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ABSTRACT 

Urban development has degraded numerous headwater streams. Objectives of this study are: (1) 

to characterize variation in baseflow hydrochemistry in headwater streams of the South River 

Watershed (Atlanta, GA, USA) and relate it to differences in land use and other characteristics, 

as well as to (2) examine solute dynamics during storm events. Results suggest that land use on 

the watershed scale has a significant influence on mean baseflow nitrate concentration at a given 

site, with antecedent precipitation also playing a role. Additionally, we collected samples 

throughout storm events at three USGS stream gage sites. Water chemistry data was paired with 

USGS discharge and specific conductivity measurements to create concentration-discharge plots. 

Results from both baseflow and stormflow sampling suggest that, within this watershed, 

maximum solute concentrations at any location are generally observed at baseflow. As such, this 

is a source-limited system where groundwater also represents the highest-concentration 

component of storm flow. 

 

INDEX WORDS: Urban Hydrology, Watershed biogeochemistry, C-Q relationships, Land use, 

Solute Dynamics, Headwater study, C-Q hysteresis, Storm event-scale   
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1 INTRODUCTION  

1.1 Urban stream degradation 

Urbanization has proven to represent the dominant demographic paradigm of the 21st 

century. As of 2008, over half of the world’s population lives in urban areas, and specific 

mechanisms and processes associated with urbanization (both demographically/sociologically and 

regarding natural systems) have proven heterogeneous and warrant further study (Bloom et al., 

2008). In particular, urbanization has significantly, and at times systematically, altered natural 

systems, including low order urban streams. Observed adverse effects on such urban headwaters 

include systemic hydraulic, ecologic, and hydrochemical degradation (Meyer et al., 2005). In terms 

of changes in chemistry, urbanization has been shown to significantly increase concentrations of 

nutrients (e.g., nitrogen (N) and phosphorous (P) concentrations) (Walsh et al., 2005). This 

headwater degradation can ultimately affect the larger, downstream water bodies to which the low-

order streams contribute.  

Ecologists and hydrologists have recognized and begun to evaluate a consistent set of 

“symptoms” associated with streams draining urban catchments, which was ultimately termed the 

“urban stream syndrome” by Walsh et al. (2005). These systematic symptoms of degradation 

include flashier hydrographs compared to forested counterparts, higher nutrient and contaminant 

concentrations, and incision/destabilization of stream channels, among other phenomena (Meyer 

et al., 2005; Paul and Meyer, 2001). Impervious surface cover (ISC) is one of the key factors 

driving those changes. ISC represents the percentage of a catchment covered with concrete, 

buildings, or other material that prevent or impede infiltration of precipitation, and it is often 

discussed as a critical driver of altered hydrologic response and hydrochemistry in urban systems 

(Arnold and Gibbons, 1996; Brabec et al., 2002). In the southeastern United States, which is 
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located in a humid subtropical climate zone, urbanization has been shown to have a dramatic effect 

on peak flows, significantly increasing runoff ratios (O’Driscoll et al., 2010). Numerous negative 

externalities are associated with degradation of urban streams, including widespread 

eutrophication of larger downstream water bodies as one of the most serious consequences (Baker 

et al., 2001; Shields et al., 2008; Smith et al., 2003).  

1.2 Urban streams in the Atlanta area 

Following the worldwide trend of urbanization, the Atlanta Metropolitan Region (AMR), 

which consists of 10 counties, experienced nearly a 100% growth in population from 1970 to 

1995 (Gregory and Frick, 2000). This growth has caused significant ecological stress to the 

natural environment via rapid increases in residential and industrial development, as well as in 

the magnitude of ISC (Gregory and Frick, 2000). This high level of urban development is 

compounded by Atlanta’s early history of installing combined sewer systems that resulted in 

combined sewer overflows (CSOs) for stormwater control/management instead of entirely 

separate systems for wastewater and stormwater control (Frick et al., 1998).   

In Atlanta, multiple studies confirm the presence of typical stream impacts associated 

with urbanization, including changes in baseflow, stream solutes, and storm flow. Across the 

Upper Chattahoochee River Basin, watersheds representing a wide range of urban development 

showed significant increases in baseflow concentrations of solutes with increasing levels of 

urbanization (Rose, 2007). Additionally, baseflow concentrations were significantly higher for 

any level of urbanization when compared to the rural sites. Rose (2007) hypothesized that 

diffusive (non-point) sources of waste (via leaky sewer infrastructure) were the major drivers of 

elevated solute levels at the urban sites, along with proximity to combined sewer overflows. In 

addition to elevated solute concentrations, urbanization in the Atlanta area has led to dramatic 
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alteration of natural flow regimes. Rose and Peters (2001) showed the highly urbanized 

Peachtree Creek exhibited peak flows 30% to 100% larger than the forested sites used for 

comparison in the study—a result that is consistent with most comparative urban-forest 

watershed studies. Stream discharge at Peachtree Creek also decreased much more rapidly after 

storm events, as quantified by storm recession constants that were significantly greater than the 

forested sites in this study. This indicates that urbanization has caused an increase in hydrograph 

“flashiness” for Peachtree Creek, as expected. This was confirmed to continue to be the case 

almost 20 years later, when Diem et al (2017) showed that increased urbanization in the 

Metropolitan area exhibited increased flashiness. Furthermore, Rose and Peters (2001) showed 

low flows at Peachtree Creek were 25% to 30% lower than at the other sites, which was also 

confirmed by Diem et al (2017). Although reduction in low flows is sometimes cited as a general 

characteristic of urban stream degradation (Walsh et al., 2005) others have questioned the 

universality of this urban stream “symptom” by showing that leaky stormwater infrastructure in 

cities can ultimately increase baseflow (Ledford et al., 2020; Bhaskar et al., 2020). Finally, 

although urbanization is expected to increase runoff coefficients (the percentage of precipitation 

that becomes stormwater runoff) in streams (Paul and Meyer, 2001), Diem et al. (2017) found 

that watershed slope was the primary control on this parameter, rather than urbanization. 

1.3 Previous work on urban N dynamics 

Several studies have attempted to understand the impacts of urbanization on overall 

stream health through measurements of nutrient loading, processing, and export at multiple 

scales. Nutrient loading refers to the mass of a single solute or set of solutes (i.e., nutrients) that 

enters a particular ecosystem or watershed during a pre-defined period. Similarly, nutrient export 

is defined as the mass of a single solute or set of solutes that exits a particular ecosystem or 
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watershed during a pre-defined period (Smith et al., 2003). Furthermore, nutrient retention refers 

to the fraction of mass of a nutrient or set of nutrients that remains in a watershed or ecosystem, 

calculated by accounting for combined loading and export (i.e., retention = 1 – export/loading) 

(Wollheim et al., 2005). Although highly scale and site-dependent, the most general trend found 

in comparative urban watershed studies is significantly higher nutrient loading than in forested 

counter parts. This higher loading is generally attributed to elevated anthropogenic sources 

(Mulholland et al., 2008; Vitousek et al., 1996) and changes in riparian characteristics and 

canopy cover (Grimm et al., 2005; O’Driscoll et al., 2010), while decreased retention is impacted 

by decreased channel complexity and changes in light exposure, ecosystem productivity, and 

respiration (Ledford et al., 2017). 

In terms of nitrogen (N) and nitrate (NO3
-) dynamics, a study by Wollhiem et al. (2005) 

found that N retention in urban streams remained unexpectedly high when compared to forested 

counterparts, possibly because N loading peaks at approximately 30% ISC, then declines, while 

runoff continues to increase. Examining diffuse N export related to discharge, Shields et al. 

(2008) performed a study utilizing catchments from the Baltimore Ecosystem Study, attempting 

to parse how N export changes with flow magnitude and at different levels of urbanization. The 

study found that more urbanized sites exhibit a majority of N export occurring during high flows, 

while the less developed sites exhibit most N export at relatively low flows. In a similar 

investigation of diffuse N dynamics at the Baltimore long-term Ecological Research Site, 

Kaushal et al. (2011) incorporated stable isotopes along with an N budget approach to further 

characterize N sources and speciation. Through examination of N isotope values, the authors 

found that while wastewater was the dominant source at baseflow, atmospheric and agricultural 
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sources began to contribute more as discharge increased during storm events. Isotope analysis 

also revealed widespread denitrification occurring for wastewater and agricultural N. 

1.4 Concentration-discharge (C-Q) relationships & C-Q hysteresis  

Recently, many studies have examined the hysteretic relationship between discharge and 

various solute concentrations in lotic systems. These are often termed concentration-discharge (C-

Q) relationships (Koenig et al., 2017). Examining these relationships for storm events can help 

reveal catchment-wide solute mobilization and transport processes (Lloyd et al., 2016). In addition 

to mixing model concentration rankings (Evans and Davies, 1998), the analysis of hysteresis loops 

can also provide more general information about how a specific solute behaves in a catchment. 

The slope of the C-Q loop indicates whether a solute is “source limited” (exhibits dilution 

behavior) or “transport limited” (exhibits flushing behavior) during a storm event. Positive slopes 

represent flushing, while negative slopes represent dilution (Aguilera and Melack, 2018; Bowes et 

al., 2005). Additionally, loops showing clockwise rotation indicate that concentration peaks while 

the storm hydrograph is rising. Clockwise rotation is usually interpreted as an indication that the 

solute source is spatially close to the stream.  Conversely, an anticlockwise pattern indicates a 

solute source further from the stream, resulting in peak concentrations while the storm hydrograph 

is falling (Evans and Davies, 1998).  

Since Evans and Davies (1998), numerous C-Q hysteresis studies have been performed on 

the storm event scale. Additionally, various hysteresis indices (most incorporating some form of 

normalized concentration and discharge values) have been developed to more effectively compare 

responses between storms and catchments (Lloyd et al., 2016; Zuecco et al., 2016). Using such a 

methodology, Aguilera and Melack (2018) classified approximately 400 storm events over 13 

years at 10 sampling sites. The authors used a combined approach that indexed and compared the 
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slope and rotational pattern for each loop. Variation in the results was shown to be controlled 

mainly by land use and land cover (LULC), as well as antecedent moisture conditions (often 

varying seasonally). Other studies have used similar methods to parse spatial and temporal 

dynamics controlling mechanisms for multiple solutes at various levels of urbanization (Bowes et 

al., 2005; Bieroza and Heathwaite, 2015; Baker and Showers, 2019). Although analysis of C-Q 

hysteresis loops has proven to be a powerful analytic tool for investigation of catchment-scale 

solute dynamics, multiple assumptions are inherent in this method, and they should be considered 

prior to utilization. Evans and Davies (1998) used a representative hydrograph that assumed a 

specific relative magnitude and timing for each component of stormflow, utilizing a 3-

Componoent Model (3CM). Subsequent studies have shown that even small variations in these 

assumptions can confound estimates of component concentration rankings in such mixing models 

(Scanlon et al., 2001; Chanat et al., 2002; Hornberger et al., 2001). Additionally, others have 

speculated that in some watersheds, storm-event-solute responses can be modeled more accurately 

by using a two-component mixing model (2CM), rather than a 3CM. In a 2CM, soil water 

composition is viewed as almost identical to that of groundwater, rather than being quantified as a 

distinct reservoir (Rose, 2003). 

Although numerous C-Q hysteresis studies have been performed in forested, agricultural, 

and urban settings across a wide range in physiographic and climatic settings, hysteresis data from 

urban watersheds in Atlanta is lacking. However, multiple C-Q studies have been performed at the 

Panola Mountain Research Watershed, a forested hydrologic research site in the Atlanta area 

(Aulenbach, 2014; Carroll, 2007). Rose (2003) represents the most thorough existing hysteresis 

study of a developed, low-order watershed in Atlanta. Using the Evans and Davies (1998) typology 

as a conceptual model, this study examined solute dynamics in the highly developed Peachtree 
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Creek watershed and compared results with a less developed reference catchment. Despite 

sampling for a wide variety of chemistries, storm event C-Q patterns were remarkably consistent 

in Peachtree Creek. Hysteresis loops in Peachtree Creek exhibited an almost exclusively clockwise 

rotational pattern (indicating proximal solute sources), as well as an almost exclusively negative 

slope (indicating a source-limited, dilution response to increasing discharge).  

Although urban C-Q studies in Atlanta remain relatively sparse, there is a growing body of 

work aimed at studying the effects of hydraulic and chemical changes, driven by urbanization, on 

C-Q relationships in a diverse array of physiographic and climatic settings, and at various 

spatiotemporal scales (Duncan et al., 2017; Thompson et al., 2010; Gwenzi et al., 2017). Some 

studies have attempted to measure variation in C-Q responses across gradients of urbanization, 

finding key differences in slope and rotational direction between urban and forested sites on the 

storm event scale (Aguilera and Melack, 2019). Other studies have compared C-Q relationships at 

the same study site but at different temporal scales (Duncan et al., 2017). Such studies have often 

noted a “threshold-like” transition in discharge magnitude for which metrics such as slope and 

rotational direction change (Thompson et al., 2010; Gwenzi et al., 2017). 

1.5 Objectives of study 

Given the history of development in Atlanta and its rapid continuing growth, 

understanding both sources and transport mechanisms for contaminants on the watershed scale is 

crucial for future mitigation efforts. In particular, low order streams (headwaters) have been 

shown to have pronounced importance (as well as substantial spatial and temporal heterogeneity) 

in terms of nutrient loading and other dynamics for the larger order streams and rivers that are 

fed by these systems (Peterson et al., 2001). Examining solute dynamics on the storm event scale 

is another matter of importance for mitigation, as storm events often account for a large 
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proportion of nutrient fluxes in a watershed each year (Bell et al., 2008; Sebestyen et al., 2016). 

As such, this study has two motivating objectives: to characterize nutrient and major ion sources 

and retention in headwater streams of the South River watershed (South Atlanta, GA, USA), as 

well as to examine relationships between stream discharge and concentrations of various solutes 

during storm events.  
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2 METHODOLOGY 

2.1 Characterization of geology, soils, and climate in the Georgia Piedmont 

Most of northern Georgia, including the city of Atlanta (Rose and Peters, 2001), lies 

within the Piedmont physiographic province (Diem et al., 2017), as well as the humid subtropical 

Köppen climatic zone (O’Driscoll et al., 2010). As such, the climate of the Atlanta area is 

characterized by high humidity and temperatures in summer months, contrasted with cold and 

relatively mild winter months (Karl and Kloss, 1984). Per daily measurements at Fulton County 

Airport from 1981 to 2010, the Atlanta area experiences average air temperatures ranging from 

0.61 °C (January) to 31.94 °C (July). Additionally, Atlanta receives an average total of 130 cm 

of precipitation per year (NOAA, 2020). Geologically, the province is characterized by a highly 

fractured and heterogeneous igneous and metamorphic bedrock layer of Paleozoic origin and 

felsic composition (e.g., granites, schists, gneisses) (Swain et al., 2004; Rose and Peters, 2001). 

This bedrock is overlain by a weathered regolith of largely the same composition, the lower 

portion of which is known as saprolite (Miller et al., 1990; Long and Baldwin, 1917). This 

saprolite is overlain by soils of essentially this same composition. However, surficial and near-

surficial soils in this region can contain a substantial organic component, and respective depths 

to saprolite and bedrock are highly variable and dependent on topography (McIntosh et al., 1999; 

Miller et al., 1990). From a hydrogeologic perspective, this crystalline subsurface, although 

highly fractured and heterogeneous, has nonetheless proven unsuitable for large-scale 

groundwater extraction. Although the regolith is host to an extensive unconfined, surficial 

aquifer system, its volumetric yield is not sufficient for heavy industrial or agricultural uses 

(Miller et al., 1990). 
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2.2 Site description: South River Watershed (SRW) 

The South River Watershed (Fig. 1) is located in the southeastern portion of the Metro-

Atlanta area, principally in DeKalb County (Diem et al., 2017). In 2016, DeKalb County had a 

total population of 759,297 persons (US Census, 2016) and it encompasses an area of 

approximately 694 km2 (Dai et al., 2019), with an average population density of 1,094 

persons/km2. Although originally forested, clearing (largely via controlled burns) and agricultural 

production, ultimately of cotton, began in the early 19th century. In terms of soils, DeKalb County 

is located entirely in the so-called “red hill” region of the northern Piedmont province (Long and 

Baldwin, 1917). With the exception of alluvium occurrences along stream bottoms, soils are 

largely residuals, which have been classified into numerous distinct types (Thomas, 1979). Most 

notably, the distinct “red clay” soils of the Cecil series formed via weathering of underlying 

granite, mica schist, gneiss, and hornblende schist (Long and Baldwin, 1917). However, 

continuous urbanization since the late 19th century has dramatically altered the landscape and 

hydrology of the entire Metro-Atlanta region, including the South River Watershed (Rose, 2002; 

Rose, 2007).  
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Figure 1: Extent of South River Watershed, with its location in Georgia in red (top-left). 

Bottom-left: map of metro-Atlanta counties with SRW location in red. Middle: map of the upper 

South River watershed, where green dots represent the location of baseflow sampling sites and 

red dots represent USGS gages used for storm event study, as well as baseflow sampling. 
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South River at Flakes Mill Road (Fig. 2) represents the pour point for the main watershed 

used in this study. The Intrenchment (Fig. 3) and Doolittle (Fig. 4) gages, along with all sampling 

sites in this study, are nested within the drainage basin associated with South River at Flakes Mill 

Road. Watershed drainage area for the USGS gages ranged from 11 to 256.4 km2 (Table 1), with 

the smaller two watersheds (Intrenchment Creek and Doolittle Creek) having higher ISC than the 

overall larger South River (Table 2).  The Intrenchment Creek gage is located directly downstream 

of the Custer Street and East Area CSO facilities. This site exhibits a substantially higher 

percentage of areal coverage by primary roads (2.35%) than the percentages for the other two gage 

sites (1.83% at South River and 1.36% at Doolittle Creek) (Table 3) Each of these three gages is 

maintained by DeKalb County, Georgia. The gages record precipitation, discharge, and specific 

conductivity (SPC) at 15-minute intervals. 

 
Figure 2:Outline of South River Watershed with Land Use Categories (NLCD 2016). 
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Figure 3: Outline of the drainage area for USGS 02203700 (Intrenchment Creek at 

Constitution Road) with Land Use Categories (NLCD 2016). 

 

 
Figure 4: Outline of the drainage area for Doolittle Creek at Flat Shoals Road. Legend 

shows impervious land use descriptors per MRLC NLCD. 
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Table 1: Summary information for the 3 USGS gages used as storm sampling sites and 

their associated drainage areas. 

 

Table 2: Areal land use categories for the 3 gages used in this study. SR at Flakes Mills 

is the most downstream site sampled, representing the land use for the entire watershed. 

 

Table 3:Types of imperviousness present in SRW by areal percentage, as calculated for 

the entire watershed. 
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Figure 5: Hyetograph for summer 2020, South River at Flakes Mill Road (USGS 

02203900). Red dots represent baseflow sampling dates. 

 

 

 

Figure 6: Hydrograph for Summer 2020, South River at Flakes Mill Road (USGS 

02203700). Red dots represent baseflow sampling dates. 
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2.3 Surface water sampling 

Regular baseflow sampling was performed from June through September 2020 (Fig. 5; 

Fig. 6). Water quality samples were collected approximately weekly, for a total of 15 times from 

a total of 18 sites (Fig. 1) in the South River Watershed (total baseflow samples collected = 270). 

Of the 18 sites, three were collocated with the USGS stream gages discussed in section 2.3. 

These 18 baseflow sampling sites were selected in an attempt to adequately characterize the 

headwaters of the South River Watershed (i.e., locations representative of the most upstream 

reaches of first-order tributaries in the basin). However, due to site access limitations, sample 

sites were ultimately placed at the most proximal public cross-street to the actual headwater 

locations. Samples were collected from each site using two 60 mL HDPE bottles (as well as one 

duplicate per sample set) and rinsed three times with stream water prior to collection. Samples 

were filtered using Millipore brand, 0.45 µm pore size paper filters and stored at 4°C prior to 

analysis.  

In addition to baseflow sampling, storm event sampling was performed during summer 

2020. Time-series concentrations were quantified at the three USGS gages (Fig. 7) for 13 

discrete storm events from June through September 2020. Temporal resolution varied between 

storms due to equipment limitations. When possible, samples were collected hourly with an 

ISCO, and additional grab samples were collected at finer temporal intervals when peak 

discharge was during the day. Through the selection of USGS gages as sample points, 15-minute 

discharge and SPC measurements were also available for use in C-Q analysis. 

2.4 Hydrochemical analyses 

Field parameters were measured and recorded in-situ at each baseflow sample site. Time, 

temperature (C°), barometric pressure (mm Hg), DO (% saturation and ppm), SPC (µS/cm), and 
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pH were measured using a YSI brand Pro DDS handheld probe that was calibrated in the lab 

before use. Baseflow samples were analyzed for major ion concentrations (Ca2+, Mg2+, Na+, K+, 

Cl-, SO4
2-, F-, Br-, and NO3

-) using a ThermoScientific brand Aquion Ion Chromatograph at the 

Ledford Urban Hydrology Lab (Georgia State University). The Aquion Ion Chromatograph uses 

5 in-house cation calibration standards and 5 in-house anion calibration standards for QA/QC in 

addition to running external USGS standards for calibration checks. Storm event analyses were 

identical to those described for baseflow, with the omission of the measurement of in-situ field 

parameters. 

2.5 C-Q analysis 

After sample collection and chemical analysis, C-Q “hysteresis loops” were generated for 

all solutes at each of the gages and rotational direction was determined. To make more robust 

comparisons between and among gages, events, and solutes, a normalized hysteresis index (HI) 

was calculated using methodology from Lloyd et al. (2016). To calculate HI, discharge (Q) and 

concentration (C) must first be normalized to a 0-1 scale, as in the following equations: 

Normalized C = 
𝐶𝑖− 𝐶𝑚𝑖𝑛

𝐶𝑚𝑎𝑥− 𝐶𝑚𝑖𝑛
         (1)                                                                                        

Normalized Q = 
(𝑄𝑖−𝑄𝑚𝑖𝑛)

𝑄𝑚𝑎𝑥−𝑄𝑚𝑖𝑛
           (2)                                                                                                  

Where Ci and Qi are values at given timestep (i), Cmax and Qmax are maximum values for a given 

storm event, and Cmin and Qmin are minimum values for a given storm event. 

After normalization, the HI is calculated by subtracting concentration values on the 

falling limb of the hydrograph at a given discharge from those on the rising limb at the same 

discharge value: 

HI = CRL_norm – CFL_norm        (3) 
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Where CRL_norm represents a rising limb concentration at a given discharge value, and CFL_norm 

represents a falling limb concentration at a given discharge value. As such, values of the HI will 

fall between -1 and 1. Positive values represent clockwise rotation, and negative values represent 

counterclockwise rotation. The magnitude of the value represents the size of the area inside the 

loop, which is representative of the relative magnitude of the hysteretic response. Another 

advantage of this index is that it can be calculated at different levels of resolution (i.e., the user 

can choose to calculate the HI at any increment of discharge). For this study, a script was 

executed in R that calculated the HI at 2% increments of discharge, giving 50 discrete HI values 

that were averaged to yield the final value (Lloyd et al., 2016; Vaughan et al., 2017; Marsh and 

Moore, 2020). 

In addition to HI, a normalized flushing index (FI) was calculated according to 

methodology from Vaughan et al. (2017): 

FI = CQpeak_norm – CQinitial_norm        (4) 

Where CQpeak_norm represents the normalized concentration at peak discharge, and 

CQinitial_norm represents the initial normalized concentration for the storm event. As such, values of 

the FI also fell between -1 and 1. Positive values represent a flushing or “transport-limited” 

response for a particular solute, whereas negative values represent a dilution or “source-limited” 

response (Koenig et al., 2017). Moreover, like the HI, the magnitude of the FI value represents 

the relative magnitude of the flushing/dilution response. Plots of HI vs. FI for each storm show 

the individual behavior and allow for inter-storm and inter-site comparison (Fig. 7; Vaughan et 

al., 2017). Using these two indices and plotting the results provided a robust method to compare 

C-Q responses among and between storms, sites, and solutes, thereby more easily parsing 

mobilization/transport mechanisms and processes for various solutes on the watershed scale. 
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(Aguilera and Melack, 2018; Marsh et al., 2018; Lloyd et al., 2016). Finally, we considered the 

nature of longer-term C-Q relationships at each of the three study gages by producing plots of 

15-minute discharge and concentration measurements for the entire period of baseflow sampling 

(n = 9696). The characteristics of C-Q relationship in these datasets were examined.   

 

 

Figure 7: Conceptual diagram of storm response indices, with classifications labeled for 

their associated quadrants. 

 

2.6 LULC data and analysis 

2.6.1 Land use and land cover (LULC) analysis 

In addition to discharge data, solute concentrations, and field parameters, supplementary 

data were obtained and consolidated for analysis. Geospatial data were acquired from USGS and 

the Multi-resolution Land Characteristics Consortium (MRLC), in conjunction with analyses in 

ArcGIS (ESRI, 2020). The percentage of various land cover classes, per the MRLC 2016 
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National Land Cover Database (NLCD), was calculated using ArcMap (ESRI, 2020) for the 

catchments draining each gage. The NLCD is a comprehensive raster dataset of land use in the 

contiguous US, developed by a consortium of federal agencies. This 30m-resolution raster was 

last updated in 2016 and uses a 16-class legend for land use designation. Additionally, the same 

percentage calculation procedure was repeated using the NLCD 2016 Developed Urban 

Imperviousness Descriptor raster to quantify areal percentages of various types of impervious 

surfaces, including primary and secondary roads. Finally, 25m buffers were constructed around 

polylines representing the stream itself. The percentage of land use according to the NLCD was 

then calculated the area enclosed by the buffer. Linear regression was performed to test the 

significance of correlation between land use and land cover on baseflow water quality and the 

significance of the linear regressions was test with the lm function in R which uses ANOVA to 

test for significance. In addition to land use percentages we also found total forested and total 

urban percentages based on the NLCD classification.  

 

 

2.6.2 Principal component analysis (PCA) 

Principal component analysis (PCA) was also performed to reduce the dimensionality of 

the baseflow data set by forming linear combinations of potential explanatory variables from 11 

original variables measured at baseflow (Ca2+, Mg2+, Na+, K+, Cl-, SO4
2-, and NO3

-, temperature, 

dissolved oxygen using % saturation, pH, and SPC). The use of PCA is popular with 

multivariate, environmental data sets. PCA can parse driving trends in a dataset, as well as more 

clearly show groupings of observations with similar combined characteristics (i.e., principal 

components). This technique has been applied widely in hydrology, including with 
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hydrochemical (Lautz and Fannelli, 2008), hydromorphic (Singh et al., 2008), and 

hydrometeorological (Shaharudin et al., 2018) data sets. The analysis was performed by using 

the prcomp function in base R (R Core Team, 2020), in conjunction with the ggplot2 package 

(Wickham, 2020) to plot resulting principal components scores for each observation. 
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3 RESULTS 

3.1 Baseflow  

3.1.1 Hydrochemistry 

Baseflow concentrations across the South River were largely consistent at each site over 

the summer (Fig. 8 and Fig. 9 show NO3
- and Cl-, with similar patterns for other ions), with 

median NO3
- concentrations between 0.5 and 1 mg N/L and Cl- between 4 and 8 mg/L. This 

discussion focuses on patterns in biogeochemically-available NO3
- and conservative Cl- to 

separate conservative vs. non-conservative behaviors. For NO3
-, there are a few outlier sites that 

show greater temporal variation (Fig 8). Four of the 18 sampling sites show median values below 

0.5 mg N/L. Of those sites, BS-12 and BS-16 are proximally located, and they represent the 

outlet and inflow for a small pond. These sites also share a relatively small drainage area (5.9 

km2 for BS-12 and 5.7 km2 for BS-16), as well as relatively low urban land use percentages 

(60.0% for BS-12 and 59.3% for BS-16) compared to other sample locations. The other two sites 

that exhibited relatively low (below 0.5 mg N/L) median NO3
- concentrations were BS-2 and 

BS-7. BS-2 (Conley Creek at River Road) is associated with a fairly low drainage area (14.4 

km2) and exhibits the smallest percentage of developed (urban) land use of all drainage areas in 

the study at 43.6%. BS-7 (unnamed tributary to Cobbs Creek at Cocklebur Trail) is also notable 

in that it is associated with the smallest drainage area (0.6 km2) of all sites studied. However, the 

drainage area associated with this site also exhibits the highest areal urban land use percentage of 

all studied sites (87.1%). Spatial and temporal variability of Cl- concentrations at baseflow 

largely mirrored that of the NO3
- concentrations discussed above. As with NO3

- concentrations, 

the two sites associated with the small pond (BS-12 and BS-16) have median Cl- concentrations 

below 4 mg/L (Fig. 9). Additionally, BS-18 represents the highest median Cl- site with the 
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highest temporal variability. Unlike with NO3
-, BS-2 and BS-7 did not exhibit lower (below 4 

mg/L) Cl- concentrations.  

 

 

Figure 8: Boxplot of N concentrations in mg N/L at each baseflow sampling site. The 

median is shown with the solid line while the box covers the 25th to 75th percentiles. Vertical 

lines show the 5th to 95th percentiles and outliers area shown with dots. 

 

 
Figure 9: Boxplot of Cl concentrations in mg/L at each baseflow sampling site. The 

median is shown with the solid line while the box covers the 25th to 75th percentiles. Vertical 

lines show the 5th to 95th percentiles and outliers area shown with dots. 
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Comparing Cl- to NO3
- concentrations for all baseflow samples shows the non-

conservative behavior of NO3
-, (Fig. 10), especially when compared to the conservative behavior 

of both Na+ and Cl- (Fig. 11). The more scattered relationship between NO3
- and Cl- suggests that 

that concentrations are being affected by site-specific in-stream processes such as nitrification, 

denitrification, assimilation, and mineralization. 

 
Figure 10: Scatterplot showing Cl- versus NO3

- concentrations. Dots are colored by site.  
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Figure 11: Scatterplot showing Cl- versus Na+ concentrations. Dots are colored by site.  

 

BS-18 exhibited by far the most variation of the baseflow sites sampled (Figs. 8 and 9). 

Representing one of the three USGS gage sites used in the study (USGS 02203700), BS-18 is 

located approximately two miles downstream from the Custer Avenue and East Area combined 

sewer overflow (CSO) facilities (City of Atlanta, 2020).  The Custer Avenue facility was built as 

an emergency treatment plant to limit CSO bypasses of wastewater treatment plants (City of 

Altana, 2005). During light rainfall events, such facilities are typically not used. In 2019 the 

Custer Ave facility was associated with 3 discharge events, while the East Area Intrenchment 

Creek Overflow was associated with 38 discharge events. Notably, the Custer Street facility 

released overflow at rainfall events as low as 0.25 inches in that year (City of Atlanta, 2019). 

When rainfall causes overflows, the Custer Street facility is meant to “capture, treat and 

disinfect” the combined sewer overflows (City of Atlanta, 2005). Characteristic baseflow 

hydrographs from the site (Fig. 12) suggest that periodic release events occur originating from 
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the upstream CSO facility, where baseflow is elevated and sustained for relatively long periods, 

creating a plateau-shaped hydrograph. These releases are thought to follow relatively large storm 

events. Indeed, the suspected CSO release events that we sampled (Fig. 12) occurred 

approximately 12 hours after a relatively large storm event in the area. Unexpectedly, Cl- and 

NO3
- show divergent responses to rising discharge from the suspected event.  

 

 
Figure 12: Time-series plot of Cl-, NO3

-, and 15-minute discharge measurement for 

suspected CSO outfall event at USGS 02203700, 06/23/20). Discharge in red, Cl- in black, and 

NO3
- in blue. 

 

3.1.2 Influence of urban land use on baseflow water quality 

Examination of the land use data set reveals a few general characteristics. The most 

apparent characteristic is that this is all of the sampling sites are associated with drainage areas 

with relatively large proportions of ISC. Total developed (urban) land use ranged from 43.6% 

(BS-2) to 87.1% (BS-7).  Testing for correlations between total urban/forested land use and mean 

baseflow solute concentrations (Table 4), we found a significant positive relationship between 
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mean NO3
- concentration in baseflow and total urban land use as a percent (p = 0.013, Fig. 13) 

and a negative relationship between mean NO3
- and total forest as a percent (p = 0.014, Fig. 14). 

We also found a significant (p = 0.015) negative relationship between mean Cl- and forested land 

use as a percent among all watersheds (p = 0.015, Fig. 15). The relationship between Na+ and 

total forest was also negative and was marginally significant (p = 0.064).  

Table 4: Summary of the linear regressions performed between LULC and 

hydrochemical data. Values include the slope of the relationship, the R-squared value, and the p-

value. P-values lower than 0.05 are in bold.  
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Figure 13:Scatterplot showing mean baseflow concentrations observed on the y-axis and 

total urban land use (as a percent) for each watershed on the x-axis. 

 

 
Figure 14: Scatterplot showing mean baseflow N concentrations on the y-axis, and total 

forested land use on the x-axis.  
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Figure 15: Scatterplot showing mean baseflow Cl concentrations on the y-axis, and total 

forested land use on the x-axis.  

 

Performing the same areal percentage calculations, but instead using a 25m buffer around 

the stream itself as opposed to the entire watershed, yielded somewhat similar results in terms of 

the significance of linear regressions (Table 5). As with the overall land use percentage value, we 

found a significant relationship between mean NO3
- values and percent urban land use for a 

given site using the 25m buffer (p=0.028). However, this is the only relationship that held, 

suggesting that for this system, total watershed land use is a more accurate indicator of water 

quality. 

Table 5:Summary of the linear regressions performed between LULC (for a 25m buffer 

around the stream contributing to discharge at each site) and hydrochemical data. Values 
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include the slope of the relationship, the R-squared value, and the p-value. P-values lower than 

0.05 are in bold. 

 

3.1.3 Principal component analysis 

Results of the PCA showed a clear distinction between the first three principal 

components that were generated, with PC1 explaining 45.0% of the variance, PC2 explaining 

17.7%, and PC3 explaining 11.5% (Table 6). PC1 had a strong negative loading for Na+, SO4
2-, 

Cl-, Ca2+, and SPC, which we interpret as a groundwater signal, while PC2 had a strong positive 

loading for NO3
- and DO and a negative loading for temperature and Mg2+, which we interpret as 

an in-stream metabolism signal (Fig. 16). PC3 had a strong positive loading for temperature and 

K+ and a strong negative loading for pH, which we believe represents antecedent moisture 

conditions (Table 7). Furthermore, plotting PC1 versus PC2 and PC2 versus PC3 scores for each 

sample and overlaying ellipses representing sample site groupings further underscores the 

contrast between groundwater-driven and metabolism-driven sites, as well as the level of 

variability observed in component scores observed at each site (Fig. 17; Fig. 18). 
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Table 6: The standard deviation of each component, the proportion of variance 

accounted for by each component, and the cumulative (total) proportion of variance explained 

by each component and the others that preceded it. Shown for first 3 principal components. 

 

 

Table 7: Coefficients (loadings) used in the calculation of principal component scores for 

each observation. The highest loadings for each PC are bolded. 
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Figure 16: Biplot of PC1 and PC2 values for each observation (numbered), as well as the 

magnitude and direction associated with the eigenvector generated for each variable. 
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Figure 17: Result of principal component analysis of baseflow sampling data. PC1 is 

plotted on x-axis and PC2 is plotted on y-axis. 95% confidence ellipses were drawn around 

samples from each site.   

 

 

 

Figure 18: Result of principal component analysis of baseflow sampling data. PC2 is 

plotted on x-axis and PC3 is plotted on y-axis. 95% confidence ellipses were drawn around 

samples from each site.   
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3.2 Stormflow 

3.2.1 Hysteresis loop shape and direction 

Thirteen discrete storm events were sampled among the 3 gages from June through 

August 2020, and their general event-scale C-Q characteristics with respect to SPC, Cl- and NO3
- 

are listed in Table 8. Overall, loops exhibited exclusively clockwise or complex rotation and 

almost exclusively dilutive slopes (see representative examples in Fig. 19, Fig. 20, Fig. 21, and 

Fig. 22). The only flushing response was seen for NO3
- on 3 instances (see Fig. 23 for example). 

 

Table 8: Summary of storm responses. DOOL refers to Doolittle Creek at Flat Shoals 

Road (USGS 02203831); INT refers to Intrenchment Creek at Constitution Road (USGS 

02203700); SR refers to South River at Flakes Mill Road (USGS 0220900). 

 

 



35 

 

Figure 19: C-Q plot (SPC) for South River (07/06/20). 

 

 

Figure 20: C-Q plot (Nitrate) for South River (07/06/20). 
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Figure 21: C-Q plot (Chloride) for South River (07/06/20). 

 

 

Figure 22: C-Q plot (Chloride) for Intrenchment Creek (07/02/20) 
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Figure 23: C-Q plot (Nitrate) for Intrenchment Creek (07/02/20). Note anomalous 

flushing response. 

 

3.2.2 Flushing index (FI) & Hysteresis index (HI) 

The response for NO3
- for the three storms which exhibited flushing (Doolittle 07/25/21, 

Intrenchment 07/02/21, and Intrenchment 08/24/21) is shown by plotting FI against HI (Fig. 24).  

Storms with a dilutive signal had a negative FI of relatively large absolute value, showing 

dilution was over 50% for most of the storms. The clockwise rotation seen during most storms is 

represented by the positive HI, with the few complex storms having a negative HI. There is no 

clear pattern between NO3
- C-Q behavior and antecedent moisture conditions, although the storm 

with the greatest flush did have the greatest antecedent moisture conditions (Fig. 25). 

Unlike with NO3
-, there were no storms in the study which exhibited flushing for Cl- (Fig. 

26). Although every storm was dilutive in terms of Cl-, the storm event that was closest to 

flushing response had a very low value for antecedent precipitation (Fig. 27). Additionally, as 

with NO3
-, most storms exhibited a relatively high (over 50%) dilution response for Cl-. Positive 
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hysteresis indices for all storms show that all loops generated for Cl- were predominantly 

clockwise, indicating a proximal or geogenic solute source diluted by an influx of event water. 

 

Figure 24: Storm events plotted with FI for NO3
- on the x-axis and HI on the y-axis. 

 

 

Figure 25: Storm events plotted with FI for NO3
- on the x-axis and HI on the y-axis. 

Color gradient shows antecedent precipitation over 72 hours in mm. 

 



39 

 

Figure 26: Storm events plotted with FI for Cl- on the x-axis and HI on the y-axis. 

 

 

Figure 27:Storm events plotted with FI for Cl- on the x-axis and HI on the y-axis. Color 

gradient shows antecedent precipitation over 72 hours in mm. 
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3.2.3 Long term C-Q relationships 

Plots of discharge versus SPC at 15-minute temporal resolution for the entire sampling 

period (June 22, 2020 – September 30, 2020) for the 3 USGS gage sites (Fig. 28; Fig. 29; Fig. 

30) showed a negative correlation. However, the plot for South River at Flakes Mill Road (Fig. 

30) has much less spread/scatter than that of Intrenchment Creek at Constitution Road. 

Additionally, despite large differences in maximum discharge between the sites due to relative 

stream-order (South River at Flakes Mill Road exhibited the largest maximum discharge values, 

followed by Intrenchment Creek, then Doolittle Creek), all three sites exhibited similar log-

transformed slopes (-0.23, -0.19, and -0.21 for South River, Intrenchment, and Doolittle, 

respectively).  

 
Figure 28:Scatterplot of discharge versus SPC at 15-minite intervals at Intrenchment 

Creek at Constitution Road (USGS 02203700) (June 22, 2020 – September 30, 2020). Both axes 

are log-scaled. 
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Figure 29:Scatterplot of Discharge versus SPC at 15-minute intervals at Doolittle Creek 

at Flat Shoals Road (USGS 02203831) (June 22, 2020 - September 30, 2020). Both axes are log-

scaled. 

 

 

 
Figure 30: Scatterplot of discharge versus SPC at 15-minite intervals at South River at 

Flakes Mill Road (USGS 02203900) (June 22, 2020 – September 30, 2020). Both axes are log-

scaled. 
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4 DISCUSSION 

4.1 Baseflow 

4.1.1 Baseflow characteristics and comparison with previous work  

Studying the environment on the watershed scale has long been a crucial tool in 

ecosystem ecology because inputs and outputs of solutes, energy, and water can be more easily 

quantified and compared (Groffman et al., 2019). This spatial approach has been successfully 

employed in the relatively new fields of urban ecosystem ecology and hydrology, allowing 

researchers to more easily parse biogeochemical processes occurring in-stream that will 

ultimately affect downstream export (Koenig et al., 2017). Taken as a whole, the results of urban 

hydrologic and ecological studies to date have shown substantial site/reach scale heterogeneity 

within and among watersheds, both hydraulically and hydrochemically (Kaushal and Belt, 2012). 

Much of this heterogeneity has been attributed to spatially varying and temporally evolving 

levels of hydrologic connectivity at the site/reach scale, driven by engineered headwaters and 

other anthropogenic landscape alterations (Kaushal et al., 2008; Kaushal and Belt, 2012). Our 

objective for the baseflow component of this study was to characterize variation in baseflow 

hydrochemistry in headwater streams of the South River Watershed and relate it to differences in 

land use and other characteristics. Broadly, we found that headwaters in SRW exhibited a large 

degree of hydrochemical similarity relative to each other. However, a few sites (Such as BS-18) 

showed substantial temporal variability throughout the summer (Fig. 8; Fig. 9). Additionally, we 

found that at baseflow, NO3
- and Cl- concentrations were indeed significantly related to total 

percentages of urban and forested land (Fig. 13; Fig. 14; Fig. 15). 

Furthermore, the results of this study appear largely similar to most other studies of urban 

baseflow and stormflow water quality at the watershed scale, particularly those performed within 
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similar physiographic settings to Atlanta (i.e., Piedmont settings). The differences in solute 

concentrations observed among sites can also likely be attributed to heterogenous hydrologic 

connectivity and spatially variable magnitudes of diffuse inputs. Baseflow hydrochemical results 

track relatively closely with prior studies of urban water quality. In multiple studies of low-order 

urban watersheds, baseflow NO3
- values fell in a similar range to those observed in the SRW 

(Duncan et al., 2017; Tuttle et al., 2014; Mulholland et al., 2008). In particular, baseflow and 

stormflow values of most of the major ions measured proved highly similar to those previously 

measured at Peachtree Creek, a highly urbanized watershed in Atlanta located proximally 

northwest of SRW (Rose 2007; Rose, 2002). NO3
- values were highly comparable between the 

sites and through time, with Rose (2002; 2007) reporting mean baseflow concentration of NO3
- 

at Peachtree Creek of 0.62 mg/L, while mean stormflow concentration was 0.53 mg/L. In our 

study, mean baseflow NO3
- concentration over all sites throughout the whole summer was 

approximately 0.64 mg/L (Fig. 8). Furthermore, Cl- concentrations between the studies also 

tracked closely. At Peachtree Creek, Mean Cl- concentrations were 7.8 mg/L at baseflow and 4.8 

mg/L during stormflow in Peachtree Creek, while at SRW, the mean baseflow Cl- concentration 

over all sites was approximately 6.3 mg/L (Fig. 9).  

Other studies similar to ours have noted substantial variability in concentrations among 

superficially similar sites, even within the same catchment (Tuttle et al., 2014; Groffman et al., 

2005). As such, the four sites with the lowest NO3
- concentrations deserve individual 

consideration (see Fig. 8 and Fig. 9). BS-12 and BS-16 are the two sites associated with the small 

pond that exhibited substantially lower concentrations of both NO3
- and Cl- than other similar 

baseflow sites. These sites are unique in two ways: (1) they both have very low total drainage 

areas of less than 6 km2, and (2) these catchments encompass two residential ponds, and the 
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percentage of open water in the drainage areas for these sites are 1.78% and 1.45%, respectively. 

Although both open water values are less than 2%, they are nonetheless substantially higher than 

all other sites in the study and will have direct impacts on downstream water chemistry. Given 

the presence of slow-moving, ponded water contributing to flow at both of these sites, one 

possible driver of the lower NO3
- concentrations could be denitrification of inorganic N 

occurring in an anoxic hyporheic zone, which is a well-documented phenomenon in such 

conditions (Lautz and Fannelli, 2008; Mulholland et al., 2008; Kaushal et al., 2008). Average 

NO3
- values decreased by more than 50% from BS-16 (0.23 mg N/L) to BS-12 (0.10 mg N/L), 

suggesting in-stream assimilation or removal of inorganic N along flow paths between the two 

sites (or another unknown input that is more dilute). Biological assimilation of inorganic N at 

this site may be driven by the pond receiving, especially if the two associated ponds receiving 

large amounts of sunlight during the summer months. Denitrification is not hypothesized as the 

driver for low nitrate at BS-16 (the inlet to the pond) because it did not have low DO 

concentrations (94-139% saturation). Low concentrations here could be driven by low nitrate in 

groundwater, a different source of water to the stream as shown by the low Cl- concentrations, or 

limited upstream length over which biologic assimilation and decomposition can happen. 

In addition to BS-12 and BS-16, two other baseflow sites (BS-2 and BS-7) showed 

abnormally low NO3
- concentrations throughout the summer (Fig. 8). As with the pond-

associated sites, BS-7 is associated with a very small drainage area (0.6 km2, representing the 

smallest of all sites in the study). In contrast, BS-2 is associated with a moderate-sized drainage 

area (14.4 km2). However, it is important to note that unlike the pond-associated sites, BS-2 and 

BS-7 did not exhibit abnormally low Cl- concentrations, but rather just low NO3
- values. As such, 

we can reasonably conclude that Cl- is exhibiting a conservative behavior at these sites, while 
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NO3
- concentrations are being influenced by in-stream processes. Counterintuitively, the 

drainage area associated with BS-7 is not only the smallest in the study, but it also consists of the 

highest total urban impervious land use (87.1%) of all sites studied, representing an outlier in 

terms of the general observed relationship between land use and water quality (Fig. 13). One 

plausible explanation for the discrepancy between solute concentrations and impervious land use 

is the tendency of low-order (and particularly first-order) streams to typically process over half 

of all N inputs into a watershed from the terrestrial environment, owing to their shallow depth 

profile and much higher surface area to volume ratio when compared to their larger order 

counterparts. These physical characteristics of headwater streams create an environment that is 

conducive for biogeochemical processing (Peterson et al., 2001). 

BS-8 (Fig. 31) exhibited the second highest median NO3
- concentration at baseflow 

(behind Intrenchment Creek). However, its median value for Cl- fell in the moderate range 

between 4 and 8 mg/L This site is a first-order stream which was likely constructed and 

incorporated into a residential drainage system at the time of development. This is one common 

type of engineered headwater often present in urbanized systems (Kaushal and Belt, 2012). 

Although not channelized, BS-8 is located directly adjacent to a series of residential lawns. As 

such, one possible explanation for the high NO3
- concentrations observed at this site is the 

prospect of localized fertilizer inputs. Multiple studies have shown that fertilizer can be a major 

source of N in surface water in both agricultural and urban watersheds (Huang et al., 2020). 

Furthermore, many studies of golf courses have shown that these highly fertilized and managed 

environments (which have similar characteristics to residential lawns) have the potential to 

export harmful amounts of N and P, although export can vary by multiple orders of magnitude 

(Bock et al., 2020). 
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Figure 31: Photograph of baseflow sampling site BS-8. 

 

In addition to direct temporal and inter-site comparisons of baseflow concentration data, 

plots of the baseflow PCA results help to further parse potential factors driving the 

hydrochemistry of each site, as well as the system as a whole, by grouping the signal at each site 

on a given day into a broadly groundwater-driven (PC1-dominant) or metabolism-driven (PC2-

dominant) category. Plotting PC1 versus PC2 for all baseflow observations, we see that BS-18, 

BS-17, BS-5 and BS-4 show substantial temporal variability in PC1 scores (Fig. 17). BS-5 and 

BS-17 are both sites located on the main stem South River itself, relatively close to the overall 

watershed outlet. As such, both have large drainage areas compared to the lower-order sites 

(approximately 156 km2 and 108 km2, respectively). A larger temporal variability in PC1 scores 

indicates that there may be a larger and/or longer surface water impact at these sites after storms. 
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This a plausible result, as prior studies have shown that higher-order streams tend to have a less 

flashy response than their headwater tributaries (Roodsari and Chandler, 2017). Additionally, 

BS-18 (Intrenchment Creek) also exhibited highly variable PC1 values (Fig. 17), as might be 

expected given the intermittent CSO inputs that are likely altering Cl- concentrations and 

possibly other variables associated with PC1. As such, PC1 may not represent a true 

groundwater-driven signal here, as in other sites. In addition to the clear groundwater signal 

represented by PC1, PC2 is likely a metabolic signal, although this is a less clear designation. 

The associated variables for PC2 are NO3
-, temperature, DO, and Mg2+. Sites with relatively high 

variability in PC2 values over time include BS-8, BS-13, and BS-18 (Fig. 17; Fig. 18). Large 

PC2 values at BS-8 further support the idea that its high NO3
- concentrations may be a result of 

fertilizer input, as anthropogenic external inputs have been shown to increase uptake and 

assimilation rates, thereby contributing to the stream metabolism (PC2) signal (Mulholland et al., 

2009). However, one unclear result of the PCA is the presence of Mg2+ as a high-valued loading 

coefficient in PC2, as this ion is not usually associated with a metabolism-driven processes. We 

first believed that the abnormally high Mg2+ loading coefficient could be a result of the fact that 

that the two sites associated with the small residential pond (BS-12 and BS-16) exhibited 

abnormally high Mg2+ and Ca+ concentrations throughout the summer compared with the other 

baseflow sites. However, many sites that did not have these elevated Mg2+ and Ca+ 

concentrations also showed strong metabolism signals, such as BS-8, BS-17, and BS-18. 

4.1.2 Land use controls on water quality in SRW 

Significant relationships between mean NO3
- and Cl- concentrations and total 

urban/forested land use in the baseflow sites watersheds suggest that land use is indeed a control 

on solute concentrations. As such, our study is one of many that have shown the influence of ISC 
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on baseflow water quality (Arnold and Gibbons, 1996; Brabec et al., 2002). More specifically, 

our results are comparable with previous work in Atlanta in which solute concentrations 

increased with level of urban land use, and the urbanized sites exhibited significantly higher 

concentrations than the non-urbanized comparison sites (Rose, 2007). Despite the presence of 

these significant relationships, it is important to note that these simple models have relatively 

poor predictive power (all have R2 values close to 0.3), indicating many things besides percent 

land use in the watershed are driving stream concentrations. Finally, the lack of significant 

relationships between 25m riparian land use and water quality also has interesting management 

implications. Prior work on the effectiveness of riparian buffers has shown that width is one of 

the most important factors controlling the level of N removal, with 50m buffers showing 

significantly more removal than 25m buffers (Mayer et al., 2007). As such, especially in urban 

headwaters, remediation and restoration projects must consider land use and development within 

the entire watershed, as opposed to exclusively in riparian buffers.  

4.2 Stormflow 

4.2.1 Controls on event-scale C-Q characteristics & context in urban C-Q framework 

Evans and Davies (1998) related the form and rotational pattern of hysteresis loops to 

end-member component concentration rankings in 3-component and 2-component conservative 

mixing models of stormflow generation. They proposed that the determination of the relative 

concentrations of either “pre-event” and “event” water in the case of a 2-component model, or 

groundwater, “surface event water”, and soil water in the case of a 3-component model, could be 

determined through the classification of a given hysteresis loop into one of six categories based 

on its slope and rotational direction. As such, the relative importance of distinct hydrologic flow 

paths in the study catchment can also be inferred from this analysis.  
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Our broad objective for the stormflow component of this study was to examine 

relationships between stream discharge and concentrations of various solutes during storm events 

using a similar analytical framework as Evans and Davies (1998). We found that storm events 

captured in this study largely resemble the “C3” loop in the Evans and Davis typology (i.e., 

loops have a negative slope and clockwise rotational pattern) (Fig. 19; Fig. 20, Fig. 21, Fig. 22).  

This shape is associated with groundwater as the highest-concentration component of stormflow, 

followed by “surface event” water, with soil water as the lowest concentration (if using a 3-

component model). Alternatively, if interpreting this as a 2-component system, this shape 

implies that “pre-event” water has a higher concentration than “event water.” This tracks closely 

with one of the only previous urban C-Q studies performed in the Atlanta area (Rose, 2004), as 

well as other Piedmont settings, such as the eastern “upstate” regions of North and South 

Carolina and portions of Maryland (Tuttle, 2014; Duncan, 2017). 

4.2.2 Context within existing long-term C-Q framework  

Early C-Q studies in hydrology focused on the storm event scale (Johnson., 1982; Wailing, 

1975; Glover et al., 1974). However, later studies have attempted to observe C-Q relationships 

beyond the storm event scale to seasonal, annual, or interannual scales (Koenig et al., 2017; 

Duncan et al., 2017). Godsey et al. (2009) found that despite well-defined C-Q responses 

observed on the shorter-term storm event-scale, analysis of long-term (i.e., annual and 

interannual) C-Q relationships showed that common geogenic solutes exhibited almost 

chemostatic (stationary) behavior in response to changing discharge. This is apparent when 

considering that in the data sets studied, discharge in a system varied by multiple orders or 

magnitude, while concentrations only varied by far less than one order of magnitude (Godsey et 

al., 2009). By plotting the long-term C-Q relationships at each of our gage sites using SPC data, 



50 

we saw a similar dynamic at play, despite the fact the SRW is a heavily urbanized catchment. 

Additionally, Godsey et al. (2019) showed that the slope of chemostatic C-Q relationship was 

more dilutive for tropical and subtropical climates. We see the same pattern in our subtropical 

climate, as seen in the high FI index values found in this study for storm events. 

Additionally, the main possible explanation for the phenomenon of much higher scatter in 

our long-term C-Q diagram for Intrenchment Creek at Constitution Road (USGS 02203700) is 

that this site experiences periodic inputs due to periodic use of the upstream treatment plant, 

unlike sites that receive constant WWTP effluent (Ledford and Toran 2020). Additionally, our 

sampling of one of these events showed that Cl- levels rose during the outfall event, suggesting 

that effluent from the CSO facility may elevate the normal conductivity signal. This is a hot spot 

of heterogeneity in baseflow in this system that is assimilated with distance, as no other sites 

show the same variability. 

4.3 Context within urban watershed continuum 

The urban watershed continuum framework expands on the urban stream syndrome 

concept of systematic ecological and hydrologic degradation in urban settings (Walsh et al., 

2005; Kaushal and Belt, 2012). It does so by integrating observations of four spatiotemporal 

dimensions (lateral, longitudinal, vertical, and temporal), as well as emphasizing the importance 

of evolving hydrologic connectivity of flow paths in urban systems through time. Our baseflow 

study contributes to this framework by showing key interactions in urban headwater streams 

between surrounding land use (Fig. 13; Fig. 14; Fig. 15) and evolving hydrologic connectivity in 

anthropogenically altered or engineered headwaters. Despite outlier sites associated with point-

sources such as BS-18, as well as some spatial variability in solute concentrations among the 

first-order sites, we see an integrated baseflow signal observed at the watershed outlet (BS-1, 
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South River at Flakes Mill Road) as well as sites on the main stem of the South River close to the 

outlet (i.e., BS-04, BS-05 BS-17). With the knowledge that these integrated signals are less 

variable and encompass the heterogeneity of the upstream sites, monitoring efforts to understand 

major anion and cation chemistry can be focused on such outlets in urban settings where 

monitoring resources are scarce without loss of information. Regarding our second objective, 

storm events observed in this study generally have a relatively homogenous response (i.e. the 

majority of events exhibited dilution and clockwise rotation) despite the heterogeneity that would 

be expected in a highly urbanized watershed (Table 8). 
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5 CONCLUSION 

Overall a few general insights can be gleaned from this study. First, in our study watershed, 

urban land use and ISC are related to mean NO3
- and Cl- concentrations at baseflow. We find that 

the main drivers of spatial and temporal variability in baseflow concentrations are related to 

differences in groundwater contribution or concentration at each site and the metabolic activity 

of the stream. But, overall, there is minimal variability in baseflow chemistry across the 

headwaters, indicating a homogeneity in a system that is often assumed to be highly 

heterogeneous. This is supported by the storm event study as well, with our sampled storms 

showed largely dilutive behavior and clockwise rotation and similar C-Q slopes for nested 

watersheds. Anomalous N flushing in 3 storms may be driven by antecedent precipitation. 

Taking our baseflow and stormflow data together, we can conclude that SRW is a source-limited 

system where groundwater represents the highest-concentration component of stormflow and 

drives baseflow concentrations with surprising homogeneity across the system. Such localized 

information could potentially play a significant role in future stream mitigation efforts in the 

urban landscapes.  
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APPENDICES  

Appendix A: Land use data 

NLCD 2016 Land Use Classes as percentage of total drainage area for each baseflow sampling 

site. Additionally, ISC is categorized into different types and also presented as percentage of 

total drainage area. 
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Areal land use percentages (NLCD) calculated using a 25m buffer around the stream in each 

watershed. 

 


	Characterizing Solute Transport and Processing Dynamics in the Headwaters of the South River (South Atlanta, GA, USA)
	Recommended Citation

	MANUSCRIPT TITLE

