
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

5-4-2021

Network Function Virtualization Service Delivery In Future Internet Network Function Virtualization Service Delivery In Future Internet

Danyang Zheng

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

Recommended Citation Recommended Citation
Zheng, Danyang, "Network Function Virtualization Service Delivery In Future Internet." Dissertation,
Georgia State University, 2021.
doi: https://doi.org/10.57709/22396797

This Dissertation is brought to you for free and open access by the Department of Computer Science at
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Computer Science Dissertations by
an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_diss
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/22396797
mailto:scholarworks@gsu.edu

NETWORK FUNCTION VIRTUALIZATION SERVICE DELIVERY IN FUTURE

INTERNET

by

Danyang Zheng

Under the Direction of Xiaojun Cao, PhD

ABSTRACT

This dissertation investigates the Network Function Virtualization (NFV) service delivery

problems in the future Internet. With the emerging Internet of everything, 5G communica-

tion and multi-access edge computing techniques, tremendous end-user devices are connected

to the Internet. The massive quantity of end-user devices facilitates various services between

the end-user devices and the cloud/edge servers. To improve the service quality and agility,

NFV is applied. In NFV, the customer’s data from these services will go through multiple

Service Functions (SFs) for processing or analysis. Unlike traditional point-to-point data

transmission, a particular set of SFs and customized service requirements are needed to

be applied to the customer’s traffic flow, which makes the traditional point-to-point data

transmission methods not directly used. As the traditional point-to-point data transmis-

sion methods cannot be directly applied, there should be a body of novel mechanisms that

effectively deliver the NFV services with customized requirements.

As a result, this dissertation proposes a series of mechanisms for delivering NFV services

with diverse requirements. First, we study how to deliver the traditional NFV service with

a provable boundary in unique function networks. Secondly, considering both forward and

backward traffic, we investigate how to effectively deliver the NFV service when the SFs

required in forward and backward traffic is not the same. Thirdly, we investigate how

to efficiently deliver the NFV service when the required SFs have specific executing order

constraints. We also provide detailed analysis and discussion for proposed mechanisms and

validate their performance via extensive simulations. The results demonstrate that the

proposed mechanisms can efficiently and effectively deliver the NFV services under different

requirements and networking conditions.

At last, we also propose two future research topics for further investigation. The first

topic focuses on parallelism-aware service function chaining and embedding. The second

topic investigates the survivability of NFV services.

INDEX WORDS: Network Function Virtualization, Software-Defined Networking, Ser-
vice Function Chaining and Embedding, Approximation Algorithm.

NETWORK FUNCTION VIRTUALIZATION SERVICE DELIVERY IN FUTURE

INTERNET

by

Danyang Zheng

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2021

Copyright by
Danyang Zheng

2021

NETWORK FUNCTION VIRTUALIZATION SERVICE DELIVERY IN FUTURE

INTERNET

by

Danyang Zheng

Committee Chair: Xiaojun Cao

Committee: Yi Pan

Shihao Ji

Yi Zhao

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

May 2021

iv

CHAPTER 0

DEDICATION

This dissertation is dedicated to my parents Ling Yang and Dongli Zheng, my step father

Tao Zhong and my grandmother Jiuhua Su for their endless support and love during my

Ph.D. years. I cannot finish my Ph.D. without their love and encouragement

v

CHAPTER 0

ACKNOWLEDGMENTS

Pursuing my Ph.D. degree in Georgia State University during the past five years has been a

truly life-changing experience for me. I would never have been able to finish my dissertation

without the guidance of my committee members, help from my group, and support from my

family and my friends. I would like to show my great gratitude to all of them.

First of all, I would like to show my deepest gratitude to my advisor Dr. Xiaojun Cao

and Dr. Yi Pan. They provided me with an excellent environment for research, and gave me

many opportunities to promote myself. They always inspired me when I felt frustrated, and

provided valuable suggestions and guidances when I was trapped in my research. Thanks to

their selfless help, I can totally focus on my research and gain a lot of skills on it. Dr. Cao not

only has taught me the thorough methodologies to carry out my academic career, but also

inspired me to pursue my life and achieve self-actualization. His hard-working, open-mind,

brilliant, and warm-hearted has set a good example for me to follow. I am very grateful for

all his instruction and priceless help on me. By Dr. Pan’s excellent research skills, earnest,

and preciseness, he has not only taught me the methodologies used for my study, but also

the right attitudes towards my research, career and life. I will always keep the attitudes in

my whole life.

It is very grateful and a great honor to have Dr. Shihao (Jonathan) Ji, and Dr. Yi

Zhao in my committee, who gave me great supports for my Ph.D. study and spared time to

participate in my dissertation committee.

vi

I am also very thankful to the professors and staffs at our department, especially Dr.

Yingshu Li, Dr. Zhipeng Cai, Dr. Raj Sunderraman, and Dr. Alex Zelikovsky for their

great help in my Ph.D. study. I thank Ms. Tammie Dudley, Ms. Adrienne Martin, Mr. Paul

Bryan, Ms. Venette Rice, and Ms. Celena Pittman for their patient help, which makes my

study at our department much easier and more convenient.

I also wish to express my gratitude to my former undergraduate advisor Prof. Ling Tian,

who initially enlightened me to the world of computer science, and provided me the chance

to further study with Dr. Cao at Georgia State University. I also appreciate the help and

support from Prof. Guangchun Luo and Prof. Aiguo Chen, who kindly helped me handle

many issues in China, and many colleagues in China, especially Dr. Ke Yan.

Also many thanks go to colleagues in my group and department. Special thanks for

my group colleagues Dr. Chenguang Kong, Dr. Evrim Guler, Dr. Maryam Jalalitabar,

Chengzong Peng, Xueting Liao, my friends Dr. Xu Zheng, Dr. Dongjing Miao, Dr. Yi

Liang, Dr. Yan Huang, Xuebing Wu, Shubin Wu, Saide Zhu, Yaxin Deng, Yibin Xie, Jisheng

Yang, Kainan Zhang, Honghui Xu, who helped me study and live in U.S..

My parents and my grandmother deserve special mention for their love, encouragement,

support, and patience during my life and my study in America. The dissertation is impossible

without their support. They shed lights in my heart every time when I felt lonely and tired.

Last but not least, it is a pleasure to thank everybody who made the dissertation possible,

as well as express my apologies that I could not mention personally one by one.

vii

CHAPTER 0

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

LIST OF TABLES . xi

LIST OF FIGURES . xii

LIST OF ABBREVIATIONS . xv

1 INTRODUCTION . 1

1.1 Network Virtualization . 1

1.2 Software-Defined Network . 2

1.3 Network Function Virtualization . 4

1.4 Organization of This Work . 6

2 SERVICE CHAINING AND EMBEDDING IN UFNS 7

2.1 Motivation . 7

2.2 Problem Statement . 9

2.3 SFC composition and Embedding in Unique service Function networks 11

2.3.1 Complete Graph Transfer . 12

2.3.2 Minimum Spanning Tree-based SFP Construction 13

2.4 Numerical Results and Analysis . 17

2.4.1 SCW-SFCE vs. ILP in NSFNET 17

2.4.2 SCW-SFCE Performance Evaluation in USNET 18

2.4.3 SCW-SFCE vs Nearest Neighbour Algorithm in USNET . . 19

2.5 Summary . 20

3 SERVICE CHAINING AND EMBEDDING IN MFNS 21

3.1 Motivation . 21

viii

3.2 Minimum Cost Service Function Chaining and Embedding (MC-
SFCE) . 24

3.2.1 Physical Network Model . 24

3.2.2 Network Service Request (NSR) 25

3.2.3 Minimum Cost Service Function Chaining and Embedding
(MC-SFCE) . 25

3.3 Complexity Analysis of Minimum Cost Service Function Chaining
and Embedding (MC-SFCE) . 29

3.3.1 MC-SFCE in Unique Function Tree Network 29

3.3.2 MC-SFCE in a Multiple Function Tree Network 31

3.3.3 MC-SFCE in Mesh Networks 33

3.4 COst Factor-based SFCE Optimization with ShortCut (COFO-SC) 34

3.4.1 COst Factor-based SFCE Optimization (COFO) 34

3.4.2 COst Factor-based SFCE Optimization with ShortCut (COFO-
SC) . 38

3.5 Bounds Analysis . 40

3.5.1 Bound Analysis in UFPNs . 40

3.5.2 Bound Analysis in MFPNs . 42

3.6 Experimental Results and Analysis . 45

3.6.1 Simulation Environment . 45

3.6.2 Performance Metrics and Benchmarks 46

3.6.3 Performance Analysis in UFPNs 47

3.6.4 Performance Analysis in MFPNs 49

3.7 Summary . 53

4 HYBRID SERVICE CHAIN COMPOSITION AND EMBEDDING . . . 54

4.1 Motivation . 54

4.2 Problem Statement . 56

4.2.1 Substrate/physical Network Model 56

4.2.2 Network Service Request with Hybrid Traffic 57

ix

4.2.3 Hybrid Service Function Chain composition and Embedding
(HSFCE) . 57

4.3 Hybrid SFCE in UFSNs . 61

4.3.1 Complexity Analysis of HSFCE in UFSN 61

4.3.2 Hybrid Trace Construction (HTC) 63

4.3.3 Hybrid Eulerian Circuit Construction (HECC) 65

4.3.4 Eulerian Circuit based Hybrid SFP optimization 67

4.3.5 EC-HSFP is 2-Approximation 68

4.4 Hybrid SFCE in MFSN . 69

4.5 Numerical Results and Analysis . 73

4.5.1 Simulation Environment . 73

4.5.2 Performance Metrics . 74

4.5.3 Approximation Analysis in UFSN 75

4.5.4 Performance Analysis in MFSN 77

4.6 Summary . 79

5 OPTIMAL HYBRID SERVICE CHAIN EMBEDDING 80

5.1 Motivation . 80

5.2 Minimum Latency Hybrid Service Function Chain Embedding . . . 82

5.2.1 Substrate/physical Network (SN) Model 82

5.2.2 Hybrid Service function chain Request (HSR) 82

5.2.3 Minimum Latency Hybrid SFC Embedding (ML-HSFCE) . 83

5.3 Hybrid SFCE Complexity Analysis . 86

5.4 Optimal Hybrid Service Function Chain Embedding 90

5.4.1 Hybrid SFC embedding Auxiliary Graph (HSAG) 90

5.4.2 Optimal Hybrid SFC Embedding Algorithms 96

5.5 Experimental Results and Analysis . 98

5.5.1 Simulation Environment . 98

5.5.2 Performance Metrics and Benchmarks 99

x

5.5.3 Performance Analysis of Opt-HSFCE for Single HSR . . . 100

5.5.4 Performance Analysis of Opt-HSFCE for Multiple HSRs . 102

5.5.5 Runtime Analysis of Opt-HSFCE 103

5.6 Summary . 105

6 DEPENDENCE-AWARE SERVICE CHAINING AND EMBEDDING . 106

6.1 Motivation . 106

6.2 Problem Statement . 107

6.2.1 Substrate Optical Network . 107

6.2.2 Dependence-aware NFV Service Request 108

6.2.3 Dependence-aware SFC Embedding in Optical Networks . . 109

6.3 Dependence-aware Service Function Chain embedding with Least-
Used consecutive subcarriers . 110

6.3.1 Impact Factor based Node Selection 110

6.3.2 Chain Node Mapping . 113

6.3.3 Chain-Fit Link Mapping . 116

6.4 Experimental Results . 119

6.5 Summary . 121

7 FUTURE WORK . 122

7.1 Future Direction One: Parallelism-aware Service Function Chain
Composition and Embedding . 122

7.2 Future Direction two: Survivability of Service Function Chaining
and Embedding . 124

8 CONCLUSION . 127

8.1 Dissertation Overview . 127

8.2 Dissertation Preliminary Work . 128

REFERENCES . 130

xi

CHAPTER 0

LIST OF TABLES

Table 3.1 Notation Table . 26

Table 3.2 CF Value and T Updates . 37

Table 3.3 Notations for Approximation Proof . 42

Table 4.1 Multi-Functions Substrate Network . 70

Table 4.2 IBC Value Calculation . 72

Table 5.1 Notation Table . 84

Table 5.2 Term & Abbreviation Table . 92

xii

CHAPTER 0

LIST OF FIGURES

Figure 1.1 An example of network virtualization. 2

Figure 1.2 Architecture of SDN. 3

Figure 1.3 Architecture of NFV MANO. 5

Figure 2.1 NSR = {f1, f4, f6} in a mesh UFN. 12

Figure 2.2 Example of the SCW-SFCE Algorithm. 16

Figure 2.3 ILP vs. SCW-SFCE in NSFNET. 18

Figure 2.4 The Average Approximation of SCW-SFCE. 19

Figure 2.5 SCW-SFCE vs. NN in USNET. 20

Figure 3.1 Delivering cloud gaming service as an SFC in the datacenter network. 22

Figure 3.2 Unique function tree. 30

Figure 3.3 SFP for the request. 30

Figure 3.4 MFTN with the star topology; |N | represents the size of the network. 32

Figure 3.5 An example of MFPN. 37

Figure 3.6 1st iteration result. 37

Figure 3.7 2nd iteration result. 37

Figure 3.8 Result of COFO. 37

Figure 3.9 Result of COFO after applying the shortcut technique. 38

Figure 3.10 Unique function mesh networks. 48

Figure 3.11 Unique function fat-tree. 48

Figure 3.12 CPR vs. bandwidth. 49

Figure 3.13 Acceptance vs. bandwidth. 49

xiii

Figure 3.14 CPR vs. computing resource. 50

Figure 3.15 CPR vs. number of physical nodes. 51

Figure 3.16 CPR vs. number of SFs. 52

Figure 3.17 Results in multiple function mesh networks. 52

Figure 4.1 An example of in-service h-SFC for one on-line machine learning scenario. 55

Figure 4.2 An example of UFSN . 62

Figure 4.3 SFP complete graph . 62

Figure 4.4 An example of EC-HSFP. 67

Figure 4.5 An example of MFSN . 70

Figure 4.6 BC-HSFP result . 70

Figure 4.7 Approximation analysis in UFSN . 75

Figure 4.8 Performance analysis in MFSN . 77

Figure 4.9 A star MST from CC . 78

Figure 4.10 A path MST from BC . 78

Figure 5.1 An example of in-service h-SFC for on-line machine learning in IoT . 80

Figure 5.2 Traffic-Independent h-SFC . 87

Figure 5.3 Traffic-Dependent h-SFC . 87

Figure 5.4 A substrate network example . 89

Figure 5.5 The optimal hybrid SFP (latency cost = 21) 89

Figure 5.6 The hybrid SFP created by applying the existing SFCE optimization
technique on f-SFC and applying the common SF node embedding result on
the embedding process of b-SFC (latency cost = 25) 89

Figure 5.7 Hybrid SFC embedding auxiliary graph for the given h-SFC {s, v1, v2, v3, d, v1, s
′}. 93

Figure 5.8 The 24-nodes US-NET . 101

Figure 5.9 The 40-nodes random network . 101

xiv

Figure 5.10 The 24-nodes US-NET . 101

Figure 5.11 The 40-nodes random network . 101

Figure 5.12 Multiple requests in the 40-nodes random network when HSR requests
4 common SFs . 102

Figure 5.13 Multiple requests in the 40-nodes random network when HSR requests
9 common SFs . 102

Figure 5.14 Runtime vs length of h-SFC . 103

Figure 5.15 Runtime vs # of common SFs . 103

Figure 6.1 An Example of a Substrate Optical Network. 108

Figure 6.2 Function dependences in NSR1. 108

Figure 6.3 An Example of CCR and LPNM. 115

Figure 6.4 An Example of Chain-Fit RSA. 117

Figure 6.5 An Illustration of D SFC LU. 118

Figure 6.6 SON with unlimited computing resource and unlimited subcarriers . . 120

Figure 6.7 SON with unlimited computing resource and limited subcarriers . . . 120

Figure 6.8 SON with limited computing resource and limited subcarriers 120

Figure 6.9 SON with limited computing resource and unlimited subcarriers . . . 120

Figure 6.10 SON with unlimited computing resource and limited subcarriers . . . 120

Figure 6.11 SON with limited computing resource and limited subcarriers 120

xv

CHAPTER 0

LIST OF ABBREVIATIONS

• NFV - Network Function Virtualization

• VNF - Virtual Network Function

• SF - Service Function

• SFC - Service Function Chain

• NSR - NFV/Network Service Request

• SN - Substrate Network

• SON - Substrate Optical Network

• PN - Physical Network

• SFCE - Service Function Chaining and Embedding

• SFP - Service Function Path

• UFSN/UFN - Unique Function Substrate Network

• MFSN/MFN - Multiple Functions Substrate Network

1

CHAPTER 1

INTRODUCTION

With the advancement in the hardware, software and virtualization techniques, more and

more state-of-the-arts networking frameworks and architectures are proposed to facilitate a

convenient lives for human beings [1][2][3]. Internet of Things (IoT) techniques enable great

number of edge devices connecting to the Internet and create tremendous opportunities for

IT developers to design diverse edge applications [1, 4]. Cloud computing systems allow the

end-users to offload their computation-intensive tasks to remote servers, thus saving Capital

Expenditure (CAPEX) and Operational Expense (OPEX) at the local [2, 5, 6]. Multi-

access Edge Computing (MEC) systems empower the latency-sensitive and computation-

intensive applications (e.g., Pokemon GO, online machine learning and etc) and provide

efficient computing pool at network edges [3, 7, 8]. When designing the above systems,

one of the common things that the service providers need take into consideration is how to

efficiently satisfy and deliver the services to customers.

To satisfy the service requests from the customers, Network Virtualization enables the

possibilities of flexible resource allocations, agile delivery options and smart service scaling.

1.1 Network Virtualization

Network Virtualization (NV) refers to abstracting network resource that was traditionally

hosted in hardware to software. NV can combine multiple physical networks to one virtual

network, or it can divide one physical network into separate, independent virtual networks [9].

For example, in Fig. 1.1, the physical network is abstracted into two separate virtual networks

2

with diverse amounts of resource, which can be managed by different service providers. It is

worthy of noticing that, the virtual network topology might be different than the physical

network. For example, the first virtual link in virtual network 2 represents the connection

from Node F to Node C (i.e., F → B → C) in the physical network. But, the virtual node

in the virtual network will share the same position as the physical node does. With the

support of the network virtualization, the other problem for the service providers is how to

effectively manage those resource and smartly control the service delivery. For this case, we

will introduce the concept of the Software-Defined Networking (SDN).

Virtual Network 1 Virtual Network 2

Physical Network

Node A

Node B

Node C

Node D

Node F

Figure 1.1: An example of network virtualization.

1.2 Software-Defined Network

Software-Defined Network (SDN) decouples the control plane (i.e., managing how to operate

the traffic) from the data plane (i.e., forwarding the traffic flow based on decisions of control

3

plane) [10]. As a result, the SDN control plane is able to directly operate over the state in

the network elements of the data plane (e.g., routers, switches or other middleboxes) via a

well-defined Application Programming Interface (API) (e.g., OpenFlow [11]).

Application Plane

Networking
Virtualization

Networking
Provisioning

Control Plane

Controller1 Controller2 Controller3 Controller4 Controllern

Data Plane

Northbound API

Southbound API
(e.g., OpenFlow)

Figure 1.2: Architecture of SDN.

Fig. 1.2 introduces the basic architecture of SDN, which includes three planes and com-

munication interfaces: i) application plane, ii) control plane, and iii) data plane. The ap-

plication plane runs applications over the network infrastructure, and allows to perform

modifications regarding the requirements. The control plane provides logic control policies

(e.g., routing schemes) to manage the collected information from the switches of the data

plane. It is worthy of mentioning that, the control plane has the global view of the net-

working conditions (e.g., resource availability). In the data plane, the physical devices are

4

responsible to forward data when the programmable flow tables can be dynamically config-

ured by the control plane. Meanwhile, the northbound API enables programmable network

controllers, and the southbound API allows the communications between the control plane

and data plane by using the OpenFlow protocols.

With the advancement in SDN, service providers are able to flexibly provide networking

control policies. To provide agile services to the customers, Network Function Virtualiza-

tion (NFV) is a complement of the SDN techniques, which implements the hardware-based

network functions to software modules.

1.3 Network Function Virtualization

Traditionally, the network functions are implemented by the proprietary middle-boxes, which

is expensive for the cost and inconvenient for the service delivery [12]. To agilely deliver

the service while reducing the CAPEX and OPEX for service providers, Network Function

Virtualization (NFV) was proposed by European Telecommunications Standards Institute

(ETSI) [13].

Fig. 1.3 shows the architecture of NFV MANagement and Orchestrator (MANO). The

NFV Infrastructure (NFVI) abstracts the physical resource to the virtual resource pool and

will be used by the virtualized infrastructure managers for supporting the behaviours of the

Virtual Network Function Manager (VNFM). With such resource, VNFM will instantiate

VNF instances to achieve the certain demands requested by the Element Manager (EM).

Then, the information of instantiated VNFs will be informed to the NFV Orchestrator

5

NFV Orchestrator

VNF
Manager(s)

Virtualized
Infrastructure
Manager(s)

Operational Support System (OSS)/Business Support System (BSS)

Service, VNF and
Infrastructure
Description

EM1 EM2 EM3

VNF1 VNF2 VNF3

NFVI

Virtual
Computing

Virtual
Storage

Virtual
Network

Virtualization Layer

Hardware Resource

Computing
Hardware

Storage
Hardware

Network
Hardware

Main NFV reference points Other reference points Execution reference points

NFV MANO

Figure 1.3: Architecture of NFV MANO.

(NFVO). As a result, the NFVO will perform the operations on the Operational Support

System (OSS) or Business Support System (BSS).

With NFV, the hardware-based network functions are implemented by the software-based

modules called Virtual Network Functions (VNFs) or Service Functions (SFs) [14]. SFs can

be flexibly installed on or removed from the commodity servers [15]. In NFV, the NFV

Service Request (NSRs) from the customer generally includes source, destination, a set of

SFs and the corresponding networking resources [16]. Traditionally, to deliver a service in

NFV, the service provider must concatenate the required SFs into a chain structure called

Service Function Chain (SFC) and embed the composited chain onto a the Physical Network

(PN), while reserving the certain networking resources [16]. The process of compositing

and embedding an SFC to meet an NSR is referred to as Service Function Chaining and

Embedding (SFCE) [17]. The physical path that hosts the composited SFC is called Service

6

Function Path (SFP) [14, 15].

1.4 Organization of This Work

With the support of the network virtualization, SDN and NFV techniques, in this disserta-

tion, we plan to investigate how to efficiently deliver the services to the customers for future

internet. In chapter 2, we investigate a problem of how to provably deliver a service as an

SFC in unique function networks. In Chapter 3, we further study how to provably deliver a

service as an SFC in multiple functions networks. In chapter 4, simultaneously considering

the forward and backward traffic flows, we investigate a problem for effectively delivering

a service as a hybrid SFC. In chapter 5, we further consider the optimization problem of

how to minimize the latency of delivering a given hybrid SFC. In chapter 6, when the VNFs

have certain executing order constraint, we study how to efficiently composite and embed a

dependence-aware SFC. In chapter 7, we list two directions of future work. In chapter 8, we

conclude our work.

7

CHAPTER 2

SERVICE CHAINING AND EMBEDDING IN UFNS

2.1 Motivation

Network Function Virtualization (NFV) provides communication services and replaces the

physical proprietary hardware with the software-based modules called Virtual Network Func-

tions (VNFs) or Service Functions (SFs) [18]. SFs can be deployed with the Commercial

Off-The-Shelf (COTS) hardware platform or standardized high volume servers [19]. With

NFV, a Network Service Request (NSR) from a customer can be a set of SFs with resource

demand(s) (e.g., CPU, bandwidth) [20]. To satisfy an NSR, the service provider must chain

the SFs with the SF links into a Service Function Chain (SFC), which defines the executing

order of the required SFs [14]. At the same time, all the SF nodes and SF links in the SFC

must be mapped onto the substrate network to form the actual forwarding path called Ser-

vice Function Path (SFP) [14]. The processes of SFC composition, SF node mapping, and

SF link mapping are referred to as SFC composition and Embedding (SFCE) [21]. When the

executing order of the SFs or the SFC is given, the SFCE problem becomes the traditional

Virtual Network Embedding (VNE) problem, which is proved as NP-hard [20].

In the literature, there exist many works towards solving the SFCE problem when the

executing order of the required SFs are given or partially given [22, 23, 24, 25, 26]. In

[22], the authors study SFCE in an optical network when partial executing order is given.

When the SFC is given, the authors in [23] study the SFC deployment and adjustment in

the online situation while considering the tradeoff between the resource consumption and

8

operational overhead. The authors in [26] transform the given Substrate Network (SN)

into a new graph and find the optimal path to satisfy the required functions in the new

graph under the condition that the substrate link provides unlimited bandwidth. In [27], we

investigate how to embed the independent SFs onto a unique service function network with

a 2-approximation algorithm. When verifying the approximation, we use the length of the

Minimum Spanning Tree (MST) as the lower bound instead of comparing the performance

of the proposed algorithm with the optimal result.

In this chapter, we study how to composite and embed an SFC onto a specific substrate

network, where each substrate node only provides one unique SF. The unique service func-

tion network is practical since substrate networks like the Mobile Edge Computing system

may have limited computing capacity and each edge substrate node may only perform one

specialized/unique SF. We name this problem as SFC composition and Embedding in Unique

service Function networks (SFCE-UF). We formulate this problem by applying the technique

of Integer Linear Programming (ILP) and prove its NP-hardness. In addition, we propose

an algorithm with provable approximation boundary, namely, Spanning Closed Walk based

SFC composition and Embedding in unique service function networks (SCW-SFCE). Here,

we highlight the differences between this chapter and the one in [27] as:

• We formulate the problem by applying the technique of Integer Linear Programming;

• We improve the approximation boundary as 2*|1− 2
V
|, where |V | is the number of SFs

in the NSR.

• In the experiment, we compare the performance of the proposed algorithm with the

9

optimal results acquired from ILP. We also investigate how the physical link length

impacts the approximation boundary.

The rest of this chapter is organized as follows. In Section II, we provide the problem

statement of the SFCE-UF. Section III provides the analysis and algorithms for SFCE-UF

in unique service function networks. In Section IV, we show the experimental results. In

Section V, we conclude our work.

2.2 Problem Statement

We use an undirected graph GS = (N,L) to represent the physical/Substrate Network (SN),

where N represents the set of physical nodes and L is the set of physical links. Each physical

node n ∈ N provides a specific amount of computing capacity and a particular Service

Function (SF) denoted as cn and fn, respectively. For each physical link l ∈ L, it owns a

certain weight denoted as wl, which can be delay, length and cost of this link. A Network

Service Request (NSR) can be represented by a 1-tuple NSR =< V >, where V represents

the set of SF nodes. For each SF node v ∈ V , it is equipped with a specific amount of

computing demand (cdv) and a SF demand (fv). Since the physical node only provides one

unique SF, the SF nodes mapping process is deterministic and we use ∆ ⊆ N to represent

the set of substrate nodes that provide the SF instances required by the NSR. We use pεi,εj

as a binary value to indicate whether the shortest path connecting two physical nodes that

provide the required SF instances is used to construct the SFP and wpεi,εj to denote the

length of the path, where εi ∈ ∆ denotes the specific physical node that hosts the in-service

10

SF instance. The optimization goal of the SFCE-UF can be described as Eq. (2.1).

min
∑

εi,εj∈∆

pεi,εj ∗ wpεi,εj (2.1)

subject to:

pεi,εj =



1, pεi,εj (∀εi, εj ∈ ∆) is used

to construct SFP

0, otherwise

(2.2)

∑
εj∈∆

fεi,εj −
∑
εk∈∆

fεk,εi =



1, εi is the starting node

0, εi is an intermediate node

−1, εi is the last node

(2.3)

∑
εj∈∆

fεi,εj +
∑
εk∈∆

fεk,εi ≥ 1, ∀εi ∈ ∆ (2.4)

fεi,εj ≥ pεi,εj ,∀εi, εj ∈ ∆ (2.5)

Eq. (2.2) represents whether path pεi,εj is used to construct the SFP. Eq. (2.3) determines

the position of the node εi in the constructed SFP by utilizing the flow functions, where fεi,εj

represents whether a flow from εi to εj is used to transmit data. When Eq. (2.3) = 1, the

physical node εi is the starting node of the constructed SFP. If Eq. (2.3) = -1, εi is the last

11

node of the SFP. Otherwise, εi is the intermediate node. Eq. (2.4) ensures that for each

εi, there is at least one flow coming/outgoing into/from it. In Eq. (2.5), if there is a flow

passing εi and εj, path pεi,εj is used to construct the SFP.

NP-hardness Proof for SFCE-UF: We prove the NP-hardness of the proposed problem

by reducing the Travelling Salesman Problem (TSP) [28]. We assume in a given graph

G = (N,L), where each pair of nodes has a conditional link clm,n with the cost as 0. This

conditional link can provide the connectivity if and only if the endpoints are the starting

node and last node of the constructed SFP. When each node in N provides a required SF

instance, solving the SFCE-UF problem in the given graph is the same as the TSP problem,

which is NP-hard. Therefore, SFCE-UF is NP-hard.

2.3 SFC composition and Embedding in Unique service Function networks

To optimize the length of the constructed SFP for SFCE-UF, we propose an approximation

algorithm with the upper bound as 2, namely, Spanning Closed Walk based SFC composi-

tion and Embedding in unique service function networks (SCW-SFCE). In SCW-SFCE, we

apply two techniques, Complete Graph Transfer (CGT) and Minimum Spanning Tree-based

SFP Construction (MST-SC). For the first technique, CGT transfers the input graph into

a complete graph, which is composed of physical nodes that equip with the required SF

instances. In the second technique, the SCW-SFCE algorithm constructs the SFP by taking

advantage of the MST technique.

12

2.3.1 Complete Graph Transfer

Fig. 2.1 shows an example of an NSR in a mesh Unique Function Network (UFN), which

includes {f1, f4, f6}. In the UFN, substrate nodes A, B, C, D, E, F support the SF instances

for SFs f1, f2, f3, f4, f5, f6, respectively. The physical nodes in dark are the ones to host the

required SF nodes in the NSR.

A
B

C

D

E
F

Figure 2.1: NSR = {f1, f4, f6} in a mesh UFN.

Assume that each physical link has enough bandwidth, then we introduce the technique

of Complete Graph Transfer (CGT) to transfer the substrate network into a semi-complete

graph by connecting all the physical nodes required by the NSR with the shortest paths.

Lemma 2.3.1. With the assumption that each physical link can provide enough bandwidth

for any SF, the optimal SFP exists in the semi-complete graph composed of physical nodes

that i) provide the required SFs and ii) connect via the shortest paths or direct links.

Proof. Here we use the technique of proof by contradiction to prove this lemma. We call

the complete graph mentioned in the Lemma 2.3.1 as the SFP candidate complete graph.

Assuming that the optimal SFP does not exist in the SFP candidate complete graph, then,

there is either i) at least one endpoint of the optimal SFP that provides unrequired SF, or

ii) at least one path between a pair of nodes in the optimal SFP that is not connected via

13

the shortest path. For the former case, if there is an endpoint say v, providing unrequired

SF in the optimal SFP, we can get a shorter SFP by deleting v and the link connecting v

to other walk components. For the latter case, if there is a path in the optimal SFP that

is not connected via the shortest path, this is contradict to the fact that all pair of nodes

are connected with the shortest paths. Therefore, the optimal SFP in a given mesh network

exists in the SFP candidate complete graph

2.3.2 Minimum Spanning Tree-based SFP Construction

In this subsection, we propose the Minimum Spanning Tree-based SFP Construction (MST-

SC) technique to facilitate the construction of the SFP in the SFP candidate complete

graph. Since every node in the SFP candidate complete graph provides one unique required

SF instance, each node in the SFP candidate complete graph will be visited at least once.

Accordingly, we have the following lemma to support the understanding of the MST-SC

technique and the 2-approximation boundary for the algorithm.

Lemma 2.3.2. The shortest spanning closed walk of a tree visits each link exactly twice.

Proof. In a spanning walk, every node needs to be visited. Since the fact that there is only

one path connecting any pair of nodes in a tree network, every link has to participate in the

spanning walk of the tree. In a closed walk, each link has to be used at least twice, one for

going forward and one for going back. Thus, each substrate link in the tree network topology

has to be traversed at least twice to finish a spanning closed walk on the tree. Therefore,

the shortest spanning closed walk visits each link exactly twice.

14

Algorithm 1 Spanning Closed Walk based SFC composition and Embedding in unique
service function networks (SCW-SFCE)

1: Input: GS, NSR;
2: Output: SFP;
3: Set SFP as an empty list;
4: Deploy the SF nodes from NSR onto the corresponding SF instances in GS and Transfer
GS into SFP candidate complete graph;

5: Find the Minimum Spanning Tree (MST) in the SFP candidate complete graph;
6: Form the shortest closed spanning walk on the MST and generate the Spanning Closed

Walk List (SCWL);
7: Find and remove the longest leaf-to-leaf path sequence in the SCWL;
8: Return the remaining component of the SCWL as SFP;

Based on Lemma 2.3.2, we propose the MST-SC technique as shown in Algorithm 1. Line

3-4 initializes the SFP list, embeds the required SFs to their corresponding physical nodes,

and transfers the graph into the SFP candidate complete graph. In Line 5-7, the algorithm

constructs an SFP from the SFP candidate complete graph.

Theorem 2.3.3. When given an undirected graph GS and a request NSR, the SCW-SFCE

algorithm can find the SFP, whose length is at most twice as the one from the optimal SFP.

Proof. We start the proof with an NSR, which only includes two SF nodes. As only two SF

nodes are included in the NSR, there are only two physical nodes required to host the two SF

instances. As a result, the SFP is a path connecting these two physical nodes. Since these

two physical nodes are connected with the shortest path, this constructed SFP is optimal.

Then, we prove the 2-approximation boundary for the SFP constructed by an NSR with

more than 2 SF nodes. We denote the length of optimal SFP as SFPopt, the constructed

SFP as SFPSCW-SFCE and the length of the MST as LengthMST . SCW represents the length

of the shortest spanning closed walk of the constructed MST, while Pathleaf is the length of

15

the longest leaf-to-leaf path existing in the shortest spanning closed walk. Based on Lemma

2.3.1, the optimal SFP exists in the constructed SFP candidate complete graph. Hence, the

LengthMST of the SFP candidate complete graph is smaller or equal to the SFPopt as shown

in Eq. (2.6).

LengthMST ≤ SFPopt (2.6)

Based on Lemma 2.3.2, the MST is the minimum connected component for a given graph and

the constructed shortest spanning closed walk (SCW) has a length twice of the LengthMST

as shown in Eq. (2.7).

SCW = 2 ∗ LengthMST (2.7)

Since the SCW-SFCE algorithm removes the longest leaf-to-leaf path from the shortest

spanning closed walk to create the SFP, Eq. (2.8) holds.

SFPSCW-SFCE = SCW − Pathleaf (2.8)

As the Pathleaf is the longest leaf-to-leaf path in the MST, which at least contains 2-hops

(since the NSR contains more than 2 SFs), it is longer than twice of the average length of

links in the constructed SFP. Thus, as shown in Eq. (2.9), Pathleaf is twice longer than the

average length of links in the constructed SFP, where |V | represents the number of SF nodes

in the NSR.

Pathleaf ≥
2

|V | − 1
SFPSCW-SFCE (2.9)

When combining Eq. (2.6)-(2.8), we have Eq. (2.10), which shows that our algorithm finds

16

the SFP whose length is at most twice of the length of the optimal SFP.

SFPSCW-SFCE ≤ 2(1− 2

|V |+ 1
)SFPopt (2.10)

We then use Fig. 2.1 to explain how the proposed SCW-SFCE algorithm works in Fig.

2.2. First, the algorithm transfers the graph into the SFP candidate complete graph, which

is shown in Fig. 2.2a, where the number beside the link represents the shortest distance

between each two physical nodes required by the NSR. Then, taking Fig. 2.2a as the input,

the MST-SC technique creates the MST, and forms the shortest spanning closed walk starting

at node F as shown in Fig. 2.2b, where the red-dotted and blue-dashed arrows represent the

forwarding and backward paths, respectively. Next, the algorithm finds the longest leaf-to-

leaf path segment in the formed SCW, which is A→ D → F , and deletes it from the SCW

to form the SFP, which is shown in the Fig. 2.2c. As one can see that, the final SFP has

the same length as the optimal SFP, which matches Theorem 2.3.3.

D

A F

2
2

1

(a) SFP Candidate Complete
Graph of Fig. 2.1

D

A F

(b) Spanning Closed Walk

D

A F

(c) Service Function Path

Figure 2.2: Example of the SCW-SFCE Algorithm.

As for the time complexity of the SCW-SFCE algorithm, in the worst case, the first

17

step (i.e., to create the SFP candidate complete graph) has the time complexity of |V 2L +

V 2NlogN |. The time complexity of the second step (i.e., finding the MST) is |L+NlogN |.

Thus, the overall time complexity of the SCW-SFCE algorithm is |V 2L+ V 2NlogN |.

2.4 Numerical Results and Analysis

In this section, we analyze the performance of the proposed 2-approximation algorithm (i.e.,

SCW-SFCE). We conduct extensive simulations using the 14-node NSFNET and 24-node

USNET as the substrate networks. Unless otherwise specified, we randomly set half of the

physical links having the length of 1 and the other links having the length of x, where

x ∈ 1, 5, 9. In the NSFNET, we set the requested number of SFs in an NSR in the range of

[3,13], while it is in the range of [3, 24] in the USNET. For each series of experiments, we

randomly generate more than 100 thousand network service requests and obtain the average

results as shown in the following figures. When the substrate network is NSFNET, we

apply the Integer Linear Programming (ILP) mentioned above to obtain the optimal results.

When the substrate network is USNET, the ILP model is intractable and we compare the

performance of the SCW-SFCE algorithm with the Nearest-Neighbour (NN) algorithm. Note

that, the NN algorithm has the provable approximation boundary as |1
2
dNe + 1

2
|, where N

represents the number of nodes in the SFP complete candidate graph [29].

2.4.1 SCW-SFCE vs. ILP in NSFNET

Fig. 2.3 shows the performance of ILP, NN and SCW-SFCE algorithms in the small

NSFNET. In Fig. 2.3, the curve of “Average Approximation” is the ratio between the

18

results of the proposed SCW-SFCE algorithm and the optimal ILP. As one can see that,

with the increasing number of SFs in each NSR, all algorithms require more substrate links

to construct a longer SFP. The ratio between the proposed SCW-SFCE and the optimal ILP

is always less than 2, which demonstrates that the proposed SCW-SFCE does achieve the

2-approximation performance. As one can see that, when the number of required SFs in the

request is small, all algorithms have similar performance. When increasing the number of

required SFs, ILP has the best performance, while the proposed SFW-SFCE outperforms

the NN algorithm due to the spanning closed walk technique.

1
1.05
1.1
1.15
1.2
1.25
1.3

0

10

20

30

40

50

3 4 5 6 7 8 9 10 11 12 13 Av
er
ag
e
Ap

pr
ox
im

at
io
n

Av
er
ag
e
Le
ng

th
 o
f S

FP

of SFs in each Request

ILP SCW‐SFCE NN Average Approximation

Figure 2.3: ILP vs. SCW-SFCE in NSFNET.

2.4.2 SCW-SFCE Performance Evaluation in USNET

Eq. (2.10) indicates that the length of the Minimum Spanning Tree (MST) is the lower

bound of the optimal results. Hence, as shown in Fig. 2.4, we calculate the “Average

Approximation” as the ratio between the proposed SCW-SFCE and the MST length. In

Fig. 2.4, the red curve (i.e., “1—1”) represents the case when the physical link weight are

all 1; the blue curve (i.e., “1—5”) represents the case when half of the links have a weight

19

of 1, and the other half links have a weight of 5; and the yellow curve (“1—9”) represents

the case when half of the links have a weight of 1 and the other half links have a weight of

9. From the results in Fig. 2.4, one can see that in every case, the average approximation

value is less than 2.

1

1.1

1.2

1.3

1.4

1.5

Av
er

ag
e

Ap
pr

ox
im

at
io

n

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of SFs in the NSR

1---1
1---5
1---9

Figure 2.4: The Average Approximation of SCW-SFCE.

2.4.3 SCW-SFCE vs Nearest Neighbour Algorithm in USNET

In Fig. 2.5, the red bar represents the length of the SFP constructed by the SCW-SFCE

algorithm, and the blue bar is from the NN algorithm. The grey dashed curve, named as

“Difference” and evaluated by the y-axis on the right, represents the difference between the

results of SCW-SFCE and NN. As one can see that, when increasing the number of SFs

in each NSR, the SCW-SFCE algorithm always outperforms the NN algorithm. However,

the difference increases before the number of SFs is less than 10, but it decreases when the

number of SFs in each NSR is lager than 10. This is because when the number of SFs is small

or large (compared to the number of nodes in the SN), both SCW-SFCE and NN has the

similar construction of the SFP due to the MST based SFP construction technique, which

20

guarantees the performance of the constructed SFP.

0

2

4

6

8

10

12

14

0
10
20
30
40
50
60
70
80

4 7 10 13 16

Di
ffe

re
nc
e

Av
er
ag
e
Le
ng

th

of SFs in each Request

SCW‐SFCE
NN
Difference

Figure 2.5: SCW-SFCE vs. NN in USNET.

2.5 Summary

In this chapter, we have studied SFC composition and Embedding in the Unique service

Function networks (SFCE-UF) in various substrate network scenarios. We have formulated

the SFCE-UF problem by applying the technique of Integer Linear Programming (ILP) and

proved the NP-hardness of the SFCE-UF. To solve the SFCE-UF problem in a substrate

mesh network that each node only offers one unique SF, we have proposed a 2-approximation

algorithm, called Spanning Closed Walk based SFC composition and Embedding in unique

service function networks (SCW-SFCE). In the next chapter, we will further investigate how

to provably deliver the service as an SFC in multiple functions networks.

21

CHAPTER 3

SERVICE CHAINING AND EMBEDDING IN MFNS

3.1 Motivation

With the advancements in the Internet of things (IoT), billions of devices (e.g., smart phones,

wearable devices and sensors) are expected to be connected to the Internet [30, 31]. Due

to the limited computing capacity and battery life, IoT devices often face a challenge in

dealing with computation-intensive tasks [2]. To mitigate such a challenge, cloud systems

(e.g., datacenter) and multiaccess edge computing systems give rise to convenient accesses

of abundant computing resource for IoT-based services [32]. In both cloud and multiaccess

edge computing systems, many in-network hardware middleboxes such as Firewalls (FWs),

Deep Packet Inspection (DPI) and WAN optimizers are employed to ensure the security and

performance [33]. On the one hand, these hardware appliances bring benefits for securely and

efficiently delivering services. On the other hand, these dedicated middleboxes are expensive

and require great efforts for maintenance and management [20].

To reduce the capital expenditures and the operating expense, network function virtual-

ization (NFV) is introduced [13]. NFV transforms the implementation of proprietary hard-

ware appliances (or middleboxes) to software-based modules called virtual network functions

or service functions (SFs) [14]. SFs can be flexibly installed on or removed from physical

nodes (e.g., edge/cloud servers) [34]. In NFV, the network service request (NSR) consists of

a set of SFs with corresponding resource demands (e.g., virtual machine, bandwidth) [15].

To accommodate a network service request, service providers can concatenate the requested

22

Core Switch

Aggregation/Edge Switch

Server

Firewall

Deep Packet Inspection

Resolution Optimizer

Gaming Core

C1 C2

S1 S2 S3 S4 S5 S6 S7 S8

Figure 3.1: Delivering cloud gaming service as an SFC in the datacenter network.

SFs into a linear structure called a service function chain (SFC) and embed it onto the phys-

ical network (PN) with enough reserved network resources [35]. If the executing order of the

requested SFs is given by the customer, the service provider can construct only one unique

SFC with a specific virtual linear topology. When the executing order of the requested SFs

is not specified or partially specified, there exist multiple possible combinations to construct

the SFC. The process of constructing an SFC and embedding it onto a shared PN is re-

ferred to as service function chaining and embedding (SFCE) [15]. The physical path that

accommodates the constructed SFC in the PN is called a service function path (SFP).

Fig. 3.1 shows a cloud gaming application running in the datacenter network with an ul-

tralow latency requirement. Inside the datacenter, the customer’s traffic comes from the blue

core switch (i.e., C1 in Fig. 3.1) requiring the FW and DPI before reaching the gaming core

(GC) and the resolution optimizer (RO) afterwards. The green-solid and red-dotted arrows

23

are two feasible SFPs that satisfy the demands. The green-solid SFP passes the SFs in the

order of C1→S1(FW)→S2(DPI)→S3(GC)→S4(RO)→C1 with 3 + 2 + 4 + 2 + 3 = 14 hops.

The red-dotted SFP goes through the SFs as C1→S6(DPI)→S7(FW)→S8(GC)→S5(RO)→C1

and requires 3 + 4 + 2 + 4 + 3 = 16 hops. Assuming each SF needs the same processing

latency, the green-solid SFP outperforms the red-dotted SFP in terms of hop numbers (or

transmission latency cost). Hence, it is important for the service provider to optimize the

SFCE process and minimize the cost when constructing the SFP [30].

There is some existing work focusing on the cost minimization of the SFCE process

[36, 37, 38, 39, 40, 41, 42, 43], and only a few works study the performance guarantee

[17, 26, 44, 45, 46, 47]. Specifically, when the executing order of an SFC is given, the au-

thors of [26], [45] and [46] proposed schemes to optimally embed the SFC onto the PN with

unlimited bandwidth. Without a given SFC’s executing order, the authors of [17] and [47]

proposed graph theory-based algorithms to simultaneously construct and embed an SFC with

a 2-approximation guarantee under the assumption that each physical node only provides one

unique SF. However, the above research work devises the performance approximation guar-

antees at the expenditure of assumptions, which may not be feasible for practical scenarios.

In this paper, for the first time, we provide an approach that comprehensively investigates

how to jointly chain and embed an NSR with provable bounds under practical networking

conditions. We mathematically define the problem of minimum cost service function chain-

ing and embedding (MC-SFCE). Here, the cost can be identified as the bandwidth, latency

or expenditure. We propose a novel algorithm called COst Factor-based SFCE Optimization

24

with ShortCut (COFO-SC), which is proved to be tightly bounded. In the PNs, where each

physical node only provides one unique SF, COFO-SC guarantees a 2-approximation bound.

When each physical node provides multiple SFs, COFO-SF can accommodate an NSR with

a logarithm-approximation.

The rest of this chapter is organized as follows. In Section II, we mathematically formulate

the MC-SFCE problem. In Section III, IV and V, we illustrate the proposed algorithm and

analyze its performance in different networking conditions. Section VI demonstrates the

experimental results and analysis. We conclude this chapter in Section VII.

3.2 Minimum Cost Service Function Chaining and Embedding (MC-SFCE)

3.2.1 Physical Network Model

The physical network (PN) is denoted by an undirected graph G = (N,L, F), where N

represents the set of physical nodes (e.g., edge/cloud server, IoT devices), L is the set of

physical links, and F denotes a set of commonly used SFs (e.g., Firewall, deep packet in-

spection, WAN optimizer). Since installing particular SFs may require significant amounts

of resources, licenses or copyrights, in our model, each physical node n ∈ N can only in-

stantiate a specific set of SF instances Fn ⊂ F with a certain amount of computing capacity

cn. Each physical link l ∈ L has a particular amount of bandwidth bwl and a certain cost

costl. Here, the cost of a link can be one of the following attributes: bandwidth, latency or

expenditure. For simplicity, a physical link l can also be represented by lm,n, where m,n ∈ N

are its endpoints. A physical path from m to n is denoted by pathm,n, where costpathm,n and

25

bwpathm,n represent its cost and bottleneck bandwidth, respectively.

In this work, we investigate two types of PNs: (1) a unique function physical network

(UFPN) and (2) a multiple function physical network (MFPN). In UFPN, each physical node

only provides one unique SF instance. That is, any two different physical nodes provide

different SF instances (i.e., Fm ∩ Fn = ∅,∀m,n ∈ N). This scenario is practical in the

subdomains of a large network [48] or resource-constrained systems [7]. In contrast, each

physical node in MFPN is capable of providing various SF instances, while different physical

nodes may offer the same SF instance(s) (i.e., Fm ∩ Fn may not be an empty set).

3.2.2 Network Service Request (NSR)

A network service request (NSR) can be represented as a four-tuple NSR =< s, d, V, |BW | >,

where s and d represent source and destination nodes, V denotes the set of requested virtual

nodes (or SF nodes), and |BW | is the amount of bandwidth demand. For each virtual node

v ∈ V , it requires a specific type of SF instance fv ∈ F , a certain amount of computing

demand cv, and a deployment cost costv (e.g., CPU, expenditures, or processing latency).

Notably, s and d are regarded as the source and destination, respectively, for both SFP

and SFC.

3.2.3 Minimum Cost Service Function Chaining and Embedding (MC-SFCE)

The optimization problem of MC-SFCE is defined as follows: given a PN and an NSR,

determine how to accommodate the NSR onto the PN such that (1) the following constraints

are satisfied and (2) the cost of the constructed SFP is minimized. Here, the cost of the

26

constructed SFP means the summation of the links’ cost in the SFP and the SFs’ deployment

cost. The objective function is shown in Eq. (3.1), where µu,vpathm,n represents the cost of

pathm,n supporting the traffic from u to v. In Eq. (3.1), the first summation component

is the cost for mapping the SFC virtual links, and the second denotes the cost of mapping

virtual nodes. Table I describes the primary notations for the variables that we used.

min
∑
v∈V

∑
u∈V

∑
n∈N

∑
m∈N

µpathu,vm,n +
∑
v∈V

costv (3.1)

Table 3.1: Notation Table

Notation Meaning
N Set of physical nodes
V Set of virtual nodes
Vsub Subset of V
m, n Physical nodes m,n ∈ N
u, v Virtual nodes u, v ∈ V
|BW | Amount of bandwidth demand
Mv
n =1 when v is mapped onto n; 0 otherwise

∆v
n =1 when n provides SF instance for v; 0 otherwise
cv Computing demand of v
cn Computing capacity of n
costv Deployment cost of v
pathu,vm,n =1 when pathm,n supports the traffic from u to v; 0 otherwise
bwpathm,n Bottleneck bandwidth of pathm,n
costpathm,n Cost of pathm,n
µpathu,vm,n Cost of pathm,n supporting the traffic from u to v

SF node mapping constraints: Eq. (3.2) represents whether a virtual node v is mapped onto

physical node n or not, while Eq. (3.3) identifies whether n is capable of instantiating SF

instance for v or not. Eq. (3.4) and Eq. (3.5) ensure that if v is mapped onto n, then n must

be capable of providing the corresponding SF instance and enough computing capacity. Eq.

27

(3.6) specifies that each virtual node v will be mapped onto one physical node n.

M v
n =



1, Virtual node v ∈ V is mapped

onto physical node n ∈ N .

0, Otherwise.

(3.2)

∆v
n =



1, Physical node n ∈ N provides

SF instance for v.

0, Otherwise.

(3.3)

M v
n ≤ ∆v

n,∀n ∈ N,∀v ∈ V (3.4)

∑
v∈V

M v
n ∗ cv ≤ cn,∀n ∈ N (3.5)

∑
n∈N

M v
n = 1,∀v ∈ V (3.6)

Traffic constraints: We use pathu,vm,n to denote whether pathm,n supports the traffic from

virtual node u to v as shown in Eq. (3.7). Eq. (3.8) and Eq. (3.9) ensure that (1) if pathm,n is

used to support traffic from u to v, then Mu
m and M v

n must both be 1, and (2) the bottleneck

bandwidth of pathm,n must not be less than |BW |. Eq. (3.10) and Eq. (3.11) require that

(1) there must be a physical path starting from each virtual node (including source), and

28

(2) there must be a physical path ending at each virtual node (including destination). Eq.

(3.12) guarantees that there is no circle in the formulated SFP, where Vsub is a subset of V .

Eq. (3.13) denotes the calculation of µpathu,vm,n .

pathu,vm,n =



1, Path from n to m supports

traffic from SF node u to v.

0, Otherwise.

(3.7)

pathu,vm,n ≤
M v

n +Mu
m

2
,∀m,n ∈ N,∀u, v ∈ V, u 6= v (3.8)

∑
u∈V

∑
v∈V

∑
m∈N

∑
n∈N

pathu,vm,n ∗ |BW | ≤ bwpathm,n (3.9)

∑
v∈V,u6=v

∑
m∈N

∑
n∈N

pathu,vm,n = 1,∀u ∈ {V ∪ s} (3.10)

∑
u∈V,u6=v

∑
m∈N

∑
n∈N

pathu,vm,n = 1,∀v ∈ {V ∪ d} (3.11)

∑
u∈Vsub

∑
v∈Vsub

∑
m∈N

∑
n∈N

pathu,vm,n ≤ |Vsub| − 1, (3.12)

∀Vsub $ V, Vsub 6= ∅, u 6= v

29

µpathu,vm,n = pathu,vm,n ∗ costpathu,vm,n , (3.13)

∀u, v ∈ V, u 6= v,∀m,n ∈ N

3.3 Complexity Analysis of Minimum Cost Service Function Chaining and
Embedding (MC-SFCE)

In this section, we analyze the complexity of the MC-SFCE process in unique function

tree networks (UFTNs), unique function mesh networks (UFMNs), multiple function tree

networks (MFTNs) and multiple function mesh networks (MFMNs). Note that, since the

second summation component in Eq. (1) will be fixed in our assumptions, we illustrate how

the first summation component will be optimized.

3.3.1 MC-SFCE in Unique Function Tree Network

We start the analysis with a typical unique function tree network (UFTN), whereas the

network topology is a tree and each physical node only provides one unique SF. Note that,

even though a physical node provides only one type of SF in UFTN, multiple instances of

such an SF can be hosted by this physical node to support multiple NSRs. Fig. 3.2 shows

an example of a UFTN, where physical nodes A, B, C, D, E, and F can offer SF instances f1,

f2, f3, f4, f5, and f6, respectively. We assume that an NSR starts and ends at A and requires

four SFs, f1, f2, f5, and f6. Hence, the dark nodes in Fig. 3.2 will host the required SFs.

From our observation, optimally delivering the above network service (as an SFC) needs

30

A

B C

D FE

Figure 3.2: Unique function tree.

A

B C

D FE

1

2
3

4

5

Figure 3.3: SFP for the request.

to find a trace structure that visits all required SFs with the least length1. In fact, such

a structure is the shortest circle including all dark nodes in Fig. 3.2. In graph theory, a

circle can be defined as a nonempty walk where the only repeated nodes are the first and

last ones [49]. To form such a shortest circle, one needs to first determine its trace (i.e.,

the set of nodes and links that will be visited from source to destination). To satisfy the

NSR, creating such a trace should take the following properties into consideration: (1) all

required SFs need to be included in the trace, and (2) the length of the trace is the shortest.

As there is only one path connecting any pair of nodes in a tree topology [49], the trace of

such a shortest circle is also a tree. In other words, to optimally deliver the network service

here, one needs to determine a subtree of the given UFTN, which includes all required

SFs (matching the above property (1)), no leaf of this subtree hosts the unnecessary SF

(matching the above property (2)). As there is only one path connecting any pair of nodes

in a tree topology, such a subtree can be formulated by repeatedly deleting the leaf node

that does not host the required SF in the given UFTN. We call the subtree in which every

leaf provides one required SF as a basic subtree (BST). Then, to construct the shortest

circle in BST, one can follow the spanning closed walk creation methodology in [47] to form

1We use the “length” and “distance” interchangeably in this work to represent the cost of a link or path.

31

the shortest spanning closed walk starting from the source node. Fig. 3.3 demonstrates

an SFP created by applying the above methods, where the number beside each red-dotted

arrow represents the visiting order. The formulated SFC is s→f1→f2→f5→f6→d along

with the SFP A→B→A→C→E→C→F→C→A. Note that, when the destination node is

different from the source node, the optimal SFP can be formed by deleting the shortest path

connecting the source and destination nodes in the shortest circle.

As the processes of the subtree creation and the spanning closed walk construction can

both be finished within polynomial time, the following Lemma holds.

Lemma 3.3.1. Given an NSR and a UFTN, an optimal SFP can be constructed in polyno-

mial time.

As the shortest spanning closed walk on a tree is twice the length of the tree [47], Lemma

3.3.2 holds.

Lemma 3.3.2. When source and destination nodes are same, the cost of a constructed SFP

equals twice the cost of the BST.

3.3.2 MC-SFCE in a Multiple Function Tree Network

In a multiple function tree network (MFTN), each physical node is capable of instantiating

a set of SF instances constrained by its computing capacity. Similarly, to optimize the SFCE

process in MFTNs, one needs to find a set of physical nodes that support all required SFs,

while the BST visiting those physical nodes has the least length. However, unlike the case

with UFTN, the set of physical nodes that will host the required SF nodes is not unique in

32

S

{f1, f3, f4} {f2, f4, f5}{f1, f5} {f2, f3}

5
3 2

6

Figure 3.4: MFTN with the star topology; |N | represents the size of the network.

the MFTN. Hence, determining how to properly embed SF nodes in MFTNs would have a

large impact on the first summation component in Eq. (3.1).

Theorem 3.3.3. Given an NSR and an MFTN, constructing an SFP with the minimum

cost is NP-hard.

Proof. We prove the NP-hardness of MC-SFCE in MFTNs via the reduction from the mini-

mum weighted set cover problem [50]. Given a universe and a collection of nonempty subsets

with diverse weights, the minimum weighted set cover problem tries to find a collection of

subsets with minimum weights such that the elements’ union of those subsets is the universe.

We consider a special MFTN with a star topology, where all nodes directly connect with the

source node as shown in Fig. 3.4. Each leaf node is capable of hosting a set of SF instances,

and each link has a specific amount of cost. According to Lemma 3.3.2, given an NSR,

finding the optimal SFP in such a topology equals searching a set of leaf nodes that include

all required SFs with the minimum cost. We can reduce MC-SFCE in a multiple function

star topology to the minimum weighted set cover problem as following: (1) the required SFs

in the NSR are the universe in the weighted set cover problem; (2) each leaf node in the

star topology represents a subset of the universe; (3) the selected leaf nodes are the selected

33

subsets; and (4) the cost of the SFP is the sum of the weights of the selected subsets in

the weighted set cover problem. Then, MC-SFCE in MFTNs with the star topology is, in

fact, equivalent to the minimum weighted set cover problem. Since the minimum weighted

set cover is a well-known NP-hard problem [50], the optimization problem of MC-SFCE in

MFTNs is also NP-hard.

3.3.3 MC-SFCE in Mesh Networks

For MC-SFCE in mesh networks, we first examine the unique function mesh network (UFMN).

Theorem 3.3.4. Given an NSR and a UFMN, constructing an SFP with the minimum cost

is NP-hard.

Proof. We prove the NP-hardness of MC-SFCE in UFMNs via the reduction from the trav-

eling salesman path problem (TSPP) [28]. The TSPP tries to find the shortest path visiting

each node in a graph with the minimum distance sum. As each node only provides one

unique SF instance, MC-SFCE in UFMN tries to create a path (i.e., SFP) visiting each

physical node that provides the required SF instance and requires the minimum path cost.

When each physical node provides one required SF, MC-SFCE in UFPN is equivalent to the

TSPP, which is NP-hard [28].

From Theorem 3.3.3, MC-SFCE in MFTN is NP-hard. Since the tree topology is the

special case of the generic mesh network, MC-SFCE in multiple function mesh networks

(MFMNs) is also NP-hard.

34

Lemma 3.3.5. Given an NSR and an MFMN, constructing an SFP with minimum cost is

NP-hard.

As one can see, MC-SFCE in mesh physical networks is NP-hard. To facilitate the opti-

mization of MC-SFCE in a given physical network, we propose a novel algorithm called COst

Factor-based SFCE Optimization with ShortCut (COFO-SC) and analyze its performance

bounds in the following sections.

3.4 COst Factor-based SFCE Optimization with ShortCut (COFO-SC)

In this section, based on the analysis above, we first propose novel cost factor (CF) and

shortcut (SC) techniques to facilitate MC-SFCE optimization. Then, we combine these two

techniques to propose our COst Factor-based SFCE Optimization with ShortCut (COFO-

SC) algorithm.

3.4.1 COst Factor-based SFCE Optimization (COFO)

As shown in Eq. (3.1), the cost of constructing an SFP depends on two factors: (1) the

number of physical nodes that host the required SF instances and (2) the distances (cost)

among these physical nodes. From the analysis in previous section, these two factors need

to be jointly taken into consideration to optimize MC-SFCE. For instance, when greedily

reducing the number of physical nodes participating the SFP, the selected physical nodes

may be farther away from each other, thus increasing the link cost (i.e., the first summation

component in Eq. (3.1)). Likewise, when only greedily considering the distance among

physical nodes, more physical nodes may be selected to construct the SFP, resulting in more

35

cost in connecting these physical nodes. Accordingly, we propose the cost factor (CF) to

indicate the importance of a physical node for reducing the cost during the process of jointly

constructing and embedding an SFC.

Cost Factor: Based on the discussion above, a proper physical node that will help

reduce the cost of the constructed SFP should (1) provide as many required SF instances

as possible (i.e., to minimize the number of physical nodes participating the construction

of SFP), and (2) be as “near” as possible to the physical nodes that have been selected.

Eq. (3.14) illustrates the calculation of CF value of a physical node n.

CFn =
|σn|

|Dis(T,n)|
(3.14)

In Eq. (3.14), |σn| represents the number of required SFs that can be instantiated by

physical node n constrained by its computing capacity, while |Dis(T,n)| is the “shortest

distance” (minimum cost) between n and the connected component T that is formulated

by the selected node(s). Note that |σn| only counts the number of required SFs that have

not been instantiated but can be provided by node n. The connected component T is the

minimum spanning tree visiting all selected nodes. Initially, T only includes the source and

destination nodes.

To optimize MC-SFCE, we first propose the COst Factor-based SFCE Optimization

(COFO), as shown in Algorithm 2. Initially, COFO creates T including s and d (Line 3) to

represent the set of selected physical nodes that host the satisfied SFs and Ω to represent the

set of unsatisfied SFs. In Lines 4-12, the algorithm repeatedly updates the CF value for each

physical node, selects the node x with the highest CF value, and merges the shortest path

36

Algorithm 2 COst Factor-based SFCE Optimization (COFO)

1: Input: G, NSR;
2: Output: SFC, SFP;
3: Instantiate T = {s, d} and Ω = V ;
4: while Ω 6= ∅ do
5: if T only includes s and d then
6: Update CF values of all nodes by Eq. (3.15);
7: else Update CF values of all nodes by Eq. (3.14);
8: end if
9: Pick node x with highest CF value;

10: Connect x to T via the bandwidth-aware shortest path pathx,T , and T = T ∪pathx,T ;
11: Instantiate σx at x, and Ω = Ω− σx;
12: end while
13: Create the shortest spanning closed walk according to T ;
14: Form the SFP by deleting the shortest path from s to d in the formed shortest spanning

closed walk;
15: Record the corresponding SFC of the constructed SFP;

return SFC, SFP;

pathx,T into T , while deleting the instantiated SFs (i.e., σx) at x from Ω until all required

SFs are satisfied. Note that, if T only includes source and destination nodes, the algorithm

applies Eq. (3.15) to calculate the CF value for each physical node. This is because T is not

yet a connected component. Thus, the initial CF value is calculated by the average CF value

from node n to both source and destination nodes. Otherwise, the CF value is calculated by

Eq. (3.14).

CF initial
n =

|σn|
Dis(s,n)

+ |σn|
Dis(d,n)

2
(3.15)

Based on the steps above, T is, in fact, a spanning tree visiting source node, destination

node, and all selected nodes. According to Lemma 3.3.2, the SFP can be created by applying

the shortest spanning closed walk technique from [47] on T and deleting the shortest path

between the source and destination nodes in the walk (Line 14). Finally, the algorithm will

37

A

B C

D FE
{f1, f2, f5}

{f2, f3}

{f1, f2, f5}

{f2, f6}
30

15 45

30

Figure 3.5: An exam-
ple of MFPN.

A

B C

D FE
{f1, f2, f5}

{f2, f3}

{f1, f2, f5}

{f2, f6}
30

15 45

0

Figure 3.6: 1st itera-
tion result.

A

B C

D FE
{f1, f2, f5}

{f2, f3}

{f1, f2, f5}

{f2, f6}
30

15 15

0

Figure 3.7: 2nd itera-
tion result.

A

B C

D FE
s f2 f6 f1 f5 d

1

2

3 4

Figure 3.8: Result of
COFO.

Table 3.2: CF Value and T Updates

Iteration B C D E

1
1
1

+ 1
2

2
= 3

4

2
1

+2
1

2
= 2

1
2

+ 1
2

2
= 1

2

3
2

+ 3
2

2
= 3

2

T1 A, F, pathA,C , pathC,F
Instantiated SFs f2, f6

2 0 0 1
2

2
1

= 2

T2 A, F, pathA,C , pathC,F , pathE,C
Instantiated SFs f1, f2, f5, f6

return the SFP and its corresponding SFC.

In Fig. 3.5, the set of SF instances and computing capacity are listed beside each physical

node. We assume that there is an NSR starting at A and ending with F, while requiring

four SFs, namely, f1, f2, f5 and f6, each of which demands 15 units of computing resources.

When applying our proposed COFO, Table 3.2 lists the variation of CF values and T in

each iteration. In the first iteration, as node C owns the highest CF value, it is picked by

COFO, and paths pathA,C , pathC,F are added to T1. The red nodes and links in Fig. 3.6

show the paths (links) and nodes in T . In the second iteration, node E will be selected

by COFO, and pathE,C will be merged into T , as shown in Fig. 3.7. As nodes C and E

instantiate all required SFs, COFO then forms the shortest spanning closed walk on T and

deletes the shortest path connecting A and F in the walk. Fig. 3.8 shows the constructed

38

SFP A→C→E→C→F along with the SFC s→f2→f6→f1→f5→d.

As one can see, the step with the highest runtime is updating the CF value for each

physical node. When applying the shortest path algorithm with the time complexity |NL+

N2logN |, the time complexity of COFO is |N2L+N3logN |.

3.4.2 COst Factor-based SFCE Optimization with ShortCut (COFO-SC)

A

B C

D FE
s f2 f6 f1 f5 d

1

2

3

Figure 3.9: Result of COFO after applying the shortcut technique.

In the final iteration of the above COFO, T is the minimum spanning tree (e.g., the

red nodes and links in Fig. 3.7) that visits all selected nodes. When applying the shortest

spanning closed walk on a minimum spanning tree (i.e., the red nodes and links in Fig. 3.7)

to generate the SFP, the walk will follow the order as shown in Fig. 3.8: A→C→E→C→F.

This means that, based on COFO, the route going from E to F will have to pass through C

Algorithm 3 COst Factor-based SFCE Optimization with ShortCut (COFO-SC)

1: Input: G, NSR;
2: Output: SFP, SFC;
3: {SFP, SFC} = COFO(G,NSR);
4: for each adjacent pair of physical nodes m, n in SFP do
5: if |pathGm,n| ≤ |pathSFPm,n | then
6: Replace pathSFPm,n by pathGm,n;
7: end if
8: end for

return SFP, SFC;

39

in the physical network. In fact, in the original PN, there may be a shorter route going from

E to F, and this route does not pass through C. We call such a shorter route a shortcut path.

Specifically, for two adjacent physical nodes (say, m and n) of the SFP created by COFO,

if there is a path in the original physical network G, say PathGm,n, which is shorter than the

PathSFPm,n in the constructed SFP, then we call this PathGm,n a shortcut path from m to n.

For example, for the path E→C→F in Fig. 3.8, there actually is a shortcut path E→ F in

the original physical network, as shown in Fig. 3.9. Hence, the cost of an SFP generated

from the COFO algorithm can be further optimized via the following processes: for each

pair of adjacent physical nodes that host SFs, check whether there is a shortcut path in the

physical network. If there is, one can replace the path of these two adjacent physical nodes

in the SFP with the shortest shortcut path to further minimize the length of the constructed

SFP.

Based on the discussion above, we propose the cost factor-based SFCE optimization with

shortcuts (COFO-SC) algorithm, as shown in Algorithm 3. COFO-SC calls COFO first to

generate the SFP and the corresponding SFC (Line 3). Then, COFO-SC checks whether

there exists a shortcut for any two adjacent physical nodes (say m and n) in the generated

SFP (Lines 4-5). If there exists such a shortcut path with enough bandwidth, the algorithm

will replace the path connecting m and n in the SFP (PathSFPm,n) with the shortcut path

connecting m and n in the original PN (PathGm,n) (Line 6). Finally, COFO-SC returns the

updated SFP. In the worst case, each SF will be independently mapped onto a single physical

node, and COFO-SC will check |V + 1| pairs of physical nodes in the SFP. Generally, |V | is

40

much less than |N |. COFO-SC has the same time complexity as COFO.

3.5 Bounds Analysis

In this section, we analyze the bounds of our proposed algorithms in unique function physical

networks (UFPNs) and multiple function physical networks (MFPNs).

3.5.1 Bound Analysis in UFPNs

Given the topology of a unique function physical network, we can transform it into a complete

graph, whereas each node provides a required SF, and each link lm,n is the shortest path

between m and n in the given UFPN. We call this complete graph an auxiliary complete

graph (ACG). Again, in such a situation, even though a physical node provides only one

unique type of SF, multiple SF instances can be hosted to support multiple NSRs. When

applying the proposed schemes, the CF factor depends on the distance between the node

n and the connected component T as |σn| will always be 1. Accordingly, in each iteration,

the node n in the complete graph with the shortest distance to T will be selected, and the

shortest path pathn,T will be merged to T . This process is equivalent to the prime algorithm

of constructing the minimum spanning tree (MST) in ACG [49].

Lemma 3.5.1. Given a UFPN and an NSR, the optimal SFP exists in an ACG that is

generated from UFPN [17].

Theorem 3.5.2. Given an NSR, COFO-SC constructs an SFP that is 2-approximation to

the optimal SFP in UFPNs.

41

Proof. We use |SFPCOFO-SC| to represent the cost of the SFP generated from the proposed

schemes, |MST | to denote the length of the T after the last iteration, |SFPopt| to present

the length of the optimal SFP, and |Paths,d| to represent the length of the shortest path

connecting the source and destination.

From Lemma 3.5.1, as the MST (i.e., T after the last iteration) is the minimum length

structure that connects all nodes in a graph, Eq. (3.16) holds.

|MST | ≤ |SFPopt| (3.16)

According to the proposed scheme, the length of the generated SFP equals the length of the

shortest spanning closed walk minus the length of the shortest path connecting the source

and destination. From Lemma 3.3.2, the length of the shortest spanning closed walk equals

twice the length of the MST, thereby, Eq. (3.17) holds.

|SFPCOFO-SC| = 2 ∗ |MST | − |Paths,d| (3.17)

When combining Eq. (3.16) and Eq. (3.17), Eq. (3.18) holds.

|SFPCOFO-SC| ≤ 2 ∗ |SFPopt| − |Paths,d| (3.18)

As a result, the proposed COFO-SC can accommodate an NSR in UFPNs within a 2-

approximation guarantee.

Lemma 3.5.3. Given a UFTN and an NSR, the proposed COFO-SC can generate an optimal

SFP with the minimum cost.

Proof. Based on the proposed COFO-SC, after the final iteration, T is the MST that visits

42

all required SFs, which is equivalent to the basic subtree (BST). BST is the shortest subtree

that includes all required SFs. Then, COFO-SC applies the shortest spanning closed walk

technique on the BST to generate the SFP. Based on the analysis in Section IV, the SFP

generated from COFO-SC is the optimal SFP.

3.5.2 Bound Analysis in MFPNs

Table 3.3 describes the necessary notations that will be used in the following proof.

Table 3.3: Notations for Approximation Proof

Variable Notation
|σin| Number of SFs instantiated at node n in iteration i
T i Connected component T in iteration i

|Disn,T i | Distance from n to T i in iteration i
|SF i

left| Number of SFs that have not been satisfied in iteration i

SFP i
opt Optimal SFP to satisfy SF i

left in iteration i

|Disn,SFP iopt| Distance from n to the SFP i
opt in iteration i

|αi| Number of physical nodes in SFP i
opt

|γ| Number of physical nodes that host required SFs in SFP 1
opt

|V | Number of required SFs in NSR
|k| Minimum number of SFs satisfied in all iterations
|β| Total number of iterations to satisfy all SFs

Theorem 3.5.4. Given an NSR, the proposed COFO-SC is the ln(|V |)
|k| -approximation to the

optimal SFP in MFPNs.

Proof. Eq. (3.19) is the relationship between the number of satisfied SFs and the unsatisfied

SFs in each pair of adjacent iterations (i.e., iteration i and i+ 1).

|SF i
left| = |SF i+1

left |+ |σ
i
n|,∀i ∈ |β| (3.19)

43

As COFO-SC selects the node n with the highest CF value, CFn is greater than the

average CF value of the physical nodes in SFP i
opt. This is because the physical nodes in the

optimal SFP can exist: (1) in Ti and (2) out of Ti. For any node m in Ti, node n has a

greater CF value than CFm; otherwise, CFn is not the greatest. For any node m out of Ti,

the CFm is calculated as max(|σ
i
m|

Dism,s
, |σ

i
m|

Dism,d
), which is also less than CFn. Therefore, Eq.

(3.20) holds.

|σin|
|Disn,T i |

≥

∑
m∈SFP iopt

|σim|
Dis

m,SFPiopt

|αi|
,∀i ∈ |β| (3.20)

As different physical nodes may provide the same SF instance(s), Eq. (3.21) holds.

∑
m∈SFP iopt

|σim| ≥ |SF i
left|, ∀i ∈ |β| (3.21)

For a node m in SFP i
opt, in order to maximize |σim|

Dis
m,SFPiopt

, the denominator of the CF value

is not greater than the half length of the SFP i
opt, as shown in Eq. (3.22).

Dism,SFP iopt ≤
|SFP i

opt|
2

,∀i ∈ |β| (3.22)

Initially, no SF has been instantiated by any physical node; thus, Eq. (3.23) holds.

|αi| ≤ |γ|,∀i ∈ |β| (3.23)

From Eqs. (3.21-3.23), Eq. (3.20) can be transferred into Eq. (3.24).

|σin|
|Disn,T i |

≥
|γ| ∗ |SF i

left|

|γ| ∗ |SFP
i
opt|

2

,∀i ∈ |β| (3.24)

44

Eq. (3.24) can be further transferred into Eq. (3.25).

|Disn,T i | ≤
|σin|
|SF i

left|
∗
|SFP i

opt|
2

,∀i ∈ |β| (3.25)

When summing up all iterations, Eq. (3.25) will be transferred into Eq. (3.26).

|β|∑
i=1

|Disn,T i | ≤
|β|∑
i=1

|σin|
|SF i

left|
∗
|SFP i

opt|
2

(3.26)

According to Eq. (3.19), Eq. (3.27) holds.

|σin|
|SF i

left|
≤ 1

|SF i
left|

+
1

|SF i
left| − 1

+ ...+
1

|SF i+1
left |
≤

SF ileft∑
ε=SF i+1

left

1

ε
,∀i ∈ |β| (3.27)

Combining Eq. (3.26) and Eq. (3.27), one will have Eq. (3.28), which can be further

transferred into Eq. (3.29).

|β|∑
i=1

|Disn,T i | ≤
|β|∑
i=1

SF ileft∑
ε=SF i+1

left

1

ε
∗
|SFP i

opt|
2

(3.28)

|β|∑
i=1

|Disn,T i| ≤
|V |∑

ε=SF
|β|
left

1

ε
∗
|SFP i

opt|
2

(3.29)

According to the properties of a harmonic series, Eq. (3.30) holds.

|V |∑
ε=SF

|β|
left

1

ε
=

1

|V |
+

1

|V | − σ1
n

+ ...+
1

SF
|β|
left

≤

1

|V |
+

1

|V | − |k|
+

1

|V | − 2 ∗ |k|
+ ...+

1

SF
|β|
left

≤ ln(|V |) + 1

|k|
(3.30)

As the optimal SFP in the first iteration SFP 1
opt is in fact the overall optimal SFP, for

any optimal SFP in other iterations SFP i
opt (i > 1), Eq. (3.31) and (3.32) hold.

SFP 1
opt > SFP i

opt,∀i > 1 (3.31)

45

|β|∑
i=1

|Disn,T i | ≤
ln(|V |) + 1

|k|
∗ |SFPopt|

2
(3.32)

In fact, the connected component in the last iteration T |β| is the spanning tree that connects

the source node, destination node and all selected nodes. Based on Lemma 3.3.2, Eq. (3.33)

holds.

|SFPCOFO-SC| ≤ 2 ∗
|β|∑
i=1

|Disn,T i | − paths,d ≤
ln(|V |) + 1

|k|
∗ |SFPopt| (3.33)

Thus, given an NSR, the COFO-SC algorithm is a ln(|V |)
|k| -approximation for the MC-SFCE

problem in MFPNs.

3.6 Experimental Results and Analysis

In this section, we show the performance of the proposed algorithms2 when comparing with

the techniques that are directly extended from the schemes [37] and [26].

3.6.1 Simulation Environment

Similar to the state-of-the-art simulation settings in [17, 36, 37, 38], we randomly generate

40-node-180-link mesh networks and 6-fat-tree as physical networks (PNs). For the mesh

network, each physical node owns at least four direct neighbors (i.e., each physical node

directly connects at least four other nodes). In both mesh and fat-tree networks, each

physical node is equipped with the computing capacity in the range of [30 − 60] and is

2The implementations of our methods can be found at github.com/frozenlalala/Function-Embedding-
Strategy.

46

capable of instantiating [2−5] different SF instances. For each physical link, it has available

bandwidth in the range of [5− 20] and the cost in the range of [3− 8].

We set the number of SF nodes required by an NSR in the range of [6− 24]. For each SF

node, the required computing capacity is in the range of [10−20]. The source and destination

nodes required in the NSR are randomly generated, while the bandwidth demand is set as

5.

3.6.2 Performance Metrics and Benchmarks

We use the following metrics to evaluate the performance of the proposed schemes.

Acceptance Ratio: When the bandwidth provided by the PN is not sufficient, the

scheme cannot embed some NSRs. We use the acceptance ratio (AR) to evaluate the perfor-

mance. AR is calculated based on AR =
|NSRAccept|
|NSRC |

, where |NSRAccept| represents the number

of accepted NSRs, while NSRC is the set of all input requests.

Cost Per Request: We define the cost per request (CPR) to evaluate the performance

of the proposed schemes. Here, CPR represents the average cost of the accepted requests

and is calculated as CPR =

∑
NSRi∈NSRAccept

|SFP |
|NSRAccpet|

, where |SFP | represents the length of the

SFP for NSRi.

We extended two state-of-the-art techniques in [37] and [26] as the benchmarks. We

extend the method in [37] as follows: (1) calculating the BC value for each node n (BCn);

(2) using the factor BCn ∗ σn to evaluate the importance of each physical node, where σn

represents the number of SF instances that node n can accommodate under the computing

resource constraint; (3) selecting the node with the highest factor value; (4) embedding

47

the set of SFs that maximizes the factor value onto n; (5) repeating (1)-(4) until all SFs

are satisfied; and (6) connecting the source, destination and all selected nodes based on

the nearest-neighbor algorithm proposed in [29] to form the SFP. Note that, as proved in

[29], the proposed nearest neighbor algorithm can visit all required cities (nodes) within a

|1
2
dlg(N)e+ 1

2
|-approximation, where N represents the number of physical nodes in the given

network. We name the technique that is extended from [37] “BACON”. When given an

SFC and the physical network bandwidth is not constrained, the algorithm proposed in [26]

can construct an optimal SFP. We extend the technique proposed in [26] as follows: (1)

generating ten random SFCs, (2) constructing corresponding SFPs by applying [26], and

(3) selecting the SFP with the minimum cost. We call the technique extended from [26]

“SP-SFCE”.

3.6.3 Performance Analysis in UFPNs

We first evaluate whether the proposed scheme can achieve a 2-approximation performance

in unique function physical networks (UFPNs). Under this scenario, each node only provides

one unique SF. Based on Eq. (3.16), the length of the MST is less than the length of the opti-

mal SFP, which can be regarded as the lower bound. To test whether the proposed COFO-SC

guarantees a 2-approximation in UFPNs, we set the “Upper Bound” as twice the length of

MST and extended the branch and bound (B&B) technique proposed in [51] to formulate

the “Lower Bound”. Figs. 3.10 and 3.11 illustrate the performance of the proposed schemes

when increasing the number of required SFs in UFPNs. The yellow-triangle-solid, yellow-

triangle-dotted, gray-square-solid and gray-square-dotted curves represent the performance

48

40

60

80

100

120

140

160

6 12 18 24

Co
st

 P
er

 R
eq

ue
st

of Requested SFs

Upper Bound
COFO
COFO-SC
Lower Bound

Figure 3.10: Unique function mesh networks.

60
80

100
120
140
160
180
200
220
240

6 12 18 24

Co
st

 P
er

 R
eq

ue
st

of Requested SFs

Upper Bound
COFO
COFO-SC
Lower Bound

Figure 3.11: Unique function fat-tree.

of “Upper Bound”, “Lower Bound”, “COFO” and “COFO-SC”, respectively.

In Fig. 3.10, both the COFO and COFO-SC algorithms outperform the upper bound,

which verifies the correctness of the 2-approximation. In mesh networks, there exists more

than one path from one node to another node. As a result, the physical path between two

adjacent physical nodes that host the SF instance(s) may not be the shortest path. As

COFO-SC applies the shortcut technique to further optimize the cost between the adjacent

pair of physical nodes that host SF instances in the constructed SFP, it outperforms COFO.

In Fig. 3.11, when increasing the number of required SFs, both algorithms achieve the 2-

approximation performance. When the network is a fat-tree topology, all SFs are supported

by the servers locating at the leaf nodes. The minimum spanning tree (MST) is likely created

as a star, whereas the source node or the destination node will play the role as the “root”.

Since the COFO algorithm does not apply the shortcut technique, the path connecting one

server to another server may bypass the “root” of the MST and introduce additional cost

in COFO. In contrast, as COFO-SC applies the shortcut technique, these detours can be

avoided by steering the traffic to the shortest path connecting one server to another directly.

As one can see from Fig. 3.10 and Fig. 3.11, both the COFO and COFO-SC algorithms

49

achieve the 2-approximation performance. On average, the COFO-SC algorithm outperforms

COFO by 10.4% and 18.5% in mesh networks and fat-trees, respectively.

3.6.4 Performance Analysis in MFPNs

We then evaluate the performance of the proposed scheme in multiple function physical

networks. The evaluations are carried out by varying the bandwidth in each link (Figs. 3.12

and 3.13), the computing resource in each node (Fig. 3.14), the size of the network (Fig.

3.15), and the number of required SFs (Fig. 3.16). In the following figures, the red-rhombus-

solid, blue-circle-dashed and gray-square-dotted curves represent the performance of “SP-

SFCE”, “BACON” and “COFO-SC”, respectively. Specifically, the red-grid, blue-dotted

and gray-solid bars in Fig. 3.13 represent the acceptance ratio of “SP-SFCE”, “BACON”

and “COFO-SC”, respectively.

60
80

100
120
140
160
180
200

5 20

Co
st

 P
er

 R
eq

ue
st

10 15

Bandwidth

SP-SFCE
BACON
COFO-SC

Figure 3.12: CPR vs. bandwidth.

0.6

0.8

1

5 10 15 20

Ac
ce

pt
an

ce
 R

at
io

Amount of BW in Each Link

SP-SFCE BACON COFO-SC

Figure 3.13: Acceptance vs. bandwidth.

Figs. 3.12 and 3.13 show the performances of all schemes when varying the bandwidth in

each link in terms of the CRP and accepting ratio. As one can see, all schemes need less cost

to accommodate the NSRs and have higher accepting ratios with an increasing bandwidth

in each link. When the bandwidth is severely limited, all schemes try to accommodate the

NSRs by exploring all possible “longer” paths with enough bandwidth, which leads to the

50

higher cost. When bandwidth is abundant, the shorter path (i.e., the path with less cost)

becomes available, which leads to the lower cost. Since the COFO-SC algorithm jointly

composites and embeds the SFC, it effectively steers the traffic even when the bandwidth is

severely limited. As a result, the COFO-SC algorithm has a higher accepting ratio than the

other two techniques. SP-SFCE has the worst performance because it totally depends on how

the SFCs are constructed. Overall, COFO-SC accepts 97.5% of NSRs, and it outperforms

SP-SFCE and BACON by an average of 49.4% and 12.3%, respectively.

70
80
90

100
110
120
130
140

60

Co
st

 P
er

 R
eq

ue
st

15 30 45
 Computing Resource

SP-SFCE
BACON
COFO-SC

Figure 3.14: CPR vs. computing resource.

To show the impact of the computing resource, we set the computing resource of each

physical node in the range of [15, 60]. Fig. 3.14 demonstrates the CPR of all three schemes

when varying the amount of computing resources in each physical node. As the comput-

ing resources provided by physical nodes increases, the cost needed to construct the SFPs

decreases for all schemes. This is because, with more computing resource, the schemes can

instantiate more SFs onto nearby physical nodes, which can decrease the number of physical

nodes needed for the SFPs and reduce the SFP construction cost. From our experimental

results, COFO-SC outperforms the other two schemes. The reason is that the proposed cost

51

factor can effectively identify the proper physical node to construct the SFP by taking the

number of SF instances provided by the physical node and the distance into consideration.

On average, COFO-SC outperforms SP-SFCE and BACON by 22.6% and 9.9%, respectively.

80

100

120

140

160

180

40 60 80 100

Co
st

 P
er

 R
eq

ue
st

Number of Physical Nodes

SP-SFCE
BACON
COFO-SC

Figure 3.15: CPR vs. number of physical nodes.

As shown in Fig. 3.15, when increasing the size of the network, all algorithms require a

longer average cost to construct the SFPs. In a large network, the betweenness centrality

(BC) measurement cannot accurately indicate the importance of physical nodes. The reason

is that multiple paths may be the “shortest” from source to destination. As a result, the

physical nodes selected by BACON might be widely distributed among the network, which

can introduce additional cost. As the cost factor takes the distance between the selected

physical node and the physical node candidates into consideration, it is able to effectively

pick the physical node that can simultaneously host many SF instances while not introducing

much additional cost. Hence, COFO-SC outperforms SP-SFCE and BACON by an average

of 29.4% and 16.4%, respectively.

As shown in Fig. 3.16, with an increasing number of SFs, all three schemes require a

higher cost to construct the SFPs. When the number of required SFs is small, SP-SFCE

52

40

60

80

100

120

140

6 12 18 24

Co
st

 P
er

 R
eq

ue
st

Number of Required SFs

SP-SFCE
BACON
COFO-SC

Figure 3.16: CPR vs. number of SFs.

outperforms the other two schemes. The reason is that when the number of required SFs is

small, there are relatively high probabilities that the optimized SFCs are constructed and

that the SP-SFCE can optimally embed a given SFC. On average, COFO-SC outperforms

SP-SFCE by 12.7% and BACON by 10.2%.

0
50

100
150
200
250
300

6 12 18 24

Co
st

 P
er

 R
eq

ue
st

of Requested SFs

Upper Bound
COFO-SC
Lower Bound

Figure 3.17: Results in multiple function mesh networks.

Last but not least, we verify the approximation performance of the proposed COFO-SC

algorithm in multiple function mesh networks. Here, we implemented the method proposed

in [26] to find the least length SFP among all SFC compositions as the “Lower Bound”.

Then, we use the performance of the lower bound that multiplies ln(|V |) as the “Upper

53

Bound”. In Fig. 3.17, the upper bound, COFO-SC, and lower bound are denoted by the

yellow triangle-solid, gray square-dotted, and yellow triangle-dotted curves, respectively. As

one can see, the COFO-SC algorithm guarantees the logarithm-approximation. Moreover,

the results verify that the proposed CF value can effectively select the physical node to host

many SFs while introducing little cost to construct the SFP.

3.7 Summary

In this chapter, we have comprehensively investigated how to deliver IoT-based services by

jointly compositing and embedding an SFC with provable bounds. We have mathematically

formulated the minimum cost service function chaining and embedding (MC-SFCE) prob-

lem. To optimize MC-SFCE problem, we have proposed an efficient algorithm called COst

Factor-based SFCE Optimization with ShortCut (COFO-SC), which is the 2-approximation

in unique function physical networks and ln(|V |)
|k| −approximation in a generic physical net-

work, where |V | is the number of the SF nodes, and |k| denotes the minimum number of SFs

satisfied in all iterations during the node selection processes. Through extensive simulations

and analysis, we have shown that our proposed COFO-SC outperforms two schemes that are

extended from the existing techniques in terms of the acceptance ratio and the average cost

for accommodating NSRs.

54

CHAPTER 4

HYBRID SERVICE CHAIN COMPOSITION AND EMBEDDING

4.1 Motivation

Recently, 5G and Multi-access Edge Computing (MEC) empowers the development of the

latency-sensitive or computation-intensive applications such as realtime Virtual Reality (VR),

Augmented Reality (AR) games and on-line machine learning [7]. In these applications, the

forward traffic from the user and the backward traffic from the MEC server/cloud may require

different sets of SFs. The SFC that requires different sets of SFs in the forward and backward

directions is referred to as hybrid SFC (h-SFC) [14]. Fig. 4.1 demonstrates an example of

an in-service h-SFC for on-line machine learning. The forward traffic (containing data sets)

from the source (i.e., user) requires Fire Wall (FW) and Deep Packet Inspection (DPI), while

the backward traffic (containing the trained model) has to go through Encryption (Encry),

Decryption (Decry) and FW. In the SN, the forward SFP (f-SFP) is Source→A→B→DEST,

while the backward SFP (b-SFP) includes DEST99KD99KC99KB99KA99KSource. To save the

Operating Expense (OPEX) and latency, the SFs required by both directions are generally

installed on the same substrate node (e.g., FW in Fig. 4.1) [52] [53].

In this chapter, for the first time, we comprehensively study how to jointly composite and

embed an NSR with hybrid traffic onto a shared substrate network. We define a new problem

called Hybrid SFC composition and Embedding (HSFCE) and propose novel analysis and

algorithms for various substrate network scenarios. Our main contributions in this chapter

are summarized as follows.

55

A B

C D

FW DPI

EncryDecry DEST

Hybrid-SFC
Source

Substrate Network

{Encry}{Decry}

{FW} {DPI}

Source
Destination
Service Function
Substrate Node
Forward Traffic
Backward Traffic

Destination

Source

Figure 4.1: An example of in-service h-SFC for one on-line machine learning scenario.

• We mathematically model the problem of Hybrid SFC composition and Embedding

(HSFCE) with the objective of minimizing the latency for the constructed hybrid SFP.

• When each substrate node provides only one unique SF, we prove the NP-hardness

of HSFCE and propose a 2-approximation algorithm to jointly composite and em-

bed the h-SFC. The proposed algorithm is called Eulerian Circuit based Hybrid SFP

optimization (EC-HSFP).

• When a substrate node can provide various SFs, we propose an effective heuristic

algorithm called Betweenness Centrality based Hybrid SFP optimization (BC-HSFP).

• Through extensive analysis and simulations, we prove that EC-HSFP guarantees the

2-approximation performance and show that BC-HSFP outperforms the algorithms

directly extended from the existing techniques by an average of 20%.

56

The rest of this chapter is organized as follows. Section II mathematically formulates

the HSFCE problem. In Section III and IV, we provide analysis and algorithms for HSFCE

in various substrate network scenarios. Section V presents the experimental results and

analysis. We summarize this chapter in Section VI.

4.2 Problem Statement

4.2.1 Substrate/physical Network Model

The Substrate Network (SN) is denoted by an undirected graph G = (N,L, F), whereas

N represents a set of substrate nodes, L is a set of substrate links, and F denotes a set

of available SFs. Each substrate node n ∈ N provides a specific set of SF instances Fn

(Fn ⊆ F) and a certain amount of available computing capacity cn. Each physical link l ∈ L

can provide a specific amount of bandwidth bwl and has a certain latency. For simplicity,

a physical link l ∈ L can also be represented as lm,n, where m,n ∈ N are its endpoints.

For a physical path pathm,n, it has an accumulative latency cost Wpathm,n depending on the

links in this path. In this chapter, we investigate two different network scenarios, Unique

Function SN (UFSN) and Multi-Functions SN (MFSN). In UFSN, each substrate node only

provides one unique SF instance. That is to say, no two different substrate nodes provide the

same SF instance (i.e., Fn ∩Fm = ∅, ∀m 6= n). This scenario is practical in the sub-domains

of a large network or the resource-constrained systems [32, 48]. In MFSN, each substrate

node can provide various SF instances subjecting to the computing capacity and different

substrate nodes may offer the same SF instance(s) (i.e., Fn ∩ Fm may not be empty).

57

4.2.2 Network Service Request with Hybrid Traffic

A Network Service Request with hybrid traffic can be represented as a 4-tuple NSR =<

s, Vf , Vb, BW >, where s is the source node, Vf represents the set of required forward SF

nodes, Vb specifies the set of backward SF nodes and BW denotes the amount of bandwidth

demand. Each SF node v ∈ V (V = Vf ∪ Vb) requires a specific SF fv and a certain amount

of computing demand cv.

4.2.3 Hybrid Service Function Chain composition and Embedding (HSFCE)

The optimization problem of the HSFCE is defined as: given an NSR with hybrid traffic

demands, how to composite and embed the hybrid SFC onto a shared SN such that i) the

constraints below are satisfied, and ii) the latency of the constructed SFPs is minimized.

The objective function is shown in Eq. (5.3), where µpathu,vm,n represents the latency of the

pathm,n to support the traffic from SF node u to v.

min
∑
v∈V

∑
u∈V

∑
n∈N

∑
m∈N

µpathu,vm,n (4.1)

SF node mapping constraint: To map an NSR, SF node mapping process needs to follow

the constraints in Eqs. (5.4-5.8). We use M v
n in Eq. (5.4) to represent whether an SF node

v is mapped onto the substrate node n and ∆v
n in Eq. (5.5) to denote whether the substrate

n provides the SF instance for the SF node v. Eq. (5.6) ensures that every SF node has to

be mapped onto one specific substrate node. In Eq. (5.7), an SF node can only be mapped

onto the substrate node that provides the corresponding SF instance. Each substrate node

can host a limited number of SF nodes due to the computing capacity as shown in Eq. (5.8).

58

M v
n =



1, SF node v ∈ V is mapped onto

substrate node n ∈ N

0, otherwise

(4.2)

∆v
n =



1, substrate node n provides

SF instance for v

0, otherwise

(4.3)

∑
n∈N

M v
n = 1, ∀v ∈ V (4.4)

M v
n ≤ ∆v

n, ∀n ∈ N,∀v ∈ V (4.5)

∑
v∈V

M v
n ∗ cv ≤ cn, ∀n ∈ N (4.6)

forward/backward SFP (f-SFP/b-SFP) construction constraint: We use pathu,vm,n to

denote whether the path from m to n is used to support the traffic from SF node u to v as

shown in Eq. (5.10). In Eq. (4.8), only the path whose endpoints are mapped by some SF

nodes is able to construct the f-SFP/b-SFP. Note that, we use fs to represent the function for

the source node. Eq. (5.9) guarantees that there must be one path going from the source to

the substrate node n that is mapped by one forward SF node. If an SF node u is demanded

59

in both directions, Eq. (4.10) ensures that there are two paths starting from the substrate

node m where u is mapped (one for f-SFP and the other one for b-SFP). Note that, if an SF

node u required by both directions is the last SF node in the f-SFP, the first backward SF

node is also u, which is represented as pathu,um,m = 1. If an SF node u is demanded only in

forward/backward direction, Eq. (4.11)/(4.12) ensures that there is only one path starting

from the substrate node m where u is mapped. Eq. (4.13) shows that, for any substrate

node m, the number of outgoing path(s) from m equals the number of incoming path(s)

to m. The number of connections among any proper-subset of the mapped SF nodes Vsub

should not be more than |Vsub| − 1 to avoid the circle, which is shown in Eq. (4.14). Eq.

(4.15) guarantees that each link of the selected paths should provide enough bandwidth. Eq.

(4.16) shows the latency of pathu,vm,n.

pathu,vm,n =



1, path from substrate node m to n is used

to support the traffic from SF node u to v

0, otherwise

(4.7)

pathu,vm,n ≤
Mu
m +Mv

n

2
,∀m,n ∈ {N ∪ s}, ∀u, v ∈ {V ∪ fs} (4.8)

∑
v∈Vf

∑
n∈N

pathfs,vs,n = 1 (4.9)

∑
n∈N

∑
v∈V

(pathu,vm,n + pathu,fsm,s + pathu,um,m) = 2 ∗Mu
m,∀u ∈ {Vf ∩ Vb}, u 6= v,∀m ∈ N (4.10)

60

∑
n∈N

∑
v∈V

pathu,vm,n = Mu
m,∀u ∈ {Vf − (Vf ∩ Vb)}, u 6= v,∀m ∈ N (4.11)

∑
n∈N

∑
v∈V

(pathu,vm,n + pathu,fsm,s) = Mu
m,∀u ∈ {Vb − (Vb ∩ Vf)}, u 6= v,∀m ∈ N (4.12)

∑
n∈{N∪s}

∑
v∈{V ∪fs}

pathu,vm,n =
∑

o∈{N∪s}

∑
w∈{V ∪fs}

pathw,uo,m,∀u ∈ V,∀m ∈ N (4.13)

∑
u∈Vsub

∑
v∈Vsub

∑
m∈N

∑
n∈N

pathu,vm,n ≤ |Vsub| − 1,∀Vsub $ {V ∪ fs}, Vsub 6= ∅, u 6= v (4.14)

∑
u∈V

∑
v∈V

pathu,vm,n ∗BW ≤ bwla,b ,∀la,b ∈ pathm,n (4.15)

µpathu,vm,n
= pathu,vm,n ∗Wpathm,n , ∀u, v ∈ V,∀m,n ∈ N (4.16)

forward/backward SFPs connection constraint: In the f-SFP, only the last substrate

node in f-SFP should connect with the substrate node hosting the SF that is only required in

the backward direction. Hence, there should be at most one path supporting the traffic from

the forward SF (only required by the forward direction) to the backward SF (only required

by the backward direction) as shown in Eq. (4.17). Similarly, if a substrate node m hosts

an SF node that is only requested by the backward direction, there should be no connection

from m to a substrate node n hosting the SF node that is only required by the forward

61

traffic, which is shown in Eq. (4.18).

∑
u∈{Vf−(Vf∩Vb)}

∑
v∈{Vb−(Vf∩Vb)}

pathu,vm,n ≤ 1, ∀m,n ∈ N (4.17)

∑
u∈{Vb−(Vf∩Vb)}

∑
v∈{Vf−(Vf∩Vb)}

pathu,vm,n = 0, ∀m,n ∈ N (4.18)

4.3 Hybrid SFCE in UFSNs

In this section, we investigate how to jointly composite and embed the hybrid SFCs onto

the UFSN. We prove the NP-hardness of HSFCE in UFSN, and propose a 2-approximation

algorithm, namely, Eulerian Circuit based Hybrid SFP optimization (EC-HSFP), which

includes two proposed techniques: i) Hybrid Trace Construction (HTC), and ii) Hybrid

Eulerian Circuit Construction (HECC).

4.3.1 Complexity Analysis of HSFCE in UFSN

When the UFSN is a complete graph and every node provides a requested SF, creating an

SFP is equivalent to finding a path that visits each node exactly once. When the UFSN is

a random graph, we can convert it to a complete graph and efficiently apply the proposed

HTC and HECC techniques. Fig. 4.2 shows an example of a UFSN, where the substrate

nodes A, B, C, D, E provide SF instances: f1, f2, f3, f4, f5, respectively. We assume that an

NSR requires f1, f2, f3, f4, where f1 and f2 are required by the forward traffic while f3 and

f4 are demanded in both directions. The dark nodes in Fig. 4.2 will host the required SF

instances. We can then generate a complete graph with only dark nodes by connecting the

dark nodes via the shortest paths in the UFSN. This complete graph is called SFP Complete

62

A

E

DB

C

2

5

2

2
2

1

Figure 4.2: An example of UFSN

A

DB

C

2

4

2

2

4 3

Figure 4.3: SFP complete graph

Graph (SFP-CG). Fig. 4.3 shows the SFP-CG generated from Fig. 4.2, where the number

beside the link represents the smallest latency between that pair of substrate nodes.

Lemma 4.3.1. Given a UFSN, an optimal hybrid SFP for an NSR with hybrid traffic exists

in the SFP-CG.

Theorem 4.3.2. Hybrid SFC composition and embedding in unique function substrate net-

work is NP-hard.

Proof. We prove the NP-hardness of HSFCE in UFSN via the reduction of the Travelling

Salesman Path Problem (TSPP) [54]. The TSPP tries to find the shortest path that visits

each city (node) in the graph exactly once. The HSFCE in UFSN tries to find the shortest

SFP connecting the substrate nodes that provide the required SF instances in the UFSN for

the forward and backward traffic, respectively; which is equivalent to finding two travelling

salesman paths sharing the same endpoints and connecting the substrate nodes in the SFP-

CG. Thus, HSFCE in UFSN is NP-hard.

However, the HSFCE in UFSN cannot be simply optimized by applying the TSPP algo-

rithms twice (one for f-SFP and the other one for b-SFP). This is because, when the optimal

f-SFP and b-SFP are generated by the TSPP algorithms, the connection between f-SFP

63

and b-SFP may be required, which may introduce large latency for the constructed hybrid

SFP. Thus, HSFCE in UFSN cannot be directly optimized by applying the existing TSPP

techniques.

4.3.2 Hybrid Trace Construction (HTC)

In graph theory, a Hamiltonian path on a connected graph is a path of minimal length

which visits every node of a graph exactly once [55]. Accordingly, the optimal unidirectional

SFP is a Hamiltonian path of the SFP-CG. Based on the number of connections in the

Hamiltonian path, the substrate nodes involved in the construction of a unidirectional SFP

can be two types: i) endpoints, and ii) intermediate nodes. The endpoints include source

and destination, whereas the number of connections is odd. For intermediate nodes, they

own even number of connections.

Lemma 4.3.3. The trace for the optimal unidirectional SFP is a path on the SFP-CG.

Proof. In Lemma 4.3.3, a trace is defined as the set of substrate nodes and links that will

be visited from the source to destination in the unidirectional SFP. Since each pair of nodes

are connected via the shortest path, no node and link in the SFP-CG will be revisited by

the optimal unidirectional SFP.

Logically, a hybrid SFP can be treated as two inter-related unidirectional SFPs. These

two unidirectional SFPs share the same source, destination and common SF instances.

Therefore, the hybrid trace (i.e., the trace for a hybrid SFP) in the UFSN can be cre-

ated by merging the traces of the forward SFP (f-SFP) and backward SFP (b-SFP). With

64

Lemma 4.3.3, the hybrid SFP starts and ends at the source node, and visits each link in

the hybrid trace exactly once, which is in fact a Eulerian circuit of the hybrid trace [55].

That is to say, when the hybrid trace is given a priori, creating a hybrid SFP is equivalent

to construct a Eulerian circuit of the hybrid trace. Thus, we propose the Hybrid Trace

Construction (HTC) technique to firstly create the hybrid trace as shown in Algorithm 4.

HTC first creates the SFP-CG according to the given SN and NSR. Since the Minimum

Spanning Tree (MST) has the least length and connects all substrate nodes, to optimize the

latency of the constructed hybrid SFP, HTC takes the MST that includes the required for-

ward/backward SF instances as the trace for the f-SFP/b-SFP. We denote these two MSTs

by forward and backward MST, respectively. A hybrid trace is then generated by merging

the constructed MSTs. As a connected graph has a Eulerian circuit if and only if every node

has even degree (connections) [55], HTC doubles the number of links in the hybrid trace to

guarantee the existence of the Eulerian circuit.

Algorithm 4 Hybrid Trace Construction (HTC)

1: Input: G, NSR;
2: Output: hybrid trace;
3: Discarding the links with less than BW bandwidth resource in G;
4: Generate the SFP Complete Graphs (SFP-CGs) for forward SFs and backward SFs;
5: Construct the Minimum Spanning Tree (MSTs) according to the generated SFP-CGs;
6: Create the hybrid trace by merging the forward and the backward MSTs;
7: for Each link in the hybrid trace do
8: Create one more link with the same endpoints;
9: end for

10: Return hybrid trace;

65

4.3.3 Hybrid Eulerian Circuit Construction (HECC)

With the hybrid trace generated from the HTC technique, to construct a Eulerian circuit,

we need to visit each link in the hybrid trace exactly once while optimizing latency [55]. To

this end, we need to consider: i) the traffic direction for each link (i.e., the link is used for the

forward direction or backward direction), ii) the f-SFP ends at which substrate node, and iii)

the order of the links to be visited. Accordingly, we introduce the Hybrid Eulerian Circuit

Construction (HECC) technique in Algorithm 5, which includes: i) Forward & Backward

Link Label (FBLL), ii) Endpoint Determination and iii) Priority Constraint.

Forward & Backward Link Label: Since HTC doubles the number of links in the hybrid

trace, the links between each pair of nodes can be either two-links set or four-links set. For

two links set, the FBLL process labels the links with the same direction (i.e., forward or

backward) according to the MST that includes this link. That is to say, if a link belongs

to the forward MST and is in the two-links set, the FBLL process labels it as forward,

vice verse. For four-links set, both endpoints support the SF instance required in both

directions. Thus, two links in the four-link set are labelled as forward, while the other two

are labelled as backward.

Endpoint Determination: When there is no common SF in both directions, the only

substrate node that connects the forward and backward traffic in the hybrid trace is the

source node. Thus, the hybrid SFP created from the hybrid trace must firstly visit all

required SFs in the f-SFP, go back to the source node, and start the b-SFP. This is also

possible for the situation where the forward and backward traffic share some common SF(s).

66

However, additional latency may be added to the constructed hybrid SFP. This is because,

the b-SFP can start with the substrate node that hosts a common SF instance instead of

going back to the source node. To reduce the latency, the endpoint determination process

(i.e., Line 4-9 in Algorithm 5) finds the common SF accommodated by the substrate node

x that has the largest sum-distances of the path s → x with forward label and path x → s

with backward label and deletes these two paths.

Priority Constraint: To form a hybrid SFP in the hybrid trace, one needs to start and

end at s, while each link is visited exactly once. We can label the link that has involved in

the construction of the Eulerian circuit as “visited”. The priority constraint ensures that, in

each direction, the node with even number of unvisited forward/backward links has a higher

priority to be visited. If both directions share some common SFs, there is only one path

connecting s to x with the forward label and x to s with the backward label. Thus, the

forward traffic ends at x, while the backward traffic ends at s.

Algorithm 5 Hybrid Eulerian Circuit Construction (HECC)

1: Input: NSR, hybrid trace;
2: Output: h-SFC, hybrid SFP;
3: Applying Forward & Backward Link Label to the hybrid trace;
4: if Vf ∩ Vb 6= ∅ then
5: Find the the other endpoint x for f-SFP that hosts the SF fv ∈ Vf ∩ Vb with the

longest shortest path from s to x;
6: else x is s;
7: end if
8: Delete the s→ x path with forward label;
9: Delete the x→ s path with backward label;

10: Start with s, visit forward links while considering the Priority Constraint;
11: Start with x, visit the backward links while considering the Priority Constraint;
12: Record the visiting trace as the hybrid SFP and generate the corresponding h-SFC;
13: Return hybrid SFP, h-SFC;

67

4.3.4 Eulerian Circuit based Hybrid SFP optimization

Based on the proposed HTC and HECC techniques, we present the EC-HSFP algorithm in

Algorithm 6. As one can see that, the step with the highest time complexity is to generate

the SFP Complete Graph (SFP-CG), which needs to run the shortest path algorithm for

multi-times. In the worst case (|V | = |N |), when applying the shortest path algorithm whose

time complexity is |NL+N2logN |, the time complexity of EC-HSFP is |N2L+N3logN |.

Algorithm 6 Eulerian Circuit based Hybrid SFP optimization (EC-HSFP) Algorithm

1: Input: G, NSR;
2: Output: h-SFC, hybrid SFP;
3: Create empty sets for hybrid trace, h-SFC and hybrid SFP;
4: hybrid trace = HTC(G, NSR);
5: {hybrid SFP, h-SFC} = HECC(NSR, hybrid trace);
6: Return hybrid SFP, h-SFC;

To elaborate how EC-HSFP works, we use Fig. 4.3 as the input. First, EC-HSFP ap-

plies the HTC technique to generate the hybrid trace as shown in Fig. 4.4a. Next, the

HTC technique doubles the number of links in the hybrid trace and applies the HECC

technique. During the process of HECC, FBLL labels the link as forward and backward

in Fig. 4.4b, where the red links and blue dotted links represent the forward and back-

A

B

C

D

4

3

2

22

(a) Hybrid trace

A

B

C

D

4

3

2

22

(b) Labelled hybrid trace

A

B

C

D

4

3

2

22

(c) Delete x → s and
s→ x path

A

B

C

D

4
3

2

22

s f1 f2 f3 f4

(d) Hybrid SFP and h-
SFC

Figure 4.4: An example of EC-HSFP.

68

ward labels, respectively. Since D supports the common SF instance (i.e., required in both

directions) and has the largest sum-distances to the source node A, D is selected as the

endpoint x of the f-SFP. After deleting the A → B → D path with the forward label

and D 99K C 99K A path with the backward label, Fig. 4.4b is converted to Fig. 4.4c.

Next, HECC technique generates the hybrid SFP and the corresponding h-SFC by visit-

ing the substrate nodes with the priority constraint as shown in Fig. 4.4d. In the end,

the generated hybrid SFP is A → B → C → B → D 99K C 99K A, while the h-SFC is

s→ f1→ f2→ f3→ f4 99K f3 99K s.

4.3.5 EC-HSFP is 2-Approximation

Theorem 4.3.4. EC-HSFP generates the hybrid SFP within a 2-approximation boundary

of the optimal hybrid SFP.

Proof. We denote the length of the forward and backward MSTs by |f-MST| and |b-MST|.

The length of the hybrid SFP generated by EC-HSFP is represented as |SFPEC-HSFP|, while

the length of the optimal SFP is denoted by |h-SFPOPT|. The lengths of the optimal f-SFP

and b-SFP are represented as |f-SFPOPT| and |b-SFPOPT|, respectively. The length of the

hybrid trace is |HT|. Since MST is the least length connected structure for a connected

graph, Eq. (4.19) and Eq. (4.20) hold.

|f-MST| ≤ |f-SFPOPT| (4.19)

|b-MST| ≤ |b-SFPOPT| (4.20)

69

Eq. (4.21) shows the relationship between the optimal hybrid SFP, f-SFP and b-SFP.

|f-SFPOPT|+ |b-SFPOPT| ≤ |h-SFPOPT| (4.21)

According to EC-HSFP, the length of the hybrid trace equals the length sum of f-MST and

b-MST as shown in Eq. (4.22).

|f-MST|+ |b-MST| = |HT| (4.22)

After doubling the number of links in hybrid trace, the generated hybrid SFP is the Eulerian

circuit of the hybrid trace. Therefore, Eq. (4.23) holds.

|SFPEC-HSFP| = 2 ∗ |HT| (4.23)

When x is not s, one needs to delete two paths in the hybrid trace. Thus, from Eq. (4.19)-

(4.23), we have Eq. (4.24).

|SFPEC-HSFP| ≤ 2 ∗ |h-SFPOPT| (4.24)

Hence, EC-HSFP achieves a 2-approximation boundary.

Lemma 4.3.5. If the UFSN is a tree structure (e.g., fat tree), EC-HSFP generates the

optimal hybrid SFP.

4.4 Hybrid SFCE in MFSN

In this section, we extend EC-HSFP to the Multi-Functions Substrate Network (MFSN).

The MFSN allows multiple SF nodes mapped onto the same substrate node (subject to the

substrate node’s computing capacity and the SF instance availability). Fig. 4.5 and Table 4.1

70

show an example of the MFSN, where the number beside the link represents the link latency.

The NSR starts at node B and requires f2, f3 and f4, each of which demands 20 computing

resource. Additionally, SFs f2 and f4 handle the traffic in both directions.

A D
C

B2 1

2 2
Figure 4.5: An example of MFSN

A D
C

B2 1

2 2

s f3 f2 f4

Figure 4.6: BC-HSFP result

Table 4.1: Multi-Functions Substrate Network

Substrate Node A B C D
Network Function f1, f2, f3 f2, f3 f3, f5 f1, f4

Capacity 40 40 20 20

To map the SF nodes onto the appropriate substrate nodes in MFSN while reducing the

latency cost; we propose an efficient heuristic algorithm called Betweenness Centrality based

Hybrid SFP optimization (BC-HSFP), which includes the proposed Betweenness Centrality

(BC) based node deployment approach and EC-HSFP.

Betweenness Centrality based Node Deployment: Traditionally, the Betweenness

Centrality (BCn) of a substrate node n can be calculated as BCn = pathn
pathtotal

, where pathn

and pathtotal represent the amount of the shortest path(s) passing node n and the total

number of the shortest path(s) in the graph, respectively. The more shortest paths passing a

node, the higher probabilities that this node will connect with other substrate nodes via the

shortest path rather than a longer detour. That is to say, a substrate node with the higher

71

BC value will more likely reduce the latency by connecting itself with the other substrate

nodes that provide the requested SF instances via the shortest path.

However, this traditional BC technique only considers the connection links between dif-

ferent substrate nodes, which ignores the internal connections within a substrate node in

MFSN. In specific, if more than one SF nodes are mapped onto the same substrate node,

the connections between these SF instances can also be counted as the potential shortest

path(s) passing this substrate node. For example, if f2 and f3 are embedded onto substrate

node B in Fig. 4.5, then the connection between SF instances f2 and f3 within node B can

also be part of the shortest paths. Here, we create a virtual inner connections between SF

instances inside a substrate node, while the outer connection indicates the traditional short-

est path passing the substrate node. Accordingly, we propose the Inner-connection-included

Betweenness Centrality (IBC) to measure the importance of the substrate node in MFSN,

which takes both the inner and outer shortest path connections into account. We specify the

number of the inner shortest connections of a substrate node n as pathnin , while the number

of the outer paths is pathnout . We denote the
∑

v∈V |{fv} ∩ Fn| by the number of SF nodes

that matches the SF instances installed in the substrate node n and δn is the number of SF

nodes that can be mapped onto n (limited by its computing capacity). Eq. (4.25) calculates

pathnin while Eq. (4.26) calculates the IBC value of a substrate node n.

pathnin = min(
∑
v∈V

|fv ∩ Fn|, δn)− 1 (4.25)

72

IBCn =
pathnin + pathnout

pathtotal
(4.26)

With the IBC technique, we propose Algorithm 7 to accommodate an NSR with hybrid traffic

onto a shared MFSN. Note that, the substrate candidate of an SF node is the substrate node

that can provide the corresponding SF instance.

Algorithm 7 Betweenness Centrality based Hybrid SFP optimization (BC-HSFP) Algo-
rithm

1: Input: G, NSR;
2: Output: hybrid SFP and h-SFC;
3: Initialize the SFP list as an empty list;
4: Calculate the IBC value for substrate nodes that can provide at least one requested SF

instance as in Eq. (4.26);
5: Sort SF nodes in ascending order according to the amount of substrate candidate(s);
6: Map the sorted SF node onto the substrate candidate with the highest IBC value;
7: Generate an induced subgraph Ginduce including the substrate nodes that host at least

one SF nodes;
8: Call EC-HSFP(Ginduce, NSR) to find the hybrid SFP and h-SFC;
9: Return hybrid SFP and h-SFC;

We use Fig. 4.5 and 4.6 to illustrate how the BC-HSFP algorithm works. In Fig. 4.5,

the NSR starts at node B and requires f2, f3 and f4, where f2 and f4 are demanded in both

directions. First, the algorithm calculates the IBC value of each substrate node that may

participate in the construction of the hybrid SFP as shown in Table 4.2. Then, the algorithm

sorts the requested SFs as {f4, f2, f3} according to the number of substrate candidate(s).

Table 4.2: IBC Value Calculation

Substrate Node A B C D
of Inner Path 1 1 0 0

of Forward Out Path 3 4 3 3
of Backward Out Path 1 2 0 2

IBC Value 5
10

7
10

3
10

5
10

73

Based on the IBC values shown in Table 4.2 and the sorted SF nodes, the algorithm deploys

f4 onto node D, and then f2, f3 onto node B. At last, the algorithm generates the induced

graph of B and D in Fig. 4.6 and calls the EC-HSFP algorithm to form a hybrid SFP as

B → D 99K B with the h-SFC as s → f3 → f2 → f4 99K f2 99K s. As shown in Fig. 4.6,

the red lines and dashed blue lines represent the forward and backward SFP, respectively.

As one can see in Algorithm 7, the process with the highest running time complexity is

to calculate the IBC value for substrate nodes that can provide at least one required SF

instance. In the worst case, when every substrate node can provide at least one required SF

instance, the time complexity of this algorithm is |N2L+N3logN |.

4.5 Numerical Results and Analysis

In this section, we analyze and compare the performance of the proposed algorithms with

the schemes that are directly extended from the state-of-art techniques [56, 57].

4.5.1 Simulation Environment

We use the 24-nodes US-NET as the Substrate Network (SN), which can be configured as

the UFSN or MFSN. For the UFSN, each substrate node supports one unique SF instance,

and each physical link has a latency in the range of [1 − 5]. For the MFSN, the number of

SF instances supported by a substrate node is in the range of [2 − 6], while the computing

capacity is in the range of [20 − 100]. The link latency in MFSN is in the range of [1 − 5]

and has the bandwidth in the range of [5− 20]. We set the number of required SF nodes in

each NSR within the range of [4− 17], while the number of required bidirectional SF nodes

74

is in the range of [4−13]. For each SF node, the required computing capacity is in the range

of [10 − 20]. The source node is randomly generated and the bandwidth demand is in the

range of [1− 10].

In [56], the authors proposed the algorithm to map a given unidirectional SFC onto

a shared SN with the shortest length when the bandwidth is abundant. We extend the

algorithm in [56] as Shortest Path based HSFP optimization (“SP-HSFP”) by generating five

random hybrid SFCs, creating five corresponding hybrid SFPs and calculating the average

latency. In [57], the authors utilized the Closeness-Centrality (CC) technique in the node

mapping process, which aims to determine the substrate candidate with the least average

latency cost to connect with others. We combine this CC node mapping with EC-HSFP as

“CC-HSFP”.

4.5.2 Performance Metrics

We use the following metrics to assess the performance of the proposed algorithms.

Approximation Ratio (AR): To evaluate the performance of EC-HSFP and SP-HSFP

algorithms, we compare their results with the length of the Minimum Spanning Tree (MST),

which is proved as the lower boundary in Eq. (4.19) and (4.20). AR can be calculated as

AR = SFPcreated
|MST | , where the SFPcreated represents the latency of the hybrid SFP created by

the proposed algorithms and |MST | represents the length sum of the forward MST and

backward MST.

Average Latency of the Created SFP (ALCS): ALCS =
∑
NSRi∈NSRC

SFPcreated

|NSRC |
, where

NSRC represents a set of NSRs, and NSRi is the ith NSR in NSRC .

75

4.5.3 Approximation Analysis in UFSN

We evaluate the approximate performance of EC-HSFP under three types of NSR (i.e., Fig.

4.7a, 4.7b, 4.7c). In Fig. 4.7a, 12 forward SFs are required and the backward SFs are a

subset of the forward SFs (i.e., Vb ⊆ Vf). In Fig. 4.7b, 12 forward and backward SFs are

required, while the number of backward SFs that does not belong to the forward SFs varies.

In Fig. 4.7c, 4 backward SFs are required and the number of forward SFs varies. In Fig. 4.7,

the grey, red and dark gridded bars represent the ALCS of MSTs, EC-HSFP and SP-HSFP,

respectively. The yellow dashed curve denotes the AR for EC-HSFP.

When increasing the number of backward SFs that belong to the set of required forward

SFs in Fig. 4.7a, EC-HSFP and MSTs need more latency to finish the transmission but the

latency required by SP-HSFP fluctuates. This is because the performance of the SP-HSFP

totally depends on the given SFCs. Due to the given SFCs, SP-HSFP may take multiple

detours leading to fluctuated latency for the constructed hybrid SFP. For EC-HSFP, the AR

is under 2 in any situation, which matches Theorem 4.3.4. It is worth noting that, when

the number of backward SFs is small (e.g., 4), the lengths of the deleted paths (i.e., s → x

forward path and x → s backward path) may not contribute much to the total latency.

1.0

1.2

1.4

1.6

1.8

2.0

0
30
60
90

120
150
180
210

4 6 8 10 12

AR

AL
CS

of Backward SFs (Subset of Forward SFs)

Sum‐of‐MSTs EC‐HSFP SP‐HSFP AR‐EC

(a) Backward SFs ⊆ Forward SFs

1.0

1.2

1.4

1.6

1.8

2.0

0
30
60
90

120
150
180
210
240
270

4 6 8 10 12

ARAC
LS

of Backward SFs (Non‐Subset of Forward SFs)

(b) Backward SFs 6⊂ Forward SFs

1.0

1.2

1.4

1.6

1.8

2.0

0

20

40

60

80

100

120

4 6 8 10 12

ARAL
CS

of Forward SFs (When # of Backward SFs is 4)

(c) Fixed # of Backward SFs

Figure 4.7: Approximation analysis in UFSN

76

Thus, the AR is relatively high when the number of backward SFs is in the range of [4, 6].

However, when further increasing the number of backward SFs, there is a higher probability

that the x → s forward path and s → x backward path become longer. Particularly, when

the number of backward SFs is bigger than 10, the deleted paths most likely are the longest

one in the generated MSTs. Therefore, the AR is relatively low and the proposed EC-HSFP

performs even better when the number of backward SFs is larger than 6.

When the number of backward SFs increases in Fig. 4.7b, EC-HSFP needs more latency

while the sum lengths of MSTs do not vary much. Again, since the performance of SP-

HSFP totally depends on the constructed SFCs, it is unstable in UFSN. It is worth noting

that, when the number of backward SFs that does not belong to the set of forward SFs

equals 12, the AR is 2. This is because the only common substrate node that the forward

MST and backward MST share is the source node; thus no path will be deleted, whereas

|SFPEC-HSFP| = 2 ∗ |HT | = 2 ∗ (|f-MST|+ |b-MST|).

In Fig. 4.7c, when increasing the number of forward SFs, EC-HSFP and the sum lengths

of MSTs increase. When the number of forward SFs is small (e.g., 4), the probability that

the backward SFs belong to the forward SFs is small. Thus, the common node that the

forward and backward MSTs share likely is the source node, which results in a high AR.

When increasing the number of forward SFs, the probability that the backward SFs are

included in the forward SFs increases, which reduces the latency of the constructed hybrid

SFP by potentially increasing the length of the deleted paths.

Overall, the AR is no more than 2 in any situation, which verifies that the proposed

77

EC-HSFP algorithm guarantees the 2-approximation performance.

4.5.4 Performance Analysis in MFSN

Fig. 4.8 shows the performance of CC-HSFP, BC-HSFP and SP-HSFP in MFSNs. In

Fig. 4.8, the red dashed curve, grey dotted curve and blue solid curve represent the perfor-

mance of CC-HSFP, SP-HSFP and BC-HSFP, respectively.

Fig. 4.8a demonstrates that the latency from all three schemes decreases when increasing

the number of SF instances in each substrate node. This is because the probability to gen-

erate the inner connection becomes larger when the SF instances provided in each substrate

node are more. Note that, BC-HSFP outperforms both SP-HSFP and CC-HSFP. This is

because BC-HSFP can jointly optimize SFC composition and embedding, whereas SP-HSFP

is limited by the given SFCs. The CC technique in CC-HSFP will likely create the MST

as a “star”. This is because the central node of a graph has the highest CC value, which

implies it is the nearest one to other substrate nodes that host the required SFs. Thus, the

MST is likely to be created by connecting the central node with the other substrate nodes

via the shortest path, which is a “star”. However, from the experimental results, the BC

technique will likely create the MST as a “path”. Fig. 4.9 and 4.10 show an example of the

34

44

54

64

74

84

94

2 3 4 5 6

AL
CS

of SF Instances Provided in Each Physical Node

CC‐HSFP BC‐HSFP SP‐HSFP

(a) # of SF instances

34

54

74

94

114

134

20 40 60 80 100

AL
CS

The CPU Capacity of each Physical Node

(b) # of computing resource

34
44
54
64
74
84
94

104
114

1 3 5 7 9

AL
CS

The Bandwidth Demand for each NSR

(c) # of bandwidth demand

Figure 4.8: Performance analysis in MFSN

78

difference between “star” and “path” topologies. For a star MST in Fig. 4.9, the process in

Line 8-9 of Algorithm 6 will delete the paths A→ D and D 99K A, removing 4 hops out of

final hybrid SFP. However, when a path MST is constructed by BC as shown in Fig. 4.10,

the process in Line 8-9 of Algorithm 5 will remove 8 hops, resulting in a shorter hybrid SFP.

This difference can be even larger in an SN with more nodes.

A

B

C

D

E

Figure 4.9: A star MST from CC

A

B

C

D

E

Figure 4.10: A path MST from BC

When the number of SF instances provided by each substrate node is 3, Fig. 4.8b

demonstrates that the more computing resource provided by each substrate node, the less

latency is required for all algorithms. The performance of BC-HSFP and CC-HSFP is flat

when the computing resource provided by each substrate node is larger than 60. This

is because 60 computing capacity will allow that all SF instances are available in each

substrate node. Thus, further increasing the number of computing capacity does not change

the performance of CC-HSFP and BC-HSFP.

Fig. 4.8c shows the performance of the proposed algorithms when varying the number

of bandwidth demand. As one can see that, the more bandwidth requested by the NSR, the

more latency is required. This is because when increasing the bandwidth demand, some links

become unavailable, and a longer path may have to be employed. Note that, CC-HSFP and

79

BC-HSFP increase slower than SP-HSFP. This is because, as a joint h-SFC composition and

embedding process, the routing technique (i.e., EC-HSFP) of BC-HSFP/CC-HSFP does not

introduce multi-detours that bring large latency in a bandwidth resource-limited network.

Overall, the proposed BC-HSFP algorithm averagely outperforms CC-HSFP by 20% and

outperforms SP-HSFP as much as 50%.

4.6 Summary

In this chapter, for the first time, we have comprehensively studied a new set of Hybrid SFC

composition and Embedding (HSFCE) problems in different network scenarios. When the

computing capacity provided by the Substrate Network (SN) is limited, we have investigated

the Unique Function SN (UFSN), where each substrate node only provides one unique type

of SF. We have proved the NP-hardness of HSFCE in UFSN and proposed a 2-approximation

algorithm to jointly composite and embed a hybrid SFC, called Eulerian Circuit based Hy-

brid SFP optimization (EC-HSFP). We have also studied HSFCE in Multi-Functions SN

(MFSN), where each substrate node provides various SFs, and extended the EC-HSFP with

the betweenness centrality technique to optimize HSFCE in MFSN. Our extensive anal-

ysis and simulation results have shown that the EC-HSFP algorithm can guarantee the

2-approximation boundary, and the proposed BC-HSFP outperforms the algorithms directly

extended from the state-of-art techniques by an average of 20%. In the next chapter, we will

further investigate how to optimally embed a given h-SFC onto a shared substrate network.

80

CHAPTER 5

OPTIMAL HYBRID SERVICE CHAIN EMBEDDING

5.1 Motivation

For many 5G and Internet of Things (IoT) applications such as cloud gaming and on-line

machine learning [7][58][59], the forward traffic from the customer is processed at the edge

server/cloud, and the backward traffic including the results/models will be transmitted back

from the edge server/cloud. As the contents of the forward and backward traffic are different,

different SFs may be requested to process the forward and backward traffic. An SFC that

requests different sets of SFs for the forward and backward traffic is referred to as hybrid

SFC (h-SFC) [14]. Fig. 5.1 depicts an example of an in-service h-SFC of on-line machine

learning. The data collected by the IoT devices will be sent to the cloud for further processing

after going through the Deep Packet Inspection (DPI) and Firewall (FW). The backward

traffic including the machine learning model has to go through the Encryption (Encry), FW,

Substrate Network

{Encry}{Decry}

{DPI} {FW}

Server: A

Server: C

Server: B

Server: D

{IoT Device} {Cloud}

IoT Device
Cloud
Service Function
Physical Server
Forward Traffic
Backward TrafficHybrid-SFC

{IoT Device} {Cloud}

DPI FW

Decry IDS Encry

Server: E

{IDS}

Figure 5.1: An example of in-service h-SFC for on-line machine learning in IoT

81

Intrusion Detection System (IDS), DPI and Decryption (Decry) before arriving at the IoT

devices. In the SN, the forward SFP is constructed as IoT device → DPI → FW → Cloud,

while the backward SFP includes Cloud 99K Encry 99K FW 99K IDS 99K DPI 99K Decry 99K

IoT Device. For the sake of saving the Operational Expense (OPEX) and latency, the SF

that is required along both forward and backward directions are generally instantiated on

the same substrate node (e.g., FW and DPI in Fig. 5.1) [52][53].

As MEC related applications (e.g., cloud gaming, on-line AR/VR games) generally re-

quire real-time interactions with the customer, in this paper, we study how to embed a given

h-SFC onto a shared SN with minimum latency. We define a new problem called Minimum

Latency Hybrid SFC Embedding (ML-HSFCE), which is different from our previous work

that focuses on hybrid SFC optimization in a special substrate network [27]. In specific, the

work in [27] proposed a 2-approximation algorithm to composite and embed an h-SFC onto

a substrate network, whereas each substrate node provides only one unique SF instance.

In this work, we mathematically model the problem of ML-HSFCE in a generic substrate

network, whereas multiple SF instances may be available at one substrate node. We propose

an Optimal Hybrid Service Function Chain Embedding (Opt-HSFCE) algorithm to embed a

given hybrid SFC onto any substrate network optimally. Opt-HSFCE employs a novel tech-

nique of Hybrid SFC embedding Auxiliary Graph (HSAG). Through extensive analysis and

simulations, we show the efficiency and effectiveness of the proposed Opt-HSFCE algorithm.

The rest of this chapter is organized as follows. Section II mathematically formulates

the HSFCE problem. In Section III and IV, we analyze the complexity of ML-HSFCE and

82

develop the algorithm to optimize ML-HSFCE. Section V demonstrates the experimental

results and analysis. We summarize this chapter in Section VI.

5.2 Minimum Latency Hybrid Service Function Chain Embedding

5.2.1 Substrate/physical Network (SN) Model

We denote the Substrate/physical Network (SN) by an undirected graph G = (N,E, F),

where N is the set of substrate nodes, E represents the set of substrate links, and F denotes

a set of available SF instances. For each substrate node n ∈ N , it provides a specific set of

SF instances Fn (Fn ⊆ F) and a certain amount of available computing resource cn. Each

link lm,n ∈ E (∀m,n ∈ N) has a specific amount of bandwidth resource bwlm,n and a certain

amount of latency lalm,n . For a path pathm,n, it has an accumulative latency cost Lapathm,n

as shown in Eq. (5.1) and a bottleneck bandwidth bwpathm,n calculated as Eq. (5.2).

Lapathm,n =
∑

la,b∈pathm,n

lala,b , ∀a, b,m, n ∈ N (5.1)

bwpathm,n = min(bwla,b), ∀la,b ∈ pathm,n,∀a, b,m, n ∈ N (5.2)

5.2.2 Hybrid Service function chain Request (HSR)

A Hybrid Service function chain Request (HSR) can be represented as a 2-tuple HSR =

<BW, h-SFC>, where BW denotes by the set of bandwidth demands between two adjacent

SFs, while h-SFC represents the hybrid SFC. We denote an h-SFC as a set of sequential SFs

{s, ff1 , ..., ffi , d, bf1 , ..., bfj , s}. For a specific SF (ffi or bfj ∈ h-SFC), it demands a certain

83

amount of computing resource (cffi or cbfj) to instantiate the corresponding SF at a substrate

node. We further use vi to represent the ith SF in the h-SFC, cvi to denote its computing

demands, and bwvi,vi+1
to denote the bandwidth demand between two adjacent SFs (i.e., vi

and vi+1).

5.2.3 Minimum Latency Hybrid SFC Embedding (ML-HSFCE)

The optimization problem of ML-HSFCE is defined as: given an SN with abundant band-

width resource and an HSR, how to accommodate the HSR onto the SN such that i) the

following constraints are satisfied, and ii) the latency of the constructed SFP is minimized.

The objective function is shown in Eq. (5.3), where µpathvi,vi+1
m,n

represents the latency of the

pathm,n to support the traffic from SF node vi to vi+1. Note that, in Eq. (5.3), χ is the

sequential number of the last SF in the h-SFC. Since the hybrid traffic starts and ends at

the source node, both v0 and vχ represent the source node. Table 5.1 describes the notations

for the variables.

min

i=χ∑
i=0

∑
n∈N

∑
m∈N

µpathvi,vi+1
m,n

(5.3)

SF node mapping constraint: Eq. (5.4) represents whether an SF node vi is mapped

onto the substrate node n and Eq. (5.5) denotes whether the substrate node n provides

the SF instance for SF node vi. In Eq. (5.6), each SF node must be embedded onto one

substrate node. Eq. (5.7) ensures that an SF node can only be embedded onto the substrate

node with the corresponding SF instance. Each substrate node can host a limited number

84

Table 5.1: Notation Table

Notation Meaning
m,n Substrate nodes m,n ∈ N
vi The ith requested SF in the h-SFC
BW Requested bandwidth resource
Mvi
n =1 when vi is mapped on n; 0 otherwise

∆vi
n =1 when n provides SF instance for vi; 0 otherwise
cvi Computing demand of vi
cn Computing capacity of n

path
vi,vi+1
m,n =1 when pathm,n supports the traffic from vi to vi+1; 0 otherwise

bwpathm,n Bottleneck bandwidth of pathm,n
Lapathm,n Latency cost of pathm,n
µ
path

vi,vi+1
m,n

Total latency cost of pathm,n

of SF nodes due to the computing capacity as shown in Eq. (5.8). Eq. (5.9) describes v0 and

vχ are embedded onto the source node.

M vi
n =



1, SF node vi ∈ h-SFC is mapped onto

substrate node n ∈ N

0, otherwise

(5.4)

∆vi
n =



1, substrate node n provides

SF instance for vi

0, otherwise

(5.5)

∑
n∈N

M vi
n = 1, ∀vi ∈ h-SFC (5.6)

M vi
n ≤ ∆vi

n , ∀n ∈ N,∀vi ∈ h-SFC (5.7)

85

∑
vi∈h-SFC

M vi
n ∗ cvi ≤ cn, ∀n ∈ N (5.8)

M v0
s = M vχ

s = 1, (5.9)

hybrid SFP construction constraint: We use path
vi,vi+1
m,n to denote whether the path

from m to n is used to support the traffic from SF node vi to vi+1 as shown in Eq. (5.10).

Eq. (5.11) ensures that only the path whose endpoints host the SFs will be counted to

construct the hybrid SFP. Eq. (5.12) specifies that each SF link is accommodated by one

substrate path/link. In Eq. (5.13), if pathm,n is used to support the traffic from vi to vi+1,

the bandwidth of each link in the path should be more than bwvi,vi+1
. Eq. (5.14) calculates

the latency cost of a path that supports the traffic for the SF link.

path
vi,vi+1
m,n =



1, path from node m to n is used to support

the traffic from SF node vi to vi+1

0, otherwise

(5.10)

pathvi,vi+1
m,n ≤ M vi

m +M
vi+1
n

2
,∀m,n ∈ N,∀vi, vi+1 ∈ h-SFC (5.11)

∑
m,n∈N

pathvi,vi+1
m,n = 1,∀vi, vi+1 ∈ h-SFC (5.12)

pathvi,vi+1
m,n ∗ bwvi,vi+1

≤ bwpathm,n ,∀m,n ∈ N,∀vi, vi+1 ∈ h-SFC (5.13)

86

µpathvi,vi+1
m,n

= pathvi,vi+1
m,n ∗ Lapathm,n ,∀m,n ∈ N, ∀vi, vi+1 ∈ h-SFC (5.14)

5.3 Hybrid SFCE Complexity Analysis

In this section, we analyze the complexity of hybrid SFCE by comparing it with the tradi-

tional Virtual Network Embedding (VNE) and the unidirectional SFCE.

VNE is a well-known NP-hard problem, which requires the service provider to embed a

virtual mesh network onto the substrate network such that a specific goal (e.g., minimize the

bandwidth usage) can be achieved [60, 61, 62]. For an SFC, it can be regarded as a special

virtual mesh network, whereas the topology of the virtual network is linear. When the

bandwidth resource is limited in an SN, embedding a given SFC is still NP-hard since there

exists bandwidth competition among virtual links (i.e., links between adjacent SFs) [63].

However, embedding a given SFC onto an SN with abundant bandwidth resource (i.e., no

bandwidth competition) is not NP-hard [56][46]. The authors in [56] and [46] have proposed

the optimal schemes that construct an auxiliary graph to embed a given unidirectional SFC

onto the SN by utilizing the linearity of the SFC. The optimal unidirectional SFP is then

equivalent to the shortest path that connects the source and the destination in the composited

auxiliary graphs. Similarly, embedding a given h-SFC onto an SN with abundant bandwidth

resource can be optimized through the techniques of graph transforming and the shortest

path algorithms as shown in the next section.

Next, we discuss whether the optimal unidirectional SFCE techniques [56] [46] can be ap-

87

Device

FW IDS

DEST

Decry Encry

Figure 5.2: Traffic-Independent h-SFC

Device

FW IDS

DEST

Decry Encry

Figure 5.3: Traffic-Dependent h-SFC

plied to solve the ML-HSFCE problem when the bandwidth resource is abundant. According

to whether there are any common SFs in the forward and backward SFCs, the h-SFC can

be either i) traffic-independent h-SFC or ii) traffic-dependent h-SFC. For the former one,

the forward and backward SFCs request different SFs (i.e., f-SFC ∩ b-SFC = ∅). For the

latter one, there exists common SFs in both SFCs (i.e., f-SFC ∩ b-SFC 6= ∅). We use the

examples in Fig. 5.2 and Fig. 5.3 to demonstrate the traffic-independent h-SFC and traffic-

dependent h-SFC. Fig. 5.2 demonstrates the traffic-independent h-SFC. For the forward

traffic, FW and IDS are requested, while the backward traffic demands Encry and Decry.

Since no common SFs are requested in two traffic directions, the traffic-independent h-SFC

can be optimized as two independent unidirectional SFCs that share the same endpoints.

For a traffic-dependent h-SFC shown in Fig. 5.3, FW and IDS are requested in both traffic

directions. That is to say, the substrate nodes that host FW and IDS will be visited twice

by the hybrid SFP (one in the forward SFP, and the other one in the backward SFP). Since

both forward and backward traffic visits the substrate nodes that host the common SFs (e.g.,

FW and IDS in Fig. 5.3), the traffic-dependent h-SFC cannot be treated as two independent

unidirectional SFCs. Based on the property of the traffic-independent h-SFC, the following

lemma holds.

88

Lemma 5.3.1. The existing SFCE optimization techniques can create the optimal hybrid

SFP for a traffic-independent h-SFC.

Proof. Since the forward and backward traffic requests totally different sets of SFs, the only

nodes sharing by both directions are the source and destination nodes. That is to say; the

optimal hybrid SFP is a concatenation of the optimal forward SFP and the optimal back-

ward SFP. Therefore, the existing SFC optimization techniques can construct the optimal

hybrid SFP for a traffic-independent h-SFC by optimally constructing optimal forward and

backward SFPs (as the work in [56] or [46]).

However, for a traffic-dependent h-SFC, the existing SFCE related techniques cannot be

directly applied. This is because if one generates the optimal unidirectional SFP (forward or

backward) according to the existing SFCE related techniques and applies the SF node map-

ping results of the forward SFP for the other traffic direction, the generated hybrid SFP may

not be optimal. For example, Fig. 5.4 shows a given SN with enough networking resource

(i.e., computing and bandwidth resource), whereas the number beside each link represents

the latency cost and the set of SF instances are beside each node. When considering a h-SFC

request as {A, v1, v3, v4, v2, v5, F, v1, v3, v4, A}, Fig. 5.5 and Fig. 5.6 shows the optimal hybrid

SFP and the hybrid SFP created by applying the technique that directly exetends from the

work in [56], [46].

Fig. 5.5 illustrates the optimal hybrid SFP that accommodates the requested h-SFC. SF

node v1 is mapped onto node B, v3 and v4 are mapped onto node C, while v2 and v5 are

mapped onto nodes D and F, respectively. In the forward traffic, the forward SFP employs

89

A

C
{ 𝟑 𝟒}

B
{ 𝟏}

D
{ 𝟑 𝟓}

E
{ 𝟐 𝟒}

F
{ 𝟏 𝟐 𝟓}

2
3

1

2

4 4

1

3

Figure 5.4: A substrate network example

A

C
{ 𝟑 𝟒}

B
{ 𝟏}

D
{ 𝟑 𝟓}

E
{ 𝟐 𝟒}

F
{ 𝟏 𝟐 𝟓}

2
3

1

2

4
4

1

3

Figure 5.5: The optimal hybrid SFP (la-
tency cost = 21)

the path A → B → C → E → F with the length as 12. For the backward traffic, the

backward SFP is F 99K D 99K B 99K C 99K A with the length of 9. Overall, the optimal

hybrid SFP has the latency cost as 21.

Fig. 5.6 demonstrates the hybrid SFP that is generated by i) applying the technique

in [46, 56] to embed the f-SFC optimally; and ii) using the common SF nodes embedding

results to construct the backward SFP. Accordingly, SF node v1 is embedded onto node B,

v3 is embedded onto node D, v2 and v4 are embedded onto node E, while v5 is embedded

onto node F. The forward SFP is A → B → D → E → F with the length of 10, while

the backward traffic is F 99K D 99K B 99K D 99K E 99K C 99K A, with the length of 15.

A

C
{ 𝟑 𝟒}

B
{ 𝟏}

D
{ 𝟑 𝟓}

E
{ 𝟐 𝟒}

F
{ 𝟏 𝟐 𝟓}

2
3

1

2
4

4

1

3

Figure 5.6: The hybrid SFP created by applying the existing SFCE optimization technique
on f-SFC and applying the common SF node embedding result on the embedding process of
b-SFC (latency cost = 25)

90

Even though the forward SFP constructed in this way has less length than the forward SFP

in Fig. 5.5, the length of the final hybrid SFP generated in this method is larger than the

optimal result in Fig. 5.5.

As one can see that, even though the f-SFC is optimally embedded by applying the exist-

ing SFCE related techniques, the hybrid SFP generated upon the forward SF node mapping

results may not be optimal. In the following sections, we propose the Optimal Hybrid SFC

Embedding (Opt-HSFCE) algorithm and the technique of Hybrid SFC embedding Auxiliary

Graph (HSAG).

5.4 Optimal Hybrid Service Function Chain Embedding

In this section, when the SN provides abundant bandwidth resource, we propose an Opti-

mal Hybrid Service Function Chain Embedding (Opt-HSFCE) algorithm, which creates the

optimal hybrid SFP for a given h-SFC based on the technique of Hybrid SFC embedding

Auxiliary Graph (HSAG).

5.4.1 Hybrid SFC embedding Auxiliary Graph (HSAG)

Based on the analysis above, a hybrid SFP needs to meet two constraints: i) executing-order

constraint, which requires the SFP visiting the SF instances as the same order they appear

in the h-SFC, and ii) re-visit constraint that requires the SF(s) appeared in both forward

and backward SFCs will be embedded onto the same substrate node. When an h-SFC is

given in an HSR, the executing-order of all SFs is strictly specified. The optimization goal

of ML-HSFCE turns out to be finding the shortest SFP, whereas each SF in the HSR is em-

91

bedded onto a substrate node along the SFP and the re-visit constraint is enforced. Clearly,

the traditional shortest path algorithms cannot be directly applied due to this re-visit con-

straint. A naive brutal-force searching scheme can be time-consuming or even intractable for

a large system. In the following, we propose to create an auxiliary graph called Hybrid SFC

embedding Auxiliary Graph (HSAG), which effectively takes into account the properties of

the given h-SFC and available substrate network resource to facilitate the h-SFC embedding

process.

A composited HSAG includes three components i) tier, ii) layer and iii) nodes. As shown

in Fig. 5.7, each tier includes at least one layer, and a layer consists of at least one node.

Each tier in the HSAG matches with one SF node in the given h-SFC. In other words, the

number of tiers in the HSAG equals the number of SF nodes in the h-SFC. Specifically, a

composited HSAG can be represented as HSAG = {T1, T2, ..., Tδ}, where Ti represents the

ith tier in the HSAG and δ is the length of the h-SFC. Each tier in HSAG matches with

one SF node in the given h-SFC. Note that, T1 and Tδ only include the source node. We

use s and s′ to specify the source node in T1 and Tδ, respectively. As shown in Fig. 5.7,

for a tier Ti, it only has direct connections with the adjacent tiers (Ti−1 and Ti+1), which

guarantees that a flow from T1 to Tδ must visit each tier in order. Any path starting from T1

and ending with Tδ will satisfy the executing-order constraint. For tier Ti, it includes at least

one layer, which can be represented as Ti = {LTi1 , L
Ti
2 , ..., L

Ti
m}. For layer LTin (n ∈ [1,m]),

it can be either the set of substrate candidates of vi or a specific substrate candidate of vi.

For simplicity, we use SCi,n
vi

and sci,nk to represent the set of substrate candidates and the

92

kth substrate candidate of vi in the layer n of the tier i, respectively. An index number vik

in layer LTn indicates that any layer created from LTn will use the kth substrate candidate for

hosting vi, which guarantees the re-visit constraint.

Table 5.2: Term & Abbreviation Table

Abbreviation Meaning
Ti the ith tier
Td destination tier
LTin the nth layer in Ti
sci,nk the kth substrate candidate of vi in LTin of Ti
SCi,nvi the set of substrate candidates of vi in LTin of Ti
vik index number for the kth substrate candidate of vi

HSAG for the forward traffic: The forward traffic starts at the source node located at

T1. For every two adjacent tiers Ti and Ti+1, according to whether Ti is created for a common

SF, there are two different options to create the HSAG.

When Ti is created for a common SF, for each node sci,nk in the layer LTin , one needs to

create a layer L
Ti+1
m in Ti+1 to match the re-visit constraint. Each newly created layer L

Ti+1
m

includes the set of substrate candidates (SCi+1,m
vi+1

) for vi+1 and extends the index numbers

from LTin . An index number vik is then added to the newly created layer L
Ti+1
m , which

indicates that the traffic passes L
Ti+1
m will re-visit the kth substrate candidate of vi in the

backward traffic. Next, the sci,nk connects with all nodes in the newly created layer L
Ti+1
m

by using the shortest path in the SN. Note that, when Ti is created for a common SF, the

number of layers in Ti+1 equals the number of nodes in Ti.

When Ti is created for a non-common SF, for each layer LTin in Ti, a layer L
Ti+1
n that

includes SCi+1,n
vi+1

and extends the index numbers from LTin is created in Ti+1. Then, a complete

bipartite graph is created between LTin and L
Ti+1
n [55], whereas each node in LTin connects with

93

𝒔𝒄𝒛
𝟒,𝟏

𝒔𝒄𝟏
𝟒,𝟏

𝑳𝟏
𝑻𝟒

𝒔𝒄𝒛
,𝟒,𝒙

𝒔𝒄𝟏
𝟒,𝒙

𝑳𝒙
𝑻𝟒

Source
ሺsሻ

𝒔𝒄𝒚
𝟑,𝟏

𝒔𝒄𝟏
𝟑,𝟏

𝑳𝟏
𝑻𝟑

𝒔𝒄𝟏
𝟐,𝟏

𝒔𝒄𝒙
𝟐,𝟏

𝑳𝟏
𝑻𝟐

𝒔𝒄𝒚
𝟑,𝒙

𝒔𝒄𝟏
𝟑,𝒙

𝑳𝒙
𝑻𝟑

𝑳𝟏
𝑻𝟓

DES𝐓𝟓,𝟏

𝑳𝒙
𝑻𝟓

DES𝐓𝟓,𝒙

Tier 1 Tier 2 Tier 3 Tier 4 Tier 5

𝒔𝒄𝟏
𝟔,𝟏

Tier 6

𝒔𝒄𝒙
𝟔,𝒙

Tier 7

Tiers

𝑳𝟏
𝑻𝟔

𝑳𝒙
𝑻𝟔

Source
ሺs′ሻ

Figure 5.7: Hybrid SFC embedding auxiliary graph for the given h-SFC {s, v1, v2, v3, d, v1, s
′}.

all nodes in L
Ti+1
n ; but there is no connection between any pair of nodes in the same layer.

Note that, since each layer in Ti matches a layer in Ti+1, the number of layers in Ti equals

the number of layers in Ti+1 when Ti is created for a non-common SF.

As the destination tier is the last tier in the forward traffic, the number of layers in the

destination tier equals the product of the number of substrate candidates for all common SFs.

For example, if there are three common SFs exists in the h-SFC whose numbers of substrate

candidates will be x, y and z, there will be x ∗ y ∗ z layers in the destination tier. For each

layer in the destination tier, it includes a unique set of index numbers to indicate that the

forward traffic ending at this destination layer visits a specific set of substrate candidates

for the common SFs.

HSAG for the backward traffic: The backward traffic starts with the destination tier.

Since each destination layer includes a unique set of index numbers that indicate which

94

substrate candidate needs to be re-visited for every common SF, the HSAG for the backward

traffic is created from each destination layer. For a specific destination layer LTdn , there are

two options to create the HSAG according to whether Ti+1 is for a common SF.

If Ti+1 is created for a common SF, for each layer LTin in Ti, a layer L
Ti+1
n is created only

with the kth substrate candidate of vi+1 according to the set of index numbers of LTdn . Then,

all nodes in LTin connect with the newly created node in L
Ti+1
n .

When Ti+1 is created for a non-common SF, for each layer LTin , a layer L
Ti+1
n is created

with all substrate candidates of vi+1. Next, a complete bipartite graph is formulated between

LTin and L
Ti+1
n .

Note that, since the HSAG for the backward traffic is created from each destination layer.

Thus, all tiers (other than the last tier) in the backward HSAG own the same number of

layers as the destination tier. With a composited HSAG, any path starting at s and ending

at s′ is a potential hybrid SFP.

Lemma 5.4.1. Any path connects the source node s to the source node s′ in the HSAG

satisfies executing-order constraint.

Proof. In the HSAG, the number of tiers matches the number of SFs in the h-SFC. For tier

Ti, it only connects with the adjacent tiers (Ti−1 and Ti+1). There is no connection between

any two non-adjacent tiers. That is to say, in the HSAG, any path starting at the source

node s and ending with the source node s′ has to go through each tier in the order as the

corresponding SF appears in the h-SFC. Thus, any path connecting the source node s and

s′ in the HSAG obeys the executing-order constraint.

95

Lemma 5.4.2. Any path connects the source node s to s′ in the HSAG satisfies re-visit

constraint.

Proof. In HSAG, for a specific hybrid SFP, it can be regarded as two SFPs (forward SFP and

backward SFP) that share the same endpoints. Each destination layer owns a unique set of

index numbers that indicates the substrate candidate for each common SF. Thus, the forward

and backward SFPs of a hybrid SFP will visit the same set of substrate candidates for the

common SFs. The re-visit constraint is guaranteed for any hybrid SFP in the HSAG.

Lemma 5.4.3. The paths from the source node s to the source node s′ in the HSAG include

all possible hybrid SFPs.

Proof. The index numbers of all layers include all possible combinations of the visiting

substrate candidates for common SFs. Thus, to prove all possible hybrid SFPs are included

in the HSAG, we need to prove that all possible combinations of visiting substrate candidates

for non-common SFs are also included. For the tier Ti that is not created for a common SF,

Ti−1 is: i) not created for a common SF; or ii) created for a common SF. For the former case,

there exists a complete bipartite graph formed by each layer of Ti−1 and a layer in Ti. Thus,

all substrate nodes of vi are visitable by any path starting at the source. For the latter case,

each node in Ti−1 connects with a layer including the set of substrate candidates of vi in Ti.

Since the substrate candidates of all common SFs are visitable from the source, all substrate

candidates for the non-common SF vi are also visitable from the source. Thus, the HSAG

includes all possible hybrid SFPs.

96

To explain how the HSAG is created, we assume there is an h-SFC as {s, v1, v2, v3, d, v1, s
′},

where s and s′ represent the first and last node in the forward and backward traffic, respec-

tively. The composited HSAG is shown in Fig. 5.7, which includes 7 tiers. In Fig. 5.7, x,

y and z denote the cardinality of the substrate candidates for v1, v2 and v3, respectively.

To construct the HSAG in the forward traffic, one needs to start with the source node (T1).

Since T1 is created for a non-common SF, only one layer LT21 is required in T2, which in-

cludes SC2,1
v1

. The source node in T1 connects with all nodes in LT21 . Since T2 is created

for a common SF, for each node sc2,1
k in T2, a layer LT3k that includes SC3,k

v2
is created and

an index number v1k is added to the layer. Next, each sc2,1
k connects with all nodes in the

corresponding layer LT3k . As T4 and T5 are created for non-common SFs, they follow the

same rule as T1. Since only v1 is the common SF, there are x (cardinality of the substrate

candidates for v1) layers in the T5 (tier for the destination). Then, the backward HSAG is

constructed from destination layer LT5n . As T6 is created for a common SF v1, for a specific

LT5n , the substrate node sc6,n
k is created according to the index number v1k. For example,

sc6,1
1 is created for LT51 . All nodes in LT5n connects with the newly create node sc6,n

k . Since

there are x layers in the destination tier, for each tier in the backward HSAG (other than

the last tier), there are x layers. At last, all layers in T6 connects with the node in T7.

5.4.2 Optimal Hybrid SFC Embedding Algorithms

Based on the HSAG, we propose an Optimal Hybrid SFC Embedding (Opt-HSFCE) algo-

rithm in Algorithm 8. Opt-HSFCE prunes the links in the SN that cannot provide enough

bandwidth resource. Then, the algorithm finds the available substrate candidates for each

97

requested SF and constructs the HSAG. At last, the optimal hybrid SFP is created as the

shortest path connecting the source node s and s′ in the composited HSAG.

Algorithm 8 Optimal Hybrid SFC Embedding (Opt-HSFCE)

1: Input: G, HSR;
2: Output: Hybrid SFP ;
3: Discarding the links with bandwidth less than BW in G;
4: for each SF vi in the SFC do
5: Find all available substrate candidates and form a list tier i for the SF vi;
6: end for
7: Composite the HSAG according to G, HSR and the substrate candidate list of each SF;
8: Formulate an SFP by finding the shortest path connecting s to s′ in the composited

HSAG;
9: Return: Hybrid SFP ;

Theorem 5.4.4. Opt-HSFCE can construct the hybrid SFP with the minimum latency when

SN provides enough computing and bandwidth resource.

Proof. The hybrid SFP created by Opt-HSFCE is the shortest path that connects the source

node s and s′ in the composited HSAG. With Lemmas 5.4.1-5.4.3, the composited HSAG

includes all possible hybrid SFPs while guaranteeing the “re-visit constraint” and “executing-

order constraint”. Therefore, the shortest path that starts at the source node s and ends at

s′ node is the hybrid SFP that has the minimum latency for the given HSR.

We then analyze the time complexity of the proposed Opt-HSFCE algorithm. We assume

that the length of the h-SFC is δ, and there are φ common SFs along with the two directions

of the h-SFC. Thus, there are δ tiers in the HSAG. In the worst case, every substrate node

can provide all requested SF instances (Fn = F, ∀n ∈ N). For each tier Ti, there are at

most |N |φ layers, each of which can be a set of substrate candidates of vi. For each tier,

98

there are at most |N |φ+1 nodes. Since each pair of layers in Ti and Ti+1 have at most

|N |2 links, there are at most |N |φ+2 links between two adjacent tiers. Accordingly, in an

HSAG, there are at most δ
2
|N |φ+1 nodes and δ

2
|N |φ+2 links. To generate an HSAG, the time

complexity is O(|N ||E| + |N |φ+2). When applying the Dijkstra’s shortest path algorithm,

the time complexity is O(δ
2
|N |φ+2log(δ

2
|N |φ+1)). As one can see that, the time complexity

of the Opt-HSFCE algorithm depends on the number of common SFs in the h-SFC (φ). As

φ is an integer and generally much smaller than |N |, the Opt-HSFCE can be regarded as a

pseudo-polynomial time algorithm.

5.5 Experimental Results and Analysis

In this section, we show the performance of the proposed Opt-HSFCE algorithm when com-

paring with the techniques that are directly extended from [46] and [64].

5.5.1 Simulation Environment

We use the 24-nodes-43-links US-NET and a 40-nodes-180-links random network as the

Substrate Networks (SNs). For the 40-nodes-180-links random network, each substrate node

has at least 4 direct neighbours (i.e., each substrate node directly connects at least four other

nodes). For each substrate node, its computing capacity is randomly assigned in the range

of [100 − 200]. The number of SF instances that a substrate node can handle is randomly

distributed in the range of [2− 6]. For each substrate link, its latency cost is in the range of

[1− 8] and its available bandwidth is in the range of [30− 50].

We set the number of SF nodes required by an HSR in the range of [6− 18], whereas the

99

number of common SFs is in the range of [2− 6]. For each SF node, the required computing

capacity is in the range of [10 − 20]. For the h-SFC, the source and destination nodes are

randomly generated, and the bandwidth demand for each pair of SFs is in the range of [1−5].

5.5.2 Performance Metrics and Benchmarks

We use the following metrics to assess the performance of the proposed schemes.

Average Latency: We use Average Latency to evaluate the performance of the proposed

scheme. Average Latency is calculated as AvL =
∑
HSRi∈HSRC

|SFPcreated|
|HSRC |

, where |SFPcreated|

represents the length of the hybrid SFP generated from the request HSRi; and HSRC is

the set of HSRs.

Accumulated Latency: When multiple requests are embedded onto the same SN, we use

Accumulated Latency to evaluate the performance. Accumulated Latency is calculated as

AcL =
∑

HSRi∈HSRC |SFPcreated|.

Runtime: We employ the runtime to evaluate the time complexity of the proposed Opt-

HSFCE algorithm. We build our algorithms in JAVA to validate the performance of our

proposed schemes. All measurements are conducted on a Windows 10 system equipped with

the Intel i7-4870Q CPU @ 2.50 GHz core and 16 GB RAM.

We implement the brutal force algorithm, which searches the shortest hybrid SFP among

all possible combinations for a given h-SFC. In addition, we extend the optimal SFCE

technique [46] and the heuristic technique proposed in [64] as the benchmarks. We extend the

technique proposed in [46] by i) constructing the optimal forward SFP as [46]; ii) recording

the SF node embedding results as the forward SFP; iii) applying the technique in [46] for

100

each pair of substrate nodes that host the common SFs by the backward direction; and

iv) constructing the hybrid SFP by concatenating them. Similarly, we extend the technique

proposed in [64] by i) generating the multi-stage graph for both forward and backward SFCs,

ii) embedding the common SF(s) onto the substrate node that has the least sum of distances

to the substrate candidates of the previous and the next SFs, iii) concatenating the forward

and backward multi-stage graph as the hybrid multi-stage, and iv) constructing the hybrid

SFP according to the hybrid multi-stage graph. We name the methods extended from [46]

and [64] as “2OPT-SFCE” and “Multi-Stage SFCE”, respectively.

5.5.3 Performance Analysis of Opt-HSFCE for Single HSR

Figs. 5.8 and 5.9 illustrate the impact of the h-SFC length when setting the number of

common SFs as 4. Figs. 5.10 and 5.11 present the impact of the common SFs in an h-SFC

when setting the length of the h-SFC as 16 and 24, respectively. Since the brutal force

algorithm has the same performance as the proposed Opt-HSFCE, Figs. 5.8-5.11 only show

3 curves, whereas the red dashed curves represent the performance of “Opt-HSFCE”, the

blue solid curves are from “2OPT-SFCE”, and the grey dotted curves show the performance

of “Multi-Stage SFCE”.

When increasing the number of SFs in the h-SFC, Opt-HSFCE outperforms the other

two techniques. For 2OPT-SFCE, this is because the common SFs are embedded according

to their positions in forward traffic, which may introduce additional latency for the backward

traffic. Even though Multi-Stage SFCE embeds the common SFs onto the substrate nodes

that have the least latencies sum to their previous and next SF candidates, it limits the

101

80

100

120

140

160

180

10 12 14 16 18

Av
er

ag
e

La
te

nc
y

of SFs in an h-SFC

Opt-HSFCE 2OPT-SFCE Multi-Stage SFCE

Figure 5.8: The 24-nodes US-NET

120

140

160

180

200

220

12 16 20 24 28

Av
er

ag
e

La
te

nc
y

of SFs in an h-SFC

Opt-HSFCE 2OPT-SFCE Multi-Stage SFCE

Figure 5.9: The 40-nodes random network

embedding of the non-common SFs. In US-NET, Opt-HSFCE outperforms 2OPT-SFCE and

Multi-Stage SFCE by an average of 35% and 37%, respectively. Opt-HSFCE outperforms

2OPT-SFCE and Multi-Stage SFCE by an average of 23% and 19% in the 40-nodes random

network.

When increasing the number of common SFs in the h-SFC, all algorithms need less

latency, and Opt-HSFCE always has the best performance. This is because increasing the

number of common SFs likely reduces the number of substrate nodes that are required to

host the requested SFs. With a fixed length of h-SFC, if the number of common SFs is half

of the length, the h-SFC becomes a bidirectional SFC, whereas the forward and backward

SFCs request the same set of SFs. Hence, when the number of common SFs is 6 in Fig. 5.10,

the performance of 2OPT-SFCE is similar to Opt-HSFCE as indicated by Lemma 5.3.1.

80

100

120

140

160

180

2 3 4 5 6

Av
er

ag
e

La
te

nc
y

of Common SFs in an h-SFC

Opt-HSFCE 2OPT-SFCE Multi-Stage SFCE

Figure 5.10: The 24-nodes US-NET

120

140

160

180

200

220

3 5 7 9 11

Av
er

ag
e

La
te

nc
y

of Common SFs in an h-SFC

Opt-HSFCE 2OPT-SFCE Multi-Stage SFCE

Figure 5.11: The 40-nodes random network

102

Note that, when the number of common SFs is less than 3 in Fig. 5.10, Multi-Stage SFCE

outperforms 2OPT-SFCE, while the latter scheme is better when the number of common SFs

is greater than 3. This is because, when the number of common SFs is large, the Multi-Stage

SFCE method will embed each SF in a nearest-neighbour manner. In the 24-nodes US-NET,

Opt-SFCE outperforms 2OPT-SFCE and Multi-Stage SFCE by an average of 20% and 23%,

respectively. In the 40-nodes random network, Opt-SFCE outperforms 2OPT-SFCE and

Multi-Stage SFCE by an average of 13% and 17%, respectively.

5.5.4 Performance Analysis of Opt-HSFCE for Multiple HSRs

When embedding multiple HSRs onto the 40-nodes random network, Figs. 5.12 and 5.13

show the accumulated latency required by the proposed scheme. We set the length of the h-

SFC as 24 for both figures. The number of common SFs in Fig. 5.12 is 4, while it is 9 in Fig.

5.13. In both figures, the red grid bar represents the performance of “Opt-HSFCE”, the blue

bar shows the performance of “2OPT-SFCE”, and the grey bar represents the performance

of “Multi-Stage SFCE”. Again, we can see that Opt-HSFCE always outperforms the other

two techniques. When HSR requires less common SFs (i.e., Fig. 5.12), Multi-Stage SFCE

0

1000

2000

3000

4000

5000

5 10 15 20Ac
cu

m
ul

at
ed

 L
at

en
cy

of Requests

Opt-HSFCE 2OPT-SFCE Multi-Stage SFCE

Figure 5.12: Multiple requests in the 40-
nodes random network when HSR requests
4 common SFs

0

1000

2000

3000

4000

5 10 15 20Ac
cu

m
ul

at
ed

 L
at

en
cy

of Requests

Opt-HSFCE 2OPT-SFCE Multi-Stage SFCE

Figure 5.13: Multiple requests in the 40-
nodes random network when HSR requests
9 common SFs

103

outperforms 2OPT-SFCE; while 2OPT-SFCE outperforms Multi-Stage when HSR requires

a large number of common SFs (i.e., Fig. 5.13).

5.5.5 Runtime Analysis of Opt-HSFCE

We evaluate the runtime of Opt-HSFCE in the 24-nodes-43-links US-NET under two different

scenarios (i.e., Fig. 5.14 and 5.15). In Fig. 5.14, 4 common SFs are in all h-SFCs, while

the length of the h-SFC varies. In Fig. 5.15, 16 SFs are requested in the h-SFC, while the

number of common SFs varies. In both Fig. 5.14 and 5.15, the green dashed curves, red

dashed curves, blue solid curves and grey dotted curves represent the runtime of the “brutal

force”, “Opt-HSFCE”, “2OPT-SFCE” and “Multi-Stage SFCE”, respectively. Even though

2OPT-SFCE and Multi-Stage SFCE need less runtime than brutal force and Opt-HSFCE,

the latter two significantly outperforms the former two in terms of latency as mentioned

above.

When increasing the number of SFs of the h-SFC in Fig. 5.14, the runtime required

by the brutal force algorithm increases sharply from hundreds of seconds to thousands of

seconds; while the runtime of Opt-HSFCE does not vary much. This is because, when the

1

10

100

1000

10000

100000

10 12 14 16 18

Ru
nt

im
e(

se
c)

of SFs in an h-SFC

Opt-HSFCE Brutal Force
2OPT-SFCE Multi-Stage SFCE

Figure 5.14: Runtime vs length of h-SFC

1

10

100

1000

10000

100000

2 3 4 5 6

Ru
nt

im
e(

se
c)

of Common SFs in an h-SFC

Opt-HSFCE Brutal Force
2OPT-SFCE Multi-Stage SFCE

Figure 5.15: Runtime vs # of common SFs

104

number of common SFs is fixed, increasing the number of SFs in the h-SFC does not affect

the complexity of the generated HSAG much. However, for the brutal force, increasing the

number of SFs in the h-SFC brings much more potential hybrid SFP combinations, which

greatly affects the runtime performance. For example, in the worst case (i.e., every substrate

node provides all SF instances), increasing the number of SFs from 10 SF nodes to 12 SF

nodes brings |N |12−|N |10 more combinations for the brutal force algorithm. Averagely, given

an h-SFC with four common SFs, the brutal force needs 2053.45 seconds, while Opt-HSFEC

needs 6.282 seconds.

When increasing the number of common SFs in the h-SFC in Fig. 5.15, the runtime for the

brutal force algorithm decreases while the runtime of Opt-HSFCE increases. This is because

increasing the number of common SFs can effectively decrease the searching combinations

for the brutal force algorithm as the backward traffic depends on the forward one. However,

the number of common SFs greatly affects the complexity of the HSAG (i.e., the number

of nodes and links in the HSAG). Thus, increasing the number of common SFs introduces

more runtime for Opt-HSFCE. Nevertheless, with an increasing number of common SFs,

Opt-HSFCE still significantly outperforms the brutal force algorithm. Averagely, when the

length of the h-SFC is 16, the brutal force algorithm requires 2282.6 seconds, while the

Opt-HSFCE needs 13.6 seconds.

105

5.6 Summary

In this chapter, we have investigated how to optimally embed a given hybrid SFC (h-SFC) in

MEC systems. We have mathematically formulated the Minimum Latency Hybrid Service

Function Chain Embedding (ML-HSFCE) problem and have proposed an algorithm called

Optimal Hybrid SFC Embedding (Opt-HSFCE), which optimally embeds a given h-SFC

onto the substrate network. Through extensive simulations and analysis, we have shown

that the proposed Opt-HSFCE can find the optimal hybrid SFP with much less runtime

compared with the brutal force algorithm and significantly outperforms the schemes that

are directly extended from the existing SFC Embedding (SFCE) techniques.

106

CHAPTER 6

DEPENDENCE-AWARE SERVICE CHAINING AND EMBEDDING

6.1 Motivation

Traditionally,the SFCE problem generally includes two important processes: 1) SFC design

and 2) SFC mapping. The former process constructs an SFC for a given Network Service

Request (NSR), while the latter maps the constructed SFC onto the substrate network via

node/link mapping subprocesses, which correspond to the node/link mapping in traditional

Virtual Network Embedding (VNE) [65, 66, 67]. In node mapping, each VNF node is

embedded onto a substrate node that has enough available computing resource and provides

the requested functionality. To connect the mapped VNF nodes, the link mapping process

finds a set of subtrate/physical paths (links) that satisfies the requested bandwidth. This

set of substrate/physical paths (links) is also known as Service Function Path (SFP)[14].

As the SFCE is known as NP-hard [18], many researchers have proposed efficient heuris-

tic approaches (e.g., [24, 68, 69]). Recently, how to effectively conduct SFC design and

VNF node/link mapping while considering the dependences constraint among VNFs draws

research attention [70]. When designing the SFC, if VNF q depends on another VNF p, then

q must be placed after p in the constructed chain such that the data stream goes through p

before arriving at q. The corresponding optimization problem is called as Dependence-aware

Service Function Chain Embedding (D SFCE). In [70], the authors propose the technique

of Independent Grouping to guarantee the correctness of SFC construction and the tech-

nique of Adaptive Mapping to map the created SFC onto IP network via the shortest path

107

connections.

The rest of the chapter is organized as follows. In Section II, we formulate the Dependence-

aware Service Function Chain Embedding in Optical networks (D SFCE O) problem. Sec-

tion III presents our D SFC LU algorithm. In Section IV, we analyze the performance of

the proposed algorithm. We summarize this chapter in Section V.

6.2 Problem Statement

In this section, we formalize the problem of the Dependence-aware Service Function Chain

Embedding in Optical networks (D SFCE O).

6.2.1 Substrate Optical Network

We use an undirected graph SON = (NS, LS) to represent the Substrate Optical Network

(SON), where NS and LS denote the set of substrate nodes and substrate fiber links, re-

spectively. Each substrate node is able to host some VNF nodes. The available computing

resource (i.e., CPU) of a substrate node si is denoted as CPUsi ∈ Z+. FS is a set of com-

monly used network functionalities. We use fsi ∈ FS to denote the functionality provided

by substrate node si. Without loss of generality, each substrate node only provides one type

of functionality. For each substrate fiber link lsisj ∈ LS, (si, sj ∈ NS), we use subcarrieri

to represent the ith subcarrier. For example in Fig. 6.1, the boxes beside the fiber link

ls1s2 represent subcarriers where the white boxes (i.e., subcarrier0 and subcarrier2) are the

available subcarriers and the yellow boxes (i.e., subcarrier1 and subcarrier3) indicate that

the subcarriers are occupied.

108

S
1

S
2

S
4

S
3

S
5

S
6

Substrate Network

Figure 6.1: An Example of a Substrate Optical
Network.

V
1

V
2

V
3

V
4

NFV Service Request

Figure 6.2: Function dependences in NSR1.

6.2.2 Dependence-aware NFV Service Request

An NFV Service Request (NSR) can be represented by a 3-tuple NSR =< V,D,B >, where

V is the set of VNF nodes; D represents dependences among VNF nodes, and B ∈ Z+ is

the requested bandwidth for the data stream. Each VNF node v ∈ V demands a certain

amount of computing resource CPUv ∈ Z+, and a specific network function fv. To represent

dependences among VNF nodes, we use vi → vj to denote that vj has a dependence on

vi. Without loss of generality, we assume that each VNF node only requires a unique

network function. In other words, there are no two VNF nodes requesting the same network

functionality in the same NSR.

Fig. 6.2 illustrates an example of the dependences constraint in NSR1. There are four

VNF nodes in the NSR1, and the arrows represent dependences among the VNF nodes.

Specifically, v2 depends on v1 (v1 → v2) and v3 depends on v2 (v2 → v3) while v4 has no

dependence on any other VNF node.

109

6.2.3 Dependence-aware SFC Embedding in Optical Networks

To map an NSR onto a shared SON, we need take the dependences constraint, VNF node

mapping constraint and VNF link mapping constraint into consideration.

Dependences Constraint: If the function of vj depends on that of vi (i.e., vi → vj),

then, in the designed chain, vi has to be placed ahead of vj.

VNF Node Mapping Constraint: Each v ∈ V must be mapped to exactly one sub-

strate node that can provide enough computing resource and the corresponding functionality.

To enhance the reliability of the system, we assume that no two VNF nodes in the same

NSR are allowed to be mapped onto the same substrate node.

VNF Link Mapping Constraint: Each VNF link between two consecutive VNF nodes

in the designed SFC must be mapped (e.g., via the RSA process) onto a substrate fiber link

or a physical fiber path that can provide enough consecutive subcarriers. We assume every

substrate node is equipped with wavelength converters such that only consecutiveness of

subcarriers are taken into account.

Definition of D SFCE O problem: The optimization problem of Dependence-aware

Service Function Chain Embedding in Optical networks (D SFCE O) problem is defined as

how to design an SFC and map the created SFC onto a given SON while i) satisfying the

aforementioned constraints, ii) minimizing the required bandwidth for the created SFP. A

secondary object function for D SFCE O is to minimize the number of wavelength converters

employed by the NSR. When there is no dependece and spectrum allocation constraints,

D SFCE O problem can be reduced to SFCE problem. As a special case of D SFCE O,

110

SFCE is known as NP-hard [18]. Therefore, we propose an efficient heuristic algorithm to

solve D SFCE O problem in the following section.

6.3 Dependence-aware Service Function Chain embedding with Least-Used
consecutive subcarriers

In this section, we propose an efficient algorithm, namely, Dependence-aware Service Func-

tion Chain embedding with Least-Used consecutive subcarriers (D SFC LU). Different from

the traditional SFCE algorithms which sequentially create the chain and map the created

chain [71], D SFC LU algorithm jointly optimizes the chain design and mapping processes

while taking into account the process of routing and spectrum allocation in optical networks.

The proposed D SFC LU algorithm selects and appends a VNF node that has no depen-

dency on the remaining un-mapped VNF nodes, to the tail of the created SFC by applying

the technique of Impact Factor based Node Selection (IFNS). When mapping the selected

VNF node onto a substrate node, D SFC LU takes the advantage of Chain Node Mapping

(CNM) technique to identify proper substrate node. At the same time, the Chain-Fit link

mapping technique is proposed to connect these substrate nodes with a Service Function

Path (SFP).

6.3.1 Impact Factor based Node Selection

For a given NFV service request NSR =< V,R,B >, to illustrate the dependences among

VNF nodes, we define two operators: child and parent as shown in Eqs. (6.1)-(6.2). If a

VNF node vj depends on another VNF node vi, we call vj as a child of vi as shown in Eq.

111

(6.1). Similarly, we call vj as a parent of vi in Eq. (6.2) if a VNF node vi depends on VNF

node vj.

childvi = {vj|(vi → vj) ∈ DV , vi, vj ∈ V } (6.1)

parentvi = {vj|(vj → vi) ∈ DV , vi, vj ∈ V } (6.2)

We further define two operators: descendant and precedent in Eqs. (6.3)-(6.4). Among

the VNF nodes that have not been added into the created SFC, if a VNF node vj is a child

or grandchild of vi, then vj is a descendant of vi as shown in Eq. (6.3). Similarly, vj is a

precedent of vi, if vj is a parent or grandparent of vi in Eq. (6.4).

descendantvi = {
⋃

vj∈childvi

{vj} ∪ descendantvj} (6.3)

precedentvi = {
⋃

vj∈parentvi

{vj} ∪ precedentvj} (6.4)

Lemma 6.3.1. If precedentvi is empty, then appending vi to the tail of the created SFC does

not violate the dependences constraint.

Lemma 6.3.2. If both precedentvi and precedentvj are empty, then appending vi ahead of

or behind vj in the SFC does not violate the dependencies constraint.

According to Lemma 6.3.1-6.3.2, to facilitate the processes of VNFs chain design and

mapping, we create a Precedent-mapped List (PL) consisting of VNF node v that has no

112

dependencies on the remaining un-mapped VNF nodes, i.e., sizeof(precedentv) = 0.

NSR impact factor: In a created SFC, we denote vi 99K vj as the data stream travelling

from vi to vj. For example, in Fig. 6.2, initially precedentv1 and precedentv4 are empty. If

we select v4 as the Next VNF node (NV) to append to the created SFC, there would be only

one option to design the chain: v4 99K v1 99K v2 99K v3. However, if selecting v1 as NV,

one will have multiple options to construct the chain. From this observation, we define NSR

Impact Factor (NIFv) of a VNF node v as shown in Eq. (6.5), where distance(v, u) stands

for the hop numbers between VNF nodes v and u in the dependence graph of an NSR.

NIFv = 1 +
∑

u∈ descendantv

1

1 + distance(v, u)
(6.5)

Intuitively, mapping a VNF node v that has a larger NIFv value first can potentially

add more un-mapped VNF nodes into PL. As a result, more chain candidates will present,

which is broadly equivalent to enlarging the searching space of SFC design. For example,

when calculating the NIF of v1 and v4 in NSR1, v1 has descendants as {v2, v3}, NIFv1 =

1+ 1
2

+ 1
3

= 11
6

while v4 has no descendant, NIFv4 = 1. Hence, we propose the Impact Factor

based Node Selection (IFNS) technique in Algorithm 9. Line 1 calculates the NIF values of

un-mapped VNF node v with sizeof(precedentv) = 0 and selects the one with the highest

NIF value as NV. Line 2 appends it to the tail of the created SFC. Line 3-5 updates the PL.

113

Algorithm 9 Impact Factor based Node Selection (IFNS)

Require: SON , NSR, PL, NV;
Ensure: NV, PL;

1: Calculate NIF values of VNF nodes with sizeof(Precedentv) = 0 in NSR and set NV
as the VNF node with highest NIF;

2: Prune NV from NSR and append it at the tail of the SFC;
3: for VNF node v that has no precedent in NSR do
4: PL = PL ∪ {v};
5: end for

6.3.2 Chain Node Mapping

For a substrate node s, if s can provide enough computing resource and corresponding

functionality for a VNF node v, we call s as a substrate candidate (scv) of v. As v may

have multiple substrate candidates, the candidate set of v is denoted as SCv. To map the

NV onto an appropriate substrate node, we propose an efficient node mapping technique,

namely, Chain Node Mapping (CNM), which employs Closeness-Centrality Ratio (CCR) and

Linear Property Node Mapping (LPNM) to identify a proper substrate node for the NV.

Closeness-Centrality Ratio: In order to decrease the bandwidth consumption of the

ensuing node/link mapping processes, the location to map the first NV is important. We in-

troduce Closeness-Centrality Ratio (CCR) [72] to take advantage of the location relationships

between the substrate candidate (scNV) of the first NV and the substrate candidate of the

VNF nodes in PL. The calculation of CCR is shown in Eq. (6.6), where distance(scNV , scv)

represents the hop numbers between scNV and scv in the SON.

CCR(scNV ,PL) =
1∑

scv∈SC(v),v∈PL distance(sc
NV , scv)

(6.6)

Clearly, the higher the CCR value is, the more substrate candidate nodes are nearby.

114

Algorithm 10 Chain Node Mapping (CNM)

Require: SON , NSR, SFP, PL, NV;
Ensure: SFC, SFP;

1: if SFC only has one VNF node then
2: Calculate the Closeness-Centrality Ratio of all substrate candidates of NV by Eq.

(6.6);
3: Map NV onto the substrate candidate with the highest Closeness-Centrality Ratio

and update the SFP;
4: else
5: Set d2 as the length of the path between the substrate candidate (scNV) of NV to

the tail (stail) of the current SFP;
6: Set d1 as the length of the path between the substrate candidate of NV to the sub-

strate candidate (scv) of the VNF nodes in PL;
7: Find the substrate candidate of NV where d1 + d2 is minimized and map NV to that

substrate node;
8: Update the SFP;
9: end if

Hence, mapping NV onto the substrate candidate with the highest CCR value can potentially

reduce the overall length of SFP as well as bandwidth consumption in the SON. For example,

when mapping NSR1 onto the SON in Fig. 6.1, v1 is selected as the NV and PL is updated

as {v2, v4}. When calculating the CCR values of v1’s substrate candidates (i.e., s1 and s5),

CCRs1 = 1
1+2+2

= 1
5

while CCRs5 = 1
1+2+3

= 1
6
. Accordingly, mapping v1 onto s1 which has

higher CCR value, is a better option, as shown in Fig. 6.3.

Linear Property Node Mapping: The structure of an SFC is different from a Virtual

Network (VN) where one virtual node might need multiple (e.g., more than 2) connections

with its neighbors. In the SFC, any VNF node (excluding the first and last VNF nodes in

the chain) connects two VNF neighbor nodes, one is the tail of the created SFC and the

other one is the NV. For example, in Fig. 6.3, after appending v1 at the tail of the SFC and

mapping v1 onto the SON, v2 is selected as the NV and the PL is updated as {v3, v4}. When

115

V
1

V
2

V
i

Service Function Chain

S
1

S
2

S
4

S
3

S
5

S
6

Substrate Network

Figure 6.3: An Example of CCR and LPNM.

appending v2 to the tail of the created SFC, v2 has two VNF neighbor nodes. One is v1, the

tail of the current SFC, and the other is v3 or v4, based on which is selected as the NV in

next iteration.

Hence, we propose the Linear Property Node Mapping (LPNM) to find an appropriate

substrate candidate for the NV by utilizing this SFC connection property, which is shown in

Line 5-8 of Algorithm 10. In LPNM, we define d2 as the substrate hop number of the path

between the tail (stail) of the current SFP and scNV . Similarly, we define d1 as the substrate

hop number of the path between scNV and scv (v ∈ PL). Then, we search the minimal

d1 + d2 value for all scNV . The NV is mapped onto the substrate node with the minimal

d1 + d2 among all scNV . For example, in Fig. 6.3, if v1 has been mapped onto s1 and s1

becomes the tail of the SFP. VNF node v2 is selected as the NV and the PL is updated as

{v3, v4}. LPNM method considers the length of the path between v2’s candidates (s2 and s6)

to the tail (s1) of the created SFP and the substrate candidates (s3 and s4) of the VNF nodes

116

in PL. As one can see in Fig. 6.3, when mapping v2 onto s2, the path (s1− s2− s3) provides

the minimal d1 +d2 as 2. However, when mapping v2 onto s6, the path (s1−s2−s6−s2−s3)

provides the minimal d1 + d2 as 4. As a result, v2 is mapped onto s2.

6.3.3 Chain-Fit Link Mapping

After the NV is mapped by the LPNM method, a physical/fiber path, which consists one or

multiple physical/fiber links, is constructed to support the data transmission between the

NV and the tail of the created SFC. Each physical/fiber link along this fiber path needs

reserve enough consecutive subcarriers requested by the NSR. When two links along this

created SFP use different set of subcarriers, wavelength converter is needed, which increases

the cost for the Internet Service Providers (ISPs) [73].

Algorithm 11 Dependence-aware Service Function Chain embedding with Least-Used con-
secutive subcarriers (D SFC LU)

Require: SON , NSR
Ensure: SFP

1: Initialize SFC, SFP, PL as ∅;
2: Find the least-used consecutive subcarriers which satisfies the bandwidth requirement;
3: while NSR is not ∅ do
4: Call IFNS() to calculate the importance of the un-mapped VNF nodes with
sizeof(precedent) = 0 and construct PL;

5: Call CNM() to map un-mapped VNF nodes onto the substrate optical network;
6: if least-used consecutive subcarriers are available in the path between the substrate

node where NV is mapped and the tail of the created SFP then
7: Reserves least-used consecutive subcarriers for the path;
8: else
9: Use First-Fit RSA to reserve enough consecutive subcarriers for the path;

10: end if
11: end while
12: return SFP

Unlike the traditional RSA approaches whereas the fiber path requests are generally

117

S
1

S
3

S
4S

2

Substrate Network

V
1

V
3

V
4

Service Function Chain

Figure 6.4: An Example of Chain-Fit RSA.

independent to each other, the fiber paths created to form the SFP are correlated. For

example, in Fig. 6.4, v1, v3 and v4 have the same requirement as they are in NSR1 and

s1, s2, s3 and s4 are the same substrate node in Fig. 6.1. The subcarrier0 along s3 − s4 is

not available. If the requested number of subcarriers is 2, to map the virtual link v1 99K v3,

the traditional First-Fit RSA will employ subcarrier0 and subcarrier1, along fiber path

s1−s2−s3. Similarly, to map v3 99K v4, First-Fit RSA will use subcarrier1 and subcarrier2

along fiber path s3 − s4. As a result, for data flow along this SFC, one would have to use

wavelength conversion at substrate node s3. To minimize the used subcarrier resource and

wavelength conversion, we propose the Chain-Fit (CF) Routing and Spectrum Allocation,

which finds the least-used consecutive subcarriers in the whole substrate nodes for the process

of link mapping, as shown in Algorithm 11.

When applying the D SFC LU algorithm in Fig. 6.5, the D SFC LU algorithm first finds

the least-used consecutive subcarriers for the NSR which is subcarrier2 for the SON shown

in Fig. 6.1. Continuing with aforementioned processes where v2 has been mapped onto s2

118

S
1

S
2

S
4

S
3

S
5

S
6

Substrate Network

V
1

V
2

V
3

V
4

NFV Service Request

Figure 6.5: An Illustration of D SFC LU.

by the CNM technique, we need construct a path to connect s1 with s2 via the subcarrier3

by applying the CF technique. The SFC is created as v1 99K v2 while the created SFP is

s1 − s2. Then, there are only two un-mapped VNF nodes left, v3 and v4. As v3 requires

higher computing demand than v4, v3 is selected as the NV. As v3 has only one substrate

candidate as s3, v3 is mapped onto v3. To construct a link connecting s3 with the tail of

the created SFP (s2), the CF reserves subcarrier2 in path s2 − s3. The created SFC now is

v1 99K v2 99K v3 and the corresponding SFP is s1−s2−s3. In next iteration, v4 is selected as

the NV and mapped onto s4. The CF reserves the subcarrier2 for the connection between s3

and s4. As a result, the final SFC is created as v1 99K v2 99K v3 99K v4 and the constructed

SFP is s1 − s2 − s3 − s4 with the bandwidth consumption as 3 subcarriers.

119

6.4 Experimental Results

In this section, we compare the performance of Dependence-aware SFC embedding with

Least-Used consecutive subcarriers (D SFC LU) and Dependence-aware SFC with Adaptive

Mapping (D SFC AM) Algorithms [70] by applying the proposed Chain-Fit (CF) and the

well-known Random-Fit RSA [74]. In the D SFC AM, the algorithm constructs an SFC

by applying the independent grouping technique and maps the constructed SFC onto the

substrate network using the shortest-path strategy to connect two consecutive VNF nodes

in a virtual request. We use “D SFC RF” to stand for an algorithm that replaces the

Chain-Fit RSA process with RF RSA process in Algorithm D SFC LU. Similarly, we use

“D SFC AM CF” and “D SFC AM RF” to represent the the coupling of Adaptive Mapping

[4] with Chain-Fit and Random-Fit RSA, respectively.

We use a 24-node US Network [75] as the substrate optical network. Unless otherwise

specified, the available computing resource of substrate node is in the range of [5, 25]; the

offered functionality for each substrate node is randomly generated; and the available number

of subcarriers for each substrate fiber link varies from 5 to 25. The number of VNF nodes in

an NSR is set in the range of [3, 7]. Each VNF node requires the computing resource in the

range of [5, 25] while each NSR requests the number of subcarriers within the range of [1, 5].

In Fig. 6.6, we set all substrate nodes and links with unlimited available computing capac-

ity and subcarriers, respectively. As one can see in Fig. 6.6, the proposed D SFC LU and

D SFC RF algorithms have better performance than D SFC AM CF and D SFC AM RF

due to the techniques of Closeness-Centrality Ratio (CCR) and Linear Property Node Map-

120

3 4 5 6 7

Number of VNF Nodes

3

4

5

6

7

8

9

10

11

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
H

o
p

s
 U

s
a

g
e D_SFC_AM_RF

D_SFC_AM_CF

D_SFC_RF

D_SFC_LU

Figure 6.6: SON with unlim-
ited computing resource and
unlimited subcarriers

3 4 5 6 7

Number of VNF Nodes

3

4

5

6

7

8

9

10

11

12

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
H

o
p

s
 U

s
a

g
e D_SFC_AM_RF

D_SFC_AM_CF

D_SFC_RF

D_SFC_LU

Figure 6.7: SON with unlim-
ited computing resource and
limited subcarriers

3 4 5 6 7

Number of VNF Nodes

3

4

5

6

7

8

9

10

11

12

13

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
H

o
p

s
 U

s
a

g
e D_SFC_AM_RF

D_SFC_AM_CF

D_SFC_RF

D_SFC_LU

Figure 6.8: SON with lim-
ited computing resource and
limited subcarriers

3 4 5 6 7

Number of VNF Nodes

3

4

5

6

7

8

9

10

11

12

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
H

o
p

s
 U

s
a

g
e D_SFC_AM_RF

D_SFC_AM_CF

D_SFC_RF

D_SFC_LU

Figure 6.9: SON with limited
computing resource and un-
limited subcarriers

3 4 5 6 7

Number of VNF Nodes

0

1

2

3

4

5

6

7

8

A
v
e

ra
g

e
N

u
m

b
e

r
o

f
W

a
v
e

le
n

g
th

C
o

n
v
e

rt
e

r

D_SFC_LU

D_SFC_RF

D_SFC_AM_CF

D_SFC_AM_RF

Figure 6.10: SON with unlim-
ited computing resource and
limited subcarriers

3 4 5 6 7

Number of VNF Nodes

0

1

2

3

4

5

6

7

8

A
v
e

ra
g

e
N

u
m

b
e

r
o

f
W

a
v
e

le
n

g
th

C
o

n
v
e

rt
e

r

D_SFC_LU

D_SFC_RF

D_SFC_AM_CF

D_SFC_AM_RF

Figure 6.11: SON with lim-
ited computing resource and
limited subcarriers

ping (LPNM). In other words, if there is no impact of RSA (with unlimited spectrum re-

source) on the node mapping in the substrate network, the D SFC LU and D SFC RF algo-

rithms have the same performance by using same node mapping techniques. The techniques

of CCR and LPNM embed an un-mapped VNF node onto the substrate node that is the

closest node to the constructed SFP in the substrate network. Fig. 6.9 further validates

that the D SFC LU and D SFC RF find better node mapping choice for each VNF node

when each substrate node has limited available computing capacity. This is because the

D SFC LU and D SFC RF select the closer available substrate nodes to construct the SFP.

In Figs. 6.7 and 6.10, each substrate fiber link has limited available subcarriers while

each substrate node has unlimited available computing capacity. Fig. 6.7 represents the

121

average number of hops usage while increasing the requested number of VNF nodes in a vir-

tual request. D SFC LU outperforms the D SFC RF, D SFC AM CF and D SFC AM RF

algorithms. This is because Chain-Fit (CF) RSA provides better spectrum allocation than

Random-Fit (RF) RSA. Meanwhile, as CF RSA tries to employ the least-used consecutive

subcarriers of the whole network, the number of used wavelength converters is less as shown

in Fig. 6.10. Similarly, when the substrate network provides limited available subcarriers

and computing capacity, Figs. 6.8 and 6.11 represent the average number of hops usage

and wavelength converters while increasing the requested number of VNF node in a vir-

tual request. D SFC LU outperforms the D SFC RF, D SFC AM CF and D SFC AM RF

algorithms due to the contribution of the proposed LPNM and CF RSA techniques.

6.5 Summary

In this chapter, we have investigated the problem of Dependence-aware Service Function

Chain Embedding in Optical networks (D SFCE O). We have proposed an efficient algo-

rithm, namely, Dependence-aware Service Function Chain embedding with Least-Used con-

secutive subcarriers (D SFC LU) algorithm, which takes the advantage of the proposed tech-

niques such as Impact Factor based Node Choosing (IFNC), Chain Node Mapping (CNM)

and Chain-Fit RSA Link Mapping to jointly optimize the SFC design, mapping and RSA

processes while minimizing the bandwidth resource and the usage of wavelength converters.

Extensive experiments and analysis have shown that the proposed D SFC LU algorithm

outperforms the existing work.

122

CHAPTER 7

FUTURE WORK

Even though this work has investigated state-of-the-art problems in delivering NFV services,

there still exists open issues for further investigation in this field. We also list two future

work in the following sections.

7.1 Future Direction One: Parallelism-aware Service Function Chain
Composition and Embedding

With the advancement in Internet of Things (IoT), Multi-access Edge Computing (MEC),

online mining and learning techniques, the customer’s demands for connectivity, ultra-low la-

tency and reliable services are ubiquitous [30, 76]. To efficiently accommodate these services,

we need to take advantages of high-capacity fiber optical networks and the emerging flexible

network virtualization technologies. Optical transmission techniques (e.g., dense wavelength-

division multiplexing) allow a single fiber link to carry many wavelength channels offering

huge spectrum efficiency and bandwidth [77]. In fact, the re-configurable wavelength switch-

ing devices have already been widely deployed in long-haul and metro networks to offer

ubiquitous and reliable connectivities [78, 79, 80]. Recently, Network Function Virtualiza-

tion (NFV) was proposed to provide flexible services while reducing the Capital Expenditures

(CAPEX) and the Operating Expenditures (OPEX) [13]. NFV implements the network

functions that run on traditional proprietary hardware-based middleboxes as software-based

modules called Virtual Network Functions (VNFs) or Service Functions (SFs) [14]. The SF

can be flexibly installed on or removed from physical nodes (e.g., edge/cloud servers) in

123

physical network infrastructures [34].

An NFV Service Request (NSR) from the customer includes service source, destination, a

set of SFs (e.g., firewall, parental control), and corresponding resource demands (e.g., CPU,

bandwidth) [15]. To accommodate an NSR, the service provider concatenates the required

SFs into a linear logic structure called Service Function Chain (SFC). Then, the service

provider embeds the constructed SFC onto the shared Physical Network (PN) while reserving

enough network resource [35]. The processes of accommodating an NSR by compositing

and embedding an SFC onto a shared PN is referred to as Service Function Chaining and

Embedding (SFCE) [15]. The physical path identified by the SFCE processes to host an

in-service SFC in the PN is called Service Function Path (SFP). In the literature, many

approaches are proposed to minimize the SFP length or propagation delay through different

SF node placement or SFC routing strategies, while the SF processing delay is not considered

[17, 26, 37, 38, 39, 81].

The emerging 5G and beyond 5G communication techniques empower the applications

with ultra-low latency requirements [82, 83, 84, 85]. Some 5G applications promise to deliver

services with about one-millisecond latency [86, 87]. Under such scenarios, the processing

delay from consecutively running SFs in an SFC is significant and comparable to the link

propagation delay. Thanks to the Network Function Parallelism (NFP) technique, the service

provider can run multiple SFs in parallel at one physical node to mitigate the impact of the

SF processing delay [86]. With NFP, the processing delay of the SFs that are executed in

parallel is reduced from the summation of their processing delay to the highest processing

124

delay among these SFs. According to the work in [86], two SFs can be executed in parallel

only if the operations of these SFs do not conflict with each other. Specifically, the operation

of an SF conflicts to the other one’s when both SFs change the contents of the customer’s

traffic stream. For example, both Firewall (FW) and Deep Packet Inspection (DPI) might

drop packets from the customer’s stream, and they cannot be parallelly executed. While the

Parental Control (PC) only monitors the customer’s stream without any modification, PC

can be executed in parallel with either FW or DPI.

Given that the NFP technique can reduce the processing delay by running multiple SFs

in parallel, how to efficiently apply the NFP technique into the SFCE processes to jointly

optimizes the SF processing delay and the SFP propagation delay remains open.

7.2 Future Direction two: Survivability of Service Function Chaining and
Embedding

The emerging Internet of Things (IoT), 5G, and beyond 5G techniques empower hetero-

geneous sets of applications with strict Quality of Service (QoS) and ultra-low latency re-

quirements [88, 89, 90]. Limited by its battery life and computing capacity, the IoT de-

vice cannot deal with the computation-intensive tasks from the novel applications [91]. To

mitigate the above limitations, the computation-intensive tasks are offloaded to the cloud

systems that abundant computing resource but may be far away from the customer [92].

As a result, the cloud systems may not be able to satisfy the QoS requirements from the

latency-sensitive applications [93]. Thanks to the Multi-access Edge Computing (MEC), the

servers with enough computing resource are deployed at the edge of the network to satisfy

125

the computation-intensive tasks with an ultra-low latency [94].

When Network Function Virtualization (NFV) is applied into MEC, the hardware-based

middleboxes, such as firewalls (FWs), Load Balancer (LB), and Intrusion-Detection System

(IDS) are replaced by Service Functions (SFs) running on the commodity servers to deliver

the customer’s service requests [95, 96]. By allowing the instance of SFs to host on the

virtual machines and deploy on multiple physical nodes in the PN, NFV can improve network

flexibility, scalability, and customize the customer requests, as well as reducing the Capital

Expenditures (CAPEX) and the Operating Expenditures (OPEX) [22, 97].

On the one hand, NFV facilitates delivering flexible and cost-efficient services in MEC

systems. On the other hand, NFV and MEC’s combination confronts challenges in providing

reliable real-time services for applications, such as stock exchange and autonomous driving

[98]. For example, some MEC applications specify that services should be delivered within

one millisecond and above 99.9% reliability [99]. To prevent the network from the physical

(e.g., hardware appliances) failures that affect the latency and reliability during the service

delivery, the work in [45, 100, 101, 102, 103] proposed several network protection methods.

Notably, in terms of the work in [103], a proactive mechanism aims to assign backup nodes

for every potential node failure for all the existing nodes and save time to avoid disrupting

the rerouting process. Despite the fact that physical failures impact the significant data

losses, delays and resource wastage, virtual (e.g., SFs, virtual machines) failures also cannot

be ignored when applying the NFV technique to MEC systems.

With NFV, A Network Service Request (NSR) from a customer consists of a set of

126

SFs and resource demands (e.g., bandwidth, CPU, and storage) [26]. To satisfy an NSR,

the service provider creates a Service Function Chain (SFC) by chaining the required SFs

into a virtual catenary structure with virtual links, and reserves corresponding networking

resources to embed the created SFC onto the shared PN [27]. Even though much research

attention has been paid to protecting physical node failure, only little effort has put on

the virtual node failure, such as the SF failure of an SFC [104]. When SFs are placed on

the servers, the SF failure can rise to potential risk and cannot be underestimated. This

is because one of the critical challenges in protecting an SF failure is that the reason of an

SF failure is hard to be identified (e.g., misconfigurations, virtual machines crashed, etc.)

[105, 106]. Unlike physical failures that will change the topology and connectivity of the

PN, virtual failures, such like the SF failure, will interfere with the output of the data flows,

and break the execution of multiple SFCs, thereby results in the termination of the entire

services in the PN [107, 108]. However, with the ultra-low latency requirements from the 5G

and beyond 5G communication techniques, traditional strategies for physical failure cannot

be directly applied to solve virtual failures anymore [109], not to mention when physical and

virtual failures may occur in the same PN. How to keep the high reliability and follow the

ultra-low latency requirement remains open for further investigation.

127

CHAPTER 8

CONCLUSION

8.1 Dissertation Overview

In this dissertation, for the first time, we comprehensively study and propose a series of

problems in how to efficiently deliver the NFV service in future Internet. In the literature,

there exists much work on how to deliver the NFV service within the SFCE process [26,

39, 81, 110, 111, 112, 113, 114, 115, 116]. However, within the state-of-the-arts scenarios

(e.g., applications in MEC, cloud computing, IoT), the requirements from the customer will

significantly impact the SFCE process, and the existing methodologies may not be directedly

applied on such scenarios [17, 27, 45]. Furthermore, from the existing work, SFCE is proved

to be NP-hard, which can be reduced from many typical NP-hard problem (e.g., travelling

salesmen problem and set cover). Another critical problem remains in SFCE is how to deliver

the NFV services with a certain provable boundary. In order to address the above problems

and challenges, we have done the following work: i) a 2-approximation algorithm to deliver

the traditional SFC service in UFNs, ii) a logarithm-approximation algorithm to composite

and embed an SFC in MFNs, iii) a 2-approximation algorithm to composite and embed

an h-SFC in UFNs and an efficient heuristic algorithm to composite and embed an h-SFC

in MFNs, iv) an optimal algorithm to embed a given h-SFC and v) an effective heuristic

algorithm to composite and embed a dependence-aware SFC.

128

8.2 Dissertation Preliminary Work

We studied the provable SFC composition and embedding problem in the second and third

chapters, respectively. In the second chapter, we investigated a problem of how to deliver

the NFV service in Unique Function Networks (UFNs) with a provable boundary [47]. Note

that, UFN is referred to a network whose physical node only provides one unique SF. We

proved the SFCE process is NP-hard in UFNs and proposed a 2-approximation algorithm

called SFCE with Spanning Closed Walk (SFCE-SCW). In the third chapter we further

investigated of how to deliver the NFV service in Multiple Functions Networks (MFNs)

with a provable boundary. We proposed a logarithm-approximation algorithm called COst

Factor-based SFCE Optimization with ShortCut (COFO-SC) [117].

In the fourth and fifth chapters, we studied the problems of hybrid service function chain

composition and embedding. In the fourth chapter, we investigated a problem of service

delivery of novel NFV applications in future Internet [17]. 5G and Multi-access Edge Com-

puting (MEC) empower the development of the latency-sensitive or computation-intensive

applications such as real-time Virtual Reality (VR), Augmented Reality (AR) games and

on-line machine learning [7]. In these applications, the forward traffic from the user and the

backward traffic from the MEC server/cloud may require different sets of SFs. The SFC that

requires different sets of SFs in the forward and backward directions is referred to as hybrid

SFC (h-SFC) [14]. To save the Operating Expense (OPEX) and latency, the SFs required

by both directions are generally installed on the same substrate node [52] [53]. As a result,

the embedding process of the forward SFC (f-SFC) will impact the embedding process of the

129

backward SFC (b-SFC), and the traditional SFCE techniques cannot be directly applied. In

this part, we comprehensively studied the h-SFC composition and embedding processes. In

UFNs, we proved h-SFCE is NP-hard and propose a 2-approximation algorithm based on the

graph theory based techniques called Eulerian Circuit based Hybrid SFP optimization (EC-

HSFP). Then, we extended the EC-HSFP algorithm to Multiple Functions Networks (i.e.,

each physical node can provide multiple SFs) via the betweenness centrality technique called

Betweenness Centrality based Hybrid SFP optimization (BC-HSFP). In the fifth chapter,

when the h-SFC is given, we proposed an optimal algorithm called Optimal Hybrid SFC

Embedding (Opt-HSFCE) [45].

Last but not least, in the sixth chapter, we investigated a problem of how to efficiently

deliver the NFV service when executing orders of SFs are partially specified [22]. The par-

tially given executing orders among the required SFs are specified as dependence constraint.

For example, the encryption function must be processed before the decryption function; oth-

erwise, the contents of the flow will be damaged. The essential challenge in such a scenario is

how to composite and embed an SFC while the dependence constraints are always obeyed for

the designed SFC and the SFP. In chapter six, we investigate an efficient heuristic algorithm

of delivering the NFV service while obeying the given dependence constraints.

130

CHAPTER

REFERENCES

[1] W. Rafique, L. Qi, I. Yaqoob, M. Imran, R. U. Rasool, and W. Dou, “Complementing

iot services through software defined networking and edge computing: A comprehensive

survey,” IEEE Commun. Surv. Tutorials, vol. 22, no. 3, pp. 1761–1804, 2020.

[2] J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li, “A survey on end-edge-cloud orchestrated

network computing paradigms: Transparent computing, mobile edge computing, fog

computing, and cloudlet,” ACM Comput. Surv., vol. 52, no. 6, pp. 125:1–125:36, 2020.

[3] Q. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le, W. Hwang, and Z. Ding, “A

survey of multi-access edge computing in 5g and beyond: Fundamentals, technology

integration, and state-of-the-art,” IEEE Access, vol. 8, pp. 116 974–117 017, 2020.

[4] J. Ding, M. Nemati, C. Ranaweera, and J. Choi, “Iot connectivity technologies and

applications: A survey,” IEEE Access, vol. 8, pp. 67 646–67 673, 2020.

[5] I. Bambrik, “A survey on cloud computing simulation and modeling,” SN Comput.

Sci., vol. 1, no. 5, p. 249, 2020.

[6] N. E. H. Bouzerzour, S. Ghazouani, and Y. Slimani, “A survey on the service interop-

erability in cloud computing: Client-centric and provider-centric perspectives,” Softw.

Pract. Exp., vol. 50, no. 7, pp. 1025–1060, 2020.

[7] A. J. Ferrer, J. M. Marquès, and J. Jorba, “Towards the decentralised cloud: Survey

on approaches and challenges for mobile, ad hoc, and edge computing,” ACM Comput.

Surv., vol. 51, no. 6, pp. 111:1–111:36, 2019.

131

[8] R. Roman, J. López, and M. Mambo, “Mobile edge computing, fog et al.: A survey

and analysis of security threats and challenges,” Future Gener. Comput. Syst., vol. 78,

pp. 680–698, 2018.

[9] I. Alam, K. Sharif, F. Li, Z. Latif, M. M. Karim, S. Biswas, B. Nour, and Y. Wang,

“A survey of network virtualization techniques for internet of things using SDN and

NFV,” ACM Comput. Surv., vol. 53, no. 2, pp. 35:1–35:40, 2020.

[10] A. A. Barakabitze, A. Ahmad, R. Mijumbi, and A. Hines, “5g network slicing using

SDN and NFV: A survey of taxonomy, architectures and future challenges,” Comput.

Networks, vol. 167, 2020.

[11] Z. Shang, “Performance evaluation of the control plane in openflow networks,” Ph.D.

dissertation, Free University of Berlin, Dahlem, Germany, 2020.

[12] W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou, “Traffic aware placement of

interdependent nfv middleboxes,” in proc. IEEE INFOCOM, 2017, pp. 1–9.

[13] “Etsi gs nfv-man 001: Network functions virtualisation (nfv); management and orches-

tration,” v. 1.1.1, Dec. 2014.

[14] J. Halpern and C. Pignataro. Service function chaining (SFC) architecture. [Online].

Available: https://tools.ietf.org/html/rfc7665

[15] P. Quinn and T. Nadeau. Problem statement for service function chaining. [Online].

Available: https://tools.ietf.org/html/rfc7498

[16] M. Veeraraghavan, T. Sato, M. Buchanan, R. Rahimi, S. Okamoto, and N. Yamanaka,

“Network function virtualization: A survey,” IEICE Trans. Commun., vol. 100-B,

https://tools.ietf.org/html/rfc7665
https://tools.ietf.org/html/rfc7498

132

no. 11, pp. 1978–1991, 2017.

[17] D. Zheng, C. Peng, X. Liao, L. Tian, G. Luo, and X. Cao, “Towards latency opti-

mization in hybrid service function chain composition and embedding,” in proc. IEEE

INFOCOM, 2020, pp. 1539–1548.

[18] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba,

“Network Function Virtualization: State-of-the-art and Research Challenges,” IEEE

Commun. Surveys Tuts., vol. 18, no. 1, pp. 236–262, 2016.

[19] M. Chiosi and D. t. Clarke, “Network Functions Virtualisation: An Introduction,

Benefits, Enablers, Challenges and Call for Action,” in SDN and OpenFlow World

Congress, 2012, pp. 22–24.

[20] J. G. Herrera and J. F. Botero, “Resource allocation in nfv: A comprehensive survey,”

IEEE Trans. Netw. Service Manag., vol. 13, no. 3, pp. 518–532, 2016.

[21] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A Survey on Service Function

Chaining,” Journal of Network and Computer Applications, vol. 75, pp. 138–155, 2016.

[22] D. Zheng, E. Guler, C. Peng, G. Luo, L. Tian, and X. Cao, “Dependence-aware service

function chain embedding in optical networks,” in proc. IEEE ICC, 2019, pp. 1–6.

[23] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On Dynamic Service Function Chain

Deployment and Readjustment,” IEEE Trans. Netw. Service Manag., vol. 14, no. 3,

pp. 543–553, 2017.

[24] J. Fan, C. Guan, Y. Zhao, and C. Qiao, “Availability-aware Mapping of Service Func-

tion Chains,” in proc. IEEE INFOCOM, 2017, pp. 1–9.

133

[25] J.-J. Kuo, S.-H. Shen, H.-Y. Kang, D.-N. Yang, M.-J. Tsai, and W.-T. Chen, “Service

chain embedding with maximum flow in software defined network and application to

the next-generation cellular network architecture,” in proc. IEEE INFOCOM, 2017,

pp. 1–9.

[26] G. Sallam, G. R. Gupta, B. Li, and B. Ji, “Shortest path and maximum flow problems

under service function chaining constraints,” in proc. IEEE INFOCOM, 2018, pp.

2132–2140.

[27] D. Zheng, C. Peng, E. Guler, G. Luo, L. Tian, and X. Cao, “Hybrid Service Chain

Deployment in Networks with Unique Function,” in proc. IEEE ICC, 2019, pp. 1–6.

[28] G. Reinelt, “TSPLIB—A traveling salesman problem library,” ORSA J. Comput.,

vol. 3, no. 4, pp. 376–384, 1991.

[29] D. J. Rosenkrantz, R. E. Stearns, and P. M. L. II, “An analysis of several heuristics for

the traveling salesman problem,” SIAM J. Comput., vol. 6, no. 3, pp. 563–581, 1977.

[30] L. Chettri and R. Bera, “A comprehensive survey on internet of things (iot) toward

5g wireless systems,” IEEE Internet Things J., vol. 7, no. 1, pp. 16–32, 2020.

[31] M. Stoyanova, Y. Nikoloudakis, S. Panagiotakis, E. Pallis, and E. K. Markakis, “A

survey on the internet of things (iot) forensics: Challenges, approaches, and open

issues,” IEEE Commun. Surv. Tuts., vol. 22, no. 2, pp. 1191–1221, 2020.

[32] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and com-

putation offloading,” IEEE Commun. Surveys Tuts., vol. 19, no. 3, pp. 1628–1656,

2017.

134

[33] B. Yi, X. Wang, K. Li, S. K. Das, and M. Huang, “A comprehensive survey of network

function virtualization,” Comput. Netw., vol. 133, pp. 212–262, 2018.

[34] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. D. Turck, and R. Boutaba, “Network

function virtualization: State-of-the-art and research challenges,” IEEE Commun. Sur-

veys Tuts., vol. 18, no. 1, pp. 236–262, 2016.

[35] H. Hantouti, N. Benamar, T. Taleb, and A. Laghrissi, “Traffic steering for service

function chaining,” IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 487–507, 2019.

[36] I. Jang, D. Suh, S. Pack, and G. Dán, “Joint optimization of service function placement

and flow distribution for service function chaining,” IEEE J. Sel. Areas Commun.,

vol. 35, no. 11, pp. 2532–2541, 2017.

[37] H. Hawilo, M. Jammal, and A. Shami, “Network Function Virtualization-aware Or-

chestrator for Service Function Chaining Placement in the Cloud,” IEEE J. Sel. Areas

Commun., vol. 37, no. 3, pp. 643–655, 2019.

[38] Z. Zhou, Q. Wu, and X. Chen, “Online orchestration of cross-edge service function

chaining for cost-efficient edge computing,” IEEE J. Sel. Areas Commun., vol. 37,

no. 8, pp. 1866–1880, 2019.

[39] R. Yu, G. Xue, and X. Zhang, “Qos-aware and reliable traffic steering for service

function chaining in mobile networks,” IEEE J. Sel. Areas Commun., vol. 35, no. 11,

pp. 2522–2531, 2017.

[40] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On dynamic service function chain

deployment and readjustment,” IEEE Trans. Netw. Service Manag., vol. 14, no. 3, pp.

135

543–553, 2017.

[41] T. Taleb, A. Ksentini, M. Chen, and R. Jantti, “Coping with emerging mobile social

media applications through dynamic service function chaining,” IEEE Trans. Wireless

Commun., vol. 15, no. 4, pp. 2859–2871, 2016.

[42] S. D’oro, L. Galluccio, S. Palazzo, and G. Schembra, “Exploiting congestion games to

achieve distributed service chaining in nfv networks,” IEEE J. Sel. Areas Commun.,

vol. 35, no. 2, pp. 407–420, 2017.

[43] Q. Ye, W. Zhuang, X. Li, and J. Rao, “End-to-end delay modeling for embedded vnf

chains in 5g core networks,” IEEE Internet Things J., vol. 6, no. 1, pp. 692–704, 2019.

[44] M. Rost and S. Schmid, “Service chain and virtual network embeddings: Approxima-

tions using randomized rounding,” CoRR, vol. abs/1604.02180, 2016.

[45] D. Zheng, C. Peng, X. Liao, and X. Cao, “Toward optimal hybrid service function

chain embedding in multiaccess edge computing,” IEEE Internet Things J., vol. 7,

no. 7, pp. 6035–6045, 2020.

[46] Z. Cao, M. S. Kodialam, and T. V. Lakshman, “Traffic steering in software defined

networks: Planning and online routing,” in proc. ACM SIGCOMM workshop, 2014,

pp. 65–70.

[47] D. Zheng, C. Peng, X. Liao, G. Luo, L. Tian, and X. Cao, “Service function chaining

and embedding with spanning closed walk,” in proc. IEEE HPSR, 2019, pp. 1–5.

[48] D. Dolson, M. Boucadair, S. Homma, and D. Lopez. Hierarchical service function

chaining (hsfc). [Online]. Available: https://tools.ietf.org/html/rfc8459

https://tools.ietf.org/html/rfc8459

136

[49] J. L. Gross, J. Yellen, L. W. Beineke, and R. J. Wilson, “Introduction to graphs,” in

Handbook of Graph Theory, 2003, pp. 1–55.

[50] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and

complexity. Courier Corporation, 1998.

[51] A. Nikolaev and M. Batsyn, “Branch-and-bound algorithm for symmetric travelling

salesman problem,” in proc. IWOCA, 2018, pp. 311–322.

[52] W. Zhou, Y. Yang, M. Xu, and H. Chen, “Accommodating Dynamic Traffic Immedi-

ately: a VNF Placement Approach,” in proc. IEEE ICC, 2019, pp. 1–6.

[53] A. Boubendir, E. Bertin, and N. Simoni, “A VNF-As-A-Service Design through Micro-

Services Disassembling the IMS,” in proc. ICIN, 2017, pp. 203–210.

[54] F. Lam and A. Newman, “Traveling Salesman Path problems,” Mathematical Pro-

gramming, vol. 113, no. 1, pp. 39–59, 2008.

[55] D. B. West et al., Introduction to Graph Theory. Prentice hall Upper Saddle River,

NJ, 1996, vol. 2.

[56] G. Sallam, G. R. Gupta, B. Li, and B. Ji, “Shortest Path and Maximum Flow Problems

Under Service Function Chaining Constraints,” in proc. IEEE INFOCOM, 2018, pp.

2132–2140.

[57] E. Guler, D. Zheng, G. Luo, L. Tian, and X. Cao, “Virtual Multicast Tree Embedding

over Elastic Optical Networks,” in proc. IEEE GLOBECOM, 2017, pp. 1–6.

[58] L. M. P. Larsen, A. Checko, and H. L. Christiansen, “A Survey of the Functional Splits

Proposed for 5G Mobile Crosshaul Networks,” IEEE Commun. Surv. Tuts., vol. 21,

137

no. 1, pp. 146–172, 2019.

[59] J. Dizdarevic, F. Carpio, A. Jukan, and X. Masip-Bruin, “A Survey of Communication

Protocols for Internet of Things and Related Challenges of Fog and Cloud Computing

Integration,” ACM Comput. Surv., vol. 51, no. 6, pp. 116:1–116:29, 2019.

[60] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach, “Virtual Network

Embedding: A Survey,” IEEE Commun. Surv. Tuts., vol. 15, no. 4, pp. 1888–1906,

2013.

[61] W. Wei, H. Gu, K. Wang, X. Yu, and X. Liu, “Improving cloud-based iot services

through virtual network embedding in elastic optical inter-dc networks,” IEEE Internet

Things J., vol. 6, no. 1, pp. 986–996, 2019.

[62] H. Wu, F. Zhou, Y. Chen, and R. Zhang, “On Virtual Network Embedding:

Paths and Cycles,” CoRR, vol. abs/1812.06287, 2018. [Online]. Available:

http://arxiv.org/abs/1812.06287

[63] M. Rost and S. Schmid, “Charting the Complexity Landscape of Virtual Network

Embeddings,” in proc. IFIP, 2018, pp. 55–63.

[64] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B. Duarte,

“Orchestrating Virtualized Network Functions,” IEEE Trans. Netw. Service Manag.,

vol. 13, no. 4, pp. 725–739, 2016.

[65] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network embedding:

substrate support for path splitting and migration,” ACM SIGCOMM Computer Com-

munication Review, vol. 38, no. 2, pp. 17–29, 2008.

http://arxiv.org/abs/1812.06287

138

[66] N. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual network embedding

with coordinated node and link mapping,” in IEEE International Conference on Com-

puter Communications (INFOCOM), 2009, pp. 783–791.

[67] Q. Hu, Y. Wang, and X. Cao, “Resolve the virtual network embedding problem: A

column generation approach,” in IEEE International Conference on Computer Com-

munications (INFOCOM), 2013, pp. 410–414.

[68] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying chains of virtual net-

work functions: On the relation between link and server usage,” in IEEE International

Conference on Computer Communications (INFOCOM), 2016, pp. 1–9.

[69] Q. Zhang, Y. Xiao, F. Liu, J. C. Lui, J. Guo, and T. Wang, “Joint optimization of

chain placement and request scheduling for network function virtualization,” in IEEE

Distributed Computing Systems (ICDCS), 2017, pp. 731–741.

[70] M. Jalalitabar, E. Guler, G. Luo, L. Tian, and X. Cao, “Dependence-aware service

function chain design and mapping,” in IEEE Global Communications Conference

(GLOBECOM), 2017, pp. 1–6.

[71] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains of virtual

network functions,” in IEEE Cloud Networking (CloudNet), 2014, pp. 7–13.

[72] E. Guler, D. Zheng, G. Luo, L. Tian, and X. Cao, “Virtual multicast tree embedding

over elastic optical networks,” in IEEE Global Communications Conference (GLOBE-

COM), 2017, pp. 1–6.

[73] S. J. B. Yoo, “Wavelength conversion technologies for wdm network applications,”

139

Journal of Lightwave Technology, vol. 14, no. 6, pp. 955–966, 1996.

[74] B. C. Chatterjee, N. Sarma, and E. Oki, “Routing and spectrum allocation in elastic

optical networks: A tutorial,” IEEE Communications Surveys & Tutorials, vol. 17,

no. 3, pp. 1776–1800, 2015.

[75] Y. Zhang, X. Zheng, Q. Li, N. Hua, Y. Li, and H. Zhang, “Traffic grooming in

spectrum-elastic optical path networks,” in Optical Fiber Communication Conference

(OFC), 2011, pp. 1–3.

[76] W. Lu, J. Kong, L. Liang, S. Liu, and Z. Zhu, “How Much Can Flexible Ethernet and

Elastic Optical Networking Benefit Mutually?” in proc. IEEE ICC, 2019, pp. 1–6.

[77] I. V. Loumiotis, P. Kosmides, E. F. Adamopoulou, K. P. Demestichas, and M. E.

Theologou, “Dynamic Allocation of Backhaul Resources in Converged Wireless-optical

Networks,” IEEE J. Sel. Areas Commun., vol. 35, no. 2, pp. 280–287, 2017.

[78] M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takács, “Optical Service Chaining

for Network Function Virtualization,” IEEE Commun. Mag., vol. 53, no. 4, pp. 152–

158, 2015.

[79] A. Minakhmetov, C. Gutterman, T. Chen, J. Yu, C. Ware, L. Iannone, D. C. Kilper,

and G. Zussman, “Experiments on Cloud-RAN Wireless Handover using Optical

Switching in a Dense Urban Testbed,” in proc. OFC, 2020, pp. 1–3.

[80] J. A. Hernández, M. Quagliotti, E. Riccardi, V. López, Ó. G. de Dios, and R. Casellas,

“A Techno-economic Study of Optical Network Disaggregation Employing Open Source

Software Business Models for Metropolitan Area Networks,” IEEE Commun. Mag.,

140

vol. 58, no. 5, pp. 40–46, 2020.

[81] A. Hmaity, M. Savi, L. Askari, F. Musumeci, M. Tornatore, and A. Pattavina,

“Latency- and Capacity-aware Placement of Chained Virtual Network Functions in

FMC Metro Networks,” Opt. Switch. Netw., vol. 35, 2020.

[82] R. Katti and S. Prince, “A Survey on Role of Photonic Technologies in 5G Communi-

cation Systems,” Photonic Netw. Commun., vol. 38, no. 2, pp. 185–205, 2019.

[83] A. A. Ahmed and A. A. Alzahrani, “A Comprehensive Survey on Handover Manage-

ment for Vehicular Ad-hoc Network based on 5G Mobile Networks Technology,” Trans.

Emerg. Telecommun. Technol., vol. 30, no. 3, 2019.

[84] E. Yaacoub and M. Alouini, “A Key 6G Challenge and Opportunity - Connecting the

Base of the Pyramid: A Survey on Rural Connectivity,” P. IEEE, vol. 108, no. 4, pp.

533–582, 2020.

[85] L. Ruan, M. P. I. Dias, and E. Wong, “Towards Self-adaptive Bandwidth Allocation

for Low-latency Communications with Reinforcement Learning,” Opt. Switch. Netw.,

vol. 37, p. 100567, 2020.

[86] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “NFP: Enabling Network Function Paral-

lelism in NFV,” in proc. ACM SIGCOMM, 2017, pp. 43–56.

[87] I. Tomkos, D. Klonidis, E. Pikasis, and S. Theodoridis, “Toward the 6G Network Era:

Opportunities and Challenges,” IT Prof., vol. 22, no. 1, pp. 34–38, 2020.

[88] Y. Shih, H. Lin, A. Pang, C. Chuang, and C. Chou, “An nfv-based service framework

for iot applications in edge computing environments,” IEEE Transactions on Network

141

and Service Management, vol. 16, no. 4, pp. 1419–1434, 2019.

[89] A. A. Barakabitze, A. Ahmad, R. Mijumbi, and A. Hines, “5g network slicing using

sdn and nfv: A survey of taxonomy, architectures and future challenges,” Computer

Networks, vol. 167, p. 106984, 2020.

[90] S. Barmpounakis, G. Tsiatsios, M. Papadakis, E. Mitsianis, N. Koursioumpas, and

N. Alonistioti, “Collision avoidance in 5g using mec and nfv: The vulnerable road user

safety use case,” Computer Networks, vol. 172, p. 107150, 2020.

[91] C. Cicconetti, M. Conti, and A. Passarella, “Uncoordinated access to serverless com-

puting in mec systems for iot,” Computer Networks, vol. 172, p. 107184, 2020.

[92] G. Castellano, F. Esposito, and F. Risso, “A distributed orchestration algorithm for

edge computing resources with guarantees,” in IEEE INFOCOM 2019 - IEEE Con-

ference on Computer Communications, 2019, pp. 2548–2556.

[93] S. Li, M. Y. Saidi, and K. Chen, “Survivable services oriented protection level-aware

virtual network embedding,” Computer Communications, vol. 152, pp. 34 – 45, 2020.

[94] T. Subramanya, D. Harutyunyan, and R. Riggio, “Machine learning-driven service

function chain placement and scaling in mec-enabled 5g networks,” Computer Net-

works, vol. 166, p. 106980, 2020.

[95] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “NFV: state of the art, challenges,

and implementation in next generation mobile networks (vEPC),” IEEE Netw., vol. 28,

no. 6, pp. 18–26, 2014.

[96] K. Han, S. Li, S. Tang, H. Huang, S. Zhao, G. Fu, and Z. Zhu, “Application-driven

142

end-to-end slicing: When wireless network virtualization orchestrates with NFV-based

mobile edge computing,” IEEE Access., vol. 6, pp. 26 567–26 577, 2018.

[97] G. P. Sharma, W. Tavernier, D. Colle, and M. Pickavet, “Vnf-aapc: Accelerator-aware

vnf placement and chaining,” Computer Networks, vol. 177, p. 107329, 2020.

[98] G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz, “A survey on 5G

networks for the internet of things: communicationtechnologies and challenges,” IEEE

Access., vol. 6, pp. 3619–3647, 2018.

[99] L. Qu, C. Assi, K. Shaban, and M. J. Khabbaz, “A reliability-aware network ser-

vice chain provisioning with delay guarantees in nfv-enabled enterprise datacenter net-

works,” IEEE Trans. Netw. Service Manag., vol. 14, no. 3, pp. 554–568, 2017.

[100] M. Zhu, Q. Sun, S. Zhang, P. Gao, B. Chen, and J. Gu, “Energy-aware virtual optical

network embedding in sliceable-transponder-enabled elastic optical networks,” IEEE

Access., vol. 7, pp. 41 897–41 912, 2019.

[101] Y. Fouquet, D. Nace, M. Pióro, and M. Poss, “An optimization framework for traffic

restoration in optical wireless networks with partial link failures,” Opt. Switc. Netw.,

vol. 23, pp. 108 – 117, 2017.

[102] F. He, T. Sato, and E. Oki, “Backup resource allocation model for virtual networks

with probabilistic protection against multiple facility node failures,” in proc. DRCN,

2019.

[103] S. R. Chowdhury, R. Ahmed, M. M. Alam Khan, N. Shahriar, R. Boutaba, J. Mitra,

and F. Zeng, “Dedicated protection for survivable virtual network embedding,” IEEE

143

Trans. Netw. Service Manag., 2016.

[104] B. Han, V. Gopalakrishnan, G. Kathirvel, and A. Shaikh, “On the resiliency of virtual

network functions,” IEEE Commun. Magaz., vol. 55, no. 7, pp. 152–157, 2017.

[105] M. Karimzadeh-Farshbafan, V. Shah-Mansouri, and D. Niyato, “A dynamic reliability-

aware service placement for network function virtualization (nfv),” IEEE J. Sel. Areas

Commun., vol. 38, no. 2, pp. 318–333, 2020.

[106] M. Wang, B. Cheng, and J. Chen, “Joint availability guarantee and resource opti-

mization of virtual network function placement in data center networks,” IEEE Trans.

Netw. Service Manag., vol. 17, no. 2, pp. 821–834, 2020.

[107] D. Yamada and N. Shinomiya, “A solving method for computing and network resource

minimization problem in service function chain against multiple vnf failures,” in proc.

IEEE CIC, 2019, pp. 30–38.

[108] J. Fan, M. Jiang, O. Rottenstreich, Y. Zhao, T. Guan, R. Ramesh, S. Das, and C. Qiao,

“A framework for provisioning availability of NFV in data center networks,” IEEE J.

Sel. Areas Commun., vol. 36, no. 10, pp. 2246–2259, 2018.

[109] A. Engelmann and A. Jukan, “A reliability study of parallelized VNF chaining,” in

proc. IEEE ICC, 2018, pp. 1–6.

[110] P. Jin, X. Fei, Q. Zhang, F. Liu, and B. Li, “Latency-aware VNF Chain Deployment

with Efficient Resource Reuse at Network Edge,” in proc. IEEE INFOCOM, 2020, pp.

1–10.

[111] X. Shang, Y. Huang, Z. Liu, and Y. Yang, “Reducing the Service Function Chain

144

Bakcup Cost over the Edge and Cloud by a Self-adapting Scheme,” in proc. IEEE

INFOCOM, 2020, pp. 1–10.

[112] G. Sallam and B. Ji, “Joint Placement and Allocation of Virtual Network Functions

with Budget and Capacity Constraints,” in proc. IEEE INFOCOM, 2019, pp. 523–531.

[113] S. Pasteris, S. Wang, M. Herbster, and T. He, “Service Placement with Provable

Guarantees in Heterogeneous Edge Computing Systems,” in proc. IEEE INFOCOM,

2019, pp. 514–522.

[114] T. Kuo, B. Liou, K. C. Lin, and M. Tsai, “Deploying Chains of Virtual Network

Functions: On the Relation Between Link and Server Usage,” IEEE/ACM Transaction

on Networking, vol. 26, no. 4, pp. 1562–1576, 2018.

[115] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal placement of virtual

network functions,” in proc. IEEE INFOCOM, 2015, pp. 1346–1354.

[116] X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive VNF Scaling and Flow Routing with

Proactive Demand Prediction,” in proc. IEEE INFOCOM, 2018, pp. 486–494.

[117] D. Zheng, H. Gu, W. Wei, C. Peng, and X. Cao, “Network service chaining and

embedding with provable bounds,” IEEE Internet of Things Journal, pp. 1–13, 2020.

	Network Function Virtualization Service Delivery In Future Internet
	Recommended Citation

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Network Virtualization
	Software-Defined Network
	Network Function Virtualization
	Organization of This Work

	SERVICE CHAINING AND EMBEDDING IN UFNS
	Motivation
	Problem Statement
	SFC composition and Embedding in Unique service Function networks
	Complete Graph Transfer
	Minimum Spanning Tree-based SFP Construction

	Numerical Results and Analysis
	SCW-SFCE vs. ILP in NSFNET
	SCW-SFCE Performance Evaluation in USNET
	SCW-SFCE vs Nearest Neighbour Algorithm in USNET

	Summary

	SERVICE CHAINING AND EMBEDDING IN MFNS
	Motivation
	Minimum Cost Service Function Chaining and Embedding (MC-SFCE)
	Physical Network Model
	Network Service Request (NSR)
	Minimum Cost Service Function Chaining and Embedding (MC-SFCE)

	Complexity Analysis of Minimum Cost Service Function Chaining and Embedding (MC-SFCE)
	MC-SFCE in Unique Function Tree Network
	MC-SFCE in a Multiple Function Tree Network
	MC-SFCE in Mesh Networks

	COst Factor-based SFCE Optimization with ShortCut (COFO-SC)
	COst Factor-based SFCE Optimization (COFO)
	COst Factor-based SFCE Optimization with ShortCut (COFO-SC)

	Bounds Analysis
	Bound Analysis in UFPNs
	Bound Analysis in MFPNs

	Experimental Results and Analysis
	Simulation Environment
	Performance Metrics and Benchmarks
	Performance Analysis in UFPNs
	Performance Analysis in MFPNs

	Summary

	HYBRID SERVICE CHAIN COMPOSITION AND EMBEDDING
	Motivation
	Problem Statement
	Substrate/physical Network Model
	Network Service Request with Hybrid Traffic
	Hybrid Service Function Chain composition and Embedding (HSFCE)

	Hybrid SFCE in UFSNs
	Complexity Analysis of HSFCE in UFSN
	Hybrid Trace Construction (HTC)
	Hybrid Eulerian Circuit Construction (HECC)
	Eulerian Circuit based Hybrid SFP optimization
	EC-HSFP is 2-Approximation

	Hybrid SFCE in MFSN
	Numerical Results and Analysis
	Simulation Environment
	Performance Metrics
	Approximation Analysis in UFSN
	Performance Analysis in MFSN

	Summary

	OPTIMAL HYBRID SERVICE CHAIN EMBEDDING
	Motivation
	Minimum Latency Hybrid Service Function Chain Embedding
	Substrate/physical Network (SN) Model
	Hybrid Service function chain Request (HSR)
	Minimum Latency Hybrid SFC Embedding (ML-HSFCE)

	Hybrid SFCE Complexity Analysis
	Optimal Hybrid Service Function Chain Embedding
	Hybrid SFC embedding Auxiliary Graph (HSAG)
	Optimal Hybrid SFC Embedding Algorithms

	Experimental Results and Analysis
	Simulation Environment
	Performance Metrics and Benchmarks
	Performance Analysis of Opt-HSFCE for Single HSR
	Performance Analysis of Opt-HSFCE for Multiple HSRs
	Runtime Analysis of Opt-HSFCE

	Summary

	DEPENDENCE-AWARE SERVICE CHAINING AND EMBEDDING
	Motivation
	Problem Statement
	Substrate Optical Network
	Dependence-aware NFV Service Request
	Dependence-aware SFC Embedding in Optical Networks

	Dependence-aware Service Function Chain embedding with Least-Used consecutive subcarriers
	Impact Factor based Node Selection
	Chain Node Mapping
	Chain-Fit Link Mapping

	Experimental Results
	Summary

	FUTURE WORK
	Future Direction One: Parallelism-aware Service Function Chain Composition and Embedding
	Future Direction two: Survivability of Service Function Chaining and Embedding

	CONCLUSION
	Dissertation Overview
	Dissertation Preliminary Work

	REFERENCES

