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Under the Direction of Hassan Babaie, PhD 

 

ABSTRACT 

Over the last few decades, the rapid expansion of the Atlanta urban area has led to the increase of 

the number of sources of pollutions around the area and the level of pollution in the Chattahoochee 

River. This research analyzed the change in the distribution of sources of contamination over time 

and space, and evaluated their impact on environmental justice in the Atlanta metropolitan area. 

The results indicate contaminated areas increased from 2000 to 2019, spreading from the central 

metropolitan area to the south along the Chattahoochee River. The Box and whisker plots indicated 

existence of spatio-temporal variations in the water quality parameters, with Ca, Mg, Fe, SiO2, 

NO3, and Cl displaying a relatively large length of boxes and whiskers compared to other 

parameters. The results show a disproportionate exposure to environmental hazards regarding 

income, race, age, and sex, and no application of environmental justice principles to the study area. 

INDEX WORDS: Contamination, Surface water, Environmental justice, GIS 
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1 INTRODUCTION  

1.1 Background and Problem Statement  

The current world’s urban population of more than 4 billion people is projected to increase 

to close to 7 billions by 2050 (UN DESA, 2014).  Urbanization is relatively a new trend in human 

history and directly influences the population growth rate and ecology in every nation. Most urban 

inhabitants rapidly increase their ecological footprint by altering their physical environment 

through increased consumption of food, energy, water, and land, which has led to their depletion 

or degradation over the last century (Satterthwaite et al., 2010). Intensive urban growth and 

agricultural activities lead to the degradation of the surface and groundwater quality and quantity 

due to the excessive withdrawals in urban, peri-urban, and rural areas (Shabnam et al., 2017; 

Satterthwaite et al., 2010; Cohen and Garrett 2009). Most pollutants enter water resources from 

industrial and commercial facilities such as hazardous waste sites (e.g., oil and chemical spills), 

non-point sources (e.g., roads, parking lots, and storm drain), wastewater treatment plants, and 

sewage systems. The key problem in the sustainable management of water resources is identifying 

the effective sources of water pollutions. Thus, mapping the sources of contamination has become 

one of the important challenging issues over the past decade (Shabnam et al., 2017).  

Over the last few decades, the Metropolitan Atlanta area has been one of the fastest-

growing cities in the U.S. (with nation's 4th highest population growth) by many measures such as 

rapid economic development. The population of the city of Atlanta is projected to triple by 2025. 

The extent of this largest metropolitan area in the southeast is also projected to increase by about 

928,379 ha between 1999 and 2050, which corresponds to a rate of about 50 ha per day, and 

represents an increase of 254% for the entire period (Yang and Lo, 2003). This expansion of urban 

centers has consequently led to the increase in the number of sources of pollution from industries, 
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farms, chicken farms, factories, storages, gas station, sewer foul, waste sites, etc., and the amount 

of urban runoff carrying polluted stormwater (Rose and Peters, 2001). Typical impacts also include 

an increase in chemical loads to local and downstream collecting waters from industrial sources, 

leaking sewer systems and sewer overflows, and soil contamination from industrial sources (Rose 

and Peters, 2001). Numerous industries are based in Atlanta producing tremendous amounts of 

chemical and other toxic substances that, if not handled with care, could have a significant impact 

on the environment when spilled into water resources and soil (Stack & Associates, 2018). 

Moreover, Atlanta’s water and sewer infrastructures are aged (built in the 1880s) and have 

experienced numerous cracks in both water and sewer lines (Clean Water Atlanta, 2010). 

Due to the problems mentioned above, the level of pollution in the Chattahoochee River 

has been rising over the last few decades (EPA, 2018). Sewage, pollutants, trash, and bacteria from 

the tributaries continuously feed into the Chattahoochee River. State and federal environmental 

officials have found ‘hundreds’ of companies and have been suing the ones in the Chattahoochee 

watershed that violated Clean Water Laws. The river struggles with sewage spills and higher levels 

of bacteria and pollutants after heavy rains especially when the temperature rises in the summer 

(Dusen et al., 2017). With the growth of metropolitan Atlanta, severe water pollution from sewer 

overflows and sediment inflow have affected water quality in the Chattahoochee River (Cook, 

2018). In 1995, the city of Atlanta was sued for violating the Clean Water Act (EPA, 1999), and 

in 2000, a federal consent decree instructed the City of Atlanta to clean up 568 tons of trash and 

remove seven automobiles, that fed into the Chattahoochee. Stormwater carries a large volume of 

trash and litter from roads, parks, etc. into the River where it can break down and become a serious 

issue (EPA, 1999).   
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To protect and restore the Chattahoochee River and monitor its water quality, several state 

and federal laws were signed by the Environmental Protection Division of Georgia (EPD), the City 

of Atlanta, and the Environmental Protection Agency (EPA). In 1973, the Metropolitan River 

Protection Act was enacted by the state of Georgia (Georgia General Assembly), setting strict rules 

on new development to establish a 2000 feet Corridor within the Chattahoochee River and 

impound it within 48 miles between Buford Dam and Peachtree (Dusen et al., 2017). Thus, the act 

forced the Atlanta Regional Commission and local governments along the corridor to adopt a plan 

to protect the River Corridor and monitor land-disturbing activity in the corridor. In 1998, a Federal 

Consent Decree was signed by Mayor Bill Campbell to improve water quality in the 

Chattahoochee River, Atlanta metropolitan streams, and South Rivers. The Consent Decree 

committed the city of Atlanta to develop an accelerated program of activities to end water quality 

violations resulting from sewer overflows by 2007 (Cook, 2018). The sewer improvement program 

would include the evaluation of sewer pipe conditions, and rehabilitation or replacement of 

defected or capacity limited sewer lines (EPA, 1999). In February 2017, a member of Congress 

instructed the U.S. EPA to evaluate Atlanta’s compliance with the city’s Combined Sewer 

Overflow Consent Decree by (EPA, 2018). As a result, according to the Office of Inspector 

General of the EPA (2018), Atlanta completed its combined sewer overflow improvement projects 

by 2008 and complied with the Consent Decree, but the city has not yet met all the requirements 

(EPA, 2018). The city continues to work on those projects and has to complete them by 2027, as 

extended by the 2012 amendment. Furthermore, several other state and federal laws and volunteers 

such as the Upper Chattahoochee Riverkeeper, the Safe Drinking Water Act, the State Water 

Quality Control Act, and the Federal Clean Water Act were instated to protect the Chattahoochee 
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River from pollutants, and inspect hundreds of industrial operations annually by providing 

guidance for compliance with applicable laws and permits (EPD, 1997). 

Significant improvements in the quality of water and the effects of sources of pollution 

affecting the Chattahoochee River were noted after implementing the aforementioned federal and 

state laws. The River water quality has improved compared to what it has been over the last decade, 

and contamination from sewage overflows to the River has decreased with the implementation of 

the Consent Decree (Dusen et al., 2017). In 2012, Atlanta reported to the District Court that the 

volume of sewage overflows had been removed by 95 percent since 2004, and at the end of 2017, 

the City also reported to have completed 72 percent of its sewer system construction projects and 

two of its six sewersheds (EPA, 2018). However, despite the advancements and improvements that 

were made in the decade, the River is still exposed to a high level of bacteria and pollutants. 

Regarding the impacts on environmental justice, people of color and low-income in Atlanta 

often suffer disproportionately from sewage overflow, toxic release, factory pollution, and other 

effects of toxic pollution. Georgia's Environmental Protection Division (EPD) does not have an 

official environmental justice policy requiring the consideration of demographics or 

socioeconomic factors before issuing a permit (David, 2012). In 1995, the Georgia Environmental 

Justice Act of 1995 was proposed in Georgia's legislature that would have required the 

consideration of the demographics of an area before issuing a permit. However, the bill did not 

pass. Two years later, the Environmental Justice Act of 1997, that would have required EPD to 

issue an annual state toxic release inventory report on the amount of toxic chemicals released by 

manufacturers, and to assess its risk to affect the public health or nearby communities' 

environment, was also unsuccessful. A decade later, the Georgia Brownfields Rescue, 

Redevelopment, Community Revitalization and Environmental Justice Act of 2006 was proposed. 
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The bill would have addressed the issue of an unacceptably high percentage of brownfields in 

minority-and-low-income communities. It also did not pass (David, 2012). Georgia's "anti-

concentration" law, passed in 2004, is the only law that requires some consideration of 

environmental justice principles. However, it does not address the demographics of the area where 

facilities might locate. While EPD does not have an official environmental justice policy, the ideas 

are integrated into its mission, value, and guiding principles. EPD believes that all Georgians have 

a right to a healthy environment and equitable enforcement of environmental laws (EPA, 2018). 

1.2 Purpose of the Study 

Analyze the distribution of sources of contamination over time and space (spatial and 

temporal variations), and correlate pollution sources with the location of marginalized and low-

income communities as well as people of color who are disproportionately affected by pollutants 

with an environmental justice focus in Atlanta Metropolitan. 

The study was conducted through the following analyses:  

(i) Assessing the spatial-temporal variation of sources of contamination in the Upper 

Chattahoochee River Basin 

(ii) Correlating fracture/fault networks with the sources of contamination and distance to 

the Chattahoochee River’s main trunk and each of its subsidiary watersheds in the 

Metropolitan area. 

(iii) Correlating the spatial distribution of various populations with the sources of 

contamination in Atlanta metropolitan along the larger Chattahoochee River Basin. 
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1.3 Research Questions 

This research was set to answer the following questions:  

1) Is there any spatial-temporal variation of sources of contamination in the Upper Chattahoochee 

River Basin? 

2) Is there any correlation between socioeconomic status and the distribution of sources of 

contamination in the UCRB around the Atlanta Metropolitan area? In other words: Are sub-

populations with a lower socioeconomic status more exposed to a higher number of sources of 

contamination compared with others with higher socioeconomic status? 

3) What is the spatial pattern of the distribution of the contaminants in each sub-watershed and 

its contribution to the main Chattahoochee River watershed downstream? 

4) Is there any correlation between the interconnectivity (intersection density) of the networks of 

fractures/faults systems and sources of contamination along the Chattahoochee River's main 

trunk?  
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2 LITERATURE REVIEW 

2.1 GIS and Point and Non-Point Source Pollutions  

The U.S. EPA defines non-point source pollution as contaminants of water resources, 

surface land, and soil that come from many separate sources. Non-point source pollution is diffuse 

and cannot be materialized in a single point. The U.S. EPA (2012) also attributed non-point source 

pollutant to "excess fertilizers, herbicides and insecticides from agricultural lands and residential 

areas; oil, grease, and toxic chemicals from urban runoff and energy production; sediment from 

improperly managed construction sites, crop and forest lands, and eroding streambanks; salt from 

irrigation practices and acid drainage from abandoned mines; bacteria and nutrients from livestock, 

pet wastes, and faulty septic systems".  

GIS has been used in the past to examine the spatial distribution of non-point source 

pollutions. Jabbar and Grote (2019) used a GIS-based geostatistical analysis to examine non-point 

sources of pollution in agriculture watershed in the Lower Grand River watershed, MO, USA. The 

authors developed GIS databases providing a spatio-temporal variability of physical, chemical, 

and biological characteristics of all small watersheds in the Lower Grand River watershed in north-

central Missouri and southcentral Iowa. Jabbar and Grote (2019) also used surface water quality 

parameters in 35 independent sub-watersheds to examine the effect of geology, topography, and 

land use on the water quality in Midwestern watersheds. The results of these work indicate a 

significant correlation between geologic and land use characteristics and water quality parameters 

and show a negative impact of agricultural activities by elevating the amounts of phosphorus and 

nitrogen in many Midwestern streams and lakes. The work also demonstrated the usefulness of 

GIS-based statistical modeling techniques in water quality monitoring and locating and mapping 

of non-source of contamination. He et al (2014) modeled the spatial distributions of nonpoint 

https://19january2017snapshot.epa.gov/nps/abandoned-mine-drainage
https://19january2017snapshot.epa.gov/nps/abandoned-mine-drainage
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source loading potential in the Saginaw Bay Basin, Michigan, USA. The authors use multiple 

databases of hydrography, soils, agricultural water quality, meteorology, land use, and topography 

through a GIS-model interface to examine the distribution of source of contamination over time 

and space. He et al (2014) found that the major part of the total nutrient loading in the watershed 

is from both point and nonpoint sources. A non-point source has the largest contribution in the 

nutrient loading among the studied watersheds, especially in the rural watershed. 

Land use and land cover such as agriculture, forestry, abandoned mined drainage, roads, 

highways, bridge, urban areas, wetland, and riparian areas, and hydro-modification, habitat 

alteration, and marinas and boarding have driving effects in non-point source pollutants. Many 

studies have shown that land-use change can increase pollution from nonpoint sources, degrading 

considerable water resources, and generating nutrients in surface flow. Tu (2011) examines the 

impact of land-use changes in water quality in 43 watersheds in metropolitan Atlanta and its 

surrounding areas in northern Georgia applying GIS and statistical analyses. The author uses 

Digital Elevation Models (DEM) to delineate watersheds’ boundaries to define sample sites and 

derive land-use types such as forest, urban land, agriculture land, and wetland for each watershed. 

Tu (2011) thereafter performs GIS-based statistical analyses to quantify and examine the spatial 

and temporal relationship between land use and water quality. Although the results of Tu (2011) 

indicate a significant spatial relationship between water quality and land use, no temporal pattern 

was revealed by the analyses. According to Tu (2011), a study of long-term change in water quality 

should consider both natural and anthropogenic factors. Yang et al (2014) examined the effects of 

land-use changes on nonpoint source pollution in the Three Gorges Reservoir, China. The authors 

used the Soil and Water Assessment Tool model, an empirical regression equation, and GIS to 

assess relationships between land-use changes and nonpoint pollutants in the study area. Yang et 
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al (2014) found that land-use change has a strong driving effect on nonpoint pollutants in the study 

area. The result also showed a significant relationship between land-use change and nonpoint 

pollutants. Cressie and Majure (1998) developed a novel GIS statistical modeling technique to 

examine livestock waste in streams of the upper North Bosque watershed, Texas. The author 

collected daily data for 15 days from 17 stream monitoring sites to measure and predict the 

variation of nitrate concentration over time at all stream locations. According to Cressie and 

Majure (1998), the spatio-temporal model presented is an efficient modeling technique allowing 

the prediction of contaminant concentrations in space and time with a known confidence level and 

presents a novel approach to GIS in solving a prediction problem.  

The need to apply modern approaches and tools to monitor and inventory point source 

pollution, and identify potential pathways for contaminant transport from point source pollution 

has been emphasized over the last decade to reduce the potential risks to surface and groundwater 

contaminations (Machiwal and Jha, 2010). The U.S. EPA (2012) defines point source pollution as 

“any discernible, confined and discrete conveyance, including but not limited to any pipe, ditch, 

channel, tunnel, conduit, well, discrete fissure, container, rolling stock, concentrated animal 

feeding operation, or vessel or other floating craft, from which pollutants are or may be 

discharged”. GIS-based geostatistical modeling techniques and multivariate statistical analyses 

have been used in the past to study surface and groundwater contamination. Machiwal and Jha 

(2015) used multivariate statistical analyses and GIS-based geostatistical modeling techniques to 

study contaminant sources in a fractured rock aquifer system in India. The authors explored fifteen 

groundwater quality parameters using the principal component analysis and geostatistical 

modeling combined to identify sources of groundwater contaminants. Results of Machiwal and 

Jha (2015) revealed a correlation between rainfall and groundwater quality, and control of 
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groundwater contamination by the geology of the study area and anthropogenic processes. Jelks 

et al (2018) developed a participatory mapping approach in the Proctor Creek Watershed (Atlanta, 

Georgia) through a community-based knowledge to emphasize the importance of involving 

residents in the environmental hazardous studies. The approach allows Proctor Creek Watershed 

resident to use their knowledge and live experience to analyze and document the environmental 

stressors in their community through a designed mobile application collecting the resulted data 

associated with these stressors. According to Jelks et al (2018), knowledge from communities 

living in degraded environment areas can contribute to scientific inquiry, help advance 

environmental justice, and positively influence environmental remediation process and policy 

change. Jelks et al (2018) study has contributed to the environmental hazards' datasets in the 

Proctor Creek Watershed. Adhikary et al (2015) used a spatio-temporal approach to assess 

variation in groundwater quality for irrigation in west Delhi, India through a GIS-based multi-

criteria system. The authors found that the groundwater in the southern part of the study area is 

mostly unsustainable, and the western and northern parts were observed to have variable quality. 

2.2 DRASTIC Model and Groundwater Contamination  

The DRASTIC model is a worldwide-used method to assess aquifer vulnerability to 

contamination, developed for the United States Environmental Protection Agency by Aller et al in 

1987 (Chakraborty, 2007). During the last decade, the need for the application of the modern 

system and tools to address groundwater contamination issues in the United States has been 

emphasized. The DRASTIC model combined with GIS is a viable tool for visualizing groundwater 

potential to pollution through a vulnerability map. GIS was first used to implement the DRASTIC 

model by Merchant et al (1987) and Martinko et al (1987). Many other studies in the past have 

used the DRASTIC model combined with GIS to assess groundwater vulnerability. Shirazi et al 
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(2012) reviewed several papers developing the GIS-based DRASTIC model as a methodology to 

assess groundwater vulnerability. The authors compared the DRASTIC method with various types 

of overlay & index methods to assess its ability to identify some research gaps. Shirazi et al (2012) 

found that the combined GIS and DRASTIC models are more efficient to assess groundwater 

vulnerability, and can be adopted in different regions such as basaltic, arid, semi-arid, and 

agricultural. Shirazi et al (2013) examined groundwater vulnerability assessment in the Melaka 

State of Malaysia using the DRASTIC Model combined with remote sensing and GIS techniques 

to illustrate the groundwater vulnerability map for the study area. They found two cities of the 

Melaka State: Jasin, and Alor to be the most vulnerable areas. Chakraborty et al (2007) examined 

the aquifer vulnerability to pollution in West Bengal, India using DRASTIC Model. The authors’ 

results indicated the presence of arsenic impacting 62% of the vulnerability class area.  Akram and 

Hallaq (2011) used the DRASTIC Model to assess the groundwater vulnerability to contamination 

in Khanyounis governorate, Palestine. The authors used ArcGIS 9.3 software and the hydrologic 

characteristic of the study area to develop a vulnerability map. These authors indicated the soil 

media as the most significant parameter influencing the pollution of the Khanyounis governorate 

groundwater. Jang et al (2017) applied the DRASTIC model to assess aquifer vulnerability to 

contamination for sustainable groundwater management and protection. The paper also 

emphasized the efficacy of using a binary classifier to calibrate DRASTIC weights with a genetic 

algorithm (Bi-GA) to assess aquifer vulnerability to contamination. Jang et al (2017) results 

indicated that the proposed approach is a viable tool that may apply to any area for groundwater 

management efforts. 

Other studies combine the standard DRASTIC model with land use/land cover (LULC) 

data and/or lineament density map to develop a new model for assessing groundwater vulnerability 
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to contamination called the "modified DRASTIC model”. For example, Abdulla et al. (2014) 

developed a modified DRASTIC model by associating the generic DRASTIC model with land use 

activities and lineament density to assess groundwater vulnerability in Amman-Zerqa Basin 

(Jordan River). Abdulla et al (2014)'s results present the modified DRASTIC model as a viable 

tool for groundwater vulnerability assessment to various types of pollution. The paper also 

emphasizes the importance of considering land-use factor when changing human or agricultural 

activity patterns in a basin, and the precision of the modified DRASTIC model by comparing high 

contaminated areas with nitrate concentration level data which show a linear relationship. Singh 

et al (2015) examine various models including the modified-DRASTIC model named DRASTICA 

to evaluate groundwater vulnerability to pollution in an urbanized environment in Lucknow, India. 

Their method applies an innovative methodology to assess the influence of human activities using 

satellite observations of night-light and land-use/land cover surrounding the urbanized area in 

Lucknow, India.  Singh et al (2015), results proved the proposed DRASTICA model as an efficient 

method for assessing groundwater vulnerability in an urbanized environment. By verifying the 

results with nitrate concentration in groundwater, the authors found the model to yield a better 

result than the standard DRASTIC model. Through a sensitivity analysis, they also found that 

anthropogenic impact and depth to the water table have a significant impact on the model. Ahmad 

and Akihiko (2008) examined the relationship between the DRASTIC model and human activity 

impact indices to assess groundwater vulnerability to contamination within the Dead Sea 

groundwater basin in Jordan. The results indicated that the depth to the water table and hydraulic 

conductivity have a low impact on the model compared to, the vadose zone, aquifer media, and 

recharge parameters that significantly impact the DRASTIC model. Ahmad and Akihiko's (2008) 

results also showed an impact of human activity on groundwater quality, as it increases the 
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pollution risk. The authors verified the results with the nitrate concentration map, which shows a 

good relationship. 

2.3 GIS and Environment Justice Assessment  

In addition to providing a variety of qualitative and quantitative tools for the visualization 

of environmental situations, GIS is a helpful tool for evaluating environmental justice and 

informing the general public about contamination. Spatial dispersion of low-income and minority 

populations, and quantitative analysis of racial, ethnic, and economic data (income, ownership) 

can be studied and performed through different techniques in GIS (Zimmerman, 1993). The 

availability of demographic data in digital format and at different spatial levels, e.g., block, census 

tract, zip code, and county, and the increasing computational power have extended the application 

of GIS to the assessment of environmental justice (Burke et al., 1993). A few studies in the past 

have correlated the spatial distribution of subsets of a population-based on income level, race, and 

ethnic origin to the distribution of hazardous waste sites to analyze environmental justice impacts. 

MacDonald et al (2014) correlated race with water access in North Carolina. The authors 

determined the percentage of residences with municipal water service in Wake County, North 

Carolina, using tax data and logistic regression methods. The motivation behind their research was 

based on the fact that African American communities on the fringes of cities and towns in North 

Carolina have been systematically denied access to municipal drinking water service. MacDonald 

et al (2014) found that an increase of 10% in African American population proportion within a 

census block increased by 3.8% the odds of exclusion from municipal water service. Bullard et al 

(2007) examined toxic wastes and race in the United States and produced the report: "Racial and 

Socio-Economic Characteristics of Communities with Hazardous Waste Sites". They found race 

to be more efficient than household income for predicting the location of hazardous waste facilities 
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in the United States. Pasetto et al (2019) reviewed 14 articles in the procedural environmental 

justice in sites contaminated by hazardous waste from industries in the World Health Organization 

European Region. The authors found that, except for the UK, the countries in the WHO European 

Region are in their early stages in terms of environmental and health inequalities studies and the 

generation of their mechanisms in areas affected by hazardous waste from industries. Khabo-

Mmekoa and Momba (2019) evaluate the social disparities between rural and urban areas in Ugu 

District, South Africa. The authors used water quality data and social-economic data to evaluate 

the social disparities in terms of the provision of safe drinking water, housing patterns, access to 

sanitation facilities, and health issue related to diarrheal episodes. Khabo-Mmekoa and Momba 

(2019) result revealed a significant social disparity between rural and urban areas in terms of water 

supply and quality, and a high level of E. Coli contamination in the stored water used by the rural 

community of Ugu District. Bolin et al (2000) used the U.S. EPA Toxic Release Inventory (TRI) 

to perform a spatial distribution analysis of industrial facilities releasing toxic substances in 

Phoenix, Arizona. They found a clear pattern of environmental inequity in Phoenix and unequal 

distribution of risk. 

Kumar (2002) examined various methodologies that evaluate the risk of the 

disproportionate burden to communities through a survey of the literature and public institutions 

concerning the unique character and composition of New England. The author used specific 

variables such as ethnicity, poverty, and population density to determine threshold/reference value 

and establish a ranking system along with investigating spatial clustering into combined criteria. 

Kumar (2002) made several recommendations to the EPA New England regional office on how to 

improve their demographic mapping system with various methods of analysis. Park and Kwan 

(2017) studied the limitations of traditional residence-based approaches in terms of examining the 
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relation between socioeconomic or racial/ethnic segregation and unequal environmental exposure 

through a review of the relevant literature. The authors also examined the importance of using 

fine-scale spatiotemporal approaches in assessing environmental exposure in environmental 

justice research. Park and Kwan's (2017) result reveals that future research needs to assess 

environmental exposure at a high spatiotemporal resolution and consider various geographic and 

temporal contexts i.e., beyond residential segregation. According to the authors, this approach can 

significantly expand the scope of environmental justice research. Schaider et al (2019) examined 

environmental justice and drinking water quality to identify socioeconomic disparities in nitrate 

levels in U.S. drinking water. The researchers used EPA’s Safe Drinking Water Information 

System (SDWIS) along with nitrate data from 2010 and city- and county-level demographic data 

to identify socioeconomic disparities in nitrate levels. The authors also applied multivariable 

regression analyses at national and regional scales to study disparities at large scale. The Schaider 

et al (2019) results reveal significant disparities in term of drinking water quality as far as nitrate 

levels in U.S. According to the authors, between 2010 and 2014, 5.6 million Americans used 

Community Water System (CWS) with an average nitrate concentration larger or equal at 5 mg/L 

NO3-N. Water provided by each system to the percent of Hispanic residents is significantly 

associated with nitrate, exceeded 5 mg/L nearly three times as often as CWSs serving the lowest 

quartile. Schaider et al (2019) study also shows a significant association between the extent of 

agricultural land use and groundwater nitrate concentration. 
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3 METHODS AND PROCEDURES 

3.1 General area description 

3.1.1 Geographical context 

The Chattahoochee River has its source in the southeast corner of Union County in the 

southern Appalachian Mountains. The river runs about 434 miles and flows southwesterly through 

the Atlanta metropolitan area and Alabama before terminating in Lake Seminole in the Georgia–

Florida border (Cook, 2018). At the Georgia-Florida border, the Chattahoochee River joins with 

the Flint River where the name changes to the Apalachicola River in Florida. The entire drainage 

basin is often named Apalachicola-Chattahoochee-Flint (ACT) basin (Cook, 2018). The 

Chattahoochee River is the most heavily used water resource for the drinking water of Georgia (an 

integral facet of the state of Georgia and the city of Atlanta), providing more than 70% of metro-

Atlanta's water needs (EPD, 1997). Thirteen dams and three lock-and-dam facilities that regulate 

and control the flow of the River over most of the portion of its length are responsible for 

generating hydropower and electricity (Cook, 2018). In the 1950s, the U.S. Army Corps of 

Engineers impounded the Chattahoochee River at Buford Dam to create Lake Lanier. Lake Lanier 

and the Chattahoochee River provide 72% of metro Atlanta's water supply and assimilate a large 

amount of major wastewater treatment plant discharge (EPD, 1997). 

 



17 

 

Figure 3-1 Map of the Apalachicola-Chattahoochee River Basin (Riverkeeper 

 

The Upper Chattahoochee River (UCR) Basin flows southwest to the confluence of the 

Chattahoochee River with Peachtree Creek. Its headwaters are located in the Blue Ridge 

Mountains northeast of the Metro Water District, and approximately 43 percent (680 square miles) 

of this UCR Basin is located upstream of the Metro Water District. Through the center of the Metro 

Water District (about 40 miles wide), the UCR occupies a relatively narrow corridor, which starts 

in the northeast corner and extends to the southwest corner (USGS, 2017). The UCR forms the 

largest river basin within the Metro Water District when combined with the Middle Chattahoochee 

River. It covers 1,823 square miles. The Metro Water District-portion of the Upper Chattahoochee 

River Basin incorporates portions of 29 cities and 7 counties, including Cherokee, Cobb, DeKalb, 
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Forsyth, Fulton, Gwinnett and Hall. The City of Brookhaven in DeKalb County, the City of 

Peachtree Corners in Gwinnett County, 35 percent of the City of Atlanta, and all of northern Fulton 

County are now incorporated within the Upper Chattahoochee River Basin (Metro Water District, 

2002) 
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    Figure 3-2 Chattahoochee River Basin across Atlanta metropolitan                          
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3.1.2 Geological and hydrogeological setting 

The geology of Georgia is made up of five distinct physiographic provinces. From the 

northwest corner of Georgia to the southeast, these are the Appalachian Plateau, Valley and Ridge 

region, Blue Ridge, Piedmont, and Coastal Plain. These geologic regions are distinct based on their 

topography, structure, and rock type, and how they weather and erode (Edwards et al., 2013). The 

study area is entirely within the Piedmont province and includes portions of the Gainesville Ridge, 

Central Highlands, and the Winder Slope physiographic districts. The Piedmont province (where 

the Chattahoochee River is entirely located) contains a series of rolling hills and occasional 

isolated mountains, and lies between the north Georgia and the Coastal Plain. The Piedmont 

province takes up approximately 30 percent of Georgia (second-largest geographical region after 

the Coastal Plain) and contains the highest population (Edwards et al., 2013). It has the oldest 

rocks and the highest mountains in Georgia (above 4000 feet) along with the Blue Ridge. The 

region is underlain by deformed metamorphic and igneous rocks (crystalline) dated late 

Precambrian and late Permian age, including granite, gneiss, schist, amphibolite, and migmatite 

(Gordon and Painter, 2018). 
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Figure 3-3 Map of Georgia Primary Aquifers (USGS, 1997, modified) 

            

 

Piedmont takes up most of northern Georgia above the fault line and presents features like Stone 

Mountain and the Brevard Fault zone. Unlike the Valley and Ridge sediments, geologic structures 

of Piedmont rocks such as fold and fault formed deep inside the mountain belt, and several mafic 

dikes intruded in this region during the Mesozoic and Cenozoic Eras. In Georgia, the Brevard Fault 

zone runs parallel to the Chattahoochee River as a hydraulic control and its rocks are deeply 

sheared and fractured. Such rocks include schists, mylonite, and gneiss (Edwards et al., 2013). The 

aquifer in the study area is in crystalline rock (igneous, metamorphic), and is overlain by a layer 

of unconsolidated rocky material (regolith). Such rocks and fractures in the study area make up 

the available aquifer porosity and control the flow of water and transport of pollutants and 

groundwater recharge (USGS, 2017). 
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Figure 3-4 Atlanta Underlying Bedrock Geology (USGS, 1997) 

                      

 

3.1.3 Soils of the study area 

The soil types in the study area are described by four soil associations: Cecil-Madison-

Pacolet, Madison-Davidson-Pacolet, Riverview-Chewacla-Cartecay, and the "urban" soils starting 

in North Fulton County. The first two types of soil are well-drained, highly weathered, and the 

most abundant in the study area. These types are associated with moderate rolling hills (Murphy, 

1979). The Riverview-Chewacla-Cartecay association is less well-drained and is located along 

major river banks such as the lower half of the Chattahoochee River. The "urban" soils are highly 

disturbed and compacted. Hence, they are poorly-drained and are less feasible for infiltration 

(Thomas and Tate, 1973).  Soils of the study area are acidic and nutrient-poor with a typical pH of 

around 4.7, and thickness between 3 and 6 feet. The texture ranges from sandy to loamy depending 

on local topography and hydrology (Edwards, 2013). The soil mineralogy depends on the bedrock 

material, and is extremely variable within the urban environment. The primary mineralogy of the 
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soils is quartz, kaolin, iron oxides, and vermiculite. When chemical weathering occurs, the native 

soils of the study area are heterogeneously weathered from quartzite, gneiss, mica schist, 

ultramafic intrusions, ultra-mafic dikes, and mylonite (Gore and Witherspoon, 2008). 

3.2 Data collection 

The data for this project, retrieved from multiple sources, include hydrology, geology, and 

hydrochemical types collected from the Upper Chattahoochee River Basin (UCRB). These include 

spatial and temporal data from the National Water Information System (USGS water resources, 

https://waterdata.usgs.gov/nwis/qw) and the National Oceanic and Atmospheric Agency (NOAA), 

as well as the spatial extent of the UCRB (.shp file) and its sub-watersheds in the study area (around 

the Atlanta Metropolitan area). Hydrochemical data include physical and chemical characteristics 

of surface water parameters (drinking water quality). Data and information, acquired in spatial and 

geographic formats, include maps, shapefiles, Excel files, geodatabase files, and charts. The USGS 

National Water Information System (NWIS) includes more than 850,000 station years of time-

series data and supports the acquisition, processing, and storage of water data. Such data describe 

reservoir and lake levels, stream levels, streamflow, surface-water quality, and rainfall (USGS, 

2020).  

The project also applied spatial and temporal data related to sources of pollution of all 

kinds in the study area. This includes sources such as farms, chicken farms, factories, storages, 

airports, gas stations, sewers, waste sites. These time-series data were gathered from the U.S. EPA 

Toxics Release Inventory (TRI) program that provides resources about toxic chemical releases 

reported by industrial and federal facilities since 1987 (https://www.epa.gov/toxics-release-

inventory-tri-program/tri-listed-chemicals). Through the TRI Program, U.S. facilities must 

annually report the amount of chemicals released to the environment and/or recycled, recovered, 

https://waterdata.usgs.gov/nwis/qw
https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.epa.gov%2Ftoxics-release-inventory-tri-program%2Ftri-listed-chemicals&data=02%7C01%7Cademe2%40student.gsu.edu%7C78dada4140d54b4fca6608d7bd5c16a8%7C704d822c358a47849a1649e20b75f941%7C0%7C0%7C637186077561170185&sdata=UzhJCg9jmBFy8c%2FOhDc1d3deoI8TSI7gfL1%2F9i3bOf8%3D&reserved=0
https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.epa.gov%2Ftoxics-release-inventory-tri-program%2Ftri-listed-chemicals&data=02%7C01%7Cademe2%40student.gsu.edu%7C78dada4140d54b4fca6608d7bd5c16a8%7C704d822c358a47849a1649e20b75f941%7C0%7C0%7C637186077561170185&sdata=UzhJCg9jmBFy8c%2FOhDc1d3deoI8TSI7gfL1%2F9i3bOf8%3D&reserved=0
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and treated. EPA compiles the information in the TRI and makes them available through different 

online tools. Data for the sources of contamination were mainly downloaded from this website. 

The time-series data range from 2000 to 2019. Data and information included maps, shapefiles, 

Excel files, geodatabase files, and charts. 

Comprehensive population data, including the spatial distribution of subgroups, i.e., 

different people (with all attributes such as age, income, race, sex etc., that distinguish them from 

each other) living in the study area. The population data were obtained from the US Census Bureau 

(US census) and the Atlanta Regional Commission (ARC). The US Census Bureau 

(https://www.census.gov/programs-surveys/geography/geographies/mapping-files.2018.html) 

produces yearly population estimates at the state level for the USA while the ARC makes yearly 

population estimates for the 10-county Atlanta region (https://opendata.atlantaregional.com/). 

These data are tabulated based on race, ethnicity, income, age, gender, etc. and are time series. 

Landsat 8 image and ASTER-DEM from May 2019 of the study area are from the USGS 

Earth Explorer website. The USGS Earth Explorer (https://earthexplorer.usgs.gov/) supports 

geospatial datasets from extensive dataset such as Landsat satellite imagery, Radar data, UAS data, 

digital line graphs, digital elevation model data, aerial photos, Sentinel satellite data, IKONOS and 

OrbView3, land cover data, digital map data, and many other datasets (USGS). The day for each 

image is specified depending on how the atmospheric condition was in the Atlanta region during 

that month (cloudy, cloud-free, etc.). The imaging times were selected in early summer (May) to 

reduce the influence of the cloud and other atmospheric factors on the images. 

The project also involved using land use/land cover (LULC) data. The LULC data was 

produced from the unsupervised classification of Landsat 8. 

https://www.census.gov/programs-surveys/geography/geographies/mapping-files.2018.html
https://opendata.atlantaregional.com/
https://earthexplorer.usgs.gov/
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Fracture/fault data (lineament) were obtained by extraction from Landsat 8 using 

Geomatica software and ArcGIS. This is an automatic extraction allowing to get lineament data 

(lineament maps) and its attributes (coordinates of their center point, length).  

Surface quality parameters used data on Ca, Mg, Na, K, Fe, SO4, Cl, NO3, SiO2, EC, pH, 

P, Cu, Cr, Ni, Mn, Pb, Zn in the study area. These data are available on the USGS National Water 

Information System website (https://waterdata.usgs.gov/nwis/qw).    

3.3 Methods 

3.3.1 Mann–Kendall test and Sen’s slope estimation method  

To detect and quantify trends in water quality parameters, Mann–Kendall test, and Sen's 

slope estimation method (refer to as Sen's slope test) were applied respectively in this study. The 

two general approaches for trend detection are parametric method and nonparametric method. The 

parametric method is used when the mean more precisely represents the center of the distribution 

of the data, and the sample size is large enough. The nonparametric method is used if the median 

more accurately represents the center of the distribution of the data. Thus, the parametric method is 

used only when the data are independent and normally distributed (Machiwal and al., 2012). In 

this study, a nonparametric test is used to detect the existence of a long-term trend in water quality 

parameters. The commonly used and preferred nonparametric trend detection methods in 

hydrology are Spearman Rank Order Correlation test, Kendall’s Rank Correlation test, and Mann–

Kendall test (Machiwal and Jha 2012; Shahin et al., 1993; Kanji, 2001; Machiwal et Jha, 2015; 

Kumar, 2003; Zipper et al., 1998). The Mann–Kendall test were performed in this study for the 

detection of a trend and correlation among surface quality parameters (Ca, Mg, Na, K, Fe, SO4, 

Cl, NO3, SiO2, EC, pH, P, Cu, Cr, Ni, Mn, Pb, Zn) using two decades data (2000 to 2019) of 250 

https://waterdata.usgs.gov/nwis/qw
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surface water sample sites. The Mann–Kendall analyses were conducted using SPSS and Microsoft 

Excel.  

 

            Figure 3-5 Surface Water Sample Sites                                                                       
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The Sen’s slope estimation method was then used to quantify trends in all groundwater 

quality parameters. It is the most popular nonparametric technique for estimating a linear trend in 

the water quality time series of equally spaced data i.e., the slope of a regression line that fits a set 

of (x, y) data elements (Sen, 1968). The Sen’s slope is an extension of the method developed by 

Theil in 1950, and the approach is not valid when the data elements don't fit a straight line (Theil, 

1950). Thus, positive and negative groundwater quality trends were quantified using the following 

slope estimation equation (Sen, 1968): 

 

Where βk = slope between xik and xjk; xik = data measurement at time i; xjk = data 

measurement at time j; and k = site. The positive value of βk refers to an upward trend and a 

negative value to a downward trend.  

3.3.2 Principal component analysis (PCA) 

PCA is a statistical technique applied to a single set of variables to reduce multidimensional 

datasets to lower dimensions that can be more easily visualized and analyzed (Davis, 2002). PCA 

is the widely used statistical methods for analysis and ranking of water chemistry (Machiwal and 

Jha, 2015; Dunteman, 1989; Abdi and Williams, 2010). The purpose of this analysis in this study 

was to transform the data of each surface water sampling site into a small uncorrelated set of factors 

called principal components (PCs). The PCs will contain most of the information present in the 

original surface water dataset with a small loss of total variance. Also, with the help of PCA, the 

correlation between surface water variables can be detected, which might also describe the 

contamination process or sources. PCA was performed in this study using the 18-surface water 

parameter (Ca, Mg, Na, K, Fe, SO4, Cl, NO3, SiO2, EC, pH, P, Cu, Cr, Ni, Mn, Pb, Zn) for 20 
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years (2000 to 2019). SPSS statistics software was used and the water quality data were 

standardized by the Z-scale transformation.  

The PCA mainly consists of two steps, data standardization, and PC extraction. The range 

of the initial variables is standardized for an equal contribution of each of them to the analysis. It 

is important to perform data standardization prior to PCA as any large difference between the 

ranges of initial variables would result in the dominance of the larger range variables over the 

variables with small ranges in the analysis (Dunteman, 1989). The next step of the PCA is to 

compute the covariance matrix to identify any relationship between variables i.e., how variables 

of the input dataset are varying from the mean. Thereafter, the principal components are identified, 

and the less important variables disregarded by extracting the eigenvectors and eigenvalues of the 

correlation matrix. Eigenvectors and their corresponding eigenvalues are the special set of scalars 

that need to be set in a descending order to find the principal components in order of significance 

(Davis, 2002). Furthermore, Kaiser Normalization Criterion was also used to determine the 

number of PCs to retain from extraction (Kaiser, 1958). The PCs that contain most of the 

information present in the original surface water quality data with a small loss in total variance 

were considered for further analysis.     

3.3.3 Spatial pattern analysis of contaminant sources (K-Function) 

As stated in the thesis introduction, analyzing the spatial distribution of contamination 

sources in the Atlanta metro area is one of the main objectives. The aim of applying data mining 

and point pattern analysis is to extract patterns from data and transform them into information. 

Point pattern analysis is the evaluation of the spatial arrangements (patterns) of a set of points in 

space (Marcom et al., 2013). Point distribution can show a clustered pattern, dispersed pattern, or 

random pattern. The most widely used point pattern analysis methods are Quadrat Analysis, 
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Nearest Neighbor Analysis, Ripley's K-function, and Spatial Autocorrelation Coefficient. 

Theoretical detail on how these methods work is omitted here to keep the thesis in an adequate 

length. In this study, Ripley's K-function statistic was performed to describe how point patterns 

occur in the study area over two decades (2000-2019), especially in 2000, 2003, 2006, 2009, 2012, 

2015, and 2019 using ArcGIS. Ripley's K-function is a spatial analysis method to analyze 

clustering or dispersion over a range of distances. It examines how spatial clustering changes when 

the neighborhood size changes. Ripley's K-function statistic is the commonly used tool among the 

point pattern analysis methods to characterize the spatial structure of a point set. Theoretical details 

on Ripley's K- function can be found in (DIXON, 2002; Marcom et al., 2013).   

Furthermore, the result from the above analysis (sources of contamination) was correlated 

to the spatial distribution of all groups of people in the study area. Sources of pollution distribution 

were correlated with socioeconomic status (race, income, sex and age) and adjacency to 

contamination sites to examine the disproportionality of hazardous exposure in the study area. 

Maps and charts were created to visualize this correlation. 

3.3.4 Lineament extraction and analysis 

The aim of extracting lineament information from Landsat 8 image and ASTER-DEM was 

to generate the lineament map (from the fracture/fault data). The lineament map as a thematic map 

includes the lineament map, lineament length density map, lineament counts density map, and 

lineament cross-point density map. Such lineament maps help to contour the intersection points of 

these lineaments to find high-density areas of potential groundwater recharge from surface and 

soil waters, especially where contamination sources are located. The map also allows creating rose 

diagrams from the fracture data to plot the orientation of the lineaments and get a sense of possible 

surface water and groundwater interaction. Lineament extraction is an application of remote 
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sensing to geology. It is useful for geological analysis and oil exploration and constitutes an 

interesting approach in geological mapping and mineral exploration (Sander et al., 1997). The 

process includes automatic extraction from satellite imagery of lineament information such as 

orientation and other attributes (e.g., coordinates of their center point, length). Lineaments, as long 

linear features or patterns on Earth surface, are mapped on satellite imageries from areas with 

various geomorphologic and/or tectonic structures. They reflect the geological structures such as 

faults or zones of fractures (Manjare, 2013). However, the real definition or meaning of lineament 

is still questionable. Geological lineament form as a result of geological processes (fracturing, 

erosion) and as such must be discriminated from other artificial, man-made or imaging artifact 

linear features. Therefore, lineament maps should be carefully interpreted by geologists. Richards 

(2000) and O’Leary (1976) definition of lineament is the widely accepted one, and describe them 

as linear topographical feature or zones of structural weakness (fractures, faults). 

In this study, an automatic lineament extraction system from a Landsat 8 image and an 

ASTER-DEM was performed using Erdas Imagine, PCI Geomatica software, ArcGIS, and 

Rockwork 16.  

The following main steps were followed to perform the automatic lineament extraction: 

• Step 1 consists of using Erdas imagine to perform a principal component analysis (PCA) 

on the 8-bit grayscale image Landsat 8 image (spatial resolution of 15 m). The resulted 

principal component image (PC1) of the Landsat 8 pansharpened reflected bands was only 

considered for the extraction. The PC1 carries out most information and is suitable for 

lineament extraction purposes.  

• Step 2 involved using the LINE module from the PCI Geomatica software to extract linear 

features from the PC1 generated from Erdas Imagine and record the polylines in a vector 
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layer. The LINE module extracts lineaments from any singles 8-bit image in three steps: 

edge detection, thresholding, and curve extraction. Details of these three steps are omitted 

here to avoid the excessive length of the thesis and can be found in (Prasad et al., 2013). It 

is important to determine the most accurate parameter of LINE for the best reliable results 

before the extraction.  

• Step 3, the output of the LINE (extracted lineaments) was imported to ArcGIS software for 

analysis. The ArcGIS software handles the extracted lineaments through three sub-steps: 

splitting the compound line into simple lines, editing lineament attributes, and exporting 

lineament as a CAD file. Finally, the exported lineament CAD file was processed to 

determine the trend of the lineament and generate the rose diagram using Rockworks. 

 

Furthermore, the resulted lineament maps were also used to perform several correlations 

to measure the dependence of the variables on each other to identify the most important variables 

that control the spatial and temporal distribution of the contaminants. This includes correlation of 

the interconnectivity (intersection) of the fractures with sources of contamination (as potential 

points of recharge for groundwater and point of input of contaminants).  
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4 RESULTS 

 

4.1 Spatio-Temporal Variations of Water Quality Parameters 

The results of the univariate analysis (mean, standard deviation, minimum, and maximum) using 

250 surface water quality sample sites for 20 years (2000 to 2019) are shown in Table 4.1. Table 

4.1 presents the average yearly data of selected parameters (Ca, Mg, Na, K, Fe, SO4, Cl, NO3, 

SiO2, EC, pH, P, Cu, Cr, Ni, Mn, Pb, Zn) that were measured in 250 stations across the Atlanta 

metro in 2000, 2003, 2006, 2009, 2012, 2015, and 2019. It is important to note that data from only 

one station was available for parameters Na, K, Fe, SO4, Cl, Cr, Ni, Mn in 2019. Thus, the annual 

mean values for these parameters were estimated based on the temporal trend and defined pattern 

of change in the values of the missing parameters. The average values of the missing parameters 

for 2000, 2003, 2006, 2012, and 2015 were plotted to “extrapolate” an estimated average value for 

2019.  

Box and whisker plots depicting the variation of 18 surface water quality parameters for 

20 years (2000 to 2019) are shown in Figure 4.1. As shown in Table 4.1 and Figure 4.1, there is a 

temporal variation in the water quality parameters across the Atlanta metro around the 

Chattahoochee River. Parameters such as Ca, Mg, Fe, SiO2, NO3, and Cl present a relatively large 

length of boxes and whiskers compared to other parameters. However, the highest length of boxes 

and whiskers were found in the case of Fe and Cl, indicating large spatio-temporal variations. 
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  Table 4-1 Univariate analysis of surface water quality parameters in 2000, 20003, 2006, 2012, 2015, and 2019 

 

                  UNIT: ion concentration (mg/L), pH (Standard Units), EC (S/m)                                                                                      
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                    Figure 4-1 Box-whisker plots of surface water quality parameters 
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Figure 4.1 (Continued) 
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Figure 4.1. (Continued) 
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Figure 4.1 (Continued) 
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Figure 4.1 (Continued) 
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Figure 4.1 (Continued) 
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4.2 Trend in Surface Water Quality 

4.2.1 Trend over Time  

The results of the Mann Kendall test and the Sen’s Slope estimator indicating the existence 

and nature of trends (increasing, decreasing, or neutral) from 2000 to 2019 in the surface water 

quality parameters are shown in Table 4.2. Based on a 5% significance level, the Mann Kendall 

test was performed to check for a statistically significant decreasing or increasing trend from 2000 

to 2019. The Mann Kendall test model of interpretation was done based on the level of statistical 

significance often expressed as p-value, and the null and alternative hypotheses. The null 

hypothesis(H0) specifies the data are independent and randomly ordered (existence of no trend), 

and the alternative hypothesis (H1) expresses significant increasing or decreasing trend in data 

over time. The p-value is the level of statistical significance or the probability for the variate to be 

observed as a value greater than or equal to the value observed. If the p-value is lower than 0.05 

based on a 5% significance level, then the alternative hypothesis is accepted and the null hypothesis 

rejected. And if the p-value is greater than 0.05, then the null hypothesis will be accepted.  

As shown in Table 4.2, seven parameters (Fe, pH, P, Cu, Ni, Pb, and Zn) indicated 

increasing trends in their concentration from 2000 to 2019. The rest of the parameters have similar 

decreasing trends in their concentration from 2000 to 2019. Data from Table 4.2 show that 

statistically significant trend at 5% significance level (p-value < 0.05) of surface water quality 

parameters were only detected for the three parameters of Na, K (statistically significant 

decreasing trend detected), and Pb (statistically significant increasing trend detected). 
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Table 4-2 Mann Kendall trends and Sen’s Slope Estimator of Parameters from 2000 to 2019 

 MANN KENDHALL AT 5% SIGNIFICANCE LEVEL SEN'S SLOPE METHOD 

Parameters 
Kendall's  

Tau 
MK  

Statistics 
p-

value  
 Interpretation Slope Intercept 

Nature of 
trend 

Ca -0.62 -13 0.07 Accept H0(NSTD) -0.202 412.68 Decreasing 

Mg -0.05 -1 1.00 Accept H0(NSTD) -0.002 5.44 Decreasing 

Na  -0.71 -15 0.04 Reject H0(STD) -0.343 695.77 Decreasing 

K -0.71 -15 0.04 Reject H0(STD) -0.094 192.14 Decreasing 

Fe 0.24 5 0.55 Accept H0(NSTD) 0.007 -14.72 Increasing 

SO4  -0.05 -1 1.00 Accept H0(NSTD) -0.031 73.96 Decreasing 

Cl -0.24 -5 0.55 Accept H0(NSTD) -0.068 143.52 Decreasing 

NO3  -0.24 -5 0.55 Accept H0(NSTD) -0.008 16.26 Decreasing 

SiO2  -0.14 -3 0.76 Accept H0(NSTD) -0.045 99.79 Decreasing 

EC -0.43 -9 0.23 Accept H0(NSTD) -0.001 2.02 Decreasing 

pH 0.62 13 0.07 Accept H0(NSTD) 0.011 -15.62 Increasing 

P 0.33 7 0.37 Accept H0(NSTD) 0.001 -2.69 Increasing 

Cu 0.52 11 0.13 Accept H0(NSTD) 0.001 -1.50 Increasing 

Cr -0.33 -7 0.37 Accept H0(NSTD) -0.000055 0.11 Decreasing 

Ni 0.24 5 0.55 Accept H0(NSTD) 0.000039 -0.08 Increasing 

Mn -0.33 -7 0.37 Accept H0(NSTD) -0.002 4.84 Decreasing 

Pb 0.81 17 0.02 Reject H0(STD) 0.001 -1.36 Increasing 

Zn 0.52 11 0.13 Accept H0(NSTD) 0.002 -4.02 Increasing 

NSTD: No Significant Trend Detected at 5% significance level 
STD: Significant Trend Detected at 5% significance level                                                                                                                                                             
 

 

4.2.2 Trend over Latitude of the location of the sample sites 

The nature and magnitude of trends in water quality parameters over latitude are shown in table 

4.3. Given that Chattahoochee River runs approximately from north to south, the mean of the 

values for each parameter in each station was plotted against the latitude of the location of the 

sample sites to check the north to south variations and find the trend among the parameters roughly 

along the length of the river. It is revealed that all the parameters have similar spatial trend 

(increase toward the south) except for Ca, Fe, and pH that decrease toward the south and P, Cu, and Cr 

that maintain a constant trend over latitude. 
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Table 4-3 Nature and magnitude of trend in water quality parameters over the decreasing 

latitude of the station. 

Parameters Slope Intercept Nature of trend 

Ca 14.865 -492.180 Increasing 

Mg -2.183 75.848 Decreasing 

Na  -8.742 300.115 Decreasing 

K -1.912 67.651 Decreasing 

Fe 0.000 0.125 Increasing 

SO4  -15.407 529.057 Decreasing 

Cl -8.546 294.505 Decreasing 

NO3  -0.841 29.042 Decreasing 

SiO2  -6.960 247.316 Decreasing 

EC -0.096 3.339 Decreasing 

pH 0.335 -4.406 Increasing 

P 0.000 0.095 Neutral 

Cu 0.000 0.002 Neutral 

Cr 0.000 0.001 Neutral 

Ni -0.002 0.078 Decreasing 

Mn -0.170 5.789 Decreasing 

Pb -0.00025 0.009 Decreasing 

Zn -0.021 0.718 Decreasing 

 

 

4.3 Principal factor governing geochemical processes 

 

Table 4.4 presents the total variance explained from the PCA i.e., the eigenvalues, the cumulative 

eigenvalue, the percentage of variance, and the associated cumulative percentage of variance. The 

PCA was performed using the mean from 2000 to 2019 of selected water quality parameters to 

identify parameters influencing geochemical processes in the study area. The PCA results reveal 

five significant PCs explaining 84.228 % of the total variance. 
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Table 4-4 Total variance explained 

 
Total Variance Explained 

Comp 

Initial Eigenvalues 
Extraction Sums of Squared 

Loadings 
Rotation Sums of Squared 

Loadings 

Total 
% of 

Variance 
Cumulative 

% Total 
% of 

Variance 
Cumulative 
% Total 

% of 
Variance 

Cumulative 
% 

1 7.559 41.994 41.994 7.559 41.994 41.994 6.369 35.385 35.385 

2 2.846 15.811 57.804 2.846 15.811 57.804 3.398 18.876 54.261 

3 2.055 11.419 69.223 2.055 11.419 69.223 2.173 12.070 66.331 

4 1.773 9.849 79.072 1.773 9.849 79.072 2.038 11.325 77.656 

5 0.928 5.155 84.228 0.928 5.155 84.228 1.183 6.572 84.228 

6 0.812 4.512 88.739             

7 0.710 3.945 92.684     
 

      

8 0.342 1.902 94.587             

9 0.328 1.820 96.407             

10 0.193 1.075 97.481             

11 0.153 0.851 98.332             

12 0.101 0.560 98.892             

13 0.078 0.436 99.328             

14 0.050 0.278 99.606             

15 0.031 0.171 99.778             

16 0.026 0.145 99.923             

17 0.010 0.056 99.979             

18 0.004 0.021 100.000             

 

 

Table 4.5 presents loading of rotated factor matrix for the five PCs using the varimax method  

(Forina et al., 2005). Since each factor accounts for as much of the remaining variance as possible, 

it is evident from Table 4.5 that the water quality parameters are generally more correlated with 

the first component. To identify the parameters influencing geochemical processes in the study 

area for surface water, the PC loadings were classified (Table 4.5) based on the criteria defined by 

Liu et al. (2003). According to the criteria, the PC loading were sorted as weak, moderate, and 

strong, corresponding respectively to the absolute values of 0.30-0.5, 0.5-0.75, and more than 0.75. 
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Table 4-5 Principal component loadings for varimax rotated factor matrix explaining 84.228% 

of the total variances 

 

 

COMPONENT 

1 2 3 4 5 
Ca 0.731 0.518 0.305 0.233 0.063 

Mg 0.906 0.213 0.216 0.123 0.162 

Na 0.982 0.020 0.126 -0.029 -0.044 

K 0.948 0.176 -0.010 0.101 -0.042 

Fe 0.063 0.657 -0.604 0.054 0.172 

SO4 0.043 0.883 0.243 -0.129 0.082 

Cl 0.902 0.249 0.172 -0.044 -0.045 

NO3 0.256 0.594 0.085 0.228 -0.107 

SiO2 0.351 0.229 0.745 -0.005 0.286 

EC 0.932 0.190 0.113 0.094 0.123 

pH 0.301 -0.005 0.772 -0.073 -0.027 

P 0.129 0.052 -0.512 -0.394 -0.233 

Cu 0.002 0.126 -0.144 0.895 -0.181 

Cr 0.050 0.061 0.136 -0.070 0.942 

Ni 0.500 0.721 -0.269 0.003 0.156 

Mn 0.948 -0.062 -0.011 -0.142 -0.014 

Pb 0.101 0.095 0.126 0.928 0.061 

Zn 0.075 0.885 -0.058 0.165 -0.012 

 

 

 

Table 4-6 Parameters grouping based on the nature of the principal component loadings    

 

 

NATURE OF LOADING  

STRONG MODERATE WEAK 

Component I Mg, Na, K, Cl, EC, Mn Ca, Ni SiO2, pH,  

Component II SO4, Zn Ca, Fe, NO3, Ni - 

Component III pH Fe, SiO2, P Ca 

Component IV Cu, Pb - P 

Component V Cr - - 
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Table 4-7 Matrix of correlation coefficients for hydrochemical data in the study area                                                                                                                                                  

 

 Ca Mg Na K Fe SO4 Cl NO3 SiO2 EC pH P Cu Cr Ni   Mn Pb Zn 

Ca 1 0.889 0.75 0.812 0.222 0.569 0.811 0.56 0.624 0.845 0.427 0.071 0.229 0.167 0.622 0.608 0.396 0.508 

Mg  1 0.9 0.883 0.081 0.288 0.86 0.408 0.568 0.953 0.38 0.087 0.059 0.222 0.547 0.85 0.259 0.277 

Na   1 0.919 0.006 0.102 0.938 0.252 0.422 0.931 0.4 0.072 0.018 0.03 0.462 0.931 0.081 0.089 

K    1 0.187 0.164 0.875 0.416 0.358 0.887 0.284 0.1 0.123 0.017 0.612 0.867 0.19 0.214 

Fe     1 0.402 0.13 0.221 -0.21 0.12 -0.33 0.252 0.166 0.063 0.721 0.003 0.085 0.613 

SO4      1 0.298 0.469 0.363 0.273 0.192 0.024 0.013 0.212 0.54 6.3e-5 0.001 0.703 

Cl       1 0.368 0.497 0.894 0.436 0.089 0.013 0.057 0.592 0.789 0.086 0.246 

NO3        1 0.27 0.352 -0.08 0.094 0.267 0.017 0.468 0.165 0.181 0.429 

SiO2         1 0.468 0.591 0.282 0.156 0.368 0.189 0.266 0.21 0.159 

EC          1 0.317 0.011 0.061 0.174 0.564 0.86 0.224 0.26 

pH           1 0.214 0.101 0.133 0.017 0.265 0.107 0.013 

P            1 0.096 0.125 0.092 0.078 0.316 0.031 

Cu             1 -0.17 0.073 0.162 0.779 0.225 

Cr              1 0.132 0.015 0.002 0.005 

Ni               1 0.441 0.098 0.709 

Mn                1 0.058 0.056 

Pb                 1 0.27 

Zn                  1 
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4.4 Lineament and density maps of the study area 

Figure 4.2 presents the lineament map and the lineament density map of the Atlanta metropolitan 

along with the rose diagrams (lineament number, length, and orientation). The lineament density 

represents magnitude-per-unit area from lineament features that fall within a radius around each 

cell. They show the maximum intersection points of the lineaments and their orientations, which 

gives a sense of fractured rock permeability that conducts ions in the surface water to contaminate 

groundwater.  

Figure 4.3 shows the land use and land cover (LULC) map from Landsat 8 image using the 

unsupervised classification method. The classification system divides the land use types into five types: 

Urban, Forest, Grassland, Water, and Exposed and Cultivated land (Figure 4.3). 
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  Figure 4-2 Lineament map and lineament density map (magnitude-per-unit area) of Atlanta metropolitan                                                                        
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4.5 Land Use and Land Cover (LULC) Analysis  

 

 

  Figure 4-3 LULC Map of Atlanta Metropolitan                                                       
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4.6 Multi-distance spatial cluster analysis of contaminant sources  

Figure 4.4 shows the distribution of Toxic Release Inventory (TRI) facilities or contaminant 

sources across the Atlanta metropolitan from 2000 to 2019. Such contaminant sources are typically 

larger facilities involved in manufacturing, metal mining, electric power generation, chemical 

manufacturing, and hazardous waste treatment. As shown in Figure 4.4, the number of pollution 

sources increased from 2000 to 2019. Fulton, Dekalb, Cobb, and Gwinnett counties contain much 

more facilities than other counties. 

The results from Ripley's K-function analysis (Figure 4.5) show a significant clustering of sources 

of contaminants in 2000, 2003, 2006, 2009, 2012, 2015, and 2019. The observed K values are 

larger than the expected K values according to the K-function graphs from 2000 to 2019. Hence, 

the distribution is more clustered than a random distribution (Figure 4.4). 
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Figure 4-4 Distribution of TRI facilities across Atlanta metropolitan from 2000 to 2019           
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Figure 4-5 K Function graphs of TRI from 2000 to 2019 in Atlanta metropolitan.             
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4.7 Spatio-temporal variations of quantity of chemicals released in the study area 

Figures 4.6, 4.7, 4.8, and 4.9 present the distribution of the total quantity of chemicals released 

across the Atlanta metropolitan from 2000 to 2019. This includes the quantity of chemicals 

released on-site as surface water discharges, to on-site landfills, into surface impoundments, 

injected on-site at the facility to underground injection wells, disposed of through on-site land 

treatment/application farming, and chemical that was transferred to a POTW (publicly owned 

treatment works). The type of chemicals covered by the TRI Program and included in this study 

are those that cause cancer or other chronic human health effects, significant adverse acute human 

health effects, and significant adverse environmental effects. The list of the type of chemicals used 

in this study is omitted here to keep the thesis within the required length, and can be found in TRI 

Chemical List. 

As shown in the Figures from 2000 to 2019, the contaminated area has been spreading from the 

central metropolitan area. Fulton, Dekalb, Coweta, and Cobb counties have received the highest 

amount of toxics release than other counties from 2000 to 2012. In 2015, the highest amount of 

chemicals released were found in Clayton, Heard, Walton, Barrow, Gwinnett, Bartow, and Forsyth 

counties. Finally, in 2019, the contaminated area became wider affecting different counties along 

with the central metropolitan area

https://www.epa.gov/toxics-release-inventory-tri-program/changes-tri-list-toxic-chemicals
https://www.epa.gov/toxics-release-inventory-tri-program/changes-tri-list-toxic-chemicals
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 Figure 4-6 Toxic Release Inventory (TRI) in 2000 and 2003                                                                                                                 
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Figure 4-7 Toxic Release Inventory (TRI) in 2006 and 2009                                                                                                                         
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Figure 4-8 Toxic Release Inventory (TRI) in 2012 and 2015 
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        Figure 4-9 Toxic Release Inventory (TRI) in 2019                                                j 

 



57 

4.8 Environmental justice analysis 

4.8.1  Distribution of TRI facilities and onsite release by income 

Spatial distribution of TRI facilities and the total quantity of chemicals released across the Atlanta 

metropolitan were correlated with income, race, age, and sex using county-level census data in 

2019. 

Figures 4.10 and Figure 4.11 present respectively the spatial distribution of the TRI facilities and 

the total quantity of chemicals released by median household income in 2019. As shown in Figure 

4.10, high median household income counties concentrate much more on TRI facilities. These high 

median household income counties are located in the center of the metropolitan area (Gwinnett, 

Fulton, Cobb, Cherokee, Forsyth, Paulding, Coweta, Fayette, and Henry). Counties with low to 

intermediate median household income seem to concentrate on fewer or no TRI facilities. 

However, when compared to the quantity of chemicals released in 2019 (Figure 4.11), counties 

with low to intermediate median household income are more exposed to contaminants, as the 

highest quantity of chemicals released is recorded in there. This demonstrates disproportionate 

exposures to environmental hazards based on median household income regarding TRI facilities 

and hazardous chemicals. 

 

 

.  
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     Figure 4-10 TRI Facilities distribution and households median income in 2019        
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  Figure 4-11 TRI Onsite Release and Households Median Income in 2019                
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4.8.2 Distribution of TRI facilities and onsite release by race 

Figures 4.12 and Figure 4.13 show the spatial distribution of TRI facilities by race (fractions of 

black and white population, and the ratio of black over white). Such figures reveal a concentration 

of high fraction of black population in the center of the metro area, where a high number of TRI 

facilities is present compared to counties with high fraction of white population. 

Figure 4.14 and Figure 4.15 present the spatial distribution of the total quantity of chemicals 

released by race (fractions of black and white population, and the ratio of black over white). As 

shown in the figures, the highest quantity of chemicals released is recorded in counties with a low 

ratio of black over white. However, counties with a high ratio of black over white are more exposed 

to TRI facilities. But, some northern counties with high fraction of white population (Bartow, 

Cherokee, and Hall) present high TRI facilities and high quantity of chemicals released. Moreover, 

in these counties the distribution of the TRI facilities seems to be linear. This shows 

disproportionate exposures to environmental hazards based on race.  
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Figure 4-12 TRI Facilities distribution and black and white population in 2019                                                            
  



62 

 

 

Figure 4-13 TRI Facilities distribution and ratio of black over white population in 2019 
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        Figure 4-14 TRI onsite release and black and white population in 2019 
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                   Figure 4-15 TRI onsite release and ratio of black over white population in 2019 
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4.8.3 Distribution of TRI facilities and onsite release by age  

Figures 4.16 and Figure 4.17 present respectively spatial distribution of TRI facilities and 

the total quantity of chemicals released by age in 2019. The human age is classified into four 

categories as Child (0-12 years), Adolescence (13-18 years), Adult (19-59 years), and Senior 

Adult (60 years and above). As shown in Figure 4.16 and Figure 4.17, the youngest population 

(median age up to 39) are more exposed to TRI facilities and chemical hazards. Counties with a 

median age greater than 39 concentrate approximately no TRI facilities and did not record any 

chemical hazards released. These counties with no chemical hazards record in 2019, located at 

the edges of the metro area, are Pickens, Dawson, Jasper Pike, Spalding, Meriwether, Coweta, 

Heard, and Haralson counties. Therefore, there is no balanced exposure to environmental hazards 

and the principles of environmental justice are not applied to the Atlanta metro area based on 

age.  
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         Figure 4-16 TRI facilities distribution and median age in 2019                         
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 Figure 4-17 TRI onsite release and median age in 2019                                             
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4.8.4 Distribution of TRI facilities and onsite release by sex 

Figures 4.18 and Figure 4.19 present respectively spatial distribution of TRI facilities and the total 

quantity of chemicals released by sex in 2019. As shown in Figure 4.18 and Figure 4.19, females 

are more exposed to TRI facilities and chemicals hazards, except for 3 counties where equal 

exposure to chemicals released is noticed (Barrow, Hall, and Forsyth counties). Some southern 

counties with high fractions of females (Coweta, Fayette, Henry, Newton, Jasper, Lamar, Pike, 

Meriweather, Coweta) have no chemicals released and low to no TRI facilities in 2019. However, 

Butts county where there are more men than female did not record any TRI facilities or chemicals 

released. Finally, Northwestern and central counties with highest fractions of females concentrate 

most of the chemicals released. This also illustrates the existence of disproportionate exposures to 

environmental hazards based on sex, and therefore no application of environmental justice 

principles to the area. 
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       Figure 4-18 TRI Facilities distribution and sex ratio (males per 100 females) in 2019 
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   Figure 4-19 TRI Onsite Release and Sex Ratio (Males per 100 Females) in 2019 
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5 DISCUSSIONS 

5.1 Spatio-Temporal Variations and Trend Analyses 

This study found significant spatial and temporal variations in the water quality parameters across 

the Atlanta metropolitan area around the Chattahoochee River from 2000 to 2019. Parameters such 

as Ca, Mg, K, SO2, Fe, SiO2, NO3, and Cl present large spatio-temporal variations compared to 

other parameters (a relatively large length of boxes and whiskers). Nickel and zinc present the least 

spatio-temporal variations with relatively small boxes and whiskers length (Fig 4.1). Box and 

whisker plots of Ca, Mg, K, Fe, Cl, NO3, SiO2, EC, and P reveal an important observation in 2000, 

2003, and 2006. These parameters present the highest concentration in three years, 2000, 2003, 

and 2006, that correlates with contaminant data (quantity of chemicals released onsite). In those 

years, a significant amount of contaminant was received in the study area (Figure 4.6; Figure 4.7). 

This finding reveals that contaminant sources have control over water quality in the study area. 

This control of contaminant sources over water quality found in this study is concurrent with 

findings from Machiwal and Jha (2015) which revealed control of water contamination by 

contaminant sources, the geology of the study area, and anthropogenic processes. Furthermore, the 

significant spatial and temporal variations in the water quality parameters from 2000 to 2019 found 

in this study are also consistent with Jabbar and Grote's findings in 2019. The results of these 

authors' work indicate a significant spatio-temporal variability of physical, chemical, and 

biological characteristics of all small watersheds in the Lower Grand River watershed in north-

central Missouri and south-central Iowa, and a negative impact of agricultural activities in many 

Midwestern streams and lakes. 

As far as trend analysis, the Mann-Kendall test indicated the existence of increasing and decreasing 

trends in parameter concentration from 2000 to 2019 (Table 4.2). Thus, seven parameters such as 
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Fe, pH, P, Cu, Ni, Pb, and Zn indicated increasing trends in their concentration from 2000 to 2019 

compared to the other parameters. However, only three parameters revealed a statistically 

significant trend at 5% significance level (p-value < 0.05) from 2000 to 2019. These parameters 

are Na, K (statistically significant decreasing trend detected), and Pb (statistically significant 

increasing trend detected).  

This study also found north to south variations in the concentration of water quality parameters 

i.e., the existence of trends over the latitude of the location of the sample sites.  

It is seen from Table 4.3 that parameters presenting an increasing/positive trend toward the 

southern direction are higher than those indicating decreasing or neutral trends. Almost all the 

parameters have a similar trend (increase toward the south) except for Ca, Fe, and pH (indicating 

decreasing trends toward the south), and P, Cu, Cr (constant trends over latitude). This indicates 

an overall rise in parameters' concentration toward the south, thus degradation of surface water 

quality in the southerly direction. Given that the Chattahoochee River runs from north to south, 

this raises an important question as to why Ca, Fe, and pH decrease toward the south (northward 

rise). The upper Chattahoochee area is important in the sense of providing input to the water that 

comes into the Atlanta Metro area. Geology, soil, factories, farms, and other areas in the upper 

Chattahoochee area are variable over time and space as well as the chemistry of water farther north. 

As a contaminant migrates from sources, concentrations would decrease near the source with time. 

This can be confirmed with the increasing trends of parameters toward the south as the contaminant 

diffuses away from the northern sources. Moreover, new contaminant sources showing up toward 

the north between 2009 to 2019 could be a good reason why Ca, Fe, and pH decrease toward the 

south (Figures 4.9; 4.8; 4.9). This finding is consistent with a study conducted by He et al., in 2014. 

The authors modeled the spatial distributions of point and nonpoint source loading potential in the 
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Saginaw Bay Basin, Michigan, USA. He et al (2014) found that the major part of the total nutrient 

loading in the watershed is from both point and nonpoint sources. A non-point source has the 

largest contribution in the nutrient loading among the studied watersheds, especially in the rural 

watershed. 

5.2 Geochemical Processes and Sources of Contamination 

Principal Component Analysis (PCA) of water quality variables allows for understanding 

the source and distribution of sources of contamination as well as principal parameters governing 

the geochemical process in the study area. The PCA results reveal five significant PCs explaining 

84.228 % of the total variance. It is seen from Table 4.7 that the PC I is characterized by strong 

positive loading of Mg, Na, K, Cl, EC, Mn, moderate positive loading of Ca, Ni, and weak positive 

loading of SiO2, pH. The PC II is characterized by strong positive loading of SO4, Zn, and 

moderate positive loading of Ca, Fe, NO3, Ni. PC I and PC II account respectively 41.994% and 

15.811% variance in the data. Strong loadings of magnesium, sodium, and potassium from the PC 

I indicate a contribution of rock minerals weathering, and strong loadings of chloride, EC, and 

sulfate suggest deposition from dust material and contribution from precipitation (Subba Rao et 

al., 2006, Machiwal and Jha, 2015). The presence of nitrate in the surface water (positive loading 

in the PC II) is attributed to anthropogenic sources related to agriculture, nutrient inputs, sewage 

system, fertilizers, irrigation, etc. The PC III, accounting for 11.419% variance in the data, is 

characterized by strong positive loading of pH, which Ozler, 2003 attributed to the dissolution of 

silicate mineral due to reaction with CO2 (Ozler, 2003).  

Furthermore, Table 4.7 reveals multiple strong positive correlations and weak to moderate 

negative correlations between metals such as Fe, Cu, Cr, Ni, Mn, Pb, and Zn. According to Miller 
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et al.2014, dissolved metals in waters can have a variety of sources. These include anthropogenic 

inputs, weathering of parent rock, and rainwater (Miller et al, 2014). 

A strong positive correlation between Pb and Cu, and between Fe, Ni, Zn indicate a common origin 

source and that the metals were transported together during geochemical processes (Bhuiyan et al. 

2010). It should also be noted that no strong correlations were found between Cr, Zn, and other 

dissolved metals in this study. This indicates that a combination of geochemical processes controls 

Cr and Zn concentrations as well as their mixed associations (Chen et al, 2019). Finally, no 

significant correlations were found between pH and dissolved metals.  

5.3 Correlation of Sources of Contamination with Lineament and LULC 

Significant correlations of sources of contamination with high lineament density values were found 

in this study (Figure 5.1). As contaminants pathways and transport in fractured rock aquifers are 

mainly controlled by lineaments and their properties, this indicates that the areas with maximum 

intersection points of the lineaments (high lineament density) are highly susceptible to 

groundwater contamination from contaminant sources. The lineament data, especially the 

maximum intersection points of the lineaments, give a sense of fractured rock permeability that 

conducts surface waters to groundwater. This way, ions in the surface water may contaminate 

groundwater.  

This could be confirmed by comparing data from wells that are located near the intersection points 

with those in the nearby river stations if groundwater data were available in the study area. 

However, these findings in the study area are consistent with previous studies, that have revealed 

a close relationship between lineaments (or lineament density) and groundwater flow and 

contamination (Sander et al, 1997, Abdulla et al, 2014).  
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Figure 5-1 Correlations between Lineament Density Map and TRI Onsite Release in 2019                                                          
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  Figure 5-2 Correlations between LULC and TRI Onsite Release in 2019                     
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5.4 Correlation of Sources of Contaminations with Low-Income Communities and People 

of Color 

This study correlated spatial distribution of TRI facilities and the total quantity of chemicals 

released across the Atlanta metropolitan with income, race, age, and sex using county-level census 

data to assess the environmental justice in the study area. The results indicate a disproportionate 

exposure to environmental hazards (TRI facilities and hazardous chemicals.) based on income, 

race, age, and sex, and therefore no application of environmental justice principles to the area. 

Low-income and black neighborhoods are more exposed to contaminants (water discharges, 

landfills, contaminated sites, recycling areas, transfer stations, etc.). This environmental racism 

includes all kinds of chemicals that cause cancer or other chronic human health effects, significant 

adverse acute human health effects, and significant adverse environmental effects (TRI Chemical 

List). The pattern of environmental inequity is more significant in the racial case compared to 

household income. This finding is in line with Bullard et al study in 2007, which examined toxic 

wastes and race in the United States. Bullard et al study found race to be more efficient than 

household income for predicting the location of hazardous waste facilities in the United States.  

This shows how polluters have grossly taken advantage of minority and poorer communities, who 

are disproportionately affected. These people are facing the highest impact, including more 

asthma, and a high likelihood of heart attacks and premature death. 

Furthermore, it is also revealed that central metropolitan counties (Gwinnett, Fulton, Cobb, 

Cherokee, Forsyth, Paulding, Coweta, Fayette, and Henry) concentrate more TRI facilities in 2019 

compared to other counties. These counties are characterized by a high presence of black 

population or a high ratio of black over white. Also, quite a few southern counties such as Coweta, 

Fayette, Henry, Newton, Jasper, Lamar, Pike, Meriweather, and Coweta have no chemicals 

https://www.epa.gov/toxics-release-inventory-tri-program/changes-tri-list-toxic-chemicals
https://www.epa.gov/toxics-release-inventory-tri-program/changes-tri-list-toxic-chemicals
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released and/or record less to no TRI facilities in 2019. However, a high quantity of chemicals was 

recorded in some northern counties with a high fraction of white population (Bartow, Cherokee, 

and Hall) along with linear pattern distribution of the TRI facilities in these counties. This high 

TRI concentration is due to the fact that one of the largest coal-fired power plants in North America 

called Bowen Steam Electric Generating Plant operates on the northern side of the study area. 

Bowen Steam Plant (or Plant Bowen) is a coal-fired power station located in Bartow county 

(outside Euharlee city). It is owned and operated by Georgia Power Company (Southern 

Company), and is a 2,000-acre coal-fired power plant producing 3,450 megawatts of electricity. 

Moreover, Cherokee and Hall counties concentrate different types of industries such as electric 

utilities, machinery, chemical, and metal. For instance, Isotec International Inc and Meyn America 

LLC operate in Cherokee county producing chemical and polymer products and food products 

machinery, respectively. Finally, Kubota Manufacturing of America Corp and PPG Archictureal 

Finishes Inc are among the most important factories operating in Hall county. They respectively 

manufacture lawn and garden equipment, and paint products (paint, stains, primers, coatings, 

lacquers, and caulk).  

5.5 Limitations 

This research has a number of limitations related to data sufficiency and methodology. First of all, 

this research used two decades of data (2000 to 2019) of 18 surface water parameters (Ca, Mg, Na, 

K, Fe, SO4, Cl, NO3, SiO2, EC, pH, P, Cu, Cr, Ni, Mn, Pb, Zn). Since only one station was 

available for parameters Na, K, Fe, SO4, Cl, Cr, Ni, Mn in 2019, the annual mean values for those 

parameters were estimated based on the temporal trend and defined pattern of change in the values 

of the missing parameters. Secondly, the box and whisker plots depicting the variation of the 

surface water quality parameters for 20 years were performed using a 3-year time lag due to a lack 
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of yearly data (no consistency of yearly data availability). Thus, yearly variations in the water 

quality parameters from 2000 to 2019 could not be performed. Furthermore, there has been no 

Georgia Geologic Survey (GGS) since 2004 and there are no shapefiles of geologic or soil maps 

of Georgia. In the absence of GGS, only .pdf files are available on the Georgia EPD website. 

Therefore, the influence of geology and soils on the water contaminations and the correlation of 

sample sites to geology and soils were not performed in this research. However, the influences of 

other natural processes such as land use and land cover, and lineaments data (fracture/fault 

networks) have been analyzed. Finally, county-level data were used in the environmental justice 

assessment due to the no consistent availability of demographic data at the census tract level in 

2019. Thus, the environmental justice assessment may be limited and could be improved by using 

a fine spatial resolution of demographic data, as counties in the Atlanta metropolitan are not 

homogenous from north to the south regarding socio-economic status. 

5.6 Future Recommendations 

Since groundwater quality data are not available in the study area and/or are out of scope in terms 

of time, future research should install groundwater monitoring wells across the Atlanta metro area 

around the Chattahoochee River Basin to collect groundwater samples. The collected samples 

should be analyzed to determine groundwater quality parameters such as Ca, Mg, Na, K, Fe, SO4, 

Cl, NO3, SiO2, EC, pH, P, Cu, Cr, Ni, Mn, Pb, Zn. All collected data should be checked for 

regularity without any gaps. Then, these pre-processed data should be used to perform univariate 

and multivariate statistical analyses, GIS-based geostatistical modeling, and determining the 

Groundwater Quality Index. The analyses should also include a correlation between surface water, 

groundwater, lineament data, and sources of contamination. 
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Furthermore, future research should also assess the intrinsic vulnerability of the study area’s 

aquifer systems to contamination using the DRASTIC model and modified DRASTIC model. The 

model should take into account the most significant hydrogeologic factors contributing to 

groundwater contamination in the study area. These include depth to groundwater, net recharge, 

aquifer media, soil media, topography, impact of the vadose zone, and hydraulic conductivity. A 

series of ratings and weights should be assigned to these factors depending on the degree of the 

significance of each parameter that influences the pollution potential. Moreover, the DRASTIC 

model should be combined with the fracture/fault data (lineament) and land use and land cover to 

evaluate their influence on the risk of contamination of the aquifer. 

Also, regarding the environmental justice assessment, future studies could break down age into 

different categories (Child, Adolescent, Adult, etc.) and correlate them with the spatial distribution 

of the TRI to check what category is more exposed to environmental hazards. Further analysis is 

necessary in the environmental justice analysis to understand demographic data and compare 

different races in the study area. 

Finally, a successful classification of water sampling sites through hierarchical cluster analysis is 

recommended. The cluster analysis (CA) determines if groundwater sampling sites can be grouped 

into statistically distinct hydrochemical classes or ‘clusters. This classification is correlated to 

geology to help identify groups of the sites according to sources of contamination. 
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