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by
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Under the Direction of Yichuan Zhao, PhD

ABSTRACT

The calculation of correlation coefficient can be inaccurate with the existence of distor-
tion measurement errors. Such measurement errors could act in an additive or multiplicative
fashion. To study the additive model, previous research has shown residual-based estima-
tion of correlation coefficients. The powerful tool of empirical likelihood has been used to
construct the confidence interval for the correlation coefficient. However, the methods so
far only perform well when sample sizes are large. With small sample size situations, the
coverage of EL can be below 90%. On the basis of previous research, this article proposes
new methods of interval estimation for the correlation coefficient using jackknife empirical
likelihood, mean jackknife empirical likelihood and adjusted jackknife empirical likelihood.
For better performance with small sample sizes, we also propose adjusted mean jackknife
empirical likelihood and mean adjusted empirical likelihood. The simulation results show
the best performance with mean adjusted jackknife empirical likelihood when the sample
sizes are as small as 25. Real data analyses are used to illustrate the proposed approach.
INDEX WORDS: Correlation coefficient, Distortion errors, Jackknife empirical likelihood,

Adjusted jackknife empirical likelihood, Mean jackknife empirical like-

lihood, Adjusted mean jackknife empirical likelihood, Mean adjusted
jackknife empirical likelihood
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CHAPTER 1

INTRODUCTION

Measurement errors are inevitable during research and experiments. The existence of
such errors could lead to inflated bias and variation, while affecting corresponding coefficients
in linear regression. When studying the correlation coefficient between two variables, a
confounding variable may exist in an additive way to the variables being studied, which could
either underestimate or overestimate the true correlation coefficient between the variables of
interest. The model of additive distortion errors is first introduced by Senturk and Muller

(2005) and can be modeled as:

(1.1)

where (X,Y) are the observable variables while (X,Y) are the corresponding unobservable
true values of interest. ¢(U) and ¢ (U) are unknown functions of an observed confounding
variable U with identifiability condition E[¢(U)] = E[¢(U)] = 0. Senturk and Muller (2005)
also proposed a model for multiplicative errors. The multiplicative error model suggests
that X = (U)X and Y = (U)Y where E[¢(U)] = E[¢(U)] = 1. Different models of
¢(+) and 9 (+) have been studied under the scenario of multiplicative distortion measurement
errors. Senturk and Muller (2008) investigated linear and generalized linear models. Zhang
et al. (2019) studied multiplicative regression models with distortion measurement errors.
Three kinds of estimators are proposed in Zhang’s research. By taking the logarithm of the
response variable, a least squares estimator and a moment-based estimator can be calculated.
Without the logarithmic transformation, a least product relative error estimator is proposed.
As to the additive fashion of distortion measurement errors, Feng et al. (2018) studied linear
regression models. In this study, a residual based least squares estimator is proposed under

restricted and unrestricted conditions. Then, a hypothesis testing method is proposed by



introducing a test statistic according to the normalized difference of residual sums of squares
under null and alternative hypotheses. In addition, an estimation and hypothesis testing
method is also studied on partial linear models by Zhang et al. (2017b) under additive
fashion of distortion measurement errors.

To study the correlation coefficient between X and Y, Zhang et al. (2017a) proposed a
direct plug-in estimator and a residual-based estimator. Under the method of direct plug-in
estimator, estimators of ¢(U) and ¢(U), denoted as ¢(U) and 1(U), are subtracted from the
observed response and predictor to obtain calibrated X, Y and construct the estimation using

the calibrated values. The method of residual-based estimator first obtains the residuals by:

exy =X — E[X|U], 12)

eyy =Y — E[Y|U],

and then we calculate p(X,Y') based on the fact that p(X,Y) = p(e sy, eyy). An empirical
likelihood statistic of residual-based estimation is then used to construct the confidence
interval of p(X,Y).

First introduced by Owen (1988, 1990), empirical likelihood has shown its advantage as
a non-parametric tool that does not need a distribution assumption. Huang and Zhao (2017)
published an article using empirical likelihood for bivariate survival function under univariate
censoring. Cheng et al. (2012) introduced empirical likelihood inference for semiparametric
additive isotonic regression. The method of adjusted empirical likelihood has been shown
by Chen (2008). Adjusted empirical likelihood has been applied to a variety of research
fields since then. Yu and Zhao (2019) proposed empirical likelihood inference and adjusted
empirical likelihood for semi-parametric transformation models with length-biased sampling.
Wang et al. (2019) proposed the method of penalized empirical likelihood when dealing
with the sparse Cox model. However, in situations with small sample sizes, the coverage
probability and the confidence region could be inaccurate using empirical likelihood. Thus,

Liang et al. (2019) proposed mean empirical likelihood by constructing a pseudo dataset



through the means of observed values. It has been shown that the method of MEL satisfies
Wilk’s theorem.

When dealing with complicated statistics, the calculation of empirical likelihood can
still be redundant. Thus, jackknife empirical likelihood was introduced by Jing et al. (2009)
to simplify the application of empirical likelihood to complicated statistics. Various research
articles have been published using jackknife empirical likelihood. Sang et al. (2019) proposed
JEL method for estimating Gini correlations. Lin et al. (2017) published the method for
the error variance using JEL in linear regression models. JEL is also introduced for the
accelerated failure time model by Yu and Zhao (2019). The method of JEL can also be
applied to Bayesian inference, which was published by Cheng and Zhao (2019). When
measuring the spread of data using mean absolute deviation, Zhao et al. (2015) have shown
the JEL inference for mean absolute deviation. To compare two correlated Gini indices,
Alemdjrodo and Zhao (2019) proposed a new method to reduce the computation in jackknife
empirical likelihood. According to Zhao et al. (2018), Jackknife empirical likelihood can also
be used for skewness and kurtosis.

From the basis of JEL, the method of adjusted jackknife empirical likelihood was pro-
posed by Zhao et al. (2015) and Chen and Ning (2016). AJEL preserves the property of
JEL while providing better coverage probability with slightly longer confidence intervals ac-
cording to Zhao et al. (2015). AJEL is also widely applied as a supplement to JEL method.
Yang and Zhao (2017) applied both methods to obtain the quantile difference using smoothed
non-parametric estimating equation.

In this paper, we propose applications of mean and jackknife empirical likelihood into
the estimation of p(e g, ey). The residual based estimator, p(e gy, eys), is first calculated
according to Zhang et al. (2017a). The JEL method is then applied to calculate the jackknife
estimator of p(X,Y’). The confidence intervals based on mean and jackknife empirical like-
lihood are proposed in this paper. Furthermore, the confidence interval from the adjusted
jackknife empirical likelihood is constructed. Simulation studies use normal distribution,

beta distribution and Weibull distribution to generate the confounding variable U. The ad-



ditive error terms are linear functions of U. In the simulation, the true values of p(X,Y)
are -0.9, -0.5, 0, 0.5 and 0.9. Sample sizes vary from 25 to 100 to show the performance of
proposed methods in small sample size cases. In a real data analysis, the well-known Boston
House Price data set is used where the location and house price are considered as X and Y
while the education level is used as the confounding variable.

The organization of the thesis is as follows. In Chapter 2, we first review the method
of residual-based estimation and construction of empirical likelihood proposed by Zhang
et al. (2017a). In Chapter 3, application of jackknife empirical likelihood is proposed.
The applications of mean jackknife empirical likelihood and adjusted jackknife empirical
likelihood are proposed in Chapter 4. In Chapter 5, we propose AMJEL and MAJEL to
improve the performance for small sample size situations. In Chapter 6, a simulation study
is conducted using Normal, Beta and Weibull distributions. In Chapter 7, the real data
analyses using the new methods are performed for illustrative purpose. The well-known
1993 new car dataset and Boston housing price dataset are used for the analysis. In Chapter
8, we make a conclusion that jackknife empirical likelihood performs better than empirical

likelihood in small sample size situations.



CHAPTER 2

RESIDUAL-BASED ESTIMATOR AND EMPIRICAL LIKELIHOOD FOR
CORRELATION COEFFICIENTS WITH ADDITIVE ERRORS

In this chapter, we review the EL method for correlation coefficients with additive
errors, which is developed by Zhang et al. (2017a). We use similar notations which are used

in Zhang et al. (2017a). The residuals of X and Y are defined as:

(2.1)
by =Y — Ba(YiU = Uy),
where . -
.- n IS Ky (U, —u) X
En(X|U = u) = _lzﬂ—nl l’? ;] _) 7
n Zj:l n(Uj — u) (2.2)
. n IS K (U — )Y, .
Eh(Y|U _ u) _ 2371 h( J ) J

nt i Kn(Uy —u) 7
with kernel function Kj,(-) = h™'K(-/h), where h = 6yn~"/ and 6y is the sample standard

deviation of U.

Then, the residual based estimator is calculated as:

A _ Oov(e?wefw)
p(eYU’e)_(U) _ ’

n

Cov(eyy, exy) = n! Z Cixulivu — éXUéf/Uv
i=1 (2.3)
n
a-g)i'U =n"' é?XU - [éXU]za
i=1

n
A2 -1 A2 13 12
O-ef,U =n E :eif/U [eYU] )
i=1

~

7~ _ —1 n AL 7~ o -1 n 5
where ég, =n""' > " €5y and éppy, =n" Y vy



The empirical likelihood is constructed based on the fact that

E 1 €xu o IO(X, Y) Cyu Cyu 4
2 UE}”{U \/UEY/U \/UEY/U
v (2.4)
E 1 Cyu o p(X, Y) €xu €xu = 0.

2 2 2 2
g g g
eyu exu exu

The empirical log-likelihood ratio function is then defined as:

[(p(X,Y)) = —2sup {Zlog(npi);pi > 0; sz- = 1; szfn,i(p(X, Y)) = 0} , (2.5

where

1 €% €. e e
_ XU 7,YU + YU (X, Y) XU XU

it = 2 [ / o / 52 2 2
g g g g
€xu eYU eYU % \/ €xu \/ €xu

Using the method of Lagrange multiplier, [,(p(X,Y)) can be obtained as:

Zn(ﬂ(*X’ Y)) =2 Z log{l + )‘én,i(p(Xu Y))},

=1

where A is a solution of the following equation

Gilp(X,Y))
_§:1+A%Z (p(X,Y)) =0

The EL confidence interval proposed by Zhang et al. (2016) can be then constructed as

Ixy)y = ={p(X,Y): l (p(X,Y)) < et

where ¢, is the x quantile of x? distribution.



CHAPTER 3

JACKKNIFE EMPIRICAL LIKELITHOOD FOR CORRELATION
COEFFICIENTS WITH ADDITIVE ERRORS

In this chapter, we develop JEL methods for correlation coefficients with additive er-

rors. Let p; denote the residual based estimator of p(X,Y) calculated with the i"

ey uexu)
observation deleted, where ¢+ = 1,....,n. Let Vi denote the jackknife pseudo-value, which is

obtained by

N

V; = TLpA(e}.,Uye).(U) — (n — 1),51‘7(%./!]76).“]); 1= 1, ey N (31)

The jackknife estimator p;(X,Y") is defined as

<>
—
@9
[\
N—

LS

The jackknife empirical likelihood of p(X,Y’) can be then defined as

J(p(X,Y)) = (anz,pz > 0; sz =1; sz Vi—p(X,Y)) = 0) (3.3)

The maximum of p; occurs at

where A is the solution of the following equation

n

Vi — p(X,Y) B
_Zl+)\ p(X,Y))

(3.4)



With A, we can now calculate the -2log of the empirical likelihood ratio as

—2l0gJ (p(X,Y)) =2 log{1+ A((Vi — p(X,Y))} (3.5)

=1

Five conditions are needed to obtain asymptotic results.

1. The density function fy(u) of the random variable U is bounded away from 0 and
satisfies the Lipschitz condition of order 1 on U, which is a compact support set of U.

2. ¢(+), () have three bounded and continuous derivatives. E[¢(U)] = 0 and E[(U)] =
0.

3. The kernel function K(-) is a univariate bounded, continuous and symmetric density
function about zero.

4. E[|X]*] < oo, E[|Y]*] < o0.

5. As n — oo, nh* = 0, log?n/(nh?) — 0.

We can derive the Wilks’ theorem as follows:

Theorem 3.1. Assume that conditions 1-5 hold. Let po(X,Y) be the true value of p(X,Y).

When n — oo, we have

~2log J(po(X,Y)) 2 X3

Following the theorem, the JEL confidence interval for p(X,Y) is obtained by

ixyy = {pxy) : —2log R(pixyy) < Xi_o(1)}, (3.6)

where x?__ (1) is the 1 — a quantile of x*(1).
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CHAPTER 4

ADJUSTED AND MEAN JEL FOR CORRELATION COEFFICIENTS
WITH ADDITIVE ERRORS

Simulation studies have shown that under-coverage issues still exist when the sample
size is smaller than 25. Thus, we use adjusted jackknife empirical likelihood to improve the
performance of JEL. In order to construct an adjusted jackknife empirical likelihood ratio

for p(X,Y), first define W; as
Wilp(X,Y)) = Vi = p(X,Y),i=1,...n, (4.1)

and then add one more pseudo value W, 1 to W;

n
an

Wn+1(p(X7 Y)) = __ZVVi(p(Xa Y))? (42)

n <
=1

where a,, = max(1,log(n)/2) according to Chen et al. (2008). Let W; denote the new vector
obtained from W;. AJEL is an adjustment to the JEL. Thus, we can calculate the AJEL

estimator as follows by implementing the adjustment to the JEL estimator

n+1

pAX.Y) = pa(X.Y) + —5 3 Wilja(X, V), (4.3)

The adjusted jackknife empirical likelihood ratio for p(X,Y) is defined as

n+1 n+1 n+1
Ja(p(X,Y)) = sup (H(n+ Dpi = pi > 0;2]71' = I;Zpiwi(p(X, Y)) = 0) :
=1 =1 =1 (44)
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Hence, the adjusted jackknife empirical log-likelihood ratio for p(X,Y’) is

La(p(X,Y)) = = " log(1 + AW (p(X, Y))), (4.5)

i=1
where )\, is a solution to the following equation:

n+1 —~

1 Wi(p(X7 Y)) _
n+1Z;1+&ﬁHMXJU)_

Once we calculate \,, the -2log of adjusted jackknife empirical likelihood ratio can be ob-

tained by
n+1

—2logJa(p(X,Y)) =2 Z log{1 4+ AW;}. (4.6)

i=1
The Wilks” theorem also holds for the adjusted jackknife empirical likelihood and it

states as follows:

Theorem 4.1. Suppose that po(X,Y) is the true value of p(X,Y’). Under the same assump-

tions in Theorem 3.1, when n — oo
~2log Ja(po(X,Y)) = x3. (4.7)
Thus, following the theorem, the 100(1 — a))% AJEL confidence interval is defined as:

];%X,Y) = {pa(X7 Y) : _210g JA(pa(X7 Y)) S X%—a(l)}' (48)

By using AJEL, the length of AJEL confidence interval is usually longer than JEL but, the
coverage probability of AJEL is better in small sample cases. To combine the methods of
mean and jackknife empirical likelihood, first we let M denote the pseudo vector calculated
from Wi, where

M —

1:1<i<j<n

{M } (4.9)

Through the equation above, the original W, is expanded into a vector of size N =
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n(n+1)/2. Meanwhile, M maintains the same mean as W;. The expected value of the new
M is close to 0. Similar to the adjusted jackknife estimator, the mean jackknife estimator

can be defined as follows by adding an adjustment term to the jackknife estimator:

pu(X.Y) = ps(X,¥) + 1 D7 Mips(X, V). (4.10)

=1

Now, we can construct the empirical likelihood based on the new vector M. The mean

empirical likelihood ratio, denoted as RM (p(X,Y)), is defined as:

N N N
RM(p(X,Y)) = _max (H Npiipi = 0;) pi=1> pMi(p(X,Y)) = 0) . (4.11)
- " i=1 i=1 i=1

By the properties of empirical likelihood, the log-likelihood M (p(X,Y)) can then be

calculated as: .
—2log R (p(X,Y))

n+1

M(p(X,Y)) =

, (4.12)
= 2 log(1 + AM;i(p(X,Y))),
where A is the solution of the following equation
o XN: M(p(X,Y) (4.13)
2 T M (p(X, V)

To construct the confidence interval of p(X,Y"), we obtain Wilk’s theorem as follows:

Theorem 4.2. Assuming the same condition as we did in Theorem 3.1. We have that
M(po(X,Y)) D 2 (4.14)
Then, the mean jackknife empirical likelihood confidence interval is defined as follows:

Lfvyy = {p(X,Y) 17 (o(X,Y) < xi_a (D)},
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where x?__ (1) is the 1 — a quantile of x3.

Like the jackknife empirical likelihood, there is no exact formula for the confidence
interval of mean jackknife empirical likelihood. Thus, the calculation of CI for MJEL is the
same as that for EL by fitting a vector of estimators into the non-parametric models and
compare the [ (p(X,Y’)) to the desired quantile. In general cases, the length of confidence
interval decreases with the larger sample size. Simulation studies have shown that the
confidence interval of MJEL is longer than that of empirical likelihood. The results of

simulation studies will be shown in Chapter 6.
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CHAPTER 5

ADJUSTED MEAN AND MEAN ADJUSTED JEL FOR CORRELATION
COEFFICIENTS WITH ADDITIVE ERRORS

To increase the performance in small sample situations, we combine the methods of
MJEL and AJEL and propose the methods of adjusted mean jackknife empirical likelihood
(AMJEL) and mean adjusted jackknife empirical likelihood (MAJEL). In AMJEL, we cal-
culate the vector M from equation (4.8) and then add one more point to the vector. For
MAJEL, we first obtain the vector W; from equation (4.2) and then expand the vector using
the equation similar to equation (4.8).

For AMJEL, M is obtained by using equation (4.8) and has N = n(n + 1)/2 elements.

We add one additional point to M using
o
N Z
MN+1 = _W - Mi) (51)

where ay = max(1,log(N)/2). The adjusted mean jackknife estimator is then defined as

N+1
1
oam (X, Y) = pu(X)Y) + —— M;(pp(X,Y)). .
e (X,Y) = (X Y) + 5y 3 M (X, Y) 52)

The adjusted mean jackknife empirical likelihood ratio is then defined as:

Jan(p(X,Y)) = sup <H(N + 1)pi; pi > 0; Zpi =1 ZpiMi(p(Xv Y)) = 0) . (5.3)

=1

The log-likelihood of AMJEL can be then calculated by

N+1

> log(1+ AM;(p(X,Y))), (5.4)

L(p(X,Y)) = —
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where A is a solution to the following equation:

1 W Mi(p(X,Y))

N+1§:1+AMmm&Y»

i=1

= 0. (5.5)

The Wilks’” theorem holds for AMJEL as follows:

Theorem 5.1. Under the same assumptions in Theorem 3.1, when n — oo,
D
—2logJan (po(X,Y)) = x5 (5.6)

Following the theorem, the 100(1 — a)% AMJEL confidence interval is as follows

Iﬁj)\(/[,Y) = {p(X, Y) : _2logJAM(p(Xv Y)) < X%—a(l)}' (57)

The confidence interval of AMJEL appears to be longer than the confidence interval of
MJEL, which will be shown in the simulation study in Chapter 6.

For MAJEL, we use W; obtained from equations (4.1)-(4.2) and calculate M# as follows:

—_

Mu:{wé;@nlgi§j§n+l} (5.8)
1 2
The expectation of M® remains close to 0 and M* has N% = (n )2(n £2) values. The
mean adjusted jackknife estimator is then defined as
NCL
na(X,Y) = pa(X, V) + = 5 Mo(4(X, V) (5.9)
PMA ) PA ) Na - PA ) . .

The mean adjusted jackknife empirical likelihood ratio is then defined as follows:

Ne Ne@ N¢
Taa(p(X,Y)) = sup (H Npipi > 0:) pi=1;> piMf = 0) . (5.10)

i=1 =1 i=1
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The log-likelihood of MAJEL can be calculated by the following equation:

Na

Zlog(l +AME(p(X,Y))), (5.11)

MA(p(X,Y)) = P

where A is the solution of the following equation:

1 = M(p(X,Y))

No 2= T4 AME(p(X.Y))

= 0. (5.12)

We can also obtain the Wilks’ theorem for MAJEL.

Theorem 5.2. Under the same assumption in Theorem 3.1, when n — 00,
—2logJyra(po(X,Y)) 5 3. (5.13)

From the theorem, we can construct the 100(1 — )% MAJEL confidence interval as

follows:

LGy = {p(X,Y) 1 =2log aa(p(X,Y)) < xi_o (1)} (5.14)

MAJEL performs better than AMJEL, JEL, MJEL and AJEL when the sample size
is small. The average length of the MAJEL confidence interval is longer than AJEL and
MJEL. The simulation study in Chapter 6 shows the comparison of estimation, coverage

probability and average length of confidence intervals among the methods.
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CHAPTER 6

SIMULATION STUDIES

For the simulation study, (X,Y’) is generated by multivariate normal distribution with
pw = (2,4) and p(X,Y) = —0.9,-0.5,0,0.5,0.9. To ensure X and Y are generated with
predefined correlation coefficient, we let the (1,1) and (2,2) of the covariance matrix to be
1 while the (1,2) and (2,1) elements equal to the predefined correlation coefficients. U is
simulated with Normal, Beta and Weibull distributions. The Normal distribution of u = 2
and o = 1 is used to generate U. We set ¥(U) = U — 2 and ¢(U) = 2 — U. In the
Beta distribution, Beta(a, 3), we let a = 2 and f = 8 such that ¢(U) = U — 0.2 and
»(U) = 0.2—U. For the Weibull distribution, W (A, k), we have A = 1.2 and x = 1. We also
let Y(U) = U —0.9407 and ¢(U) = 0.9407 — U to ensure E[)(U)] = 0 and E[p(U)] = 0. The

observed values (X,Y) are set up as:

X=X +9U),

Y =Y +¢(U).

Each simulation was repeated 2,000 times with the sample size n = 25,50, 75,100. For the
kernel function, we choose to use the Epanechnikov kernel functions, K (t) = 0.75(1 — ¢*),
as suggested by Zhang et al. (2017a). The bandwidth is chosen as suggested by Silverman
(1986) such that h = 6yn~1/3, where 6y is the sample standard deviation of U. Six methods,
EL, JEL, AJEL, MJEL, AMJEL and MAJEL are compared in terms of estimators, coverage
probability and average lengths of 95% confidence intervals. The results are shown in the

following tables.



Table (6.1) Comparison of all methods under the Normal distribution

EL JEL AJEL MJEL AMJEL MAJEL
p(X,Y) n |pX,)Y) AL CP |p,(X,Y) AL CP |pu(X,Y) AL CP |jpu(X,Y) AL CP |pan(X,Y) AL CP | pua(X,Y) AL CP
0.9 2% | -0.895 0.162 0.854 | -0.003 0255 0893 | -0.903 0294 0909 | -0903 0292 0913 | -0.903 0496  0.986 | -0.903 0314 0.928
50 | -0.898 0.112 0910 | -0.900 0.151 0935 | -0.900 0163 0943 | -0.900  0.166 0.948 | -0.900 0.168 0.949 | -0.900 0173 0.951
75 | -0.899 0.090 0917 | -0.900 0.113 0938 | -0.900 0120 0941 | -0.900  0.122 0.944 | -0.900 0122 0944 | -0.900 0125 0.948
100 | -0.898 0.078 0.916| -0.899 0.095 0.942 | -0.899  0.099 0.947 | -0.899  0.100 0.951| -0.899 0.100 0.951 | -0.899 0.102  0.956
205 25 | -0.485 0.551 0835 | -0.496 0935 0895 | -0.496 1.076 0911 | -0496  1.071 0.917 | -0.496 1817 0992 | -0.496 1150 0.929
50 | -0.494 0408 0.894 | -0.499 0576 0926 | -0.499  0.622 0934 | -0499  0.634 0938 | -0.499 0.640  0.940 | -0.499 0.661  0.944
75 | 05 0337 0.009| -0.504 0439 0942 | -0.504 0464 0.950 | -0.504 0471 0955 | -0.504 0473 0.956 | -0.504 0485  0.965
100 | -0.496 0.295 0918 | -0.498 0368 0.947 | -0498 0384 0.951| -0.498 0388 0954 | -0.498 0380  0.954 | -0.498 0.398  0.960
0 25 | -0.005 0695 0841 | 0.002 1215 0904 | 0002 1.398 0926 | 0.002  1.392 0930 | 0.002 2361 0.995 | 0.002 1493 0.945
50 | -0.002 0529 0.886| 0.001 0758 0928 | 0001 0819 0937 | 0001 0834 0942 | 0.001 0.843 0946 | 0.001 0.870  0.951
75 | 0.003 0444 0918 | 0.004 0586 0.953| 0004 0619 0960 | 0004 0630 0965 | 0.004 0.632 0966 | 0.004 0.649  0.970
100 | 0.003 0388 0930 | 0004 0488 0.957 | 0004 0510 0958 | 0.004 0515 0959 |  0.004 0516 0.959 |  0.004 0528  0.963
0.5 25 | 0481 0551 0864 | 0500 0928 00906 | 0500 1.068 0927 | 0500 1061 0928 | 0.500 1807  0.995 | 0.500 1139 0.944
50 | 0490 0410 0.905 | 0499 0578 0936 | 0499  0.624 0944 | 0499  0.635 0.950 |  0.499 0.641 0953 |  0.499 0.661  0.959
75 | 0490 0341 0915 | 0497 0443 0941 | 0497 0468 0947 | 0497 0475 0.952 | 0497 0477 0954 | 0497 0490  0.960
100 | 0496 0205 0924 | 0500 0367 0946 | 0500  0.383 0.952 | 0500 0387 0953 | 0.500 0388  0.953 | 0.500 0396  0.957
0.9 25 | 0.884 0.177 0856 | 0904 0280 0894 | 0904 0322 0912 | 0904 0320 0911 | 0904 0546  0.986 | 0.904 0344 0.927
50 | 0.894 0.114 0.886| 0901 0154 00915 | 0901 0167 0926 | 0901  0.169 0930 | 0.901 0171 0931 | 0.901 0.177  0.939
75 | 0.895  0.093 0.906 | 0.899 0118 0936 | 0.899  0.124 0941 | 0.899  0.126 0942 |  0.899 0126 0944 | 0.899 0.130  0.950
100 | 0.899 0.078 0929 | 0901 0.094 0945 | 0901 0098 0.950 | 0.901  0.099 0951 | 0.901 0.099 0953 | 0901 0102 0.954
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Table (6.2) Comparison of all methods under the Beta distribution

EL JEL AJEL MJEL AMJEL MAJEL
o(X,Y) n | pX,Y) AL CP | p,(X,Y) AL CP |pu(X,Y) AL  CP |pu(X,Y) AL  CP |jpau(X,Y) AL CP | pua(X,Y) AL cp
0.9 25 | 0894 0.161 0.857 | -0.902 0248 0891 | -0.902 0285 0905 | -0.902 0284 0910 | -0.902 0482 0983 | -0.902 0304 0.924
50 | -0.898 0.110 0.912 | -0.902 0.148 0924 | -0.902 0.160 0936 | -0.902 0163 0941 | -0.902 0164 0943 | -0.902 0169 0.948
75 | -0.899 0.089 0.925| -0.901 0.112 0945| -0901 0118 0947 | -0.901 0120 0.950 | -0.901 0120 0.950 | -0.901 0124  0.956
100 | -0.899 0.077 0.916| -0.900 0.093 0.940 | -0.900  0.097 0.946 | -0.900  0.098 0.949 | -0.900 0099 0.949 | -0.900 0101  0.951
205 25 | -0.494 0544 0.863 | -0.511 0908 0.907 | -0.511 1.044 0923 | -0511  1.039 0926 | -0.511 1764 0.993 | -0511 1114 0.939
50 | -0.499 0407 0.904 | -0.505 0.566 0.943 | -0.505 0.612 0.950 | -0.505  0.623 0.954 | -0.505 0620 0954 | -0.505 0.649  0.960
75 | -0.498 03338 0913 | -0.503 0435 0937 | -0503 0459 0945 | -0.503 0466 0.950 | -0.503 0468 0951 | -0.503 0481  0.955
100 | -0.499 0293 0.909 | -0.501 0360 0940 | -0.501 0376 0943 | -0.501  0.380 0.946 | -0.501 0380 0946 | -0.501 0.389  0.948
0 25 | -0.001 0685 0.834| 0003 1.172 0891 | 0003 1.349 0910 | 0003 1341 00915 | 0.003 2279 0988 | 0.003 1439 0.931
50 | 0.002 0528 0.888| 0.000 0.745 0.929| 0000 0805 0938 | 0.000 0819 0946 | 0.000 0828 0.948 |  0.000 0854  0.952
75 | 0002 0442 0915 | 0.002 0577 0940 | 0.002  0.609 0.948 | 0.002  0.619 0.952 | 0.002 0622 0952 |  0.002 0.638  0.957
100 | -0.003 0.386 0.918 | -0.003 0.480 0.946 | -0.003 0502 0.950 | -0.003  0.507 0.953 | -0.003 0508 0953 | -0.003 0.519  0.956
05 25 | 0493 0544 0.857 | 0507 0908 0.900| 0507 1.044 0919 | 0507  1.039 0925 | 0.507 1764 0990 | 0.507 1115 0.941
50 | 0497 0404 0.898 | 0503 0563 0924 | 0503 0608 0930 | 0503 0619 0936 | 0.503 0625 0940 | 0503 0645  0.944
75 | 0497 0337 0912 | 0501 0434 0945 0501 0459 0.951 | 0501 0466 0.955 |  0.501 0468 0957 | 0.501 0480  0.961
100 | 0497 0294 0915| 0500 0363 0.940 | 0500 0379 0943 | 0500  0.383 0945 | 0.500 0384 0945 |  0.500 0392  0.949
0.9 25 | 0895 0.159 0.848 | 0.901 0.246 0.877 | 0901 0283 0896 | 0901 0282 0902 | 0.901 0480 0984 | 0.901 0302 0.923
50 | 0.899  0.110 0.885 | 0.902 0.146 0.915| 0902 0158 0922 | 0902  0.161 0928 | 0.902 0162 0928 | 0.902 0167  0.932
75 | 0.900 0.08) 0.929| 00901 0111 0941 | 0901  0.118 0946 | 0901  0.119 0947 |  0.901 0120 0.949 |  0.901 0123 0.954
100 | 0.899 0.077 0.916| 0900 0.093 0.944 | 0900  0.098 0.946 | 0900  0.099 0.948 |  0.900 0099 0.948 |  0.900 0.101  0.953
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Table (6.3) Comparison of all methods under the Weibull distribution

EL JEL AJEL MJEL AMJEL MAJEL
p(X,Y) n | pX,Y) AL CP |p,(X,Y) AL CP |pu(X,Y) AL CP |jpu(X,Y) AL CP |pau(X,Y) AL CP | pua(X,Y) AL CP
0.9 25 | -0.895 0.160 0.865 | -0.902 0.233 0832 | -0.902 0268 0.903 | -0902 0266 0909 | -0.902 0453 0.980 | -0.902 0286 0.923
50 | -0.898 0.112 0914 | -0.900 0.142 0923 | -0.900 0.154 0930 | -0.900  0.157 0.936 | -0.900 0.158  0.938 | -0.900 0.163  0.943
75 | -0.899  0.091 0923 | -0.900 0.110 0937 | -0.900 0.116 0.943 | -0.900  0.118 0.946 | -0.900 0.119  0.947 | -0.900 0122  0.953
100 | -0.900 0.077 0927 | -0.901 0.091 0938 | -0.901 0095 0941 | -0.901  0.096 0.944 | -0.901 0.096  0.946 | -0.901 0.098 0.951
0.5 2 | -0.493 0550 0.870 | -0.503 0862 0906 | -0.503 0991 0923 | -0.503  0.987 0.927 | -0.503 1673 0992 | -0.503 1.059  0.943
50 | -0.497 0410 0912 | -0.500 0545 0933 | -0.500 0588 0.942 | -0.500  0.599 0.947 | -0.500 0.605 0.948 | -0.500 0.625  0.953
75 | -0.499 0339 0926 | -0.501 0421 0937 | -0501 0445 0944 | -0.501 0451 0.949 | -0.501 0453  0.950 | -0.501 0465  0.956
100 | -0.497 0.297 0915 -0.500 0356 0944 | -0.500 0371 0.946 | -0.500 0375 0.949 | -0.500 0376  0.949 | -0.500 0384  0.953
0 25 | -0.006 0.691 0868 | 0.000 1.110 0908 | 0000 1.277 0925 | 0.000  1.270 0931 | 0.000 2159 0.995 | 0.000 1362 0.943
50 | -0.001 0532 0918 | 0003 0718 0943 | 0.003 0775 0.956 | 0.003  0.789 0963 |  0.003 0.797 0963 |  0.003 0.823  0.969
75 | 0.001 0444 0926 | 0004 0559 0945 | 0.004 0590 0.951| 0004 0599 0955 | 0.004 0.602  0.956 |  0.004 0.618  0.962
100 | -0.001  0.389 0928 | 0.001 0469 0.949 | 0.001 0490 0953 | 0001 0495 0955 |  0.001 0496  0.955 | 0.001 0.507  0.959
0.5 2 | 0483 0556 0.869 | 0510 0878 0903 | 0510 1011 0919 | 0510  1.007 0923 | 0.510 1705 0991 | 0510 1.080  0.939
50 | 0490 0412 0913 | 0500 0547 0941 | 0500 0591 0.946 | 0500  0.601 0.949 |  0.500 0.607 0951 |  0.500 0.626  0.956
75 | 0496 0340 0917 | 0502 0422 0933 | 0502 0446 0938 | 0502 0452 0944 | 0.502 0454 0945 |  0.502 0466  0.949
100 | 0497 0296 0935| 0502 0354 0944 | 0502 0370 0.950 | 0502 0373 0952 | 0.502 0374 0953 | 0.502 0382  0.958
0.9 25 | 0884 0.176 0.878 | 0.906 0259 0891 | 0906 0298 0908 | 0.906  0.296 0912 | 0.906 0505 0.989 | 0.906 0318 0.925
50 | 0.892  0.117 0923 | 0900 0148 0939 | 0900  0.160 0943 | 0900  0.163 0948 |  0.900 0.165 0.950 |  0.900 0.170  0.954
75 | 0.895  0.093 0919 | 0900 0112 0947 | 0900  0.119 0.950 | 0900  0.120 0.954 |  0.900 0.121 0954 |  0.900 0.124  0.960
100 | 0.807 0.079 0936 | 0901 0093 0945 | 0901 0097 0947 | 0901  0.098 0.951 | 0.901 0.098 0.951 | 0.901 0.100  0.953

0¢
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Figure 6.1 shows trends of average length and coverage probability from the simulation

under Weibull distribution. The trends are similar across all scenarios with different p(X,Y),

but actual values vary. If p(X,Y) is closer to 0, average length tends to be longer.

1)

2)

3)

4)

Conclusions from the simulations are as follows:

The average lengths of all five jackknife methods are longer than those of EL. The
average length of the AJEL confidence interval is longer than that of JEL but the
length of MJEL and AJEL are close. The AL of the MJEL confidence interval is
shorter than that of AJEL when the sample size is as small as 25. When the sample
size is greater than 50, MJEL has longer length than AJEL.

All new methods give better performance with an increase in the sample size.

MJEL and AJEL have similar performances. AMJEL and MAJEL show overall im-
provement from MJEL and AJEL.

The performance of estimators varies under the same sample size. However, with larger

sample sizes, JEL gives better estimators than the EL method.

The estimator, coverage probability and average length are consistent under the nor-
mal, Beta and Weibull distributions. The methods are consistent regardless of sym-

metric or asymmetric distributions.

The AMJEL method has over-coverage when sample size is 25. However, when the
sample size increases, the coverage probability of the AMJEL confidence interval is

close to the nominal level 0.95.

MAJEL outperforms all the other methods in the small sample size (n = 25) situations.
When the sample sizes are larger than 50, MAJEL has over-coverage issues, which is

similar to what we have observed in the MJEL method.
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Figure (6.1) Average length and coverage probability trend plot.
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CHAPTER 7

REAL DATA ANALYSIS

To compare the new methods to the original EL. method proposed by Zhang et al.
(2017a), we use the 1993 new car data and Boston house price data to conduct the real data
analysis. The 1993 new car data is collected by Lock (1993). The data has 93 observations
with 27 variables. We choose the horsepower as X and the highway MPG as Y. Weights
of cars are considered as the confounding distortion errors U. The Boston house data is
retrieved from Harrison and Rubinfield (1978). The data contains 506 observations with 14
variables. We study the correlation coefficient between the house prices (medv) and distance
to employment centers (dis), where dis is considered as X and meduv is considered as Y. The
lower status of the population (Istat) is considered as the confounding variable U. In the
real data analysis, to calculate the bandwidth h for the kernel function Kj(-) = h™'K(-/h),

1/3 where 6y is the sample standard deviation of confounding variable. For

we let h = opyn~
the first part of the real data analysis, we compare the EL, JEL, AJEL, MJEL, AMJEL and

MAJEL methods using the whole dataset.

Table (7.1) 1993 new car data analysis

Method | Estimator Lower Upper Length
EL -0.1083 -0.3451 -0.0599 0.4050
JEL -0.1220 -0.4518 0.1450 0.5968
AJEL -0.1220 -0.4671 0.1574 0.6245
MJEL -0.1220 -0.5145 0.1803 0.6948
AMJEL | -0.1220 -0.5154 0.1810 0.6964
MAJEL | -0.1220 -0.5320 0.1481 0.6801

Figure 7.1 concludes the analysis result for the new car dataset. The vertical lines show
the confidence intervals for all methods including EL. The blue line shows the change of

confidence interval length. The results are consistent with simulation studies that the 95%
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Table (7.2) Comparison of Boston house price analysis

Method | Estimator Lower Upper Length
EL -0.2522  -0.3420 -0.1549 0.1701
JEL -0.2478 -0.3524 -0.1495 0.2029
AJEL -0.2478 -0.3536 -0.1484 0.2052
MJEL -0.2478 -0.3531 -0.1492 0.2039
AMJEL | -0.2478 -0.3532 -0.1492 0.2040
MAJEL | -0.2478 -0.3543 -0.1481 0.2062

confidence intervals of new methods are longer than those of EL. The AMJEL confidence
interval is longer than MJEL confidence interval and MAJEL confidence interval is longer
than AJEL confidence interval. The naive correlation coefficient between horsepower and
highway MPG from the 1993 cars data, p(X,Y), is -0.8107, which indicates that there exists
a strong negative correlation between MPG and horsepower. After taking the confounding
variable of weight into consideration, the 95% confidence intervals of all proposed methods
contain zero, meaning the horsepower and MPG are uncorrelated. However, the EL confi-

dence interval proposed by Zhang et al. (2017a) does not include zero.

For the Boston housing price analysis, the naive correlation coefficient, p(X' , 17), between
the distance and median price is 0.2499. However, the new methods indicate a negative
correlation between these two variables. Also, all confidence intervals are exclusively less
than zero, meaning the distance to employment centers and house prices are negatively
correlated. The next part of the real data analysis focuses on the fact that new methods
outperform EL with the small sample size. Thus, the Boston data set is partitioned into
five sets depending on the lower status of the population. The partition and the results are
as shown in Table 7.3. A plot is drawn in Figure 7.2 to demonstrate how all the methods
perform in the partitioned Boston house price analysis.

The results show that the correlation coefficient between the distance and house price

increases with the increase of the lower status of population (Istat). House price is positively



Figure (7.1) Confidence intervals for the new car dataset.
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Table (7.3) Partitioned Boston house price analysis

25

Istat (0,5] (5,10] (10,15) (15,20] (20,100]

n 62 157 125 88 74

p(LB, UB)  -0.465 (-0.630, -0.242) | -0.387 (-0.506, -0.236) | -0.180 (-0.301, -0.033) | 0.360 (0.174, 0.524) | 0.437 (0.290, 0.565)
ps(LB, UB)  -0.493 (-0.717, -0.227) | -0.391 (-0.542, -0.228) | -0.197 (-0.339, -0.033) | 0.374 (0.082, 0.636) | 0.460 (0.292, 0.647)
pa(LB, UB)  -0.493 (-0.732, -0.210) | -0.391 (-0.553, -0.223) | -0.197 (-0.344, -0.027) | 0.374 (0.068, 0.649) | 0.460 (0.283, 0.658)
pu(LB, UB)  -0.493 (-0.723, -0.200) | -0.391 (-0.557, -0.223) | -0.197 (-0.341, -0.019) | 0.374 (0.029, 0.675) | 0.460 (0.284, 0.657)
pan(LB, UB)  -0.493 (-0.725, -0.199) | -0.391 (-0.557, -0.223) | -0.197 (-0.341, -0.019) | 0.374 (0.029, 0.675) | 0.460 (0.283, 0.658)
pra(LB, UB) -0.493 (-0.738, -0.181) | -0.391 (-0.562, -0.218) | -0.197 (-0.346, -0.013) | 0.374 (0.013, 0.689) | 0.460 (0.274, 0.668)

correlated with the distance to employment centers when Istat is greater than 15 and the

correlation is moderate. Also, when the lower status of population (Istat) is less than 5,

house prices can be moderately correlated to the distance in a negative fashion.
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CHAPTER 8

CONCLUSIONS

In this paper, we proposed the JEL, AJEL and MJEL for a correlation analysis when
the response variable is influenced by a confounding variable and the error terms are assumed
to be additions to the unobserved true values of interest. By the nature of JEL, MJEL and
AJEL, all confidence intervals are larger than those of empirical likelihood by Zhang et al.
(2017a). AJEL and MJEL have longer confidence intervals than JEL. AJEL provides longer
confidence intervals compared to MJEL, when sample sizes are as small as 25. When the
sample size, n, is between 50 and 100, the length of MJEL is larger than that of AJEL. Both
MJEL and AJEL have larger length than JEL. When the true value of p(X,Y) = 0, all
proposed methods generate longer confidence intervals compared with other situations. In
the cases with 25 < n < 100, all new methods provide better coverage probability compared
to the conventional empirical likelihood. But the performance varies case by case. MJEL
and AJEL could have over-coverage when the sample size is greater than or equal to 75.
Generally, MAJEL and AMJEL show better performances when n = 50. The coverage
probability of AMJEL could be close to 0.99 when the sample size is 25 and drops when the
sample sizes become 50. The reason of unexpected overcoverage for AMJEL with the small
sample sizes needs further investigation. MAJEL shows the best performance when sample
sizes are 25. When applied to real data sets, the new methods make it more convenient to
partition a data set into smaller subgroups without losing efficacy such that the analysis of
trend is possible even when we are dealing with small data sets. For future research, the tool
of jackknife empirical likelihood can be further applied to scenarios where the measurement

error acts as a factor to the unobserved variables of interest.
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