
Georgia State University Georgia State University 

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University 

Physics and Astronomy Dissertations Department of Physics and Astronomy 

7-8-2024 

Optical Nonlinearities in Graphene Quantum Dots: High Harmonic Optical Nonlinearities in Graphene Quantum Dots: High Harmonic 

Generation Generation 

Suresh Gnawali 
Georgia State University 

Follow this and additional works at: https://scholarworks.gsu.edu/phy_astr_diss 

Recommended Citation Recommended Citation 
Gnawali, Suresh, "Optical Nonlinearities in Graphene Quantum Dots: High Harmonic Generation." 
Dissertation, Georgia State University, 2024. 
doi: https://doi.org/10.57709/37369742 

This Dissertation is brought to you for free and open access by the Department of Physics and Astronomy at 
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Physics and Astronomy 
Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, 
please contact scholarworks@gsu.edu. 

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/phy_astr_diss
https://scholarworks.gsu.edu/phy_astr
https://scholarworks.gsu.edu/phy_astr_diss?utm_source=scholarworks.gsu.edu%2Fphy_astr_diss%2F168&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/37369742
mailto:scholarworks@gsu.edu


Optical Nonlinearities in Graphene Quantum Dots: High Harmonic Generation

by

Suresh Gnawali

Under the Direction of Vadym Apalkov, Ph.D.

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2024



ABSTRACT

The dissertation aims to study the light-matter interactions in graphene quantum dots

(GQDs), investigating high-order harmonic generation (HHG), an extreme nonlinear fre-

quency up-conversion process. We extended the study incorporating the variation of shape,

size, geometry, and type of edges in GQD systems. We theoretically modeled the quantum

dots system and developed the formulation employing quantum master equations and a den-

sity matrix approach. We explored ultrafast electron dynamics and optical nonlinearities in

the system of GQDs, completing the four research projects: (i) Generation of high harmonics

and its dependence on the relaxation process, (ii) HHG in triangular GQDs governed by edge

states, (iii) Ellipticity dependence of HHG in GQDs (iv) HHG in GQDs with monovacancy

or divacancy. We addressed nonlinearity in hexagonal GQDs placed in a short, linearly

polarized optical pulse. At short finite dephasing times, the ultrafast electron dynamics

show significant irreversibility with a significant residual population of the excited quantum

dot levels. When dephasing time increases, intensities correspond to a low-frequency boost,

while the cutoff energy decreases regarding the high harmonic spectra. In zigzag-edged tri-

angular GQDs, the intensities of high harmonics show a strong dependence on the initial

electron population of the edge states of the quantum dot. If a zigzag triangular quantum

dot possesses an even number of edge states, then even high harmonics are strongly sup-

pressed when half of the edge states of the quantum dots are populated before the pulse.

The odd and even harmonics are of comparable intensities for any other populations of the

edge states. The elliptically polarized ultrashort pulse interacts with the system of quantum

dots to reveal unique nonlinear behavior different from the linearized polarized optical field.

The generated high harmonics are sensitive to pulse ellipticity, frequency, amplitude, and

GQDs’ symmetry. Furthermore, we unraveled the influence of defects in HHG in GQDs

with monovacancy or divacancy. Vacancy uplifts energy levels, provides additional channels



for multiphoton excitation, boosts even order harmonics, and disrupts symmetry-related

suppression under circular polarization. These studies motivate the researchers to enhance,

control, and optimize HHG in GQDs and other 2D materials.

INDEX WORDS: High-order harmonic generation, Nonlinear optics, Polarization
of Light, Graphene, Quantum dots, Monovacancy, Divacancy
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0.5 V/Å. The corresponding dephasing times are marked in each panel. The
frequency of the pulse is ℏω0 = 1 eV (a) and ℏω0 = 2 eV (b). . . . . . . . . 41

Figure 3.6 Emission spectrum of graphene QD. High harmonics with well-defined
cutoffs are clearly visible in the spectrum. The corresponding relaxation times
are marked for each graph. The frequency of the pulse is ℏω0 = 1 eV in
column (a), ℏω0 = 2 eV in column (b), and ℏω0 = 3.1 eV in column (c). With
increasing the relaxation time, the emission spectrum becomes more noisy
with less defined high harmonic peaks. The pulse amplitude is F0 = 0.4 V/Å. 42
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incident pulse is 0.3 V/Å. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



Figure 6.5 HHG spectra for zigzag-edged hexagonal GQDs system: (a), and (b)
22-atom; (c) and (d) 33-atom; and (e) and (f) 61-atom. The number of atoms
in each GQD system is also displayed in each panel. The amplitude of the
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CHAPTER 1

CHAPTER 1 INTRODUCTION

1.1 Graphene

Graphene, an allotrope of carbon, consists of a single layer of atoms arranged in a two-

dimensional honeycomb lattice with exceptional electronic, optical, mechanical, and thermal

properties. It is one of the thinnest, lightest, and super strong materials. Graphene was

first isolated and characterized by scientists Andre Geim and Konstantin Novoselov in 2004.

They used a simple method of peeling off thin graphite flakes with sticky tape and then

examined them under a microscope. They were awarded the Nobel Prize in Physics in 2010

for this groundbreaking discovery [1].

The electronic structure of an isolated carbon atom is (1s)2(2s)2(2p)2. In a solid-state

environment, the 1s electrons remain more or less inert, but the 2s and 2p electrons hybridize.

One possible outcome is four sp3 orbitals, which naturally tend to establish a tetrahedral

bonding pattern that uses all the electrons: that is precisely what happens in the best solid

form of C, namely diamond, which is an excellent insulator having a bandgap of around

5 eV . Another possibility is to form three sp2 orbitals, leaving over a more or less pure

p-orbital. In that case, the natural tendency is for sp2 orbitals to arrange themselves in a

plane at 120◦ angles, and the lattice thus formed is the honeycomb lattice.

The graphene hexagonal lattice comprises two interpenetrating triangular lattices, as

shown in Fig. 3.1 [2]. Here, two inequivalent sublattices are in the environments of the

corresponding atoms, which are mirror images of one another. It is convenient to express the
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Figure 1.1 Graphene hexagonal lattice made of two interpenetrating triangular lattices.
The nodes of each triangular lattice define the carbon atoms of type A (red) and B (blue).
Arrows represent unit cell vectors a⃗1 and a⃗2.

Bravis lattice to have the primitive lattice vectors a⃗1 and a⃗2 with the notation in rectangular

coordinates system by,

a1 =
a

2
(3,

√
3), a2 =

a

2
(3,−

√
3), (1.1)

where a is the nearest-neighbor carbon-carbon distance. The nodes of each triangular

lattice define the carbon atoms of type A (red) and B (blue). Arrows represent unit cell
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vectors a1 and a2. The reciprocal lattice vectors b1 and b2 defined by the condition ai ·bj =

2πδij are given by

b1 =
2π

3a
(1,

√
3), b2 =

2π

3a
(1,−

√
3). (1.2)

We define the first Brillouin Zone (FBZ) of the reciprocal lattice in the way bounded by

the planes bisecting the vectors to the nearest reciprocal lattice points representing the FBZ

similar to hexagons of honeycomb lattice but rotated by π/2 as shown in Fig. 1.2 [3].

It is often convenient to express for A-sublattice atom by three nearest-neighbor vectors

in real space given by

δ1 =
a

2
(1,

√
3), δ2 =

a

2
(1,−

√
3), δ3 = −a(1, 0). (1.3)

Those vectors for B-sublattice are the negatives of Eq.(1.3).

We can study the electronic band structure by a tight binding approach with the nearest

neighbor hopping. If we denote the orbital on atom i with spin σ by (i, σ), and the corre-

sponding creation operator by a†iσ(b
†
iσ) for an atom on the A(B) sublattice, then the nearest

-neighbor tight-binding Hamiltonian in the form

HTB,nn = −t
∑
<ij>

(â†iσ b̂jσ + h.c.), (1.4)

where t is the nearest-neighbor hopping matrix element ≈ 2.8 eV.

Let us include the tight binding eigenfunctions in the form of spinor, whose components
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Figure 1.2 The FBZ of the graphene. The Dirac cones are located at the corners of the
Brillouin zone. The six cones can be divided into two equivalent classes (cones within the
same class are connected by dashed lines). These classes are commonly referred to as K and
K ′.

correspond to the amplitudes on the A and B atoms, respectively, from a reference point R0
i

B separated from A by δi and Ri at the position have the form given by

(
αk

βk

)
=
∑
i

exp ik ·R0
i

(
a†ie

−ik·δ1/2

b†ie
ik·δ1/2

)
(1.5)

where b†i creates an electron on the B atom in cell i. The exponential factor eik·δ1/2 intro-
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duced in spinor to simplify the subsequent expressions. The Hamiltonian in k-representation

is purely off-diagonal in this representation

Hk =

(
0 ∆k

∆∗
k 0,

)
, ∆k ≡ −t

3∑
l=1

exp ik · δl. (1.6)

Using Eq.(1.3) the nearest neighbor vectors δl becomes

∆k = −t exp ikxa

(
1 + 2 exp(i

3kxa

2
cos

√
3

2
kya

)
, (1.7)

and the eigenvalues ϵk are given by

ϵk = ±|∆k| = ±− t

(
1 + 4cos

3kxa

2
cos

√
3

2
kya+ 4cos2

√
3

2
kya

)1/2

, (1.8)

We are interested in instigating whether there are any values of k for which ∆k (hence

ϵk) is zero, Any such states must satisfy

3Kxa

2
= 2nπ, cos

√
3

2
kya = −1

2
or
3Kxa

2
= 2(n+ 1)π, cos

√
3

2
kya =

1

2
. (1.9)

Here, the first choice takes ky outside the FBZ while the second option (n = 0) exactly defines

the corner points K and K′ called the Dirac points. To discuss the nature of the energy

spectrum and eigenfunctions for k close to a Dirac point, for instance, K it is convenient to

define a 2D vector k−K as q and expanding the expression around q = 0, we get
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∆(q) = −2t eikxaq · ∇k

(
e(i

3kxa

2
cos

√
3

2
kya

)
k=K

= −3ta

2
exp(−iKxa)(iqx − qy). (1.10)

Extracting the constant factor −iexp(−iKxa) we write

∆(q) = ℏυF (iqx − qy), υF ≡ 3ta/2ℏ ∼= 106m/s. (1.11)

If we expand around K for which K ′
x = Kx, K

′
y = −Ky we find

∆K′(q) = ℏυF (iqx − qy) = ∆∗
K(q), (1.12)

Now, we define the Hamiltonian in the following form,

Hk =

(
0 qx + iqy

qx − iqy 0

)
, ≡ ℏυFσ · q, ϵ̂(q) = ±υF |q|. (1.13)

Here, the components of the operator ϵ̂ are the Pauli matrices. Also, the eigenvalues depend

only on the magnitude of q. The corresponding eigenfunctions obtained are expressed as

ψ±
K(q) =

1

sqrt2

(
exp(iθq/2)
±exp(iθq/2)

)
, θq ≡ tan−1(qx/qy). (1.14)

When q rotates around the Dirac point, the phase of ψ±
K(q) changes by π, not by 2π, as is

the characteristics of spin-half particles.



7

Figure 1.3 Typical zigzag-edged triangular GQDs with different numbers of atoms. The
corresponding numbers of atoms are depicted in each panel.

1.2 Graphene quantum dots (GQDs)

Graphene Quantum Dots (GQDs) are graphene nanoparticles of finite size (a few nanometers

to 100 nanometers) containing a finite number of graphene nanoparticles. They can have

different shapes, sizes, edges, and geometry, significantly changing their optical and electronic

properties. Typical GQDs of triangular shapes with zigzag edges having different numbers

of dots are shown in Fig. 1.3 [4].
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1.3 Ultrafast lasers

Over the past decade, ultrafast lasers, which generate ultrashort optical pulses in the orders

of femtoseconds, have progressed from complicated and specialized laboratory systems to

compact, reliable instruments suitable for a wide range of applications [5; 6]. With their

ability to produce high-power peaks, these lasers are helpful in diverse fields, such as spec-

troscopy, material processing, signal processing, diagnostic imaging, and radiation therapy

[7; 8; 9]. Their versatility and adaptability are a testament to their potential in shaping

the future of these fields. The advancement of the fastest process has been the subject of

several Nobel prizes. In 1999, Ahmed Zewail was honored for his work in femtosecond spec-

troscopy to measure the real-time motion of atomic nuclei. Pierre Agostini, Anne L’Huillier,

and Frenec Krausz shared the Nobel prize two dozen years later for recognition for bringing

the attosecond regime- the natural unit of time 1000 times faster than femtoseconds under

experimental control. One facet of this research is that attosecond-scale light pulses could

be made and characterized with ordinary tabletop experiments.

Lasers that generate intense, coherent beams of light enable us to investigate the fastest

processes in condensed matter physics, such as phase transitions, structural electron and

molecular dynamics, and chemical reactions [10; 5; 11].

1.4 Light matter interaction

Light-matter interaction is vital in many areas, such as laser, spectroscopy, quantum informa-

tion processing, light-emitting diodes and solar cells, biological structures like photosystem
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II, potential quantum devices, and sensing [12; 13; 14]. In the background of the physics of

light, optical resonators and light-matter interactions, including absorption, emission, trans-

mission, reflectance, and polarization, are essential both in classical and quantum physics.

The absorption or emission of light is predominant on a subnanometer scale, typically cou-

pling light into or extracting light from the tunnel junction [12]. Electromagnetic radiation

couples with matter through the interaction with charge carriers, leading to excitons such as

electronic or optical transitions. This section briefly discusses the light-matter interaction,

focusing on the two-level system.

An electric dipole er is an essential observable in light-matter interaction, which provides

the bridge between the quantum mechanical description of the system and the polarization

of the medium P used as a source in Maxwell’s equations for the electromagnetic field. The

expectation value of er is given by,

⟨er⟩ =
∫
d3r r e| ψ(r, t) |2. (1.15)

In nonrelativistic quantum mechanics, the evolution of ψ(r, t) is governed by the Schrodinger

equation

iℏ
∂

∂t
ψ(r, t) = Hψ(r, t), (1.16)

where H is the Hamiltonian of the system and ℏ = 1.054× 10−34 joule-seconds. The Hamil-

tonian of an unperturbed system is the sum of its potential and kinetic energies
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H =
p2

2m
+ V (r), (1.17)

where p,m, and V (r) are the system momentum, mass, and potential energy. The time

and space dependencies in Eq.(1.17) can be separated as

ψ(r, t) = un(r) e
−iωnt (1.18)

for which the un(r) satisfy the energy eigenvalue equation

H(r) = ℏωnun(r). (1.19)

The eigenfunctions un(r) can be shown to be orthonormal and complete, which provides

the basis to write the function as a superposition of the un(r). In particular, the wavefunction

ψ(r, t) itself can be written as the superposition

ψ(r, t) =
∑
n

Cn(t) un(r) e
−iωnt. (1.20)

Here the expansion coefficients Cn(t) are constants for the problem described by a Hamil-

tonian satisfying the eigenvalue Eq. (1.19). We include the time dependence in anticipation

of adding interaction energy to the Hamiltonian. The modified Hamiltonian wouldn’t quite

satisfy Eq. (1.19), thereby causing the Cn(t) to change in time.

The Eq. (1.20) satisfies the normalization condition using the orthonormality of un(r).
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Therefore, C2
n can be interpreted as the probability that the system is in the nth energy

state. The Cn are complex probability amplitudes that can completely determine the wave

function. In terms of the Cn(t) the expectation value of the operator θ is given by

⟨θ⟩ =
∑
n

∑
m

Cn(t) un(r) e
−iωntθmn, (1.21)

where θmn is the matrix elements
∫
d3r u∗m(r)θ un(r).

To address the light-matter-interaction, we add appropriate interaction energy to the

Hamiltonian, that is

H = H0 + V (1.22)

Expanding the wavefunction in terms of the wavefunctions of the unperturbed Hamiltonian,

the probability amplitudes Cn(t) change in time. Substituting the wavefunction (1.20) and

Hamiltonian (1.22) into Eq. (1.16) we get

Ċn(t) = − i

ℏ
∑
m

< n|V |m > e−iωmnt Cm(t), (1.23)

where the < n|V |m > and ωmn are the interaction energy matrix element and frequency

difference.

The First-order-perturbation theory can solve Eq. (1.23) approximately. The interaction

energy matrix element has a time-dependent form

< n|V |m >= Vnm(0) cos(ω0t), (1.24)
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where ω0 is an optical frequency. At time t = 0 the system is in the initial level i with

(Ci(0) = 1, Cm̸=i(0) = 0)), we integrate Eq. (1.23) with Cm(t) ≃ Cm(0) to find

Cn(t) ≃ C(1)n(t) = −iVni(0)
2ℏ

[
ei(ωni + ω0)t− 1

i(ωni + ω0)
+
ei(ωni − ω0)t− 1

i(ωni − ω0)

]
. (1.25)

The superscript (1) says the interaction energy is first in order. For the case ωni > 0, the

denominator ωni+ω0) is always positive and larger than ωni. This is not case for denominator

ωni − ω0) which vanishes if the resonance condition

ω0 ≃ ωni (1.26)

is satisfied. For interactions near resonance, the term with a relatively small denominator

(ωni − ω0) is larger than that with (ωni + ω0), allowing us to neglect the latter, an approxi-

mation known as rotating wave approximation (RWA).

1.4.1 Two-level approximation

We can neglect transitions to levels with energies very different from ω0; for two-level ap-

proximation, we neglect all except two levels, those satisfying Eq.(1.26).In this case, the

wavefunction in Eq.(1.20) reduces to

ψ(r, t) = Ca(t)e
−iωatua((r)) + Cb(t)e

−iωbtub((r)). (1.27)

According to Eq. (1.23), the probability amplitudes obey the equations of the motion

Ċa(t) = − i

ℏ
Vab e

−iωtCb, (1.28)
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Ċb(t) = − i

ℏ
Vba e

iωtCa, (1.29)

where the transition frequency ω ≡ ωab.

1.4.2 Electric-Dipole Interactions

The electric dipole operator serves two important tasks: (i) provides the link between

Maxwell’s equations and (ii) yields the light-matter interaction energy V . The light-matter

interaction energy is

V = −er · E(R, t), (1.30)

where R is the position of the center of mass of the dipole. In Eq.(1.31), we approximated

E(r, t) by E(R, t) since our focus is in electromagnetic fields with wavelengths much larger

than atomic dimensions. Therefore, we can approximate the electric field by a constant over

the dimension of the dipole. This approximation is popularly termed as dipole approxima-

tion. Then, we can write the electric-dipole interaction energy matrix elements as

Vab = −℘E(R, t), (1.31)

where ℘ is the component of erab along E. For simplicity, we ignore the spatial dependence

and use the electric field

E(t) = E0 cos(ω0t),
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which gives the interaction energy matrix element

Vab = −e℘E0 cos(ω0t). (1.32)

In Eqs.(1.32) and (1.25) in RWA we keep the term e−iω0t term for ωni > 0. Here,

ω ≡ ωab > 0 and hence in RWA we keep only

Vab ≃ −1

2
℘E0e

−iω0t, (1.33)

and Vba = Vab
∗. For the exact resonance, i.e., ω0 = ω, substituting the complex conjugate of

Eq.(1.33) into Eq.(1.29),differentiating with respect to time, and substituting Eq.(1.28),we

get

C̈b = −1

4
R0

2Cb, (1.34)

where R0 is the Rabbi flopping frequency

R0 =
℘E0

ℏ
(1.35)

after Rabi. Eq.(1.34) is a differential equation for sinusoids. If at time t = 0 the system is

in the lower state (Cb(0) = 1, Ca(0) = 0)), then

Cb(t) = cos
1

2
R0t, (1.36)

which from Eq.(1.36) gives
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Ca(t) = isin
1

2
R0t. (1.37)

The probability that the system is in the lower level |Cb(t)|2 = cos2 1
2
R0t = (1+cosR0t)/2,

while |Ca(t)|2 = sin2 1
2
R0t = (1− cosR0t)/2. Thus, the wave function oscillates sinusoidally

between the lower and upper states at the frequency R0, a phenomenon known as Rabi

flopping.

1.5 High harmonic generation (HHG)

High harmonic generation (HHG) is a highly nonlinear frequency upconversion process in

which intense radiation of a specific frequency converts into a series of high-order harmonics

through ionization and collision processes. In this phenomenon, the incident light of fre-

quency ω0 is used to produce new frequencies integral multiples of the frequency of incident

light. As the process is coherent, it is a prerequisite of attosecond and femtosecond physics.

The nonlinear plasmonics in nanographene with the generation of high harmonics reported

by the researcher is shown in Fig. 1.4 [15].

HHG in gases is a well-studied research area, as evidenced by significant research pub-

lications within a short period. In addition to gases, HHG is studied in atoms, crystals,

solids, and even liquids today. The typical HHG process in atoms includes a three-step pro-

cess: tunnel ionization, where the incident light overcomes the coulomb forces to knock out

the electrons, acceleration of the carrier, and recombination of the ion to its original atom,

resulting in the emission of radiation [16; 17; 18]. The typical solid state and atomic HHG
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Figure 1.4 Nonlinear response of nanographene. (a) Illustration of doped nanotriangle (the
armchair edge with 330 carbon atoms, L=4.1 nm side length, doped with Q=2 additional
charge carriers) irradiated by short optical pulse (166 full width at half maximum (FWHM)
duration, 1012Wm−2 peak intensity, ω0 = 0.68 eV) tuned to one of the graphene plasmons.
(b) Time variations of the incident electric field and the induced graphene dipole. (c) Har-
monic analysis of the graphene dipole for polarizations along x and y directions.

process is shown in which is depicted in Fig. 1.5 described in ref. [19]. In this dissertation,

We will study the HHG process in detail.

The rest of the dissertation is organized as follows: Chapter 2 discusses the theoretical

formulation. Chapter 3 explains the generation of harmonics and delves further into the

relaxation process. Chapter 4 investigates the HHG in triangular GQDs governed by the

presence of edge states. Chapter 5 studies the HHG in the elliptically polarized optical pulse

pulse field. Chapter 6 explores the HHg in GQD with vacancies, particularly monovacancy

and divacancy. We summarize the essential results in Chapter 7.
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Figure 1.5 Three step model for HHG prcess. Initially, an electron is pulled away from the
atom, overcoming Coulomb’s force (a and b); the electron is driven back in a parabolic field
after the field reverses (c), where the electron can recollide during a small fraction of the
laser oscillation cycle to emit the photon
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CHAPTER 2

CHAPTER 2 METHODOLOGY

2.1 Theoretical Formulation

This chapter is devoted to theoretical formulation. Here, theoretical formulation involves

introducing the density matrix, writing the time-dependent Hamiltonian of the system,

incorporating tight-binding Hamiltonian to describe the neutral QD system and external

perturbation Hamiltonian as an ultrafast optical pulse using dipole approximation, deriving

the density matrix equations, and obtaining expressions for finding the Dipole moment and

intensity of high harmonics for the GQDs system of exploration.

2.1.1 Density matrix

According to the postulates of quantum mechanics, the wavefunction ψ(r, t) provides the

best possible knowledge about a single quantum system. Although ψ(r, t) has no direct

physical meaning, it allows us to calculate the expectation values of all observables of in-

terest. To study the laser media, we must consider the ensembles of the quantum systems

involving pumping and damping, which are inherently irreversible processes, unlike the pro-

cesses entirely determined by the Schrodinger equation. Although some limited examples of

decay processes can be described using wavefunctions, they cannot address the two essen-

tial kinds that frequently occur in semiconductors: level probability decay, which involves

decay from upper to lower levels, and dipole decay, which describes the decay of electric

dipole processes. As the pumping processes are incoherent and only level probabilities are
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pumped, we need a more general description to address the partial incoherent superposition

in quantum systems involving these pumping and dephasing mechanisms. The density ma-

trix provides the quantum system’s most general quantum mechanical description to address

these situations[20; 21; 22].

The density matrix is formally defined as the outer product of the wavefunction and its

conjugate,

ρ = |ψ(t)⟩⟨ψ(t)|. (2.1)

The Eq.(2.1) represents the pure state density. For a complex system involving mixed

states described in terms of an ensemble average of pure states, we need to consider all the

possible states under the study. In this case, we define the mixed state density matrix as a

convex sum (weighted with sum with
∑

i pi = 1) of the pure states density matrix,

ρmix =
∑
i

piρ
pure
i =

∑
i

pi|ψ(t)⟩⟨ψ(t)|. (2.2)

.

In the following section, We will highlight important properties of the density matrix.

2.1.1.1 Properties of density matrix

The density matrix has the following important properties.

1)

ρ∗nm = ρmn (Hermiticity). (2.3)
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2)

ρ2


= ρ, for pure states

̸= ρ, for mixed states

(2.4)

3)

ρ∗nm = ρmn (Hermiticity). (2.5)

4)

Tr(ρ) = 1 (Normalization). (2.6)

5)

ρ ≥ 0 (Positivity). (2.7)

6)

Tr(ρ2)


= 1, for pure states

> 1, for mixed states

(2.8)

2.1.1.2 Time evolution of density matrix

Time evolution of density matrix Consider a physical system with a wavefunction ψ(r, t)

which satisfies the equation

iℏ
∂ψ

∂t
= Hψ, (2.9)
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Let ψ(r) be a complete set of orthonormal time-independent functions. In the Schrodinger

representation, we may write

ψ(r, t) =
∑
k

ak(t)Hψk(r), (2.10)

Then equation (2.9) can be written as follows

iℏ
∑
k

ȧkψk =
∑
k

akHψk, (2.11)

If we multiply by ψ∗
m on the left hand of each term and integrate over the space coordi-

nates, we obtain

iℏȧm =
∑
k

akHmk, (2.12)

Similarly,

iℏȧn =
∑
k

akHnk, (2.13)

Consider the following,

d

dt
(ama

∗
n) = ȧma

∗
n + amȧ

∗
n, (2.14)
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d

dt
(ama

∗
n) = ȧma

∗
n + amȧ

∗
n

=
∑
k

Hmk(aka
∗
n) + am(

1

iℏ
∑
k

akHnk)
∗

=
1

iℏ
∑
k

(
Hmk(aka

∗
n)− (ama

∗
k)Hkn

)
, (2.15)

Let,

ρ = ama
∗
n, (2.16)

then,

ρ̇mn =
i

ℏ
∑
k

(ρmkH
′
kn −H ′

mkρkn). (2.17)

.

In general,

dρ

dt
=
i

ℏ
[ρ,H] , (2.18)

represents the time evolution of the density matrix. This equation is also called the Liouville-

Von-Neumann equation. It is isomorphic to the Heisenberg equation of motion for internal

variables since ρ is also an operator.

2.1.2 Formulation of Hamiltonian

The system of a GQD placed in the field of a short optical pulse is described by the time-

dependent Hamiltonian of the following form

H(t) = H0 +H ′(t), (2.19)
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where H0 is the field-free Hamiltonian that describes the GQD system within the scope of

the tight-binding model,

H0 = −t
∑
<ij>

(ĉ†i ĉj + h.c.), (2.20)

where i and j label the sites of the QD, ĉ†i and ĉi are creation and annihilation operators

for an electron at site i, and t = −2.8 eV is the hopping integral. We also assume that the

on-site energies are zero. Numerical diagonalization of the tight binding Hamiltonian for the

GQD consisting of N atoms gives N levels with the wave functions ψn and the corresponding

energies En. The wave functions and the energy spectra are obtained numerically.

The Hamiltonian H ′(t) describes the interaction of the electron system with the optical

field as follows

H ′(t) = −e
∑
i

ĉ†i ĉiri · F(t), (2.21)

where ri is the position of the ith atom and F(t) is the time-dependent electric field of the

optical pulse. Below we consider an elliptically polarized pulse, for which the time-dependent

electric field is defined as

F(t) = Fx(t)êx + Fy(t)êy, (2.22)

where

Fx(t) = F0,xe
−(t/τ0)2 cos(ω0t),

Fy(t) = F0,ye
−(t/τ0)2 sin(ω0t)

(2.23)
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and

F0,x =
F0√
1 + ϵ2

,

F0,y =
ϵF0√
1 + ϵ2

.

(2.24)

Here F0, ϵ, ω0, and τ0, are the amplitude, ellipticity, frequency, and duration of an elliptically

polarized optical pulse. The pulse is linearly (circularly) polarized for ϵ=0 (ϵ=1). Thus, the

driver ellipticity ϵ corresponding to the incident laser pulse is defined as

ϵ =
F0,y

F0,x

. (2.25)

2.1.3 Formulation of Density Matrix equations

We study the electron dynamics of the electron system of GQD using the time evolution of

the density operator ρ̂, which is determined by the following density matrix equation

dρ̂

dt
=
i

ℏ
[ρ̂, H] =

i

ℏ
[ρ̂, H0] +

i

ℏ
[ρ̂, H ′] , (2.26)

where [Â, B̂] is the commutator of operators Â and B̂.

Taking the matrix elements of the left- and right-hand sides of Eq. (2.26) between the

states ψn of field-free Hamiltonian H0, we obtain the following matrix equation

ρ̇mn = iωmnρmn +
i

ℏ
∑
k

(ρmkH
′
kn −H ′

mkρkn), (2.27)

where ωmn = (En−Em)
ℏ , En is the energy corresponding to the state ψn, ρmn =< ψm|ρ̂|ψn >,

H ′
kn = −DknF (t), and Dkn = e < ψk|r̂|ψn > is the dipole matrix element of the dipole

operator er̂.

Employing the density matrix approach provides an opportunity to incorporate the relax-
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ation process into our model through the corresponding phenomenological relaxation rates.

To address the relaxation process corresponding to dipole decay we introduce the dephasing

time, τ , which we assume is the same for all nondiagonal matrix elements of the density

matrix. Below we set the dephasing time at τ=10 fs. With the relaxation processes, the

density matrix equation (2.27) takes the following form

ρ̇mn = iωmnρmn +
i

ℏ
∑
k

(ρmkH
′
kn −H ′

mkρkn)

−(1− δnm)ρmn/τ, (2.28)

where δnm is the Kronecker delta symbol.

With the density matrix expressed in the interaction representation,

ρ̃mn = ρmne
−iωmnt, (2.29)

the system of equations (2.28) takes the following form

˙̃ρmn =
i

ℏ
∑
k

[
ρ̃mke

iωnktH ′
kn −H ′

mkρ̃kne
iωkmt

]
−(1− δnm)ρ̃mn/τ. (2.30)

We solve the system of differential equations (2.30) numerically using the ODEINT li-

brary, which is a collection of different numerical algorithms to solve initial value problems of

ordinary differential equations [23]. The initial conditions are that, before the pulse, all the

valence band (VB) states are occupied and all the conduction band (CB) states are empty,
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i.e., ρ̃nn = 1 if n ∈ VB and ρ̃nn = 0 if n ∈ CB.

2.1.4 Dipole Moment

With the known solution of the density matrix equation (2.30), the time-dependent dipole

moment can be calculated from the following expression

d(t) =
∑
mn

ρ̃mn(t)e
iωmntDnm. (2.31)

2.1.5 Intensity of High Harmonics

The time variation of the dipole moment determines the radiation of the system. At a given

frequency ω, the intensity of the corresponding radiation is obtained from the following

expression

I(ω) = Ix(ω) + Iy(ω), (2.32)

where

Ix(ω) =
µ0ω

2

12πc
[|Fω[ḋx]|2,

Iy(ω) =
µ0ω

2

12πc
|Fω[ḋy]|2].

(2.33)

Here Fω[ḋx]|2 and Fω[ḋy]|2] are frequency Fourier transforms of the time derivatives of the

corresponding components of the dipole moment.

The order of the generated high harmonic is defined in units of ω0, i.e.,

Nω =
ω

ω0

. (2.34)
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2.1.6 Harmonic Ellipticity

The generated high harmonics in the field of an elliptically polarized pulse are also elliptically

polarized. We define the corresponding ellipticity ϵ(Nω) of theN
th
ω harmonics by the following

expression

ϵ(Nω) =
F̃y(Nω)

F̃x(Nω)

=

√
Iy(ω)

Ix(ω)
. (2.35)

where, F̃x(Nω) and F̃y(Nω) are the x and y components of the electric field of generated N th
ω

harmonics.

2.2 Numerical Solution

The theoretical study of the electron dynamics in the two-dimensional QD system involves

several steps, including designing the Hamiltonian of the system, obtaining the eigenvalues

and eigenfunctions by diagonalization of the time-independent Hamiltonian that describes

the neutral QD system, using total Hamiltonian incorporating perturbation Hamiltonian to

solve the ordinary differential equations (ODEs). Solving the large set of coupled nonlinear

ODEs requires significant effort in terms of time and accuracy.

The ODE describes a wide variety of physical phenomena. However, the ODE can be

solved analytically in only a few systems. Indeed, an analytic solution of an ODE is available

in minimal cases, indicating that numerical methods have to be employed in most cases.

Obtaining numerical solutions for ODEs is a long-established trend and has gained significant

popularity with the rise of computers.

In mathematical terms, we express the ordinary differential equation (ODE) in the fol-
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lowing form,

dy

dt
= f(y(t), t), y(t0) = y0. (2.36)

Here, the time t is used as the independent variable. An initial value problem (IVP) of

an ODE is to find a solution given an initial value x0(t0).The beginning point is to start with

x0(t0) and iteratively create a sequence x(ti) where every x(ti) is obtained from previously

calculated values of x.

2.2.1 Solution of Coupled Nonlinear Differential Equations

Runge-Kutta solvers are the most famous for ODEs in equation (2.36). These solvers are

easy to implement and can easily be applied to various problems. They come with step-size

control, and some algorithms possess dense output functionality. Another class of solvers is

implicit solvers, which are essential for stiff problems; hence, ODEs have two or more scales

of the independent variables. In this current work, we use the Scipy odeint library to solve

the coupled nonlinear ODEs of the GQD system.

Odeint is a modern library for numerically solving ODEs. The Odeint is available in

several programming languages, including C++, Fortran, Python, and Matlab. This results

in the library’s incredible applicability, especially in non-standard environments supporting

matrix types and arbitrary precision arithmetics, and can even be efficiently run on CUDA

GPUs.
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2.2.2 Fourier Transform

Fourier transform is an integral component across several disciplines, including signal pro-

cessing, differential analysis, and quantum mechanics, where the Fourier transform is used

to relate the position and momentum space,

ψ(x, t) =
1√
2π

∫ ∞

−∞
ϕ(k, t)eikxdk, (2.37)

ϕ(k, t) =
1√
2π

∫ ∞

−∞
ψ(x, t)e−ikxdx. (2.38)

We don’t need the continuous Fourier transform when a signal is discrete and periodic.

Instead, we use the discrete Fourier transform or DFT.

2.2.2.1 Discrete Fourier Transform

Discrete Fourier Transform (DFT) is a significant discrete transform that can transform

sharply between two discrete and periodic data sets. DFT is used when we have a discrete,

periodic function fn, resulting in a discrete, periodic transform Fm. The DFT and inverse

DFT are given by

Fm =
N−1∑
n=0

fne
−2πimn/N ⇔ fn =

1

N

N−1∑
m=0

Fme
2πimn/N . (2.39)
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Here, DFT contains two finite summations; it accepts an input function with N discrete

points and provides the output containing N discrete points.

2.2.2.2 Fast Fourier Transform

While solving problems in quantum physics, we prefer the efficient numerical techniques. To

solve the N -point DFT, acting on input fn of size N in equation (2.39) we perform N mul-

tiplication of fn with e2πimn/N . Furthermore, we repeat another N time for each value of m,

so in total performing N2 multiplications which result in the DFT scales like ∼ N2 with the

input of size N . This calculation involves a large number of repeated calculations, increasing

complexity. The Fast Fourier Transform (FFT) is the significantly more efficient algorithm

obtained by updating the DFT to remove redundant calculations by taking advantage of

such recurring symmetries in DFT. The most common implementation of the FFT is the

Cooley-Tuckey algorithm [24].

Our work (See Eq. (2.33)) uses the FFT using the SciPy module in Python programming

language [25]. The SciPy uses the algorithms provided by FFTPACK to calculate highly

efficient FFTs.
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CHAPTER 3

CHAPTER 3 GENERATION OF HIGH HARMONICS AND ITS
DEPENDENCE ON THE RELAXATION PROCESS

This chapter focuses on understanding the ultrafast electron dynamics of GQD, the HHG

mechanism in GQD, the effect of relaxation on HHG, and mainly, how sensitive the emission

spectra introduce finite dephasing. The significant findings presented in this chapter are

published in a Physical Review B journal titled Ultrafast electron dynamics of graphene

quantum dots in graphene quantum dots: High harmonic generation [26].

3.1 Introduction

Strong optical pulses, the amplitudes of which are comparable to internal electric fields in

solids, are intensively used to probe and control both the transport and optical properties

of electron systems[27; 28; 29; 30; 31; 32; 33; 34; 35; 36; 37; 38; 39; 40]. The electron

dynamics in such pulses is highly nonlinear, which results in such nonlinear optical effects

as nonlinear absorption and high harmonic generation[41]. The High Harmonic Generation

(HHG) has a special role since it allows to convert a low frequency pulse in the visible or

infrared range into the high frequency radiation, for example, extreme ultraviolet or soft

X-ray[42; 43; 44; 18; 45; 46; 47; 48; 49]. The mechanism, which is responsible for generation

of high frequency harmonics, is different for a system of randomly positioned atoms and

a system of a crystalline solid. High harmonic generation in atomic or molecular gases

occurs through a three step process, which consists of a tunnel ionization of an electron, its

acceleration in the laser field, and a subsequent recollision with an atom[50]. Such process
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results in unique linear dependence of the HHG cutoff on the energy of the pulse[42].

In solids, the HHG occurs through the combination of two types of dynamics induced

by the field of the pulse: interband and intraband dynamics[18; 45; 46; 51; 52; 53]. Due to

the interband dynamics, the electrons are redistributed between the bands of a solid, while,

due to the intraband dynamics, the electrons are transferred through the non-parabolic

bands, which results in nonlinear optical response. Both of these dynamics contribute to

the generation of high harmonics. Which dynamics provides the main contribution depends

on the band gap of a solid and the parameters of the pulse, e.g., its frequency. The unique

property of HHG in solids is that the HHG energy cutoff has linear dependence on the pulse

amplitude[18], while in gases, the HHG cutoff has linear dependence on the pulse intensity

[42].

HHG is one of the characteristics of the nonlinear optical response of solids. Their

nonlinear optical properties strongly depend on the band structure, impurity level, and

other internal characteristics of solids. For example, tin sulphide (SnS) has shown excellent

nonlinear optical properties due to tunable bandgap and fast carrier mobility[54], a system

consisting of a few layer of bismuthene has shown strong nonlinear refraction effect and

all optical switching[55], graphdiyne has demonstrated relatively large nonlinear refractive

index[56]. A new family of two dimensional (2D) materials, 2D transition metal carbides or

nitrides (MXenes), has shown promising nonlinear optical properties, which can be tuned by

varying the ratios of M or X elements and their surface terminations[57].

Nonlinear optical properties of solids can also be tuned by changing their dimensionality,
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making them two dimensional, one dimensional, or zero dimensional systems. Zero dimen-

sional systems, which are called quantum dots (QDs) or artificial atoms[58; 59], consist of

a finite number of atoms of the corresponding solid. The QDs have many applications in

different fields of science[60; 61; 62; 63; 64]. Due to dimensional quantization, the energy

spectra of QDs are discrete, which is similar to spectra of regular atoms. At the same time,

the QDs still have the features of the crystal structure of the corresponding solid. Namely,

within the region of a QD, the atoms are placed periodically and the discrete energy levels

of the QD can be usually identified as belonging to different bands of the solid. Thus, the

HHG spectra of QDs can resemble the ones of the corresponding solids. In Ref. [65], a

transformation of the HHG spectrum from the atomic one to the spectrum of the crystalline

solid is traced within the one dimensional model. It was shown that such a transformation

occurs for the QD consisting of just six nuclei.

In the present work, we consider HHG in QDs, which are based on graphene[66; 67; 68; 69].

Graphene is a monolayer of carbon atoms with honeycomb crystal strucure[70; 71]. It has

unique transport and optical properties, which are related to its specific relativistic low-

energy dispersion of the Dirac type[72; 73; 74; 75]. In the strong field of an ultrashort

optical pulse, such dispersion results in interference patterns in the conduction band popu-

lation distribution in the reciprocal space[76]. In graphene with broken inversion symmetry,

ultrashort circularly polarized optical pulse results in ultrafast valley polarization[77], which

occurs due to the valley-dependent topological resonance[37; 77]. Graphene QDs, interact-

ing with a short optical pulse, have also shown nonlinear absorption properties[78]. The



34

nonlinear absorption of other monolayer QD systems, transition-metal dichalcogenide QDs,

has also been reported in Ref. [79]. Such nonlinear optical response has been studied for

ultrashort pulses, the duration of which is much less than the characteristic dephasing or

relaxation time. In this case, the electron dynamics during the pulse is coherent. In the

present paper, we address the problem of a finite relaxation rate and study how the relax-

ation processes can modify graphene QD’s nonlinear optical response, such as HHG. It has

been previously shown that the HHG is sensitive to the relaxation rate in three-dimensional

solids[53].

The relaxation processes result in non-coherent electron dynamics in the field of the pulse.

Such dynamics is described within the density matrix approach[21; 20], which is used below

in the present paper. We also consider only the internal electron dynamics within the QD

region without taking into account the possibility of ionization of the QD.

3.2 Results and Discussion

We consider a graphene QD, which consists of N = 24 carbon atoms, see Fig. 3.1. The

distance between the nearest neighbor atoms is a = 1.42Å. The electron system of such a

QD is described within the tight-binding model with the Hamiltonian defined in eq.(2.20).

We consider a graphene QD, the structure of which is shown in Fig. 3.1. It consists of

24 carbon atoms and has D6h symmetry. The energy spectrum of such a QD is obtained

within the tight-binding model and consists of singly, doubly, and triply degenerate levels.

The corresponding energy spectrum is shown in Fig. 3.2. Twelve levels with the negative
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energies are initially occupied and belong to the VB. The levels with the positive energies

belong to the CB. The band gap for the QD is 3 eV. The maximum energy difference between

the CB and the VB levels is around 16 eV. In this case, if the high harmonics are generated

through transitions between QD levels then 16 eV should be the maximum frequency that can

be generated in such a QD. The time variations of populations of QD levels, i.e., ”dressing”

of the QD states due to electron-pulse interactions, result in harmonics with the frequencies

larger than 16 eV, as discussed below.

We consider graphene QD of a small size only, i.e., QD with 24 atoms. Such QD has

Figure 3.1 Graphene quantum dot consisting of 24 carbon atoms. The incident laser pulse
is linearly polarized along the x-direction. The distance between the nearest neighbor atoms
is a = 1.42Å.
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relatively large band gap, 3 eV, so for the optical pulse with the frequency of 1-2 eV there is

no resonant transitions within the system. With increasing the QD size, the band gap due

to dimensional quantization decreases, resulting in resonant transitions at relatively small

frequencies of the pulse. At the same time, the main effects of the relaxation processes on

the HHG in graphene QDs are already captured by the QDs of a small size.

We apply a linearly polarized pulse, the profile of which is shown in Fig. 3.3(a) for the

Figure 3.2 Energy spectrum of graphene QD shown in Fig. 3.1. The spectrum consists
of singly, doubly, and triply degenerate levels. Levels with the negative energy correspond
to the valence band while the levels with the positive energy correspond to the conduction
band. Before the pulse, all valence band levels are occupied.
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field amplitude of F0 = 0.5 V/Åand the pulse frequency of ℏω0 = 1 eV. From the solution

of the density matrix equation, we obtain the CB population NCB,

NCB(t) =
∑

m∈CB

ρ̃mm(t), (3.1)

and the time-dependent dipole moment of the electron system. Their typical time depen-

Figure 3.3 Panel (a): profile of a linearly polarized pulse. The pulse amplitude is 0.5
V/Å, and the frequency of the pulse is ℏω0 = 1 eV. Panel (b): conduction band population
NCB as a function of time. The QD is in the field of the pulse shown in panel (a). The
conduction band population is normalized by the number of electrons, i.e., it is divided by
12. The corresponding dipole moment is shown in panel (c). Only x component of the dipole
moment is nonzero. The dipole moment roughly follows the profile of the electric field shown
in panel (a).
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dences are shown in Fig. 3.3(b) and (c). In Eq. (4.1), the sum is over all QD CB states.

The CB population [see Eq. (4.1)] illustrates highly irreversible electron dynamics when the

residual CB population, i.e., the population after the pulse, is comparable to the maximum

CB population during the pulse. The positions of the maxima of NCB are correlated with

the maxima of |F (t)|.

The typical profile of the dipole moment of QD is shown in Fig. 3.3(c). It is roughly

proportional to the electric field of the pulse, but with some nonlinear features, which finally

determine the nonlinear optical response of the system and generation of high harmonics in

the radiation spectrum.

The electron dynamics in the field of the optical pulse strongly depends on the relaxation

processes. To illustrate such dependence we show in Fig. 3.4 the CB population for different

relaxation times, τ . The field amplitude is 0.5 V/Å. Here, we consider two frequencies of

the pulse, which are both below the band gap of graphene QG: ℏω0 = 1 eV, which is almost

three times less than the QD band gap, and ℏω0 = 2 eV. One of the characteristics of the

electron dynamics is its reversibility, i.e., returning of the system to its initial state after the

pulse. We introduce quantitative characteristics of the reversibility, η, as the ratio of the CB

population after the pulse and the maximum CB population during the pulse,

η =
N residual

CB

Nmax
CB

. (3.2)

The ratio η is between zero and one, where η = 0 corresponds to a perfectly reversible

dynamics, while η = 1 corresponds to a highly irreversible dynamics.

For small frequency of the pulse, see Fig. 3.4(a), with increasing the relaxation time, the
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electron dynamics becomes more reversible. Here, the reversibility parameter η decreases

from 0.98 for τ = 4 fs to 0.6 for τ = 20 fs. Thus, for τ = 4 fs, the electron dynamics is highly

irreversible, while, for τ = 20 fs, the electron dynamics is partially reversible. Such partial

reversibility of the electron dynamics is related to its coherence, which is more preserved for

larger values of τ .

Different situation occurs at larger frequency of the pulse, see Fig. 3.4(b), where the

frequency of the pulse is ℏω = 2 eV. In this case, the electron dynamics is much less sensitive

to the relaxation time and the dynamics is highly irreversible for all values of τ , see Fig.

3.4(b). Here, for all cases, the parameter η is close to 0.99. At the same time, the whole

CB population is much larger than the CB population for the low frequency case, see Fig.

3.4(a). For example, for ℏω0 = 1 eV and τ = 4 fs the residual CB population is around 0.04,

Figure 3.4 Conduction band population as a function of time. The conduction band popu-
lation is normalized by the number of electrons, i.e., it is divided by 12. The corresponding
relaxation times are shown next to the lines. The frequency of the pulse is ℏω0 = 1 eV (a)
and ℏω0 = 2 eV (b). The pulse amplitude is 0.5 V/Å.
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see Fig. 3.4(a), while for ℏω0 = 2 eV and τ = 4 fs it is around 0.2, see Fig. 3.4(b).

The total CB population shown in Fig. 3.4 describes the net effect of the pulse on the QD.

To clarify how different levels of the QD respond to the optical field we show in Fig. 3.5 the

residual populations of different CB levels. As expected, the levels with the lower energies

are generally more populated compared to the higher energy levels, but this dependence

is not monotonic and some higher energy levels are more populated than the lower energy

levels. This is due to properties of the dipole matrix elements, which do not show monotonic

dependence on the energy of the levels.

The dependences of the populations of individual levels on the relaxation time are sen-

sitive to the frequency of the pulse. For the pulse frequency of 1 eV, see Fig. 3.5(a), with

increasing the relaxation time, the populations of CB levels are suppressed. Such suppres-

sion is more pronounced for the higher energy levels. For example, when the relaxation time

increases from 4 fs to 20 fs, the population of the lowest CB level decreases by a factor of

≈ 2.5, while the population of the highest energy level decreases by almost 11 times. When

the frequency of the pulse becomes close to the band gap, see Fig. 3.5(b), the populations

of the energy levels have weak dependence on the relaxation time. When the relaxation

time increases from 4 fs to 20 fs, the populations of the levels change by less than ≈ 20

%. Also, for all CB levels except one, with increasing the relaxation time, the populations

decrease, but for the second CB level we observe a different behavior. For this level, when

the frequency of the pulse is 2 eV, with increasing τ , its population slightly increases. This

is related to triple degeneracy of the second CB level, see Fig. 3.2, which results in large
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density of states associated with this level.

The radiated power P (ω) of corresponding emission spectra of the QD is calculated from

Eq. (3.3)

P (ω) =
µ0ω

2

12πc
|Fω[ḋx]|2, (3.3)

and normalized power, PN(ω), of the spectra is obtained from Eq (3.4)

PN(ω) =
P (ω)

P (ω0)
. (3.4)

Since polarization of the pulse is along the axis of symmetry of graphene QD, i.e., along

the x-axis, there is no induced dipole moment along the y direction and the dipole radiation

Figure 3.5 Residual population of conduction band levels. The pulse amplitude is 0.5 V/Å.
The corresponding dephasing times are marked in each panel. The frequency of the pulse is
ℏω0 = 1 eV (a) and ℏω0 = 2 eV (b).
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from the system is linearly polarized along the x direction. In Fig. 3.6, we show the radiation

spectra for three different frequencies of the pulse and different values of the relaxation time.

Here, we added the results for the frequency of ℏω0 = 3.1 eV, which is a little large than the

band gap. We did not study the electron dynamics at this frequency in great details, since,

Figure 3.6 Emission spectrum of graphene QD. High harmonics with well-defined cutoffs
are clearly visible in the spectrum. The corresponding relaxation times are marked for each
graph. The frequency of the pulse is ℏω0 = 1 eV in column (a), ℏω0 = 2 eV in column (b),
and ℏω0 = 3.1 eV in column (c). With increasing the relaxation time, the emission spectrum
becomes more noisy with less defined high harmonic peaks. The pulse amplitude is F0 = 0.4
V/Å.
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as we can see from Fig. 3.6, there are only a few high harmonics that are generated in this

case, see column (c) in Fig. 3.6. For example, at the relaxation time of 20 fs, the maximum

harmonic that is generated at ℏω0 = 3.1 eV is 5, while at the frequency of 1 eV, it is 13.

Since the QD has an inversion symmetry, only odd harmonics are generated[80]. The

radiation spectra have clear cutoff frequencies, which depend both on the relaxation time and

the frequency of the pulse. Namely, with increasing the frequency of the pulse, the maximum

harmonic order that is generated decreases and, with increasing the relaxation time, the

cutoff frequency also decreases. Thus, when the electron dynamics becomes incoherent, i.e.,

at small relaxation times, the system generates more high harmonics, see Fig. 3.6, compared

to the coherent case, τ = 20 fs. Such behavior is correlated with the population of the

CB levels shown in Fig. 3.5, where with increasing τ , the higher energy levels become less

populated, which results in suppression of the high harmonics.

Comparing the results for different frequencies of the pulse, see columns (a)-(c) in Fig.

3.6, we can say that, with increasing the frequency of the pulse, the energy cutoff increases.

For example, for the relaxation time of τ = 4 fs, the highest harmonic that is generated by

the pulse with the frequency of 1 eV [see column(a)] is 15 with the corresponding energy of

15 eV. For the same relaxation time, the highest harmonic for the pulse with the frequency

of 2 eV [see column (b)] is 11, the energy of which is 22 eV. At the same time, when the

frequency of the pulse reaches the band gap, see column (c) in Fig. 3.6, the maximum

harmonics is 7 with the corresponding energy of 21.7 eV, which suggests that the energy

cutoff reaches a saturated value when the frequency of the pulse approaches the band gap.
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Similarly, looking at the results for the relaxation time of 20 fs, see Fig. 3.6, we can find

that the maximum energies of the high harmonics are 13 eV, 18 eV, and 15.5 eV, for the

pulse frequencies of 1 eV, 2 eV, and 3.1 eV, respectively. In this case, there is even a small

suppression of the energy cutoff when the frequency of the pulse becomes close to the band

gap.

Thus, the laser pulse with the higher frequency, but below the band gap, strongly perturbs

the system, resulting in generation of higher frequency harmonics and higher energy cutoff

comparing to the case of the low frequency pulse. Such behavior is correlated with the results

shown in Fig. 3.5, where the populations of the CB levels with high energies are larger for

the higher frequency pulse.

Another property of the emission spectra shown in Fig. 3.6 is that, with decreasing

the relaxation time, the emission spectra become less noisy and with well defined harmonic

peaks. For example, for the relaxation time of τ = 20 fs, the emission spectrum between the

fifth and the seventh harmonics has extra noisy features which disappear at the relaxation

time of τ = 4 fs. The reason for such behavior is that, for a shorter relaxation time,

fewer trajectories contribute to a given harmonic [81; 82], while for a longer relaxation time,

multiple trajectories, which occur during the coherent electron dynamics, result in extra

interference effects and complex emission spectra[83].

The dependencies of the intensities of high harmonics on the pulse amplitude are shown

in Fig. 3.7 for different relaxation times and different frequencies of the pulse. Only the first

four lowest harmonics are shown. When the frequency of the pulse is 1 eV, see Fig. 3.7(a)-
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(d), the intensities of the high harmonics monotonically increase with F0. With increasing

the harmonic order, the dependence of its intensity on F0 becomes stronger. For example,

for Nω = 3, the intensity has a weak dependence on F0 and is almost constant at 10−3, while

for Nω = 9, the intensity changes from 10−8 at small F0 to 10−3 at large F0. Such behavior

is similar for all relaxation times.

When the frequency of the pulse becomes close to the band gap, see Fig. 3.7(e)-(h), where

the frequency of the pulse is 2 eV, the intensities of high harmonics become non-monotonic

functions of the field amplitude for low harmonics. Namely, the intensities of the third and

the fifth harmonics have maxima at the field amplitude close to 0.4 V/Å. At the same time,

the intensities of the higher harmonics, Nω = 7 and 9, have monotonic dependence on F0.

Another difference between the low and the high frequencies of the pulse is that the ninth

harmonic (Nω = 9) has much smaller intensity for the case of ℏω0 = 2 eV compared to the

Figure 3.7 Intensity of the first four high harmonics (Nω = 3, 5, 7, and 9) versus the
amplitude of the optical pulse, F0. The frequency of the pulse is ℏω0 = 1 eV in panels
(a)-(d) and 2 eV in panels (e)-(h). The relaxation time is 4 fs (a) & ( e), 10 fs (b) & (f), 15
fs (c) & (g), and 20 fs (d) & (h).



46

Figure 3.8 Intensity of the first four high harmonics (Nω = 3, 5, 7, and 9) versus the
relaxation time. The frequency of the pulse is ℏω0 = 1 eV in panels (a)-(d) and 2 eV in
panels (e)-(h). The pulse amplitude is 0.1 V/Å(a) & ( e), 0.35 V/Å(b) & (f), 0.5 V/Å(c) &
(g), and 0.75 V/Å(d) & (h).

one of ℏω0 = 1 eV. This is related to the fact that, for the pulse frequency of 2 eV, the ninth

harmonics has the energy of 18 eV, which is larger than the maximum range of singe particle

energies within the QD, see Fig. 3.2, where this range is around 16 eV. As a result the ninth

harmonic is generated due to collective transitions between many levels, which results to its

low intensity for the pulse with 2 eV frequency.

To clarify the effect of relaxation time on the radiation spectra, we show in Fig. 3.8

the intensities of the first four harmonics as functions of the relaxation time. In panels (a)

and (e), which correspond to the low field amplitude of 0.1 V/Å, only first three harmonics

are shown since the fourth harmonics (Nω = 9) is not generated in this case. For all cases,

shown in Fig. 3.8, the intensities monotonically increase with the relaxation time. Thus,

the largest intensities of the high harmonics are realized for the coherent electron dynamics,
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i.e., for the large relaxation time. The radiation spectra also show a stronger sensitivity to

the relaxation processes at small field amplitude. Namely, at F0 = 0.1 V/Å, the intensities

of the high harmonics change by almost two orders of magnitude when τ increases from 4 fs

to 20 fs, see Fig. 3.8(a) and (e), while at F0 = 0.75 V/Å, the corresponding variations of the

intensities are ten times smaller, see Fig. 3.8(d) and (h).

The intensities of the high harmonics in Figs. 3.6-3.8 are shown in units of the intensity

of the main peak at the frequency ω0. The intensity of the main peak can be estimated

from the calculated dipole moment and its Fourier transform. For example, for the field

amplitude of 0.5 V/Å, the frequency of the pulse ℏω0 = 1 eV, and relaxation time of 4 fs,

the power radiated by the QD at frequency ω0 is around 10 W/cm2. Then, as follows from

Figs. 3.6-3.8, the power radiated by the QD at the frequencies of high harmonics is a few

orders of magnitude smaller.

One of the important characteristics of the radiation spectrum is its high harmonic cutoff,

which is defined as the maximum harmonic order that can be generated during the pulse.

In Fig. 3.9, the high harmonic cutoff is shown as a function of the pulse amplitude, F0, for

different frequencies of the pulse and different relaxation times. The curve for the relaxation

time of 10 fs coincides with the one for τ = 4 fs. When the relaxation time increases to 20 fs

then, as we mentioned above, the corresponding harmonic cutoff decreases. The dependence

of the harmonic cutoff on the field amplitude is different for different frequencies of the pulse.

For small frequency, ℏω0 = 1 eV, the dependence of the harmonic cutoff on F0 is almost

linear, see Fig. 3.9(a). The linear dependence of the HHG cutoff on the field amplitude is



48

also observed in solids, both two dimensional and three dimensional[18].

Different behavior is observed for larger frequencies of the pulse, ℏω0 = 2 eV and 3.1 eV,

see Fig. 3.9(b) and (c). In this case, there is a clear deviation from the linear dependence.

Namely, at small field amplitudes, F0 < 0.35 V/Å, there is almost linear dependence of the

harmonic cutoff on F0, while at larger field amplitudes, F0 > 0.35 V/Å, the harmonic cutoff

becomes suppressed. Here, for the relaxation time of 20 fs, there is a saturation behavior

and the harmonic cutoff is constant, while for the smaller relaxation times, 4 fs and 10 fs, the

harmonic cutoff is constant within small range of F0, up to 0.5 V/Å, and then it increases

with the slope that is less then the one at small field amplitudes, F0 < 0.35 V/Å.

When the frequency of the pulse becomes almost equal to the band gap, ℏω0 = 3.1 eV, the

harmonic cutoff as the function of the field amplitude, see Fig. 3.9(c), also shows dependence

with the variable slope. Here, the slope is large at small field amplitude, F0 < 0.1 V/Å, then

it decreases for 0.1 < F0 < 0.35 V/Å, becomes zero within some range of F0, and increases

again.

Thus, for the high frequencies of the pulse, ℏω0 > 2 eV, there is a suppression of the

harmonic cutoff at large field amplitudes. Such property can be attributed to a finite number

of energy levels within graphene QD, which results in finite energy range of around 16 eV,

[see Fig. 3.2]. The harmonic cutoff in the HHG spectrum determines also the corresponding

energy cutoff, which, for ℏω0 = 2 eV, is around 18 eV for the relaxation time of 20 fs and 26

eV for τ = 10 fs. These values are larger than the QD energy range of 16 eV, which means

that, at large field amplitude, the harmonic cutoff is determined by simultaneous transitions
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between many single particle levels.

For all frequencies of the laser pulse, the harmonic cutoff is larger for the system with the

smaller relaxation time, i.e., for the less coherent system. It is related to the fact that, for

the coherent system, the electron dynamics is more reversible, see Fig. 3.4, which results in

less population of the high-energy CB levels and correspondingly in smaller harmonic cutoff.

3.3 Conclusion

Due to dimensional quantization, a graphene QD has an intrinsic band gap, which depends

on the size of the dot. As a result, in the QD of a small size, an ultrafast electron dynamics

in the field of a strong optical pulse can be both reversible and irreversible depending on

the frequency of the pulse. If the frequency of the pulse is much less than the band gap

of the QD then the electron dynamics is almost reversible, i.e., after the pulse, the electron

system returns to its initial state. But if the frequency of the pulse is comparable to the

Figure 3.9 Harmonic cutoff versus the amplitude of the optical pulse. The frequency of the
pulse is ℏω0 = 1 eV (a), 2 eV (b), and 3.1 eV (c). The relaxation time is shown next to the
corresponding line in each panel. The first data point in all panels correspond to the field
amplitude of 0.01 V/Å.
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band gap then the electron dynamics is highly irreversible, i.e., the residual population of

the excited QD states is almost the same as their maximum population during the pulse.

The reversibility of electron dynamics is strongly affected by the dephasing processes. The

dephasing processes make the electron dynamics incoherent and more irreversible. Since the

electron dynamics completely determines the nonlinear optical response of the system, such

as high harmonic generation, then the nonlinear optics of graphene QDs strongly depends

on the dephasing processes.

The dephasing, which is introduced through relaxation of the nondiagonal elements of

the density matrix, affects both the intensities of the high harmonics and the harmonic

cutoff. With increasing the relaxation time, i.e., when the electron dynamics becomes more

coherent, the intensities of harmonics increase. This can be attributed to the fact that for

the coherent dynamics more paths can contribute to formation of high harmonics coherently,

resulting in larger intensity.

The effect of relaxation on the harmonic cutoff is also related to the reversibility of elec-

tron dynamics. Namely, with increasing the relaxation time the electron dynamics becomes

more reversible with less population of the highly excited quantum dot levels. As a result

the harmonic cutoff decreases with increasing the relaxation time. As a function of the field

amplitude, the harmonic cutoff shows almost linear dependence at small frequencies of the

pulse when the corresponding energy cutoff is less than the energy range introduced by the

lowest and the highest energy levels in the quantum dot. When this energy range becomes

comparable to the energy cutoff, which happens at large frequencies of the pulse, then the
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cutoff shows a saturated behavior as a function of the pulse amplitude.

For experimental verification of the high harmonic generation from graphene QDs, an

array of QDs should be prepared to enhance the intensity of the corresponding radiation.

The measurements can be done following the standard experimental setup, where the emitted

radiation is routed to a spectrometer[84]. An array of graphene QDs can be also used for

generation of high frequency optical pulses. Although the intensity of such pulses can be

low, the pulses can be generated in the hard ultraviolet region.
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CHAPTER 4

CHAPTER 4 HIGH HARMONIC GENERATION GOVERNED BY EDGE
STATES IN TRIANGULAR GRAPHENE QUANTUM DOTS

This chapter investigates the role of zero energy in-gap edge states in triangular GQDs

and how these edge states modify the HHG process on the zigzag-edged triangular GQDs,

considering the cases having even and odd numbers of edge states. We studied the ultrafast

electron dynamics in the triangular GQDs. We observed the significant suppression of even

high-order harmonics in the triangular GQDs, which have an even number of edge states.

The findings presented in this chapter are published in a Physical Review B journal titled

High harmonic generation in triangular graphene quantum dots [85].

4.1 Introduction

Interaction of optical pulses with solids and gases is characterized by nonlinear effects, such

as nonlinear absorption and high harmonic generation (HHG) [42; 43; 44; 18; 45; 46; 47; 48;

49].The generation of high harmonics, which is due to highly nonlinear electron dynamics

in the field of the pulse, results in efficient frequency conversion, for example, conversion of

visible light into extreme ultraviolet light. The HHG has been observed experimentally both

in gases, i.e., in systems with randomly positioned atoms, and in solids, where the atoms

have periodic spatial arrangements. The physics behind the generation of high harmonics in

these two systems is different. HHG in gases occurs through a three-step process, which

is a tunnel ionization of an electron, its acceleration in a laser field, and a subsequent

recollision with the same atom [42; 50].In solids, the distance between the atoms is small
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enough and the recollision after electron excitation can occur with a different atom. Also,

in solids, the generation of high harmonics is usually described in terms of interband and

intraband electron dynamics [18; 45; 46; 51; 52; 53].Within this picture, the field of a pulse

redistributes electrons between the bands of a solid, which is described by the interband

dynamics, and the excited electrons are transferred through the nonparabolic bands, which

results in nonlinear intraband electron dynamics. The high harmonics are generated during

both of these processes and depending on the band gap of a solid and the frequency of a

pulse, either interband or intraband dynamics gives the main contribution to HHG. One of

the differences in HHG in solids and gases is the dependence of the HHG energy cutoff on

the amplitude of the pulse. While, for solids, such dependence is linear [18], for gases, the

HHG energy cutoff has linear dependence on the pulse intensity [42].

To observe the high harmonics in solids, which are generated by a short optical pulse, the

intensity of the pulse should be relatively large, with the corresponding amplitude that is

comparable to internal electric fields in solids. Such strong and short pulses were intensively

used to control the transport and optical properties of solids [27; 28; 29; 30; 31; 32; 33; 34;

35; 36; 37; 38; 39; 40]. Such control is determined by ultrafast nonlinear electron dynamics in

the field of the pulse. The nonlinear electron dynamics and correspondingly the generation

of high harmonics can be tuned by changing the band gap of the material, the level of the

internal disorder, and also by changing the dimensionality of solids going from 3D to 2D,

then to 1D, and finally to zero-dimensional systems. Zero-dimensional systems or quantum

dots (QDs) [58; 59] have a finite size and a finite number of atoms of the corresponding
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solid. They can be also considered as very large artificial atoms with quasiperiodic spatial

structure. Due to dimensional quantization, the energy spectra of QDs are discrete, which

results in unique optical properties of QDs and the possibility to use them as an energy

storage [60; 61; 62; 63; 64]. Although the energy spectra of QDs are discrete; generally, the

corresponding QDs’ states can be identified as belonging to the conduction of valence bands

of the original solid. The electron dynamics in a QD in the field of an optical pulse can be

described as transitions between QD states. Thus, such a dynamics can be also described as a

combination of intraband and interband dynamics. Generation of high harmonics in quantum

dots is a manifestation of nonlinear features of both intraband and interband dynamics. For

small QDs, electron transitions to continua that are similar to the ones in gases become

important. Thus, by varying the size of a QD, it is possible to trace a transformation of

a HHG spectrum from the atomic one to the crystalline solid one [65]. In Ref.[65], it was

shown that such a transformation occurs for a QD that consists of just six atoms.

In addition to discrete energy spectra of QDs, QDs of topological materials can have some

other interesting features. Namely, under some conditions, there are in-gap edge states, which

can change the nonlinear optical response of such QDs. One of the topological materials with

nontrivial in-gap edge states is graphene [66; 67; 68; 69]. Graphene is a monolayer of carbon

atoms with honeycomb crystal structure [70; 71], which results in a specific relativistic low-

energy dispersion of the Dirac type [72; 73; 74; 75]. A graphene monolayer placed in a strong

optical pulse shows interference patterns in the conduction band population distribution in

the reciprocal space [76]. When the inversion symmetry of graphene is broken, e.g., in
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graphene-like materials such as transition-metal dichalcogenides, an ultrashort circularly

polarized optical pulse produces a finite residual valley polarization [37; 77]. In graphene

QDs, the nonlinear optical response, which depends on the size and the shape of QDs, is

also expected. For example, the nonlinear absorption by graphene QDs of different sizes has

been reported theoretically in Ref. [78], while the HHG from a small hexagonal graphene

QD with just 24 atoms has been studied numerically in Ref. [26], where the dependence of

the HHG spectra on the relaxation rate has been reported. In graphene QDs considered in

Ref. [26], there are no edge states due to the hexagonal shape of the QDs. At the same

time, if a graphene QD has zigzag edges, then there are corresponding in-gap degenerate

edge states. Such edge states can be populated by electrons, for example, by applying a gate

potential. The population of the edge states follows the atomic physics Hund’s rule, which

is also valid for graphene QDs; see Ref. [86]. The dependence of HHG in CdSe and CdS

quantum dots has been studied experimentally in Ref. [87] for quantum dots of small sizes,

2 and 3 nm.

In the present work, we consider nonlinear optical properties of graphene QDs with zigzag

edges, which can be partially occupied. We characterize the nonlinear optical response of

such graphene QDs in terms of HHG. The population of the in-gap edge states before the

optical pulse increases the in-gap electron density, which can change the nonlinear electron

dynamics in the field of the pulse and correspondingly affect the generation of high harmonics.
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4.2 Results and Discussion

We consider graphene QDs of triangular shape with zigzag edges. Such QDs are shown in

Fig. 4.1 for two QD sizes, with 22 and 46 atoms in the dot. The energy spectra of TGQDs

are obtained within the tight-binding model and are shown in Fig. 4.2. For all sizes of

QDs, the edge states are clearly visible. They have zero energy and are degenerate. The

number of edge states depends on the size of TGQD, where for 22-atom and 46-atom QDs,

the number of edge states is even, while for 33-atom QD, this number is odd. Below, we

will mainly study the QDs with an even number of edge states. In QDs, due to dimensional

quantization, the energy spectra have a finite band gap, which separates the valence and

conduction band states. Here, we define the valence band states as the states with negative

energies, while the conduction band states are the states with positive energies. For the

sizes of the QDs that we consider below, the band gap between the conduction and valence

band states is around 4 eV. There are also degenerate in-gap edge states with zero energy.

The edge states are mainly localized near the edges of QDs. The triangular graphene QDs

have D3h symmetry group, and the corresponding energy states are characterized by the

irreducible representation of D3h, which are 1D A
′′
1 and A

′′
2 and 2D E

′′
. All edge states

belong to A
′′
2 representation, while the bulk conduction band and valence band states are

mainly A
′′
1 and E

′′
. There is a strong dipole coupling between the edge states and lowest CB

and VB states, which belong to either A
′′
1 or E

′′
representations.

The edge states lower the effective band gap, making it close to 2 eV. Each level in Fig. 4.4

is double-degenerate due to spin. Below, we are interested in the effects of edge state on the
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Figure 4.1 Triangular graphene quantum dots with zigzag edges. The quantum dots consist
of 22 atoms (a) and 46 atoms (b). The distance between the nearest neighbor atoms is
a = 1.42Å.



58

Figure 4.2 Energy spectra of TGQDs consisting of 22 atoms (a), 33 atoms (b), and 46
atoms (c). States with positive energies belong to the conduction band, states with negative
energies correspond to the valence band, and zero-energy degenerate states are the edge
states. The number of edge states is two, three, and four for 22-,33-, and 46-atom TGQDs,
respectively.
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nonlinear optical properties of TGQDs. Thus, we consider the cases when all valence band

states are fully occupied and the in-gap edge states are partially occupied. Therefore, all

valence band states, i.e., both spin-up and spin-down states, are occupied, and the population

of the edge states follows the Hund’s rule, which means that extra electrons first populate

the degenerate edge states with one spin component, for example, a spin-up component.

Thus, below, we consider the following situation: for a spin-down component, all valence

band states are populated and edge states are empty, while for a spin-up component, all

valence band states and NPES edge states are populated. We change the population of the

edge states to see their effect on the nonlinear optical response of graphene QDs. Since

the populations of the spin-down electron states remain the same; below, we study only the

response due to spin-up states with variable populations of the edge states. For triangular

graphene QDs shown in Fig. 4.1, only the y axis is the axis of symmetry. In this case, if a

linearly polarized incident optical pulse is y polarized then the generated dipole moment has

only the y component, while if an incident pulse is x polarized, then both x and y components

of the generated dipole moment are nonzero. First we analyze the response of the system

to the pulse polarized in the x direction. The profile of the corresponding electric field and

the x and y components of the generated dipole moment are shown in Fig. 4.3. While the

x component of the dipole moment follows the profile of the electric field of the pulse, the y

component of the dipole moment shows high-frequency oscillations.

The interaction of an optical pulse with the electron system of the TGQD results in a

redistribution of electrons between the states of the TGQD. To characterize such a redis-
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Figure 4.3 Panel (a): Profile of a linearly polarized optical pulse. The pulse amplitude is
0.1 V/Å, and the frequency is ℏω0 = 1 eV. The pulse is polarized in the x direction.The
corresponding generated dipole moment is shown in panels (b) (x component) and (c) (y
component) as a function of time. The number of atoms in the quantum dot is 46. No edge
states are populated before the pulse.
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tribution, we introduce two characteristics that determine the electron populations of the

excited states. The first one defines the number of excited electrons in the conduction band

states,

NEE,CB(t) =
∑

m∈CB

ρ̃mm(t). (4.1)

Here the sum is over all TGQD CB states.

Another characteristic of the level of excitation is defined as the number of excited elec-

trons in CB states and in the initially empty edge states,

NEE(t) = NEE,CB(t) +
∑

m∈ES, m/∈PES

ρ̃mm(t), (4.2)

where ES means the edge states and PES means initially, i.e, before the pulse, populated

edge states.

The strongest interlevel coupling and the corresponding interlevel electron transfer is

realized between the states with the smallest energy separation, i.e., between the valence

band states and the edge states and between the edge states and the conduction band states.

Such couplings determine the leading contribution to the nonlinear electron dynamics in the

field of the pulse. To illustrate this property we show in Fig. 4.4 the time-dependent

populations NEE(t) and NEE,CB(t) for different values of NPES. The results are shown for a

22-atom QD with two edge states but similar results are expected for other sizes of TGQD.

When the edge states are not initially populated, see Fig. 4.4(a), then the main electron
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transfer occurs between the valence band states and the edge states; i.e., the total population

of the conduction band states is small, around 0.01, while the population of the edge states

is relatively large, around 0.1. Here the number 0.1 describes the electron transfer to the

two edge states, which means that the electron transfer to one edge state is 0.05. If only

one edge state is populated, see Fig. 4.4(b), then the total number of electrons transferred

to the conduction band is 0.05, which is similar to the number of electrons transferred from

the valence band states to the edge states in case (a). If both edge states are occupied, see

Fig. 4.4(c), then the number of electrons transferred from the edge states to the conduction

band states is around 0.1, which is similar to the total number of electrons transferred from

the valence band states to the edge states in case (a).

The strength of the interlevel electron transfer depends on the frequency of the pulse.

In Fig. 4.5, the residual populations of the conduction band states and the edge states

are shown for two different frequencies of the pulse and its different amplitudes. The QD

consists of 22 atoms and has two edge states. Initially, all edge states are populated. For

all parameters of the pulse, the residual populations of the edge states remain the same,

which means that the electron transfer from the edge states to the conduction band states is

compensated by the electron transfer from the valence band states to the edge states. Also,

for a larger frequency of the pulse, ℏω0 = 2 eV, which is almost in resonance with the edge

states to the conduction band states transitions, the residual populations of the conduction

band states are relatively large. As expected, mainly the lower-energy conduction band

states are populated.
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Figure 4.4 Population of the excited states,NEE and NEE,CB, as a function of time. Panel
(a): No edge states are initially populated. Panel (b): One edge state is populated before
the pulse. Panel (c): All edge states are populated before the pulse. The filled dots in the
inset represent the populated edge states, and the open dots describe the empty edge states.
The frequency of the pulse is ℏω0 = 1 eV and the pulse amplitude is 0.3 V/Å.The number
of atoms in the quantum dot is 22.
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The emission spectra of TGQDs for a linearly polarized pulse in the x direction are shown

in Fig. 4.6 for different sizes of TGQDs and different initial populations of the edge states.

Due to the particle-hole symmetry of the system, the results when NPES and Nedge −NPES

edge states are populated are the same. Here Nedge is the total number of edge states. For

example, for a 46-atom QD with four edge states, the emission spectra for the systems with

1 edge state populated and 3 edge states populated are identical. Therefore, in Fig. 6 and in

all other figures below, only the data for NPES ≤ Nedge/2 are shown. The general tendency

that can be seen in Fig. 4.6 is suppression of generation of even harmonics when the edge

states are populated, i.e., when NPES > 0. Such suppression is very strong when half of the

edge states are initially populated. This is the case for 22-atom QDs with two edge states, see

Fig. 4.6(a), where for NPES = 1, there is a strong suppression of even harmonics compared

to the NPES = 0 case. Also, for 46-atom QDs with four edge states, strong suppression

of even harmonics is realized for NPES = 2; see Fig. 4.6(c). Population of half of the edge

states is possible only for the systems with even number of edge states, e.g., for 22-atom and

46-atom QDs, but not for 33-atom QDs with three edge states.

In Fig. 4.7, the HHG spectra are shown for the systems with even number of edge states

and for different amplitudes of the optical pulse with the frequency of the pulse ℏω0 = 1 eV.

For all cases, the even harmonics are strongly suppressed when the edge states are initially

half filled. The suppression is more pronounced for smaller field amplitudes when mainly the

lowenergy conduction band states are populated during the pulse and strongly contribute to

generation of high harmonics. Thus, the suppression of high harmonics is mainly determined



65

Figure 4.5 Residual population of conduction band states and two edge states. Two edge
states are populated before the pulse. The number of atoms in TGQD is 46. The corre-
sponding pulse amplitude is marked in each panel.The frequency of the pulse is ℏω0 = 1 eV
(a) and ℏω0 = 2 eV (b).
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Figure 4.6 Emission spectra of TGQDs: The number of atoms in the dot is 22 (a), 33 (b),
and 46(c). High harmonics with well-defined cutoffs are clearly visible in each spectrum.
The number of populated edge states are marked for each graph. The frequency of the pulse
is ℏω0 = 1 eV. The dephasing time is τ = 10 fs. An offset was introduced to make the
plotted data more readable.
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Figure 4.7 Emission spectra of TGQDs: The number of atoms is 22 (a) and 46 (b). High
harmonics with well-defined cutoffs are clearly visible in the spectra. The corresponding
populated edge states are marked for each graph. The frequency of the pulse is ℏω0 = 1
eV. With the increasing size of the TGQDs, the number of harmonics, as well as the cutoff
frequency, increases. The dephasing time is τ = 10 fs.An offset was introduced to make the
plotted data more readable.
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by the lower-energy conduction band states. Since the population of the conduction band

states during the pulse is sensitive to the frequency of the pulse, i.e., at higher frequencies,

which are closer to the band gap, more conduction band states are populated during the

pulse, the suppression of high harmonics should be sensitive to the frequency of the incident

pulse. In Fig. 4.8, the radiation spectra are shown for incident pulses with the frequencies

that are comparable to the interlevel energy separation between the edge states and the con-

duction band states. In this case, the suppression of even harmonics at half-filling of the edge

states is not that strong compared to the low-frequency pulses, and the peaks corresponding

to even harmonics are clearly visible. For such frequencies of the pulse, there is a relatively

strong population of high-energy conduction band levels during the pulse. Also, similarly

to a low-frequency pulse, suppression of even harmonics becomes less pronounced for high

field amplitude. Thus, the suppression of even harmonics, when half of the edge states are

populated, is less pronounced when high-energy conduction band levels are excited during

the pulse, which happens when the frequency of the pulse is close to the resonant condition

or when the amplitude of the pulse is large.

The total radiation spectra produced by TGQDs have two contributions, which come from

the x and y components of the dipole moment. Since for a TGQD only the y axis is the

axis of symmetry, the pulse polarized in the x direction generates the dipole moment, which

has both the x and y components. The corresponding contributions, Ix,x and Ix,y, to the

radiation spectra are shown in Fig. 4.9 for a 46-atom QD and different initial populations of

the edge states. Here, Ix,x is determined by the x component of the dipole moment, while
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Figure 4.8 Emission spectra of TGQDs: Column (a) corresponds to 22-atom TGQD, while
column (b) describes 46-atom TGQD.The number of populated edge states are marked for
each graph. The amplitudes of the optical pulses are also shown in each panel. The frequency
of the pulse is ℏω0 = 2.3 eV in column (a) and ℏω0 = 2 eV in column (b). With the increasing
size of the TGQDs, the number of harmonics generated harmonics increases. The dephasing
time is τ = 10 fs.An offset was introduced to make the plotted data more readable.



70

Ix,y is due to the y component of the dipole moment. Since the y axis is the axis of symmetry

of the system, then Ix,x has only odd harmonics, see black lines in Fig. 4.9, and Ix,y shows

only even harmonics, see red lines in Fig. 4.9. In general, both contributions, Ix,x and Ix,y,

have comparable magnitudes, see Figs. 4.9(a) and 4.9(b) where NPES = 0 and NPES = 1,

which results in comparable intensities of both even and odd harmonics in the total radia-

tion spectra. When half of the edge states are populated, see Fig. 4.9(c), then Ix,y becomes

strongly suppressed, which results in suppression of the intensities of even harmonics in the

total radiation spectrum.

All the above results correspond to optical pulses polarized along the xdirection. For a pulse

polarized along the y direction, which is the axis of symmetry of the system, only the y com-

ponent of the dipole moment is generated during the pulse, while the x component is zero.

In general, for a pulse polarized in the y direction, all high harmonic orders are generated.

At the same time, similar to the case of a pulse polarized in the x direction, when the edge

states are half filled, the even harmonics are strongly suppressed. In Fig. 4.10, we present a

comparison of the results for two polarizations of the incident pulse: x and y. For all cases,

for the low harmonics, the radiation spectra are very similar with comparable intensities.

For high harmonics, the x-polarized pulse produces much more intense harmonics than the

y-polarized pulse does. Also, the cutoff frequency is larger for the x-polarized pulse. Thus,

the main difference between the x and ypolarized pulses is visible at harmonics with large

frequencies, > 10ω0. The results in Fig. 4.10 are shown for the pulse frequency of ℏω0 = 1

eV when harmonics of up to 20th order can be generated. For larger frequency of the pulse,
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Figure 4.9 Radiation spectra due to x and y component of the dipole moment. The incident
pulse is linearly polarized in the x direction. The radiation spectra labeled by Ix,x are
determined by the x component of the dipole moment, while the radiation spectra Ix,y are
due to the y component of the dipole moment. The number of atoms in TGQD is 46. Panel
(a): No edge states are populated; panel (b): one edge state is populated; and panel(c):
two edge states are populated before the pulse.The radiation spectra Ix,x have only odd
components, while radiation spectra Ix,y have only even components. The contribution to
the radiation spectra associated with the y component of the dipole moment is suppressed
significantly when two edge states are initially populated. The dephasing time is τ = 10 fs.
The frequency of the pulse is ℏω0 = 1 eV, and pulse amplitude is F0 = 0.3 V/Å.
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e.g., ℏω0 = 2 eV, the condition is close to the resonant one and a low number of harmonics is

generated. In this case, the radiation spectra are almost the same for both x and y polarized

pulses.

Suppression of even-order harmonics reported above occurs when the edges states of

graphene QDs are half filled. Such a system also has a particle-hole symmetry. The edge

states, which belong to the A
′′
2 representation of the D3h symmetry group, are strongly

coupled by a linearly polarized optical pulse to the lowest CB and the highest VB states,

which belong to the A
′′
1 and E

′′
representations. At the same time, the direct dipole coupling

between the CB and VB states with the same symmetry is suppressed. In this case, in the

field of the pulse, the electron transfer from the VB to the CB states occurs through the

edge states. Because of the particle-hole symmetry of the system, the amount of the electron

transfer from the VB states to the edge states is the same as the corresponding transfer from

the edge states to the CB states. Thus, during the pulse, the edge states stay half filled and

effectively electrons are transferred between the highest-energy VB states and the lowest-

energy CB states with the same symmetry. As a result, the y component of the dipole

moment, which is responsible for the even-order harmonics, is suppressed. Such suppression

becomes less pronounced for the pulses with high frequency, when the coupling between the

CB and the VB states occurs not only through the edge states but also directly between the

states of different symmetries, i.e., A
′′
1 and E

′′
. One of the important characteristics of the

HHG is the harmonic cutoff, which is the maximum harmonic order that can be generated.
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Figure 4.10 Radiation spectra of TGQD consisting of 46 atoms in the field of a linearly po-
larized pulse. The spectra corresponding to the pulses polarized along the x and y directions
are shown by the red and black lines, respectively. The amplitudes of the corresponding op-
tical pulses are shown in each panel. Different columns have different numbers of populated
edge states before the pulse. Column: (a) No edge states are populated; column (b): one
edge state is populated, and column(c): two edge states are populated. The frequency of
the pulse is ℏω0 = 1 eV. The dephasing time is = 10 fs.

The cutoff frequency as a function of the field amplitude, F0, is shown in Fig. 4.11 for

different systems and different numbers of populated edge states. For almost all cases,

the cutoff frequency has linear dependence on F0. Such linear dependence is more clearly

pronounced for high frequency of the incident pulse. Another property is that, generally,

with increasing the initial population of the edge states the cutoff frequency decreases. This

is due to decrease of the number of available states for electron excitations when the number

of edge states increases. Also, with increasing size of the system, from 22 to 46, the cutoff
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frequency monotonically increases, which is related to the corresponding increase in the

number of electron states, both occupied and empty, in the QD system with increasing QD

size.

Figure 4.11 Harmonic cutoff versus the amplitude of the optical pulse. The frequency of
the pulse is ℏω0 = 1 eV (a), (b) & (c) 2.3 eV (d) 2.2 eV (e) and 2 eV (f). The number of
populated edge states is shown next to the corresponding line in each panel.

4.3 Conclusion

The radiation spectra of TGQDs placed in the field of an optical pulse depend on the size

of the system and also on the parameters of the optical pulse, its amplitude, and frequency.

Another characteristic of graphene QDs that can control the radiation spectrum and the

corresponding generation of high harmonics is an initial electron population of QD edge

states. Such edge states exist in graphene QDs with zigzag edges. Since the edge states in
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such systems are in-gap states, they can strongly affect the generation of high harmonics.

Namely, the generation of high harmonics depends on the number of initially occupied edge

states. The strongest effect is observed for the systems, i.e., TGQDs with zigzag edges, which

have an even number of edge states. In this case, if half of the edge states with the same

spin component are initially populated then even high harmonics in the radiation spectra

are suppressed. The level of suppression strongly depends on the frequency of the pulse. If

the frequency of the pulse is close to the resonant condition, i.e., to the energy difference

between the edge states and the conduction band states, then the even harmonics are weakly

suppressed and the corresponding peaks in the emission spectra are clearly visible. But if the

frequency of the pulse is small and far from the resonant condition, then suppression of even

harmonics is strong with almost no peaks visible in radiation spectra at even frequencies.

The suppression of even harmonics at half-filled edge states is almost the same for different

polarizations of the incident pulse, i.e., for x and y linearly polarized pulses.

Strong suppression of even harmonics in radiation spectra of TGQDs at a specific filling

of TGQD edge states opens the possibility of control of the intensity of high harmonics by

variation of gate voltage.



76

CHAPTER 5

CHAPTER 5 HIGH HARMONIC GENERATION IN GRAPHENE
QUANTUM DOTS IN THE FIELD OF ELLIPTICALLY POLARIZED

PULSE

This chapter aims to understand how the polarization of the incident optical field changes

the electron dynamics, spectra of high-order harmonics, and high energy cutoff in GQDs

having hexagonal and triangular geometry by varying the strength and ellipticity of the

incident of the optical field. We observed the significant symmetry-related suppression of

harmonics in hexagonal and triangular geometry when polarization approaches circular one

while tuning the polarization of incident light from linear to circular. The findings presented

in this chapter are published in a Physical Review B journal titled High-order harmonic

generation in graphene quantum dots in the field of an elliptically polarized pulse [88].

5.1 Introduction

There has been growing interest in theoretical and experimental studies of optical non-

linearities of solids, including high harmonic generation (HHG), nonlinear absorption and

scattering, and others[89; 90; 84; 91; 92; 93; 94; 95; 96; 97; 98; 45]. Recently, HHG in

two-dimensional (2D) materials, including graphene[99; 100; 101; 102] and transition metal

dichalcogenides[103], has drawn much attention due to their promising optical and elec-

tronic properties compared to three-dimensional solids. Several nanostructures, including

graphene quantum dots (GQDs) [104] and graphene nanoribbons [105], were studied exten-

sively to overcome the limitation due to lack of bandgap in semimetallic graphene. Bandgap

tunability in GQDs can be achieved by varying lateral shape, size, and the type of the
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edge, making GQDs more suitable for nonlinear optical systems[106]. The generation of

high harmonics and its dependence on relaxation processes has been reported numerically

in hexagonal GQDs with just 24 atoms [26]. Recent studies have also reported that HHG in

GQDs with triangular[107; 85] and rectangular[108] geometries shows several exciting prop-

erties. Namely, in ref. [85], strong suppression of even-order harmonics has been reported

in triangular GQDs, which have an even number of edge states. The suppression of even

harmonics is realized when half of the edge states are initially, i.e., before the pulse, occupied.

While the HHG is mainly studied for linearly polarized optical pulses, general polariza-

tion of the incident optical pulse, e.g., elliptical polarization, provides unique opportunities to

explore, investigate, and control strong light-matter interactions in solids and tune their non-

linear optical response. The polarization degree of freedom enables excellent insight into the

study of the fundamental aspects of light-matter interaction and time-varying polarization

states, which further opens the door to control attoscience coherent techniques, including

spectroscopy, and would be a great candidate to control tabletop harmonic processes, includ-

ing ultraviolet and X-ray spectral regions [109; 110; 111]. Recently, the dependence of HHG

on the ellipticity of an incident pulse was used to probe the molecular chirality on a sub-

femtosecond timescale[112]. Furthermore, elliptical polarization enables the gating schemes,

including polarization gating and double optical gating, to generate attosecond XUV pulses,

which study the electron dynamics in atoms, molecules, and solids [113; 114; 115].

The elliptical polarization of the laser driver field has opened up several interesting phys-

ical phenomena in gases. In contrast, interactions of such pulses with nanosystems of solids
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are largely unexplored, hindering the possibility of exploitation of experimental techniques

to solid-state devices [111]. Therefore, studying the ellipticity dependence of light-matter in-

teractions in 2D materials and their quantum dots would open new insight into the nonlinear

optical properties of these systems.

In 2011, Ghimire et al. reported through an experimental study of bulk ZnO system that

emitted high-order harmonics are less sensitive to ellipticity [18] of the optical pulse compared

to the case of gases[116; 117]. However, under circular polarization of the incident pulse,

the generation of high harmonics is strongly suppressed despite strong field ionization[18].

Later, Liu et al., under theoretical study of the same material, showed a monotonic decrease

in harmonic yield with increasing ellipticity of the driving pulse[118].

On the contrary, experimental work on MgO system revealed a strong dependence of

HHG yield on the ellipticity of the incident pulse, including a significant signal for a circular

polarization[119]. The authors showed that the maximum harmonic yield, in some cases,

can be reached not for a linear polarization but for a polarization with a finite value of the

ellipticity. Later, an enhancement of HHG in graphene by elliptically polarized driving pulse

was also reported [120; 121]. Furthermore, circularly polarized extreme ultraviolet HHG

in graphene is reported using first-principles simulation within a time-dependent density

functional theory[122]. These results revealed that circularly polarized driver pulses do not

permanently prohibit harmonic generation from specific crystals and 2D materials. There

are some proposals for solids to explain maximum harmonic yield at a finite ellipticity of the

incident pulse in a semimetal regime of the crystal[123].
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Quantum dots are systems that have properties of both solids and atoms, i.e., they have

discrete energy spectra, which are determined by the symmetry of the dots, and also they

have quasi-spatial periodicity of solids. Interaction of such quantum dots with an incident

optical pulse should be sensitive to the polarization of the pulse, i.e., its ellipticity. Here we

consider a special type of quantum dots: graphene quantum dots. Such quantum dots can

have different symmetries, e.g., triangular GQDs have D3h symmetry while hexagonal GQDs

have D6h symmetry. The symmetry of the GQD determines its nonlinear optical response,

e.g., by suppressing the generation of some harmonics. Below we study theoretically the

nonlinear ultrafast dynamics of GQDs within the density matrix approach, which allows us

to include the relaxation processes within the GQDs phenomenologically.

The rest of the chapter is organized as follows: The results are discussed in Section III

and summarized in the concluding Section IV.

5.2 Results and Discussion

Below, we study two types of GQDs, hexagonal and triangular, which have different point

symmetries. The corresponding GQDs are shown in Fig. 5.1. The hexagonal QD consists

of 54 carbon atoms and has D6h symmetry, while the triangular QD has 61 atoms, and the

corresponding symmetry is D3h. The triangular QD also has zigzag edges. We consider only

two sizes of QDs to identify the symmetry-related effects in the nonlinear optical response

of the systems.

The energy spectra of the triangular and hexagonal QDs are shown in Fig. 5.2. Due
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Figure 5.1 Hexagonal and triangular graphene quantum dots. The hexagonal dots consist of
54 atoms (a) and triangular dots possess 61 atoms (b). The distance between the nearest
neighbor atoms is a = 1.42Å

to dimensional quantization, both systems have finite band gaps, which are 1.91 eV for the

hexagonal QD and 1.87 eV for triangular QD. The triangular QD with zigzag edges also

has degenerate in-gap edge states with zero energy,which are marked in Fig. 5.2. The bulk

states of triangular and hexagonal GQDs belong to either one- or two-dimensional irreducible
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representations of the corresponding symmetry groups, D3h and D6h.

In all calculations below, we keep the same frequency of the pulse, 1 eV, which is less

than the bandgap for both GQD systems. We change the amplitude F0 of the pulse with

the maximum amplitude up to 0.3 V/Å. The radiation spectra of triangular and hexagonal

GQDs are shown in Fig. 5.3 for different ellipticity values of the incident pulse. The radiation

spectra clearly follow the symmetries of the systems. No even-order harmonics are realized

for the hexagonal QD, which has inversion symmetry, while for the triangular QD, both

even-order and odd-order harmonics are clearly visible in the radiation spectrum. Another

Figure 5.2 Energy spectra of hexagonal GQD (a), and triangular GQD (b). For the trian-
gular QD, zero-energy states are edge states. The zero energy states near the Fermi energy
surface correspond to edge states. Levels with negative and positive energies correspond to
the valence band and conduction band states, respectively.
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symmetry-related feature is a suppression of some high-order harmonics when the incident

pulse becomes circularly polarized. Namely, the triangular GQD has D3h symmetry with the

rotational element of C3, and the orders of high harmonics that are suppressed are 3, 6, 9,

. . ., i.e., 3+3m, wherem is an integer. The hexagonal GQD has D6h symmetry, which results

in the suppression of high harmonics with orders 3, 9, 15, . . ., i.e., 3 + 6m, where m is an

integer. The suppression of the high-order harmonics is realized when the ellipticity becomes

close to 1, which corresponds to a circularly polarized pulse. For all field amplitudes, the

Figure 5.3 Emission spectra of graphene QDs: (a),(c), (e) hexagonal QD and (b),(d), (f)
triangular QD. In each panel, different lines correspond to different ellipticities of the incident
pulse. The pulse frequency is ℏω0 = 1 eV. The field amplitude of the incident pulse is F0 = 0.1
V/Å(a), (b); 0.2 V/Å(c), (d); and 0.3 V/Å(e), (f). The dephasing time is τ = 10 fs. The
intensity is shown in the logarithmic scale.
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suppression of the corresponding harmonics is clearly pronounced. Also, for the hexagonal

QD, the harmonics orders of 6, 12, 18, and so on, i.e., even-order harmonics from the set of

3 + 3m, are suppressed for all ellipticities due to the inversion symmetry of such a quantum

dot. For high-order harmonics, which do not show suppression for a circularly polarized

pulse, the dependence on the ellipticity of the incident pulse is weak. The cutoff frequency,

Figure 5.4 Intensities of high-order harmonics as a function of ellipticity of the incident pulse.
The results are shown for (a) hexagonal QD and (b) triangular QD. The pulse frequency is
ℏω0 = 1 eV, and its amplitude is 0.3 V/Å. The dephasing time is τ = 10 fs. The results are
shown for harmonics orders of 3, 9, and 15 in panel (a) and 3, 6, 9, 12, and 15 in panel (b)
as marked. The intensity is shown on a logarithmic scale.
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which is analyzed in detail below, also has a weak dependence on the ellipticity of the pulse.

The emission spectra for different amplitudes of the optical pulse.

To illustrate the suppression of high-order harmonics for a circularly polarized pulse, we

show in Fig. 5.4 the intensities of the first few high-order harmonics as functions of ellipticity

Figure 5.5 Ellipticities of the first four odd high order harmonics (Nω =1, 3, 5, and 7) as a
function of the ellipticity of the incident pulse. The results are shown for (a), (c), and (e)
a hexagonal QD and (b), (d) and (f) triangular QD. The field amplitude is (a) and (b) 0.1
V/Å, (c) and (d) 0.2 V/Å, and (e) and (f) 0.3 V/Å. The pulse frequency is ℏω0 = 1 eV. The
dephasing time is τ = 10 fs.
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of the incident pulse. The data show that the suppression of the corresponding harmonics

occurs mainly in the range from ϵ > 0.9. Suppression is less pronounced for the triangular

QD, [see Fig. 5.4(b)], which has a larger number of atoms compared to the hexagonal

QD. Namely, for the hexagonal QD, [see Fig. 5.4(a)], for all harmonics, the corresponding

Figure 5.6 Ellipticities of the first three even order harmonics (Nω =2, 4, and 6) as a function
of the ellipticity of the incident pulse. The results are shown for triangular QD and the field
amplitude of (a) 0.1 V/Å, (b) 0.2 V/Å, and (c) 0.3 V/Å. The data are shown only for the
ellipticity, ϵ, of the incident pulse greater than 0.2, while for small values of ϵ, the ellipticities
of the even harmonics are very large, illustrating the fact that for a linearly polarized pulse
in the x direction, the even harmonics are linearly polarized in the y direction. The pulse
frequency is ℏω0 = 1 eV. The dephasing time is τ = 10 fs.
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intensities are suppressed by 4-5 orders of magnitudes, while for the triangular QD, only

the third-order harmonics is suppressed by 4 orders of magnitude and all other higher-order

harmonics are suppressed by 2-3 orders of magnitude.

The emitted high harmonics are also elliptically polarized, and their polarization is char-

acterized by the corresponding ellipticity. The dependence of the ellipticities of different

high-order harmonics on the ellipticity of the incident pulse is shown in Fig. 5.5 for the first

four odd harmonics (Nω=1, 3, 5, and 7). For a linearly polarized optical pulse, i.e., ϵ = 0,

the situation is different for the hexagonal and triangular QDs. For hexagonal QD [see Figs.

Figure 5.7 Emission spectra of a triangular graphene QD. In each panel, different lines
correspond to different ellipticities of the incident pulse. In (a), only the valence band states
with negative energies are occupied before the pulse, while in (b), both the valance band
states and all edge states are initially populated. The parameter NPES shows the number
of populated edge states. The pulse frequency is ℏω0 = 1 eV. The field amplitude of the
incident pulse is F0 = 0.3 V/Å. The dephasing time is τ = 10 fs.The intensity is shown on
a logarithmic scale.
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Figure 5.8 Cutoff frequency as a function of the ellipticity of the incident pulse. The results
are shown for (a) hexagonal QD and (b) triangular QD. The frequency of the pulse is ℏω0 = 1
eV. The field amplitudes are shown next to the corresponding lines.

5.5(a), 5.5(c) and 5.5(e)], for which the x axis is the axis of symmetry, the optical pulse

that is linearly polarized along the x direction generates only the x component of the dipole

moment, resulting in high-order harmonics which are linearly polarized with zero elliptic-

ity. For the triangular QD, the x axis is not the axis of symmetry. In this case, a linearly

polarized pulse generates both the x and y components of the dipole moment, resulting in

the emission of high-order harmonics which are elliptically polarized with small, but finite,

ellipticity[see Figs. 5.5(b) , 5.5(d) and 5.5(f)].

Also, the ellipticity of the first-order harmonics, the frequency of which is the same as

the frequency of the incident pulse is almost the same as the ellipticity of the incident pulse.
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The difference between them is more pronounced for the high field amplitude of 0.3 V/Å[see

Figs. 5.5(e) and 5.5(f)]; this difference is related to the nonlinear dynamics of the electron

system in the field of the pulse, where the nonlinearity becomes more pronounced for higher

field amplitudes.

For high-order harmonics, the unique property of their ellipticities is that they are larger

than the ellipticity of the incident pulse. For some cases, the ellipticity of high-order harmon-

ics becomes greater than 1, which means that, while for an incident pulse, the x component

of the optical field is greater than the y component, for the high-order harmonics, the x

component of the generated field becomes less than the corresponding y component.The en-

hancement of the ellipticity of high-order harmonics is not related to the system’s symmetry,

i.e., the behavior is similar for both hexagonal and triangular quantum dots. At the same

time, for the hexagonal quantum dot, [see Figs. 5.5(a), (b), (c)], the enhancement of the

ellipticity of high-order harmonics is more pronounced than for the triangular quantum dot.

Also, the tendency with increasing the amplitude of the incident pulse is that the largest

ellipticity is observed at smaller order harmonics when the amplitude of the pulse increases.

For example, for the field amplitude of 0.1 V/Å, the maximum ellipticity is realized for the

fifth and the seventh harmonics, while for the field amplitude of 0.3 V/Å, the maximum

ellipticity is for the third harmonics.

While the hexagonal quantum dot has inversion symmetry, which results in the suppres-

sion of even-order harmonics, the triangular quantum dot does not have such symmetry, and

odd-order harmonics are generated in the field of an elliptically polarized pulse. The ellip-
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ticities of the corresponding harmonics are shown in Fig.5.6. For a linearly polarized pulse

along the x direction, i.e., for ϵ = 0, the emitted even-order harmonics are linearly polarized

along the y axis, which follows from the reflection symmetry of the triangular quantum dot

with respect to the y axis. For our definition of the ellipticity, this polarization results in

the infinite ellipticity of the even-order harmonics for ϵ = 0. For the finite ellipticity of the

incident pulse, ϵ > 0, the ellipticities of the even-order harmonics are mainly greater than

the ellipticity of the incident pulse. Also, for a circularly polarized incident pulse, ϵ = 1, the

emitted harmonics are circularly polarized.

For a triangular graphene QD with zigzag edges, there are degenerate edge states with

zero energy. Above, we considered the situation in which only the valence band states

are initially populated. For such a quantum dot, there is another possibility when both the

valence and edge states are populated before the pulse. A comparison of the emission spectra

for these two cases is presented in Fig.5.7. The results are identical, which is a manifestation

of the particle-hole symmetry for these two systems. Namely, the situation in which only the

valence band states are initially populated by electrons is identical to the situation in which

only the conduction band states are initially populated by holes, i.e., the valence band and

edge states are populated by electrons before the pulse. This symmetry is presented in the

tight-binding model of graphene QDs considered above.

One of the important characteristics of the emission spectra is the cutoff frequency, i.e.,

the maximum frequency that can be generated by the system placed in the field of a pulse.

The cutoff frequency as a function of the ellipticity ϵ of the incident pulse is shown in Fig.5.8.
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The cutoff frequency has a weak dependence on ϵ, with some large changes observable near

ϵ ≈ 0.5. Namely, for the hexagonal QD and the large field amplitude, F0 = 0.3 V/Å, the

cutoff frequency decreases when the driver ellipticity increases from ϵ = 0.25 to 0.5 and is

constant at larger values of ϵ, ϵ > 0.5. At a smaller field amplitude, F0 = 0.1 V/Å, the cutoff

frequency shows nonmonotonic dependence within the interval of 0.25 < ϵ < 0.75, with the

maximum at ϵ = 0.5. For the triangular QD, the cutoff frequency decreases for ϵ > 0.75,

with the smallest value being realized for a driver ellipticity close to 1.

With increasing field amplitude, the cutoff frequency increases; i.e., more harmonics are

generated, which is the expected behavior for systems interacting with an optical pulse.

Also, for both types of QDs, triangular and hexagonal, the cutoff frequency is almost the

same, which suggests that the cutoff frequency has real sensitivity to the geometry of QDs.

The generation of high-order harmonics is a manifestation of nonlinear electron dynamics

in graphene QDs placed in the field of an optical pulse. Such electron dynamics can also

be characterized by the population of excited QD states, i.e., conduction band and edge

states, during the pulse and after the pulse. In Fig. 5.9, the total population of excited

QD states is shown as a function of time. While it is an integral characteristic of the

electron dynamics, the results are different for a linearly polarized incident pulse and a

circularly polarized pulse. For a linearly polarized pulse, shown by blue lines in Fig.5.9, the

population of the excited QD states shows an oscillatory behavior during the pulse, while

such behavior is strongly suppressed for a circularly polarized pulse, which is illustrated by

the red lines. This behavior is consistent with the suppression of the high-order harmonics
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Figure 5.9 Conduction band populations of graphene QDs as a function of time. The results
are shown for (a) the hexagonal QD and (b) triangular QD. In each panel, the results are
shown for a linearly polarized pulse, ϵ = 0, and a circularly polarized pulse, ϵ = 1, by the
blue and red lines, respectively. The frequency of the pulse is ℏω0 = 1 eV, and the field
amplitude is 0.3 V/Å.
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reported above for a circularly polarized incident pulse. For all cases, the electron dynamics

is highly irreversible; i.e., the residual population of the excited states is comparable to the

corresponding maximum population during the pulse. Also, in terms of the total population

of the excited states, there is no fundamental difference between the triangular and hexagonal

quantum dots. For both cases, the results show similar behavior because both systems have

comparable band gaps around 1.9 eV.

Another characteristic of the electron dynamics is a residual population of the excited

states of a QD after the pulse. Such a population is shown in Fig. 5.10 for both triangular

and hexagonal QDs and for two polarizations of the incident pulse: linear and circular ones.

While for the total population of the excited states shown in Fig.5.9, there is no difference

between the two types of QDs; there is a fundamental difference between the populations

of individual levels shown in Fig. 5.10. Namely, for the triangular QD [see Figs. 5.10(b)

and 5.10(d)], there is a large population of edge states and a relatively small population

of conduction band states, while for the hexagonal QD, the population of conduction band

states is relatively large. This behavior is related to the different natures of the band gaps

in these two QD systems. For the hexagonal QD, the band gap of 1.91 eV is between the

valence band states and the conduction band states, while for the triangular QD, the band

gap of 1.87 eV is between the valence band states and the edge states of the system. In

terms of the dependence of an incident pulse on polarization, for both types of QDs, the

lower energy excited states become more populated for a circularly polarized pulse. Namely,

for the triangular QD, the edge states become more populated after a circularly polarized
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pulse, while for the hexagonal QD, the excited states near the edge of the conduction band

are more populated for a circularly polarized pulse compared to a linearly polarized pulse.

Figure 5.10 Residual populations of individual excited states of graphene QDs. The results
are shown (a) and (c) for the hexagonal QD and (b) and (d) for the triangular QD. The
polarization of an incident pulse is linear in (a) and (b) and circular in (c) and (d). For
the triangular QD, the results at zero energy correspond to the populations of initially
unoccupied edge states of the QD. The frequency of the pulse is ℏω0 = 1 eV and the field
amplitude is 0.3 V/Å.

5.3 Conclusion

The emission spectra of graphene quantum dots in a field of an optical pulse depend not

only on its intensity but also on its polarization. Namely, for an elliptically polarized pulse,

the ellipticity of the pulse can be used as a tuning parameter to change the generation

of high harmonics in QD systems. In the present chapter, we considered two types of
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QDs: hexagonal and triangular QDs, which have D6h and D3h symmetries, respectively.

The radiation spectra of such QDs show strong sensitivity to the ellipticity of an optical

pulse when the optical pulse becomes close to a circularly polarized one. Such sensitivity is

observed as a suppression of some high-order harmonics in the radiation spectra. The orders

that are suppressed are determined by the symmetry of the QD; for a triangular QD, every

third harmonic is suppressed, while for a hexagonal QD, every sixth harmonic is suppressed.

While for small field amplitudes, the suppression of the corresponding harmonics is realized

mainly for a circularly polarized pulse, for large field amplitude, the suppression occurs also

for an elliptically polarized pulse with ellipticities that are in some range close to a circularly

polarized pulse. Also, for a hexagonal QD, which has inversion symmetry, all even-order

harmonics are suppressed for all ellipticities of the optical pulse, not only for a circularly

polarized pulse.

Interaction of an elliptically polarized pulse with graphene QDs also generates elliptically

polarized radiation. The ellipticities of the corresponding high-order harmonics depend on

the parameters of the incident pulse, and in some cases, for large enough orders of harmonics

or large intensity of the incident pulse, the corresponding polarization ellipse of high-order

harmonics is effectively rotated by 900 compared to the polarization ellipse of the incident

pulse.

We studied the ultrafast electron dynamics of graphene QDs under an elliptically po-

larized pulse. The harmonic intensities depend on the amplitude of the optical pulse, its

ellipticity, and the symmetry of the QD. The symmetry of the QD system plays a vital role
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in the occurrence of even- or odd-order harmonics. Here, we observed only odd harmonics

for the hexagonal dots, which possess D6h symmetry, while for triangular dots with D3h

symmetry, both the even- and odd-order harmonics were observed. More importantly, the

suppression of the harmonics was observed for both hexagonal and triangular dots. Such

suppression of the high-order harmonics by varying the ellipticity of the incident pulse could

provide an excellent way to control the HHG in graphene QDs and other 2D systems. The

harmonic conversion efficiency for graphene QDs is of the order of 1014 per quantum dot.

To enhance the conversion efficiency, an array of the corresponding quantum dots should be

considered.

Thus, for graphene quantum dots interacting with an elliptically polarized optical pulse,

both the intensity and the polarization of the generated high-order harmonics can be con-

trolled by tuning the ellipticity of an incident pulse.
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CHAPTER 6

CHAPTER 6 IMPACT OF MONOVACANCY OR DIVACANCY IN
GENERATED HARMONICS IN GRAPHENE QUANTUM DOTS

6.1 Introduction

Exploring 2D materials, such as graphene, transition metal dichalcogenides, and their deriva-

tives, has recently opened up a captivating and dynamic research frontier [1; 124; 125; 126;

127; 128; 129; 130; 131; 132; 133; 134]. This realm, encompassing monolayers, bilayers,

nanostructures, and quantum dots (GQDs), presents a unique opportunity to transcend

the limitations of graphene’s zero band gap. [135; 136; 137; 138]. Investigating optoelec-

tronic properties in finite structures like graphene quantum dots has sparked significant

interest, particularly in the potential for bandgap tunability based on shape, size, geom-

etry, and edge type [139; 140]. Currently, researchers are delving into the generation of

high-order harmonics, a product of optical activity, to gain profound insights into the elec-

tron dynamics of nanostructured systems when interacting with ultrafast optical pulse fields

[26; 141; 85; 88; 104].

High harmonic generation (HHG) is a highly nonlinear optical process that creates very

short wavelengths- extreme ultraviolet (EUV)- through soft x-rays via ultrafast solid lasers

[18; 84; 50; 27]. The HHG process is coherent and uses a very intense ultrafast laser pulse

in gas and solids [142; 143]. In gas, such an energetic optical field overcomes the field that

binds the electron to an atom, knocking electrons and accelerating them, and then returning,

releasing all of the kinetic energy gained in photons [96]. This rapid electron acceleration on
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attosecond timescales produces a coherent beam of radiation. In solids, the HHG process can

typically be explained in three steps: tunnel ionization, where an electron tunnels through

the potential barrier of an atom or molecule; acceleration, where the electric field of the laser

accelerates the electron; and recombination, where the electron recombines with the parent

atom, releasing energy in the form of a high-energy photon [16].

Due to the growth process, defects in natural solids are inevitable [144]. These defects can

take any form, such as vacancies, impurities, dislocations, disorders, etc. [145; 146; 147; 148].

The engineering of a proper defect mechanism provides researchers with opportunities to

impact electronic and optical properties, including electronics development with doping and

creating a nitrogen-vacancy defect in diamonds or a single photon emitter in two-dimensional

materials[149; 150; 151; 152]. Under light-matter interaction, imperfections such as vacancies

or doping in nanostructures could significantly alter the high harmonic emission spectra,

opening up a new avenue for research [153; 154; 97; 155]. In ref.[154], HHG in GQDs with

disorder or vacancy is reported. Still, more study is needed to understand how these defects,

or ’imperfections, ’can assist in the high harmonic generation process. Such studies could

revolutionize our understanding of HHG and offer a fresh perspective on the optoelectronics

of 2D materials, including quantum dots and nanostructures.

In the present work, we attempt to understand how the nonlinear effect, such as HHG,

changes GQDs with imperfections, notably by introducing the absence of single or double

atoms defined by monovacancy or divacancy. These vacancies, or ’holes’ in the atomic struc-

ture, are significant as they can dramatically alter the electronic and optical properties of
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the GQDs. We found that even monovacancy changes the spectrum remarkably enough to

break the symmetry of the GQDs and modify the spectra significantly. This is a significant

finding, as the symmetry of GQDs plays a crucial role in their optoelectronic properties. We

also investigate how the intensity of HHG changes with varying sizes, shapes, geometry, and

types of edges of GQDs, accounting for these vacancies. We observed that these vacancies

are more sensitive to small-sized GQDs than bigger ones, where the effect is less pronounced

as a more significant size. These vacancies are sensitive to the geometry of the dots; for

example, the GQDs with hexagonal geometry having D6h geometry, a specific geometric

configuration with six-fold rotational symmetry and a mirror plane, under these vacancies

experience significant uplifting of energy levels, creating zero energy edge states with mono-

vacancy responsible for the emergence of even order harmonics. Such uplift is also valid for

divacancy, which changes the high harmonics spectrum, boosting harmonics in small-sized

hexagonal dots. In zigzag-edged triangular dots with D6h geometry, monovacancy causes

either a decrease in the number of zero energy edge states by significantly reducing the ef-

fective bandgap or an increase in the number of edge states, keeping the effective bandgap

the same as in intrinsic GQD system but changing the high harmonics spectra. In armchair-

edged triangular dots, monovacancy introduces zero energy edge states as in hexagonal dots

and changes the emission spectra. However, even harmonics under vacancies get suppressed

significantly with divacancy. These results are sensitive to the polarization of incident pulse,

providing significant changes in spectra between linear and circularly polarised incident op-

tical pulse. One of the most noticeable changes is monovacancy or divacancy, which disrupts
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the symmetry-related suppression of harmonics observed in triangular and hexagonal GQDS.

The paper is structured as follows: Section II presents the model and main equations

based on the density matrix approach, a mathematical tool widely used in quantum mechan-

ics to describe a system’s quantum state. The density matrix approach, a powerful method

in quantum mechanics, allows for a more general description of a system’s state, such as a

GQD, than the wave function. It provides a more comprehensive description of the system’s

quantum state, including information about its coherence and mixed states. These equations

describe the emitted radiation from GQD systems. Section III discusses the key findings,

further summarized in the concluding Section IV.

6.2 Results and Discussion

The N atoms intrinsic neutral graphene quantum dots (GQDs) system forms an N by

N square matrix Hamiltonian that provides N eigenvalues and N times N eigenvectors

employing a tight-binding approach. If we introduce vacancies such as monovacancy, the

number of atoms decreases by one and becomes N − 1, providing N − 1 eigenvalues on

solving. In the case of divacancy, we obtain N − 2 eigenvalues corresponding to N − 2

neutral atoms. The zigzag-edged hexagonal GQDs (Fig. 6.1), zigzag-edged triangular GQDs

(Fig. 6.2), and armchair-edged triangular GQDs (Fig. 6.3) represent the energy profiles for

the corresponding neutral GQDs systems shown within inset in each panel. The number of

atoms in the GQDs system and the number of vacancies introduced are also illustrated in the

figures. In each case, monovacancy, or divacancy, lifts the energy levels compared to intrinsic
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parent GQDs, providing additional channels to enhance the high harmonic emission spectra

in most cases. These systems are further illustrated in Table 6.1, including bandgap, which

is tunable in terms of shape, size, type of edge, and geometry in the case of the GQDs.

Table 6.1: Depiction of the number of dots, vacancies,

bandgap, geometry, and edge type in GQD systems.

Number of dots in GQD systems Number of Vacancies Bandgap GQD geometry Edge type
(N) (Nvac) (eV)
24 0 3.0 Hexagonal Zigzag

1 1.5
2 1.3

54 0 1.9 Hexagonal Zigzag
1 0.95
2 1.9

84 0 1.76 Hexagonal Zigzag
1 0.88
2 0.9

22 0 2.41 Triangular Zigzag
1 0.88
2 1.58

33 0 2.3 Triangular Zigzag
1 2.3
2 1.65

61 0 1.87 Triangular Zigzag
1 1.37
2 0.79

36 0 2.88 Triangular Armchair
1 1.44
2 1.1

60 0 2.32 Triangular Armchair
1 1.16
2 2.16

The intrinsic or perfect GQDs (without vacancies) exhibit harmonics respecting the sys-

tem’s symmetry. For example, hexagonal GQDs with D6h symmetry only produce odd
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harmonics, while triangular GQDs have D3h symmetry that shows both even and odd har-

monics. These results correspond well with the earlier findings in [26; 85]. We further analyze

harmonics’ polarization, setting the ellipticities between two extremes, linear pulse and cir-

cular pulse. With incident circularly polarized pulse, symmetry-related suppressions are well

established for hexagonal GQDs, where suppression is observed for every sixth harmonic (

clear from Fig. 6.4). In contrast, every third harmonic in triangular GQDs ( refer Fig. 6.5)

strongly suppresses in response to a circularly polarized pulse. These results correspond well

to the recent finding [88].

We also investigate how the robustness of the even harmonics depends on the type of

edges of the triangular GQDs. In intrinsic triangular GQDs of comparable sizes, zigzag

edges show strong, even harmonics compared to armchair edges. In armchair edge GQDs,

y-polarized intensity-intensity corresponding to the y component of dipole moment, which

predominantly contributes to even harmonics, is weak compared to x-polarized, which pre-

dominately contributes to the odd harmonics. As a result, very weak, even harmonic peaks

are emitted from armchair edges, as seen in Fig. 6.6. In zigzag edges even, order harmonic

peaks are comparable to odd-order harmonics in the absence of vacancies.

The study aims to understand how high harmonic spectra change with vacancies. We

consider the GQDs with monovacancy missing one atom and divacancy missing two atoms.

Such vacancies in the natural crystal may result from experimentally preparing procedures,

including crystal growth and fabrication, or from the crystal itself innate, whose optical prop-

erties are worthy of exploration. The linearly polarized incident pulse incident on GQDs with
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monovacancy enhances the harmonic spectra significantly for small GQDs. The degree of en-

hancement gradually becomes weaker for intermediate-sized GQDs and sets the lowest degree

of enhancement for larger GQDs. In all cases, just missing a single atom symmetry-related

harmonics are mostly affected. In HGQDs, monovacancy lifts the energy levels, causing the

rise of zero energy edge states and giving birth to the even-order harmonic induced by the

inversion symmetry breaking. These even harmonics arising from the symmetry breaking are

significantly higher than the odd-order harmonics, specifically in small GQDs. However, the

even harmonics are not comparable to odd harmonics when the dots become larger. Nev-

ertheless, even harmonics are significant and noticeable in GQDs resulting from symmetry

breaking due to monovacancy. Similar results are noted for zigzag-edged triangular GQDs

where monovacancy either reduces or decreases the number of zero energy edge states, lifting

the energy levels significantly. Except for 33-atom zigzag-edged TGQDs, in all cases, the

number of zero energy edge states is decreased by 1, resulting in monovacancy. In the case of

33-atom TGQDs, monovacancy adds zero energy edge states, making four from three edge

states initially present. In this specific case, no bandgap is changed. In armchair-edged

triangular GQDs, monovacancy results in the rise of zero energy, causing a significant boost

of even harmonics, as observed in zigzag-edged hexagonal GQDs. In all cases of monova-

cancy, the bandgap is significantly reduced. Such bandgap change resulting from vacancies

is presented in Table. 6.1.

For circularly polarized pulses, monovacancy disrupts all the symmetry-related suppres-

sion observed for intrinsic GQDs. Monovacancy boosts the suppressed harmonic spectra in
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every third of the high harmonic spectrum in triangular GQDs. This result is applicable for

both types of edges, zigzag or armchairs, in triangular GQDs. Such a boost-up of the har-

monics in hexagonal GQDs is observed for every sixth harmonic instead of the suppression

that is achieved for intrinsic GQDs.

Divacancy significantly enhances the high harmonic spectra as compared to intrinsic

GQDs. Nonetheless, the degree of enhancement is lower than that of monovacancy, specif-

ically in small zigzag-edged hexagonal GQDs. The 54- and 84-atom GQD systems with

intermediate to big sizes exhibit significant enhancement for eight harmonics. The most

substantial intensity peak enhancement in small triangular GQDs is observable. However,

it gradually weakens as the system grows, increasing the number of dots in both zigzag and

armchair edges. In response to polarization, divacancy undergoes significant changes. The

disruption of symmetry-related harmonics results in the suppression of both hexagonal and

triangular geometry GQDs systems. The observed boost of these harmonics is depicted in

Fig. 6.4 - Fig. 6.6.

We further investigate how increasing the field strength of the optical pulse changes

the high harmonics in hexagonal and triangular GQDs. We further investigate the effect

of monovacancy or divacancy in triangular and hexagonal GQD systems under linearly and

circularly polarized incident optical fields. The system responds uniquely to monovacancy or

divacancy and linear and circular polarization of the incident optical pulse. Such variations

can easily be understood from Fig. 6.7 and Fig. 6.8.

Under linear polarization, specifically for small GQDs, the effect of monovacancy or di-
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Figure 6.1 Energy profile for hexagonal GQDs system having the zigzag edge. Perfect GQDs
(no vacancies) (a), (d), and (g); monovacancy (b), (e), and (h); divacancy (c), (f), and (i).
The number of atoms in each GQD system is displayed in left (24), center (54), and right
(84) panels. The inset in each panel represents the GQDs system.

vacancy becomes stronger depending upon the system and geometry. For triangular GQD

of 22 atoms, divacancy becomes strongest except in second harmonics, in which monova-

cancy is exceptionally strong at a small field strength of F0= 0.1 V/Åand though dominant

but relatively weaker at higher amplitudes 0.3 and 0.5 V/Å. In this system, harmonics with

monovacancy are between harmonics with divacancy and harmonics without vacancy regard-

ing the height of the harmonic peaks. On the other hand, in small hexagonal GQDs of 24

atoms, the harmonic peaks of monovacancy dominate all the time. However, the number

of harmonic orders increases with pulse amplitude. In this case, the effect divacancy is in-

termediate, setting shorter harmonic peaks for intrinsic GQD and longer for monovacancy,

as stated earlier. Such unique differences in hexagonal and triangular GQDs in response to

monovacancy or divacancy are expected due to the difference in symmetry of the system,
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location of vacancy, number of vacancies, nontrivial nature of the vacancies and presence or

absence of zero energy edge states.

Fig. 6.8 represents the emission spectrum of the triangular and hexagonal systems under

circularly polarized ultrafast pulse. In all cases, the effect of monovacancy dominates with

few exceptions at the low pulse amplitude. The unusual behavior is that the divacancy

slightly boosts the first harmonics compared to monovacancy in both GQDs. However,

the peaks of first harmonics corresponding to divacancy and monocracy are comparable

at larger field amplitudes at hexagonal GQDs. In contrast, for triangular GQDs, the first

peak corresponding still dominates, but the effect is weaker than a small field. In all cases,

another notable change is the symmetry-related suppression of harmonic peaks shown by

black curves, which are disrupted by either monovacancy or divacancy in both GQDs shown

Figure 6.2 Energy profile for triangular GQDs system having the zigzag edge.Perfect GQDs
(no vacancies) (a), (d), and (g); monovacancy (b), (e), and (h); divacancy (c), (f), and (i).
The number of atoms in each GQD system is displayed in left (22), center (33), and right
(61) panels. The inset in each panel represents the GQDs system.



106

by blue and red curves. We also observed a gradual increase of intensity in both types of

GQD with an increase in field amplitude, as expected.

We further investigate the emission spectra of the triangular GQDs with the types of edge.

In the intrinsic dots with triangular geometry, the zigzag-edged GQDs show well-defined even

harmonic peaks comparable to odd harmonics. In the armchair type, the contribution of even

harmonics is weaker, and they are low in amplitude compared to odd ones. These variations

are clearly illustrated in Fig. 6.9 for 33- and 36-atom GQDs. The left and right panels

are designated for corresponding intensity for linear and circular polarization of the light

Figure 6.3 Energy profile for triangular GQDs system having the armchair edge. Perfect
GQDs (no vacancies) (a), and (d); monovacancy (b), and (e); divacancy (c), and (f). The
number of atoms in each GQD system is displayed in panels on the left (36) and right (60).
The inset in each panel represents the GQDs system.
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panel, illustrating how the emission spectra vary with monovacancy and divacancy compared

to intrinsic ones. We observed that monovacancy or vacancy significantly boosts the even

harmonics under linear polarization in armchair edge, setting the highest peaks for ever-order

harmonics under monovacancy and odd-order harmonics order under 13 with divacancy. A

zigzag edge having 33- atoms has more dominance of divacancy for odd order harmonics

until 12 and even order dominance until eight order harmonics; then monovacancy boosts

up for the remaining spectrum. Under circular polarization, intrinsic GQDs establish the

disruption of symmetry-related harmonics in both edge types. However, divacancy dominates

Figure 6.4 HHG spectra for zigzag- edged hexagonal GQDs system: (a), and (b) 24-atom;
(c) and (d) 54-atom; and (e) and (f) 84-atom. The number of atoms in each GQD system is
also displayed in each panel. The amplitude of the incident pulse is 0.3 V/Å.
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for almost the entire spectrum under vacancies in 33-atom GQDs, while odd-order harmonics

with divacancy and even-order harmonics with monovacancy dominate in 36-atom TGQD

under circular polarization. In triangular geometry, monovacancy or divacancy significantly

boosts the harmonic peaks.

When the system grows in size, the effect of monovacancy gradually weakens, as removing

a single vacancy does not affect the system as much. However, the disruption of symmetry-

related suppression is notable in the case of circularly polarized light, which is demonstrated

in Fig. 6.10. In triangular geometry in either edge type, either monovacancy or vacancy

Figure 6.5 HHG spectra for zigzag-edged hexagonal GQDs system: (a), and (b) 22-atom;
(c) and (d) 33-atom; and (e) and (f) 61-atom. The number of atoms in each GQD system is
also displayed in each panel. The amplitude of the incident pulse is 0.3 V/Å.
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significantly boosts the even-order harmonics. In the 61-atom zigzag GQDs, intensity cor-

responding to divacancy is more vital for low order harmonics until 5, then corresponding

peaks with monovacancy are more substantial until 15. Then, around the end of the spec-

trum, the effect of either monovacancy or divacancy becomes weaker; instead, the intrinsic

GQD is more robust in this range. While in an armchair edge-type, all even harmonics with

vacancy are boosted, setting the highest values for the monovacancies even with the uniform

pattern around the end of the spectrum in a linearly polarized pulse. However, there is no

smooth variation; instead,. There is fluctuation due to nonmonotonic bootup observed for

linear or circularly polarized light.

We further investigate the intensity corresponding to the x and y components to dipole

moment for the GQDs with triangular geometry, including the cases for linear and circular

Figure 6.6 HHG spectra for armchair-edged hexagonal GQDs system: (a) and (b) 36-
atom; and (c) and (d) 60-atom.The incident optical pulse is linearly polarized (left panel)
and circularly polarized (right panel). The number of atoms in each GQD system is also
displayed in each panel. The amplitude of the incident pulse is 0.3 V/Å.
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polarization of light. For the linear polarization, the changes are more prominent and change

slightly with the increase in size. The findings for linear polarization are presented in Fig. 6.11

- Fig. 6.12. For circular polarization, we designate the appendix section presenting them in

Fig. 6.13 - Fig. 6.14.

We present the comparative analysis of harmonic spectra under incident linear polar-

ization, analyzing the intensity contribution corresponding to rectangular components of

dipole moments x corresponding to 33-atom zigzag and 36-atom armchair-edged triangular

Figure 6.7 Emission spectra comparison: (a) zigzag-edged 22-atom triangular GQDs; and
(b) zigzag-edged 24-atom GQDs. The pulse magnitude of an incident optical pulse and the
number of vacancies in the GQDs system are also depicted. The incident optical pulse is
linearly polarized.
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GQDs in Fig. 6.11. Intrinsic GQDs of zigzag edge show a rich spectrum of well-defined high

harmonics, including odd and even harmonics of comparable magnitude, primarily odd har-

monics contributed by the x component and even harmonics by the y component shown in

the top-left panel. The armchair edge shows well-defined odd harmonics mainly contributed

by the x component, and tiny even harmonics are contributed majorly by the y component.

as displayed in the top-right panel. In this case, weaker harmonics may even result from

the absence of in-gap edge states in the armchair edge despite the triangular geometry of

Figure 6.8 Emission spectra comparison: (a) zigzag-edged 22-atom triangular GQDs; and
(b) zigzag-edged 24-atom hexagonal GQDs. The pulse magnitude of an incident optical pulse
and the number of vacancies in the GQDs system are also depicted. The incident optical
pulse is circularly polarized.
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the GQDs. Under monovacancy or divacancy, the zigzag-edged GQDs significantly boost

the even harmonics near the cutoff region. In contrast, a few lower order even harmonics

peaks are slightly decreased with increasing vacancy (clear from left panel central and bot-

tom panel). In this case, monovacancy increases a high harmonic cutoff order from 16 to 18.

The armchair edge under vacancy does not show any boost up for even harmonics, almost

vanishing even harmonics for divacancy. In these cases, the strength of odd-order harmonics

closer to the cutoff decreases significantly with monovacancy and is of comparable intensity

with divacancy. This variation among zigzag and armchair edges in triangular edges may

result from the presence or absence of edge states, location of monovacancy or divacancy,

and extra oblique symmetry in the armchair-edged triangular GQD.

Figure 6.9 Emission spectra comparison for triangular GQDs system: (a), and (b) zigzag-
edged 33-atom, and (c) and (d) armchair-edged 36-atom. The left panel is linearly polarized
incident optical pulse(a) and (c), and the Right panel is circularly polarized incident optical
pulse (b) and (d). The number of atoms in each GQD system is also displayed in each panel.
The amplitude of the incident pulse is 0.3 V/Å.
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We also analyzed the intensity distribution corresponding to the x and y components of

the dipole moment in bigger triangular dots: 61-atom zigzag-edged and 60-atom armchair-

edged GQD. In this case, zigzag-edged intrinsic triangular GQD shows a significant signal

with comparable odd and even harmonics resulting from x and y components as observed

in small-sized zigzagged edges. The intrinsic armchair edge GQD contributes dominant odd

harmonics corresponding to the x component. In contrast, the y component provides almost

diminished harmonics, even weaker than the small-sized armchair edge discussed before.

Regarding monovacancy or divacancy, even harmonic peaks get smaller than odd harmonics.

This variation is slightly different than the small zigzag-edged triangular GQDs addressed

earlier. The armchair-edged GQD, on the other hand, shows a weaker even harmonic signal

Figure 6.10 Emission spectra comparison for triangular GQDs system: (a), and (b) zigzag-
edged 61-atom, and (c) and (d) armchair-edged 60-atom. The left panel is linearly polarized
incident optical pulse(a) and (c), and the Right panel is circularly polarized incident optical
pulse (b) and (d). The number of atoms in each GQD system is also displayed in each panel.
The amplitude of the incident is 0.3 V/Å.
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for monovacancy and almost vanishing even harmonics for divacancy as observed in small-

sized armchair edged discussed earlier. The odd harmonic signal is dominant in this case,

as agreed earlier. This variation may be due to the negligible effect of vacancies in a bigger

size, type of edge, and location of the particular vacancy.

This section explores how the intensity corresponding to the dipole moment component

in zigzag and armchair edges triangular GQDs changes with a circularly polarized incident

pulse. We present the finding for small-sized dots in Fig. 6.13 and relatively bigger-sized

Figure 6.11 Emission spectra comparison : zigzag edged 33-atom (a); and armchair edged
36-atom triangular GQDs (b). The incident optical pulse is linearly polarized. The number
of vacancies in the GQDs system is marked on each panel. The amplitude of the incident
pulse is 0.3 V/Å.
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dots in Fig. 6.14, accounting for intrinsic GQD, monovacancy, and divacancy in each panel

comparatively. Fig. 6.13 clearly shows intensity corresponding to x and y components of

dipole moments are almost identical for intrinsic zigzag edged GQDs ( top left panel), ensur-

ing suppression of symmetry-related harmonics corresponding to D3h group. Similar results

are observed for armchair-edged triangular GQDs, as shown in the top right panel of the

exact figure. Regarding monovacancy and divacancy, there is a dominant y component for

the zigzag-edged dot shown in the mid and bottom left panels. Similar findings with boosted

Figure 6.12 Emission spectra comparison : zigzag edged 61-atom (a); and armchair edged
60-atom triangular GQDs (b). The incident optical pulse is linearly polarized. The number
of vacancies in the GQDs system is marked on each panel. The amplitude of the incident
pulse is 0.3 V/Å.
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y components are observed for armchair edge GQDs in the central and bottom right panels.

Fig. 6.14 shows the variation in larger-sized dots, including zigzag and armchair edges

in triangular GQDs. For the intrinsic case, in 61 atoms of zigzag-edged GQD, both x and

y components contribute identical ’yields,’ which in this context refers to the intensity of

the dipole moment component. This behavior is shown in the top left panel panels results

inconsistent with the zigzag edge small dots in small Fig. 6.13. Similar patterns are

observed for the armchair-edged bigger dots in the top right panel. Regarding monovacancy

Figure 6.13 Emission spectra of triangular GQDs: zigzag edged 33-atom (a); and armchair
edged 36-atom system (b). The incident optical pulse is circularly polarized. The number
of vacancies in the GQDs system is marked on each panel. The amplitude of the incident
pulse is 0.3 V/Å.
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and divacancy, we see a significant contribution of the y component as observed in small-sized

dots, except for minor exceptions where intrinsic GQDs do for these cases. Similar results are

shown for bigger armchair-edged GQDs in central and bottom right panels. As in small-sized

triangular dots, all instances of big-sized dots respect the suppression of symmetry-related

harmonics corresponding to D3h symmetry group in big-sized dots.

Figure 6.14 Emission spectra of triangular GQDs: zigzag edged 61-atom (a); and armchair
edged 60-atom system (b). The incident optical pulse is circularly polarized. The number
of vacancies in the GQDs system is marked on each panel. The amplitude of the incident
pulse is 0.3 V/Å.
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6.3 Conclusion

In this multisystem GQDs research, we conducted a comprehensive study on generating

high-order harmonics in graphene quantum dots (GQDs) systems. Our theoretical explo-

ration involved exciting GQDs with monovacancy and divacancy using a few femtosecond

ultrafast optical pulses, which are concise bursts of light on the order of a few femtoseconds

(10−15 seconds). We meticulously varied the shape, size geometry, type of edge, and incident

optical pulse magnitude and polarization to observe their intriguing effects on the high-order

harmonics spectra. Our investigation into the role of the presence of vacancy in the GQDs

has unveiled significant modifications in the high harmonics spectra. The presence of va-

cancy, even the monovacancy, profoundly impacts the symmetry-related harmonic peaks.

In small-sized GQDs, both triangular and hexagonal, the vacancy enhances the emission

spectra firmly under a linearly polarized pulse compared to large-sized ones, where the effect

is less pronounced. Under circular polarization, all symmetry-related suppression observed

for triangular and hexagonal dots are disrupted even with monovacancy, the absence of one

atom in the GQDs. In zigzag-edged hexagonal and armchair-edged triangular GQDs, the

monovacancy caused a zero energy edge state, a unique electronic state with no energy cost,

in the energy profile. This state decreases the GQDs bandgap and enhances the high harmon-

ics, providing additional channels for multiphoton excitation. In these systems, divacancy

removes the zero energy edge state, which resembles the intrinsic GQD without vacancy but

with enhanced emission spectra compared to the parent GQD (without vacancy). These

results provide further insight into investigating the other 2D systems, including quantum
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dots, and open up new avenues for enhancing the harmonics in the entire spectral region.
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CHAPTER 7

CHAPTER 7 SUMMARY

In this dissertation, we conducted a theoretical investigation into the ultrafast nonlinear op-

tical properties of graphene quantum dots (GQDs) systems, focusing on four specific areas

of research: (i) generation of harmonics and its impact on relaxation, (ii) HHG governed by

edge states in triangular GQDs, (iii) ellipticity dependence of HHG in GQDs, and (iv) HHG

in GQDs with monovacancy or divacancy. We solved the neutral Hamiltonian of the system

using the tight-binding model and established the basis sets for the density matrix operator.

This operator is then used to reveal the optical nonlinearities, including nonzero conduction

band population, dipole moment, and HHG, using theoretical formulations employing the

time-dependent Schrödinger equation, quantum master equation, and density matrix de-

scribed in the first two chapters of the dissertation. We introduced a finite relaxation time

to study the dephasing mechanisms, which represent the loss of quantum information with

time and help to correlate the findings with experimental results.

In Chapter 3, we studied the ultrafast electron dynamics of graphene quantum dots,

focusing on generating high-order harmonics and how these harmonics change with finite

relaxation time. Under the optical field produced by a few-femtosecond linear optical pulse,

we studied the variation of nonlinear optical properties of the quantum dots. To achieve

this goal, we vary the pulse amplitude and frequency of the incident optical pulse and

dephasing times corresponding to nondiagonal elements. Under the finite relaxation time,

nonlinearities, including residual conduction band population and HHG, are addressed in
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GQDs placed in a short, robust, linearly polarized optical pulse. At short finite dephasing

times, the ultrafast electron dynamics show significant irreversibility with a sizeable residual

population of the excited quantum dot levels. When dephasing time increases, intensities

correspond to a low-frequency boost, while the cut-off energy decreases regarding the HHG

spectrum. The cut-off energy’s dependence on the optical pulse’s amplitude is also sensitive

to the frequency of the pulse. This dependence for hexagonal GQDs is almost linear when

the optical pulse frequency is much less than the quantum dot band gap. However, when

the pulse frequency is comparable to the band gap, the cut-off energy shows saturation

behavior at a large field amplitude, > 0.4 V/Å. This result motivates researchers to study

other quantum dots and 2D materials theoretically and experimentally.

In Chapter 4, we focused on the research project, HHG governed by edge states in tri-

angular graphene quantum dots. We studied the system of the different dots with zigzag

edges, comparing the harmonic yield for partially populated edges. In the zigzag-edged tri-

angular quantum dots, edge states - the zero energy states between the conduction band and

valance band, arise near the fermi energy levels. These edge states modify the HHG spectra

significantly in the dots, which is different from bulk states. When half the total num-

ber of edge states in the system are populated, even harmonics are suppressed significantly

by optical pulse frequency below the band gap. When optical frequency approximates the

bandgap (resonant case), the degree of suppression becomes relatively weak. Otherwise, all

harmonics are of comparable intensities when no edge states are populated or edge states are

partially populated. Such harmonics obtained in shorter wavelength regions with the input
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of an ultrafast optical pulse of longer wavelengths have potential implications for controlling

the HHG in the system of Quantum dots and other 2D materials, thus paving the way for

practical applications in the field of quantum physics and material science.

Chapter 5 focuses on the theoretical study of HHG in graphene quantum dots in the

elliptically polarized laser pulse. The elliptically polarized ultrashort pulse interacts with

the system of quantum dots to reveal unique nonlinear behavior different from the linearized

polarized optical field. The generated high harmonics are sensitive to pulse ellipticity, fre-

quency, and amplitude. The high-order harmonics are more sensitive to pulse ellipticity than

the lower-order harmonics. Some harmonics are strongly suppressed in the case of a circu-

larly polarized pulse. The suppressed harmonic orders depend on the symmetry of the QD

systems. For triangular dots, which have D3h symmetry, every third harmonic is suppressed,

while for hexagonal dots with D6h symmetry, such suppression is observed for every sixth

harmonic. In both cases, suppression is well pronounced beyond the third harmonics. These

results indicate that the ellipticity of the incident optical pulse could be used to control and

optimize HHG in graphene quantum dots and other 2D materials.

The project titled HHG in GQDs with monovacancy or divacancy delves into the intri-

cate influence of defects in high harmonic generation in graphene quantum dots, detailed

in Chapter 6. We are deeply interested in how the generated harmonics change in the im-

perfect crystal with monovacancy or divacancy in the GQDs. These defects are altering the

HHg spectrum significantly; for example, in hexagonal GQD with zigzag edges, even order

harmonics arise with monovacancy, while with divacancy, even harmonic disappears and
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only odd harmonics occurred, preserving the symmetry of the system as in GQD, without

vacancy. In triangular GQDs with zigzag edges, nonmonotonic boost-up of harmonics with

monovacancy and divacancy was observed. The monovacancy strongly changes the HHG

spectrum in all cases, showcasing our research’s intricate and complex nature. These find-

ings broaden the current understanding of GQDs and provide new insights into their optical

properties, which can be crucial for developing novel quantum devices and materials.

This dissertation further provides future directions for researchers investigating ultrafast

electron dynamics of 2D materials, including nanostructures and quantum dots. The projects

mentioned in the current thesis can be extended to other 2D materials, such as transition

metal dichalcogenides, to compare and analyze nonlinear optical properties such as HHG.

We can explore such nonlinearities as varying polarization, pulse magnitude of the incident

optical pulse, and varying shape, size, geometry, and type of edge of the nonlinear material.

To advance the area, I have primarily five future research projects in my mind: (i) Ultrafast

electron dynamics of graphene quantum dots with impurities or doping, (ii) High Harmonic

generation in transition metal dichalcogenides using extended Hubbard Hamiltonian (iii)

Comparative study of harmonic efficiency between monolayers and heterostructures of 2D

material (iv) Anomalous Hall effect and Faraday number variation between sharp-edged

nanostructures and (v) Role of Berry curvatures for understanding interband and intraband

harmonics in low-dimensional materials.

Motivated by the significant enhancement of high-order harmonics with vacancies in

GQD with vacancies, I plan to study the mechanism of electron dynamics and observe the
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emission spectra and their variation compared to intrinsic GQD. There is an expectation

of some degree of enhancement with impurities or doping. Introducing vacancies or adding

a few atoms as impurities could significantly enhance the radiation intensity. Such extrin-

sic GQDs would be a great candidate for investigating optoelectronics properties for future

devices. The second future project extends the current study in transition metal dichalco-

genides, other promising candidates for studying optical nonlinearities in 2D materials. To

achieve this goal, I plan to employ extended Hubbard Hamiltonian, which includes interac-

tion terms such as coulomb attraction and repulsion. This study could provide more inclusive

results than the tight-biding Hamiltonian, where only hoping between the nearest neighbors

is considered. The third future research study compares the harmonic efficiency between

2D materials to determine the optimal material for maximizing efficiency. This research can

further be extended to other 2D heterostructures to compare the efficiencies between mono-

layer and heterostructure. Such a study could provide further insight into the search for the

best material to enhance harmonic efficiency. The fourth future research project aims to

study the fundamental aspect of the Faraday number and anomalous quantum Hall effect in

sharp-edged nanostructures. The sharp-edged nanostructures are unique because they can

exhibit anomalous quantum Hall without a magnetic field, and a study of Faraday’s num-

bers can be included. The finding could lead to a new perspective to compare the quantum

Hall effect without a magnetic field produced so that it could be different from the quantum

Hall with a magnetic field. The final future research project attempts to investigate the role

of Berry curvature in investigating interband and intraband harmonics in low-dimensional
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materials. This study helps to understand the topology, symmetry, and relation between

inter and intraband dynamics and corresponding optical nonlinearity in 2D materials and

heterostructures, including layered structures and quantum dots. Overall, the future direc-

tions indicated in this dissertation could provide additional insight into investigating and

understanding symmetry and topology-related linear and nonlinear effects, enhancing the

harmonic efficiency, and selecting optimal material for harmonic yield employing advances

and extended theoretical models, including extended Hubbard Hamiltonian.
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A Symmetry Groups

This section presents tabular representation for D3h and D6h symmetry groups. Table 1

represents the D3h symmetry groups and table 2 represents the D6h symmetry groups.

This information in the symmetry character table is adapted from ref.[156].

Table 1: Character table for the D3h point group

D3h E 2C3 3C2 σh 2S3 3σv Basis
A′

1 1 1 1 1 1 1 axx + ayy, azz
A′′

1 1 1 1 -1 -1 -1
A′

2 1 1 -1 1 1 -1 Rz

A′′
2 1 1 -1 -1 -1 1 z

E ′ 2 -1 0 2 -1 0 (x, y), (axx − ayy, axy)
E ′′ 2 -1 0 -2 1 0 (Rx, Ry), (axz, ayz)

Table 2: Character table for the D6h point group

D6h E 2C6 2C3 C2 3C ′
2 3C ′′

2 I 2S3 2S6 σh 3σd 3σv Basis
A1g 1 1 1 1 1 1 1 1 1 1 1 1 axx + ayy, azz
A1u 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1
A2g 1 1 1 1 -1 -1 1 1 1 1 -1 -1 Rz

A2u 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 z
B1g 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
B1u 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1
B2g 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1 Rz

B2u 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1
E1g 2 1 -1 -2 0 0 2 1 -1 -2 0 0 (Rx, Ry), (axz, ayz)
E1u 2 1 -1 -2 0 0 -2 -1 1 2 0 0 (x, y)
E2g 2 -1 -1 2 0 0 2 -1 -1 2 0 0 (axx − ayy, axy)
E2u 2 -1 -1 2 0 0 -2 1 1 -2 0 0
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B Python codes for Pulse profiles

This section presents the Python codes to represent the incident optical pulse used to

complete the research projects in this dissertation. We studied the system for linear,

circular, and elliptical polarization of the incident optical pulse described by the Python

code below.
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Figure 1 Linear pulse code
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Figure 2 Circular pulse code
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Figure 3 Elliptical pulse code
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M. Korbman, J. Reichert, M. Schultze, S. Holzner, et al., Optical-field-induced current

in dielectrics, Nature 493 (7430) (2013) 70–74.

[30] J. Kiemle, P. Zimmermann, A. W. Holleitner, C. Kastl, Light-field and spin-orbit-

driven currents in van der waals materials, Nanophotonics 9 (9) (2020) 2693–2708.

[31] T. Paasch-Colberg, A. Schiffrin, N. Karpowicz, S. Kruchinin, Ö. Sağlam, S. Keiber,
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