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ABSTRACT 

Correlation coefficients are used in statistics to measure the dependence between two 

variables. Kendall rank correlation coefficient is routinely used as a measure of association 

between two random variables in a number of circumstances in which the use of the Pearson 

correlation coefficient is inappropriate. In this thesis, we develop an influence function-based 

empirical likelihood interval for the Kendall rank correlation coefficient. Simulation studies are 

conducted to show good finite sample properties and robustness of the proposed method 

compared with existing methods. The proposed method is illustrated on a real UCLA graduate 

dataset. 
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1 INTRODUCTION  

Correlation coefficient is a numerical measure of dependence between two variables. 

There are several types of correlation coefficients, each with their own definition and own range 

of usability and characteristics. For example, the Pearson correlation coefficient (Pearson, 1920) 

is a measure of the strength and direction of the linear relationship between two variables, the 

Spearman's rank correlation coefficient (Spearman, 1904) is a measure of how well the 

relationship between two variables can be described by a monotonic function, the Kendall rank 

correlation coefficient (Kendall, 1938) is used to measure the ordinal association between two 

measured quantities. Schaeffer and Levitt (1956) described a number of circumstances in which 

the use of the Pearson product-moment correlation is inappropriate and a rank order procedure is 

required, and discussed the advantages of Kendall rank correlation coefficient over Spearman's 

rank correlation coefficient. Croux and Dehon (2010) study robustness of the Kendall and 

Spearman correlations by means of their influence functions, and they found that the Kendall 

rank correlation is more robust and slightly more efficient than Spearman rank correlation. 

Correlation measures are frequently used in applications. For instance, a correlation 

coefficient could be calculated to determine the level of correlation between the price of crude 

oil and the stock price of an oil-producing company. Since oil companies earn greater profits as 

oil prices rise, the correlation between the two variables is highly positive. In investing, a 

correlation is helpful in determining how well a mutual fund performs relative to its benchmark 

index, another fund or asset class. Also, a correlation statistic allows investors to determine when 

the correlation between two variables changes. Since loan rates are often calculated based on 

market interest rates, bank stocks always have a significant highly-positive correlation to interest 

rates.  
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In this thesis, we focus on the Kendall rank correlation coefficient (KCC). Let (𝑋, 𝑌) be a 

bivariate random vector with cumulative distribution function 𝐻(𝑥, 𝑦), the population KCC is 

defined as 

𝑅𝐾(𝐻) ≡ 𝐸𝐻[𝑠𝑖𝑔𝑛((𝑋1 − 𝑋2)(𝑌1 − 𝑌2))] = 2𝑃𝐻[(𝑋1 − 𝑋2)(𝑌1 − 𝑌2) > 0], (1.1) 

where (𝑋1, 𝑌1) and (𝑋2, 𝑌2) are two independent copies of (𝑋, 𝑌). 

For the bivariate normal distribution with population correlation coefficient ρ, denoted by 

𝛷𝜌, we have (Blomqvist 1950), 

𝑅𝐾(𝛷𝜌) =
2

𝜋
𝑎𝑟𝑐𝑠𝑖𝑛(𝜌) . (1.2) 

Let 

𝑅̃𝐾(𝐻) = 𝑠𝑖𝑛 (
1

2
𝜋𝑅𝐾(𝐻)) . (1.3) 

Then 𝑅̃𝐾(𝛷𝜌) = 𝜌. 𝑅̃K(𝐻) is called the Fisher consistent Kendall rank correlation coefficient 

(Maronna et al., 2006). 

Let (𝑋𝑖, 𝑌𝑖), 𝑖 = 1, … , 𝑛, be i.i.d. observations for (𝑋, 𝑌).  Then the sample Kendall rank 

correlation coefficient is  

𝑟𝐾 =
2

𝑛(𝑛 − 1)
∑ 𝑠𝑖𝑔𝑛 ((𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗))

𝑖<𝑗

. (1.4) 

𝑟𝐾 has range on [-1, 1], and is a consistent estimate for the population KCC 𝑅𝐾(𝐻). It 

measures the ordinal association between Xi's and Yi's. If the agreement between the rankings of 

Xi's and Yi's (i.e., the two rankings are the same) is perfect, 𝑟𝐾 = 1. If the disagreement between 

the two rankings is perfect (i.e., one ranking is the reverse of the other), 𝑟𝐾 = −1. If X and Y are 

independent, then 𝑟𝐾 is approximately zero. 𝑟𝐾 can be used as a test statistic for testing the 

statistical dependence of two variables if the sampling/asymptotic distribution of 𝑟𝐾 can be found. 
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Croux and Dehon (2010) studied finite sample performances of several correlation 

estimators and showed that the sample KCC is resistant to outliers when contamination exists in 

the samples. The sample KCC is more robust and more efficient than the sample Spearman 

correlation coefficient. These advantages make the sample KCC a preferable estimator for 

𝑅𝐾(𝐻). In this thesis, our goal is to propose a new non-parametric confidence interval for the 

KCC 𝑅𝐾(𝐻). The thesis is organized as follows. In section 2, we review a normal 

approximation-based interval for the KCC. In section 3, we propose a new influence function-

based empirical likelihood interval for the KCC. In section 4, extensive simulation studies are 

conducted to examine the finite sample performance of the proposed interval. In section 5, a real 

example is used to illustrate the proposed method. In section 6, we conclude this thesis with a 

brief discussion. The proof of the main theorem is deferred to Appendix. 
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2 THE NORMAL APPROXIMATION METHOD 

Assume that the bivariate random variable (𝑋, 𝑌) follows a distribution H. The influence 

function (IF) of a statistical functional R at a distribution H is defined as 

𝐼𝐹((𝑥, 𝑦), 𝑅, 𝐻) = 𝑙𝑖𝑚
𝜀→∞

𝑅 ((1 − 𝜀)𝐻 + 𝜀𝛥(𝑥,𝑦)) − 𝑅(𝐻)

𝜀
, (2.1) 

where 𝛥(𝑥,𝑦) is a Dirac measure putting all its mass at (𝑥, 𝑦) (see Hampel et al., 2011). 

The influence function of the KCC is given as follows (Croux and Dehon, 2010): 

𝐼𝐹((𝑥, 𝑦), 𝑅𝐾, 𝐻) = 2{2𝑃𝐻[(𝑋 − 𝑥)(𝑌 − 𝑦) > 0] − 1 − 𝑅𝐾(𝐻)}. (2.2) 

Therefore, we have 

√𝑛 (
2

𝑛
∑ 𝐼[(𝑋𝑖 − 𝜇𝑥)(𝑌𝑖 − 𝜇𝑦) > 0]

𝑛

𝑖=1

− 1 − 𝑅𝐾(𝐻))
𝑑
→ 𝑁(0, 𝜎2)  𝑎𝑠 𝑛 → ∞, (2.3) 

where 𝜇𝑥 = 𝐸(𝑋), 𝜇𝑦 = 𝐸(𝑌), and 

𝜎2 = 4PH[(𝑋 − 𝜇𝑥)(𝑌 − 𝜇𝑦) > 0]{1 − PH[(𝑋 − 𝜇𝑥)(𝑌 − 𝜇𝑦) > 0]}. 

Using (2.3), a 100(1 − α) % normal asymptotic-based confidence interval for 𝑅𝐾(𝐻) can 

be constructed as 

2

n
∑ 𝐼[(𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅) > 0]

𝑛

𝑖=1

− 1 ± Z
1−

α
2

∙
𝜎̂

√𝑛
. (2.4) 

where z1−𝛼/2 is the (1 − α/2)-th quantile of the standard normal distribution, and 𝜎̂ is the square 

root of the estimator 𝜎̂2 for 𝜎2defined by 

𝜎̂2 =
4

n
∑ 𝐼[(𝑋𝑖 − 𝜇𝑥)(𝑌𝑖 − 𝜇𝑦) > 0]

𝑛

𝑖=1

{1 −
1

𝑛
∑ 𝐼[(𝑋𝑖 − 𝜇𝑥)(𝑌𝑖 − 𝜇𝑦) > 0]

𝑛

𝑖=1

} . (2.5) 
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3 EMPIRICAL LIKELIHOOD FOR THE KENDALL RANK CORRELATION 

COEFFICIENT 

Hu, Jung and Qin (2020) recently proposed an influence function-based EL interval for 

the Pearson correlation coefficient. Motivated by their work, we proposed an influence function-

based EL interval for the KCC 𝑅𝐾(𝐻) in this section. 

From the influence function (2.2), it follows that the KCC 𝑅𝐾(𝐻) satisfies 

𝐸 (2𝑃𝐻[(𝑋 − 𝜇𝑥)(𝑌 − 𝜇𝑦) > 0] − 1 − 𝑅𝐾(𝐻)) = 0. (3.1) 

Let 𝑊𝑖 = (𝑋𝑖, 𝑌𝑖), 𝑖 = 1, … , 𝑛, and 𝑝 =  (𝑝1, … , 𝑝𝑛) be nonnegative numbers such that 

∑ 𝑝𝑖 = 1𝑛
𝑖=1 . From (3.1), an influence function-based EL for 𝑅𝐾(𝐻) can be defined as 

𝐿0(𝑅𝐾(𝐻)) = 𝑠𝑢𝑝
𝑝

{∏ 𝑝𝑖: 𝑝𝑖 ≥ 0,

𝑛

𝑖=1

∑ 𝑝𝑖 = 1

𝑛

𝑖=1

, ∑ 𝑝𝑖(𝑉(𝑊𝑖) − 𝑅𝐾(𝐻)) = 0

𝑛

𝑖=1

} , (3.2) 

where 

𝑉𝑖(𝑊𝑖) = 2𝐼[(𝑋𝑖 − 𝜇𝑥)(𝑌𝑖 − 𝜇𝑦) > 0] − 1, 𝑖 = 1, … , 𝑛. (3.3) 

In practice, the population means (𝜇𝑥, 𝜇𝑦) are unknown. The sample means (𝑋̅, 𝑌̅) can be 

used as the estimator of the population means. So, an influence function-based plug-in EL for 

𝑅𝐾(𝐻) can be defined as 

𝐿̂(𝑅𝐾(𝐻)) = 𝑠𝑢𝑝
𝑝

{∏ 𝑝𝑖: 𝑝𝑖 ≥ 0,

𝑛

𝑖=1

∑ 𝑝𝑖 = 1

𝑛

𝑖=1

, ∑ 𝑝𝑖 (𝑉̂(𝑊𝑖) − 𝑅𝐾(𝐻)) = 0

𝑛

𝑖=1

} , (3.4) 

where the pseudo sample 

𝑉̂𝑖(𝑊𝑖) = 2𝐼[(𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅) > 0] − 1, 𝑖 = 1, … , 𝑛. (3.5) 

Using the Lagrange multiplier method, the expression for pi can be obtained: 

𝑝𝑖 =
1

𝑛
{1 + 𝜆 (𝑉̂𝑖(𝑊𝑖) − 𝑅𝐾(𝐻))}

−1

, 𝑖 = 1, … , 𝑛, (3.6) 
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where λ satisfies 

1

𝑛
∑

𝑉̂𝑖(𝑊𝑖) − 𝑅𝐾(𝐻)

1 + 𝜆 (𝑉̂𝑖(𝑊𝑖) − 𝑅𝐾(𝐻))

𝑛

𝑖=1

= 0. (3.7) 

The corresponding influence function-based empirical log-likelihood ratio for 𝑅𝐾(𝐻) is 

𝑙(𝑅𝐾(𝐻)) = 2 ∑ log

𝑛

𝑖=1

{1 + 𝜆 (𝑉̂𝑖(𝑊𝑖) − 𝑅𝐾(𝐻))} . (3.8) 

Theorem 1: If 𝐸(𝑋) and 𝐸(𝑌) exist, and 𝑅𝐾(𝐻) is the true value of the Kendall rank 

correlation coefficient, then the asymptotic distribution of 𝑙(𝑅𝐾(𝐻)) is a chi-square distribution 

with one degree of freedom, i.e., 

𝑙(𝑅𝐾(𝐻))
𝑑
→  𝜒1

2. (3.9) 

Based on the theorem above, a 100(1 − α) % influence function-based empirical 

likelihood (IEL) confidence interval for 𝑅𝐾(𝐻) can be constructed as 

𝐼𝛼 = {𝑅̂𝐾(𝐻): 𝑙 (𝑅̂𝐾(𝐻)) ≤ 𝜒1,1−𝛼
2 } , (3.10) 

where 𝜒1,1−𝛼
2  denotes the 100(1-α) % quantile of the chi-square distribution with one degree of 

freedom. 
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4 SIMULATION STUDIES 

To examine the finite performance of the confidence interval (IEL) constructed by the 

influence function-based empirical likelihood method, we conduct a series of simulation studies. 

For comparison, the normal approximation-based confidence interval (NAI), and the Bootstrap 

confidence interval (Boot) for the KCC are also included in the studies. 

We generate 5000 samples of three different sample sizes (n= 30, 50, 100) from several 

different distributions. And the correlation coefficient ρ is set to be 0.1, 0.5, and 0.9, respectively. 

The following underlying bivariate distributions are considered in the simulation studies. 

a. Bivariate Normal Distributions 

Scenario 1:  

(
𝑋

𝑌
) ~𝑁2 ((

0

0
) ∙ (

1

𝜎𝑥𝑦

𝜎𝑥𝑦

1
)) 

Scenario 2:  

(
𝑋

𝑌
) ~𝑁2 ((

1

2
) ∙ (

2

𝜎𝑥𝑦

𝜎𝑥𝑦

3
)) 

b. Bivariate mixed Normal Distributions 

Scenario 3:  

(
𝑋

𝑌
) ~0.9𝑁2 ((

0

0
) ∙ (

1

𝜎𝑥𝑦

𝜎𝑥𝑦

1
)) + 0.1𝑁2 ((

0

1
) ∙ (

1

𝜎𝑥𝑦

𝜎𝑥𝑦

1
)) 

which is a mixed normal distribution with 90% of observations from the first normal distribution 

and 10% of observations from the second normal distribution. 

Scenario 4:  

(
𝑋

𝑌
) ~0.9𝑁2 ((

0

0
) ∙ (

1

𝜎𝑥𝑦

𝜎𝑥𝑦

1
)) + 0.1log𝑁2 ((

0

1
) ∙ (

1

𝜎𝑥𝑦

𝜎𝑥𝑦

1
)) 
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where log𝑁2(∙,∙) is a log-normal distribution. 

Scenario 5:  

(
𝑋

𝑌
) ~0.8𝑁2 ((

0

0
) ∙ (

1

𝜎𝑥𝑦

𝜎𝑥𝑦

1
)) + 0.2𝑁2 ((

0

1
) ∙ (

1

𝜎𝑥𝑦

𝜎𝑥𝑦

1
)) 

Scenario 6:  

(
𝑋

𝑌
) ~(1 − ϵ) ∗ 𝑁2 ((

0

0
) ∙ (

1

𝜎𝑥𝑦

𝜎𝑥𝑦

1
)) + ϵ ∗ 𝑁2 ((

0

1
) ∙ (

1

𝜎𝑥𝑦

𝜎𝑥𝑦

1
)) 

where ϵ = 0.01, 0.05, 0.1,0.2, respectively. 

c. Bivariate t Distribution 

Scenario 7:  

(
𝑋

𝑌
) ~𝑡4 ((

0

0
) ∙ (

1

𝜎𝑥𝑦

𝜎𝑥𝑦

1
)) 

d. Bivariate exponential Distribution 

Scenario 8:  

(𝑋 𝑌)~𝐵𝑖𝑒𝑥𝑝(𝜆1, 𝜆2, 𝜆12) 

where 𝜆1, 𝜆2, 𝜆12 are parameters of the bivariate exponential distribution used in Marshall et al. 

(1967). 

Simulation results are presented in Tables 1-8. 

4.1 Bivariate normal distributions 

From Tables 1-2, for bivariate normal distributions, most of the intervals have good 

coverage probabilities when ρ = 0.1 and 0.5. Compared with the existing intervals, the IEL 

method has good coverage probabilities under all the simulation settings except when ρ = 0.9 

with a small sample size (n = 30). The IEL intervals perform equally well as the bootstrap 

method when the sample size larger than 50. The normal approximation-based intervals have 
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under-coverage problems when ρ = 0.1 and 0.9 with a small sample size. When ρ = 0.9 and n = 

30, the IEL intervals and the normal approximation-based intervals have under-coverage 

problems with similar coverage probabilities while the bootstrap intervals have over-coverage 

problems. When the sample size increases, those problems have been corrected effectively. 

Table 1 95% Confidence interval coverage probability and average length for RK(H) 

Scenario 1 
  Coverage probability Average length 

n Method 0.1 0.5 0.9 0.1 0.5 0.9 

30 IEL 0.956  0.949  0.932  0.680  0.645  0.512  
 NAI 0.933  0.945  0.931  0.702  0.661  0.480  
 Boot 0.955  0.956  0.976  0.521  0.470  0.290  

50 IEL 0.955  0.950  0.961  0.537  0.509  0.401  
 NAI 0.951  0.949  0.931  0.547  0.517  0.381  
 Boot 0.943  0.954  0.969  0.389  0.348  0.203  

100 IEL 0.944  0.940  0.955  0.386  0.364  0.275  
 NAI 0.946  0.953  0.942  0.389  0.367  0.272  
 Boot 0.947  0.946  0.951  0.268  0.237  0.131  

 

Table 2 95% Confidence interval coverage probability and average length for RK(H) 

Scenario 2 
  Coverage probability Average length 

n Method 0.1 0.5 0.9 0.1 0.5 0.9 

30 IEL 0.956  0.949  0.931  0.680  0.648  0.515  
 NAI 0.937  0.948  0.932  0.702  0.663  0.482  
 Boot 0.949  0.957  0.974  0.522  0.471  0.290  

50 IEL 0.955  0.951  0.960  0.537  0.508  0.401  
 NAI 0.960  0.951  0.936  0.548  0.517  0.382  
 Boot 0.952  0.956  0.966  0.390  0.349  0.202  

100 IEL 0.946  0.942  0.958  0.386  0.364  0.276  
 NAI 0.942  0.958  0.949  0.389  0.367  0.273  
 Boot 0.944  0.950  0.955  0.268  0.238  0.131  

 

4.2 Bivariate mixed Normal Distributions 

For scenario 3-5, the underlying distributions are considered as bivariate normal 

distributions with different proportions of outliers. Table 3-5 list the results of these scenarios. 

Also, to test the robustness of the IEL method, scenario 6 will be used to estimate the confidence 
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interval of the Kendall correlation with a sample size n = 100 with different ratios of the outliers 

(ε = 0.01, 0.05, 0.1, 0.2). 

For Table 3, we observe that the IEL method keeps good coverage probability when ρ = 

0.1 and 0.5. For ρ = 0.9, the IEL intervals have a slightly over-coverage problem when n = 30 

and 100. For the normal approximation-based intervals, a serious under-coverage problem exists 

compared with the IEL intervals. The bootstrap intervals perform a similar efficiency with the 

IEL intervals when ρ = 0.1 and 0.5 and have a worse over-coverage problem than the IEL 

intervals. 

Table 3 95% Confidence interval coverage probability and average length for RK(H) 

Scenario 3 
  Coverage probability Average length 

n Method 0.1 0.5 0.9 0.1 0.5 0.9 

30 IEL 0.956 0.948 0.962 0.681 0.649 0.535 
 NAI 0.934 0.946 0.890 0.702 0.665 0.513 
 Boot 0.951 0.954 0.973 0.521 0.476 0.326 

50 IEL 0.955 0.951 0.949 0.537 0.511 0.416 
 NAI 0.954 0.929 0.921 0.548 0.519 0.403 
 Boot 0.947 0.946 0.966 0.390 0.352 0.231 

100 IEL 0.948 0.943 0.965 0.386 0.366 0.289 
 NAI 0.942 0.938 0.966 0.389 0.369 0.288 
 Boot 0.944 0.941 0.961 0.268 0.240 0.152 

 

For Table 4, when outliers follow a bivariate log-normal distribution, the result will be 

different from scenario 3. The IEL intervals and the bootstrap intervals have good coverage 

probabilities when ρ = 0.1 and 0.5, while the normal approximation-based intervals have a 

serious under-coverage problem when the sample size is small. For ρ = 0.9 with a small sample 

size, the normal approximation-based interval is more efficient, and when the sample size 

becomes to 50, the IEL interval has the best performance in these three intervals. 
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Table 4 95% Confidence interval coverage probability and average length for RK(H) 

Scenario 4 
  Coverage probability Average length 

n Method 0.1 0.5 0.9 0.1 0.5 0.9 

30 IEL 0.948 0.952 0.919 0.672 0.632 0.523 
 NAI 0.938 0.924 0.940 0.693 0.645 0.497 
 Boot 0.965 0.960 0.982 0.518 0.451 0.280 

50 IEL 0.951 0.945 0.943 0.530 0.496 0.409 
 NAI 0.948 0.956 0.932 0.540 0.504 0.389 
 Boot 0.965 0.956 0.966 0.388 0.332 0.194 

100 IEL 0.957 0.959 0.929 0.381 0.355 0.281 
 NAI 0.955 0.946 0.932 0.384 0.358 0.277 
 Boot 0.966 0.952 0.957 0.266 0.225 0.124 

 

When the ratio of outliers increases to 20%, the result shows in Table 5. the IEL interval 

keeps good coverage probability when ρ = 0.1 and 0.5. For ρ = 0.9, the IEL interval has a 

slightly over-coverage problem when n = 30. The normal approximation-based interval has a 

serious under-coverage problem when the sample size is small (n = 30 and 50). The bootstrap 

interval performs a similar efficiency, but the IEL interval is still the best method in these three 

methods. 

Table 5 95% Confidence interval coverage probability and average length for RK(H) 

Scenario 5 
  Coverage probability Average length 

n Method 0.1 0.5 0.9 0.1 0.5 0.9 

30 IEL 0.959 0.942 0.972 0.681 0.650 0.554 
 NAI 0.929 0.912 0.929 0.702 0.669 0.540 
 Boot 0.947 0.952 0.977 0.522 0.480 0.343 

50 IEL 0.955 0.960 0.941 0.538 0.513 0.431 
 NAI 0.951 0.946 0.906 0.548 0.522 0.422 
 Boot 0.955 0.948 0.969 0.390 0.354 0.245 

100 IEL 0.943 0.958 0.954 0.386 0.368 0.301 
 NAI 0.946 0.933 0.968 0.389 0.371 0.302 
 Boot 0.946 0.949 0.966 0.268 0.243 0.162 

 

To test the robustness of the IEL method, different proportions of outliers are applied in 

scenario 6, and the result shows in Table 6. All the intervals perform well in most of the 

conditions. Compared with the normal approximation-based interval and the bootstrap interval, 
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the IEL interval keeps a better efficiency. It won`t be influenced by the proportions of the 

outliers or the correlation coefficient. 

Table 6 95% Confidence interval coverage probability and average length for RK(H) 

Scenario 6 
n=100  Coverage probability Average length 
ε Method 0.1 0.5 0.9 0.1 0.5 0.9 

0.01 IEL 0.948 0.941 0.952 0.386 0.365 0.278 
 NAI 0.941 0.956 0.956 0.389 0.368 0.274 
 Boot 0.946 0.945 0.960 0.268 0.238 0.134 

0.05 IEL 0.943 0.945 0.947 0.386 0.366 0.282 
 NAI 0.945 0.954 0.953 0.389 0.368 0.280 
 Boot 0.950 0.944 0.925 0.267 0.239 0.144 

0.1 IEL 0.944 0.938 0.958 0.386 0.366 0.289 
 NAI 0.948 0.958 0.942 0.389 0.370 0.288 
 Boot 0.944 0.945 0.960 0.268 0.240 0.152 

0.2 IEL 0.949 0.950 0.945 0.386 0.367 0.301 
 NAI 0.943 0.937 0.961 0.389 0.371 0.301 
 Boot 0.949 0.948 0.959 0.268 0.242 0.161 

 

4.3 Bivariate t Distribution 

Table 7 95% Confidence interval coverage probability and average length for RK(H) 

Scenario 7 
  Coverage probability Average length 

n Method 0.1 0.5 0.9 0.1 0.5 0.9 

30 IEL 0.954 0.943 0.929 0.680 0.645 0.513 
 NAI 0.929 0.940 0.933 0.702 0.661 0.482 
 Boot 0.945 0.942 0.966 0.560 0.506 0.312 

50 IEL 0.949 0.945 0.958 0.537 0.508 0.402 
 NAI 0.951 0.949 0.933 0.547 0.517 0.382 
 Boot 0.945 0.946 0.953 0.422 0.381 0.224 

100 IEL 0.946 0.942 0.954 0.386 0.364 0.275 
 NAI 0.945 0.956 0.953 0.389 0.368 0.272 
 Boot 0.949 0.943 0.950 0.293 0.262 0.149 

 

From Table 7, for bivariate t distributions, the IEL and bootstrap intervals perform well 

under all the simulation settings except n = 30 and ρ = 0.9, with an under-coverage problem for 

the IEL intervals and an over-coverage problem for bootstrap intervals. The IEL interval is more 

efficient than the normal approximation-based interval. 
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4.4 Bivariate exponential Distribution 

Table 8 95% Confidence interval coverage probability and average length for RK(H) 

Scenario 8 
  Coverage probability Average length 

n Method 0.1 0.5 0.9 0.1 0.5 0.9 

30 IEL 0.931 0.917 0.936 0.674 0.591 0.391 
 NAI 0.915 0.917 0.727 0.694 0.587 0.269 
 Boot 0.946 0.949 0.893 0.541 0.539 0.529 

50 IEL 0.940 0.938 0.937 0.531 0.457 0.286 
 NAI 0.893 0.895 0.889 0.541 0.458 0.226 
 Boot 0.948 0.951 0.954 0.409 0.409 0.353 

100 IEL 0.903 0.914 0.906 0.381 0.322 0.207 
 NAI 0.904 0.862 0.819 0.385 0.323 0.161 
 Boot 0.944 0.949 0.959 0.282 0.285 0.191 

 

The random sample of the bivariate exponential Distribution is generated by the 

algorithm proposed by Marshall and Olkin (1967): 

For random samples 𝑈1~ 𝑒𝑥𝑝(𝜆1) , 𝑈2~ 𝑒𝑥𝑝(𝜆2) , 𝑈3~ 𝑒𝑥𝑝(𝜆12) , it follows  

𝜌 =
𝜆12

𝜆1 + 𝜆2 + 𝜆12
, and the random sample (𝑋, 𝑌) with correlation coefficient ρ is  

𝑋 = 𝑚𝑖𝑛(𝑈1, 𝑈3) , 𝑌 = 𝑚𝑖𝑛(𝑈2, 𝑈3) (4.1) 

The simulation results for the bivariate exponential Distribution show in Table 8. The 

bootstrap intervals have good coverage probability under all the simulation settings except ρ = 

0.9 and n = 30. While the IEL interval is the only one that keeps efficiency when ρ = 0.9 with a 

small sample size (n = 30). But under most of the simulation settings, the IEL interval has an 

under-coverage problem. 
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5 REAL DATA ANALYSIS 

For the purpose of illustration, we apply the influence function-based empirical 

likelihood method to a UCLA graduate dataset (Acharya 2019). This dataset contains 400 cases 

and several parameters that are considered necessary during the application for master’s 

Programs. We want to estimate the correlation coefficient between the GRE Scores and Chance 

of Admit. The sample Kendall rank correlation coefficient is 0.640. And the p-value of the 

Shapiro-Wilk multivariate normality test is 3.296e-07 (< 0.05), so we can reject the null 

(normality) hypothesis and consider the dataset as a non-normal data. Table 9 shows the results 

of the three methods. The 95% IEL confidence interval is (0.577, 0.725). The IEL method shows 

a similar efficiency compared with the asymptotical normality method and the bootstrap method. 

These results indicate a strong relationship between the GRE scores and the probability of 

admission. 

Table 9 95% Confidence interval and length for the UCLA graduate admission data 

 Confidence Interval  Length 

IEL (0.577, 0.725) 0.148 

NAI (0.581, 0.729) 0.148 

Boot (0.597, 0.677) 0.080 
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6 CONCLUSIONS 

In this thesis, we develop a new influence function-based empirical likelihood method to 

construct a confidence interval for the Kendall rank correlation coefficient. The simulation study 

shows that this method performs well with underlying distribution being both the bivariate 

normal and nonnormal distributions. Also, when the outliers exist in the sample, the influence 

method performs good robustness. Based on the simulation study, we recommend the use of the 

IEL method when the underlying distribution is unknown or a nonnormal distribution with 

outliers. 
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APPENDICES  

Appendix A 

We need the following Lemmas for the proof of Theorem 1. 

Lemma 1: Under the conditions in Theorem 1, we have 

n−
1
2 ∑ (𝑉̂(𝑊𝑖) − 𝑅𝐾(𝐻))

𝑛

𝑖=1

ℒ
→ 𝑁(0, 𝜎2) 

where 𝜎2 = 4𝑃𝐻[(𝑋 − 𝜇𝑥)(𝑌 − 𝜇𝑦) > 0]{1 − 𝑃𝐻[(𝑋 − 𝜇𝑥)(𝑌 − 𝜇𝑦) > 0]}. 

Proof: From (3.5), we have the following decomposition: 

n−
1
2 ∑ (𝑉̂(𝑊𝑖) − 𝑅𝐾(𝐻))

𝑛

𝑖=1

= n−
1
2 ∑ (𝑉̂(𝑊𝑖) − 𝑉(𝑊𝑖))

𝑛

𝑖=1

+ n−
1
2 ∑(𝑉(𝑊𝑖) − 𝑅𝐾(𝐻))

𝑛

𝑖=1

 

≡ 𝐼1 + 𝐼2. (𝐴. 1)  

From −∞ < 𝐸(𝑋) = 𝜇𝑥 < ∞, −∞ < 𝐸(𝑌) = 𝜇𝑦 < ∞, 𝑋̅ = 𝜇𝑥 + 𝑜(1) 𝑎. 𝑠. 𝑎𝑛𝑑 𝑌̅ =

𝜇𝑦 + 𝑜(1) 𝑎. 𝑠., it follows that 

𝑉̂(𝑊𝑖) − 𝑉(𝑊𝑖) = 2(𝐼[(𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅) > 0] − 𝐼[(𝑋𝑖 − 𝜇𝑥)(𝑌𝑖 − 𝜇𝑦) > 0])

= 0 𝑎. 𝑠. 𝑓𝑜𝑟 ∀ 𝑖, 𝑎𝑠 𝑛 → ∞. (𝐴. 2)
 

Hence, 

𝐼1 = 0 𝑎. 𝑠. (A. 3) 

From (2.3), we have 

𝐼2

ℒ
→ 𝑁(0, 𝜎2). (𝐴. 4) 

Lemma 1 follows from (A.1), (A.3) and (A.4) right away. 

Lemma 2: Under the conditions in Theorem 1, we have that 

1

n
∑ (𝑉̂(𝑊𝑖) − 𝑅𝐾(𝐻))

2
𝑛

𝑖=1

𝑝
→ 𝜎2. 

Proof: From |𝑉(𝑊𝑖) − 𝑅𝐾(𝐻)| ≤ 5 and (A.2), it follows that 
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1

n
∑ (𝑉̂(𝑊𝑖) − 𝑅𝐾(𝐻))

2
𝑛

𝑖=1

= n−
1
2 ∑(𝑉(𝑊𝑖) − 𝑅𝐾(𝐻))

2
𝑛

𝑖=1

+ n−
1
2 ∑ (𝑉̂(𝑊𝑖) − 𝑉(𝑊𝑖))

2
𝑛

𝑖=1

 

+
2

𝑛
∑ (𝑉̂(𝑊𝑖) − 𝑉(𝑊𝑖))

𝑛

𝑖=1

(𝑉(𝑊𝑖) − 𝑅𝐾(𝐻)) 

= 𝐸(𝑉(𝑊𝑖) − 𝑅𝐾(𝐻))
2

+ 𝑜𝑝(1) 

= 𝜎2 + 𝑜𝑝(1) 

The Proof of Theorem 1. 

Using similar arguments in Owen (1990), we can prove that  𝜆 = 𝑂𝑝(𝑛−0.5). Applying 

Taylor`s expansion, we obtain that 

𝑙(𝑅𝐾(𝐻)) = 2 ∑ 𝑙𝑜𝑔 [1 + 𝜆 (𝑉̂(𝑊𝑖) − 𝑅𝐾(𝐻))]

𝑛

𝑖=1

 

= 2 ∑ [𝜆 (𝑉̂(𝑊𝑖) − 𝑅𝐾(𝐻)) −
1

2
(𝜆 (𝑉̂(𝑊𝑖) − 𝑅𝐾(𝐻)))

2

]

𝑛

𝑖=1

+ 𝑟𝑛 

where 

|𝑟𝑛| ≤ 𝐶 ∑ |𝜆 (𝑉̂(𝑊𝑖) − 𝑅𝐾(𝐻))|
3

𝑛

𝑖=1

≤ 𝐶|𝜆|3𝑛 = 𝑂𝑝(𝑛−0.5) 

From (3.7), if follows that 

𝜆 =
∑ (𝑉̂(𝑊𝑖) − 𝑅𝐾(𝐻))𝑛

𝑖=1

∑ (𝑉̂(𝑊𝑖) − 𝑅𝐾(𝐻))𝑛
𝑖=1

2 + 𝑂𝑝(𝑛−0.5) 

∑ 𝜆 (𝑉̂(𝑊𝑖) − 𝑅𝐾(𝐻))

𝑛

𝑖=1

= ∑ (𝜆 (𝑉̂(𝑊𝑖) − 𝑅𝐾(𝐻)))
2

𝑛

𝑖=1

+ 𝑂𝑝(1) 

Therefore, by Lemmas 1-2, we have that 
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𝑙(𝑅𝐾(𝐻)) = ∑ 𝜆 (𝑉̂(𝑊𝑖) − 𝑅𝐾(𝐻))

𝑛

𝑖=1

+ 𝑜𝑝(1) =
[∑ (𝑉̂(𝑊𝑖) − 𝑅𝐾(𝐻))𝑛

𝑖=1 ]
2

∑ (𝑉̂(𝑊𝑖) − 𝑅𝐾(𝐻))𝑛
𝑖=1

2 + 𝑜𝑝(1)
ℒ
→ 𝜒1

2 

The proof of the Theorem 1 is thus completed. 
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