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ABSTRACT 

Global surface temperatures are projected to escalate in intensity, duration, and frequency, 

particularly in urban areas, which are dominated by landscapes of imperviousness, accelerating 

the Urban Heat Island Phenomena (UHI). Geographies of thermal inequality emerge engendered 

by disproportionality in socioeconomic and demographic characteristics and variances in the 

magnitude of heat exposure. This study integrated the biophysical exposure index and the 

socioeconomic index to generate composite heat vulnerability indices at multiple time scales and 

applying different weighting mechanics. Outputs of the raster-based and vector-based approaches 

were compared. Remote sensing indices measuring vegetation health, surface water content, urban 

imperviousness, and bareness were used to characterize the biophysical metric. The objective was 

to visualize areas most susceptible accurately and precisely to the Urban Heat Island phenomena 

while ensuring both scientific and policy applications of the spatial representations. 
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1. CHAPTER 1: INTRODUCTION 

1.1 Background Information 

The ongoing disruption of the climate system is unprecedented over centuries to millennia 

(Bera, 2019). The distortions on the climate system have been profound, translating to severe, 

pervasive, and potentially irreparable ramifications to ecological systems and human systems 

(Intergovernmental Panel on Climate Change (IPCC), 2014). The explicit evidence for the upset 

of the climate system is the global warming phenomena manifested in the warming of the oceans, 

the drastic diminishing of snow and ice, and the rising sea levels (Bera, 2019; The National 

Oceanic and Atmospheric Association (NOAA), 2020).  The five warmest years on record have 

occurred after 2015, while nine of the ten warmest years in human history have occurred since the 

year 2005 (NOAA,2020). The average temperature for 2019, which was 0.95º C above the 20th 

century average of 13.9º C, was ranked as the second warmest year after 2015, since the inception 

of temperature recordings (NOAA, 2020). 2015 and 2019 witnessed the deadliest heatwaves 

worldwide (World Meteorological Organization (WMO), 2019). The recent warming of the earth 

is indisputable and projected to increase to the future (IPCC, 2014), particularly in urban areas that 

comparatively experience 6º C to 8º C temperature elevations above that of surrounding areas 

(Habeeb et al., 2015; Weber et al., 2015). 

Urbanization has generated disproportional heat hazard exposures and created geographies 

of thermal inequality globally (Xu et al., 2019; Depiettri et al., 2013; Krstic et al., 2017). The 

sophistication of urban structures distorts urban landscape cover and alters the urbanscape energy 

exchange (Wang et al., 2019). The temperature disproportionality between urban and rural areas 

is the Urban Heat Island (UHI) phenomenon (Figure 1.1) (Wang et al., 2019; Mushore et al., 2018; 
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Xu et al., 2019). Basu and Ostro (2008) identified the correlation between temperature and 

mortality, and the growing threat has necessitated studies on the UHI (e.g., Arnds et al., 2017; 

Basu and Ostro, 2008; Chow et al., 2012; Habeeb et al., 2015; Ho et al., 2018; Wang et al., 2019). 

For instance, Maier et al. (2013) revealed that extreme heat in Portugal killed 1,990 people in 1981, 

while the 1990 heat event killed 1,000 people. Further, these studies established that the European 

heatwave of 2003 increased deaths by 37.7% compared to normal temperature conditions. The 

recorded temperatures for 14 days ranged between 32˚C and 35˚C. Oppressive hot days increased 

mortality by about 8 %, although this statistic was inferred from cardiovascular disorders only, 

hence a conservative estimate (Maier et al., 2014).  

Elevated temperatures in urban areas increased urban mortality by four times more than 

surrounding rural areas in absolute numbers (Borden et al., 2007; Maier et al., 2014). The urban 

population is at high risk of accelerated morbidity and mortality attributed to heat (Arnds et al., 

2017; Habeeb et al., 2015). Some studies ( e.g., Kim et al., 2017; Rizvi et al., 2019) attributed the 

incessant warming to increased emissions of greenhouse gases and the imperviousness of urban 

landscapes. They noted that 40% of the emissions remained in the atmosphere that propagated 

temperature elevation. Carbon dioxide concentrations in the atmosphere have increased by 146% 

of pre-industrial levels (WMO, 2019). The intensity, magnitude, frequency, and duration of heat 

events are bound to increase, which calls for resilience plans to cushion potential vulnerabilities 

(Basu and Ostro, 2008; Reid et al., 2009). Atyia (2015) argued for intelligent and proactive urban 

planning to limit the severity of natural hazards, including those accentuated by the (UHI) 

phenomena. Urban areas account for 50% of the world population confined to 3% of the total land 

area, subjecting massive populations to heat stress vulnerability (Xu et al., 2019).  
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Heat stress vulnerability shifts across time and space in urban areas, yet the underlying 

driving factors are only partially understood (Aubrecht and Ozceylan, 2013; Kashem et al., 2016). 

The heat exposure is irregularly distributed in time and space, while the community’s 

demographics shift continuously, posing a challenge to mapping and tracking vulnerable groups 

(Eriksen and Kelly, 2007; Wilson and Chakraborty, 2019; Cutter, 2003). The biophysical 

processes and population dynamics manifest on a range of varying geographic scales and local to 

regional administration levels, producing the Modifiable Area Unit Problem (MAUP) when 

mapping (Ho et al., 2015). Fine-scale mapping of coupled biophysical and socioeconomic indices 

(e.g., composite Heat Vulnerability Index) is often disregarded, resulting in mixed pixel problems 

attributed to coarse-scale mapping (Aubrecht and Ozceylan, 2013; Mushore et al., 2018). The 

challenges for spatially explicit information are non-trivial, whereas such visualization is highly 

on demand (Preston et al., 2011).  

1.2 Research Problem 

Urban environments account for approximately 80% of the population in the United States 

(Bera, 2019; Atyia, 2015), which is the number of people at risk of heat hazards. The heatwave 

frequency in the USA is increasing by 20% per decade, and its length is extending by 16% per 

decade (Habeeb et al., 2015). More worrying statistics indicate that from 2006 to 2010, 620 

Americans died annually from heat waves (Weber et al., 2015). The momentum of the heat hazards 

to increase in frequency, duration, intensity, and magnitude should be a significant concern 

(Habeeb et al., 2015; Wilson and Chakraborty, 2019). Given the perpetual threats, heat hazards 

pose, policy formulation and identification require novel vulnerability studies (Eriksen and Kelly, 

2007). However, vulnerability is a conceptual clutter and represents the social state preceding a 

hazard, measured subjectively (Eriksen and Kelly, 2007; Morabito et al., 2014; Eakin and Luers, 
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2006). Social Vulnerability Indices (SoVIs) are a yardstick for the community’s capacity to 

respond generated through data aggregation techniques. Existing data aggregation methods deplete 

the authenticity of the information from independent suites of variables (Abson et al., 2012; 

Kashem et al., 2016). Precise mapping of the susceptible groups is thus impaired, thereby 

undermining policy direction.  

Given the rising challenges posed by increasing exposure to urban heat and the demand for 

spatially explicit information, the overriding question that this study seeks to answer is, how 

vulnerable is the population of Atlanta to heat hazards? Answers to the following questions will 

provide information that would elucidate the vulnerability question:  

a) How do biophysical exposure and demographic dynamics interact to create geographies of 

vulnerability to heat hazards across multiple time scales?  

b) What are the primary drivers of evolving patterns of spatio-temporal evolution to heat 

vulnerability?  

c) Are there any hotspots of vulnerability to heat hazards in Atlanta?  How have the hotspots 

to heat hazard (if any) shifted across multiple spatial and temporal scales? 

d) How data transformation techniques, including weighting mechanics and choice of spatial 

models, influence vulnerability?  

1.3 Research Objectives 

The harmonization of scales for both the biophysical exposure index and the SoVI enables 

data visualization at multiple spatial levels (Ho et al., 2015). However, disciplines utilize different 

concepts generating diverse methods of measuring vulnerability (Tran et al., 2010). Knowing how 

vulnerability changes over multiple time scales has a higher value than understanding why a given 
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trend exists (Eriksen and Kelly, 2007). The objectives cited below allow for the extraction of 

information at multiple spatial and temporal scales using different spatial weighting mechanics. 

a) To produce composite heat vulnerability maps with a higher spatial resolution than socio-

demographic datasets at multiple time scales, using different weighting mechanics.  

b) To track the variance in indices that drive spatio-temporal evolution to heat vulnerability 

c) To suggest possible spatial methodological fixes for representing heat vulnerability 

1.4 Significance of the Study 

Scale choices compromise the accurate representation of heat maps. The debates on precise 

visualization have been the focus of many studies (e.g., Mushore et al., 2018; Atyia, 2015; 

Birkmann et al., 2017; Borden et al., 2007). The selection of indicators for analysis should be made 

at finer scales than the characteristic level of susceptibility patterns (Eriksen and Kelly, 2007). 

However, Jonsonn and Lundgren (2015) observed that there is no standard and systematic 

methodology for picking variables. Also, Birkmann et al. (2017) asserted that there is no standard 

mechanism about how variables load and how their direction of influence should be determined. 

Therefore, the weighting of layers of biophysical components and socioeconomic indicators is 

subsequently compromised. This study aims to overcome these challenges to generate a variety of 

reliable and accurate heat visualizations for a variety of urban practitioners.  
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2. CHAPTER 21 

Perspectives on Spatial Representation of Urban Heat Vulnerability 

2.0 Synopsis 

Extreme heat, the deadliest summer weather-related hazard in the USA, is projected to 

increase in intensity, duration, frequency, and magnitude, especially in urban areas that account 

for 80% of the population. Spatial visualization and representation are crucial in establishing the 

hotspots of vulnerability to the heat hazard. However, despite the progress in the science of 

vulnerability, there lacks a systematic and consistent conceptual framework. The quantification of 

variables is unchecked, resulting in subjective decisions regarding the weighting of variables, 

selection of indicators, and the suitability of the proxies. Moreover, contradicting approaches 

generate disparate outputs such as inductive versus deductive, area-based versus population-based, 

and raster versus vector designs. The qualitative approach, meant to provide supplementary data, 

is often ignored. This review provides a perspective of the lacunae in the existing literature and 

builds on these gaps to derive a conceptual framework towards harmonizing theoretical and 

statistical relationships. The framework is anchored on the longitudinal study approach as the 

socioeconomic, biophysical, and geodemographic dimensions have an inherent temporal variance. 

The review calls for a precise and accurate depiction of heat vulnerability in urban areas to inform 

targeted adaptation and mitigation measures and the long-term projection of coupled system 

behavior. 

INDEX WORDS: Social Vulnerability Index (SoVI), Composite Heat Vulnerability Index, 

Principal Component Analysis (PCA), Biophysical Exposure, Urban Heat Stress 

 

Highlights: 

 

 
1 This chapter has been published in Science of the Total Environment, February 2021, volume 774. 

https://doi.org/10.1016/j.scitotenv.2021.145634 
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• Disparate Perspectives of urban heat vulnerability (figure 2-1) 

• Harmonizing theoretical and statistical relationships in spatial representation. 

• Accurate detection of heat vulnerability in urban areas for targeted mitigation measures 

• The coupled heat vulnerability index with quantitative and qualitative dimensions 

 

 

 

 

Figure 2-1.Graphical synopsis of the all-inclusive framework, constituting the qualitative and 

quantitative dimensions of heat vulnerability. Key challenges of heat visualization, such as 

approaches, weighting mechanics, variable selection, scale, validation, and replication, are 

highlighted.  

 

2.1 Introduction 

The progressive detriment of the climate system is unprecedented over centuries to 

millennia, and the resulting deaths and economic losses continue to rise across the world (Formetta 

and Feyen, 2019; Intergovernmental Panel on Climate Change (IPCC), 2014). One of the most 

explicit evidence for the climate system disruption is the ongoing global warming. The average 

temperature for 2019 was close to 1 degree Celsius above the 20th century average of 13.9oC 

(National Oceanic and Atmospheric Association (NOAA), 2020). 2015 and 2019 witnessed the 
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deadliest heatwaves (World Meteorological Organization (WMO, 2019). The warming is 

projected to increase in intensity, magnitude, duration, and frequency, particularly in urbanized 

environments, which generally experience 6oC to 8oC higher than surrounding rural locations 

(Habeeb et al., 2015; Weber et al., 2015). Therefore, urbanization generates disproportionate 

geographies of thermal inequality, consistent with the Urban Heat Island (UHI) phenomenon 

(Depiettri et al., 2013; Krstic et al., 2017; Xu et al., 2019). The elevated temperatures in urban 

areas increase mortality by four times more than in surrounding rural areas (Maier et al., 2014). 

Despite the heat vulnerability in urban areas, there is minimal attention to heat hazard and its 

linkages to spatial policy planning in urbanscapes (Hersperger et al., 2018; Masuda et al., 2019).  

Intelligent and proactive urban policy strategies are integral to limit the severity of hazards, 

including those accentuated by the UHI phenomena, hence the demand for spatially explicit 

information on hotspots (Atyia 2015; Kashem et al., 2016; Preston et l., 2011). However, 

vulnerability studies represent a pool of conceptual clutter that lacks a systematic and consistent 

conceptualization to guide spatial representation (Eakin and Luers, 2006; Morabito et al., 2014). 

Precise and accurate mapping of susceptible groups is impaired, which undermines policy 

formulation. For instance, heat exposure is irregularly distributed in time and space, while 

community demographics shift continuously, posing a challenge to mapping and tracking hotspots 

(Cutter et al., 2003; Eriksen and Kelly, 2007; Wilson Chakraborty, 2019). The biophysical 

processes and population dynamics manifest on various geographic scales, temporal scales, and 

administrative levels, producing the modifiable area unit problem (MAUP) when mapping (Ho et 

al.., 2015). Fine-scale mapping of coupled biophysical and socioeconomic indices (e.g., composite 

Heat Vulnerability Index (HVI) is often disregarded, resulting in mixed pixel problems attributed 

to coarse-scale mapping (Aubrecht and Ozceylan, 2013; Mushore et al., 2018). Furthermore, there 
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are no guidelines for selecting, weighting, and interpreting indicators (Jonsonn and Lundgren, 

2015). The existing data aggregation techniques deplete the authenticity of the information from 

independent suites of variables (Abson et al., 2012; Kashem et al., 2016). Spatially explicit 

information challenges are non-trivial, whereas such visualization is highly on demand (Preston et 

al., 2011). 

This review provides disparate perspectives on the existing conceptualizations of urban 

heat vulnerability. It develops a holistic iterative framework that integrates validation and 

replication to bolster accuracy and precision in spatial representations. The framework is anchored 

on the longitudinal study approach that effectively captures urban heat events temporal dimension. 

The quantitative dimension acknowledges the ecological perturbations, the vulnerability co-

productions, and residual risks emanating from the interactions of the biophysical exposure Index 

and the Socioeconomic Vulnerability Index (SoVI). Since heat vulnerability is variable across 

multiple scale dimensions, and the approaches, weighting mechanics, and determination of 

variables are inconsistent, our conceptual model provides a novel overview towards a consistent, 

dynamic, and systematic spatial representation.  

2.2 Vulnerability in Perspective 

2.2.1 Climate Change and Heat Vulnerability 

Each of the previous three decades has been consecutively warmer than any preceding 

decade since 1850 (IPCC, 2014). Surface temperatures are projected to rise in the 21st century 

across all emission scenarios, thereby amplifying risks and creating new threats that will be 

disproportionately distributed (Habeeb et al., 2015; IPCC, 2014; Weber et al., 2015; Xu et al., 

2019). The current recorded temperatures are at least 1 degree Celsius above those of the pre-

industrial period. The associated impacts will be intense and sooner, particularly in urban areas 
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where 70% of the world population is projected to live by 2050 (Birkmann et al., 2017; Ho et al., 

2015; World Meteorological Organization (WMO), 2019). Climatic changes are happening faster 

than the human capacity to respond, and aggressive mitigation and adaptation responses are 

indispensable; hence the compelling demand for spatial representation of vulnerability (Bera, 

2019; IPCC, 2018). However, the application of vulnerability studies outputs remains limited as 

they are guided by the interests of the users instead of policy gaps and consistent scientific 

methodologies (Turner II et al., 2003). 

Increased morbidity and mortality have been associated with extreme hot weather in urban 

environments (Krstic et al., 2017; Reid et al., 2009; Reid et al., 2012). The World Health 

Organization (WHO) reports that the number of people exposed to heat stress increased by 125 

million between 2000 and 2016. Each 4.7 oC rise in apparent temperature corresponds to a 2.6% 

rise in cardiovascular mortality pegged on conservative estimates, while oppressive hot days 

increased mortality by 7.7% (Basu and Ostro, 2008; Maier et al., 2014). Extreme heat events are 

already the principal cause of summer weather-related fatalities in the USA, highlighting the 

imperative for research into heat risk assessment (Environmental Protection Agency (EPA), 2006; 

Morabito et al., 2014). In the USA, where 80% of the population is already urbanized, 620 

residents die annually due to heat stress (Atyia, 2015; EPA, 2006). Data from the WHO indicates 

that heatwaves were responsible for more than 166,000 mortalities between 2000 and 2017.  The 

2003 heatwaves killed more than 15,000 people in France, 30,000 for the whole of Europe, while 

additional 70,000 deaths were recorded in the months following the summer, although the 

estimates were biased as health data was not specific (EPA, 2006; Laadi et al., 2012; Robine et al., 

2008). According to Sheridan and Dolney (2004), these impacts are understated yet underpin the 

necessity for heat vulnerability studies. It is unclear whether vulnerability is a constituent of the 
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residual effects once adaptation and mitigation have set in or a pre-existing state or a cumulative 

hybrid of the two resulting in multiple definitions and conceptualizations that undermine its 

determination (Eriksen and Kelly, 2007).  

2.2.2 The Vulnerability Imperative 

Unprecedented demand for spatially explicit visualization of vulnerability hotspots has 

accelerated the discourse on adaptation and mitigation to the (UHI) (Preston et al., 2011; Rizvi et 

al., 2019; Zhou et al., 2014). However, a universal conceptualization of vulnerability remains 

elusive, raveling the conception of formal models (Cutter et al., 2003; Fussel, 2007; Turner II et 

al., 2003; Zhou et al., 2014). For instance, Lee (2014) defined it as the probability of risk exposure, 

while Atyia (2015) referred to it as the state of a community preceding a disaster. Other studies 

(e.g., (Carr et al., 2014; Turner II et al., 2003) define vulnerability as a composite of the biophysical 

and socioeconomic indices characterized by a temporal dimension. Even with the rare chance of 

convergence in definitions, disparate assumptions could still mask the accurate and precise 

representation of hotspots (Fussel, 2007). Despite the growing number of studies on vulnerability 

(e.g., Abson et al., 2012; Atyia, 2015; Borden et al., 2007; Kelly and Adger, 2000; Stennett et al., 

2019), the concept remains overdetermined yet equivocal; hence its application in decision making 

is limited (Tran et al., 2010). For instance, Fussel (2007) argued that vulnerability encompasses 

four dimensions, i.e., a system, attributes of concern, the hazard, and its temporal reference, subject 

to perturbations. Conversely, Brenkert and Malone (2005) equate it to exposure, sensitivity, and 

adaptive capacity. Therefore, vulnerability is predominantly interdisciplinary, and its precepts 

evolve over time (Cutter et al., 2003; Otto et al., 2017). Although methodological variations are 

necessary to expose its full complexity, novel comprehensive and comparative approaches are a 

pressing concern to mainstream vulnerability in policymaking.  
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2.3 Constructing Heat Vulnerability Indices 

2.3.1 Exposure/Biophysical Index 

The characterization of biophysical vulnerability remains imprecise, and many studies 

attempt to justify the approach applied due to the absence of a formal methodology. For instance, 

Fussel (2007) argued that the exposure index must encompass topographical characteristics, land 

cover, and environmental parameters. Others (e.g., Maier et al., 2014; Morabito et al., 2014) have 

advocated for apparent temperature, a measure of the human thermal comfort, but differed on 

constitutive components. Morabito et al. (2014) incorporated the indoor and outdoor temperature 

differences, including the insulation provided by clothing. In contrast, Maier et al. (2014) only 

accounted for humidity and recorded temperatures above the 90th and 95th percentiles of local 

average conditions, whereas Weber et al. (2015) used the 85th percentile. Heatwave definition 

varies depending on the length of consecutive days, the temperature metric (maximum, minimum, 

average), thresholds defined, and accounting for humidity (Shepherd and Zhou, 2009). Despite the 

acceleration in the number of heat studies, the conceptualization of the exposure index, upon which 

potential impacts are projected, remains unsettled within the scientific community. The 

construction of different thermal indicators generates different results across space and time, 

whose correlations are unknown.  

Various studies (e.g., Chen et al., 2006; Chen et al., 2019; Guha et al., 2018; He et al., 

2010; Li et al., 2013; Sun et al., 2017; Wang et al., 2019) have derived Land Surface Temperatures 

(LST) and Spectral Indices such as Normalized Difference Vegetation Index (NDVI), Normalized 

Difference Built-up Index (NDBI), Normalized Difference Bareness Index (NDBaL), Normalized 

Difference Water Index (NDWI) and Enhanced Normalized Difference Impervious Surface Index 

(ENDISI), from satellite images. The spectral indices overcome the mixed pixel problem (Mushore 



13 

 

et al., 2018). However, challenges persist even when using satellite images. LST is produced from 

different algorithms and using diverse satellite sensors. None has been validated to be optimal as 

getting sites for in situ measurements of LST representative of satellite pixel scale is difficult and 

limited to a few rare homogenous locations (Chen et al., 2019; Li et al., 2013). Inconsistencies are 

apparent when coupling LST and heat-related mortality Johnson et al., (2012), while the forcing 

of air pollutants (Depiettri et al., 2013; Heaton et al., (2014) is often ignored and the associated 

formation of ground ozone (Habeeb et al., 2015; Lo and Quattrochi, 2003). It is unclear whether 

the derived spectral indices and LST combine additively and whether they should be assigned 

equal weighting when coupled. It is underwhelming to validate an instantaneous index based on a 

snapshot of a scene taken with a satellite lag of 16 days that undermines the capturing of episodic 

heat waves (Wilson and Chakraborty, 2019). Also, cloudy conditions could impede the accurate 

capturing of heat events using remote sensing (Johnson et al., 2012). 

2.3.2 Social Vulnerability Index (SoVI) 

The SoVI measures the adaptive capacity and sensitivity, although methodological 

shortcomings persist. Limited access to quality data and conceptual limitations derail consistent 

development of the metric (Cutter and Finch, 2008). The SoVI should capture the social and 

economic well-being and political, property rights, institutional context, and cultural norms 

(Clifford and Travis, 2018; Kelly and Adger, 2000). However, processes that define the SoVI are 

not sufficient, and it may be unwise to conclude that a given prescribed framework should befit 

the dominant discourse. The rational prediction of the biophysical parameters has limitations; 

hence answers to how and to what extent social systems are geared to respond are inevitable 

(Burton et al., 2002; Lee, 2014). Unfortunately, studies on SoVI rarely have one specific hazard, 

yet it should be the primary yardstick for the potential to prepare, respond and recover (Frigerio 
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and Amicis, 2016; Johnson et al., 2012). Statistical models that incorporate geodemographic 

dynamics are needed since population distribution and re-distribution have substantive 

ramifications on vulnerability whose extent is unknown (Ho et al., 2018; Krstic et al., 2017; 

Shepherd and Zhou, 2009). The parameterization of the SoVI is thus a fuzzy endeavor, and using 

different indicators generates different assessment outputs. Also, reliance on census datasets not 

ideally suited for vulnerability mapping raises queries on the relevance of the indices created 

(Preston et al., 2011).  

Social vulnerability exists in many facets, but only certain specific factors or their proxies 

can substantially manifest or attenuate the impacts of disasters. For instance, Lee (2014) illustrated 

that a scientist has to decide on particular and general factors, objective and subjective indicators 

that pose divergent challenges when constructing the SoVI. These factors compound to generate 

negative ramifications before, during, and after occurrences of disasters. Existing literature only 

provides fragmented insights on the relative importance of the factors and fails to capture the co-

productions of vulnerability. Arising from these challenges, our current understanding of social 

vulnerability is in infancy, as Cutter et al. (2003) concluded since their generated SoVI had no 

correlations with Presidential declarations on disasters. However, the validity test could be 

inappropriate since Presidential proclamations could have political motives and not purely 

scientific guidance. Therefore, not only is the construction of SoVI hazy, but parameters for its 

validation need to be carefully determined. The SoVI lacks an independent variable upon which it 

can be calibrated (Zhou et al., 2014). The utility value of the SoVI can not be understated; however, 

the scientific discourse should shift to how well-generated SoVI accurately portrays the intrinsic 

characteristics of the society.  
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The credibility of the SoVI is an emerging discourse given that social interactions are 

indeterminate and multivariate (e.g., Eriksen and Kelly, 2007; Heaton et al., 2014). The pursuit of 

credibility raises a number of questions. For instance, is it justifiable to correlate the SoVI with 

heat mortality data when its construction is not hazard specific? Although correlations may exist, 

how sure are we it is not a statistical chance occurrence attributed to weaknesses of cross-sectional 

studies? Additionally, data on morbidity and mortality are rarely available and geocoded (Heaton 

et al., 2014; Weber et al., 2015). While considering new and inclusive models, the pre-incident 

and post-incident variables differ (Atyia, 2015); therefore, the model must acknowledge these 

changes. Another perspective by Cutter et al. (2003) raises fundamental concerns on tests of 

validity. i.e., should validity tests be based on massive singular hazards or small chronic losses? 

The meanings of variables are consistently contested in respective research disciplines (Cutter and 

Finch, 2008). For instance, correlating the losses with SoVI presupposes that the most socially 

vulnerable have most to lose, which may not be the case. The credibility of the SoVI must be 

interrogated to investigate the relationship of actual damage to the statistically generated indices.  

2.3.2.1 Variables for SoVI and their Proxies 

Vulnerability assessment is a multivariable problem that has to capture all dimensions of a 

society, either directly using variables or through their appropriate proxies (Maier et al., 2014) 

(Table 2-1). The indicators are both qualitative and quantitative and elicit different interpretations 

when observed across space and time, with most studies focusing only on the quantifiable 

indicators (Frigerio and Amicis, 2016). There is also a risk of filtering out variables that can not 

be spatially represented, which could be crucial determinants of vulnerability (Eakin and Luers, 

2006). Consequently, the variety of circumstances that impact vulnerability have not been explored 

consistently and systematically (Bera, 2019; Borden et al., 2007). There is no consensus on 



16 

 

selecting and interpreting variables likely because SoVI is not hazard-specific, whereas hazard-

specific studies tend to apply the broad and general conceptualizations (Reid et al., 2009; Zhou et 

al., 2014). For instance, is wealth an enabler of quickly absorbing disaster impacts, or does it 

enhance loss potential?  

The adequacy and representativeness of proxies have not been examined in vulnerability 

studies. Many of the proxies may not be representative and often overlap, failing the test of 

independence (Brenkert and Malone, 2005). If the actual variables fail the test of credibility, then 

the results based on proxies cannot be dependable. The lack of a sound methodology designates 

scientists to arbitrariness in determining proxies. For example, Basu and Ostro (2008) used 

educational attainment as a proxy for socioeconomic status. In contrast, Kashem et al. (2016) used 

the poverty rate, income, unemployment, and black race as surrogates for socioeconomic status. 

Evidently, proxies are at the researcher's discretion, which could undermine the constructed 

metrics validity. Also, not all factors and proxies are amenable to policy measures; thus, studies 

differ significantly in the identification of hotspots even after applying similar data reduction 

techniques such as the Principal Component Analysis (PCA) (Morabito et al., 2014; Eriksen and 

Kelly, 2007). It is unclear whether theoretical or statistical relationships should determine 

vulnerability indicators as both approaches have limitations. Besides, the meaning of vulnerability 

indicators varies with geographical scale (Lee, 2014).  
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Table 2-1. Examples of variables that have not been used in different studies to generate the Social 

Vulnerability Index 

 

Variables of 

vulnerability 

(Percentage or 

number of) 

Examples of studies that have utilized the 

variable 

Description 

of the 

variable 

Population aged over 

25 years without a 

high school diploma 

(Wilson and Chakraborty, 2019; Macnee and Tokai, 

2016; Ho et al., 2015; Reid et al., 2009; Zhou et al., 

2014; Cutter and Finch, 2008; Sunhui, 2017; 

Kashem et al., 2016; Borden et al., 2007; Atyia, 

2015; Krstic et al., 2017; Ho et al., 2018; Johnson et 

al., 2012; Lee, 2014; Reid et al., 2012; Maier et al., 

2014) 

Education 

Female-headed 

households with no 

spouse present 

(Wilson and Chakraborty, 2019; Kashem et al., 

2016; Borden et al., 2007; Johnson et al., 2012) 

Gender 

 

Female population (Reckien, 2018; Kashem et al., 2016; Lee, 2014) 

Population aged under 

18 years 

(Wilson and Chakraborty, 2019; Cutter and Finch, 

2008; Sunhui, 2017; Stennet et al., 2019; Zhou et 

al., 2014) 

Age 

 

Population aged over 

65 years* 

(Wilson and Chakraborty, 2019; Reckien, 2018; 

Macnee and Tokai, 2016; Mushore et al., 2018; Ho 

et al., 2015; Nayak et al., 2018; Reid et al., 2009; 

Cutter et al., 2003; Zhou et al., 2014; Cutter and 

Finch, 2008; Sunhui, 2017; Kashem et al., 2016; 

Tran et al., 2010; Maier et al., 2014; Borden et al., 

2007; Atyia, 2015; Stennett et al., 2019; Mitchell 

and Chakraborty, 2014; Krstic et al., 2017; Ho et 

al., 2018; Johnson et al., 2012; Lee, 2014; Reid et 

al., 2012; Zhou et al., 2014; Aubrecht and 

Ozceylan, 2013; Maier, et al., 2014) 

Population aged under 

5 years* 

(Mushore et al., 2018; Ho et al., 2015; Cutter et al., 

2003; Kashem et al., 2016; Tran et al., 2010; 

Borden et al., 2007; Mitchell and Chakraborty, 

2014; Krstic et al., 2017, Ho et al., 2018; Lee, 

2014) 

Population of blacks/ 

African-American* 

(Wilson and Chakraborty, 2019; Reckien, 2018; 

Nayak et al., 2018; Reid et al., 2009; Cutter et al., 

2003; Kashem et al., 2016; Maier et al., 2014; 

Borden et al., 2007; Atyia, 2015; Mitchell and 

Chakraborty, 2014; Johnson et al., 2012; Reid et al., 

2012; Maier, et al., 2014) 

Race 
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Population identifying 

as some other race 

(Wilson and Chakraborty, 2019; Reid et al., 2009; 

Cutter et al., 2003; Maier et al., 2014; Borden et al., 

2007; Atyia, 2015; Reid et al., 2012; Maier, et al., 

2014) 

Population of Native 

Americans 

(Wilson and Chakraborty, 2019; Reid et al., 2009; 

Cutter et al., 2003; Kashem et al., 2016; Maier et 

al., 2014; Borden et al., 2007; Atyia, 2015; Johnson 

et al., 2012; Reid et al., 2012; Maier, et al., 2014) 

Population of 

Hispanics* 

(Wilson and Chakraborty, 2019; Reckien, 2018; 

Nayak et al., 2018; Reid et al., 2009; Cutter et al., 

2003; Kashem et al., 2016; Maier et al., 2014; 

Borden et al., 2007; Atyia, 2015; Mitchell and 

Chakraborty, 2014; Johnson et al., 2012; Reid et al., 

2012; Maier, et al., 2014) 

Population of Asians (Wilson and Chakraborty, 2019; Reckien, 2018; 

Reid et al., 2009; Cutter et al., 2003; Kashem et al., 

2016; Maier et al., 2014; Borden et al., 2007; Atyia, 

2015; Mitchell and Chakraborty, 2014; Johnson et 

al., 2012; Reid et al., 2012; Maier, et al., 2014) 

Population of 

unemployed 

(Macnee and Tokai 2016, Mushore et al., 2018, Ho 

et al., 2015; Nayak et al., 2018; Zhou et al., 2014; 

Sunhui, 2017; Kashem et al., 2016; Bera, 2019; 

Borden et al., 2007; Krstic et al., 2017; Ho et al., 

2018; Lee, 2014)  

Income 

 

Population recipients 

of social security 

(Cutter and Finch, 2008; Kashem et al., 2016; 

Borden et al., 2007) 

Mean household 

income 

(Wilson and Chakraborty, 2019; Mushore et al., 

2018; Ho et al., 2015; Cutter et al., 2003; Cutter and 

Finch, 2008; Sunhui, 2017; Kashem et al., 2016; 

Krstic et al., 2017; Johnson et al., 2012) 

Population below the 

poverty rate* 

(Wilson and Chakraborty, 2019; Reckien, 2018; 

Nayak et al., 2018; Reid et al., 2009; Cutter and 

Finch, 2008; Sunhui, 2017; Kashem et al., 2016; 

Maier et al., 2014; Borden et al., 2007; Mitchell and 

Chakraborty, 2014; Ho et al., 2018; Lee, 2014; Reid 

et al., 2012; Aubrecht and Ozceylan, 2013; Abson 

et al., 2012; Maier, et al., 2014)  

Population living 

alone* 

(Reckien, 2018: Macnee and Tokai, 2016; Ho et al., 

2015; Nayak et al., 2018; Reid et al., 2009; Maier et 

al., 2014; Atyia, 2015; Ho et al., 2018; Johnson et 

al., 2012; Reid et al., 2012; Aubrecht and Ozceylan, 

2013; Maier, et al., 2014) 

Social 

Isolation 

Population change (Zhou et al., 2014; Cutter and Finch, 2008; Tran et 

al., 2010; Borden et al., 2007) 

Population 

 

Urban population (Zhou et al., 2014; Borden et al., 2007) 
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Population using 

public transport 

(Cutter et al., 2003; Kashem et al., 2016; Atyia, 

2015) 

Transportation 

Mobile housing units (Wilson and Chakraborty, 2019; Ho et al., 2015; 

Cutter et al., 2003; Kashem et al., 2016; Borden et 

al., 2007; Ho et al., 2018) 

Housing 

 

The average number 

of people per 

household 

(Cutter et al., 2003; Kashem et al., 2016) 

Population that has 

disability 18-64 years 

(Nayak et al., 2018; Sunhui, 2017; Atyia, 2015; 

Lee, 2014) 

Disability 

*The most commonly used variable 

2.3.3 Composite Heat Vulnerability Indicator (HVI) 

The composite HVI stems from the necessity for integrative approaches that expand on the 

computation of contingencies and probabilities associated with a hazard without leaving out its 

unintended consequences (Cutter, 2003). Areas with the highest exposure vulnerability would not 

always overlap with areas of most heightened socioeconomic vulnerability (Chow et al., 2012; 

Cutter and Finch, 2008). Several studies (e.g., Johnson et al., 2012; Zhou et al., 2014) have asserted 

that hazard is a component of risk and not risk itself given that socioeconomic indicators explained 

70% of the variance while biophysical only accounted for 12% of the variance. On the other hand, 

Macnee and Tokai (2016) emphasized that biophysical exposure must be considered. Despite the 

progress on vulnerability studies, the relative weights of the biophysical and the socioeconomic 

paradigms have not been determined when coupling. Integrating the paradigms without a proper 

definition of relationships could generate arbitral conclusions related to their relative contribution 

to the combined HVI (Preston et al., 2011). Other studies (e.g., Bera, 2019; Chow et al., 2012; 

Kim et al., 2017; Wilson and Chakraborty, 2019) explain that a composite HVI should incorporate 

sensitivity, exposure, and adaptive capacity, although the adaptive capacity dimension is often 

ignored as it involves qualitative approaches. 
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2.4 The Quantitative Dimension 

2.4.1 Variable  Selection and Weighting 

Studies on heat vulnerability have failed to construct a standard set of variables for 

uniformity and comparative analysis. Any consensus among studies is driven by the resemblance 

in chosen measures rather than convergence of insights (Eriksen and Kelly, 2007). The variables 

selected should encompass sensitivity, adaptive capacity, and exposure (Kim et al., 2017; Wilson 

and Chakraborty, 2019). Lee (2014) identifies the SoVI as representing the internal state of a 

system, which is paramount compared to the nature of the threat. Reckien (2018) observed that 

variables of social vulnerability might differ depending on the stressor, hence giving prominence 

to physical vulnerability risk. Variable selection could also be altered by the availability of data 

(Lee, 2014). Therefore, the determination of appropriate indicators is a subjective process that 

should strike a balance between statistical relationships of variables and the theoretical 

understanding of relationships (Eriksen and Kelly, 2007).  

The general trend in scientific approaches has been to assign equal weights to all indicators 

for lack of a theoretical underpinning (Abson et al., 2012; Brenkert and Malone, 2005; Kashem et 

al., 2016). The debate is only limited to the relative influence of variables, yet several studies (e.g., 

Cutter et al., 2003; Nayak et al., 2018; Reid et al., 2009; Reid et al., 2012; Zhou et al., 2014) have 

shown that there exists distinct geographical variability in vulnerability that is augmented in 

downtown areas. Therefore, studies have to explore the weighting of indicators pegged on 

geographic scale variability and distance from downtown locations. Another dimension of 

weighting that is least explored occurs when coupling the biophysical and the socioeconomic 

indices. It is unknown which one should be given prominence. For instance, Mushore et al. (2018) 

assigned an equal weighting of 25% to four final components that encompassed the NDVI, NDBI, 
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NDWI, and the SoVI. In this argument, the SoVI was essentially assigned 25%, while the 

biophysical accounted for 75% of the weighting. It is unknown whether the spectral indices have 

an additive effect or provide different dimensions of vulnerability. An increase in the number of 

biophysical indices resulted in a decrease in the proportional weighting of the SoVI without any 

substantive argument presented. When coupling the spectral indices, it is further assumed that they 

have equal weighting, which is not supported by any theoretical construct. 

Another mechanism fronted by Ho et al. (2015) assigns an equal weighting to the SoVI 

and the biophysical layers (50% to 50%) regardless of the number of components that define the 

biophysical. In this approach, the SoVI is a composite of 8 layers, while LST represents the 

biophysical. Also, there is no theoretical underpinning to assume equal weighting of the 

biophysical and the SoVI components of vulnerability. Another weighting controversy emanates 

from the PCA. Several studies (e.g., Borden et al., 2007; Johnson et al., 2012; Nayak et al., 2018: 

Zhou et al., 2014) have subjected the biophysical and the socioeconomic variables jointly into the 

PCA. In some instances, the PCA variables are weighted based on the percentage variance they 

explain (Reckien, 2018). In common practice, equal weighting of final PCA components is 

favored. No study has evaluated the implications of these weighting mechanics on the final 

composite HVI developed.  

2.4.2 Approaches in constructing the Composite HVI 

Challenges abound when constructing the coupled HVI, yet it is inadequately addressed in 

the literature (Macnee and Tokai, 2016). The socioeconomic and biophysical systems interact 

across administrative boundaries, while census data are based on administrative units creating a 

mismatch in spatial representations (Lee, 2014; Li et al., 2019). The use of census data weakens 

the correlation between population density and LST (Mushore et al., 2018). Census data are 
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household-based, yet most adults spend most of their daytime elsewhere (Ho et al., 2015). Besides, 

ecological perturbations may impact the capacity to respond through co-production of 

vulnerability that creates a challenge on the best way to represent the overlapping stressors. 

Consequently, relationships between the SoVI and the biophysical hazard need to be explored as 

vulnerability is a complex multi-dimensionality of causes, outcomes, and pathways (Carr et al., 

2014; Cutter et al., 2003). The generated composite index can only have meaning when it measures 

and represents what was initially intended. For instance, Johnson et al. (2012) used land use and 

land cover classes to map only residential spaces since the SoVI is a derivative of census data. 

This is a unique approach that raises weighty concerns as humans are not confined to residential 

zones. In a different representation, Mitchell and Chakraborty (2014) excluded pixels representing 

water features and conducted regression analysis with LST as a dependent variable and census 

data as an independent variable.  

The approaches adopted are context-specific and dependent on questions of interest, the 

audience, and the disciplinary composition of the research team; hence the challenge lies in uniting 

the disparate perspectives (Depiettri et al., 2013; Eakin and Luers, 2006). Although the diversity 

of approaches provide rich perspectives on the multi-dimensionality of vulnerability, the lack of a 

widely applicable theoretical framework could deter progress in the intellectual development of 

whole encompassing visual representations. For instance, Wilson and Chakraborty (2019) argue 

that planning interventions favor the built environment and not the socioeconomic conditions; 

therefore, they opt to solely incorporate sensitivity and adaptive capacity dimensions to align their 

recommendations with policy interventions. Excluding the exposure dimension could undermine 

the robustness of the conclusions and subjecting science to vulnerability as elucidated in (Cutter, 

2003).  
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Visual representations are presented as area-based or population-based whose outputs are 

anchored on the construction methods and input data metrics (Abson et al.., 2012; Reckien, 2018). 

For additive methods, area-based metrics generated minor deviations and smoother spread than 

population-based, although vulnerability patterns were relatively the same. Conversely, using PCA 

in an inductive method, Reckien (2018) established that area based model explained 87% of the 

total variance while the population-based accounted for 64% of the total variance. According to 

Abson et al. (2012), variable reduction assumes that highly correlating indicators are 

interchangeable, hence the idea of using proxies. However, additive approaches should suffice 

when the influence of individual indicators is known to be high (Reckien, 2018). Generally, 

Reckien (2018) noted that area-based methods explained more variance and produced lower 

differences in different models; hence, the technique's infrequent use is unwarranted. However, 

such an approach of comparing metrics, models, and methods has not been widely replicated in 

different locations to validate the observation made by Reckien (2018). The techniques adopted in 

vulnerability studies appear to be guided by convenience and familiarity rather than efficacy 

(Preston et al., 2011). 

The Hazard of Place Model (HPM) (Cutter et al., 2003) and the Vector and Raster Based 

Model (RVM) (Ho et al., 2015) are the primary conceptual models in vulnerability studies. The 

HPM holds that risk would always interact with mitigation measures resulting in a hazard potential, 

modulated by site, situation, proximity, and social fabric of a locality. The model assumes that the 

hazard is a social construct of demographic characteristics and residual impacts after adaptation 

and mitigation. However, the HPM fails to provide a weighting mechanism and means for 

overcoming the MAUP, zonal effects, and the mixed pixel problem. Furthermore, it is not hazard-

specific and does not account for unmitigated risks. The decision criteria for spatial representation 
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perspectives are not specified as the qualitative non-measurable components of vulnerability are 

not incorporated. On the other hand, the RVM relies on remote sensing datasets and harmonizes 

the spatial resolutions of the biophysical and socioeconomic through resampling to overcome the 

MAUP. The RVM allows outputs of raster and vector models enabling for comparative analysis 

where the selection of variables is expert-based (additive approach); hence PCA is disregarded. It 

is not clear whether expert judgment studies generate significantly different results compared to 

systematic studies under PCA. However, both models fail to incorporate the qualitative non-

measurable components of vulnerability and do not provide consistent weighting guidelines.  

In this review, we modify the HPM (figure 2-2) and narrow it to the heat hazard, which 

provides a focused approach to the definition of vulnerability. The model acknowledges that a 

hazard potential is not only defined by interactions between heat risk and mitigation measures, but 

there exist unexpected perturbations and co-productions of vulnerability which the HPM failed to 

capture. Therefore, a hazard potential constitutes the residual risks after mitigation, and the 

unmitigated risks comprising maladaptations and unexpected systemic shocks. The model also 

provides for broad spatial representation decision considerations, including; area or population-

based visualization, theoretical and statistical considerations, inductive and deductive approaches, 

and weighting mechanics. The conceptualization recognizes the need for hazard specificity, the 

potential for risk co-productions and unintended perturbations, and enlarging the decision criteria 

alternatives to allow for comprehensive comparative spatial representations. The decision criteria 

visualize and define the hazard dimensionality, whereas the hazard potential could influence 

decision considerations.  
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Figure 2-2. The heat hazard potential representation model. Hazard constitutes the biophysical and 

socioeconomic perspectives, including residual and unmitigated risks. The broad decision criteria 

offer a range of perspectives that could help generate comparative outcomes. (c.f., Cutter et al., 

2003).  

2.4.3 Principal Component Analysis 

Several studies (e.g., Abson et al., 2012: Tran and Formannn, 2009) have used the PCA as 

a data reduction technique that allows for a consistent set of indicators to be monitored over time. 

However, the use of PCA varies in the number of input indicators, variable rotation techniques, 

criteria for determination of final factor components, and correlational algorithms. Some studies 

(e.g., Johnson et al., 2012; Maier et al., 2014) have used the varimax rotation method, and the 

Kaiser criterion then normalized the components and classified them using standard deviations 

from the mean. Other studies (e.g., Tran and Formannn, 2009) used Parallel Analysis (PA) rather 

than the Kaiser criterion, which is influenced by sample size and the type of correlation coefficient 

used. The Kaiser eigenvalue rule has been criticized for not accounting for random fluctuations of 

correlations and only held true in large samples. Frigerio and Amicis (2016) combined three 
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selection methods; the Kaiser Criterion, The Broken Stick Model, and the PA. The Kaiser criterion 

and the PA both retained four components explaining 76% of the total variance, while the broken 

stick model retained three components explaining 67% of the variance. Therefore, it is not clear 

which model is sufficient. Also, the criteria for evaluation of the best model is non-existent despite 

the significant differences. For instance, should a model be assessed as superior based on the 

number of retained components or percentage variance explained, or should the robustness of the 

statistical algorithm suffice? Frigerio and Amicis (2016) opted to use the Kaiser criterion, and the 

PA guided by equivalence in their outputs.  

Some studies (e.g., Abson et al., 2012; Johnson et al., 2012) eliminated variables deemed 

to exhibit a complex structure, which meant their direction of influence could not be ascertained. 

The excluded variables were total population, males under 5, females under 5, the poor over 65, 

and populations below the poverty level. However, these factors are significant in other studies. 

Therefore, we have a justification for doubting the complexity assigned to variables after the PCA. 

For example, Zhou et al. (2014) had a screening procedure before PCA by using Bartlett’s test of 

sphericity and the Kaiser-Meyer-Olkin test, which determined the suitability of the variables for 

factor analysis. The effectiveness of the prior screening should be explored to determine its 

efficacy in eliminating variables with complex structures. Instead of removing variables without a 

clear direction of influence,  some studies (e.g., Cutter et al., 2003; Zhou et al., 2014) assigned 

them absolute values. Others (e.g., Reckien 2018) opted to adjust for cardinality by multiplying all 

scores by -1 to transform all components to have unidirectional influence. Also, Nayak et al. (2018) 

had a series of criteria for determining final components, including; eigenvalue greater than 1, 

cross-checking elbows of scree plots, each component had to explain a minimum variance of 10%, 
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and the total variance explained had to be a minimum of 70%. However, neither the relative 

advantage of the different subjective criteria used nor their utility functionality have been assessed.  

The number of input variables differs across studies. For instance, Macnee and Tokai 

(2016) started with eight variables and ended with three variables that explained 77% of the 

variance. A study by Reid et al. (2009) began with ten variables and ended with four that explained 

75% of the total variance. Cutter et al. (2003) began with 211 variables and ended with 11 variables 

that accounted for 76% of the total variance. The focus should be on identifying a few substantive 

variables that explain a significant variation instead of many insignificant indicators and creating 

clutter in the PCA. A few studies (e.g., Abson et al., 2012; Reckien, 2018) have opined that the 

PCA merges components based on statistical relationships and not rational content-driven 

reasoning.  

The PCA approach seems useful when the relative strength of vulnerability indicators, 

correlations, contributions, and roles is unknown (Reckien, 2018). It is challenging to accurately 

dissolve complex socioeconomic and environmental interactions to a single number (Brenkert and 

Malone, 2005). The authenticity by suites of individual variables and drivers could be depleted 

through data aggregation, yet their quantification in isolation may not provide a rich understanding 

(Abson et al., 2012). The PCA trades off dimensionality and communicability but fails to provide 

absolute measures of vulnerability for lack of a distinct defensible guidance framework (Hung et 

al., 2018; Kachigan, 1986). The PCA cannot be performed in datasets with missing values. For 

instance, Cutter et al. (2003) substituted missing values with the value zero. The implications of 

such a decision have not been investigated on the eventual vulnerability index. For example, why 

shouldn’t the tracts with missing values be dropped or assigned mean values? Also, what is the 

criteria for the scientific community to accept a subjective justifiable technique? Although the 
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PCA has limitations, scientists find it useful since it is difficult for policymakers to strategize based 

on many discrete variables that could be overlapping and contradictory.   

As a consequence of existing limitations, this review modifies the Ho et al. (2015) RVM 

(figure 2-3), accounting for both low spatial resolution of in situ data and coarse temporal 

resolution for remotely acquired datasets. A weighting mechanics of spectral indices and LST is 

considered as it is currently unknown whether they act additively while the independence of the 

indicators has not been explored. Furthermore, the PCA is not only a preserve of the 

socioeconomic dimension but accommodates arguments about subjecting the biophysical metrics 

alongside the socioeconomic to data aggregation. The modified model also provides for additive 

and reductive approaches while incorporating non-quantifiable variables and those incapable of 

being spatially visualized through the representation considerations. Pre-PCA screening ensures 

that input variables are suited for the PCA. The retained PCA components are subjected to different 

comparative statistical procedures, including the Kaiser criterion, the broken stick criteria, scree 

plot tests, and PA to bolster the robustness of the PCA. The model also acknowledges multiple 

representation approaches such as raster versus vector, area-based versus population-based, 

additive and reductive methods. The mixed pixel problem and the MAUP are diminished through 

resampling and the use of spectral indices. The SoVI is validated through both singular significant 

hazards and small chronic risks while aligning it with policy formulation and implementation. 

Ultimately, several composite HVI would be produced and compared for consistency.  
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Figure 2-3. The primary components of the multi-dimensional model. In situ data complements 

remotely acquired datasets, and the PCA process is enhanced by incorporating pre-PCA tests and 

broadening the criteria for determining final components. Spatial representation considerations are 

provided for efficacy in outputs (c.f., Ho et al., 2015). 

 

2.5 Missing Links 

2.5.1 The Case for Qualitative Approach 

Vulnerability studies are ostensibly conducted to help decision-making among 

stakeholders, yet many fail to incorporate direct engagement (Preston et al., 2011). The robustness 

of spatial representations is evaluated in their capacity to disclose sociopolitical barriers in the 

decision-making discourse and understanding multiple facets of vulnerability. The SoVI is not 

exogenous to policy and planning implications; hence the primary causes of the shifts can best be 

captured by qualitative data (Kashem et al., 2016; Wilson and Chakraborty, 2019). Consequently, 

the impacts of the various thermal indicators are best illustrated through qualitative and 

quantitative approaches (Turner II et al., 2003). For instance, Jonsonn and Lundgren (2015) 
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identified that local contextualized knowledge that elucidated vulnerability drivers and their inter-

relations is abundant within communities. However, this knowledge that could complement 

quantitative studies remains largely untapped by the research community, although it could have 

a significant influence on the policymaking agenda. Cultural impediments create maladaptations. 

The stakeholders must be involved in designing methodologies, determining visualization options, 

aggregation techniques, and mechanisms to communicate the results to align local needs, 

expectations, and perceptions with the research outcomes (Weber et al.., 2015). Although the calls 

for qualitative data in vulnerability studies are valid, they are fraught with challenges. It is not 

clear about the best strategy to capture and integrate data into quantitative vulnerability studies 

(Depiettri et al., 2013; Eakin and Luers, 2006). For example, our mental representations are limited 

as time passes, and the scientist has to determine appropriate points in time when recalling events 

is optimum (Wang et al., 2017).  

2.5.2 Embracing the Longitudinal Approach 

Vulnerability studies ache for broader, universally acceptable, and comprehensive 

theoretical and conceptual understanding, yet few attempts have been made to fill the lacunae 

(Caruana et al., 2015). Majority of the frameworks available have failed to harmonize the divergent 

scientific perspectives and are anchored on static cross-sectional study designs. Ideally, theories 

are explicitly and implicitly longitudinal (Ployhart and Vandenberg, 2010). Uncertainty on how to 

proceed with longitudinal studies could impede stable theoretical and conceptual underpinnings of 

vulnerability. Scientists shy away with the mindset that there is no guarantee that dynamics in focal 

variables are inherent when the time dimension is incorporated. Consequently, Ployhart and 

Vandenberg (2010) opine that differences between individuals at a given time do not constitute a 

change. Instead, the focus should be guided by substantive dynamic constructs. The existing 
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theories may not be thoroughly tested unless having been an output of the longitudinal approach. 

Identifying processes that shape social susceptibility rather than merely aggregating the state of 

the social system is pertinent in determining representative indicators (Eriksen and Kelly, 2007).  

Most vulnerability studies rely on census data, which are subject to consolidation, 

revisions, and splits. Boundary shifts present a likelihood of drawing invalid conclusions since 

interpolations are conducted on population and area weighting, which could have substantial 

variations (Logan et al.., 2014). Adopting the longitudinal approach further presents new 

challenges, as explained by Wang et al. (2017); for instance, should time be a substantive variable 

or a notion of temporal dynamics? Also, there is no clarity on how optimal time interval is 

determined and the number of repeated measures to improve the validity of the inferences that 

cross-sectional studies fail to achieve. The chosen time interval must sufficiently allow the effect 

to register and be congruent with the system's inherent change process. The variables in use may 

not match over time, and their definitions may change when using census data (Cutter and Finch, 

2008), hence pushing scientists to opt for closely related variables rather than truly definitive 

variables. Although shortcomings persist, longitudinal studies provide details on the magnitude 

and direction of change and ostracize recall bias where data collection is prospective without prior 

knowledge of successive eventualities (Caruana et al., 2015).  

2.5.3 Determination of Scale 

The associated effects of heat hazards are not spatially uniform, yet it is central in 

ascertaining the application and production of scientific knowledge integral for crucial decision 

making (Lee, 2014; Krstic et al., 2017). Urban heatwaves occur across large functional spatial and 

temporal extents, complicating response strategies (Kim et al., 2017; Preston et al., 2011). It is 

challenging to select geographic scales congruent with system dynamics and matching the 
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biophysical and socioeconomic scales to avoid the MAUP (Ho et al., 2015). Therefore, Johnson et 

al. (2012) proposed the development of models targeting specific locations that account for local 

variations. The appropriate scales must capture optimal points where socioeconomic and 

environmental interactions are most intense while ensuring compatibility with decision-making 

units (Borden et al., 2007; Eakin and Luers, 2006). It is imperative to doubt the utility of assessing 

vulnerability dictated by bound economic, population, and regional units to avoid the zoning effect 

in spatial visualization of hotspots. For instance, Ho et al. (2015) found that a spatial resolution of 

500 meters or coarser fails to capture temperature differences between neighborhoods, yet census 

data are mostly over 1 kilometer.  

The interactions between indicators, structures, and stresses of vulnerability manifest on 

different spatial scales that translate to various dominant vulnerability factors at different 

geographic levels (Cutter and Finch, 2008; Eriksen and Kelly, 2007). Although this weakness 

exists, there lacks a formal and consistent methodology for the discernment of ideal spatial units 

(Bera, 2019). The theoretical conceptualization of processes that ultimately shape vulnerability is 

not deftly developed as it materializes intermittently (Eriksen and Kelly, 2007). The hazards act 

within and beyond the unit of analysis, yet the differences are only partially understood (Aubrecht 

and Ozceylan, 2013; Turner II et al., 2003). Most research work is confined to urban administrative 

units. Maier et al. (2014) determined that half of the vulnerable counties in Georgia were in rural 

areas, while some studies even fail to differentiate whether they are urban or rural-focused (Lee, 

2014). Although the calls for specific local spatial scales are justified, it is at the national level 

where adaptation policies and international dialogues occur, hence an emerging debate on whether 

a top-down or bottom-up scale approaches for vulnerability studies (Preston et al., 2011). To date, 

debates persist whether vulnerability studies should correspond to the scale of governance and 
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administration, or correspond to operating processes of the biophysical hazard, or optimal points 

where socioeconomic and environmental interactions are intense.  

2.5.4 The Space-Time Dimension 

Heat vulnerability has an exceptionally high degree of spatial and temporal heterogeneity 

(Abson et al., 2012; Arnds et al., 2017). The dynamism could generate new unintended hazards; 

hence time should be considered as a substantive variable in longitudinal studies. To unravel the 

complexity and multi-dimensionality of vulnerability, the spatio-temporal patterns are essential, 

especially in the coupled HVI (Aubrecht and Ozceylan, 2013; Carr et al., 2014). The space-time 

analysis helps project future trends, understand shifts in population and their drivers, and how 

human and environmental conditions attenuate or amplify the changes (Turner II et al., 2003; 

Wilson and Chakraborty, 2019). However, the use of remote sensing could be limited since it is 

difficult to select images having similar atmospheric conditions for enhanced comparative analysis 

over a time lag. A snapshot analysis at a particular instance fails to accommodate the richness of 

the shifts. Besides, revealing how levels of vulnerability occur over time has more utility 

functionality than simply illustrating why a particular pattern exists (Eriksen and Kelly, 2007). 

Therefore, vulnerability assessment needs to be a continuous event that is dynamic and adaptive 

(Jonsonn and Lundgren, 2015). The population distribution and re-distributions could create new 

vulnerabilities hence the need to develop standardized datasets that harmonize consolidated or 

adjusted census tracts across time (Logan et al., 2014: Wilson and Chakraborty, 2019). 

2.5.5 Shortcomings of the Existing Framework 

The existing framework for characterizing sensitivity, exposure, and adaptive capacity has 

numerous weaknesses and is highly fragmented. The approaches adopted are not systematic and 

consistent, primarily guided by convenience and familiarity rather than efficacy. The framework 



34 

 

fails to accommodate qualitative aspects that ensure linkages to policy formulation and 

incorporation of crucial aspatial variables to minimize overreliance on census datasets. Guidelines 

for selecting, interpreting, and weighting indicators are absent. The geodemographic dynamics are 

often ignored, while the theoretical and statistical relationships are not harmonized. Most studies 

fail to utilize the longitudinal approach, yet the theories are explicitly and implicitly longitudinal, 

thus failing to explain processes driving vulnerability. The frameworks are not hazard-specific, 

and correlations of the different metrics are unknown. The validity tests are often not incorporated 

in the methodology. When validity tests are conducted, they do not distinguish the small chronic 

events and large singular hazards.  

Additionally, shifts in census boundaries remain a challenge when representing 

vulnerability and tracking its evolution over time. Geographic Information Science challenges 

related to MAUP, zonal adjustments, and mixed pixel problems are thus inevitable. Scales 

mismatches at geographic scales, temporal resolution, and administrative levels compromise 

integration of the biophysical exposure and SoVI metrics. Biophysical characterization is 

imprecise with the application of different metrics ranging from apparent temperature, surface and 

near-surface metrics, accounting for humidity, Land Surface temperatures and spectral indices. 

The existing models also fail to account for pre and post-incident variables. The meanings of 

indicators vary geographically and across time, and the over-reliance on census datasets, which 

are not explicitly meant for vulnerability studies, raises doubts about generated indices. More so, 

no study has evaluated the implications of weighting mechanics on the final derived indices. There 

is also over-reliance on the PCA as a data reduction technique, which has limitations in 

determining final components, variable rotational methods, pre-PCA screening, and fails to 

establish theoretical relationships within variables. The current focus seems to be on aggregating 
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summative indices instead of identifying processes that shape vulnerability. It is vital to reveal 

how levels of vulnerability occur over time than merely illustrating how a particular pattern exists. 

The assortment of weaknesses is non-trivial and calls for new conceptual frameworks to remedy 

the existing challenges in spatial representation, allowing for comparative analysis of multiple 

composite indices towards a consistent and systematic spatial model of heat vulnerability. The 

inclusive framework is thus proposed. 

2.6 Synthesis: The Inclusive Framework 

We are proposing a framework (Figure 2-1) that is anchored on the longitudinal approach,  

which embraces the dynamism inherent in the systems, cognizant that theoretical and statistical 

relationships are comprehensively captured using an iterative framework. The quantitative 

dimension comprises of three components; the biophysical, the SoVI, and geodemographic 

dynamics, all interacting continuously as a system. The interactions generate unintended and 

random second-order risks in the form of co-productions, residual risks that occur after adaptation 

and mitigation have taken effect, and stochastic ecological perturbations. The biophysical index is 

an output of both in situ data and remote sensing techniques, providing a self-validation system on 

the accuracy of derived metrics.  

The geodemographic dynamics represent population distribution and re-distribution, 

revealing inherent population change patterns, regardless of the socioeconomic characteristics of 

the populace. The geodemographic dynamics in isolation could result in shifts in vulnerability, 

thus constituting a substantive suite of variables. Several studies (e.g., Ho et al., 2018; Krstic et 

al.,2017; Shepherd and Zhou, 2009) acknowledged that the effects of geodemographic dynamics 

are unknown, yet could have a significant influence on the vulnerability index, thus the necessity 

for inclusive conceptualizations. The consolidation, revisions, and splits of tracts have a bearing 
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on the geodemographic dynamics (Wilson and Chakraborty, 2019). Cognizant of the 

geodemographics, Johnson et al. (2012) used dasymetric mapping only to visualize residential 

spaces. Therefore, geodemographic factors explain population changes, migration patterns, and 

census tract changes, occurring continuously, that supplement information derived from 

socioeconomic variables describing sensitivity and adaptive capacity. However, not all variables 

can be spatially represented and quantified, thus the imperative for the qualitative approach. 

The qualitative dimension comprises four essential components; different approaches, 

weighting mechanics, scale considerations, selection of variables, and their proxies pre-incident 

and post-incident. The qualitative dimension mainstreams aggregated indices to policymaking and 

ensures that the theoretical and statistical perspectives are harmonized. The non-quantifiable 

attributes such as social capital, political economy, behavioral responses, perceptions of risk, and 

meaning of indicators are all considered. Qualitative variables bridge the gap between heat hazard 

and spatial policy planning, pinpointing processes that shape vulnerability, instead of merely 

aggregating the state of a complex system of interactions (Ericksen and Kelly, 2007). Derived 

quantitative metrics may not capture institutional context, cultural norms, and property rights, 

factors that impact communities’ vulnerability (Clifford and Travis, 2018; Kelly and Adger, 2000). 

Integrating the quantitative paradigms of the biophysical and socioeconomic without a 

comprehensive definition of relationships may lead to arbitral conclusions. For instance, 

correlating the losses of the SoVI assumes that the most socially vulnerable have most to lose, 

which may not be the case (Cutter and Finch, 2008).   

Communities’ susceptibility is an intricate multi-dimensionality of causes, outcomes, and 

pathways which may not be effectively captured by a single quantitative index. The use of census 

datasets also limits quantitative studies to the data collected during the census process, which may 
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not be exhaustive in explaining vulnerability. High biophysical vulnerability locations may not 

always overlap with areas of high socioeconomic vulnerability; hence, caution is needed when 

taking the coupled systems approach. Therefore, the qualitative dimension provides context, 

qualifies the quantitative metrics, ensures stakeholder engagement, enables targeted mitigation 

measures, clarifies assumptions, and provides supplementary data not captured in census datasets, 

bridging the gap between statistical and theoretical interpretations. The qualitative dimension is a 

substantive methodological framework broadly characterizing the adaptative capacity often not 

deftly captured in socioeconomic variables, thus providing a crucial data collection tool. The 

selection of ideal indicators should be guided by specific criteria including; hazard specificity, pre-

PCA screening, eigenvalue should be more than the value 1, amenable to policy measures, 

validated by scientific precedence, encompassing sensitivity, adaptive capacity, and exposure. The 

selection process must go beyond census datasets incorporating spatial and aspatial variables 

emanating from the qualitative approach.  

The conceptual model proposes the use of expert judgment, percentage variance explained, 

equal weighting when coupling, and geographical weighting with distance from downtown areas 

as probable weighting mechanics. Several studies (e.g., Brenkert and Malone, 2005; Eriksen and 

Kelly, 2007; Johnson et al., 2012; Zhou et al., 2014) used different weighting mechanics that 

significantly affect the derived coupled indices. All the proposed weighting mechanics have logical 

theoretical justifications, although they vary in spatial characterization. Transitioning to effective, 

consistent, and accurate spatial representation will require deriving multiple composite indices 

using different mechanics and subjecting to spatial regressional analysis using geocoded heat-

health outcomes. Continuous comparative analysis of the derived indices will provide the best 

variable weighting mechanics, accurately capturing spatial vulnerability patterns when validated 
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by heat-health outcomes. The validation approach will provide an empirical and objective 

conceptualization that should inform subsequent heat vulnerability studies.  

The various approaches could be pursued, and outcomes compared and validated towards 

establishing reliable methodologies. The appropriate geographical scale must capture geographic 

variability in the dominant variables with changing distance, allowing weighting to pegged on 

distance. The temporal study scale has to accommodate scales of optimum interactions within 

coupled systems. The administrative units, reflecting decision-making levels, have to be 

streamlined with hazard occurrence levels, enabling the selection of indicators amenable to policy 

strategies.  

The ultimate output, a composite  HVI, represents a dynamic relative metric that may 

provide insights into transitioning to absolute measures when subjected to continuous objective 

validation and replication procedures. Therefore, replications that return similar output over time 

may form substantive discourse in providing a consistent, holistic, comprehensive, accurate, and 

precise conceptual framework. The model enriches spatial representations encompassing 

stochastic incidences and non-linear components, acknowledging that theories are explicitly and 

implicitly longitudinal, ensuring the use of truly definitive variables to quantify indices. Validation 

of the derived metrics should be subjected to small chronic hazards and singular significant hazards 

to guard against weak validation criteria. The composite indices would be the predictor variables 

in the validation, while geocoded mortality data would be the response variable. Multiple linear 

regression analysis between composite indices and heat-related mortality could be conducted to 

test the derived composite indices' effectiveness in predicting heat-health outcomes associated 

with small chronic hazards. For large singular events, the composite indices could be correlated 

with the frequency of county or state heat disaster declarations.  
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Replication is meant to check consistency in the approaches proposed. For instance, 

proposed techniques include inductive and deductive methods, vector and raster-based, area-based, 

and population-based, while applying equivalent weighting mechanics. It is expected that 

replicating similar approaches should generate similar distributions and classifications of 

vulnerability. Deriving multiple composite indices, and subjecting each to validity tests using heat 

mortality data, should provide comparative hints on the best approach that best fits with heat 

mortality outcomes. Therefore, a set of given visualization choices should have similarities in the 

determination of spatial patterns of vulnerability regardless of locality, providing a robust and 

consistent pathway for subsequent heat studies. When replicated and subjected to validation tests, 

comparative spatial visualization choices should determine the optimum methodological 

framework, identifying the optimal representation of heat vulnerability.  

Climatic changes are happening faster than our capacity to respond hence the urgency to 

harmonize divergent scientific perspectives on heat vulnerability. The policy response strategies 

are not exogenous to derived composite indices; thus, local needs, perceptions, and cultural 

attributes have to be integrated into statistically derived indices. The model acknowledges the 

necessity for accuracy and precision in representing intrinsic characteristics of the society and 

environmental systems for a robust scientific reference point. The scale mismatches often generate 

the MAUP and zonal effects in spatial representation; the model provides for raster representation 

that allows for resampling of datasets to standard spatial scales. The mixed pixel problem is 

overcome by the generation of spectral indices that quantify each pixel providing a reliable 

numeric output. The different weighting mechanics guided by expert judgment, percentage 

variance explained by a variable, and geographical variability of influencing indicators have to be 

explored while reflecting community stakeholders' input. Therefore, the model summarizes 
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disparate spatial representation perspectives and applies a systematic synthesis to visualize 

optimum points of convergence, and enriches aspects of divergence in ideas, creating a harmonious 

blueprint for comparative scientific outcomes for heat specific hazard. 

The conceptual framework provides a significant shift in vulnerability assessment. 

Although it proposes novel perspectives on heat vulnerability representation, the framework has 

not been subjected to actual tests using datasets. Our subsequent work would explore the various 

approaches suggested. Also, satellite and weather station datasets have temporal and spatial scale 

challenges, respectively, meaning biophysical vulnerability is impaired. The conceptual 

framework has not explored the possibility of data fusion techniques that could provide multi-

temporal, spectral, and spatial resolution sources. The conceptual framework relies on the census 

data temporal scale, which may not be optimum data for detecting vulnerability changes.  

2.7 Conclusion 

Urban heat stress will increase in magnitude, frequency, intensity, and duration hence the 

need to accurately and precisely visualize the most susceptible for a targeted policy response. We 

have provided an iterative holistic conceptual framework that integrates quantitative and 

qualitative approaches. The UHI phenomenon being multi-dimensional should not be a deterrent 

to effective spatial representation. Our model acknowledges that the interactions between the 

biophysical, geodemographics and socioeconomic dimensions generate stochastic ecological 

perturbations, residual risks, and hazard co-productions, often not accounted for in the existing 

frameworks. These interactions are iterative and need a longitudinal approach that recognizes that 

scientific theories are explicitly and implicitly longitudinal.  

Targeted policy responses are enhanced when specific, accurate, and precise spatial 

representations are availed. The imperfections observed in the available frameworks are multiple. 
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There is a need to harmonize the different approaches, scale choices, weighting mechanics, and 

manipulation of variables through longitudinal methods that acknowledge spatiotemporal 

reference. Alternatives pursued by scientists must meet certain thresholds and be subjected to 

replication and validation while incorporating the qualitative dimension. This review has provided 

a starting point for scientific discourse towards a consistent iterative spatial representation 

framework. The theoretical and statistical relationships are enhanced, and the definition of 

vulnerability is made hazard-specific. We have provided flexible decision criteria that transition 

from simple data aggregation to understanding processes that shape vulnerability. The model 

allows for pre and post-hazard variables determination and avails rational content-driven reasoning 

in developing the composite HVI. It accommodates closely related variables, identifies definitive 

indicators for vulnerability, and provides a platform for replicating and validating robust, 

consistent, and systematic conceptualization for spatial representations.  
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3. CHAPTER 3 

Evolution of Social Vulnerability Index in Atlanta using Raster and Vector Models 

3.0 Synopsis 

The implications of hazards are accentuated or ameliorated by the robustness of social 

systems, which vary spatially. Little has been explored about the disparate data transformation 

techniques, weighting mechanics, and visualization models for Social Vulnerability Index (SoVI), 

crucial for targeted response strategies. This study established that race, language, poverty, gender, 

living alone, and age are the critical drivers of vulnerability. We also found variance-based 

weighting to have more clustering and higher magnitude of the SoVI than equal weighting. 

Downtown Atlanta was disproportionately vulnerable. Varying spatial models, weighting 

mechanics, and data transformation techniques influence the magnitude and intensity of the SoVI.  

 

INDEX WORDS: Visualization models, Principal Component Analysis, Moran’s I, Hazard, Social 

Vulnerability, Weighting mechanics 

 

Highlights:  

• Equal weighting and variance-based weighting for both raster and vector models 

• Race, language, gender, and age are the critical drivers of social vulnerability 

• Variance-based weighting has more clustering than equal weighting in Moran’s indices 

• Spatial models and weighting mechanics modify the magnitude and intensity of the SoVI 
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3.1 Introduction 

Vulnerability constitutes the biophysical hazard and the social system’s inherent 

susceptibility (Binita et al., 2015; Borden et al., 2007; Carr et al., 2014; Karanja and Kiage, 2021). 

Although the two paradigms are contemporaneous, the biophysical can hardly be mitigated, 

whereas the social vulnerability can be modified (Cardona 2003). The ramifications attributable to 

a disaster are not random but predicated on demographic characteristics and the dynamic social-

economic conditions quantifiable to generate the Social Vulnerability Index (SoVI) (Atyia 2015; 

Cutter et al., 2003; Evans et al., 2014; Karanja and Kiage 2021). Spatial disparities in coping, 

responding, and recovering from disasters are a function of the SoVI (Flanagan et al., 2018; Harlan 

et al., 2013; Maier et al., 2014).  It is imperative to locate the most vulnerable (Alonso and Renard, 

2020; Nayak et al., 2018), failure to which may portend a colossal public policy failure when faced 

with hazards (Goodling et al., 2015; Mitchell and Chakraborty, 2014). The SoVI is essential in 

effecting climate change policies, exploring climate justice, and advancing the discourse on the 

"human-centered vulnerability concept" (Chen et al., 2013; Cooley et al., 2012). Despite progress 

in framing the SoVI, little has been studied about visualization alternatives and the differences in 

the respective outputs. Geographic Information Science (GIS) provides multiple pathways capable 

of varying the generated indices' efficacy (Ho et al., 2015).  This study explores the raster and 

vector models with a temporal dimension and compares the outputs, determining how the models 

impact SoVI visualization.  

Principal Component Analysis (PCA) is widely accepted as a reductionist approach before 

the visualization of the SoVI (Abdi and Williams, 2010; Conlon et al., 2020; Cutter et al., 2003; 

Nayak et al., 2018; Zhou et al., 2014). However, studies differ on the relevance of pre-PCA tests, 

including Bartlett's test of sphericity and the Kaiser Meyer-Olkin (KMO) test of sampling 
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adequacy, which detect multicollinearity in the dataset (Yong and Pearce, 2013). A few studies 

have applied the two tests (e.g., Alonso and Renard, 2020), while others directly conducted 

correlational analysis (e.g., Chen et al., 2013). Another divergence point is on variable rotation, 

which optimizes variable interpretation (Yong and Pearce 2013). There is a profound preference 

for varimax rotation (Binita et al., 2015; Borden et al., 2007; Dintwa et al., 2019; Eisenman et al., 

2016; Reid et al., 2009). Only one study attempted to compare the orthogonal rotational techniques 

(varimax and equamax) and oblique rotational approaches (promax and oblimin) (Holand et al., 

2011). According to Yong and Pearce (2013), orthogonal techniques are relevant when the factors 

are uncorrelated, while oblique methods are ideal when the components are correlated. The 

thresholds for determining the number of variables to be retained are not consistent in the literature. 

Most studies (e.g., Borden et al., 2007; Chen et al., 2013; Dintwa et al., 2019) only use the Kaiser 

criterion. Other studies (e.g., Hondula et al., 2012) combine the scree plot and Kaiser criterion, 

while Holand et al. (2011) used parallel analysis, scree plots, Kaiser criterion, and stepwise 

elimination. A variation in the number of retained components would invariably result in disparate 

visualization patterns.  

Weighting mechanics could have a bearing on the developed SoVI (Karanja and Kiage, 

2021; Zhang et al., 2021). Two common mechanics from the literature are equal weighting and 

weighting based on the percentage variance explained. Several studies (e.g., Alonso and Renard, 

2020; Chen et al., 2013; Conlon et al., 2020; Ho et al., 2018; Maier et al., 2014) have adopted 

equal weighting, while others (e.g., Binita et al., 2015; Kim et al., 2017; Macnee and Tokai 2016) 

have used percentage variance. Equal weighting is preferred by authors who argue that there is no 

theoretical underpinning to apportion significance to one component over the other. At the same 

time, those applying percentage variances proceed from the output of the PCA. Despite the 



57 

 

justifications of preferring one weighting method over the other, the disparities from the two 

schemes have not been systematically examined and compared and their effect on the intensity 

and spatial distribution of vulnerability hotspots.  In this study, we explore the weighting choices 

and how they affect the determination of vulnerability hotspots in the Atlanta metropolitan area 

between 2000 and 2019. 

Raster and vector models are the primary visualization pathways on a GIS platform, as 

explained in Ho et al. (2015), who converted SoVI vector datasets to raster to match up the spatial 

resolution of either dataset, minimizing the modifiable areal unit problem (MAUP) when 

overlaying the biophysical and the socioeconomic layers. Most biophysical datasets are in raster 

format; hence it is essential to consider both raster and vector representations of the SoVI to 

determine the best fit model for integrating the layers. That is why this study explores both models 

and compares the outputs across time, which differs from Ho et al. (2015) that was cross-sectional 

and did not vary weighting mechanics. Several studies (e.g., Eakin and Luers, 2006; Juntunen, 

2006; Lee, 2014; Wilson and Chakraborty, 2019) acknowledge that social vulnerability is 

immensely dynamic. Its evolution can only be captured when knowledge production and 

application match the dynamic social conditions. The longitudinal approach is preferred to monitor 

the variations over time, as explained in Caruana et al. (2015) and Ployhart and Vandenberg 

(2010).  

This study adopts a "starting point approach" (Binita et al., 2015). We structure 

vulnerability as a pre-existing socioeconomic condition whose quantification cannot be 

understated given its core intervening role when preparing, recovering, and responding to hazard 

manifestations (Cooley et al., 2012; Hayden et al., 2011; Holand et al., 2011). A hazard transforms 

into a disaster only when human systems have been impacted. (ibid). However, Cardona (2003) 
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argued that failure to effectively capture the social system's multi-dimensional nature through the 

existing quantitative models could be the actual vulnerability. Methods of visualization and 

measuring vulnerability have lagged despite the progress in theoretical constructs (Cutter et al., 

2009). The SoVI is applicable across all the phases of a biophysical hazard, yet the literature on 

disaster overly focuses on the infrastructural setups' susceptibility (Flanagan et al., 2011; Juntunen 

2006). The SoVI is also integral pre-and post-disaster (Fothergill and Peek, 2004), and the limited 

empirical scientific research of this metric is indefensible. It is necessary to reimagine and 

streamline representations of vulnerability (Mendes, 2009), which this study seeks to achieve by 

applying disparate weighting mechanics using raster and vector models in a longitudinal study 

approach.  

3.2 Methods 

3.2.1 Study Area 

This study was conducted in Atlanta, Georgia (centered by 33.7490º N and 84.3880º W), 

covering 17,686 km2. The study included 22 metropolitan Counties, expanding the spatial focus 

of Lo and Quattrochi (2003) to include Pickens, Dawson, Cherokee, Bartow, Cobb, Paulding, 

Douglas, Carroll, Coweta, Fayette, Fulton, Clayton, Spalding, Henry, Rochdale, Newton, DeKalb, 

Gwinnett, Walton, Barrow, Hall, and Forsyth. The 2015-2019 American Community Survey 

(ACS) estimated Atlanta’s population to be 10,403,847, up from 8,186,453 in the 2010 decennial 

census, representing a growth rate of 27.1%.  

Atlanta is an ideal setting for studying the evolution of the SoVI, given its diversity in race 

and class (Markley et al., 2020). The "Atlanta paradox" explained by Connor (2015) demonstrates 

the existence of abject poverty in a city with massive wealth. "White flight" (Connor, 2015; Kruse, 

2005) resulted in poverty concentrations within the city core while the suburbs remained affluent, 



59 

 

as the movement entailed capital shifts, new investments, and disinvestments in certain Counties. 

Atlanta has also been referred to as Black Mecca (Markley et al., 2020), constituting rich Blacks 

in suburban counties. The racial and class dynamics compel a comprehensive study on the SoVI, 

its drivers, and the identification of the most vulnerable. The frequency of extreme hydroclimatic 

events such as heatwaves, floods, and drought is escalating (Binita et al., 2015). It is crucial to 

determine the most sensitive populations when faced with disasters for targeted mitigation 

measures. The expansive spatial extent allows for comparison between core city Counties, the 

suburbs, and those in the periphery.  

3.2.2 Data Acquisition and Preparation 

The decennial census dataset and the 5-year ACS estimates, alongside GIS-compatible 

spatial boundary files, were downloaded from the National Historical Geographic Information 

Systems (NHGIS) website https://www.nhgis.org/ (Manson et al., 2020). For 2000, the decennial 

datasets provided actual population counts, while the long-form questionnaire provided 

socioeconomic variables. The other dataset (2005-2009, 2010-2014, and 2015-2019) comprised of 

ACS 5-year estimates which replaced the long-form questionnaire, thus allowing a longitudinal 

analysis between 2000 and 2019. The NHGIS datasets facilitate attribute integration by providing 

a set of comparable statistics across time. A total of 20 variables identified as frequently used 

variables by Karanja and Kiage (2021) were inductively selected for analysis. The selected 

variables include percentage Black/African American, percentage Indian/Alaska natives/native 

Hawaiian/Pacific islander, percentage Asian, percentage some other race, percentage two or more 

races, and percentage Hispanics.  The other variables are percentage population below five years, 

percentage population below 18 years, percentage population above 65 years, percentage female-

headed households, percentage female population, percentage population over 65 living alone, and 

https://www.nhgis.org/
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percentage population where the English language is not spoken at home. We also used the 

percentage of the population using public transport, percentage of the population over 25 years 

without a high school diploma, percentage of the population over 16 unemployed. Additionally, 

we incorporated the percentage population receiving social security income, percentage of the 

population below poverty, percentage population living alone, and percentage of the population 

employed in primary productivity. We normalized the raw data as a percentage of the total 

population for the four-time periods following (Kashem et al., 2016). The variables specific tables 

were joined in GIS to the corresponding spatial boundary layer to allow for spatial visualization 

and data reduction analysis.  

3.2.3 PCA Analysis 

The datasets’ suitability for analysis was evaluated, as explained in Yong and Pearce 

(2013) and Alonso and Renard (2020). The KMO measure and Bartlett's test of sphericity are 

crucial in determining whether the correlation matrix is an identity matrix, hence the suitability of 

the dataset for reduction techniques. The KMO measure should be above 0.6, while the test of 

significance for Bartlett's test should be less than 0.05. The pre-PCA analysis confirmed that the 

variables chosen across all periods were suited for data reduction.  

The PCA was performed twice using the Statistical Package for the Social Sciences (SPSS) 

software. The first analysis did not specify the number of components to extract. This process 

allowed the retention of components that at least represented one variable using the Kaiser 

criterion. In the second run, the number of components to extract was specified, which varied 

across time. The varimax rotation method, which minimizes the number of variables that have 

high loadings on each other and makes small loadings even smaller, was chosen (c.f., Borden et 

al., 2007; Dintwa et al., 2019; Eisenman et al., 2016; Binita et al., 2015; Reid et al., 2009; Yong 
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and Pearce, 2013). Variable rotation provides a simple structure that enables each variable to load 

on as few components as possible. The scores were saved using the regression method, and 999 

iterations were chosen. We used both the scree plots and Kaiser criterion to determine the number 

of components to retain. The Kaiser criterion alone has been found to overestimate the number of 

components (Kashem et al., 2016). The option, exclude cases listwise, was selected where cases 

were dropped if they had a missing value, preventing overestimating factors (Yong and Pearce, 

2013).  

The principal components had both positive and negative values. We scaled the component 

values between 0 and 1 using the minimum-maximum normalization, with 0 being the least 

vulnerable and 1 the most vulnerable (e.g., Dintwa et al., 2019). Normalization ensured internal 

consistency across time and assigned uniform direction of influence for the components while 

reducing data redundancy. We derived two kinds of SOVIs using percentage variance explained 

after components rotation (Binita et al., 2015; Kim et al., 2017; Macnee and Tokai 2016) and using 

equal weighting (Alonso and Renard, 2020; Chen et al., 2013; Conlon et al., 2020; Ho et al., 2018; 

Maier et al., 2014). We then classified the SOVIs into five classes with consistent class breaks 

across time. We applied a 0.2 class break, with 0 as the lowest value and 1 as the highest value. 

Both the Global Moran's I (spatial autocorrelation) and Anselin's local Moran's I (cluster and 

outlier analysis) were performed on the SOVIs (Ho et al., 2015; Kashem et al., 2006; Zhou et al., 

2014). The Global Moran's I established systematized spatial variations while the Anselin's 

Moran’s I determined statistically significant clustering at 95% confidence level. We then 

converted the vector models to raster models using the feature to raster conversion tool and 

resampling to 30-meter resolution. We reclassified the output into five classes similar to the vector 

model. Resampling to 30-meter resolution was preferred since most raster datasets for the 
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biophysical parameters are derived from satellite sensors with a spatial resolution of 30 meters. 

The outcomes of the vector and raster models were then compared across time.  

3.3 Results and Discussions 

3.3.1 PCA Analysis 

The KMO measure was 0.709 for 2000, 0.744 for 2005-2009, 0.671 for 2010-2014, and 

0.757 for 2015-2019. Bartlett's test was 0 across the periods confirming the suitability of the 

variables for PCA.  The PCA data reduction retained five components for 2000, 2005-2009, and 

2010-2014 but retained six components for 2015-2019 (table 3-1). The total percentage variance 

explained decreased over time despite the increased number of components in 2015-2019. 2010-

2014 had the highest percentage variance explained while 2015-2019 had the lowest. For 2000, 

Hispanic households where the English language was not spoken at home had the highest loadings 

on component 1. Blacks/African Americans below poverty had the maximum loading for 

component 2, while recipients of social security income for populations above 65 years old loaded 

heavily on component 3. Individuals below 18 years essentially explained component 4, whereas 

those employed in primary productivity (agriculture, forestry, fishing, and hunting) had maximum 

loadings for component 5. 
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Table 3-1. Summary statistics for the PCA 

Periods 2000 2005-2009 2010-2014 2015-2019 

KMO test 0.709 0.744 0.671 0.757 

Bartlett’s test 0.000 0.000 0.000 0.000 

Retained CPNTs 5 5 5 6 

Total variance (%) 72.650 75.322 69.274 68.548 

CPNT 1 

Before rotation 

After rotation 

 

21.243 

17.997 

 

24.715 

21.893 

 

22.669 

20.656 

 

22.084 

18.053 

CPNT 2 

Before rotation 

After rotation 

 

17.750 

17.830 

 

21.932 

21.605 

 

17.659 

15.085 

 

18.130 

16.162 

CPNT 3 

Before rotation 

After rotation 

 

17.344 

15.559 

 

11.752 

12.301 

 

13.032 

11.580 

 

9.710 

10.717 

CPNT 4 

Before rotation 

After rotation 

 

9.354 

13.061 

 

10.107 

11.574 

 

9.753 

11.138 

 

7.575 

9.285 

CPNT 5 

Before rotation 

After rotation 

 

6.959 

8.203 

 

6.817 

7.949 

 

6.560 

10.815 

 

5.812 

7.319 

CPNT 6 

Before rotation 

After rotation 

 

- 

- 

 

- 

- 

 

 

- 

- 

 

 

5.236 

7.011 

Key:  

CPNT=Component 

The years 2005-2009 was the only time when the percentage variance explained increased. 

The highest loading variables for components 1, 3, 4, and 5 mimicked the year 2000. Black/African 

American female households had the highest loading for component 2. The remarkable similarity 

observed in 2000 and 2005-2009, with an increase in total percentage variance of 2.7%, could be 

attributed to the great economic recession between 2007-2009. According to the US Government 

(2011), the great recession was characterized by layoffs, tighter credit accessibility and 

availability, foreclosures, and unprecedented unemployment rates. Unemployment rates rose from 
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8.8% to 13.7% in December 2008. The impacts of the financial crisis in individual US households 

and businesses could have contributed to a higher percentage variance during this period.  

The period 2010-2014 had a significant drop in total percentage variance explained by 6% 

from the preceding time and by 3.4% compared to 2000 despite retention of 5 components, which 

could be attributed to economic recovery efforts following the great recession. For the third 

consecutive period, the Hispanics where the English language is not spoken at home had the 

highest loading for component 1. New patterns emerged compared to the previous two periods.  

Blacks above 16 years and unemployed, individuals living alone, and recipients of social security 

above 65 years had the highest loading for components 2, 3, and 4, respectively. Percentage female 

population had the maximum loading for component 5. The period 2015-2019 had the least 

percentage variance despite the retention of 6 components. Five components accounted for 61.5% 

of the total variance. Components 1, 2, and 5 had an aspect of racial groups. Specifically, Blacks 

below poverty explained component 1, Hispanics and some other race explained component 2, 

while two or more races explained component 3. This period was the first time almost all racial 

groupings explained most of the components. This observation indicates disproportional 

vulnerability accentuated by racial disparities explored by Connor (2015) and Kruse (2005). 

Component 3 was explained by the elderly over 65 years receiving social security income, 

component 4 by the young below 18 years, and component 6 by those living alone. 

Our findings identify the drivers of vulnerability as Hispanics where English is not spoken 

at home, Blacks/African American below poverty level, recipients of social security income, 

individuals below 18 years, individuals living alone, the elderly above 65, Blacks over 16, and 

unemployed, and female gender. The PCA analysis established minor variations for the prominent 

variables across time in Atlanta. The minor variations were in 2015-2019, where race played a 
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crucial role in establishing vulnerability hotspots. The retained components highlighted the racial 

disparity and the disproportionate susceptibility of the Hispanics and the Blacks/African 

Americans racial groups. Hansen et al. (2013) concluded that ethnicity and race could modify the 

influences of a hazard. Racial differences often translate to language and cultural bias, limiting 

access to disaster funding and constraining protective behavior acquisition (Aubrecht and 

Ozceylan., 2013; Cutter et al., 2003). Marginalized races are characterized by environmental 

justice issues, high comorbidities, and lower-income (Aubrecht and Ozceylan, 2013: Eakin and 

Luers, 2006). Race, therefore, acts in multiple forms to disadvantage the minority.  

3.3.2 Global and Local Moran's I 

The values for the global Moran's (spatial autocorrelation) varied between 0.18 and 0.24 

for equal weighting of principal components and between 0.21 and 0.35 for weighting based on 

the variance explained. Weightings based on the variance explained had more clustering compared 

to equal weighting as its values for the Global Moran's I were consistently higher across time. 

2010-2014 had the lowest Global Moran's I index for the weighting mechanics, while 2015-2019 

had the highest spatial autocorrelation (table 3-2). 2015-2019 had the lowest total variance 

explained yet had the highest global Moran's I index, meaning no correlation between the total 

variance explained and spatial autocorrelation. However, this period had the highest number of 

retained components. The index generally decreased over time, albeit with a sharp increase for 

2015-2019. The global Moran's I index demonstrates instances of concentrated vulnerability, 

although the percentage variance is decreasing. The statistics suggest that marginalized groups live 

closer to each other, resulting in a larger global Moran’s I index. The observed pattern of 

concentrated vulnerability was explored by Shelton (2018), where concentrated affluence and 

poverty co-occurred and are a vital feature of many USA cities. Pockets of affluence and poverty 
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become distinct yet co-produced and enmeshed, reflecting the suburban and urban vulnerability 

dynamics in Atlanta. Despite the variations in the Global Moran's I index’s magnitude, both 

weighting mechanics' values increased and decreased simultaneously, hence consistent patterns. 

A high global Moran’s I index did not always translate to higher proportionality of tracts in the 

High-High clusters.  

Table 3-2. The results of the Global Moran's Index. 

Period Moran's index equal weighting Moran's index variance explained 

2000 0.225223 0.261082 

2005-2009 0.234961                     0.246750 

2010-2014 0.180078 0.214248 

2015-2019 0.240781                     0.347430 

 

For the local Moran's index (Anselin's local Moran's I), the proportion of tracts in the High-

High clustering generally increased from 14.3% in 2005-2009 to 23.7% in 2015-2019 for equal 

weighting, and from 20.5% to 27.6% for weighting pegged on eigenvalues (table 3-3.). The 

weighting based on percentage variance consistently returned more High-High clustering than 

equal weighting, consistent with spatial autocorrelation output. Anselin's Moran's I had different 

spatial distributions of vulnerability based on the classifications generated for equal weighting and 

weighting based on the variance explained. The increase in the High-High clustering of the local 

Moran’s I could be attributed to the migration of the Hispanic populations and Blacks to core metro 

Atlanta counties to pursue jobs, as observed in Binita et al. (2015). The two racial groups were the 

dominant drivers of vulnerability from the PCA analysis.  
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Table 3-3. Clusters of H-H have increased over time, and eigenvalues weighting has more dense 

clusters of H-H compared to equal weighting 

 
Period Equal weighting Variance explained weighting 

 H-H H-L L-H L-L NS H-H H-L L-H L-L NS 

2000 17.12 1.61 5.26 24.12 51.89 22.51 1.32 7.02 19.30 49.85 

2005-2009 14.33 5.12 2.05 26.90 51.60 20.47 2.49 3.95 23.25 49.84 

2010-2014 19.75 3.76 5.43 20.48 50.58 22.15 3.34 6.00 20.48 48.03 

2015-2019 23.72 4.08 6.37 17.97 47.86 27.59 3.66 4.28 26.65 37.82 

 Key: HH (High-high), H-L (High-low), L-H (Low-high), L-L (Low-low), N-S (Not significant) 

The highest clusters in 2000 were in South Fulton, Southeast Cobb, Southwest Gwinnet, 

Northern DeKalb, Northwest Clayton, and Hall counties, both for equal weighting and variance 

explained weighting mechanics. However, weighting based on variance explained had more 

clustering in DeKalb (figure 3-1). In 2005-2009, equal weighting had a more extensive spread 

indicating pockets of High-High clustering for counties in the periphery such as Pickens, Hall, 

Bartow, Walton, Carrol, Spalding, and Newton. Southern Fulton still had High-High clustering 

but shrunk compared to 2000 for equal weighting. Eigen weighting had more High-High clustering 

in Northwest Clayton, Southern Fulton, Southeast Cobb, Hall, North DeKalb, Southwest Gwinnet, 

and Spalding counties. For the two periods, counties in the city core had more High-High 

clustering and succeeded by Low-Low clusters in the suburban. The outliers (Low-High, and High-

Low) were fewer. 2010-2014 saw more Low-High clusters emerge in the suburban areas (Cobb, 

Cherokee, Forsyth, Barrow, and Paulding counties) for both weighting mechanics, which could be 

explained by the emergence of more affluent Blacks in the suburbs. Similarly, High-Low clusters 

emerged in Fulton, DeKalb, and Clayton counties that we attribute to gentrification. Gentrification 

is often associated with capital investment. Shelton (2018) observed that wealth creation and  
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Figure 3-1. Equal weighting and percentage variance weighting produced disparate distributions 

of clusters using Anselin's Moran's. Core city counties had dense H-H clusters succeeded by L-L 

clusters in the suburbs. Most peripheral counties had no significant clusters. The H-L and L-H 

clusters increased over time. 
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poverty generation are dialectical, escalating unequal development. A similar pattern of 

distribution was observed for 2015-2019. However, the High-High clusters were denser in the core 

counties, and the Low-High clusters also increased. The general observation for the entire period 

was that High-High clusters were dense in core city counties. The High-High clusters were 

succeeded by Low-Low clusters in the suburban, while most of the peripheral counties did not 

have significant clusters. Although Low-High clusters’ pockets and High-Low clusters increased 

over time, the clusters’ spatial distribution varied with weighting mechanics. We also noted a 

pattern of concentrated vulnerability in the core metro counties and Hall county. 

3.3.3 Vector Model 

The vector model established a low number of census tracts for very low, high, and very 

high classes for equal weighting and percentage variance weighting. Although the distribution 

indicated relatively low vulnerability levels, a large proportion of the population is potentially at 

risk of increased vulnerability when the SoVI is integrated with a hazard or when deterioration of 

social conditions occurs. It is necessary to create integrated metrics that make the SoVI hazard-

specific. Equal weighting distributed almost a 50-50 ratio in the low and moderate classes, whereas 

variance explained weighting had approximately a 60-35 ratio for the low and moderate classes 

(table 3-4). For both weighting mechanics, 2005-2009 had the highest proportion of tracts in the 

high category, which tallied with the global economic recession. The two weighting mechanics 

had observable differences in the distribution of vulnerability for the SoVI. The variance weighting 

had a higher percentage in the high and very high classes than equal weighting, which corroborates 

Anselin's Moran I results. Both weighting mechanics had a reduced trend of the proportion of tracts 

in the high and very high classes for the entire period, which differed with the local Moran's index. 

The differences could be an indicator of how data transformation and visualization options such 
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as the choice of classification method may have a bearing on the nature of the SoVI, as observed 

by Zhang et al. (2021).   

Table 3-4. Results of equal weighting and variance explained weighting for the vector model. 
Period Equal weighting Variance explained weighting 

 Very 

low 

Low Moderate high Very 

high 

Very 

low 

Low Moderate High Very 

high 

2000 0.44 53.80 44.59 1.17 0.00 0.44 64.18 33.48 1.75 0.15 

2005-

2009 

1.02 49.56 47.95 1.47 0.00 1.46 60.82 35.53 2.19 0.00 

2010-

2014 

0.73 49.32 49.01 0.84 0.10 0.73 61.02 36.90 1.25 0.10 

2015-

2019 

0.63 49.11 49.32 0.84 0.10 0.31 60.19 38.56 0.84 0.10 

 

Analysis of the spatial visualization indicated that for the year 2000, weighting based on 

variance explained had more vulnerable tracts in the city core compared to equal weighting. A 

similar pattern was observed in Anselin's Moran's analyses. The most susceptible counties were 

Fulton, DeKalb, Gwinnett, Cobb, Clayton, Cherokee, and Hall (figure 3-2). High vulnerability 

pockets were more pronounced in the city core counties throughout the period, followed by the 

least vulnerable counties in the suburban counties. In contrast, the peripheral counties were mostly 

moderately vulnerable, except Hall, Pickens, Carroll, and Spalding counties. The Anselin's 

Moran's and the vector SoVI indicated that downtown areas were disproportionately susceptible, 

while the suburban areas were least vulnerable both for equal weighting and variance explained 

weighting mechanics. The Local Moran's visualizations seem best suited for identifying hotspots 

compared to the vector model where the researcher has to conduct extra data transformation 

techniques. However, we are unsure of the consistency of the global and local Moran’s for 

longitudinal studies. The downtown areas essentially represent Southern Fulton, whose 

vulnerability was augmented by “White flight” and rich Blacks' movement to the suburbs (Connor, 

2015; Kruse, 2005). The movement of capital characterized the demographic shifts.  
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Figure 3-2. Weighting based on variance explained had more tracts in the high and very high 

classes (0.6 to1.0) compared to equal weighting. Counties in downtown areas were 

disproportionately susceptible for both weighting mechanics, corroborating the output of Anselin's 

Moran's analysis. 
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3.3.4 Raster Model 

The raster model had fewer proportions of census tracts in the high and very high classes 

than the vector model for equal weighting and variance-based weighting. The tracts in the very 

low class also decreased in the raster model. The vector model consistently had higher proportions 

of tracts in the low category than the moderate, while for the raster model, the moderately 

vulnerable class was higher for 2000 and 2005-2009 (table 3-5). The distribution of tracts for 

eigenvalue weighting was dense in the low category compared to the vector model. Both the raster 

and vector models established a reduced number of tracts in the high and very high classes 

throughout the study. The raster and vector models had different spatial distributions of tracts 

across the classes, although the patterns of increase or decrease in vulnerability were 

approximately identical. Although both models indicated a reduction in tracts in the high and very 

high classes, downtown areas have had denser concentrations of vulnerable tracts over time (figure 

3-3). The pattern observed in the vector model where low clusters succeeded high clustering, and 

then moderate vulnerability clusters on the periphery seem to have been diminished in the 

variance-based weighting for the raster model. The choice of the spatial model of representation 

has a bearing on the accuracy of the developed SoVI.  

Table 3-5. Results of the raster model for equal weighting and eigenvalue weighting. 
Period Equal weighting Variance-based weighting 

 Very 

low 

Low Moderate high Very 

high 

Very 

low 

Low Moderate High Very 

high 

2000 0.03 46.25 53.44 0.28 0.00 0.03 81.44 18.21 0.24 0.08 

2005-

2009 

0.20 34.25 65.24 0.31 0.00 0.18 67.76 31.75 0.31 0.00 

2010-

2014 

0.13 53.83 45.94 0.10 0.00 0.13 68.02 31.62 0.23 0.00 

2015-

2019 

0.05 64.38 35.47 0.07 0.03 0.03 77.04 22.84 0.06 0.03 
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As a synthesis of the models and weighting mechanics, weighting guided by the variance 

explained and equal weighting impact on the spatial distribution and magnitude of the SoVI. The 

data transformations adopted also influence the nature of the derived SoVI evinced by the 

variations of the local and global Moran’s I indices against the vector model. The global and local 

Moran’s I outputs inherently anchored on the vector model returned different results from our 

vector model. Notably, the data transformation choices differentiate our vector model from the 

global and local Moran’s vector-based model, signifying the alterations attributable to disparate 

data transformation techniques. Given that testing for validity of the metrics is beyond the scope 

of this study, the contrasting results should be interpreted as complementary and meant to enrich 

multiple facets of decision-making, as argued by Holand et al. (2011). Data transformation is 

inevitable and could be masking perspectives of vulnerability as much as it reveals. For instance, 

our vector model normalized the factors across time, ensuring uniformity, while the global and 

local Moran’s may not be consistent for longitudinal studies. The SoVI is also a relative measure 

that is not hazard-specific, complicating its validation (Cutter et al., 2003; Karanja and Kiage, 

2021). The multiple outputs generated should yield a broader spectrum of rational decision-

making, strengthening the utility of the SoVI. The inadequacies of the models should not limit 

applications of the SoVI. The raster and vector models in a broader sense had similar visualization 

patterns but significantly differed at a closer look at the distribution in the classes. Future studies 

must explore smaller spatial scales to detect the evolving patterns for a specific locality. Our 

models are population-based, and subsequent studies should attempt area-based models. Testing 

the efficacy of the SoVI pre-and post-disaster should be evaluated across multiple disasters to 

enrich conceptualizations of the SoVI.  
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Figure 3-3. The raster model consistently indicated denser clusters of vulnerable tracts in 

downtown areas similar to the vector model. Equal weighting and variance-based weighting 

produced varied distributions of vulnerability. 
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3.4 Conclusion 

Vulnerability comprises the biophysical and socioeconomic patterns. The difference 

between a hazard and a disaster could be attributed to socioeconomic and demographic 

characteristics. Given the geographical and spatial inequalities in coping, responding, and 

recovering from disasters, it is compelling to understand how the SoVI varies spatially and across 

time for targeted mitigation and adaptation measures. The biophysical dimension can hardly be 

prevented, but planning strategies modulate the SoVI. Understanding the dynamics of the SoVI 

and its evolution and key drivers is a salient undertaking. The SoVI is not hazard-specific, limiting 

tests of validity predicated on a specific hazard. The viable pathway is to explore the multi-

dimensionality of the SoVI using multiple models and weighting mechanics to offer a broader 

spectrum for rational decision making. The inconsistencies in the models should be interpreted as 

complementarities meant to strengthen the utility of the metric rather than stifling its applicability. 

Our study applied equal weighting and weighting guided by variance explained using both and 

raster and vector models. Failure to capture the multiple facets of the SoVI could be the actual 

vulnerability (Cardona, 2003).  

We chose PCA as the data reduction technique, and all the variables were subjected to the 

KMO and Bartlett’s test of sphericity to check suitability for the PCA. The scree plot and Kaiser 

criterion extracted five components for 2000, 2005-2009, 2010-2014, but retained six for 2015-

2019. The key drivers of vulnerability across time in Atlanta were: Hispanics where the English 

language was not spoken at home, Black/African Americans below poverty, recipients of social 

security income for populations above 65 years, individuals below 18 years, living alone, female 

gender, and those employed in primary productivity. Weighing based on variance explained had 

more clustering, and higher magnitude of the SoVI than equal weighting for both local and global 
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Moran’s I indices. No correlation was detected between the total variance explained and the spatial 

autocorrelation analysis. Similarly, a high global Moran’s index did not always translate to more 

tracts in the High-High clustering. The patterns of increases or reduction in vulnerability over time 

were similar for both weighting mechanics for the global and local Moran’s analysis. High-high 

clustering was dense in the core metro counties, succeeded by Low-Low clusters in the suburban, 

whereas the peripheral counties had no significant clusters.  

Both the raster and vector models had patterns of a reduced proportion of tracts in the high 

and very high classes, which differed from the local Moran’s I index’s output. Our vector model 

and the Local Moran’s index established that downtown Atlanta was disproportionately 

vulnerable. Weighting based on the variance explained had a higher percentage of tracts in the 

high and very high classes than equal weighting for the vector model. The raster model had fewer 

tracts in the high and very high classes than the vector model. The raster and vector models had 

different spatial distributions of tracts across the classes, although the patterns of increases and 

decreases were identical. Therefore, varying spatial models, data transformation techniques, and 

weighting mechanics have a bearing on the magnitude and intensity of the SoVI. Contrasting 

outputs are essential in highlighting the multi-dimensionality of the SoVI, enriching planning 

strategies. 
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4. CHAPTER 4 

Comparing Integrated Metrics of Heat Vulnerability using Multiple Weighting Mechanics 

4.0 Synopsis 

Extreme heat events are among the climate change-related hazards that affect urbanized 

environments in many parts of the world. Heat hazards are likely to increase in frequency and 

magnitude, augmenting heat-related population morbidity and mortality depending on exposure 

and adaptive capacities. Heat metrics, constructed from socioeconomic indicators, biophysical 

variables, and composites, seek to mainstream heat susceptibility to policymaking. However, there 

is no scientific consensus about the accuracy and precision of these metrics. Data transformation 

techniques, especially weighting mechanics, influence the intensity and spatial distribution of 

hotspots. In this study, we used composite images to determine the extent to which the weighting 

mechanics moderate composite heat metrics in Atlanta, Southeastern North America. Land Surface 

Temperature-Based (LST)-based composites indicated increased spatial vulnerability in Atlanta 

concentrated in urban core counties and encroaching to the suburbs. Our findings show that the 

integrated spectral indices through a PCA approach do not combine additively and return different 

results from LST composites. The magnitude of vulnerability change was higher for the LST 

biophysical metric than its composites, attributed to the moderating effects of the SoVI. All the 

composites comprising the spectral indices and the SoVI reduced vulnerability. All the metrics, 

biophysical or composites visualized core metro areas with disproportionately concentrated 

hotspots. Although the spectral indices are correlated to the LST, their weighting should receive 

scrutiny despite the absence of systematic conceptual frameworks, given the disparate results 

established in this study. 
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INDEX WORDS: Biophysical heat metrics, spectral indices, weighting mechanics, integrated 

indices, Moran's index, Land Surface Temperature (LST).  

Highlights: 

• Weighting mechanics moderate the intensity and spatial distribution of composite heat 

metrics.  

• Integrated spectral indices do not combine additively, thus not an ideal proxy for LST 

• The core metro counties in Atlanta are increasingly susceptible, portraying high sensitivity 

and exposure to heat.  

• Weighting mechanics at the SoVI level, and the biophysical-SoVI integration level, impact 

the spatial distribution of exposure and sensitivity 

4.1 Introduction 

Extreme heat events have been shown to increase mortality in the United States by 3.7%, 

especially in urban areas, where more than 80% of the population resides (Atyia, 2015; Bera, 

2019). Urban areas are 6°C to 8°C warmer than surrounding rural locations (Weber et .2015), a 

hallmark of the Urban Heat Island (UHI) phenomena (Adeyeye et al., 2019: Berko et al.,2014; 

EPA, 2006; Wang et al., 2019). The average global temperature in 2019 was close to 1°C greater 

than pre-industrial times, and the cascading ramifications will be profound if continued warming 

remains unmitigated (Habeeb et al., 2015). Extreme heat events are projected to increase in 

intensity, frequency, duration, and magnitude, creating pockets of thermal inequality (Berko et al., 

2014; Habeeb et al., 2015; Harlan et al., 2013). The combined effects of local warming resulting 

from the built environment and increasing global temperatures resulting from greenhouse gas 

emissions raise concerns for heat-related morbidity and mortality across urban areas. Heat hazard 

is arguably the deadliest weather-related hazard (Johnson et al., 2012; Maier et al., 2014; Shepherd 
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and Zhou, 2009; Sheridan and Dolney, 2004). Environmental health studies have consistently 

shown a strong relationship between temperature-related metrics and a wide range of health 

outcomes (c.f., Chuang and Gober, 2015; Harlan et al., 2013; Hondula et al., 2015; Maier et al., 

2014). However, scientific consensus about the metrics' accurate and precise characterization 

remains inconclusive (Chuang and Gober., 2015; Eakin and Luers, 2006: Tate 2013). Varied use 

of surface metrics, near-surface metrics, original variables versus principal components, and/or 

various metrics combinations has accelerated the urgency for novel, comprehensive and 

comparative approaches geared toward mainstreaming heat vulnerability in policymaking (Wolf 

et al., 2015). Variable weighting problems have marred attempts to visualize combined heat 

vulnerability indices and scale incompatibility between demographic datasets and satellite datasets 

that compound the modifiable areal unit problem (MAUP) (Ho et al., 2015). Data transformation 

techniques have been found to deplete the authenticity of individual suites of variables (Kashem 

et al., 2016). The evaluation of disparate weighting schemes has received little attention yet could 

influence the intensity and accuracy of derived metrics, limiting the applicability of outputs from 

heat vulnerability studies (Brenkert and Malone, 2005; Turner II et al., 2003). Our research 

explores how the social vulnerability weighting mechanics impact the nature of composite indices 

when coupled with the biophysical metric. We seek to answer how the spectral indices combine 

to characterize heat. Apart from this, we explore how the composite heat metrics have evolved 

spatially and temporally in Atlanta. We determine how the SoVI combines with spectral indices, 

and we compare LST-based metrics with spectral indices-based metrics.  

Several studies have used various spectral indices, including the Normalized Difference 

Vegetation Index (NDVI), Normalized Difference Bareness Index (NDBaI), Normalized 

Difference Water Index (NDWI), and Normalized Difference Built-up Index (NDBI) (Harlan et 
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al., 2013; Jonsonn and Lundgren, 2015; Mushore et al., 2018) to characterize heat. These indices 

have been used as proxies for the LST or independently to denote heat, yet little is known whether 

they integrate additively. Composite metrics have been developed to remedy the shortcomings 

associated with either the SoVI or the exposure metrics. To date, the relative importance of 

weighting either index remains unknown (Tate, 2013), yet they are integral for policy prioritization 

(Harlan et al., 2013: Wolf et al., 2015). These studies use single scene imagery, which could be 

unrepresentative. However, Pelta and Chudnvosky (2017) concluded that a single satellite 

overpass provides a good relative metric of the actual day's temperature conditions. Despite this 

assertion, a single snapshot may not capture episodic heat events and general patterns of exposure. 

Although the surface temperature was found helpful in determining the most exposed (Harlan et 

al., 2013), incorporating social-economic dimensions provides an additional analytical perspective 

(Karanja and Kiage, 2021). The expanded portfolio for vulnerability representation that we adopt 

in this study is a salient approach that narrows the gap between geographical visualization and 

policy development (Hondula et al., 2015: Wolf et al., 2015). Current literature overly focuses on 

vulnerability identification and not its evolution temporally (Carr et al., 2014); hence our study 

analyzes between 2000 and 2019 to understand vulnerability dynamics that are manifestly 

longitudinal (Caruana et al., 2015).  

4.2 Methodology 

4.2.1 Area of Study 

The study was conducted in Atlanta, covering 22 counties in the urban core, suburban, and 

periphery regions (figure 4-1). Understanding intra-urban variations and focusing on the major 

cities is critical, given massive populations reside (Berko et al., 2014: Wolf et al., 2015). 

Furthermore, Atlanta is likely to experience an accelerated heatwave magnitude of between 4°C 
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and 5°C from simulations (Broadbent et al., 2020). Urban heat episodes vary in space and time, 

and city expansion in isolation could account for augmented temperature conditions between 1°C 

and 2°C (Georgescu et al., 2014). Besides, Habeeb et al. (2015) established that Atlanta would 

experience more frequent heat events that would last longer. The core counties of Fulton, DeKalb, 

and Cobb were found to experience a higher heat vulnerability index (Maier et al., 2014). The US 

Department of Housing (2018) indicated a growing population in Atlanta attributed to emerging 

job prospects. This city is bound to grow in size, complexity, and population, which potentially 

indicates accelerated vulnerability to disasters (Borden et al., 2007). Historical weather analysis 

by Shepherd and Zhou (2009) verified that Atlanta is susceptible to extreme heat with a mean UHI 

of 1.310C between 1984-2007. Heat susceptibility was highly clustered in metro Atlanta (Sunhui, 

2017). Given the city status as a premium commercial, transportation hub and industrial capital of 

the South (Lo and Quattrochi, 2003), it is justifiable to understand how vulnerability manifests, 

how the changes and their consequences are amplified and attenuated, and how the biophysical 

and socioeconomic interact to create pockets of thermal inequality.  
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Figure 4-1. Area of study covering 17,686 km2 for 22 metro Atlanta Counties allows for 

comparative analysis of heat evolution for Atlanta city core, suburban locations, and the city 

periphery. 
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4.2.2 Data Acquisition and Analysis 

Image data were acquired from the Google Earth Engine (GEE) (Gorelick et al., 2017) by 

modifying the LST computation code for the Landsat series (e.g., Ermida et al., 2020) to include 

the computation of the four indices of the NDVI, NDBI, NDWI, and NDBaI using band 

combination formulae (Bramhe et al., 2018; Mushore et al., 2018; Tran et al., 2018). The images 

covered the warmest periods of the year, between 20th May to 10th September for each period, 

capturing early summer to late summer. The study deviates from previous computations (e.g., 

Harlan et al., 2013; Ho et al., 2015; Mushore et al., 2018) that predominantly use a single sensor 

scene by aggregating all available images for a determined date range, resulting in a composite 

image. The composite images were generated, translating to minimal missing data points and 

leveraging on mean conditions across time. Extraction based on the average value ensured the 

inclusion of outliers, potentially capturing the extreme heat events. The data were masked for 

clouds, water, and other atmospheric substances (Ermida et al., 2020). The periods for biophysical 

analysis were informed by time-series data for generation of Social Vulnerability Index (SoVI) 

from the American Community Survey (ACS) five-year estimates (2000, 2005-2009, 2010-2014, 

and 2015-2019). We picked the years 2000, 2007, 2011, and 2019 for the biophysical analysis. 

2007 was selected as it was the first mid-point year for the first ACS 5-year estimate. 2019 was 

preferred over 2017 and 2018 because it had more data points and was proximal to the most recent 

year of the ACS series selected. There were no satellite datasets for 2012 while 2013 images had 

numerous cloudy pixels; thus, the 2011 dataset was preferred. The specific codes for the 

acquisition and computation of the LST and the spectral indices are shown below.  

2000: https://code.earthengine.google.com/446612503c34984b43e84f76da6ab74e 

2007: https://code.earthengine.google.com/73f56852c117e65b5f7716ddd01cf2fa 

https://code.earthengine.google.com/446612503c34984b43e84f76da6ab74e
https://code.earthengine.google.com/73f56852c117e65b5f7716ddd01cf2fa
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2011: https://code.earthengine.google.com/5a5919389f695993f9c31f8f0ece08ed?hl=it 

2019: https://code.earthengine.google.com/769632b37df75c05672abd34d83eb6dc?hl=it 

Landsat 5 Thematic Mapper was used for 2000, 2007, and 2011 while Landsat 8 Thermal Infrared 

Sensors (TIRS) was used for 2019. The following band combinations were used to generate the 

indices: NDVI (Near Infrared and Red), NDBI (Shortwave Infrared and Near Infrared), NDWI 

(Near Infrared and Shortwave Infrared), NDBaI (Shortwave Infrared and Thermal Infrared) using 

the formulae shown below: 

NDVI = (NIR – Red) / (NIR + Red) 

NDBI = (SWIR – NIR) / (SWIR + NIR) 

NDWI = (NIR – SWIR) / (NIR + SWIR) 

NDBaI= (SWIR – TIR) / (SWIR + TIR) 

All the rasters were clipped through extraction by mask using a feature class layer covering 

the 22 counties that constitute the urban, suburban, and periphery of Atlanta, including: Pickens, 

Dawson, Cherokee, Bartow, Cobb, Paulding, Douglas, Carroll, Coweta, Fayette, Fulton, Clayton, 

Spalding, Henry, Rochdale, Newton, DeKalb, Gwinnett, Walton, Barrow, Hall, and Forsyth, 

allowing for spatial comparison with distance from the urban core. Two metrics were derived to 

characterize the biophysical vulnerability, based on LST (Ho et al., 2015) and the other based on 

spectral indices (Mushore et al., 2018). To visualize LST, we rescaled the rasters to range between 

0 and 1, using maximum-minimum normalization for consistent comparison of changes over time 

using the formula ((raster-minimum) / (maximum-minimum)) (e.g., Dintwa et al., 2019). The 

normalized LST rasters were reclassified into five classes with a uniform class interval of 0.2. The 

missing data values were assigned the value 99, while the other classes were assigned values 

between 1 and 5, representing very low vulnerability and very high vulnerability, respectively. The 

https://code.earthengine.google.com/5a5919389f695993f9c31f8f0ece08ed?hl=it
https://code.earthengine.google.com/769632b37df75c05672abd34d83eb6dc?hl=it
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reclassification process outputs were then extracted by mask to eliminate the background pixels 

and the processing extent specified using the study location's polygon's layer area. The proportions 

of pixels in each class were then computed to establish the changes between 2000 to 2019. The 

missing data points were symbolized using a dark shade. The second biophysical metric entailed 

conducting a PCA on the indices and determining whether they work additively and whether they 

could result in an integrated biophysical metric, a robust proxy for the LST representing multiple 

land cover characteristics. Each retained component was multiplied by the equivalent eigenvector 

and summed up to derive the integrated spectral index.  

We generated four composites using disparate weighting mechanics. The first composite 

integrated LST with SoVI derived using a raster model for equal weighting (Ho et al., 2015; Ho et 

al., 2018). The second composite consisted of LST and raster-based SoVI through variance 

explained. The goal was to determine how SoVI weighting mechanics impact heat metrics for 

integrative models. The LST and the SoVIs were assigned an equal weighting of 50% each, using 

a weighted sum tool, which supports floating rasters. The LST-based composites were reclassified 

into five equal interval classes, masked for background pixels, and the percentage of pixels in each 

category was computed. Zonal statistics were computed using the mean value, and both the local 

and global Moran's I tracked over time to visualize hotspots (Kashem et al., 2016; Zhou et al., 

2014). The third composite metric was generated by combining the spectral indices and the SoVI 

and subjected to the weighted sum tool (Mushore et al., 2018). In the weighted sum analysis, each 

spectral index and the SoVI were apportioned each 20% weighting. The indices were first rescaled 

between 0 and 1 using the maximum-minimum normalization to guarantee internal data 

consistency before summing them up. The NDVI and NDWI were inverted to ensure high values 

translated to high vulnerability since they are negatively correlated to the LST (Mushore et al., 
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2018: Sunhui, 2017). The rasters were inverted using the formula shown below from 

https://support.esri.com/en/technical-article/000006694, (("Rasterlayer" - Maximum_value) * 

-1) + Mininimum_value. The proportion of pixels in the various classes was computed and 

compared across time. Zonal statistics to extract the mean value were conducted, and then the 

global and local Moran's I indices were computed to establish the hotspots and their changes over 

time. The fourth composite was PCA-based, where the spectral indices and the SoVI were all 

subjected to data reduction. The goal was to determine how PCA-based weighting differs from the 

other weighting mechanics and the relationships among the biophysical and socioeconomic 

indices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://support.esri.com/en/technical-article/000006694
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4.3 Results  

4.3.1 Land Surface Temperature 

The LST trends indicated a progressive increase in heat vulnerability, with many areas 

shifting from low to moderate exposure using equal interval classification. The percentage of 

pixels in the low category reduced from 57% in 2000 to 29% in 2019 (table 4-1). Simultaneously, 

the percentage of pixels in the moderate class increased from 42% to 70%. 2019 did not record 

pixels in the very low category. The high class generally had an increasing pattern with a marginal 

dip between 2011 and 2019. No significant changes were observed in the high and very high 

classes. The mean of the LST surfaces increased across time, with 2000 having the lowest average 

temperatures in Kelvin while 2019 had the highest. The minimum and maximum temperature 

values also increased, signifying higher intensity. High-High clusters were concentrated in core 

metro counties whose spatial distribution increased over the period of study. There was 

consistency in the patterns of the Global Moran's I and the mean value of the LST surfaces. The 

percentage of census tracts in the High-High clustering increased over the period but did not fit 

the trends of the Global Moran's I. Low-Low clustering trend also increased across time. Low-

High clustering and High-Low clustering hardly accounted for 15% of the census tracts. Locations 

of non-significant clusters reduced, mostly transitioning to Low-Low clusters, followed by High-

High clusters. The spatial distribution of the hotspots varied over time. For 2000, the hotspots were 

further South of Atlanta, predominantly in Spalding, Henry, and Clayton. The core metro counties 

of DeKalb and Fulton had a blend of High-High clustering and Low-High clusterings. Gwinnett, 

Rockdale, and central Cobb also had pockets of High-High clustering. For 2007, vast sections of 

Spalding and Clayton transitioned to areas of no significant clustering and cold spots. The Hotspots 

emerged in Fulton, DeKalb, Gwinnett, and parts of Forsyth. The exposure increased in Rockdale, 
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Bartow, and Forsyth, while it shrunk in Cobb. In 2011, the hotspots for 2007 expanded further 

southwards to Clayton and Henry and advanced further North to Cobb. A similar pattern was 

observed in 2019, only that High-High clusters reduced towards the South but advanced towards 

the North Eastern section of the map encompassing Gwinnett and Forsyth (figure 4-2).  

Table 4-1. Analysis of the LST using equal interval classification, local and global Moran's I 

 
 2000 2007 2011 2019 

Equal Interval Classification     

Very low 0.003 0.002 0.001 0.000 

Low 57.055 47.432 40.638 29.255 

Moderate 42.409 52.286 58.458 70.093 

High 0.441 0.229 0.847 0.606 

Very high 0.002 0.000 0.004 0.002 

Missing pixels 0.090 0.051 0.052 0.043 

Mean (Kelvins) 303.53 304.27 305.13 305.70 

Local and Global Moran’s I      

Global Moran’s 0.334 0.480 0.576 0.619 

% High-High clustering 

% High-Low clustering 

% Low-High clustering 

% Low-Low clustering  

% No significant clusters 

32.46 

2.49 

 

12.43 

 

16.52 

 

36.10 

28.80 

1.32 

 

11.11 

 

13.89 

 

44.88 

32.71 

2.19 

 

11.60 

 

21.53 

 

31.97 

36.89 

1.67 

 

10.03 

 

23.51 

 

27.90 
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Figure 4-2. Core metro counties are consistently disproportionately exposed where most of the 

hotspots are located. The Southern county of Spalding progressively transitioned to a coldspot. 

The Hotspots expanded towards the North Eastern section while the coldspots emerged towards 

the periphery. The suburbs progressively shifted to areas of no significant clusters.  
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4.3.2 Integrated Spectral Index 

The integrated spectral index constituting the NDVI, NDBI, NDBaI, and NDWI, PCA 

analysis resulted in the retention of 2 components across the analysis periods, which accounted for 

approximately 98% of the cumulative percentage variance. Component 1 accounted for about 

80.6%, while component 2 explained nearly 18% for 2000, 2007, and 2011. Slight variation 

occurred in 2019, with component 1 explaining 73%, whereas component 2 accounted for 24.7%. 

For the entire period, the NDBaI essentially explained component 1, followed by the NDBI and 

NDWI that had equivalent loadings but with inverse direction of influence (table 4-2). The NDBI 

and NDWI dominantly explained component 2 with equal loadings, yet opposite in influence. The 

NDBaI and NDVI also had high loadings for component 2, with the former consistently having a 

higher load than the latter, although influencing inversely. Equal interval classification 

demonstrated reduced vulnerability for the integrated spectral metric with 73.48% of the census 

tracts in the very low class in 2019. The mean value of the raster surfaces also decreased across 

the period (table 4-3). There was no discernible trend for spatial autocorrelation. The local Moran's 

I indicated significant clustering in the High-High, and Low-Low, although areas of no significant 

clustering accounted for nearly 50% of the census tracts across the period.  

Table 4-2. Loadings of Spectral Indices on the components 

Period 2000 2007 2011 2019 

CPNTs 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

NDBaI 1.00 0.83 -0.33 -0.83 1.00 0.85 -0.36 -0.85 1.00 0.85 -0.35 -0.85 1.00 0.67 -0.23 -0.67 

NDBI 0.83 1.00 -0.72 -1.00 0.85 1.00 -0.73 -1.00 0.85 1.00 -0.73 -1.00 0.67 1.00 -0.79 -1.00 

NDVI -0.33 -0.72 1.00 0.72 -0.36 -0.73 1.00 0.73 -0.35 -0.73 1.00 0.73 -0.23 -0.79 1.00 0.79 

NDWI -0.83 -1.00 0.72 1.00 -0.85 -1.00 0.73 1.00 -0.85 -1.00 0.73 1.00 -0.67 -1.00 0.79 1.00 

Key: CPNTs = Components 
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Table 4-3. Breakdown of equal interval classification, local and global Moran's I for integrated 

spectral index 
 2000 2007 2011 2019 

Global and Local Moran’s I  

Spatial Autocorrelation 0.60 0.65 0.48 0.59 

Z-score 75.02 80.90 73.91 90.79 

Mean 0.44 0.43 0.35 0.16 

High-High clustering 23.68 20.32 20.48 25.18 

High-Low clustering 1.90 2.63 2.51 2.09 

Low-High clustering 9.94 8.92 9.20 11.18 

Low-Low clustering 14.62 18.13 9.19 19.85 

No significant clustering 49.85 50.00 49.63 41.69 

Equal Interval Classification     

Very low 0.000 0.000 0.002 73.480 

Low 45.833 47.534 72.505 26.197 

Moderate 46.517 51.166 27.354 0.305 

High 7.492 1.268 0.108 0.000 

Very high 0.039 0.003 0.003 0.000 

Missing pixels 0.069 0.028 0.028 0.018 

 

4.3.3 LST-Based Composites 

The composite index constituting LST with two different raster-based SoVIs returned 

different spatial distributions across classes but demonstrated a consistent increasing heat 

vulnerability trend. The Eigen-based SoVI consistently showed a reduction of the low category 

from 70.7% in 2000 to 54.7% in 2019 (table 4-4). The equally weighted SoVI saw a marginal 

decrease from 53.4% to 45.1% in the same period, albeit with lower proportions in 2007 and 2011. 

The moderate class proportion increased consistently for Eigen weighted SoVI from 28.9% to 

45.1%, while equal weighting was from 46.2% to 54.7%. The variance-based SoVI had lower 

proportions consistently for the moderate class and consistently higher proportions in the low class 

than equal-weighted SoVI. The magnitude of change was lower for both LST-based integrated 

metrics compared to the LST biophysical metric. The Anselin's local Moran's I generally indicated 

an increased number of tracts in the High-High clustering with the variance-based SoVI 
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occasionally having higher proportions. Trends of increases and decreases of spatial 

autocorrelation were similar to that of Local Moran's I. However, a heightened global Moran's I 

did not invariably translate to more clustering for High-High class for equally weighted SoVI, 

unlike the Variance-based SoVI. 

Table 4-4. Results of the LST-based composites using different SoVIs 
 Eigen weighted SoVI + LST Equally weighted SoVI + LST 

 2000 2007 2011 2019 2000 2007 2011 2019 

Very Low 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Low 70.753 59.325 55.049 54.769 53.451 36.399 42.706 45.127 

Moderate 28.929 40.459 44.806 45.108 46.251 63.448 57.179 54.740 

High 0.139 0.077 0.067 0.043 0.119 0.015 0.027 0.053 

Very High 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 

Missing pixels 0.179 0.139 0.078 0.079 0.179 0.139 0.088 0.079 

Global and Local Moran's I 

 H-H H-L L-H L-L NS SA   

2000 EW 22.51 1.46 8.19 20.03 47.81 0.30   

2000 VE 28.07 1.75 10.67 19.59 39.91 0.34   

2007 EW 20.61 3.80 3.80 24.27 46.64 0.24   

2007 VE 20.61 1.61 6.87 16.67 54.24 0.28   

2011 EW 29.78 3.87 10.03 22.88 33.33 0.36   

2011 VE 29.89 4.39 15.20 30.70 47.81 0.35   

2019 EW 31.35 2.93 8.78 18.27 38.67 0.27   

2019 VE 31.35 3.13 8.36 23.51 33.65 0.39   

Key: EW (Equal Weighting), VE (Variance Explained) H-H (High-High), L-H (Low-High), L-L 

(Low-Low), NS (No Significant), SA (Spatial Autocorrelation) 
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4.3.4 PCA-Based Composites 

PCA-Based Composite (Spectral Indices and SoVI) retained 3 components across the 

entire period accounting for approximately 98% of the total variance. Component 1 ranged 

between 71.5% and 73.3% for 2000 and 2011 (table 4-5). A significant drop was established in 

2019, where the variance explained reduced to 66.72%. Component 2 explained approximately 

16% for the first three periods but increased for 2019 to 22.6%. Component 2 was explained by 

the NDBaI, NDBI, and NDWI. Component 3 was favorably explained by all the spectral indices 

accounting for 8.74%, 11.29%, 10.26%, and 8.68%, respectively, for the specific periods in 

chronological order. The SoVI exclusively explained the first component for the entire period. The 

mean value of the rasters decreased over time, translating to reduced vulnerability. By 2019, 75% 

of the census tracts were in the very low class and nearly 25% in the low class, and no tracts in the 

high and very high classes (table 4-6). Values in the moderate class also significantly reduced 

across time, and by 2019 there were negligible tracts for this class. Patterns of spatial 

autocorrelation were dissimilar to the mean value, corresponding to the integrated spectral index. 

Similarly, spatial autocorrelation did not dictate the clustering of hotspots for the local Moran's I. 

Hotspots and coldspots were evident from Moran's analysis even with reduced vulnerability. The 

hotspots were clustered in the core metro counties and diminished with distance from downtown 

areas, succeeded by suburbs with no significant clustering and the periphery that constituted 

coldspots. 
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Table 4-5. Loadings of the SoVI and the spectral indices from the PCA analysis 
   

 2000 2007 

 1 2 3 4 5 1 2 3 4 5 

SoVI 1.00 0.03 0.02 -0.06 -0.02 1.00 0.05 0.02 0.00 -0.02 

NDBaI 0.03 1.00 0.83 -0.33 -0.84 0.05 1.00 0.85 -0.36 -0.85 

NDBI 0.02 0.83 1.00 -0.72 -1.00 0.02 0.85 1.00 -0.73 -1.00 

NDVI -0.06 -0.33 -0.72 1.00 0.72 0.00 -0.36 -0.73 1.00 0.73 

NDWI -0.02 -0.84 -1.00 0.72 1.00 -0.02 -0.85 -1.00 0.73 1.00 

Variance  73.37 16.35 8.74 1.55 0.00 71.55 15.81 11.29 1.35 0.00 

 2011 2019 

SoVI 1.00 0.03 0.01 -0.03 -0.01 1.00 0.04 0.05 -0.07 -0.05 

NDBaI 0.03 1.00 0.85 -0.35 -0.85 0.04 1.00 0.68 -0.23 -0.68 

NDBI 0.01 0.85 1.00 -0.73 -1.00 0.05 0.68 1.00 -0.79 -1.00 

NDVI -0.03 -0.35 -0.73 1.00 0.73 -0.07 -0.23 -0.79 1.00 0.79 

NDWI -0.01 -0.85 -1.00 0.73 1.00 -0.05 -0.68 -1.00 0.79 1.00 

Variance  72.68 15.71 10.26 1.35 0.00 66.72 22.57 8.68 2.03 0.00 

 

Table 4-6. Results for the equal interval analysis, local and global Moran's analysis 

Equal Interval Analysis Global and Local Moran's I 

 2000 2007 2011 2019  2000 2007 2011 2019 

Mean 0.428 0.450 0.384 0.152 SA 0.579 0.606 0.452 0.600 

Very Low 0.000 0.000 0.000 75.110 H-H 22.515 18.421 19.854 23.720 

Low 50.509 35.189 62.911 24.544 H-L 2.485 3.216 2.717 2.403 

Moderate 42.992 61.432 36.446 0.302 L-H 11.404 11.111 9.718 11.703 

High 6.310 3.261 0.581 0.000 L-L 14.766 16.667 17.555 19.436 

Very High 0.039 0.009 0.000 0.000 NS 48.830 50.585 50.157 42.738 

Missing pixels 0.150 0.107 0.054 0.044 Z-Score 72.525 75.983 69.632 91.776 

 

4.3.5 Spectral Indices and SoVI Equally Weighted Composite 

This composite portrayed reduced vulnerability over time by clustering more tracts in the 

low category consistent with the PCA-based composite but differed with the LST-based 

composites. No significant changes were established for the high and very high classes (table 4-
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7). The mean value showed a decreasing trend except for 2007, where there was a slight increase 

and had no relationship with the High-High clustering. The High-High and Low-Low clusters 

increased over time, showing coldspots and hotspots, reducing the number of areas of no 

significance similar to the trends established in the LST-based composites. There was no 

established relationship between spatial autocorrelation and High-High clustering, nor between the 

global Moran's I and the mean.  

Table 4-7. Analysis of the spectral indices and the SoVI, equally weighted 

 2000 2007 2011 2019 

Global and Local Moran’s I  

Spatial Autocorrelation 0.54 0.51 0.43 0.47 

Z-score 67.41 63.88 67.03 73.16 

Mean 0.41 0.43 0.41 0.32 

High-High clustering 23.20 20.91 23.82 26.75 

High-Low clustering 1.75 3.22 3.66 2.30 

Low-High clustering 10.23 6.58 8.78 11.18 

Low-Low clustering 17.98 21.64 22.05 22.26 

No significant clustering 46.93 47.66 41.69 37.51 

Equal Interval Classification     

Very low 0.000 0.000 0.000 0.000 

Low 55.538 44.184 53.447 88.460 

Moderate 44.065 55.491 46.349 11.483 

High 0.239 0.208 0.140 0.001 

Very high 0.000 0.000 0.000 0.000 

Missing pixels 0.158 0.116 0.064 0.055 
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4.4 Discussion 

4.4.1 Land Surface Temperature (LST) 

Metro Atlanta is experiencing elevated exposure to heat vulnerability, findings 

corroborating Habeeb et al. (2015), who identified heat events accelerating in frequency and 

intensity in Atlanta. Equal interval classification, global and local Moran's I, and the mean of the 

LST raster surfaces indicated a progressive increase in exposure to temperature conditions. The 

modes of analysis differed on either the intensity or spatial distribution of vulnerable locations. 

We extracted the raster surfaces using the mean value to capture extreme events. Still, the desired 

effect seemed to have been depleted by the maximum-minimum rescaling that clusters values 

towards the middle (Tate,2013). The diminished impact of extreme values could also be attributed 

to the generation of composite images, including data outside of the consummate summer months, 

instead of relying on a single snapshot. We also speculate that since temperature changes vary 

marginally, and the changes occur over large temporal scales, the short period of analysis may not 

depict the outliers, and the equal interval visualization may not disclose significant changes. For 

instance, the mean value increased from 303.53 Kelvins to 305.70 Kelvins; although it is a 

substantive increase, data transformations and visualization options may mask the nuances. 

Locations of no significance decreased over time, which largely transitioned to coldspots.  

The hotspots were predominantly concentrated in the core metro counties of Fulton, Cobb, 

Gwinnett, Clayton, and DeKalb. Similar findings were observed by Maier et al. (2014). In contrast, 

the suburbs formed a ring of no significant clusters, while the peripheral counties were coldspots. 

The projected acceleration of intensity, magnitude, and frequency of heatwaves (Alexander 2020) 

means a substantial proportion of Atlanta could flip to high and very high classes unless mitigation 

and adaptation measures are overwhelmingly embraced. The spatial distribution highlights the 
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disproportionate exposure to heat hazards defined by location where core counties that are most 

populous characterized by people of color and high poverty rates are potentially at higher risk. The 

affluent suburbs were primarily coldspots or areas of no significant clusters yet constituted of low 

population density with wealthy households that could modify heat exposure. The peripheral 

counties were dominantly coldspots, possibly driven by higher elevations. The minimum and 

maximum values were also increasing, meaning even the cooler areas were getting warmer while 

warmer areas were getting hotter. The Low-Low clusters increased over time, but the affected 

counties were outside of the core metro area. Our study established that for the LST, trends of 

spatial autocorrelation were not similar to Anselin's local Moran's I. On the other hand, a higher 

mean did not translate to higher spatial autocorrelation, and neither did it guarantee more of the 

High-High clustering. We established that the mean value was the best predictor of vulnerability 

trends for equal interval classification.  

4.4.2 Integrated Spectral Indices 

The integrated spectral indices metric returned inconsistent results from the LST, meaning 

the indices do not combine additively in Atlanta. LST was used as the standard metric. Previous 

studies have concluded that it is a great measure of actual temperature conditions (c.f., Frigerio 

and Amicis 2016; Ho et al., 2018; Mushore et al., 2018; Weber et al., 2015). The findings differ 

with Mushore et al. (2018), who established that the spectral indices combined additively in 

Zimbabwe. Equal interval classification had more clustering in the low and very low classes. The 

clustering of tracts in the low vulnerable classes is attributed to the significantly decreasing mean 

across the periods. Despite the low vulnerability, downtown Atlanta had significant clustering of 

hotspots (figure 4-3). Areas of no significant clustering accounted for nearly 50% of the census 

tracts across time, unlike the LST, where this class had a reduced proportion across the periods. 
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Similar to LST, there was no relationship between the mean value and spatial autocorrelation. 

Furthermore, a high spatial autocorrelation did not translate to a higher percentage of tracts in the 

High-High clustering. All the spectral indices favorably loaded on either component 1 or 2, 

signifying their relative importance on the final derived metric. Expectedly, the NDBaI and NDBI 

had positive loadings, thus increased vulnerability. Contrary, the NDWI, and NDVI loaded 

negatively. The strength of the NDBI and NDWI was equal across the spectrum but inverse in the 

direction of influence. Reduction of the cumulative variance for component 1 in 2019 correlated 

with loadings reduction for the NDBI and NDWI, with a slight increase for the NDVI. 

Future studies must explore why the indices do not combine additively by analyzing other 

biophysical parameters such as topography. Despite the reduced vulnerability trend, core 

downtown areas had disproportionately more High-High clusters, with sections of Northern Fulton 

dotted with Low-High clusters. These were cooler areas surrounded by high clusters attributable 

to affluence where landscaping activities and denser trees could have lessened the increased 

exposure. Other than the core Counties, Gwinnett and sections of Northwest Bartow had higher 

exposure. Like the LST, the suburbs were essentially areas of no significant clustering, while 

peripheral counties were extensively coldspots.  There is consistency in the distribution of hotspots 

between the LST and the integrated spectral index, albeit differing on vulnerability trends over 

time. In terms of visualization, differences were apparent in the maps for the hotspots maps. In 

2000, the integrated spectral index only visualized hotspots around the metro area. The LST 

showed the existence of hotspots further South, including Spalding county. In 2007, the LST 

metric indicated hotspots in Rockdale and Newton county sections that were absent for the 

integrated spectral index. For 2011, the LST visualized hotspots in Cobb and had continuous series 

of hotspots from core metro counties to Gwinnett. Such a trend was not replicated for the integrated 
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spectral indices metric. The spatial distribution for 2017 was approximately the same for both 

biophysical metrics. We concluded that the integrated spectral index metric is not a good proxy 

for LST in Atlanta, although they had nearly similar hotspots and coldspots identification patterns.  

Although correlated to the LST individually, the spectral indices do not combine additively 

to generate a robust integrated biophysical metric. Following these findings, we recommend 

further studies to establish spectral indicators' suitability in spatial modeling of heat. Most studies 

have used the indices individually or in limited combination, ascribing disparate weights for lack 

of a theoretical underpinning regarding the variables' weighting. Tate (2013) explained that data 

aggregation might result in compensability; Low values in one variable could mask higher values 

in another and observed that data-driven frameworks could generate loadings non-conformal to 

conceptual associations. The spectral indices' PCA analysis established that areas with high NDVI 

and NDWI had very low NDVI and NDBaI, potentially intensifying compensability. Karanja and 

Kiage (2021) proposed harmonizing theoretical constructs and statistical relationships when 

deriving the metrics. There is a need to re-examine the subjective choices made in heat 

representation as adaptation and mitigation measures can only be as good as the derived metrics. 

Tate (2013) acknowledged the subjectivity in the construction of vulnerability metrics but 

emphasized the need to evaluate the decisions even in the absence of systematic conceptual 

frameworks. Despite the disparity in the outputs, Hondula et al. (2015) suggested they are unlikely 

to constrain their functionality in response efforts, but reliability tests should be upheld. We chose 

multiple spectral indices to capture diverse urban characteristics (Broadbent et al., 2020), assuming 

that each index provides a separate independent feature of the urban establishment (Mushore et 

al., 2018). For instance, tree extent and built-up density accounted for 68% of the LST variation 

(Alexander, 2020). The author recommended enhanced use of spectral indices utilizing the infrared 
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window as they have better spatial resolution than thermal bands. However, our study establishes 

that this approach is only possible if they result in a robust proxy. Furthermore, Bramhe et al. 

(2018) advocated for including the bareness index alongside the built-up index to guarantee the 

characterization of built-up areas and bare spaces. Weng et al. (2004) argued that NDVI and LST 

relationship needs enhanced scrutiny, and the former metric may fail to show areal estimates of 

vegetational abundance. Several studies (e.g., Harlan et al., 2013; Johnson et al., 2012) only 

utilized the NDVI. Mushore et al. (2018) applied multiple spectral indices since the NDVI 

saturates at a high vegetational fraction. Land cover characteristics modulate heat vulnerability 

(Aubrecht and Ozceylan, 2013), and attempting to incorporate multiple indices is imperative, yet 

the value of most spectral indices remains unexplored (Mushore et al., 2018).  
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Figure 4-3. Equal interval classification (images on the right) indicated reduced vulnerability. The 

spatial distribution of the hotspots was similar to the LST using Local Moran's I, with downtown 

areas experiencing augmented temperature conditions (images to the left). Trends of the mean 

value were a good predictor of the trends of the equal interval classification.  
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4.4.3 LST-Based Composites 

LST-based composites had no significant variations in the high and very high classes for 

equal interval classification similar to the LST, attributable to minimum-maximum rescaling and 

initial extraction of composite images periods beyond the consummate summer months. 

Additionally, Small temperature increases coupled with data transformation procedures could 

mask the progressive temperature escalations that take decades to ubiquitously manifest. Future 

studies could compare the outputs of disparate normalization methods and the associated 

consequences on spatial visualization. The very low vulnerability class did not have any values for 

both LST-based composites, interpreted to mean minimum daily temperatures could be rising, 

corroborating the LST analysis. The magnitude of heat intensity of the LST-based composites was 

lower compared to the LST-only biophysical metric. We believe the difference in the intensity 

could be attributed to the moderating effect of the SoVI as vulnerability constitutes hazard 

exposure and sensitivity (Bera, 2019; Borden et al., 2007; Frigerio and Amicis, 2016; Turner et 

al., 2003). For instance, Hall county was consistently a coldspot for the LST metric but is 

visualized as a hotspot by the LST-based composites, driven by a higher percentage of the Hispanic 

community. Similarly, parts of Northern Fulton visualized as hotspots by the LST metric have 

transitioned to cold spots or areas of no significant clustering in the LST-based composite. The 

variance-based SoVI had lower proportions consistently for the moderate class and consistently 

higher proportions in the low class than equal-weighted SoVI, reflecting variances in the 

magnitude introduced by choice of the spatial model. It is crucial to model the SoVI alongside the 

biophysical metrics to determine how modeling decisions influence results (Chuang and Gober, 

2015: Tate, 2013). The results emphasize the urgent need to institute policy changes to alleviate 

the biophysical hazard's harmful effects. Furthermore, the models for the construction of the SoVI 
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should be enhanced since weighting mechanics and data transformation techniques impact the 

magnitude and distribution of composite biophysical and socioeconomic indices. The derivation 

of the SoVI could be impaired by the absence of guidelines on selecting, weighting, interpretation, 

and data reduction techniques (Johnsonn and Lundgren, 2015: Karanja and Kiage, 2021).  

A significant percentage of the tracts in the High-high category are clustered in the urban 

core counties, specifically Southeast Cobb, Southern Fulton, DeKalb, North Clayton, Southwest 

Gwinnett, and Northwest Rockdale (figure 4-4). This spatial distribution is repeated across the 

years, although more concentration of the clusters encroaches on Cobb, Gwinnett, and Clayton 

with time. Low-high clusters started to appear in the initially low vulnerable areas such as North 

Fulton, Fayette, Cherokee, Forsyth, Bartow, Paulding, Watson, Rockdale, and Barrow. The core 

urban counties host a massive population for Atlanta, and the increasing heat in these areas should 

concern policymakers. According to the US Department of Housing and Urban Development, 

Fulton and DeKalb counties account for 30% of the population in Atlanta, which have experienced 

a net annual population growth rate of 1.5% propelled by job availability.  The counties also host 

the majority of the low-income people, indicating excessive exposure and sensitivity. These 

locations have high exposure yet lack the means to safeguard themselves. Going by Atlanta's 

simulated temperatures (Broadbent et al., 2019), a public health crisis of heat-related mortality and 

morbidity is a likely scenario in the future unless mitigation and adaptation are commensurate to 

the increasing magnitude and intensity of heat and its spatial spread (Alexander, 2020). Berko et 

al. (2014) established that weather-related deaths were 2 to 7 times more in poor localities than in 

affluent neighborhoods; hence the statistics portend exacerbated sensitivity and exposure for the 

urban poor. The integrated metrics illustrate that even the affluent suburbs are experiencing 

warming and that wealth, if not invested in mitigation, then the consequences would be 
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undiscriminating. The critical finding from both metrics' spatial distribution is that heat 

vulnerability is increasing in Atlanta, particularly in the urban core, which over time is encroaching 

to formerly cooler suburban areas. The low-income areas are disproportionately susceptible, yet 

they are highly exposed to heat vulnerability.  
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Figure 4-4. Heat vulnerability is disproportionately concentrated in the core metro counties, with 

increasing spatial spread over time to the suburbs. The urban core counties host massive 

populations meaning more people at risk of heat-related morbidity and mortality going by the 

climate simulations. The low-income areas are increasingly sensitive yet highly exposed.  
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4.4.4 PCA-Based Composite 

The PCA-based composite index showed decreased vulnerability over time, consistent 

with the spectral indices-based metrics, but differed with the LST-based metrics. Any composite 

metric generated from the combined spectral metrics was found not to correlate with the LST and 

may not reflect vulnerability. The spectral metrics do not combine additively, and their application 

to heat vulnerability studies should be carefully determined and evaluated before incorporating 

them into the spatial models. Despite the applicability of PCA, it could result in variables 

interactions that fail to reflect the intricacy of interactions (Nayak et al., 2018). Across all the 

composite metrics, the trends of the mean raster surface determined the trends of vulnerability for 

equal interval classification. The SoVI exclusively explained component 1 and had no consistent 

direct association with any of the spectral indices. The NDBaI was more prominent for component 

2 and the NDBI and NDWI, which had equal loadings but with different directions, corroborating 

the results from the integrated spectral index. The global and local Moran's I indicated the core 

metro counties of Fulton, DeKalb, and Clayton to be disproportionally exposed alongside 

Gwinnett for the entire period. Northern Fulton had patches of Low-High, which could be 

attributed to moderating effects of the SoVI, driven by the affluence of the residents in these 

locations. Compared to the LST-based composite derived from Eigen weighting, the PCA-based 

metric revealed differences in the spatial distribution of coldspots and hotspots. For instance, in 

2000, LST-based composite visualized Spalding county as a hotspot and Fayette as a coldspot, 

which appeared as areas of no significant clusters for PCA-based composite. In 2011, Hall and 

Spalding counties were visualized as hotspots by LST-based composite, while they are represented 

as coldspots and area of no significant clustering by PCA-based. In 2019, the PCA-based showed 

more Low-High clusters in Northern Fulton, a pattern that is diminished in the LST-based 
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composite (figure 4-5). It is prudent to consider the spatial model of representation as it impacts 

the spatial distribution of vulnerability. Following these findings, there is a need to compare 

metrics based on images extracted using the median and the mean. Future studies should also 

attempt data fusion techniques (c.f., Pelta and Chudnovsky, 2017; Zhang, 2010) to enhance sensor-

based metrics' accuracy for enhanced multi-temporal and spatial resolution. Another opportunity 

lies in comparing near-surface and surface temperature metrics.  
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Figure 4-5. Equal interval classification showed a trend of reduced vulnerability, whereas Anselin's 

Moran's I indicated hotspots in the core metro counties. The hotspots diminish with distance from 

downtown areas. The mean value is a good predictor of the trends of vulnerability for equal interval 

classification. 
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4.4.5 Spectral Index and SoVI Equally Weighted 

The equally weighted spectral indices and SoVI composite showed consistent results with 

the PCA-based composite. A reduced vulnerability was established over time, although they 

differed on the magnitude of the metric. The mean value seems to be a better predictor of exposure 

trends consistent with earlier analysis for the other metrics, especially for the equal interval 

classification adopted. This composite had consistently lower values for spatial autocorrelation 

than the PCA-based metric. The rate of mean change was lower while the values in the High-High 

clustering were greater than the PCA-based composite. Similarly, the composite had more Low-

Low clusters but less value for areas of no significant clusters. The most profound difference is 

that the PCA-based metric clustered more tracts in the very low class for 2019, unlike the equally 

weighted composite, which huddled more in the low class. The local Moran's I and the equal 

interval classification results indicate that this composite shows greater vulnerability than the 

PCA-based composite. The results corroborate the findings for the LST-based composite where 

the Eigen weighted SoVI had less vulnerability than equal weighting. We conclude that composites 

computed using equal weighting have a higher magnitude of vulnerability than Eigen weighting. 

The trends of increase and decrease were the same for the moderate class, High-High clustering, 

and Low-Low clustering. However, the metrics differed on trends of spatial autocorrelation. The 

differences illustrate how the choice of the spatial model influences the determination of 

vulnerability and the need for studies to harmonize the weighting mechanics for more precise 

representations and visualizations. The equally weighted composite best-visualized areas with 

high SoVI, including Hall County, which had not been a hotspot for any biophysical metric. Like 

the other composites, hotspots were established in core metro counties, with the periphery 

consisting of coldspots (figure 4-6). 
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Figure 4-6. The equally weighted composite showed the prevalence of hotspots in downtown areas. 

The composite had a higher magnitude of vulnerability than the PCA-based composite, 

corroborating the findings of the LST-based composites.  



120 

 

4.5 Conclusion 

Heat hazard would increase in intensity, duration, frequency, and magnitude to the future 

going by the simulations. Policymaking requires novel characterization of the heat metrics, 

especially composite indices that capture socioeconomic and biophysical variables. The lack of a 

systematic framework to guide heat metrics conceptualization has marred the construction of the 

metrics. It is crucial to understand how LST-based metrics differ from those generated from its 

proxies (e.g., NDVI, NDBI, NDWI, and NDBaI). It is also imperative to probe the variable 

weighting decisions, data transformation techniques, and the spatial models applied and compare 

them through longitudinal studies to narrow the gap in the existing methodologies. Our approach 

compared several composites and their effect on the spatial distribution of vulnerability, the 

intensity, and the magnitude of the metric. It is crucial to provide a multi-dimensional analysis of 

risk to enrich broad spectrum decision making as ideal modeling of the real world is nearly 

impossible. Given the existing fuzzy conceptualizations of heat vulnerability, understanding how 

the biophysical and socioeconomic metrics interact is a profound undertaking. Establishing the 

evolution of the metrics and the intricacies involving data transformations, spatial modeling 

choices, and weighting mechanics could be a pathway towards harmonizing disparate 

conceptualizations. Exploring the drivers of vulnerability and different visualization paradigms 

could unlock fundamental systemic dynamics undergirding heat vulnerability.  

The first composite was LST-based combined by SoVI generated through equal weighting. 

The second was LST-based integrated with SoVI generated through Eigen weighting. The 

objective was to establish how constructs of the SoVI may influence the nature of the eventual 

integrated metrics. The third SoVI comprised spectral indices, and the SoVI each assigned equal 

weighting to determine how spectral indices-based metric differed from LST-based. The fourth 
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composite was PCA-based, including the spectral indices and the SoVI. The goal was to establish 

how weighting mechanics and the choice of spatial model impact vulnerability representation. 

LST-based composites had similar trends, although they differed on the spatial distribution in the 

various classes. The magnitude of vulnerability was lower compared to the LST biophysical 

metric. LST-based composites established an increased susceptibility, with downtown areas 

experiencing augmented sensitivity and exposure. The LST composite derived using Eigen 

weighted SoVI had a lesser magnitude of vulnerability than equally weighted SoVI. The composite 

from the spectral indices returned different results from LST-based metrics indicating reduced 

susceptibility. Further analysis established that the flipped outcome could be attributed to the 

spectral indices. We combined them alone to generate a biophysical metric that reduced exposure 

over time, thus not a suitable proxy for LST. We concluded that the spectral indices do not combine 

additively, and their weighting mechanics should be thoroughly evaluated, despite the absence of 

a substantive theoretical framework. The spectral-based composites using equal weighting and 

PCA-based established hotspots in core metro counties, which reduced with distance from 

downtown areas. Our study determined that the SoVI had no association or correlation with any 

of the spectral metrics. We determined that the mean value trends are the best predictor of patterns 

of vulnerability for equal interval classification. Generally, composites derived from equal 

weighting showed higher vulnerability than Eigen-based composites for both the LST and spectral 

indices metrics. We concluded that variable weighting techniques, data transformation choices, 

the choice of the spatial model have implications on the magnitude and spatial distribution and 

identification of hotspots and coldspots.  
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5. CHAPTER 5: SUMMARY AND CONCLUSION  

5.1 Conclusion 

Urban heat stress will increase in magnitude, frequency, intensity, and duration hence the 

need to accurately and precisely visualize the most susceptible for a targeted policy response. We 

have provided an iterative holistic conceptual framework that integrates quantitative and 

qualitative approaches. The UHI phenomenon being multi-dimensional should not be a deterrent 

to effective spatial representation. Our inclusive framework acknowledges that the interactions 

between the biophysical, geodemographics and socioeconomic dimensions generate stochastic 

ecological perturbations, residual risks, and hazard co-productions, often not accounted for in the 

existing frameworks. These interactions are iterative and need a longitudinal approach that 

recognizes that scientific theories are explicitly and implicitly longitudinal.  

Targeted policy responses are enhanced when specific, accurate, and precise spatial 

representations are availed. The imperfections observed in the available frameworks are multiple. 

There is a need to harmonize the different approaches, scale choices, weighting mechanics, and 

manipulation of variables through longitudinal methods that acknowledge spatiotemporal 

reference. Alternatives pursued by scientists must meet certain thresholds and be subjected to 

replication and validation while incorporating the qualitative dimension. Our review has provided 

a starting point for scientific discourse towards a consistent iterative spatial representation 

framework. The theoretical and statistical relationships are enhanced, and the definition of 

vulnerability is made hazard-specific. We have provided flexible decision criteria that transition 

from simple data aggregation to understanding processes that shape vulnerability. The model 

allows for pre and post hazard variables determination and avails rational content-driven reasoning 

in developing the composite HVI.  
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 Our analysis of the SoVI established that weighting guided by the variance explained and 

equal weighting impact on the spatial distribuion and magnitude of the SoVI. Data transformations 

and model adopted have a bearing on the developed metrics. The contrasting results highlight the 

need to enhance the available methodological framework, especially since there is no systematic 

method for validation of the metric. Although data transformation is inevitable, comparing several 

metrics offers a broader spectrum for practical evaluation of alternatives, which may provide hints 

on the most representative methodology, when validated by a number of health outcomes. Analysis 

of the biophysicals and composite indices established that combining the NDVI, NDWI, NDBaI 

and NDBI do not interact in an additive manner; hence do not return equivalent results to the LST 

and whenever the spectral indices are used a thorough evaluation of the weighting mechanics 

should be done. Combination of the LST and multiple SoVIs determined that weighting decisions 

at the SoVI construction level results in variations in outputs for the combined metrics. Our 

research identified the common spatial modeling pathways and adopted some in a case study of 

Atlanta. All the metrics derived from the spectral indices indicated reduced vulnerability, albeit 

had consistency in the identification of hospots compared to the LST. The fundamental finding is 

that the disprate weighting mechanics, data transformation choices, and spatial models adopted 

have a bearing on the magnitude and spatial distribution of hotspots and coldspots. It is imperative 

for scientists to start questioning the decision criteria despite the absence of a consistent and 

systematic framework. Our inclusive framework provides a starting point for convesations on heat 

vulnerability and visualization. Our composites inform the potential differences arising from data 

manipulation and the spatial modeling decision criteria, crucial for broad spectrum disaster 

response strategies and enhancing vulnerability conceptualization.  
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5.2  Directions for Future Research 

 Our analysis focused on population parameters and eventually transitioning into area-based 

statistics with the integration of the biophysical parameters. Future studies should compare the 

outputs of the two methods and determine whether significant variations persist. Scientists 

interested in social metrics could test their SoVIs pre- and post-disaster efficacy to understand the 

dynamics and enrich the theoretical and statistical associations of variables. Given that GIScience 

challenges such as the Modifiable Areal Unit Problem (MAUP) and mixed pixel are likely to 

constrain spatial representations, it is critical for future studies to explore these two spatial 

representation challenges. Varying distance lags when using the Local Moran’s I may provide 

insights on geographical variability. Data fusion techniques for satellite sensors could be pursued 

as an alternative to enhance the temporal, spatial, and spectral resolutions of satellite imagery.  
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