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JACKKNIFE EMPIRICAL LIKELIHOOD METHODS FOR THE INCOME

INEQUALITY LOWER MEAN RATIO

by

LI ZHANG

Under the Direction of Yichuan Zhao, PhD

ABSTRACT

Measuring economic inequality is a significant and meaningful topic in our social system.

The Gini index and Pietra ratio are used by many people, but limited to reflecting the

sampling distribution. In this thesis, we studied the interval estimates with another measure

called the lower-mean ratio u, which was introduced by Elteto and Frigyes (1968). By

using jackknife empirical likelihood (JEL), adjusted jackknife empirical likelihood (AJEL),

mean jackknife empirical likelihood (MJEL), mean adjusted jackknife empirical likelihood



(MAJEL), and adjusted mean jackknife empirical likelihood (AMJEL) methods, we proposed

the interval estimator for u. In the following simulation study, we made a comparison for

these methods under different distributions in terms of the coverage probability and the

average confidence interval length. The results indicate that MAJEL performs best among

these methods for small sample sizes of skewed distribution. For a small sample size of

normal distribution, both JEL and MJEL show better performance than the other methods

but MJEL is relatively time-consuming. All methods exhibit good performance for a large

sample size. The two real data set analyses further illustrate the proposed methods, and the

results are consistent with those in the simulation study.

INDEX WORDS: Economic inequality, Gini index, Jackknife empirical likelihood, Ad-
justed jackknife empirical likelihood, Mean jackknife empirical likeli-
hood, Mean adjusted jackknife empirical likelihood, Adjusted mean
jackknife empirical likelihood, Wilk’s theorem
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CHAPTER 1

INTRODUCTION

1.1 General introduction

Economic inequality is a social phenomenon showing the unequal distribution of income

and opportunity between different groups, which is a common issue for almost every country

around the world. Because evaluating economic inequality is always an important topic,

many methods, including Gini index, Pietra ratio, Hoover index, Galt score and so on, have

been developed to measure income inequality. However, these summary indices cannot reflect

the sampling distribution, like the population size and the shared income of the relatively

low income group. The measures of Elteto and Frigyes (1968) can address the problems

above to some extent.

Elteto and Frigyes (1968) suggested measures depending on the mean income m, the

mean income of those earning less than the mean m1, and the mean income of those earning

more than the mean m2. They proposed the following measures:

u =
m

m1

, v =
m2

m1

, w =
m2

m
.

In this thesis, we defined u as the lower-mean ratio. Let X1, ..., Xn be the i.i.d. sample of X.

The estimator of u is

û =
NX̄∑

Xi<X̄

Xi

,

where x̄ is the estimator of m, and N is a sum of the number which is smaller than the

mean.

The estimator of m1 is

m̂1 =

∑
Xi<X̄

Xi

N
.



2

For large samples sizes, Gastwirth (1974) established the normal approximation (NA)

method for the estimator û. However, the NA method is not only complicated but also in-

adequate to be satisfactory for small samples sizes. Here, we adopted some non-parametric

methods such as jackknife empirical likelihood methods to improve the performance of mea-

suring income inequality by the lower-mean ratio.

1.2 The review of jackknife empirical likelihood

The first paper to use empirical likelihood-based confidence intervals construction for

survival data analysis was reported by Thomas and Grunkemeier (1975). Owen (1988,

1990) used a non-parametric likelihood approach and provided inferences with appealing

data-driven and range respecting features. It combines the reliability of non-parametric

methods with the effectiveness of the likelihood approach and returns the confidence regions,

which respect the boundaries of target support parameters. The regions are invariant under

transformations and usually show better performance than the confidence regions obtained

from the NA method when the sample size is small (Chen and Keilegom (2009)).

Jing et al. (2009) introduced the jackknife empirical likelihood (JEL) method, which is

extremely simple in practice and shows the effectiveness in handling U -statistics. Recently,

a lot of applications for the JEL method have been reported. Sang et al. (2019) extended

the JEL to K-sample test via the categorical Gini correlation. Bouadoumou et al. (2014)

employed the JEL method to obtain the interval estimate for the regression parameter in

the accelerated failure time model with censored observations. According to Wang et al.

(2013), the JEL test for the equality of two high-dimensional means shows that it has a

very robust size across dimensions and has good power. Luo and Qin (2019) employed JEL-

based inferences for the Lorenz curve with kernel smoothing. Sreelakshmi et al. (2019)

proposed JEL-based inference for single series Gini indices. Alemdjrodo and Zhao (2019)

employed JEL to compare two correlated Gini indices in order to reduce the computational

cost. Gong et al. (2010) proposed a smoothed JEL for the ROC curve, which enhances the

computational efficiency. Cheng and Zhao (2019) successfully employed Bayesian jackknife
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empirical likelihood (BJEL) for the U - statistics type estimating equations.

In addition, the empirical likelihood (EL) may not be properly defined because of the

so-called empty set problem (Chen et al. (2008); Tsao and Wu (2013)). Lots of approaches

have been developed to improve the accuracy of EL confidence regions and address the issue

above as well. The Bootstrap calibration (Owen (1988)) and the Bartlett correction (Chen

and Cui (2007)) approaches improved the accuracy of EL confidence regions. The adjusted

empirical likelihood (AEL) method (Chen et al. (2008); Liu and Chen (2010); Chen and

Liu (2012); Wang et al. (2014)) solved the empty set issue and the low coverage probability

problem simultaneously.

1.3 The review of adjusted jackknife empirical likelihood

Based on the EL method, Chen et al. (2008) proposed an adjusted empirical likelihood,

in which one or two pseudo-observations are added to the sample to make sure that the

convex hull constraint is never violated. Inspired by this method, Zhao, Meng, and Yang

(2016) proposed an adjusted JEL for the mean deviation. By doing so, the AJEL method

reduces error rates of the proposed jackknife empirical likelihood ratio. AJEL has the same

asymptotic distribution with EL. In the thesis, instead of using empirical likelihood, we will

employ the jackknife empirical likelihood (JEL) and adjusted jackknife empirical likelihood

(AJEL) to get an interval estimate of u.

1.4 The review of mean empirical likelihood

Liang et al. (2019) proposed the mean empirical likelihood (MEL) method, which is

relatively more effective in handling small sample sizes when compared with EL. In the MEL

method, we will firstly generate a pseudo-data set, then calculate MEL ratios based on the

pseudo-data.
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1.5 The mean adjusted jackknife empirical likelihood

Based on the advantages of adjusted empirical likelihood and mean jackknife empirical

likelihood methods, we propose the mean adjusted jackknife empirical likelihood method

(MAJEL) for an interval estimate of u in the thesis.

1.6 The adjusted mean jackknife empirical likelihood

According to the strengths of the two methods i.e., adjusted empirical likelihood and

mean jackknife empirical likelihood mentioned above, we also propose the adjusted mean

jackknife empirical likelihood method (AMJEL) for an interval estimate of u in this thesis.

1.7 Purpose of the study

In this thesis, we propose jackknife empirical likelihood (JEL), adjusted jackknife empiri-

cal likelihood (AJEL), mean jackknife empirical likelihood (MJEL), mean adjusted jackknife

empirical likelihood (MAJEL), and adjusted mean jackknife empirical likelihood method

(AMJEL) for the inference of u. Then, we construct the confidence interval and calcu-

late the length of the confidence intervals. We will evaluate these methods in terms of the

coverage probability and the average length for the confidence interval of u.

The thesis is organized as follows. In Chapter 2, we propose a construction of confidence

intervals for u using JEL, AJEL, MJEL, MAJEL and AMJEL. In Chapter 3, we perform an

extensive simulation study. In Chapter 4, we apply the proposed methods to two real data

sets. In Chapter 5, we make a conclusion for the proposed methodology.
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CHAPTER 2

METHODOLOGY

In this chapter, we briefly reviewed a few known methods, including a normal ap-

proximation, for estimating u. Then, the jackknife empirical likelihood, adjusted jackknife

empirical likelihood, mean jackknife empirical likelihood, mean adjusted jackknife empirical

likelihood, and adjusted mean jackknife empirical likelihood are proposed for the interval

estimate of u.

2.1 Normal approximation for u

Let X1, . . . , Xn be a sequence of i.i.d. random variables from a cumulative distribution

function F (x) and density function f(x) with the mean m = E[X], m1 = E[X1(X < m)].

Then, the estimator of u is,

û =
NX̄∑

Xi<X̄

Xi

,

and

s1 = n
1
2

(
NX̄

n
− pm

)
= mn

1
2

∑
(Ii − p) + (mf (m) + p)n

1
2

(
X̄ −m

)
+ op (1) ,

s2 = n
1
2

n−1
∑
Xi<X̄

Xi − τ


= n

1
2

∑
(IiXi − τ) +mf (m)n

1
2

(
X̄ −m

)
+ op (1) ,

where p = F (m).



6

Gastwirth (1974) found that the estimator û of u was asymptotically normally dis-

tributed with mean τ−1pm and the variance,

v1

τ 2
+ v2

(pm
τ 2

)2

− 2cpm

τ 3
,

where  Ii = 1, Xi < m

Ii = 0, o.w.

τ=E(IiXi)=

m∫
−∞

xdF (x),

v1 = var(s1)

= m2p(1− p) + σ2(p+mf(m))2 − 2m (mf (m) + p) (pm− τ) ,

v2 = var(s2)

= m2f 2 (m)σ2 +

m∫
−∞

x2dF (x)− τ 2 + 2mf(m)

m∫
−∞

x(x−m)dF (x),

c = cov(s1,s2)

= mτ (1− p)−m2f (m) (pm− τ) +mf(m)[mf(m) + p]σ2 + (p+mf(m))

m∫
−∞

x(x−m)dF (x),

and σ2 = E(X −m)2.

Then we constructed a 100(1-α)% normal approximation (NA) based confidence inter-

val for u:
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R = {u : û± Zα/2 ∗ SE},

where Zα/2 is the upper α/2-quantile of standard normal distribution, and

SE =

√{
v̂1

τ̂ 2
+ v̂2(

p̂x̄

τ̂ 2
)
2

− 2ĉp̂x̄

τ̂ 3

}
,

where v̂1 is the estimator of v1, v̂2 is the estimator of v2, ĉ is the estimator of c, p̂ is the

estimator of p, and calculated by the following formulas:

f̂(x) =

n∑
i=1

K(x−xi
h

)

nh
,

where h = (4σ̂5/3n)1/5≈1.06σ̂n−1/5, see Silverman (1986) for the choice of the bandwidth h.

We substitute the estimate value of σ with parameter A with A = min(σ̂, (Q3 −Q1)/1.34),

where Q1 is the first quantile of data, Q3 is the third quantile of data, and K(x) =

exp(−x2/2)/
√

2π. Here,

F̂n(x) =

n∑
i=1

1(xi ≤ x)

n
,

p̂ = F̂n(x̄),

v̂1 = x̄2p̂(1− p̂) + σ̂2
(
p̂+ x̄f̂(x)

)2

− 2x̄
(
x̄f̂ (x) + p̂

)
(p̂x̄− τ̂) ,

v̂2 = x̄2f̂ 2 (x̄) σ̂2 +

x̄∫
−∞

x̄2dF̂n(x)− τ̂ 2 + 2x̄f̂(x)

x̄∫
−∞

x(x− x̄)dF̂n(x),

ĉ = x̄τ̂ (1− x̄)− x̄2f̂ (x) (p̂x̄− τ̂) + x̄f̂(x)[x̄f̂(x) + p̂]σ̂2 +
(
p̂+ x̄f̂(x)

) x̄∫
−∞

x(x− x̄)dF̂n(x).
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2.2 Jackknife empirical likelihood for u

Let X1, . . . , Xn be i.i.d random vectors in Rp with common distribution function F (t).

Ixi denotes a point mass at xi. Then, the empirical distribution function is given by:

Fn =
1

n

n∑
i=1

Ixi .

Fn is known to be the non-parametric maximum likelihood estimate of F0 based on X1,

. . . , Xn. The likelihood function that Fn maximizes is:

L(F ) =
n∏
i=1

F {xi}.

Owen (1988) introduced the empirical likelihood to determine the confidence intervals re-

gardless of the variance. Supposing that we have an i.i.d. sample with (W1, . . . ,Wn) random

variables, then the empirical likelihood ratio function is given by:

R(F ) =
L(F )

L(Fn)
=

n∏
i=1

(npi).

The objective of the empirical likelihood is to construct the confidence intervals for the

parameter u = Eg(Wi). Based on Owen’s (2001) work, the empirical likelihood for u in this

thesis is defined as,

L(u) = max

{
n∏
i=1

pi :
n∑
i=1

pi = 1,
n∑
i=1

pig(Wi) = u, pi ≥ 0

}
.

The corresponding empirical likelihood ratio function for u can be defined as:

R(u) =
L(u)

n−n
= max

{
n∏
i=1

npi :
n∑
i=1

pi = 1,
n∑
i=1

pig(Wi) = u, pi ≥ 0

}
.

Even though this empirical likelihood has many advantages in constructing confidence

regions, it still has some limitations on more complicated statistics like U -statistics be-
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cause of computational problems. To address these problems, Jing et al. (2009) proposed

the jackknife empirical likelihood for the U -statistics. The jackknife empirical likelihood

method combines two non-parametric approaches: jackknife method and empirical likeli-

hood method. The jackknife method was constructed by Quenouille (1956) and further

developed by Tukey (1958). The key steps and general context of the JEL method are

described as follows. The consistent estimator of the parameter u is given by,

Tn(u) = um̂1 − x̄.

The jackknife pseudo-values are defined as,

V̂i(u) = nTn(u)− (n− 1)T
(−i)
n−1 (u), i = 1, ......, n,

where T
(−i)
n−1 (u) is computed from the original data set by deleting the i-th observation. Then

the jackknife estimator T̂njack(u) is the average of all the pseudo-values,

T̂njack(u) =
1

n

n∑
i=1

V̂i(u).

After applying the jackknife pseudo-values to the empirical likelihood, we define,

L(u) = max

{
n∏
i=1

pi :
n∑
i=1

pi = 1,
n∑
i=1

piV̂i(u) = 0, pi ≥ 0

}
.

The corresponding empirical likelihood ratio function for u can be written as,

R(u) =
L(u)

n−n
= max

{
n∏
i=1

npi :
n∑
i=1

pi = 1,
n∑
i=1

piV̂i(u) = 0, pi ≥ 0

}
.

Using Lagrange multipliers method, we can get,

pi =
1

n

1

1 + λV̂i(u)
,
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where λ satisfies the following equation,

f(λ) =
1

n

n∑
i=1

V̂i(u)

1 + λV̂i(u)
= 0.

Then we get the jackknife empirical log-likelihood ratio,

−2logR (u) = 2
n∑
i=1

log
{

(1 + λV̂i(u)
}
.

The following theorem explains how Wilk’s theorem works for u.

Theorem 1 Assume the regularity conditions that X1, ..., Xn are i.i.d. with finite mean

m and finite σ2. Let u0 denote the true value of u. When n→ ∞, -2logR(u0) converges to

χ2
1 in distribution.

Using Theorem 1, the JEL confidence interval for u is constructed as follows:

R1 =
{
u : −2logR (u) ≤ χ2

1(α)
}
,

where χ2
1(α) is the upper α-quantile of χ2

1.

2.3 Adjusted jackknife empirical likelihood for u

The method of adjusted empirical likelihood was developed by Chen et al. (2008). Ac-

cording to Zheng and Yu (2013), the adjusted empirical likelihood is better than the original

method because it can reduce the amount of deviation. Also, the adjusted empirical likeli-

hood method can avoid the convex hull restrictions from the jackknife empirical likelihood

method. The adjusted jackknife empirical likelihood (AJEL) function for u is defined as,

hadi (u) = V̂i(u).
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Then the AJEL at u is defined as,

Lad(u) = max

{
n+1∏
i=1

pi :
n+1∑
i=1

pi = 1,
n+1∑
i=1

pih
ad
i (u) = 0, pi ≥ 0

}
,

where hadn+1(u) = −anh̄ad(u) and an is a constant number depending on n,


an = max(1, log(n)/2)

h̄ad(u) = 1
n

n∑
i=1

hadi (u).

Therefore, we define the adjusted jackknife empirical likelihood ratio for u as,

Rad(u) = max

{
n+1∏
i=1

(n+ 1)padi ,
n+1∑
i=1

pi = 1,
n+1∑
i=1

pih
ad
i (u) = 0, pi ≥ 0

}
.

Using Lagrange multipliers method, we can get,

pi =
1

n+ 1

1

1 + λhadi (u)
, i = 1, . . . , n+ 1

where λ satisfies the following equation,

f(λ) =
1

n+ 1

n+1∑
i=1

hadi (u)

1 + λhadi (u)
= 0.

Then, we get the adjusted jackknife empirical log-likelihood ratio,

−2logRad (u) = 2
n+1∑
i=1

log{1 + λhadi (u)}.

Combining the approaches by Chen et al. (2008) and Jing et al. (2009), we have the Wilks’

theorem holds, as n→∞.

Theorem 2 Assume the regularity conditions that X1, ..., Xn are i.i.d. with finite mean m
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and finite σ2. Let u0 denote the true parameter value. When n→∞, -2logRad (u0) converges

to the χ2
1 in distribution.

Using Theorem 2, the AJEL confidence interval for u is constructed as follows:

R2 =
{
u : −2logRad (u) ≤ χ2

1(α)
}
,

where χ2
1(α) is the upper α-quantile of χ2

1.

2.4 Mean jackknife empirical likelihood for u

In order to improve the accuracy of the empirical likelihood confidence interval for small

sample sizes, Liang et al. (2019) introduced the mean empirical likelihood (MEL). We firstly

generated a pseudo data set using the means of the observed values and then applied it

for the empirical likelihood analysis. In this thesis, we define the mean jackknife empirical

likelihood (MJEL) pseudo value as follows,

Ui(u) =
V̂j(u) + V̂k(u)

2
, i = 1, . . . , N, 1 ≤ j ≤ k ≤ n,

where N = n(n+ 1)/2.

Therefore, the mean jackknife empirical likelihood ratio for u is,

Rm = max

{
N∏
i=1

Npi :
N∑
i=1

pi = 1,
N∑
i=1

piUi(u) = 0, pi ≥ 0

}
.

Then we get the mean jackknife empirical log-likelihood ratio:

−2logRm (u)

n+ 1
=

2

n+ 1

N∑
i=1

log{1 + λUi(u)},

where λ satisfies the following equation,

f(λ) =
N∑
i=1

Ui(u)

1 + λUi(u)
= 0.
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Let u0 denote the true value of u. Based on the method by Liang et al. (2019), we have the

following theorem.

Theorem 3 Let u0 denote the true parameter value. Under the same conditions in Theorem

1, −2logRm (u0)/(n+ 1) converges to the χ2
1 in distribution, as n→∞.

Using Theorem 3, the MJEL confidence interval for u is constructed as follows:

R3 =

{
u :
−2logRm(u)

n+ 1
≤ χ2

1(α)

}
,

where χ2
1(α) is the upper α-quantile of χ2

1.

2.5 Mean adjusted jackknife empirical likelihood for u

Based on adjusted empirical likelihood and mean jackknife empirical likelihood meth-

ods, we propose the mean adjusted jackknife empirical likelihood method for u. The mean

adjusted jackknife empirical likelihood (MAJEL) pseudo value for u is defined as,

Wi(u) =
ĥadj (u) + ĥadk (u)

2
, i = 1, . . . ,M, 1 ≤ j ≤ k ≤ n+ 1,

where M = (n+ 2)(n+ 1)/2.

Therefore, the mean adjusted jackknife empirical likelihood ratio for u is,

Rmaj = max

{
M∏
i=1

Mpi :
M∑
i=1

pi = 1,
M∑
i=1

piWi(u) = 0, pi ≥ 0

}
.

Then we get the mean adjusted jackknife empirical log-likelihood ratio:

−2logRmaj (u)

n+ 2
=

2

n+ 2

M∑
i=1

log{1 + λWi(u)},

where λ satisfies the following equation,

f(λ) =
M∑
i=1

Wi(u)

1 + λWi(u)
= 0.
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Theorem 4 Let u0 denote the true parameter value. Under the same conditions in

Theorem 1, −2logRmaj (u0)/(n+ 2) converges to the χ2
1 in distribution, as n→∞.

Using Theorem 4, the MAJEL confidence interval for u is constructed as follows:

R4 =

{
u :
−2logRmaj(u)

n+ 2
≤ χ2

1(α)

}
,

where χ2
1(α) is the upper α-quantile of χ2

1.

2.6 Adjusted mean jackknife empirical likelihood for u

For the mean jackknife empirical likelihood (MJEL), we add one point UN+1 which is

defined as,

UN+1(u) = −aN+1Ū(u),

where aN+1 is a constant number depending on n,


aN+1 = max(1, log(N + 1)/2)

Ū(u) = 1
N

N∑
i=1

Ui(u).

Then the adjusted mean jackknife empirical likelihood (AMJEL) ratio for u is defined as,

Ramj(u) = max

{
N+1∏
i=1

(N + 1)pi,
N+1∑
i=1

pi = 1,
N+1∑
i=1

piUi(u) = 0, pi ≥ 0

}
.

Using Lagrange multipliers method, we can get,

pi =
1

N + 1

1

1 + λUi(u)
, i = 1, . . . , N + 1
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where λ satisfies the following equation,

f(λ) =
1

N + 1

N+1∑
i=1

Ui(u)

1 + λUi(u)
= 0.

Then we get the adjusted mean jackknife empirical log-likelihood ratio,

−2logRamj (u)

n+ 1
=

2

n+ 1

N+1∑
i=1

log{1 + λUi(u)}.

When n→∞, we have the Wilks’ theorem holds.

Theorem 5 Let u0 denote the true parameter value. Under the same conditions in Theorem

1, −2logRamj (u0) /(n+ 1) converges to the χ2
1 in distribution, as n→∞.

Using Theorem 5, the AMJEL confidence interval for u is constructed as follows:

R5 =

{
u :
−2logRamj(u)

n+ 1
≤ χ2

1(α)

}
,

where χ2
1(α) is the upper α-quantile of χ2

1.
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CHAPTER 3

SIMULATION STUDY

In this chapter, we reported the performance of different methods, including JEL, AJEL,

MJEL, MAJEL, and AMJEL, on measuring u of finite samples. Meanwhile, we compared the

results with that from the NA method under the normal distribution, Weibull distribution,

log-normal distribution, and exponential distribution, respectively. We also estimated u with

different simple sizes: 5, 20, 50, 80, and 100. The number of repetitions we performed on

each sample size was 5,000. In addition, we estimated the coverage probability of confidence

intervals by checking whether −2logR(u0) is less than χ2
1(α) or not. We used three different

significance levels (α = 0.1, 0.05, 0.01) in this study, and calculated the average length of

confidence intervals for each u at all situations.

3.1 Simulation under the normal distribution N(3,1)

The result of the coverage probability is shown in Table 3.1. Generally, from the small

sample size to the big sample size, AJEL, MAJEL, and AMJEL always show over coverage

at all three confidence levels, while the others (NA, JEL, and MJEL) give good performance

and their coverage probabilities increase with the sample size at different confidence levels.

Especially, when the sample size n equals to 5, NA performs worst with a coverage probability

of 73.0%.

The result of the average interval length is shown in Table 3.2. For a specific sample

size, the average interval length of all six methods shortens with a decreased confidence level.

For all three confidence levels, each method has an increasing average interval length when

the sample size becomes smaller. In general, for a fixed sample size, MAJEL has the longest

average interval length while NA has the shortest average length at all three confidence levels
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among the six methods.

3.2 Simulation under the exponential distribution exp(1)

In general, each method has an increasing coverage probability when the sample size is

increased at a specific confidence level (Table 3.3). Among these methods, for a fixed sample

size, MAJEL shows the best coverage probability even though it has a little bit over coverage

for a large sample size (n = 100), while NA performs worst at the same confidence level.

We get the similar observations for the average interval length as shown in Table 3.4. At

a specific confidence level, MAJEL gives the longest average interval length and NA exhibits

the shortest average length for a fixed sample size among all the six methods.

3.3 Simulation under the Weibull distribution weibull(2,1)

The results of the coverage probability in Table 3.5 and the average interval length

in Table 3.6 illustrate the same observations as it shows in Section 3.2 except for that no

methods have over coverage in this section.

3.4 Simulation under the log-normal distribution log-norm(0,1)

As shown in Table 3.7 and Table 3.8, we can make the same conclusions with Section 3.3.

Briefly, among all the six methods, MAJEL gives the best coverage probability and longest

average interval length, while NA performs worst and has the shortest average interval length

at all three confidence levels for a specific sample size.
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Table (3.1) The coverage probability under the normal distribution

CL=90% CL =95% CL=99%
n 5 20 50 80 100 5 20 50 80 100 5 20 50 80 100
NA 73.0% 85.9% 88.6% 88.9% 89.3% 80.2% 91.1% 94.2% 94.4% 94.6% 87.4% 96.3% 97.5% 98.3% 98.5%
JEL 76.5% 86.2% 88.6% 89.1% 89.6% 82.7% 91.6% 94.5% 94.6% 94.7% 87.7% 96.6% 97.8% 98.5% 98.7%
AJEL 91.8% 91.1% 91.7% 91.8% 92.3% 100.0% 95.6% 96.0% 96.2% 96.6% 100.0% 99.2% 99.3% 99.4% 99.6%
MJEL 77.9% 86.6% 89.0% 89.3% 89.8% 83.5% 91.8% 94.7% 94.9% 94.9% 88.1% 96.8% 98.0% 98.7% 98.9%
MAJEL 91.2% 91.6% 92.0% 92.4% 93.1% 95.8% 96.0% 96.5% 96.7% 96.8% 99.3% 99.4% 99.5% 99.6% 99.7%
AMJEL 91.0% 91.2% 92.0% 92.1% 92.8% 95.4% 95.8% 96.1% 96.4% 96.7% 99.2% 99.3% 99.4% 99.5% 99.7%

Table (3.2) The average interval length under the normal distribution

CL=90% CL =95% CL=99%
n 5 20 50 80 100 5 20 50 80 100 5 20 50 80 100
NA 1.157 0.689 0.440 0.411 0.401 1.349 0.818 0.540 0.517 0.456 1.682 1.139 0.754 0.607 0.525
JEL 1.166 0.703 0.456 0.413 0.408 1.355 0.838 0.545 0.521 0.458 1.714 1.165 0.793 0.614 0.531
AJEL 1.728 0.921 0.702 0.515 0.425 2.268 0.958 0.825 0.612 0.535 2.225 1.199 1.120 0.812 0.708
MJEL 1.172 0.712 0.492 0.441 0.411 1.376 0.843 0.575 0.538 0.478 1.734 1.186 0.875 0.621 0.608
MAJEL 1.712 1.020 0.832 0.549 0.519 2.174 1.112 0.879 0.655 0.581 2.218 1.590 1.271 0.911 0.795
AMJEL 1.709 1.015 0.807 0.543 0.517 2.170 1.107 0.876 0.650 0.578 2.131 1.487 1.159 0.903 0.787

Table (3.3) The coverage probability under the exponential distribution

CL=90% CL =95% CL=99%
n 5 20 50 80 100 5 20 50 80 100 5 20 50 80 100
NA 43.3% 64.6% 78.2% 85.5% 86.6% 51.5% 71.8% 86.1% 90.1% 91.6% 60.7% 82.4% 91.5% 92.3% 94.8%
JEL 49.9% 80.6% 84.2% 85.5% 86.8% 55.6% 83.6% 90.5% 91.8% 92.1% 62.6% 93.8% 94.1% 94.6% 95.1%
AJEL 74.5% 87.4% 87.8% 89.3% 89.5% 79.7% 88.7% 92.5% 94.7% 94.9% 85.4% 95.5% 97.7% 98.5% 98.8%
MJEL 54.4% 81.3% 85.2% 87.1% 87.8% 64.3% 88.3% 90.9% 93.3% 94.2% 70.1% 94.6% 95.1% 95.2% 97.2%
MAJEL 80.3% 88.1% 88.8% 89.6% 90.1% 88.3% 94.4% 94.7% 94.8% 95.0% 94.2% 98.3% 98.7% 98.9% 99.1%
AMJEL 75.5% 87.7% 88.2% 89.4% 89.6% 79.9% 88.9% 92.8% 94.8% 94.9% 87.4% 96.4% 98.2% 98.5% 98.9%

Table (3.4) The average interval length under the exponential distribution

CL=90% CL =95% CL=99%
n 5 20 50 80 100 5 20 50 80 100 5 20 50 80 100
NA 0.919 0.620 0.467 0.374 0.323 1.112 0.750 0.507 0.451 0.390 1.243 0.987 0.638 0.527 0.491
JEL 0.921 0.622 0.471 0.378 0.326 1.156 0.752 0.510 0.453 0.391 1.292 0992 0.644 0.530 0.495
AJEL 1.448 0.910 0.551 0.418 0.365 1.713 1.114 0.675 0.501 0.446 2.190 1.541 0.943 0.709 0.618
MJEL 0.956 0.681 0.482 0.389 0.337 1.154 0.781 0.512 0.474 0.402 1.371 1.114 0.718 0.601 0.581
MAJEL 1.451 0.926 0.616 0.420 0.416 1.862 1.305 0.716 0.521 0.516 2.358 1.629 0.982 0.725 0.710
AMJEL 1.449 0.915 0.561 0.419 0.373 1.751 1.189 0.682 0.510 0.474 2.259 1.569 0.968 0.713 0.684

Table (3.5) The coverage probability under the Weibull distribution

CL=90% CL =95% CL=99%
n 5 20 50 80 100 5 20 50 80 100 5 20 50 80 100
NA 40.8% 53.0% 64.9% 83.8% 87.3% 48.8% 62.3% 72.6% 88.4% 90.7% 54.2% 68.1% 79.6% 91.2% 92.2%
JEL 41.9% 58.4% 70.3% 84.9% 87.3% 48.9% 63.7% 79.4% 88.9% 90.8% 57.6% 69.0% 85.5% 92.2% 92.8%
AJEL 78.5% 80.4% 82.9% 88.4% 88.6% 81.7% 84.2% 85.4% 93.2% 93.8% 86.4% 88.5% 90.3% 95.1% 95.3%
MJEL 48.2% 70.1% 77.2% 84.9% 88.3% 54.2% 75.9% 81.8% 90.3% 91.5% 65.1% 71.4% 88.5% 92.7% 93.3%
MAJEL 81.9% 87.2% 88.0% 89.2% 89.5% 85.0% 89.2% 92.4% 93.8% 94.2% 90.2% 93.1% 94.5% 98.2% 98.5%
AMJEL 81.1% 84.9% 86.5% 88.7% 89.1% 83.8% 85.9% 89.8% 93.5% 94.0% 88.2% 91.2% 93.3% 96.8% 97.7%
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Table (3.6) The average interval length under the Weibull distribution

CL=90% CL =95% CL=99%
n 5 20 50 80 100 5 20 50 80 100 5 20 50 80 100
NA 1.968 1.521 1.427 0.936 0.898 2.011 2.005 1.502 0.975 0.916 2.179 1.826 1.631 0.992 0.956
JEL 1.973 1.771 1.459 0.941 0.902 2.039 2.012 1.601 0.980 0.919 2.190 1.865 1.649 0.998 0.960
AJEL 2.126 1.907 1.543 1.009 0.986 2.706 2.107 1.659 1.012 0.997 2.879 2.028 1.928 1.019 1.002
MJEL 1.938 1.776 1.478 0.982 0.978 2.147 2.006 1.608 0.996 0.961 2.368 1.897 1.702 1.003 0.972
MAJEL 2.371 2.016 1.921 1.026 1.008 2.920 2.264 1.796 1.260 1.012 2.961 2.168 1.981 1.268 1.037
AMJEL 2.213 1.989 1.697 1.012 0.998 2.819 2.198 1.702 1.101 1.003 2.917 2.098 1.961 1.113 1.016

Table (3.7) The coverage probability under the log-normal distribution

CL=90% CL =95% CL=99%
n 5 20 50 80 100 5 20 50 80 100 5 20 50 80 100
NA 44.5% 53.9% 59.7% 71.2% 82.5% 53.6% 62.7% 65.2% 79.8% 90.5% 65.0% 70.4% 81.2% 85.2% 96.1%
JEL 45.4% 59.4% 60.5% 77.3% 82.7% 56.2% 63.5% 69.4% 84.0% 91.2% 67.6% 78.7% 83.5% 89.4% 96.6%
AJEL 60.5% 76.4% 79.9% 84.1% 86.5% 71.8% 81.2% 84.3% 90.7% 93.7% 82.4% 84.5% 89.7% 93.5% 97.8%
MJEL 46.1% 62.0% 65.2% 80.9% 83.2% 57.2% 67.9% 71.9% 85.3% 92.0% 69.1% 81.4% 85.5% 90.9% 97.2%
MAJEL 72.6% 82.1% 86.5% 87.0% 88.4% 81.4% 89.1% 93.0% 93.5% 94.5% 89.7% 92.1% 94.5% 96.8% 98.3%
AMJEL 68.6% 79.8% 82.6% 85.4% 87.1% 77.6% 86.5% 89.9% 91.5% 93.9% 87.7% 89.0% 92.6% 94.9% 98.1%

Table (3.8) The average interval length under the log-normal distribution

CL=90% CL =95% CL=99%
n 5 20 50 80 100 5 20 50 80 100 5 20 50 80 100
NA 1.613 0.968 0.597 0.421 0.294 1.939 1.154 0.712 0.502 0.350 2.271 1.523 0.940 0.661 0.461
JEL 1.764 1.063 0.601 0.430 0.302 1.991 1.171 0.714 0.518 0.363 2.304 1.541 0.954 0.670 0.464
AJEL 1.926 1.067 0.643 0.476 0.381 2.306 1.207 0.798 0.612 0.431 2.779 1.624 0.992 0.712 0.608
MJEL 1.738 0.976 0.607 0.434 0.325 2.047 1.177 0.724 0.564 0.367 2.318 1.581 0.958 0.694 0.518
MAJEL 2.032 1.184 0.754 0.538 0.412 2.508 1.328 0.839 0.680 0.487 2.901 1.894 1.084 0.803 0.680
AMJEL 1.995 1.102 0.719 0.492 0.408 2.386 1.298 0.812 0.638 0.458 2.825 1.715 1.016 0.769 0.638
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CHAPTER 4

REAL DATA ANALYSIS

In the real data analysis, we utilized data sets with small sample sizes to illustrate the

proposed methods.

The NA, JEL, AJEL, MJEL, MAJEL, and AMJEL methods were separately applied to

analyze the data sets. Then, we calculated the confidence interval length and the confidence

interval bounds of the point estimate of u at three confidence levels (90%, 95%, and 99%).

4.1 Median household income analysis

The data set is about median household income, which gives the average annual house-

hold income by race in New Jersey, Puerto Rico, New Hampshire, District of Columbia,

West Virginia, Mississippi, and Maryland from 2013 to 2017. Here, we just analyzed the

data from the year 2017 with the simple size n = 7. As shown in the histogram (Figure 5

in the appendices), we can see that the distribution of household income is skewed left. The

p-value of the goodness-of-fit test for the Weibull distribution is 0.3451, which is well above

0.05. The skewness of the data is -0.3288. All these results support that the data set follows

a Weibull distribution. The point estimate of u is 1.892. The confidence interval (CI) for

the u was calculated using NA, JEL, AJEL, MJEL, MAJEL, and AMJEL, respectively. The

lengths and the bounds of the CI were displayed and compared with previous simulation

results in Table 3.6.

The results in Table 4.1 indicate that MAJEL has the longest CI lengths at all three

confidence levels, which is consistent with the observations in the simulation study (Table

3.6).
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4.2 Income and education analysis

In the data set “income and education”, there are 20 observations. From the histogram

(Figure 6 in the appendices), we can see that the distribution of household income is skewed.

The p-value of the goodness-of-fit test for exponential distribution is 0.1946, which is also

well above 0.05. The skewness of the data is 1.267. Therefore, the data set fits an exponential

distribution. The point estimate of u is 2.989. The CI for u was calculated using NA, JEL,

AJEL, MJEL, MAJEL, and AMJEL, respectively. The lengths and the bounds of the CI

were also calculated and compared with the simulation results in Table 3.4.

As shown in Table 4.2, MAJEL and AMJEL have very close results, and both of them

have a longer CI length than MJEL, AJEL, JEL and NA at all three confidence levels.

MAJEL still has the longest CI lengths, which is consistent with the results in the simulation

study (Table 3.4).
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Table (4.1) Median household income analysis

CL=90% CL =95% CL=99%
n=7 length LB UB length LB UB Length LB UB
NA 1.450 1.167 2.617 1.668 1.058 2.726 1.794 0.995 2.789
JEL 1.504 1.089 2.593 1.712 0.908 2.620 1.825 0.801 2.626

AJEL 1.782 0.989 2.771 1.898 0.945 2.843 2.125 0.790 2.915
MJEL 1.525 1.092 2.617 1.754 0.982 2.736 1.984 0.802 2.786

MAJEL 1.891 0.927 2.818 2.018 0.942 2.960 2.287 0.784 3.071
AMJEL 1.815 0.938 2.753 1.910 0.940 2.850 2.185 0.790 2.975

Table (4.2) Income and education analysis

CL=90% CL =95% CL=99%
n=20 length LB UB length LB UB Length LB UB
NA 1.466 2.256 3.722 2.078 1.950 4.028 2.402 1.788 4.190
JEL 1.487 2.249 3.736 2.092 1.948 4.040 2.475 1.741 4.216

AJEL 1.887 2.212 4.099 2.197 1.915 4.112 2.636 1.719 4.355
MJEL 1.752 2.235 3.987 2.101 1.926 4.027 2.612 1.728 4.341

MAJEL 2.017 2.128 4.145 2.312 1.902 4.214 2.870 1.684 4.554
AMJEL 2.011 2.125 4.136 2.306 1.904 4.210 2.861 1.689 4.550
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CHAPTER 5

CONCLUSIONS

In this thesis, we defined the lower mean ratio income inequality u, which was intro-

duced by Elteto and Frigyes (1968) and used for measuring the economic inequality. For

large samples, Gastwirth (1974) established the normal approximation (NA) method for the

estimator û. In order to obtain a more accurate confidence interval for u, we employed the

NA method, and compared it with JEL, AJEL, MJEL, MAJEL, and AMJEL methods.

A simulation study was performed to assess the performance of the methods above in

terms of the coverage probability and the average interval length. The results indicate that

the performance of all methods can be improved by increasing the sample size. Among

the six methods, MAJEL has the longest average interval length. When the sample size

is small, for a skewed distribution, MAJEL shows the best performance and NA gives the

worst performance. For a normal distribution, both JEL and MJEL have good performance,

but MJEL is more time-consuming.

In addition, for a skewed distribution, the performance of NA is even worse than that

in the symmetric normal distribution. Also, AJEL, AMJEL, and MAJEL show over cover-

age under the normal distribution N(3,1). Finally, the real data analyses of two data sets

illustrate that results are consistent with those in the simulation study.

Further more, the proposed JEL methods and NA method that is developed by Gast-

wirth (1974) can be applied to the other measures v and w, which are proposed by Elteto

and Frigyes (1968).
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Figure (1) Normal distribution PDF

Figure (2) Exponential distribution PDF

Figure (3) Weibull distribution PDF
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Figure (4) Log-normal distribution PDF

Figure (5) Histogram for the median house-

hold income data

Figure (6) Histogram for the income and ed-

ucation data
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