameter is given by [26]: 

𝛽𝑛𝑘(𝜔)={
1

2

(2𝑗−3)

2𝑗
|𝐷𝑗→𝑗−1|

2
−

3

2𝑗
(

2𝑗−1

2(2𝑗+2)
)

1

2
(𝐷𝑗→𝑗−1𝐷∗

𝑗→𝑗 + 𝑐. 𝑐. ) −
(2𝑗−1)(2𝑗+3)

(2𝑗)(2𝑗+2)
|𝐷𝑗→𝑗|

2
−

3

2
(

(2𝑗−1)(2𝑗+3)

2𝑗(2𝑗+2)
)

1

2
(𝐷𝑗→𝑗−1𝐷∗

𝑗→𝑗+1 + 𝑐. 𝑐. ) +
1

2
 

(2𝑗+5)

(2𝑗+2)
|𝐷𝑗→𝑗+1|

2
+

3

(2𝑗+2)
(

2𝑗+3

2(2𝑗)
)

1

2(𝐷𝑗→𝑗𝐷∗
𝑗→𝑗+1 +

𝑐. 𝑐. )} (|𝐷𝑗→𝑗−1|
2
+ |𝐷𝑗→𝑗|

2
+ |𝐷𝑗→𝑗+1|

2
)

−1

                                                                                      (2.32)        

Equation (2.30) clearly shows that the angular distribution is entirely dependent on the asymmetry 

parameter 𝛽. This parameter contains all the necessary dynamical information regarding the 

angular distribution. It is important to note that the magnitude of the asymmetry parameter 𝛽 is 

constrained within the range of -1 ≤ 𝛽 ≤ 2 due to the requirement that 
𝑑𝜎𝑛𝑘

𝑑Ω
 remains positive for all 

values of 𝜃 [27]. 

 

2.4 Application of RRPA to the photoionization of superheavy elements: 

We calculated photoionization cross sections of the ground states of superheavy atoms No 

(Z = 102), Cn (Z = 112), and Og (Z = 118) using fully relativistic methodologies as presented in 

Ref. [28]. The atomic aspects of these super heavy elements have not been extensively studied 

experimentally due to the short-lived nature of their nuclei. As a result, theoretical calculations 
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and predictions are required to understand the properties of these elements. The photoionization 

of the ground states of these superheavy atoms is investigated using the relativistic random-phase 

approximation (RRPA) methodology [23, 25] which takes into account both relativistic and many-

body electron-electron correlation effects. These effects can have a significant impact on the 

photoionization cross sections of atoms, and understanding their interplay is crucial for accurately 

predicting the behavior of these elements. The RRPA method uses Dirac-Fock (DF) energies in its 

calculations. The DF threshold energies represent the energy levels at which electron excitations 

occur within the relativistic framework of the Dirac-Fock theory. The DF threshold energies for 

different subshells, which correspond to specific electron orbitals within an atom are calculated 

and presented in table (2.4.1). The subshell ordering refers to the arrangement of these electron 

orbitals based on their energy levels. The DF threshold energies and subshell ordering provided in 

Table (2.4.1) serve as a foundation for the RRPA calculations. The RRPA method utilizes this 

information to investigate and predict various atomic properties, such as excitation energies, 

transition probabilities, and spectral characteristics, incorporating the relativistic effects that play 

a significant role in atomic systems. As an example, we discuss the application of the RRPA 

method to study the heaviest element, Oganesson (Og) [28]. Oganesson, represented by the symbol 

Og, is a synthetic chemical element with an atomic number of 118. It was first created in 2002 and 

has an atomic mass of 294. Of all known elements, Oganesson has the highest atomic number and 

atomic mass. It is radioactive and highly unstable. On the periodic table, Oganesson is located in 

the noble gas column, below radon. Electron configuration for 118Og is [𝑅𝑛]5𝑓14 6𝑑10 7𝑠2 7𝑝6. 

In our study, we have performed calculations to determine the binding energies associated with 

each subshell of the ground states of the Og element. These calculations were conducted using the 

DF equations, which were previously explained and introduced in detail. The obtained binding 
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energies for each subshell (table 2.1) serve as essential inputs for subsequent calculations involving 

photoionization processes.               

Table 2-1 Binding energies of the subshells (in atomic units, 27.211 eV) of the ground 

states of the element Og (Z = 118). 

 

 

Regarding the valence structure and ordering of this element, it follows a normal pattern except 

for a noteworthy observation that is presented in the table (2.1). the 5f subshells are found to be 

positioned between the 6𝑝1
2⁄  and 6𝑝3

2⁄ subshells. This deviation from the expected ordering is 

quite interesting. Furthermore, an important characteristic of this arrangement is the substantial 

splitting between the 6𝑝1
2⁄  and 6𝑝3

2⁄ subshells, which is due to spin-orbit splitting.  
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2.4.1   Results and discussion: 

In this research [28], all relativistic single-excitation channels arising from the outermost subshell 

down to the 4f channels are considered in the calculations. To perform these calculations, the 

existing RRPA code was modified and upgraded to deal with larger numbers of subshells and 

channels. The fully relativistic methodology is used to explore the response of superheavy atoms 

to electromagnetic radiation. The total photoionization cross section for Og (atomic number 118) 

was calculated. The cross section was computed from the energy threshold up to a photon energy 

of 60 atomic units (a.u.), equivalent to 1632.72 electron volts (eV).  

 

 

Figure 2-1 Photoionization cross section for Og from threshold to 30 a.u. The vertical lines 

in the curve indicate the various subshell thresholds. 

  

The results are presented in two plots: Figure 2.1 showing the cross section from zero to 30 a.u., 

and Figure 2.2 displaying the cross section from 30 to 60 a.u. 
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Figure 2-2 Photoionization cross section for Og from 30 a.u. to 60 a.u. The vertical lines 

in the curve indicate the various subshell thresholds. The autoionizing states below each inner 

threshold are omitted for simplicity. 

 

These plots provide a visual representation of how the photoionization cross section of Og varies 

with increasing photon energy, allowing for a better understanding of the ionization behavior in 

this element. This element consists of 31 relativistic subshells of which we’ve considered 17 

subshells from 7p3/2 to 4f5/2 resulting in 45 coupled relativistic channels. It is worth noting that the 

channels that were excluded from the analysis were located at higher energy levels, and their 

omission did not significantly impact the results. There is a gap of a few eV below each inner 

threshold. These regions are known as autoionizing resonance regions and were intentionally 

excluded from the analysis. These regions were excluded from the calculation to focus specifically 

on the primary features of interest. Over the majority of the energy range considered, the 6d, 5f, 

and 4f subshells were found to dominate the total cross section. However, in the region of the 5f 
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Cooper minima [51], the 5d subshells demonstrated dominance over a small energy range. Cooper 

minima occur due to a change in sign of the partial-wave photoionization matrix element within a 

specific ionization channel. This change is a result of the energy-dependent radial overlap between 

the continuum and bound wave functions. Notably, Cooper minima are observed only when the 

radial wave function of the initial state contains at least one node [54] [see appendix A]. These 

findings emphasized the importance of interchannel coupling in the photoionization process of Og. 

In regions where the 6d subshells dominated, the cross sections of the weaker subshells mirrored 

the behavior of the 6d subshells. Similar trends were observed in the region of the 5f shape 

resonances. To see this quantitatively, consider the equation (2.33) for fully coupled dipole matrix 

element Di(E) in terms of uncoupled matrix element Mj(E):  

                      𝐷𝑖(𝐸)

= 𝑀𝑖(𝐸) + ∑ ∫ 𝑑𝐸′
⟨𝜓𝑖(𝐸)|𝐻 − 𝐻0|𝜓𝑗(𝐸′)⟩

𝐸 − 𝐸′
𝑀𝑗(𝐸′)

𝑗

                              (2.33)     

where 𝜓𝑖(𝐸) and 𝜓𝑗(𝐸′) are final continuum state wave functions of channels i and j and with 

energies E and 𝐸′ respectively. 𝐻 − 𝐻0 represents the perturbation Hamiltonian. It is evident that 

the subshell cross sections are primarily influenced by the second term, the perturbation term, in 

the equation. In the case where the channel i represents the 7s state and the channels j represent 

the 4f states, equation (2.33) illustrates that when the 4f dipole matrix elements significantly 

surpass the 7s matrix element, the first term on the right-hand side of the equation (representing 

the 7s matrix element) is significantly smaller compared to the second term (representing the first-

order perturbation). Consequently, based on this equation, the 7s matrix element and the 

corresponding cross section will be strongly influenced by interchannel coupling with the cross 

sections of the 4f states. 
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Figure 2-3 Photoionization of the 4f subshells of Og (Z = 118). The autoionizing states 

below the 4𝑓7/2 threshold are omitted for simplicity. 

 

       

Figure 2-4 Photoionization of the 4f subshells of Og (Z = 118) with and without      

coupling. 
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The photoionization channels associated with the 4f subshells in Og demonstrate a remarkable and 

pronounced spin–orbit-interaction-activated interchannel coupling (SOIAIC) effect [see appendix 

B], which is shown in Figure 2.3. Specifically, the cross section of the 4𝑓7/2 subshell, when 

considered without interchannel coupling (as shown in Figure 2.4), exhibits a steady decrease from 

the peak of the shape resonance. However, when interchannel coupling is introduced, a significant 

reduction, or deep minimum, in the cross section occurs near the shape resonance of the 4f5/2 

subshell. Due to the spin-orbit interaction, the 4f subshells undergo a splitting into a doublet, 

resulting in an interchannel interaction between the photoionizing channels associated with each 

member of the doublet, specifically between the 4f7/2 and 4f5/2 channels. The existence of such 

relativistic interactions is not unique to Og and can be expected in other high-Z atoms. With the 

exception that the studied atomic system consists of closed subshell configurations, there is no 

particular distinction for Og compared to neighboring atoms in the periodic table. Consequently, 

it becomes evident that similar interchannel coupling effects in photoionization can be anticipated 

in all super heavy elements. In summary, the phenomenology described possesses a general 

applicability to a broad range of systems [28]. 
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3 TIME DELAY 

Time delay in atomic photoionization refers to the brief delay that occurs between the 

absorption of a photon and the release of the photoelectron wave packet. This delay is incredibly 

small, typically measured in attoseconds (1 as = 10−18 𝑠) . Despite its small size, this delay carries 

important information about the photoionization process and can provide insights into the 

underlying dynamics of the system. The concept of time delay in atomic photoionization can be 

traced back to pioneering works by Wigner [29], Eisenbud [55], and Smith [56], who introduced 

the idea of temporal delays in quantum scattering processes. These early theoretical developments 

laid the groundwork for understanding the time-dependent aspects of quantum dynamics during 

photoemission. Subsequently, studies by Kheifets and Ivanov [30] provided theoretical insights 

into the role of multiple scattering channels and their influence on time delay measurements. They 

highlighted the significance of phase shifts and quantum interference effects in shaping the 

temporal behavior of photoelectrons. The study of time delay has required the use of advanced 

experimental techniques that can capture electron movement. The introduction of attosecond 

science and ultrafast laser pulse technology has been a game-changer in this field. The 

groundbreaking work of Eckle et al. [31] was a significant milestone in time delay studies. Using 

advanced attosecond streak cameras, they successfully measured time delay in the photoionization 

of neon. This innovative experiment allowed them to directly observe and accurately quantify time 

delay effects, providing new insights into the ultrafast behavior of electrons during atomic 

photoionization. This achievement demonstrated the feasibility of measuring time delay and 

opened up exciting possibilities for further exploration of attosecond phenomena. Building upon 

these achievements, Pazourek et al. [32] introduced the angular streaking technique, providing a 

robust method to extract photoemission time delays with high precision. This angular-resolved 
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approach opened new avenues for investigating the temporal behavior of photoelectrons in various 

atomic and molecular systems. The implications of time delay measurements extend beyond 

atomic and molecular physics, encompassing a wide range of scientific disciplines. The ability to 

probe ultrafast dynamics at the attosecond time scale has led to numerous applications and 

potential breakthroughs. In materials science, studies by Schultze et al. [33] demonstrated how 

time delay measurements can provide crucial insights into the electronic structure and 

photoemission processes in solid-state systems. Such understanding is valuable for designing and 

optimizing advanced materials for future technologies. Moreover, the field of attosecond 

spectroscopy has been significantly enriched by time delay investigations. Haessler et al. [34] 

showcased the relevance of time delays in probing ultrafast electron-electron interactions, leading 

to a deeper comprehension of electron correlation effects. In recent experimental and theoretical 

studies, researchers have identified the importance of considering relativistic effects to accurately 

interpret photoionization time delay measurements. The utilization of innovative techniques offers 

a unique opportunity for precise calibration of measuring devices and the study of electron motion 

in atoms, molecules, and solids on the incredibly short attosecond time scale.  

These cutting-edge devices, namely the attosecond streak camera, angular streaking attoclock, 

and RABITT, make use of a phase-stabilized electric field generated by short laser pulses. This 

electric field enables the conversion of the release time of emitted electrons into measurable 

quantities, such as kinetic energy, momentum vector, and electron detector signals [35]. The 

attosecond streak camera [36] is designed to capture the ultrafast dynamics of electron wave 

packets, allowing researchers to investigate the temporal behavior of electronic processes with 

exceptional precision. On the other hand, the angular streaking attoclock [37] focuses on 

determining the electron's momentum vector, offering valuable insights into the directionality of 
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electron ejection. The RABITT technique [38], based on the reconstruction of attosecond bursts 

by ionization of two-photon transitions, enables the study of electronic dynamics with great 

sensitivity. By detecting the beating signal of the emitted electrons, RABITT provides valuable 

temporal information, further advancing our understanding of quantum dynamics. Through the 

implementation of these methodologies, scientists gain a deeper understanding of the underlying 

physics governing attosecond-scale processes, offering critical insights into fundamental atomic 

and molecular interactions. Moreover, the knowledge gained from attosecond science bears 

substantial implications for various fields, including materials science, ultrafast spectroscopy, 

quantum computing, and laser technology. The unprecedented capabilities of the attosecond streak 

camera, angular streaking attoclock, and RABITT devices open up new horizons for the study of 

ultrafast electron motion. These techniques not only enhance our understanding of quantum 

phenomena but also hold the potential to drive significant advancements in diverse scientific and 

technological applications, paving the way for exciting discoveries in the near future.  

A distinct concept of delay-time associated with collisions has been discovered by Bohm, 

Eisenbud, and Wigner through a wave-packet analysis. Specifically, when considering elastic 

scattering, which can be described using a simple phase shift (𝜂), they demonstrate that an 

appropriate definition of delay-time involves the energy derivative of this phase shift. In other 

words, the delay time refers to the time delay experienced by a wave packet during the scattering 

event, particularly in the context of elastic collisions. The phase shift (𝜂) represents the phase 

change experienced by the wave function of the scattering particles due to the interaction with a 

potential. Bohm [39], Eisenbud [40], and Wigner [41] propose that the delay  time can be 

quantified by calculating the energy derivative of the phase shift (𝜂) with respect to the energy of 

the particles involved in the collision process: 
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 Δ𝑡 =  ℏ
𝑑𝜂

𝑑𝐸
 .                                                                                                                                               (3.1) 

 This energy derivative based definition provides insights into how the phase shift varies with 

energy and, in turn, describes the temporal behavior of the scattering wave packet.  

 

3.1 Wigner time delay 

In the realm of cutting-edge XUV/IR two-photon ionization experiments, researchers have been 

investigating the atomic time delay (𝜏𝑎) phenomenon, which intriguingly consists of two distinct 

and crucial components, denoted as 𝜏𝑊 and 𝜏𝐶𝐿𝐶 [42]: 

𝜏𝑎 = 𝜏𝑊 + 𝜏𝐶𝐿𝐶                                                                                                                          (3.2) 

The first component, known as the Wigner time delay (𝜏𝑊), is intricately associated with the 

absorption of XUV (Extreme Ultraviolet) photons during the ionization process. This time delay 

parameter has been of great interest as it can be linked to the concept of the photoelectron group 

delay, a key factor in understanding the temporal behavior of the photoelectron wave packet [41]. 

The second component, referred to as the Coulomb-Laser Coupling (CLC) time delay (𝜏𝐶𝐿𝐶), 

emerges from the absorption of IR (Infrared) photons. This intriguing aspect of the time delay 

arises due to the coupling between the intense IR laser field and the Coulomb field of the ionized 

particle. It is also commonly known in the scientific literature as the continuum-continuum CC 

correction. While both 𝜏𝑊 and 𝜏𝐶𝐿𝐶 significantly contribute to the overall atomic time delay (𝜏𝑎) 

and play vital roles in shaping the dynamics of the ionization process, researchers often tend to 

emphasize on the Wigner time delay (𝜏𝑊). The importance of 𝜏𝑊 lies in its direct connection to 

XUV photon absorption, which plays a crucial role in understanding the photoelectron group delay 

phenomenon. In contrast, the Coulomb-laser coupling component is regarded with somewhat 

lesser attention during the analysis. The rationale behind this lies in the observation that the CLC 
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correction rapidly diminishes with increasing energy of the photoelectron. Nevertheless, this 

intriguing aspect of the atomic time delay still warrants exploration and consideration to gain a 

comprehensive understanding of the ionization dynamics in XUV/IR two-photon experiments. 

While the scientific community predominantly focuses on the Wigner time delay, the significance 

of the Coulomb-laser coupling component cannot be disregarded, providing a captivating avenue 

for further exploration and understanding in this field of research.  

 

3.2 Photoionization amplitude 

We use the multichannel RRPA [23, 25] to calculate the transition amplitude from the ground state 

𝑢𝑖  to an excited state 𝜔𝑖± when we apply an external field  𝜐+𝑒−𝑖𝜔𝑡 + 𝜐−𝑒𝑖𝜔𝑡: 

𝑇 = ∑ ∫ 𝑑3𝑟(𝜔𝑖+  
† 𝛼⃗. 𝐴 ⃗⃗⃗⃗ 𝑢𝑖 +  𝑢𝑖

† 𝛼⃗. 𝐴 ⃗⃗⃗⃗ 𝜔𝑖−)𝑁
𝑖=1                                                                             (3.3) 

where 𝐴 ⃗⃗⃗⃗  is the vector potential and 𝛼⃗ = (0 𝜎⃗
𝜎⃗ 0

) is the Dirac matrix consisting  of Pauli spin 

matrices. In the single active electron approximation, a detailed multipole transition amplitude is 

simplified and reduced to a form that involves considering only a single active electron's 

contribution: 

 𝑇𝐽𝑀
(𝜆)

= ∫ 𝑑3𝑟  𝜔𝑖+  
† 𝛼⃗. 𝑎⃗𝐽𝑀

𝜆   𝑢𝑖                                                                                                     (3.4) 

 This approximation is particularly useful in cases where the electron-electron interaction effects 

are less pronounced, allowing for a more tractable analysis of the multipole transitions within the 

system. In this equation, the indices J and M represent the photon's angular momentum and its 

projection, respectively. The parameter λ takes on values of 1 or 0, corresponding to electric or 

magnetic multipoles, respectively. M = 0 corresponds to linear polarization in the z-direction. 

Specifically, in the context of a one-electron transition, the equation pertains to the transition from 



30 

 

an initial state characterized by the quantum numbers 𝑙𝑗𝑚 to a final continuum state denoted by 

𝑙 𝑗 𝑚, respectively. The spin of electron in this transition is described by a two-component spinor 

𝜒𝜐. This mathematical expression captures the interaction dynamics and quantifies the 

probabilities associated with the specific one-electron transition process, aiding in the study of 

atomic and molecular systems and their responses to electromagnetic fields. This equation 

becomes [23,25,42]:  

𝑇𝐽𝑀
(𝜆)

= 𝑖√
2𝜋2

𝐸𝑃
√

(2𝐽+1)(𝐽+1)

𝐽

𝜔𝐽

(2𝐽+1)‼
× ∑ [𝜒𝜈

† 𝛺𝑘̅𝑚̅(𝑝̂)] (−1)𝑗−𝑚̅
𝑘̅𝑚̅  ( 𝑗 𝐽 𝑗

−𝑚 𝑀 𝑚
) ×

𝑖1−𝑙𝑒𝑖𝛿𝑘̅ ⟨𝑎̅|𝑄𝐽
(𝜆)

|𝑎⟩ (−1)𝑗+𝑗+𝐽                                                                                                   (3.5) 

where E and 𝑝̂ are the photoelectron energy and momentum direction, 𝜔 is the photon frequency, 

and the spherical spinor which is a function of Clebsch-Gordan coefficients and spherical 

harmonics 𝑌𝑙𝑚, and two component spinors 𝜒𝜐. The spherical spinor is defined as: 

𝛺𝑘𝑚(𝑛̂) =  ∑ 𝐶𝑙,𝑀−𝜈,1/2𝜈
𝑗𝑀

 𝑌𝑙𝑚−𝜈(𝑛̂)𝜈=±1 2⁄  𝜒𝜈                                                                           (3.6) 

and  𝜈 = ±
1

2
  is the photoelectron spin polarization. By considering a shorthand for reduced matrix 

element: 

 𝐷𝑙𝑗→𝑙 𝑗 = 𝑖1−𝑙𝑒𝑖𝛿𝑘̅ ⟨𝑎̅|𝑄𝐽
(𝜆)

|𝑎⟩                                                                                                    (3.7) 

As previously mentioned, 𝐷𝑙𝑗→𝑙 𝑗 represents the reduced matrix element, a crucial quantity in our 

calculations. The values of these reduced matrix elements are obtained from the codes that we use 

for our analyses. These codes allow us to compute and extract the necessary information to 

determine the reduced matrix elements, which play a key role in understanding the relevant 

physical processes under investigation, the transition amplitude reduces to: 

𝑇𝐽𝑀
(𝜆)

= ∑ 𝐶𝑙,𝑀−𝜈,1/2𝜈
𝑗𝑀

 𝑌𝑙𝑚−𝜈(𝑛̂) 𝜒𝜈 (−1)𝑗−𝑚̅
𝑘̅𝑚̅  ( 𝑗 𝐽 𝑗

−𝑚 𝑀 𝑚
) × 𝐷𝑙𝑗→𝑙 𝑗  (−1)𝑗+𝑗+𝐽         (3.8) 
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Each amplitude is associated with its own photoelectron group delay, which is defined as the 

Wigner time delay [41]. The Wigner time delay is a measure of the amount of delay or advance 

experienced by colliding particles during their interaction with the scattering potential. In the 

context of photoionization, it characterizes the timing of the process of electron emission from an 

atom after the absorption of a photon. Wigner time delay is defined as [42]:  

𝜏 =
𝜕𝜂

𝜕𝐸
,                𝜂 = 𝑡𝑎𝑛−1 [𝐼𝑚 𝑇𝐽𝑀

𝜆𝜈]

[𝑅𝑒 𝑇𝐽𝑀
𝜆𝜈]

                                                                                            (3.9) 

 

3.3 Electric dipole transitions: 

An electric dipole transition occurs when an electron in an atom interacts with the 

electromagnetic field, causing it to change energy levels. In the domain of electric dipole 

transitions, we focus on cases where 𝜆=1 and 𝐽=1, and we set 𝑀=0, signifying a specific linear 

polarization of the photon. Here, 𝜆=1 implies an electric nature, while 𝐽=1 corresponds to dipole 

transitions. Moreover, 𝑀=0 denotes linear polarization along the z direction. Our methodology 

involves a general formula: 

[𝑇10
1±]𝜈=±1/2 = ∑ 𝐶𝑙,𝑀−𝜈,1/2𝜈

𝑗𝑀
 𝑌𝑙𝑚−𝜈(𝑛̂) 𝜒𝜈  (−1)𝑗−𝑚̅

𝑘̅𝑚̅  ( 𝑗 1 𝑗

−𝑚 0 𝑚
) × 𝐷𝑙𝑗→𝑙 𝑗  (−1)𝑗+𝑗+1         (3.10)                                                                                                      

to compute transition amplitudes, the crucial factor in electric dipole transitions. However, these 

transitions adhere to specific guidelines known as selection rules. To be permissible, transitions 

need to fulfill particular criteria, including ∆j=0, ±1 and ∆𝑀j =0, ±1. Let's consider a transition 

from the np state. Photoabsorption from an initial 𝑛𝑝1/2 state leads to final states 𝜖𝑠1/2 and 𝜖𝑑3/2. 

Hence, by determining the transition amplitude, which has already been derived, we gain the 

capability to calculate both the phase and the corresponding time delay. An electric dipole 

transition from a 𝑛𝑝1/2 initial state leads to the following ionization channels: 
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𝑛𝑝1/2 →  𝜖𝑠1/2,  𝜖𝑑3/2, using equation (3.10), we derived the following expressions for the 𝑛𝑝1/2 

ionization amplitude: 

[𝑇10
1+]𝑛𝑝1/2

𝑚=1/2
= +

1

√15
𝑌20 𝐷𝑛𝑝1/2→𝜖𝑑3/2

+
1

√5
𝑌00 𝐷𝑛𝑝1/2→𝜖𝑠1/2

                                                    (3.11) 

[𝑇10
1−]𝑛𝑝1/2

𝑚=1/2
= −

1

√10
𝑌21 𝐷𝑛𝑝1/2→𝜖𝑑3/2

                                                                                       (3.12) 

Each amplitude is linked to its specific photoelectron group delay, recognized as the Wigner time 

delay [42], and is defined as follows: 

𝜂 = tan−1 [𝐼𝑚 𝑇10
1±]

[𝑅𝑒 𝑇10
1±]

,                𝑡 =
𝑑𝜂

𝑑𝐸
                                                                                         (3.13) 

where η is the phase shift and t represents the Wigner time delay. 

 

3.4 Electric quadrupole transitions: 

Within the domain of photoionization time delay calculations, the exploration of electric 

quadrupole transitions offers a distinctive perspective. Electric quadrupole transitions represent a 

distinct category of quantum transitions that go beyond the conventional electric dipole transitions. 

An electric quadrupole is characterized by a distribution of charges that resembles a specific 

configuration of two electric dipoles. This arrangement interacts with the existing electric fields at 

the nuclear positions. Just as in the case of electric dipole transitions, selection rules play an 

important role in electric quadrupole transitions as well. These rules delineate which transitions 

are possible to occur based on the conservation of angular momentum and other quantum 

properties. In the case of electric quadrupole transitions, the allowed transitions follow selection 

rules involving changes in the quantum number of angular momentum (∆j) and the quantum 

number associated with the projection of angular momentum (∆𝑀j). The selection rules for electric 

quadrupole transitions in a hydrogen-like atom are: ∆𝑗 =  0,  ± 1, ±2,  ∆𝑀𝑗 = 0,  ± 1, ±2,  while 
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𝑗 = 0 ↛ 0,1;  1/2 ↛ 1/2. The combination of electric quadrupole a dipole transitions into 

photoionization time delay calculations adds an additional layer of complexity to the analysis, 

yielding a comprehensive view of the temporal aspects of quantum interactions. The process is 

repeated for quadrupole transitions, albeit with distinct selection rules in play. For quadrupole 

transitions 𝜆 = 1, 𝐽 = 2, 𝑀 = 0 where 𝜆=1 means electric and, 𝐽=2 represents quadrupole 

transitions and we consider M=0 which means linear polarization in z direction. For electric 

quadrupole photoionizing transitions, the amplitude is defined as: 

[𝑇20
1±]

𝜈=±
1
2

= 

∑ 𝐶𝑙,𝑀−𝜈,1/2𝜈
𝑗𝑀

 𝑌𝑙𝑚−𝜈(𝑛̂) 𝜒𝜈 (−1)𝑗−𝑚̅
𝑘̅𝑚̅  ( 𝑗 2 𝑗

−𝑚 0 𝑚
) × 𝐷𝑙𝑗→𝑙 𝑗  (−1)𝑗+𝑗+2                        (3.14) 

An electric quadrupole transition from a 𝑛𝑝1/2 initial state leads to the following ionization 

channels: 𝑛𝑝1/2 →  𝜖𝑝3/2,  𝜖𝑓5/2, considering equation (3.14), we derived the following 

expressions for the 𝑛𝑝1/2 ionization amplitudes: 

[𝑇20
1+]𝑛𝑝1/2

𝑚=1/2
= +

1

√15
𝑌10 𝐷𝑛𝑝1/2→𝜖𝑝3/2

+ √
3

70
𝑌30 𝐷𝑛𝑝1/2→𝜖𝑓5/2

                                                  (3.15) 

[𝑇20
1−]𝑛𝑝1/2

𝑚=1/2
=

1

√30
𝑌11 𝐷𝑛𝑝1/2→𝜖𝑝3/2

− √
1

35
𝑌31 𝐷𝑛𝑝1/2→𝜖𝑓5/2

                                                       (3.16) 

Each amplitude is linked to its specific photoelectron group delay, recognized as the Wigner time 

delay [42], and is defined as follows: 

 𝜂 = tan−1 [𝐼𝑚 𝑇10
1±]

[𝑅𝑒 𝑇10
1±]

,          𝑡 =
𝑑𝜂

𝑑𝐸
.                                                                                                (3.17) 

Where 𝜂 is the phase shift and t represents the Wigner time delay.  
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4 RESULTS AND DISCUSSION 

4.1 Dipole and Quadrupole Contributions to Photoionization Time Delay in Atoms 

The study of Wigner time delay in atomic photoionization provides information on the 

dynamics of atomic electrons in transition on the attosecond time scale, the time scale of atomic 

electron motion.  This time delay generally has an angular dependence and calculations have been 

carried out looking at this angular dependence including only dipole transitions.  Owing to angular 

momentum geometry, the amplitude for dipole photoionization vanishes at certain angles.  Under 

such circumstances, the amplitude for quadrupole transitions dominates and can be studied; in 

particular, at angles where the dipole amplitude vanishes, the time delay exhibited is that of 

quadrupole photoionization, thereby allowing us to get information on the attosecond dynamics of 

quadrupole transitions. Fully relativistic calculations have been performed to delineate the 

circumstances under which the quadrupole channels dominate.  Specifically, calculations have 

been carried out using relativistic random phase approximation (RRPA) for noble gas atoms for 

the angular distribution of time delay including both dipole and quadrupole channels where the 

transition from dipole-dominance to quadrupole-dominance is seen as a function of the angle 

between the photoelectron momentum and photon polarization. 

 

4.1.1 Electric dipole transitions: 

Here we focus on understanding the angular variations in photoemission time delay within 

the valence ns subshell of Argon (Ar). This analysis employs the dipole relativistic random phase 

approximation as a tool for studying the phenomenon. We examine electric dipole transitions that 

originate from initial 𝑛𝑠1/2 states. For an electric dipole transition from a ns initial state of a closed-

shell atom we have:  
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𝑛𝑠1/2 →  𝜖𝑝1/2,  𝜖𝑝3/2                                                                                                               (4.1) 

Using Eq. (3.10), we derive the following expressions for the 𝑛𝑠1/2 ionization amplitude: 

[𝑇̅10
1+]𝑛𝑠1/2

𝑚=1/2
= −

1

3√2
 𝑌10 𝐷𝑛𝑠1/2→𝜖𝑝1/2

−
1

3
𝑌10 𝐷𝑛𝑠1/2→𝜖𝑝3/2

                                                        (4.2) 

[𝑇̅10
1−]𝑛𝑠1/2

𝑚=1/2
=

1

3
𝑌11 𝐷𝑛𝑠1/2→𝜖𝑝1/2

−
1

3√2
𝑌11 𝐷𝑛𝑠1/2→𝜖𝑝3/2

                                                             (4.3) 

Here we considered the linear polarization in the z direction M=0, polarization of the photoelectron 

as 𝜈 = ±
1

2
, and initial state magnetic quantum number as s=1/2, where 𝜆 = 1, 𝐽 = 1. 

4.1.2 Electric quadrupole transitions 

Similarly, for an electric quadrupole transition from a 𝑛𝑠1/2 initial state of a closed-shell 

atom: 

 𝑛𝑠1/2 →  𝜖𝑑3/2,  𝜖𝑑5/2                                                                                                                (4.4) 

and the related reduced amplitudes are: 

 [𝑇̅20
1+]𝑛𝑠1/2

𝑚=1/2
= −

1

5
  𝑌20 𝐷𝑛𝑠1/2→𝜖𝑑3/2

−
1

5
√

3

2
  𝑌20 𝐷𝑛𝑠1/2→𝜖𝑑5/2

                                                   (4.5)                           

[𝑇̅20
1−]𝑛𝑠1/2

𝑚=1/2
=

1

5
√

3

2
  𝑌21 𝐷𝑛𝑠1/2→𝜖𝑑3/2

−
1

5
  𝑌21 𝐷𝑛𝑠1/2→𝜖𝑑5/2

                                                        (4.6) 

Here we considered the linear polarization in the z direction M=0, polarization of the photoelectron 

as 𝜈 = ±
1

2
, and initial state magnetic quantum number as s=1/2, where 𝜆 = 1, 𝐽 = 2. 

 

4.2 Calculating the total Wigner time delay for Ar 3s 

For each specific amplitude associated with the photoelectron transitions, the Wigner time delay 

is mathematically represented as τ = 𝑑𝜂/𝑑𝐸, where 𝜂 denotes the phase uniquely associated with 

that particular amplitude. This concept captures the intricate relationship between the energy 
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variations and the corresponding phase shifts of the amplitude. When considering the total Wigner 

time delay for either the spin-up or spin-down states of the electron, a comprehensive perspective 

is obtained by evaluating the weighted average of the time delays originating from both the dipole 

and quadrupole components of the transition process. These weighting factors are intricately 

determined by the absolute squares of the respective amplitude values, creating a subtle interaction 

between the contributions from different transitions. One intriguing aspect to note is the 

pronounced dependence of these amplitudes on the angles of the photoelectron emission process. 

Given that the photoionization amplitudes inherently rely on the specific geometry of the atomic 

system and the orientation of the external fields, the angular dependency plays a pivotal role in 

shaping the resulting time delays. Since the amplitudes are angle-dependent, then so are the total 

Wigner time delay: 

𝜏𝑛𝑠1/2
=

𝜏𝐷,𝑛𝑠1/2

𝑚=1/2, +
|[𝑇10

1+]
𝑛𝑠1/2

𝑚=1/2
|
2

+𝜏𝑄,𝑛𝑠1/2

𝑚=
1
2

, +
|[𝑇20

1+]
𝑛𝑠1/2

𝑚=1/2
|
2

|[𝑇10
1+]

𝑛𝑠1/2

𝑚=1/2
|
2

+|[𝑇20
1+]

𝑛𝑠1/2

𝑚=1/2
|
2                                                              (4.7) 

where the subscripts D and Q refer to the dipole and quadrupole time delays, respectively.  Note 

that the full T must be used for the weighting factors because the coefficients of the dipole and 

quadrupole amplitudes differ [23]. Due to the angular momentum geometry, certain angles result 

in the vanishing of the amplitude for dipole photoionization. In such cases, the amplitude for 

quadrupole transitions comes to the forefront, offering a fresh perspective on the dynamics at play. 

Specifically, where dipole amplitudes become negligible, the time delay becomes indicative of 

quadrupole photoionization, providing insights into attosecond dynamics within these transitions. 

Note that the dipole spin-up amplitude [𝑇̅10
1+]𝑛𝑠1/2

𝑚=1/2
 vanishes at 𝜃 = 90° so that the total spin-up 

time delay is entirely quadrupole there. Moreover, when considering the angle 𝜃 = 0°, it becomes 

apparent that despite the existence of a contribution from quadrupole transitions, its magnitude 



37 

 

remains notably smaller when compared to the influence of dipole transitions. Consequently, at 

this angle, 𝜃 = 0°, the total time delay is primarily governed by the effects of dipole interactions. 

The impact of quadrupole transitions at this specific angle is relatively minor, resulting in the time 

delay being predominantly characterized by the dominance of dipole interactions. Thus, it is 

expected that the total time delay should show considerable changes, as a function of 𝜃 in going 

from 𝜃 = 0° to 𝜃 = 90°. To test these ideas, we have performed calculations on Ar 3s 

photoionization and the outcome of this calculation [44] is illustrated in Figure 4.1: 

 

 

Figure 4-1 Total Wigner time delay for Ar 3s photoionization including both dipole and 

quadrupole channels at 0 and 90 degrees. 
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The data presented in Figure 4.1 indicates significant differences between the total Wigner spin-

up time delay at 0 and 90 degrees. The time delay at 𝜃=0° is primarily dipole, while the result at 

𝜃 = 90° is entirely quadrupole. 

 

Figure 4-2 Ar 3s Photoionization Cross sections for dipole transitions vs. photon energy 

showing location for Cooper minimum. 

      

It has been demonstrated that for the photoionization of ns subshells of closed-shell atoms by 

linearly polarized photons, the Wigner time delay at 90 degrees is solely due to quadrupole 

transitions. This causes the time delay to change significantly from dipole behavior, as illustrated 

by the example of Ar 3s photoionization. It was also discovered that quadruple transitions 

exhibited Cooper minima [51]. These findings provide a means of studying time delay in the 

quadrupole manifold.  
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4.3 Angular-Dependent Transition from Dipole to Quadrupole and Spin-Flip Dynamics 

The interest in attosecond time delay (Wigner-Eisenberg-Smith, WES, time delay [1-3]) in 

atomic and molecular photoionization was stimulated by experimental measurements that captured 

time delay at the attosecond level [45, 46]. The interest was further heightened by the realization 

that studying attosecond time delay offers insights into atomic and molecular dynamics on a 

timescale aligned with the motion of electrons. This is particularly relevant to understanding how 

electrons behave during transitions from one quantum state to another. As a result, there has been 

a substantial number of both experimental and theoretical investigations focused on attosecond 

time delay in atomic and molecular photoionization, as documented in reference [47]. This 

research has predominantly centered around dipole transitions, which are the primary ways 

electrons move between states. Notably, one study noted the absence of "nondipole terms" 

contributing significantly to time delay [48]. More recent considerations have introduced non-

dipole effects, albeit primarily at the nonrelativistic level and in lower-order analyses [49]. 

Additionally, most reported calculations have relied on nonrelativistic methodologies [50]. 

However, it's important to recognize that relativistic and non-dipole interactions can exert notable 

influence, particularly concerning angular distributions. The study of ns states within closed-shell 

atoms provides an effective platform to investigate this phenomenon. At the nonrelativistic dipole 

level, time delay manifests isotropically, irrespective of angle [49]. Importantly, even with the 

incorporation of relativistic effects at the dipole level, and when focusing on dominant transitions 

where the photoelectron's spin remains unchanged (no-spin-flip), the angular distribution retains 

its isotropic nature. However, the inclusion of spin-flip transitions, triggered by relativistic 

interactions, alongside non-dipole effects, disrupts the isotropy of the angular distribution, as 

elaborated upon. Consequently, measuring the angular distribution of time delay for these ns states 
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yields detailed insights into spin-flip and quadrupole-driven photoionization transitions. This type 

of information is typically challenging to gather without simultaneously detecting the 

photoelectron's spin and the orientation of the residual ion, in conjunction with the time delay. In 

the context of this report, the investigation centers on the photoionization of the 3s subshell of 

Argon (Ar), serving as a specific exemplar to elucidate the intricacies arising from the 

incorporation of spin-flip and quadrupole transitions. This case is particularly noteworthy due to 

the presence of the Cooper minimum [51] in the cross-sectional behavior, leading to pronounced 

time delays [52]. The photoionization time delay in the WES framework, measured in atomic units, 

for a complex transition amplitude T=|T|𝑒𝑖𝛿, is provided by: 

𝑡 =
𝑑 arg [𝑇(𝐸)]

𝑑𝐸
=

𝑑𝛿

𝑑𝐸
                                                                                                                    (4.8)  

In this context, E represents the energy of the emitted photoelectron. Our study relies on a 

powerful computational method called the relativistic-random-phase approximation (RRPA). This 

method helps us calculate transition matrix elements and their associated phases accurately. The 

RRPA is known for its ability to handle both relativistic effects and significant electron 

interactions, including dipole and quadrupole transitions. Specifically, the RRPA helps us 

determine the dipole transition matrix element for a transition from an initial state (𝑛, 𝜅) to a final 

state (𝐸, 𝜅̄). This matrix element is a complex quantity: 

𝐷𝑛𝜅→E𝑘 = 𝑖1−𝑙𝑒𝑖𝛿
𝑘 ⟨𝐸, 𝜅||𝑄1

(1)
||𝑛, 𝜅⟩

𝑅𝑅𝑃𝐴
                                                                                          (4.9) 

RRPA is a key factor that tells us about the dynamics of photoionization. The phase factor 

𝛿𝑘 brings in an energy-dependent aspect, telling us about the phase behavior of the final state wave 

function while considering how the electron behaves upon being ejected. Additionally, the phase 

𝛿(𝐸), which describes the behavior of the electron's angular momentum (𝑙) in the emitted 

photoelectron, is determined as follows: 



41 

 

𝛿(𝐸) = tan−1{
𝐼𝑚⟨𝐸, 𝜅|𝑑̂|𝑛, 𝜅⟩

𝑅𝑒⟨𝐸, 𝜅|𝑑̂|𝑛, 𝜅⟩
}                                                                                                   (4.10) 

This equation provides insights into how the electron's angular momentum behaves during the 

photoionization process. It's important to note that similar principles apply when we consider 

quadrupole transitions. In these cases, the mathematics becomes even more complex, reflecting 

the intricate nature of higher-order interactions within atoms. The transition amplitudes, 

symbolized as 𝑇, are provided for the photoionization of ns states within a closed-shell atom when 

subjected to linearly polarized photons. These amplitudes pertain specifically to dipole transitions. 

To simplify the representation and focus on the aspects directly related to time delay, certain 

common factors that do not influence the time delay have been omitted from the equations: 

[𝑇10

1+
]

𝑛𝑠1/2

𝑚=1/2

= − 
1

3√2
𝑌10𝐷𝑛𝑠1

2

→𝜀𝑝1
2

−
1

3
𝑌10𝐷𝑛𝑠1/2→𝜀𝑝3/2

 = 𝑇10

1+
                                                   (4.11) 

[𝑇10

1−
]

𝑛𝑠1/2

𝑚=1/2

=  
1

3
𝑌11𝐷𝑛𝑠1/2→𝜀𝑝1/2

−
1

3√2
𝑌11𝐷𝑛𝑠1/2→𝜀𝑝3/2

 = 𝑇10

1−
                                                (4.12) 

𝑇10

1+
 represents the  No-spin-flip (NSF)  and  𝑇10

1−
 shows Spin-flip (SF) transitions. Similarly, for 

quadrupole transitions as: 

[𝑇20

1+
]

𝑛𝑠1/2

𝑚=1/2

= − 
1

5
𝑌20𝐷𝑛𝑠1/2→𝜀𝑑3/2

−
√3

5√2
𝑌20𝐷𝑛𝑠1/2→𝜀𝑑5/2

 = 𝑇20

1+
                                             (4.13) 

[𝑇20

1−
]

𝑛𝑠1/2

𝑚=1/2

=  
√3

5√2
𝑌21𝐷𝑛𝑠1/2→𝜀𝑑3/2

−
1

5
𝑌21𝐷𝑛𝑠1/2→𝜀𝑑5/2

 = 𝑇20

1−
                                                (4.14) 

 𝑇20

1+
 represents the  No-spin-flip (NSF)  and  𝑇20

1−
 shows Spin-flip (SF) transitions. The notations 

+ and – in this context distinguish between two types of transitions: non-spin-flip (+) and spin-flip 

(–) transitions, each characterized by distinct electron spin behaviors. When we consider both 

dipole and quadrupole transitions collectively, we can determine the complete amplitudes for both 

non-spin-flip and spin-flip processes. These amplitudes capture the combined effects of transitions 
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involving changes in electron spin, as well as the interactions associated with both dipole and 

quadrupole characteristics. Combining dipole and quadrupole transitions, the total non-spin-flip 

and spin flip amplitudes are given by: 

[𝑇
+

]
𝑛𝑠1/2

𝑚=1/2

=  
√2

√3
[𝑇10

1+
]

𝑛𝑠1/2

𝑚=1/2

+
𝛼ℎ𝜈

√30
[𝑇20

1+
]

𝑛𝑠1/2

𝑚=1/2

 = 𝑇
+

                                                            (4.15)                     

[𝑇
−

]
𝑛𝑠1/2

𝑚=1/2
=  

√2

√3
[𝑇10

1−
]

𝑛𝑠1/2

𝑚=1/2

+
𝛼ℎ𝜈

√30
[𝑇20

1
]

𝑛𝑠1/2

𝑚=1/2

 = 𝑇
−

                                                               (4.16)             

The symbol 𝛼, representing the fine structure constant, holds a numerical value of approximately 

1/137. This constant plays a crucial role in quantum electrodynamics, characterizing the strength 

of the electromagnetic interaction between charged particles. In simpler terms, it quantifies the 

strength of electromagnetic forces in the atomic and subatomic world. On the other hand, ℎ𝜈 

denotes the energy of a photon, measured in atomic units equivalent to approximately 27.21 

electron volts (eV). We can calculate the time delays using Eq. (4.8), resulting in angle-dependent 

𝜏+(𝜃) and 𝜏−(𝜃): 

NSF time delay                   𝜏+ = 
𝑑

𝑑𝐸
 arg [𝑇

+
]

𝑛𝑠1/2

𝑚=1/2

                                                                  (4.17) 

SF time delay                      𝜏− = 
𝑑

𝑑𝐸
 arg [𝑇

−
]

𝑛𝑠1/2

𝑚=1/2
                                                                  (4.18) 

NSF dipole time delay         𝜏𝑑𝑖𝑝
+  = 

𝑑

𝑑𝐸
 arg [𝑇10

1+
]

𝑛𝑠1/2

𝑚=1/2

                         (4.19) 

The symbol θ in this context represents the angle between the direction in which the photoelectron 

is emitted and the polarization direction of the incident photon. This angle is crucial in 

understanding how the emitted electrons respond to the polarization of the incoming photons. 

It's important to highlight that, theoretically, these angle-dependent time delays, 𝜏+(𝜃) and 𝜏−(𝜃), 

can be measured individually through a coincidence experiment. This experimental setup allows 
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for precise measurements of time delays corresponding to both no-spin-flip and spin-flip 

processes, providing valuable insights into the behavior of electrons during photoionization. 

However, in scenarios where coincidence measurements are not carried out, a total time delay is 

calculated by averaging over both no-spin-flip and spin-flip processes. This approach provides a 

comprehensive understanding of the overall time delay, considering the statistical distribution of 

electron emission angles and the contributions from various processes involved in photoionization. 

Where averaged total time delay is given by [51]: 

τ = 
|𝑇

+
|
2

𝜏++|𝑇
−

|
2

𝜏−

|𝑇
+

|
2

+|𝑇
−

|
2

                                                                                                                      (4.20) 

A deep understanding can be gained by examining the angular momentum geometry associated 

with the various amplitudes involved in this context. It's essential to take note that typically, in the 

context of photoionization, the transition amplitude that predominantly occurs is denoted 

as [𝑇10

1+
]

𝑛𝑠1/2

𝑚=1/2

. This amplitude is closely related to the spherical harmonic 𝑌10, a factor in the 

process. However, it's noteworthy that 𝑌10 vanishes when the angle θ is set to 90 degrees, 

corresponding to a configuration where the emitted electron direction is perpendicular to the 

polarization direction of the incident photon. In practical terms, this means that at the θ =90 degree 

angle, the time delay τ is solely determined by the influence of quadrupole transitions. As a result, 

the overall time delay at this particular angle depends on the combined effects of quadrupole and 

spin-flip transitions. This is a significant observation as it highlights how the interplay between 

different types of transitions contributes to the overall time delay. The spin-flip (SF) amplitude, 

denoted as [𝑇
−

]
𝑛𝑠1/2

𝑚=1/2
, exhibits an interesting behavior: it vanishes completely at an emission angle 

of 0 degrees. This intriguing characteristic implies that any deviations from the non-spin-flip 
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(NSF) dipole time delay, represented as 𝜏𝑑𝑖𝑝
+ , can solely be attributed to the influence of quadrupole 

transitions. In other words, when the emitted electron direction aligns perfectly with the photon 

polarization (0 degrees), the SF amplitude becomes negligible, emphasizing the significant role of 

quadrupole transitions in such scenarios. When considering the total time delay, denoted as τ, it is 

important to recognize that it represents a weighted average of both the NSF time delay (𝜏+) and 

the SF time delay (𝜏−). This weighted average is calculated across various energies and emission 

angles. Consequently, τ falls within the range defined by 𝜏+and 𝜏−for all energy levels and 

emission angles. This behavior is essential in understanding how the time delay varies across 

different conditions and highlights the relationship between NSF and SF time delays. Additionally, 

it's crucial to note that 𝜏𝑑𝑖𝑝
+  is angle-independent, making it isotropic. This isotropic characteristic 

means that the NSF dipole time delay remains the same across all emission angles, providing a 

consistent reference point for analyzing deviations and variations caused by other transition types, 

such as quadrupole transitions.  

The Ar 3s calculations were carried out using the RRPA method, as previously noted. In these 

calculations, all individual excitation and ionization channels were accounted, meaning that the 

correlations between these channels were incorporated into the final state of the system. All single 

excitation/ionization channels were included and coupled, i.e., interchannel coupling in the final 

state. An electric dipole transition from a np and ns initial states lead to the following ionization 

channels: 

𝑛𝑠1/2 →  𝜀𝑝1/2, 𝜀𝑝3/2; 𝑛 = 1, 2, 3                                                                                              (4.21) 

𝑛𝑝1/2 →  𝜀𝑠1/2, 𝜀𝑑3/2; 𝑛 = 2, 3                                                                                                 (4.22) 

𝑛𝑝3/2 →  𝜀𝑠1/2, 𝜀𝑑3/2, 𝜀𝑑5/2 ; 𝑛 = 2, 3                                                                                       (4.23) 

Which gives 16 dipole channels, and  
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𝑛𝑠1/2 →  𝜀𝑑3/2, 𝜀𝑑5/2; 𝑛 = 1, 2, 3                                                                                              (4.24) 

𝑛𝑝1/2 →  𝜀𝑝3/2, 𝜀𝑓3/2; 𝑛 = 2, 3                                                                                                  (4.25) 

𝑛𝑝3/2 →  𝜀𝑝1/2, 𝜀𝑝3/2, 𝜀𝑓5/2, 𝜀𝑓7/2 ; 𝑛 = 2, 3                                                                             (4.26) 

Which gives 18 quadrupole channels. When we focus on low energy scenarios, it becomes evident 

that the 1s channels are essentially insignificant in both dipole and quadrupole situations. This 

means that, within the context of the specific energy range being examined, the behavior and 

contributions associated with the 1s channels can be disregarded or treated as negligible. In other 

words, these channels do not significantly impact the outcomes or results, whether we are dealing 

with dipole interactions or quadrupole interactions, due to their minimal relevance within the low-

energy regime under consideration. In our calculations, we have determined that the 

photoionization cross section of Ar 3s displays a phenomenon known as a Cooper minimum. This 

occurs at a specific photon energy, which is approximately 41 eV as shown in Fig. 4.2.  

  In this context, the term "Cooper minimum" refers to a distinct feature in the cross section curve, 

where the probability of photoionization dips to a particularly low point at that specific energy 

level. This phenomenon is a notable characteristic of the photoionization behavior of the Argon 

atom's 3s electrons, and it provides valuable insights into their interaction with incident photons at 

this energy threshold [53]. The outcomes of our calculations pertaining to the WES time delay at 

an energy of 38 eV, which is proximate to but just below the Cooper minimum, have been 

presented in Figure 4.3. These results have been generated through four distinct levels of 

approximation. At the lowest approximation level, termed the "no-spin-flip dipole," denoted as 

𝜏𝑑𝑖𝑝
+ , as per Equation (4.19), it is observable that the time delay remains constant regardless of the 

angle considered. The value of this constant time delay is approximately 260 as. Remarkably, this 
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value closely resembles the outcome obtained from non-relativistic dipole calculations, as 

previously reported [35]. 

     

Figure 4-3 Calculated time delay for Ar 3s at 38 eV photon energy for linearly polarized 

photons as a function of angle with respect to photon polarization showing the total time delay, τ, 

the no-spin-flip (NSF) time delay, 𝜏+, the spin-flip (SF) time delay, 𝜏−, and the NSF dipole time 

delay, 𝜏𝑑𝑖𝑝
+ . 

 

The overall no-spin-flip time delay, denoted as 𝜏+ and accounting for quadrupole effects as 

described in Equation (4.17), presents a significantly contrasting pattern when compared to the 

previously mentioned dipole-only case. In this scenario, the time delay exhibits a pronounced 

angular dependence, with its values varying considerably as a function of the observation angle. 

Specifically, 𝜏+ demonstrates a substantial range of time delays, ranging from nearly -190 as to 

approximately 350 as. This results in a substantial change in time delay of more than 500 as over 
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a relatively narrow angular range. Notably, the most substantial deviations occur at an angle of 

approximately 90 degrees, which is perpendicular to the polarization direction of the incident 

photon. At this angle, the dipole contribution to 𝜏+vanishes. However, it is noteworthy that even                                                          

at an angle of 0 degree, where the dipole contribution is still present, the quadrupole contribution 

remains evident, highlighting the significance of quadrupole effects in influencing the overall time 

delay behavior under these conditions. The disappearance of the quadrupole contribution at 

specific angles, often referred to as "magic angles" at approximately 57 and 123 degrees, explains 

why the values of  the total 𝜏+ (no-spin-flip time delay) and 𝜏𝑑𝑖𝑝
+  (the no-spin-flip dipole time 

delay) become equal at these particular angles. This equality is solely an outcome of the angular 

momentum geometry, emphasizing the geometric aspect of this phenomenon. When we examine 

the total spin-flip time delay, 𝜏−, as derived from Equation (4.18), it becomes evident that it 

exhibits a relatively weak angular dependence. It's important to note that, as indicated by the 

equations mentioned above, in the absence of the quadrupole contribution, 𝜏− would also be 

independent of the observation angle. Therefore, the weak angular dependence observed in 𝜏− is 

a consequence of the presence and influence of quadrupole interactions on this particular time 

delay. The behavior of the total time delay, denoted as τ(θ) and visually presented in Figure 4.3 

while defined by Equation (4.20), closely mirrors that of 𝜏+except for a specific angular range 

spanning from 80 to 100 degrees. The reason for this deviation is primarily due to the magnitude 

of 𝑇
+

, which is much larger than 𝑇
−

outside this range. This discrepancy arises because 𝑇
+

is 

dominated by the dipole no-spin-flip transitions. However, the subtleties of angular momentum 

geometry come into play when we reach an observation angle of 90 degrees. At this specific angle, 

the dipole no-spin-flip amplitude, denoted as [𝑇10

1+
]

𝑛𝑠1/2

𝑚=1/2

, vanishes. Consequently, the relative 
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significance of 𝑇
−

 becomes much more pronounced within this angular span. Given that τ(θ) 

represents a linear combination of both 𝜏+ and 𝜏−, as described in Equation (4.20), its value 

naturally falls between the values of these two components. This relationship is visibly depicted 

in Figure 4.3. Furthermore, it's evident that within the angular range around 90 degrees, the 

magnitudes of the quadrupole no-spin-flip and dipole spin-flip amplitudes are quite comparable. 

This balance contributes to the relatively consistent behavior of the spin-flip time delay, 𝜏−, as a 

function of angle near 90 degrees. This, in turn, results in a total time delay, τ(θ), that varies over 

a somewhat narrower but still significant range, approximately spanning from 150 to 300 as, which 

corresponds to a difference of around 150 as when compared to 𝜏+. However, the overall pattern 

of the angular distribution in the total time delay, denoted as τ(θ), closely resembles that of the no-

spin-flip time delay 𝜏+, albeit with a substantial truncation. In any case, it is evident that the 

incorporation of relativistic spin-flip and quadrupole effects results in a significant alteration of 

the angular dependence observed in the WES time delay. At a photon energy of 40 eV, which is 

closer to the Cooper minimum, the dynamics of photoionization exhibit notably different 

quantitative behaviors, despite a relatively minor change of only 2 eV in photon energy. 

Specifically, the no-spin-flip time delay, denoted as 𝜏+, experiences a remarkable drop from 

approximately 300 as to almost -1000 as within the angular region around 90 degrees. 

Simultaneously, the total time delay, τ, undergoes a significant reduction of around 300 as within 

this angular zone. This disparity in behavior can be attributed to the varying energy dependencies 

of spin-flip (SF) and quadrupole transitions. Essentially, these transitions respond differently to 

changes in photon energy, resulting in the observed differences in time delay dynamics at this 

particular photon energy of 40 eV. This situation is depicted in Figure 4.4, where it becomes 

evident that the effects of spin-flip and quadrupole transitions are quite significant. However, the 
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detailed shapes of these effects differ from the previous case. At 40 eV, being closer to the Cooper 

minimum, the dynamics take on a somewhat different character. Due to angular momentum 

geometry, 𝜏𝑑𝑖𝑝
+  exhibits isotropic behavior and is relatively large in terms of  time delays 

 

Figure 4-4 Calculated time delay for Ar 3s at 40 eV photon energy for linearly polarized 

photons as a function of angle with respect to photon polarization showing the total time delay, 

τ, the no-spin-flip (NSF) time delay, 𝜏+, the spin-flip (SF) time delay, 𝜏−, and the NSF dipole 

time delay, 𝜏𝑑𝑖𝑝
+ . 

 

exceeding 300 as. Additionally, 𝜏+ undergoes a substantial traverse within the 90-degree region, 

transitioning from approximately 300 as to almost -1000 as over a small angular range. This 

dramatic variation is primarily driven by the presence of quadrupole transitions. Furthermore, the 

shape of this time delay is distinctly different, reflecting the unique dynamics associated with this 

photon energy. In contrast, the spin-flip time delay, 𝜏−, is essentially isotropic at this energy 
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because the contribution from quadrupole transitions is much smaller compared to the dipole 

transitions. This situation contrasts with the scenario at 38 eV, where a weak angular dependence 

of 𝜏− is observed. Once again, the total time delay exhibits a shape similar to that of 𝜏+ but is 

significantly truncated. However, it still experiences a substantial variation of approximately 300 

as within the 90-degree region. This detailed analysis underscores the extreme sensitivity of the 

angular dependence of time delay to the underlying dynamics, emphasizing that even slight 

changes in photon energy can lead to dramatic variations in these behaviors. As we transition away 

from the vicinity of the Cooper minimum, we can observe the behavior of time delay at photon 

energies of 90.07 eV and 120 eV, which is presented in Figure 4.5. Notably, there is a substantial 

reduction in the overall scale of the time delay when compared to the energies closer to the Cooper 

minimum. Moreover, in this representation, we focus on a limited range of angles. This is because, 

at these higher energies, the spin-flip and quadrupole channels only induce significant angular 

dependence within a specific angular span, typically around 90 degrees. One noteworthy 

observation is that the value of 𝜏𝑑𝑖𝑝
+ remains relatively stable as we transition from one energy to 

the other. However, the detailed dynamics of the time delay exhibit marked differences. This 

contrast is manifested in the rather asymmetric shape of 𝜏+ and, consequently, τ as they vary with 

angle for the lower energy, while displaying a symmetric shape for the higher energy. In essence, 

this analysis underscores the complex and energy-dependent nature of time delay behavior, 

highlighting how changes in photon energy can lead to distinct patterns in the angular dependence 

of these parameters. At 120 eV, significantly distant from the Cooper minimum, two noteworthy 

distinctions become apparent when compared to lower-energy scenarios. Firstly, the entire scale 

of time delay is substantially reduced. In other words, the time delays observed at this higher 

energy level are much smaller in magnitude compared to those at lower energies. This implies that 
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the time taken for various photoionization processes to occur is significantly shorter. Secondly, 

the influence of spin-flip (SF) and quadrupole transitions, although still notable in percentage 

terms, becomes significant primarily within a limited angular range around 90 degrees. In other 

words, the angular dependence of time delay is most pronounced in the vicinity of 90 degrees, 

while the effects of SF and quadrupole transitions become less pronounced at other angles. When 

considering energies at different points away from the Cooper minimum, there is a consistent 

pattern: significant changes in time delay are always observed within the 90-degree region. 

However, the specific details of these changes vary due to the energy-dependent dynamics of the 

photoionization process. In essence, these observations highlight how the behavior of time delay 

is influenced by both energy levels and angular factors, emphasizing the intricate nature of 

photoionization dynamics. The evolution of the angular dependence of the total time delay, τ, as it 

relates to various photon energies, provides a fascinating insight into how this parameter changes 

both in magnitude and shape across the energy spectrum, particularly as we move away from the 

Cooper minimum region. 
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Figure 4-5 As Fig. 4.3 except for photon energy 90.07 eV (upper plot) and 120 eV  

 (lower plot). 
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To gain a deeper understanding of how τ evolves concerning both energy and angle, let's 

turn our attention to Figure 4.6. Here, we examine a range of photon energies spanning from 38 

eV to 269.9 eV. This comprehensive exploration reveals that the characteristics of time delay 

undergo substantial transformations in response to variations in energy. These transformations are 

a direct consequence of the distinct dynamics associated with each energy level. One striking 

observation is the marked reduction in the overall magnitude of time delays as we ascend to higher 

energies beyond the Cooper minimum region. Alongside this decrease in magnitude, the angular 

distributions of time delays also undergo significant alterations, illustrating the dynamic nature of 

these phenomena. In the vicinity of the Cooper minimum region, as vividly portrayed in Figure 

4.6, a pronounced angular dependence of time delay unfolds across the entire angular span, ranging 

from 0 to 180 degrees. This robust angular dependence is a direct consequence of the unique 

dynamics that govern the Cooper minimum region. Here, the amplitude [𝑇10

1+
]

𝑛𝑠1/2

𝑚=1/2

 is relatively 

small, amplifying the relative significance of contributions from  
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Figure 4-6 Total time delay, τ, for a variety of energies as functions of the angle. Note the 

differing vertical scales on the upper and lower plots. 
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quadrupole and spin-flip transitions. Consequently, these contributions exert their 

influence broadly across the entire angular range, as is evident from the figure. However, as we 

advance to higher photon energies, this intricate pattern undergoes a transformation. In these 

instances, the behavior of time delay is no longer governed by the dynamics near the Cooper 

minimum, leading to a notably different scenario. Instead, the angular dependence of time delay 

becomes most pronounced in the vicinity of 90 degrees. This peculiar behavior arises because, due 

to angular momentum considerations, the amplitude [𝑇10

1+
]

𝑛𝑠1/2

𝑚=1/2

vanishes around the 90-degree 

mark. Consequently, it is precisely at these angles that the contributions from quadrupole and spin-

flip transitions exert their most substantial influence. Beyond this specific angular region, the time 

delay closely aligns with 𝜏𝑑𝑖𝑝
+ , resulting in a relatively flat angular distribution. 
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5 CONCLUSION 

Using the advanced fully relativistic RRPA methodology, we conducted comprehensive 

calculations on the photoionization cross sections of the ground states of the superheavy element 

Og (Z = 118), a closed subshell system. Our analysis revealed intriguing patterns: the dominant 5f 

and 4f subshells, along with the 6d subshells near the thresholds, played a pivotal role in shaping 

the total photoionization cross sections across a wide range of photon energies. A striking 

observation was the mirroring effect displayed by weaker subshells in regions where a specific 

subshell exerted dominance, underscoring the significant influence of interchannel coupling. 

Notably, the substantial spin–orbit splitting led to distinct dynamics within inner-shell spin–orbit 

doublets. In Og, both 5f levels fell between the 6𝑝1
2⁄ and 6𝑝3

2⁄ levels, highlighting the profound 

impact of relativistic interactions in high-Z atoms. It is crucial to emphasize that Og, despite its 

uniqueness as a superheavy element, exhibited behavior typical of closed subshell systems within 

the periodic table. Consequently, our findings strongly suggest that analogous interchannel 

coupling effects in photoionization are likely to prevail across all superheavy elements. In essence, 

the insights detailed in this report are anticipated to have broad applicability, providing a 

foundational understanding of the underlying phenomenology. 

Our exploration extended deeper into the domain of attosecond time delay, probing the intricacies 

of time delay calculations. The study of attosecond time delay offers a window into the dynamic 

world of atomic and molecular behavior at the timescale of electron motion during transitions 

between states. Our goal was to integrate both dipole and quadrupole transitions, aiming to capture 

a comprehensive angular distribution of time delay. Typically, dipole transitions exhibit larger 

cross sections and amplitudes compared to quadrupole transitions. However, within dipole 

transitions, there are specific points of vanishing amplitudes where quadrupole transitions come 
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into play. Our fully relativistic exploration of the angular distribution of WES time delay, 

originating from the photoionization of ns states in closed-shell atoms under linearly polarized 

electromagnetic radiation, revealed a complex pattern influenced by dynamic interactions and 

angular momentum geometry. At a 90-degrees angle, perpendicular to the photon polarization, the 

total time delay, averaged across both no-spin-flip and spin-flip transitions, was predominantly or 

entirely governed by quadrupole and spin-flip transitions. This phenomenon was markedly 

pronounced in the case of Ar 3s, especially in the energy range associated with the Cooper 

minimum. It is important to mention that investigating no-spin-flip time delay effects, despite their 

greater significance, can be challenging due to experimental limitations. Coincidence experiments 

are required in order to overcome these challenges. It is noteworthy that at the nonrelativistic dipole 

level, the WES time delay exhibits isotropy; hence, any angular variations indicate the presence of 

relativistic and/or quadrupole interactions. Studying the angular distribution of time delay around 

the 90-degrees region provides crucial insights into spin-flip and quadrupole transitions at the 

attosecond scale, which aligns with the natural timescale of atomic and molecular electron motion. 

These findings are not specific to particular elements but rather hold true for ns subshells of any 

closed-shell atom. We are currently extending our investigations to explore additional scenarios. 

Furthermore, we are exploring the potential wealth of information that can be gleaned through the 

use of circularly polarized light. 
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APPENDICES  

Appendix A 

Cooper minimum: 

Cooper minima are well-established phenomena in photoionization cross sections, occurs 

a Cooper minimum materializes at an energy level where the dipole matrix element's positive and 

negative contributions cancel each other out due to the overlap between the initial and final state 

wave functions. This convergence results in a zero value for the matrix element as a function of 

energy [19]. Both theoretical and experimental studies have identified numerous instances of these 

minima in the ground states of atoms [58]. Notably, as the atomic number increases, the wave 

function becomes more compact for a given nl state, causing the Cooper minimum to shift closer 

to the threshold, resulting in lower photoelectron energies. The observation of Cooper minima in 

photoionization cross-sections and discrete spectrum transition probabilities provides valuable 

insights into the electronic structure of atoms. These minima were initially discovered 

experimentally [57] and later explained by Cooper [51]. 

 

Appendix B 

SOIAIC: 

This phenomenon known as spin-orbit-interaction activated interchannel coupling 

(SOIAIC) refers to the interchannel coupling between photoionization channels originating from 

spin-orbit split subshells. This effect is exclusively driven by relativistic forces, particularly the 

spin-orbit interaction [59]. Unlike in low-Z atoms, the spin-orbit splitting in superheavy elements 

is notably pronounced due to the heightened influence of relativistic effects. SOIAIC serves as a 

compelling illustration of many-body interactions, showcasing the interchannel coupling among 
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various photoemission channels originating from the two states that form a spin-orbit doublet. This 

phenomenon sheds light on the complex dynamics within high-Z atoms, providing crucial 

information into the behavior of electrons in these elements [60]. The enhanced spin-orbit splitting 

in superheavy elements intensifies the significance of SOIAIC, offering a unique perspective into 

the interchannel coupling phenomena in the realm of relativistic quantum mechanics. 
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