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ALGORITHMS FOR ANALYSIS OF NEXT-GENERATION VIRAL SEQUENCING

DATA

by

ANDRII MELNYK

Under the Direction of Alexander Zelikovsky, PhD

ABSTRACT

RNA viruses mutate at extremely high rates, forming an intra-host viral population of

closely related variants, which allows them to evade the host’s immune system and makes

them particularly dangerous. Viral outbreaks pose a significant threat for public health.

Progress of sequencing technologies made it possible to identify and sample intra-host vi-

ral populations at great depth. Consequently, the contribution of sequencing technologies

to molecular surveillance of viral outbreaks becomes more and more substantial. Genome



sequencing of viral populations reveals similarities between samples, allows to measure viral

genetic distance and facilitate outbreak identification and isolation. Computational methods

can be used to infer transmission characteristics from sequencing data. However, due to the

specifics of next-generation sequencing (NGS) approaches, and the limited availability of vi-

ral data, existing methods lack accuracy and efficiency. In this dissertation, I present a novel,

flexible methods, that allow tackling crucial epidemiological problems, such as identification

of transmission clusters, sources of infection, and transmission direction.

INDEX WORDS: Genetic relatedness, transmission networks, outbreak investigations,
clustering.
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PART 1

INTRODUCTION

To tackle a virus, we first need to identify and study it. However, this is complicated by

the fact that most viruses are too small for the light microscope. Sequencing, on the other

hand, doesn’t have this limitation. As a consequence, it is being extensively used during

basic and clinical research, infection diagnosis, molecular epidemiology and drug-resistance

testing.

Introduction of next-generation sequencing and development of new sequencing tech-

nologies, such as 454, Illumina, SOLiD and Ion Torrent, fundamentally changed the field

of biological and medical sciences, and drastically increased the role of bioinformatics. Sig-

nificant decrease in the cost of sequencing resulted in rapid increase in the amount of data

available, thus posing new problems, that require development of new computational meth-

ods. For instance, Sanger [2], one of the earliest sequencing technologies, that is known for

low error rates [3], became impractical due to high sequencing costs, and was recently sur-

passed by NGS by number of viral sequences in NIH genetic sequence database GenBank [4].

As recent advances in sequencing allowed to identify viral populations at great depth,

new opportunities for dealing with crucial epidemiological tasks, such inference of relatedness

between viral samples, identification of transmission clusters and sources of infection, were

introduced.

This dissertation presents novel algorithms for analysis of intra- and inter-host viral

populations for NGS data, aimed to tackle essential epidemiological tasks. In particular, I

designed an algorithm, that doesn’t rely on read assembly and allows to cluster genetically

related samples, infer transmission directions and predict sources of outbreaks.
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1.1 Background

A large number of medically important viruses, including HIV, hepatitis C virus, and

influenza, have RNA genomes [1]. These viruses replicate with extremely high mutation rates

and exhibit significant genetic diversity, which allows viral populations to rapidly adapt to

dynamic environments, and evolve resistance to vaccines and antiviral drugs.

Viral quasispecies is a viral population, that is represented by a cloud of diverse variants,

that are genetically linked through mutation and interact on a functional level, collectively

contributing to the characteristics of the population [1].

Figure 1.1 illustrates a virus replicating with a high mutation rate. Over a course of

a few generations, a diverse mutant repertoire is generated. In the demonstrated trees,

each branch indicates two variants, linked by a point mutation, and the concentric circles

represent serial replication cycles.The resulting distribution is often represented as a cloud

centered on a master sequence. This two dimensional schematic is a vast oversimplification of

the intraquasispecies connectivity. In the mathematical formulations of quasispecies theory,

sequence space is multidimensional, with numerous branches between variants.

It has been shown, that the structure of viral quasispecies affects virulence [5] and

pathogenesis [6]. Furthermore, certain low-frequency genetic variants may contain mutations,

which allows viruses to be stay unaffected by the selective pressure of host immune responses

[7] and anti-viral drug treatment [8]. Even though NGS is currently being introduced into

clinical diagnostics, single-nucleotide variant (SNV) calling is still widely used for assessing

of viral quasispecies structure. However, this approach is limited, because it ignores patterns

of co-occurrence among mutations, which is critically important for RNA viruses, which have

abundant epistatic interactions [9]. Thus, inferring the underlying mix of haplotypes (viral

quasispecies assembly) is necessary for viral phenotypes prediction [10].

Genome sequencing of viral populations reveals similarities between samples, allows

to measure viral genetic distance, and to facilitate outbreak identification and isolation.

Computational methods can be used to infer transmission characteristics from sequencing
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Figure (1.1) RNA viruses exist as quasispecies [1]

data. These methods typically utilize the simple observation that all samples from the

same outbreak are genetically related, so they use some measure of genetic relatedness as a

predictor for epidemiological relatedness [11–13]. They usually rely on assembled sequences,

thus requiring an extra step preprocessing step when dealing with raw NGS reads. MiSeq

[14] is a popular NGS technology, that is used to sequence viral samples and detect rare

viral mutations. Since MiSeq reads are short, their alignment and assembly for rapidly

mutating RNA viruses is error-prone and complicated, which makes it appealing to develop

an approach, that will allow to skip alignment and assembly steps.

1.2 Problems

In this dissertation, several problems, related to viral NGS data analysis are addressed.

1.2.1 Viral outbreak investigation

Essential epidemiological tasks (T1-T5) were considered, where T1-T2 are applied to 2

hosts, and T3-T5 are applied to multiple hosts.
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T1. Identification of relatedness:

Given: NGS reads from hosts A and B

Decide: Whether A and B are related (whether they belong to the same outbreak)

T2. Identification of transmission direction:

Given: NGS reads from hosts A and B

Decide: Whether host A infected B or B infected A

T3. Identification of transmission clusters:

Given: NGS reads from a set of hosts

Find: The transmission clusters corresponding to individual outbreaks

T4. Presence of outbreak source:

Given: NGS reads from a set of hosts

Decide: Whether outbreak source is present among sequenced hosts

T5. Identification of outbreak source:

Given: NGS reads from a set of hosts

Find: Outbreak source

Identifying whether 2 hosts belong to the same outbreak (T1) and transmission direction

between them (T2) are tasks, that have to be solved in order to find transmission chains.

Another important task is to discover boundaries of an outbreak (T3). Once hosts, that

belong to an outbreak are obtained, it is critical to design whether the source is among them

(T4). Finally, identifying the main spreader of an outbreak (T5) is a crucial epidemiological

task, by solving which outbreak spreading can be prevented.

1.2.2 Viral quasispecies assembly

In formal definitions, we adopt a terminology, based on papers [15] and [10]. Let R be

a collection of NGS sequencing reads, which are sequences of the alphabet of nucleotides

{A,C,G,T,N}, where N is a common placeholder for unknown nucleotides. Let A := A(R)

be the set of their alignments to a reference genome, as computed by a read aligner.
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Problem 1. Given R and A, find a set of master contigs, each representing a group of very

closely related viral haplotypes.

Problem 2. Given R, find a set of master contigs, each representing a group of very closely

related viral haplotypes.

It can be easily seen that the problem in [15] (Problem 2) is a more general case of the

problem in [10] (Problem 1), because it implies inference of viral haplotypes without the

alignments to a reference sequence.

1.3 Contributions

This dissertation presents multiple contributions to the analysis of viral NGS data.

These contributions include new algorithms for viral outbreak investigation and viral haplo-

type assembly.

Introduced outbreak investigation methods allow to cluster genetically related samples,

infer transmission directions and predict sources of outbreaks. Among the main advantages

of proposed algorithms is the ability to bypass cumbersome read assembly, thus eliminating

the chance to introduce new errors, and allowing to save processing time by using raw NGS

reads (k-mers EMD). Additionally, while some viral outbreak investigation algorithms involve

building transmission networks or phylogenetic trees, introduced algorithms for clustering of

viral outbreak data provide an efficient alternative, that uses cluster entropy to capture the

underlying process of viral mutation.

All algorithms are applicable to the analysis of outbreaks highly heterogeneous RNA

viruses.

Proposed haplotype assembly method allows for accurate haplotyping in the presence

of high sequencing error rates, which is also suitable for both single-molecule and short-read

sequencing. In contrast to other haplotyping methods, it infers viral haplotypes by detection

of clusters of statistically linked SNVs rather than through assembly of overlapping reads used

with methods such as Savage [16] and can successfully infer and reconstruct viral variants,
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which differ by only a few mutations, thus demonstrating the high precision of identifying

closely related variants. Another significant advantage of CliqueSNV is its low computation

time, which is achieved by a very fast searching of linked SNV pairs and the application of

the special graph-theoretical approach to SNV clustering.

1.4 Roadmap

This dissertation is organized as follows. Chapter 1 presents a highlight of viral quasis-

pecies assembly problem along with main epidemiological problems, that arise during viral

outbreak investigation and existing methods in these contexts.

In the following chapters novel and efficient algorithms related to viral NGS data analysis

are presented. In particular, Chapter 2 presents a novel intra-host viral data analysis algo-

rithms. Clustering-based identification of SARS-CoV-2 subtypes is as a viable and scalable

alternative to unveiling trends in the spread of SARS-CoV-2. k-mers EMD provides compet-

itive performance and allows more flexibility compared to existing approaches. VOICE is an

evolutionary simulation method for genetic relatedness inference. Chapter 3 proposes a viral

haplotype assembly method for rapid and accurate inference of viral populations, applicable

to clinical and epidemiological NGS data.

Discussion and future directions are provided in the Chapter 4.

1.5 Products

1.5.1 Publications

Journal Papers

1. S. Knyazev, V. Tsyvina, A. Shankar, A. Melnyk, A. Artyomenko, T. Malygina, Y.

Porozov, E. Campbell, S. Mangul, W. Switzer, P. Skums, and A. Zelikovsky (under

revision) Accurate Assembly of Minority Viral Haplotypes from Next-Generation Se-

quencing through Efficient Noise Reduction. Nucleic Acids Research
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2. A. Melnyk, F. Mohebbi, S. Knyazev, B. Sahoo, R. Hosseini, P. Skums, A. Zelikovsky,

M. Patterson (to appear) Clustering based identification of SARS-CoV-2 subtypes.

10th International Conference on Computational Advances in Bio and medical Sciences

(ICCABS 2020), Virtual Conference, December 10-12, 2020, Revised Selected Papers

3. A. Melnyk, S. Knyazev, F. Vannberg, L. Bunimovich, P. Skums, A. Zelikovsky

(2020) Using Earth Mover’s Distance for Viral Outbreak Investigations. BMC, DOI:

https://doi.org/10.1186/s12864-020-06982-4

4. O. Glebova, S. Knyazev, A. Melnyk, A. Artyomenko, Y. Khudyakov, A. Zelikovsky,

P. Skums (2017) Inference of genetic relatedness between viral quasispecies from se-

quencing data. BMC Genomics, 18(Suppl 10):918, DOI: 10.1186/s12864-017-4274-5

Conference Abstracts

1. A. Melnyk, S. Knyazev, Y. Khudyakov, F. Vannberg, L. Bunimovich, P. Skums, A.

Zelikovsky (2019) Using Earth Mover’s Distance for Viral Outbreak Investigations.

15th International Symposium on Bioinformatics Research and Applications (ISBRA)

2. S. Knyazev, V. Tsyvina, A. Melnyk, A. Artyomenko, T. Malygina, Y. Porozov, E.

Campbell, W. Switzer, P. Skums, and A. Zelikovsky (2018) CliqueSNV: Scalable Re-

construction of Intra-Host Viral Populations from NGS Reads. The 8th RECOMB

Satellite Workshop on Massively Parallel Sequencing (RECOMB-Seq)

1.5.2 Presentations

1. A. Melnyk, F. Mohebbi, S. Knyazev, B. Sahoo, R. Hosseini, P. Skums, A. Zelikovsky,

M. Patterson (2021) Clustering based identification of SARS-CoV-2 subtypes. 10th

International Conference on Computational Advances in Bio and medical Sciences

(ICCABS)

2. A. Melnyk, S. Knyazev, Y. Khudyakov, F. Vannberg, L. Bunimovich, P. Skums, A.

Zelikovsky (2019) Using Earth Mover’s Distance for Viral Outbreak Investigations.

15th International Symposium on Bioinformatics Research and Applications (ISBRA)
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1.5.3 Software Packages

• k-mers EMD - Inference of gentic relatedness for viral samples using Earth Mover’s

Distance. https://github.com/amelnyk34/kemd.

https://github.com/amelnyk34/kemd
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PART 2

ALGORITHMS FOR VIRAL OUTBREAK INVESTIGATION

2.1 Introduction

RNA viruses mutate at extremely high rates, forming an intra-host viral population of

closely related variants (or quasi-species). Their high variability [17] allows them to evade

the host’s immune system and makes them particularly dangerous. Viral outbreaks pose

a significant threat for public health, and, in order to deal with it, it is critical to infer

transmission clusters, i.e., decide whether two viral samples belong to the same outbreak.

The progress of sequencing technologies made it possible to identify and sample intra-

host viral populations at great depth [18–23]. Consequently, contribution of sequencing

technologies to molecular surveillance of viral outbreaks becomes more and more substan-

tial. Genome sequencing of viral populations reveals similarities between samples, allows to

measure viral genetic distance, and to facilitate outbreak identification and isolation. Com-

putational methods can be used to infer transmission characteristics from sequencing data.

The first question usually is whether two viral populations belong to the same outbreak. The

methods typically utilize the simple observation that all samples from the same outbreak

are genetically related, so they use some measure of genetic relatedness as a predictor for

epidemiological relatedness [11–13].

The second question is which samples constitute isolated outbreaks. For this purposes,

we define a transmission cluster as a connected set of genetically related viral populations.

The third questions we address in this article is ”Who is the source of infection?”. This

questions is the most difficult to answer, and there were only a few attempts to do it com-

putationally using solely genomic data [24] without invoking additional epidemiological in-

formation [25]. To the best of our knowledge, there is still no freely available computational

tool for this problem.
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Computational methods for detection of viral transmissions and inference of transmis-

sion clusters are often consensus-based, i.e. they analyze only a single representative sequence

per intra-host population (for example, consensus sequence). Such methods assign two hosts

into one transmission cluster, if the distances between corresponding sequences do not ex-

ceed a predefined threshold [11,12]. Although consensus-based methods proved to be useful,

they do not take into account intra-host viral diversity. Inclusion of whole intra-host pop-

ulations into analysis is important, because minor viral variants are frequently responsible

for transmission of RNA viruses [26,27].

Recently published computational approach (further referred to as MinDist) [13] uses

the minimal genetic distance between sequences of two viral populations as a measure of

genetic relatedness of intra-host viral populations. Since minimal genetic distances between

different pairs of populations can be achieved on various pairs of sequences, this approach

takes into account intra-host diversity.

However, both consensus-based and MinDist approaches have further limitations. First

of all, they do not allow to detect directions of transmissions, which is crucial for detection of

outbreak sources and transmission histories. Secondly, distance thresholds utilized by both

approaches could be derived from analysis of limited or incomplete experimental data and

highly data- and situation-specific, with different viruses or even different genomic regions

of the same virus requiring specifically established thresholds. Additionally, MiSeq [14], a

popuar NGS technology, that is used to sequence viral samples and detect rare viral mu-

tations, produces short reads. Their alignment and assembly for rapidly mutating RNA

viruses is error-prone and complicated, which makes it appealing to develop an approach,

that will allow to skip alignment and assembly steps. Finally, existing clustering approaches

involve building transmission networks or phylogenetic trees, which, due to high computa-

tional complexity, makes their application problematic when it comes to rapidly growing

datasets.

In this dissertation, several novel algorithms, that address above limitations are pro-

posed. The new algorithms allow to infer important epidemiological characteristics, including
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genetic relatedness, directions of transmissions and transmission clusters.

• SARS-CoV-2 clustering method that applies CliqueSNV to inter-host SARS-CoV-2

viral sequences and uses cluster entropy to measure the clustering quality.

• k − mers Earth Mover’s Distance (k − mers EMD) method applies an alignment-

and assembly-free k-mer strategy to intra-host viral sequencing data analysis.

• V iral Outbreak InferenCE (V OICE) is a simulation-based method which imitates

viral evolution as a Markov process in the space of observed viral haplotypes.

Proposed algorithms were validated on the experimental data obtained from HCV out-

breaks. Comparative results suggest that introduced methods are efficient in epidemiological

characteristics inference.

2.2 Methods

2.2.1 Clustering based identification of SARS-CoV-2 subtypes

Proposed algorithm clusters sequences of SARS-CoV-2 based purely on sequence con-

tent, and under no a priori hypothesis about the relationships between these sequences, i.e.,

it is unsupervised. Additionally information from the clustering is used to patch gaps in the

sequences, so that the aim is to fill gaps in sequences with the objective of minimizing the

entropy of the result.

CliqueSNV-based clustering

For clustering viral subtypes, introduced approach proposes to use existing tools for

identification of the intra-host viral populations subtypes from NGS data reviewed in [28],

e.g., Savage [16], PredictHaplo [29], aBayesQR [30], etc. However, in this context the setting

is different, since the data consists of large collections of inter-host consensus sequences,

gathered from different regions and countries around the world [31, 32]. Thus, the “host”

is now an entire region or country, and variants and their dynamics within these regions or
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countries are reconstructed. The SARS-CoV-2 sequences in GISAID are consensus sequences

of approximate length 30K. Such sequences by quality and length have similar properties

as PacBio reads. The algorithm uses CliqueSNV since it performed very well on PacBio

reads [33]. Default parameters are used to run CliqueSNV, setting the minimum cluster

frequency to be at least 1% of the population.

k-modes clustering

Since proposed algorithm clusters sequences, which are on the categories A, C, G, T

(and –, a gap), is uses k-modes [34, 35] for this purpose. This approach is almost identical

to k-means [36, 37], but it is based on the notion of mode (rather than Euclidean mean),

making it appropriate for clustering categorical data. Indeed, the Euclidean mean of three

nucleotides has little meaning in this context, and may not even be well-defined, e.g., in

cases where the “distance” from A to G is different than from G to A. A similar observation

was made in the context cancer mutation profiles [38], in the form of absence/presence

information. Treating these as categories, in using k-modes (rather than as 0’s and 1’s, in

using k-means) resulted in a clustering approach [39] that, when used as a preprocessing

step, allowed cancer phylogeny building methods to attain a higher accuracy [40], and in

some cases with much lower runtimes [41].

The mode q of a cluster C of sequences is another “sequence” (on A, C, G, T, –) which

minimizes

D(C, q) =
∑
s∈C

d(s, q) (2.1)

where d is some distance (e.g., Hamming) between the sequences we are considering. Note

that q is not necessarily an element of C. Aside from finding finding modes instead of

Euclidean means, the k-modes algorithm operates similarly to k-means, following the same

iteration:

Algorithm uses k-modes with the following six combinations of different settings. First,

cluster centers (1.) are initialized by:
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Algorithm 1 k-modes clustering

Input: Viral sequences from a set of hosts.
Output: Transmission clusters.
1: Initialize cluster centers (or centroids);
2: Assign each sequence to the closest center based on distance d;
3: For each cluster resulting from this assignment, find its (new) center (Eq. 2.1); and
4: Return to step 2. until convergence (clusters do not change between 2. and 3.).

(a) choosing k random sequences from the dataset;

(b) choosing k centers that are maximally pairwise distant from each other; or

(c) using the centers (the subtypes) that were found by CliqueSNV.

Then, the distance d that is used is either the (i) Hamming distance, or (ii) TN-93 dis-

tance [42].

Cluster entropy

In the proposed approach, various clusterings of the SARS-CoV-2 data without a ground

truth are compared. Thus, an internal evaluation criteria should be considered. Most of the

commonly used criteria require some notion of a distance (or dissimilarity measure) between

the objects being clustered. For example, criteria such as the Calinski-Harabasz Index [43]

or the Gap Statistic [44] rely on the Euclidean distance, while the Davies-Bouldin Index [45]

or the Silhouette Coefficient [46] require this distance to be a metric. In the setting of viral

sequences, with the categories A, C, G, T and also the gap (–), it is unsure even what the

distance between two categories (e.g., A to G) would be, let alone whether this distance is

Euclidean, or even a metric.

The cluster entropy [47], a criterion that was shown to generalize any distance-based

criterion, does not require a distance at all. This is ideal in this context, since it does

not make any assumptions about the relationships between the categories A, C, G, T, –.

Indeed, since the information about such relationships is so lacking, forcing an arbitrary

set of assumptions in using a distance-based criterion may only bias the resulting analysis.
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Moreover, cluster entropy very naturally captures out setting: that the population of viral

sequences comes from a number of subtypes. Indeed, cluster entropy can be formally derived

using a likelihood principle based on Bernoulli mixture models. In mixture models, the

observed data are thought of as coming from a number of different latent classes. In [47],

the authors prove that minimizing cluster entropy is equivalent to maximizing the likelihood

that set of objects are generated from a set of (k) classes. This is very akin to the setting

here: indeed the set of objects are viral sequences, and they come from a set of k subtypes.

This relates closely to the widely-used notion of sequence logo [48]: a graphical rep-

resentation of a set of aligned sequences which conveys at each position both the relative

frequency of each base (or residue), and the amount of information (i.e., how low is the

entropy) in bits. So indeed, a clustering of viral sequences of low entropy gives rise to a

confident set of sequence logos (in terms of information), and can hence shed light on the

possible biological function of viral subtype that each such logo (or related motif) represents.

Formally, a set S of aligned sequences over a set X of columns is considered. A given col-

umn is then also a (vertical) “sequence” on the categories A, C, G, T, –. Let = {A, C, G, T},

the four nucleotides, not counting the gap (–) character. Using the notation of [47], the en-

tropy x(C) of a set C of rows (a cluster of sequences) in this column x is then

x(C) = −
∑
s∈C

∑
a∈

px(s = a) log px(s = a) (2.2)

Note that px(s = a) — the probability that a sequence s ∈ C has nucleotide a in column

x — essentially amounts to the relative frequency of nucleotide a ∈ in C in this column x.

The entropy X(C) of set C of rows in a set X of columns is then

X(C) =
∑
x∈X

(x) (2.3)

that is, sums of entropies of the columns are computed. Since the set of columns will always

the set of SNV sites of our sequences, (C) will be used for the entropy of this set of rows from

hereon in. This way, (C) is understood to be the entropy of a set (a cluster) of sequences.
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The expected entropy [47] of a clustering = C1, . . . , Ck of sequences is then

H() =
1

n

k∑
i=1

ni(Ci) (2.4)

where ni = |Ci|, the number of elements in cluster Ci, and n is the total number of sequences.

For completeness, the total entropy of a clustering is simply the sum

T () =
k∑

i=1

(Ci) (2.5)

of the individual entropies of each cluster (not weighted by ni).

Fitness

Here we propose a novel notion of the fitness of a cluster, based on how its size (number

of sequences it contains) changes over a series of time steps. For a given set of clusters

C1, . . . Ck, Xi(t) denotes the size of cluster Ci at a particular time point t. The fitness

coefficient is calculated using Xi by first computing

vi(t) =
Xi(t)∑k
i=1 Xi(t)

(2.6)

ui(t) =
vi(t)∑k
i=1 vi(t)

(2.7)

which are the the frequency and normalized frequency respectively, of cluster Ci at time

point t. The fitness function gi, for each cluster Ci is then

gi(t) =
u̇i(t)

ui(t)
+

Ẋi(t)

Xi(t)
(2.8)

Using cubic splines, ui(t) and Xi(t) are interpolated over the time period and the derivatives

u̇i(t) and Ẋi(t) are calculated. The fitness coefficient ri, which is the average fitness over
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the time period T (composed of the time points t) for cluster Ci is then

ri =
1

T

∫ T

1

gi(t)dt (2.9)

In order to reduce sampling error, we use the Poisson distribution to draw random

samples. For each cluster at each time step, a sufficiently large number of random samples

are drawn from the Poisson distribution on Xi(t) as the expectation of the interval. Then

Xi(t) is replaced by the mean value of these random samples. This is repeated a sufficiently

large number of times (e.g., 100) to calculate a set of Poisson-distributed sizes. The fitness

coefficient calculation is then applied on each separately and a (e.g., 95%) confidence interval

of this fitness coefficient is obtained.

2.2.2 k-mers EMD

Proposed algorithm is based on finding the distance between populations using Earth

Movers’ Distance (EMD) between distributions of k-mers in NGS data. The general pipeline

of the algorithm (see Figure 1) includes obtaining k-mer distributions from NGS reads for

corresponding hosts and computing EMD between them. As a result, we obtain mean of

hosts A and B Mean(A,B) and EMD EMD(A,B) between them. We first describe how

we find distances between k-mers and then describe how we find distance between samples.

Finding distances between k-mers in the De Bruijn graph

k-mer refers to a substring of length k. In our work, we use De Bruijn graph to calculate

distance between k-mers. De Bruijn graph is the graph, that is constructed so that vertices

represent every string over a finite alphabet of length l, and edges are added between vertices

that have overlap of l − 1.

Once De Bruijn graph is constructed, distance between k-mers can be calculated as a

length of shortest path between corresponding vertices using breadth-first search algorithm.

In our algorithms, obtained graph is converted to undirected before shortest path computa-

tion.
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Figure (2.1) Algorithm pipeline. k-mer distributions for hosts, that need to be compared,

are obtained from NGS reads. Then, EMD is computed and mean is obtained using k-mer

distributions.

Finding EMD between viral samples

Viral populations can be compared by comparing the corresponding k-mer distributions

using EMD. First, k-mer distributions are obtained for each sample, so that they contain all

k-mers and normalized frequencies.

EMD is a method, that allows to evaluate dissimilarity between two multi-dimensional

distributions in some feature space where a distance measure between single features (ground

distance) is given [49]. Distributions can be represented as signatures - sets of clusters, so

that each cluster is represented by its mean and by the fraction of distribution that belongs to

that cluster. Computation of EMD is based on solving the transportation problem, which can

be formulated as following: for several suppliers, each with a given amount of goods, several

consumers, each with limited capacity, and a cost of transporting a single unit of goods

between each supplier-consumer pair, find a least-expensive flow of goods from the suppliers

to the consumers that satisfies the consumers’ demand. EMD is calculated as the following

EMD(P,Q) =
∑m

i=1

∑n
j=1 fijdij where fij is the minimum-cost flow between supplier i and

consumer j, and dij is the distance between i and j. It should also be noted that EMD is

usually normalized by the total flow, but we perform normalization of frequencies in k-mer

distributions before EMD computation, which results in total flow always being equal to 1.
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Algorithm 2 k-mers EMD

Input: Sets of sequencing reads from hosts A and B (SA and SB).
Output: k-EMD distance between A and B.
1: Produce k-mers from SA and SB:

KMA ← k-mer distribution fromSA

KMB ← k-mer distribution fromSB

2: Initialze distance matrix D(A,B): for any pair of k-mers x ∈ KMA and y ∈ KMB, find
dist(A,B) in De Bruijn graph;

3: Compute EMD(KMA, KMB, D(A,B)).

Example of EMD computation

Constructing of the De Bruijn graph between two sequences CGATTCTAAGT and

CGATTGTAAGT is shown on Figure 2. Once original graph is obtained, directions are

removed and pairwise distances are computed for all k-mers. Figure 3 describes an example

of k-EMD distance computation. After k-mer distributions are generated for input sequences,

EMD is computed as the work
∑m

i=1

∑n
j=1 fijdij, where fij is the flow between histogram(k-

mer distribution) elements i and j and dij is the corresponding distance between k-mers,

which is obtained from De Bruijn graph (Figure 2). This way, EMD = 0.88.

Mean k-mer distribution

Representing samples as k-mer distributions allows to estimate the center from a group

of samples by introducing a mean host. We use the maximum mean k-mer distribution,

which is obtained by finding the maximum observed frequency for each k-mer ki f
max
i =

max
1≤i≤n

fi and normalization f ′i =
fmax
i∑

1≤i≤n

fmax
i

Identification of relatedness

Algorithm is trained on all given outbreaks, so that minimal EMD between 2 unre-

lated hosts (relatedness threshold t is obtained). To identify whether 2 hosts A and B are
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related, we compute EMD between them EMD(A,B) and predict that they are related if

EMD(A,B) < t, and unrelated otherwise.

Figure (2.2) De Bruijn graph for 3-mers, obtained from sequences CGATTCTAAGT and

CGATTGTAAGT . Once original graph is obtained (a), directions (b) are removed and

pairwise distances are computed for all k-mers (c).
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Figure (2.3) Finding EMD distance between k-mers of sequences CGATTCTAAG and

CGATTGTAAGT . The k-mer distributions are on the left and right sides. Dashed lines

represent transportation flow between k-mers; corresponding flow values are shown in green.

Red values on top of the lines represent distance between corresponding k-mers in the De

Bruijn graph.

Identification of transmission direction between hosts

To infer transmission direction between a pair of samples X and Y , we first compute a

mean host Mean(A,B).

Once Mean(A,B) is obtained, we calculate EMD between mean host and hosts A and

B EMD(Mean(A,B), A) and EMD(Mean(A,B), B). Host, that is closer to the maxi-

mum mean is assumed to be the transmission source, so that if EMD(Mean(A,B), A) <

EMD(Mean(A,B), B), we predict that the transmission happened from A to B (Figure 4).
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Figure (2.4) Inference of transmission between hosts A and B. First, mean host

Mean(A,B) is introduced. Then EMD is computed between Mean(A,B) and hosts

A and B. Finally, EMD(Mean(A,B), A) is compared with EMD(Mean(A,B), B). If

EMD(Mean(A,B), A) < EMD(Mean(A,B), B), then transmission direction is predicted

as the one that happened from A to B.

Identification of transmission clusters

To test hierarchical clustering, single-linkage algorithm was used. This method evaluates

the similarity of two clusters based on their most similar members [?] and groups clusters

in bottom-up order until certain termination condition is satisfied. In our algorithm, we

use a distance criteria, so clusters are merged until distance between them exceeds a pre-

defined distance threshold, which represents EMD between two closest unrelated samples

in the dataset. This way, we obtain a partition, where some of the related hosts remain

in different clusters. At this point, we proceed to the second stage of the algorithm, that

allows to improve the clustering quality by merging the clusters, that contain related hosts

by performing the following steps:

1. For each cluster, obtained from hierarchical clustering, compute center as the mean of

all hosts within the cluster;

2. For each center, obtained at the previous step:
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− Find distances to the furthest in-cluster host and closest host, that belongs to the

different cluster;

− If for cluster A there exists an ’overlap’ (there is a host from cluster B, that is

closer to the center than the furthest host, belonging to the same cluster (A)),

merge A and B

Example of the algorithm is demonstrated in Figure 5. a) shows output of threshold-based

hierarchical clustering, where circles represent hosts, that are connected with an edge if

distance between them doesn’t exceed a threshold. There are 2 clusters that belong to

the same outbreak. b) shows how clusters are merged based on circle overlap. For each

cluster, mean host of all hosts within the cluster is calculated (shown in the center). Circles

with dashed borders have centers in respective mean hosts; their radiuses are calculated as

distances between mean hosts and furthest in-cluster hosts. In the example, Mean 1 is closer

to host A that to the furthest host from the same (left) cluster. This way, according to our

algorithm, intersecting clusters collapse.
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Figure (2.5) Example of overlap-based cluster merging. a) Output of threshold-based hierar-

chical clustering, where circles represent hosts (k-mer distributions), that are connected with

an edge if distance (EMD) between them doesn’t exceed a threshold (so that no unrelated

hosts are connected). There are 2 clusters that belong to the same outbreak, which means

that some related hosts are treated as unrelated. b) For each cluster, circles were build,

so that mean hosts reside in the center of the circle, and radius is defined as the distance

between mean host and furthest host in an outbreak. Circle of cluster 1 intersects with

cluster 2 since host X is closer to Mean 1 than furthest host in cluster 1. Therefore, clusters

1 and 2 are merged.

Deciding whether source is present in a set of hosts

To decide whether source is present in a set of sequenced hosts S, the following algorithm

is applied:

1. Calculate mean Mean(S) for all hosts within an outbreak;

2. For every host H, calculate EMD between H and mean Mean EMD(Mean(S), H);

3. If there exists a host, for which EMD(Mean(S), H) < t, source is present.
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To obtain threshold t, we train the algorithm on all outbreaks with known sources. For

every such outbreak, we first calculate the mean host Mean(S) and distances between mean

and every host H in the outbreak EMD(Mean(S), H), find the smallest distance and nor-

malize it by the median distance from mean to host in an outbreak. After this, we repeat

the procedure for the same outbreak, but discard the source. We define t as the minimal

EMD(Mean(S), H) for an outbreak without source, which maximizes accuracy, so that

outbreaks, where source is present, have EMD(Mean(S), H) < t.

Source identification

To identify sources, a maximum mean host for an outbreak Mean is computed, and

EMD is calculated between every host and Mean. Host with minimum EMD(H,Mean) is

assumed to be the source.

2.2.3 VOICE

V OICE [50] is a non-deterministic algorithm for analysis of NGS data from viral out-

breaks. The algorithm uses Markov process to simulate the process of viral population

evolution from source to recipient.

Identification of relatedness and transmission direction Given two hosts A

and B, VOICE infers times tAB and tBA, that represent evolution time for a corresponding

direction of infection. Based on obtained times, algorithm decides whether viral populations

from hosts are related and infers transmission direction.

Data normalization Due to biases, that can be introduced at sampling and sequenc-

ing steps, sizes of observed viral populations may vary significantly, which, in turn, may affect

simulation time. To compensate for this, V OICE performs normalization step, where each

viral population is clustered, and each cluster is replaced with consensus of its members.

During subsampling normalization, q sequences are randomly chosen from each population,

and procedure is repeated r times.
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Identification of clusters and sources of outbreaks To identify outbreak clusters,

V OICE produces a weighted directed relatedness graph, where G = (V,A,w) with V = P .

Viral populations PA and PB are connected with an edge if value min{tAB, tBA} is less than a

threshold, so that A and B are considered to be related. Transmission clusters are computed

as weakly connected components of G. Outbreak sources are inferred by building a Shortest

Paths Tree (SPT) for every vertex in the corresponding cluster. Vertex with SPT of minimal

weight is assumed to be the source.

2.2.4 Results

k-mers EMD and VOICE were validated on a publicly available dataset obtained from

an epidemiological study of HCV outbreaks [13]. SARS-CoV-2 clustering algorithm was

validated on two publicly avalilable datasets, obtained from GISAID [31] and EMBL-EBI [32,

51] databases.

HCV data set

The data consists of 368 sequenced hosts where 175 of them belong to 34 annotated

outbreaks. Among these annotated outbreaks, 11 have a known main spreader (Table 1).

All outbreaks contain from 2 to 33 hosts. Every host is represented as an HCV intra-host

population, obtained with end-point limiting-dilution (EPLD). All viral sequences represent

a fragment of E1/E2 genomic region of length 264bp. Data samples annotation consists of

host and outbreak id along with abundance for every sequence. This way, we were able to

interpret obtained experimental results.
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Figure (2.6) Deciding whether source is present in a given set of hosts. Here, every circle

represents a host, belonging to an outbreak, and green circle represents mean. Edges repre-

sent distances between mean hosts and hosts in an outbreak. If there is a host, that is close

to mean (so that the distance is smaller than a threshold, case (a)), we conclude, that source

is present in an outbreak. Otherwise, analyzed set of hosts doesn’t include the outbreak

source (case (b)).

We simulated MiSeq reads from known haplotypes by SimSeq [52] and created mixtures

using abundances from original data to test k-mers EMD method.

SARS-CoV-2 data sets

The first data set consists of sequences submitted to the GISAID [31] database from

December 2019 to November 2020. This data set contains sequences from all over the world.

The second data set consists of sequences submitted to the EMBL-EBI [32, 51] database

from the beginning of October 2020 to the middle of December 2020. For both data sets,

we align the sequences and trim the first and last 50bp of the aligned sequences.
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k-EMD and VOICE validation

Identification of relatedness Viral populations from two samples are genetically

related if they belong to the same outbreak and unrelated, otherwise. The genetic relatedness

is validated on the union of both collections containing all outbreaks and unrelated samples.

There are 67528 host pairs (obtained from all 368 hosts). Among these pairs, 1007 represent

related cases (so that both hosts in pair belong to the same annotated outbreak). We used

EMD as predictor for relatedness. We measured the sensitivity of our method as following.

First we determining the EMD value for all unrelated pairs, the minimum value we have

chosen as a threshold which prohibits false-positive relatedness detection, the pairs which

have EMD below the threshold are considered as related. Precision of our algorithm is 100%.

We calculated the recall as a proportion of correctly predicted related pairs among all known

related pairs. Results are described in Table 2. Relatedness ROC is shown on Figure 7.

Identification of transmission direction between hosts Performance of algo-

rithm when identifying transmission direction was calculated as a ratio of pairs of hosts with

correctly predicted directions to all host pairs, where direction is known. Results are shown

in Table 2.

Identification of transmission clusters Precision for our algorithm is equal to

100%, since we don’t merge hosts from different outbreaks. Similarities between true and

estimated partitions were evaluated using an editing metric [53]. Given metric is defined

as the minimum number of elementary operations, required to transform one partition into

another, such as joining or partition of clusters [53]. Clustering recall was calculated similarly

to [50], so that editing distance E was normalized by dividing it by the number of elementary

operations N , required to transform trivial partition into singleton sets into true partition,

which is equal to n − k, where n is the number of samples and k is the number of true

clusters [50]:
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Recall =
E

n− k
× 100%

Deciding whether outbreak source is present Source presence recall was cal-

culated as the proportion of outbreaks with present source, that were correctly identified

as such; precision - as the proportion of correctly identified outbreaks, where source is not

present. Finally, specificity was calculated as the total number of outbreaks with present

source, divided by the sum of total number of outbreaks with present source and the number

of outbreaks, that were incorrectly identified to have a source present. For our algorithm,

precision = 90%, specificity = 80%, and recall = 85%. ROC curve for source presence

detection is shown on Figure 8.

Figure (2.7) ROC curve for prediction of source presence. AUROC = 0.8

Identification of outbreak sources Source identification accuracy is calculated

as the percentage of outbreaks with correctly predicted sources for outbreaks with known

sources. ROC curve for source presence detection is shown on Figure 9.
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Outbreak AA AC AI AJ AQ AW BA BB BC BJ NH
# samples 3 4 15 3 9 19 6 7 2 4 33

Table (2.1) Outbreaks with known sources

Method k-EMD MinDist MinDisB ReD VOICE-D VOICE-S
Relatedness
sensitivity, %

80.4 (90) 90 92.9 55.3 85.2 86.8

Clustering
sensitivity, %

100 (100) 100 100 96.3 98.2 98.2

Direction
accuracy, %

88.7 (90.4) N/A N/A 87.1 83.9 87.1

Source
accuracy, %

80 (81.8) 50 40 90 80 90

SARS-CoV-2 clustering validation

GISAID dataset Using our technique involving CliqueSNV, GISAID [31] dataset

was clustered to identify at most 66 subtypes, which vary in proportion between December

2019 and November 2020. Indeed, a k of 66 was needed in order for the minimum cluster

frequency to be at least 1% of the population in this case. Relative distributions of these

different subtypes is reported in Fig. 2.8 and Fig. 2.9, in a similar way to that of Fig. 3

of [54].

Table 2.2 gives an assessment of the various clusterings computed, in terms of both the

expected entropy (Eq. 2.4) and total entropy (Eq.2.5). While any form of clustering achieves

a better expected (and total) entropy than not clustering at all, introduced CliqueSNV-

based approach tends to outperform all other forms of clustering using either Hamming or

TN-93 distance. Finally, by filling gaps in sequences based on the closest cluster center, an

even lower expected (and total) entropy is achieved. This illustrates the appropriateness

of this cluster-based approach for filling gaps: indeed the entropy of the dataset without

clustering remained high after filling gaps (based on the consensus for the entire dataset),

for example. Finally, Table 2.3 reports runtimes of the various stages of this analysis, and

Table 2.4 compares runtimes of CliqueSNV and k-modes clustering. Given the latter table, it

should be noted that CliqueSNV-based method had a slightly lower runtime than k-modes,



30

Figure (2.8) Subtype distribution (GISAID dataset, 15-day window, relative count)

Figure (2.9) Subtype distribution (GISAID dataset, cumulative, relative count).
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k-modes setting
(initialization, distance)

without gap filling with gap filling
expected
entropy

total
entropy

expected
entropy

total
entropy

without clustering 9536.89 9536.89 8417.89 8417.89
random centers, Hamming 123.00 3170.60 109.21 2474.30
random centers, TN-93 127.32 4401.18 111.05 3470.03
pairwise distant, Hamming 422.65 4651.23 294.98 3629.47
pairwise distant, TN-93 273.34 3500.14 256.44 3007.07
CliqueSNV, Hamming 110.58 2585.29 90.42 2308.95
CliqueSNV, TN-93 121.87 2379.46 100.85 2117.40

Table (2.2) The expected entropy (Eq. 2.4) and total entropy (Eq. 2.5) of the GISAID
sequences without clustering (i.e., considered as a single cluster containing all sequences),
and when clustering using each of the six combinations of settings mentioned in Sec. 2.2.1,
both without filling gaps and with gap filling.

algorithm stage time in seconds
CliqueSNV (inferring subtypes) 2405.08
CliqueSNV (finding closest subtypes) 2324.34
gap filling 2740.32
entropy computation 1254.22
Total 8723.96

Table (2.3) Runtimes of the different stages of the algorithm for the GISAID dataset, which
contains 199240 sequences. All stages were executed on a PC with an Intel(R) Xeon(R)
CPU X5550 2.67GHz x2 with 8 cores per CPU, DIMM DDR3 1333 MHz RAM 4Gb x12,
and running the CentOS 6.4 operating system.

despite it performing best overall.

EMBL-EBI dataset Data from the EMBL-EBI database was clustered to identify

15 subtypes which vary in proportion between the beginning of October 2020 and the middle

of December 2020. Since the data here are over a shorter time span (i.e., are smaller), and

are more uniform, a k of 15 was sufficient for the minimum cluster frequency to be at least

1% of the population in this case. The relative distributions of these different subtypes is

reported in Fig. 2.10 using a weekly moving average, since a weekly oscillation in SARS-

CoV-2 data has been noted in [55]. One will notice, in Fig. 2.10, the sharp increase of the

relative proportion of a certain subtype (in red) to more than a third of the population. We
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clustering method time in seconds
CliqueSNV 4729.42
k-modes 4922.44

Table (2.4) Runtimes of CliqueSNV and k-modes clustering using random centers and Ham-
ming distance, for the GISAID dataset, which contains 199240 sequences. Both methods
were executed on a PC with an Intel(R) Xeon(R) CPU X5550 2.67GHz x2 with 8 cores
per CPU, DIMM DDR3 1333 MHz RAM 4Gb x12, and running the CentOS 6.4 operating
system.

Figure (2.10) Subtype distribution (UK dataset, weekly window, relative count), produced
by CliqueSNV. Red subtype contributes to 99.86 % of the sequences that correspond to
B.1.1.7 lineage.

confirm from metadata, that this indeed corresponds to the B.1.1.7 variant that was first

identified in studies such as [56]. Fig. 2.11 gives the number of sequences from Fig. 2.10

which belong to this B.1.1.7 lineage by mid December 2020, which shows how accurately our

approach has detected this subtype. This illustrates the ability of our clustering to identify

subtypes which are known in the literature. Interestingly enough, the study of [56] is based

on an approach of building a phylogenetic tree — this demonstrates our approach, which is

based on clustering sequences, as a viable alternative.

Because our method detected one subtype which tends to dominate the population in

this UK data, we wanted to see if this is consistent with a cluster-based fitness coefficient,
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Figure (2.11) Number of sequences belonging to the B.1.1.7 lineage per cluster for CliqueSNV
and k-modes clustering. For CliqueSNV, all sequences are contained in 2 clusters (out of a
total of 15): 7044 in cluster 6 and 97 in cluster 15. The k-modes clustering, on the other
hand, reported that B.1.1.7 sequences are contained in 13 out of 15 clusters, with counts
ranging from 1 to 6327 sequences per cluster. Expected entropy for gap-filled CliqueSNV
clustering is 75.73, and 94.16 for k-modes. (Total entropy is 986.48 for CliqueSNV and
2074.12 for k-modes.)
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Cluster Interval lower bound Interval Upper bound
1 -0.012703573 -0.012649641
2 0.086896596 0.087769609
3 0.354406762 0.368566931
4 0.048125146 0.048717893
5 -0.020624053 -0.020552015
6 1.342718732 1.504481237
7 0.016457622 0.016783626
8 0.086911634 0.088104572
9 -0.421159711 -0.406373723

10 0.030043564 0.030574889
11 -0.019298934 -0.018901415
12 0.018863127 0.019330401
13 0.025013817 0.025309291
14 0.284365966 0.323771427
15 -0.002840931 -0.002727241

Table (2.5) The 95% confidence interval of the fitness coefficient of each of the 15 clusters of
the UK data obtained using CliqueSNV centers and Hamming distance.

i.e., that of Sec. 2.2.1. In this case, we have k = 15 clusters, and we chose our time points

t to be intervals of one week over the period of the beginning of October to the middle of

December. The size Xi(t) of each cluster Ci in every week t was obtained, and each fitness

coefficient ri was computed accordingly (Eq. 2.9). In order to reduce sampling error, we drew

2000 random samples from the Poisson distribution on Xi(t) according to Sec. 2.2.1. We

repeated this 100 times, and we report the 95% confidence interval of the resulting coefficients

of the clusters obtained with CliqueSNV centers using Hamming distance in Table 2.5, and

using TN-93 distance in Table 2.6. We note that similar results are obtained with either

distance. In either case, these coefficients confirm that the cluster with ID 6, identified in

Fig. 2.11 to corresponding to this this B.1.1.7 variant, is by far the most fit. This highlights

the ability of our clustering-based approach for detecting, based purely on sequence content,

novel subtypes which have the potential of becoming dominant in the population.
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Cluster Interval lower bound Interval Upper bound
1 -0.013470426 -0.013402308
2 0.788873024 0.794633526
3 0.350509061 0.363602609
4 0.066572874 0.067456665
5 -0.017051993 -0.016967840
6 1.389827068 1.509878915
7 0.015262998 0.015514851
8 0.086021497 0.086922187
9 -0.380903006 -0.372241770

10 0.032476523 0.033215182
11 -0.021344261 -0.021102968
12 0.000508028 0.000937268
13 0.042481718 0.043032257
14 0.353102235 0.390211682
15 -0.032297606 -0.032036793

Table (2.6) The 95% confidence interval of the fitness coefficient of each of the 15 clusters of
the UK data obtained using CliqueSNV centers and TN-93 distance.
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PART 3

VIRAL QUASISPECIES ASSEMBLY

3.1 Introduction

RNA viruses, such as IAV, HIV and HCV, are known for their high mutation rates

and exist in infected hosts as highly heterogeneous populations of closely related genomic

variants called quasispecies [57–64].

Structure and composition of quasispecies is an important factor, that influences dis-

ease progression and epidemic spread. In particular, low-frequency variants may result in

immune escape, emergence of drug resistance and an increase of virulence [23,65–70]. There-

fore, accurate characterization of viral mutation profiles sampled from infected individuals

is essential for viral research, therapeutics and epidemiological investigations [33].

Recent advances in NGS technologies provide new opportunities when it comes to analy-

sis of viral populations, and allow to produce strong coverage of highly variable viral genomic

regions, which is crucial for capturing of rare variants. Nonetheless, haplotype reconstruc-

tion problem remains challenging due to several reasons, such as large number of sequencing

reads, unknown number of true haplotypes, and need to preserve low-frequency variants.

While there exist sequencing solutions, that provide long reads, their applicability to hap-

lotype reconstruction problem is challenged by the need to distinguish between real and

artificial genetic heterogeneity produced by sequencing errors [33].

A number of computational tools for inference of viral quasispecies populations from

noisy NGS data have been proposed recently. These methods include PredictHaplo [29],

Savage [16], aBayesQR [30], QuasiRecomb [71], HaploClique [72], VGA [73], VirA [74, 75],

SHORAH [76], ViSpA [77], QURE [78] and others [79–83]. While given algorithms showed

strong performance in many applications, they still struggle when it comes to accurate and

scalable reconstruction of viral haplotypes, especially when it comes to low-frequency variants
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and large datasets produced by modern sequencing protocols.

While some of existing methods, such as V-phaser [84], V-phaser2 [85] and CoVaMa [86]

use motations linkage for SNV calling, they don’t account for sequencing errors, which makes

them unable to detect mutations of frequency above sequencing error rates [87]. 2SNV

algorithm [88] was the first tool to correctly detect haplotypes with a frequency below the

sequencing error rate by accommodating errors in links.

Alternatively, other existing methods, such as HaploClique [72], Savage [16] rely on find-

ing maximal cliques in a graph, where nodes represent sequencing reads. To infer haplotypes,

they iteratively merge cliques, which makes them dependend on order of merging.

Instead of relying on a read graph, CliqueSNVinds maximal cliques in a graph with nodes

corresponding to SNVs. This allows to drastically increase performance when compared to

methods, based on read graphs.

Furthermore, the clique merging problem is formulated and solved as a combinatorial

problem on the auxiliary graph of cliques of the SNV graph, thus allowing an increase of the

CliqueSNV algorithm’s accuracy [33].

3.2 Methods

3.2.1 Clique SNV algorithm

The pipeline of the CliqueSNV algorithm is shown in Figure 3.1 [33]. The algorithm

takes aligned reads as input and outputs haplotype sequences with their frequencies. The

method consists of six main steps.

Step 1 Consensus sequence is built from aligned reads and all SNVs are identified. All pairs

of SNVs are tested for dependency and divided into three groups: linked, forbidden, or

unclassified. In case there is enough reads that have two SNVs simultaneously, they

are tested for dependency and independency, and algorithm classifies the SNV pair as

linked or forbidden.
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Step 2 Graph G = (V,E) with a set of nodes V representing SNVs, and a set of edges E

connecting linked SNV pairs is constructed.

Step 3 Maximal cliques in graph G are computed, so that each maximal clique represents

groups of pairwise-linked SNVs that potentially belong to a single haplotype.

Step 4 Overlapping cliques are merged if they contain a forbidden SNV pair.

Step 5 Each read is assigned to a merge clique with which it shares the largest number of SNV;

consensus haplotype from all reads assigned to a single merged clique is constructed.

Step 6 Haplotype frequencies are estimated via an expectation-maximization algorithm.

3.2.2 Validation metrics for viral population inference

Precision and recall The quality of inference is usually measured by precision and

recall.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

where TP is a number of true predicted haplotypes, FP is a number of false predicted

haplotypes, and FN a number of undiscovered haplotypes. Precision and recall were initially

measured either by treating a predicted haplotype with a single mismatch as a FP or by

introducing an acceptance threshold [29], so that s a number of mismatches is permitted in

a predicted haplotype, and it can still be counted as TP .

Matching errors between populations However, precision and recall do not ac-

count for distances between true and inferred viral variants and their frequencies. For

this reason, an analogous index is proposed for analysis of viral haplotype reconstruction

tools [33]:

Let T = {(t, ft)}, be the true haplotype population, where ft is the frequency of the

true haplotype t,
∑

t∈T ft = 1. Similarly, let P = {(p, fp)}, be the reconstructed haplotype
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Figure (3.1) Schematic representation of the CliqueSNV algorithm, where SNV is single
nucleotide variation.

population, where fp is the frequency of the reconstructed haplotype p,
∑

p∈P fp = 1. Let

dpt be the edit distance between haplotypes p and t. Thus, instead of precision, matching
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error ET→P is used to measure how well each reconstructed haplotype p ∈ P weighted by

its frequency is matched by the closest true haplotype.

ET→P =
∑
p∈P

fp min
t∈T

dpt

Precision increases while ET→P decreases and reaches 100% when ET→P = 0. Instead of

recall, matching error is used ET←P to measure how well each true haplotype t ∈ T weighted

by its frequency is matched by the closest reconstructed haplotype. [89]

ET←P =
∑
t∈T

ft min
p∈P

dpt

Recall increases while ET←P decreases and reaches 100% when ET←P = 0.

Earth mover’s distance (EMD) between populations While matching errors

match haplotypes of true and reconstructed populations, they do not match their frequen-

cies. In order to simultaneously match haplotype sequences and their frequencies, fractional

matching needs to be used, so that portions of a single haplotype p of population P are

matched to portions of possibly several haplotypes of T and vice versa [33]. This way fp is

separated into fpt’s each denoting portion of p matched to t such that fp =
∑

t∈T fpt, fpt ≥ 0.

Symmetrically, ft’s are also separated into fpt’s, i.e,
∑

p∈P fpt = ft. Finally, fpt’s that min-

imizes minimizing the total error of matching T to P needs to be chose. This problem is

known as Wasserstein metric or EMD between T and P [90, 91].

EMD(T, P ) = min
fpt>0

∑
t∈T

∑
p∈P

fptdpt

s.t.
∑
t∈T

fpt = fp, and
∑
p∈P

fpt = ft

EMD is efficiently computed as an instance of the transportation problem using network

flows. EMD varies significantly for different benchmarks, since they have various number of
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true variants and their frequency distribution, similarity between haplotypes, and sequencing

parameters, such as depth, error rate, etc. Given this, the complexity of a benchmark can be

measured as the EMD between the true population and a population consisting of a single

consensus haplotype [92].

3.2.3 Results

CliqueSNV was tested using four real (experimental) and two simulated datasets from

HIV and IAV samples (Table 3.1 [33]). Datasets contain two to ten haplotypes with frequen-

cies 0.1 to 50%.

Name Type Virus #haplotypes Haplotype frequencies Hamming distance
HIV9exp experimental HIV-1 9 0.2-50% 0.22-2.1%
HIV2exp experimental HIV-1 2 50-50% 1.2%
HIV5exp experimental HIV-1 5 20-20% 2-3.5%
IAV10exp experimental IAV 10 0.1-50% 0.1-1.1%
HIV7sim simulated HIV-1 7 14.3-14.3% 0.6-3%
IAV10sim simulated IAV 10 0.1-50% 0.1-1.1%

Table (3.1) Four experimental and two simulated sequencing datasets of human immunode-
ficiency virus type 1 (HIV-1) and influenza A virus (IAV). The datasets contain MiSeq and
PacBio reads from intra-host viral populations consisting of two to ten variants each with
frequencies in the range of 0.1-50%, and Hamming distances between variants in the range
of 0.1-3.5%.

Experimental datasets:

1–2. HIV-1 subtype B plasmid mixtures and MiSeq reads (HIV2exp and HIV9exp). Nine

in silico plasmid constructs comprising a 950-bp region of the HIV-1 polymerase (pol)

gene were designed, synthesized and then cloned into pUCIDT-Amp (Integrated DNA

Technologies, Skokie, IL). Given region at the beginning of pol is known to contain

protease and reverse transcriptase drug-resistant mutations, and is monitored with

sequence analysis for patient care. Designed plasmids contain point mutations chosen

from real clinical study [93]. Plasmids were mixed in varaious ratios and then sequenced
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using an Illumina MiSeq protocol. HIV2exp dataset is based on a mixture of two

variants, and HIV9exp is based on nine.

3. HIV-1 subtype B mixture and MiSeq reads (HIV5exp). This dataset consists of Illumina

MiSeq 2×250-bp reads obtained from a mixture of five HIV-1 isolates: 89.6, HXB2,

JRCSF, NL43, and YU2 available at [94]. Pairwise Hamming distances of isolates are

in the range from 2-3.5%(27 to 46-bp difference). HIV-1 sequence was reduced to the

beginning of pol with length of 1.3Kb.

4. IAV mixture and PacBio reads (IAV10exp). Given benchmark consists of ten IAV

clones, mixed at a frequency of 0.1-50%. Hamming distances between clones range

from 0.1-1.1% [88].

Simulated datasets:

1. HIV-1 subtype B mixture and MiSeq reads (HIV7sim). This benchmark contains sim-

ulated Illumina MiSeq reads with 10k-coverage of 1-kb pol sequences. Reads were sim-

ulated from seven equally distributed HIV-1 variants chosen from the NCBI database:

AY835778, AY835770, AY835771, AY835777, AY835763, AY835762, and AY835757.

Hamming distances between clones are in the range from 0.6-3.0%(6 to 30-bp differ-

ences). SimSeq [52] was used to generate reads.

2. IAV mixture and MiSeq reads (IAV10sim). This benchmark contains simulated IAV

Illumina MiSeq reads with IAV haplotypes from IAV10exp benchmark. Paired Illumina

MiSeq reads were simulated by SimSeq [52] using default error profile.

Performance of haplotyping methods

CliqueSNV was comapred to 2SNV, PredictHaplo, and aBayesQR. CliqueSNV, Predic-

tHaplo and aBayesQR handle Illumina reads and were compared on HIV9exp, HIV2exp,

HIV5exp, HIV7sim, and IAV10sim datasets. CliqueSNV, 2SNV, and PredictHaplo were also
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tested on the IAV10exp PacBio dataset. Additionally, consensus sequences [92] were used in

validation to evaluate sequences most similar to those generated by the Sanger method [95].

Haplotype reconstruction results for compared methods are shown in Table 3.2 [33].

For five out of six datasets, CliqueSNV demonstrated the best precision and recall. For

the HIV5exp dataset, PredictHaplo outperformed CliqueSNV in prediction of false positive

variants. CliqueSNV demonstrated 100% precision and recall for three datasets, including

the HIV2exp and IAV10exp and HIV7sim.

Benchmark
CliqueSNV aBayesQR PredictHaplo

Precision Recall Precision Recall Precision Recall
HIV9exp 0.50 0.33 0.08 0.11 0.00 0.00
HIV2exp 1.00 1.00 0.08 0.50 0.33 0.50
HIV5exp 0.50 0.60 0.00 0.00 0.75 0.60
HIV7sim 1.00 1.00 0.43 0.43 0.00 0.00
IAV10sim 0.70 0.70 0.13 0.10 0.33 0.10

(a)

Benchmark
CliqueSNV 2SNV PredictHaplo

Precision Recall Precision Recall Precision Recall
IAV10exp 1.00 1.00 0.82 0.90 0.70 0.70

(b)

Table (3.2) Prediction statistics of haplotype reconstruction methods using experimental and
simulated (a) MiSeq and (b) PacBio data. The precision and recall was evaluated stringently
such that if a predicted haplotype has at least one mismatch to its closest answer, then that
haplotype is scored as a false positive.

Figure 3.2 [33] shows the EMD distance between inferred and true haplotypes for MiSeq

datasets, and exact EMD values are provided in Table 3.3 [33].

In terms of EMD, CliqueSNV showed better results than other tools on all benchmarks,

and made almost ideal predictions in some cases, where EMD was close to zero. PredictHaplo

outperformed aBayesQR on four out of five MiSeq datasets. As for aBayesQR, it showed

almost zero-EMD on HIV7sim, but performed significantly worse than other methods on

HIV5exp.
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Benchmark
Consensus CliqueSNV aBayesQR PredictHaplo

EMD EMD Improvement EMD Improvement EMD Improvement
HIV9exp 4.18 2.47 40.83 % 5.09 -21.85 % 3.58 14.30 %
HIV2exp 5.50 1.71 68.95 % 3.53 35.80 % 2.91 47.08 %
HIV5exp 19.40 4.03 79.20 % 19.22 0.91 % 6.80 64.97 %
HIV7sim 11.00 0.02 99.84 % 0.84 92.34 % 5.87 46.68 %
IAV10sim 4.22 0.09 97.77 % 3.64 13.73 % 3.03 28.15 %

Mean Improvement 77.32 % 24.19 % 40.23 %

(a)

Benchmark
Consensus CliqueSNV 2SNV PredictHaplo

EMD EMD Improvement EMD Improvement EMD Improvement
IAV10exp 4.22 0.22 94.69% 0.23 94.46% 0.38 91.02%

(b)

Table (3.3) Earth Movers’ Distance from predicted haplotypes to the true haplotype pop-
ulation and haplotyping method improvement. Four haplotyping methods(aBayesQR,
CliequeSNV, Consensus, PredictHaplo) are benchmarked on five MiSeq datasets (a) and
IAV10exp dataset (b). The improvement shows how much better is prediction of haplotyp-

ing method over inferred consensus, and it is calculated as (EMDc−EMDm)×100%
EMDc

, where EMDc

is an EMD for consensus, and EMDm is an EMD for method. CliqueSNV outperformed all
other methods in accuracy on all datasets.

Figure (3.2) Earth Movers’ Distance (EMD) between true and reconstructed haplotype pop-
ulations. Four haplotyping methods (CliqueSNV, aBayesQR, PredictHaplo, Consensus) are
benchmarked using three experimental and two simulated datasets for human immunodefi-
ciency virus type 1 (HIV-1) and influenza A virus (IAV). For all benchmarks the CliqueSNV
predictions are the closest to the true populations.

Runtime comparison

Each method was executed on a cluster (Intel(R) Xeon(R) CPU X5550 2.67GHz x2 8

cores per CPU, DIMM DDR3 1,333 MHz RAM 4Gb x12) with the CentOS 6.4 operating
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Figure (3.3) Runtime of PredictHaplo (PH), 2SNV and CliqueSNV on datasets with different
sizes.

system. CliqueSNV demonstrated sublinear (with respect ot the number of reads) runtime,

as opposed to PredictHaplo and 2SNV. Runtime complexity of CliqueSNV is quadratic

with respect to the number of SNVs rather than by the length of the sequencing region.

CliqueSNV is significantly faster than aBayesQR and PredictHaplo. In particular, HIV2exp

dataset took over ten hours for aBayesQR, 24 minutes for PhedictHaplo, and 79 seconds for

CliqueSNV (see Figures 3.3 [33]).
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PART 4

DISCUSSION AND FUTURE WORK

Application of molecular viral analysis to investigation of outbreaks is a promising re-

search area, that also generates novel computational challenges. Methods, that are mentioned

in this dissertation can be extended in several directions.

In particular, for entropy-based SARS-CoV-2 clustering, only one-column entropy is

currently used. However, other entropies can be computed, which should improve clustering

results and provide more insights into the dynamics of the virus, such as potential predeces-

sors of the novel B.1.1.7 strain.

EMD k-mer-based viral outbreak analysis tool can also be extended in several ways.

Given approach needs additional attention when dealing with unstable datasets, such as

some of the datasets, produced by PANGEA study [96, 97]. In particular, when coverage is

low or varies greatly between samples, some extra steps, such as multiple window analysis

may be required. This way, next step is to improve the algorithm so that it is applicable

to a wider range of datasets. Another future direction is the application of this method to

the assessment of infection stage as recent or chronic [98] to analyze the correlation between

distance to outbreak source and time elapsed since the infection event. This, in turn, should

provide insights into the mutation rate of the virus after the infection event.
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D. J. Laydon, G. Dabrera, Á. O’Toole, R. Amato, M. Ragonnet-Cronin, I. Harrison,

B. Jackson, C. V. Ariani, O. Boyd, N. Loman, J. T. McCrone, S. Gon calves,

D. Jorgensen, R. Myers, V. Hill, D. K. Jackson, K. Gaythorpe, N. Groves, J. Silli-

toe, D. P. Kwiatkowski, S. Flaxman, O. Ratmann, S. Bhatt, S. Hopkins, A. Gandy,

A. Rambaut, and N. M. Ferguson, “Transmission of sars-cov-2 lineage b.1.1.7 in eng-

land: Insights from linking epidemiological and genetic data,” medRxiv, 2021.

[57] P. H. Kilmarx, “Global epidemiology of hiv,” Current Opinion in HIV and AIDS, vol. 4,

no. 4, pp. 240–246, 2009.

[58] B. Hajarizadeh, J. Grebely, and G. J. Dore, “Epidemiology and natural history of hcv

infection,” Nature Reviews Gastroenterology and Hepatology, vol. 10, no. 9, pp. 553–562,

2013.

[59] R. Lozano, M. Naghavi, K. Foreman, S. Lim, K. Shibuya, V. Aboyans, J. Abraham,

T. Adair, R. Aggarwal, S. Y. Ahn, et al., “Global and regional mortality from 235 causes

of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden

of disease study 2010,” The lancet, vol. 380, no. 9859, pp. 2095–2128, 2012.

[60] M. Eigen, J. McCaskill, and P. Schuster, “The molecular quasi-species,” Advances in

chemical physics, vol. 75, pp. 149–263, 1989.



54

[61] M. Martell, J. Esteban, J. Quer, J. Genesca, A. Weiner, R. Esteban, J. Guardia, and

J. Gomez, “Hepatitis c virus (hcv) circulates as a population of different but closely

related genomes: quasispecies nature of hcv genome distribution,” Journal of Virology,

66, pp. 3225–3229, 1992.

[62] D. Steinhauer and J. Holland, “Rapid evolution of rna viruses,” Annual Review of

Microbiology, 41, pp. 409–433, 1987.

[63] E. Domingo, J. Sheldon, and C. Perales, “Viral quasispecies evolution,” Microbiology

and Molecular Biology Reviews, vol. 76, no. 2, pp. 159–216, 2012.

[64] F. Rodriguez-Frias, M. Buti, D. Tabernero, and M. Homs, “Quasispecies structure,

cornerstone of hepatitis b virus infection: mass sequencing approach,” World J Gas-

troenterol, vol. 19, no. 41, pp. 6995–7023, 2013.

[65] N. Beerenwinkel, T. Sing, T. Lengauer, J. Rahnenfuehrer, and K. Roomp, “Computa-

tional methods for the design of effective therapies against drug resistant HIV strains.,”

Bioinformatics, vol. 21, pp. 3943–3950, 2005.

[66] N. G. Douek DC, Kwong PD, “The rational design of an AIDS vaccine.,” Cell, vol. 124,

pp. 677–681, 2006.

[67] B. Gaschen, J. Taylor, K. Yusim, B. Foley, and F. Gao, “Diversity considerations in

HIV-1 vaccine selection,” Science, vol. 296, pp. 2354–2360, 2002.

[68] J. Holland, J. De La Torre, and D. Steinhauer, “RNA virus populations as quasispecies,”

Curr Top Microbiol Immunol, vol. 176, pp. 1–20, 1992.

[69] S.-Y. Rhee, T. Liu, S. Holmes, and R. Shafer, “HIV-1 subtype B protease and reverse

transcriptase amino acid covariation,” PLoS Comput Biol, vol. 3, p. e87, 2007.

[70] P. Skums, L. Bunimovich, and Y. Khudyakov, “Antigenic cooperation among intrahost

hcv variants organized into a complex network of cross-immunoreactivity,” Proceedings

of the National Academy of Sciences, vol. 112, no. 21, pp. 6653–6658, 2015.



55
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[94] F. D. Giallonardo, A. Töpfer, M. Rey, S. Prabhakaran, Y. Duport, C. Leemann,

S. Schmutz, N. K. Campbell, B. Joos, M. R. Lecca, A. Patrignani, M. Däumer, C. Beisel,
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