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JACKKNIFE EMPIRICAL LIKELIHOOD FOR THE CORRELATION COEFFICIENT

WITH ADDITIVE DISTORTION MEASUREMENT ERRORS

by

DA CHEN

Under the Direction of Yichuan Zhao, PhD

ABSTRACT

The calculation of correlation coefficient can be inaccurate with the existence of distor-

tion measurement errors. Such measurement errors could act in an additive or multiplicative

fashion. To study the additive model, previous research has shown residual-based estima-

tion of correlation coefficients. The powerful tool of empirical likelihood has been used to

construct the confidence interval for the correlation coefficient. However, the methods so

far only perform well when sample sizes are large. With small sample size situations, the

coverage of EL can be below 90%. On the basis of previous research, this article proposes

new methods of interval estimation for the correlation coefficient using jackknife empirical

likelihood, mean jackknife empirical likelihood and adjusted jackknife empirical likelihood.

For better performance with small sample sizes, we also propose adjusted mean jackknife

empirical likelihood and mean adjusted empirical likelihood. The simulation results show

the best performance with mean adjusted jackknife empirical likelihood when the sample

sizes are as small as 25. Real data analyses are used to illustrate the proposed approach.

INDEX WORDS: Correlation coefficient, Distortion errors, Jackknife empirical likelihood,
Adjusted jackknife empirical likelihood, Mean jackknife empirical like-
lihood, Adjusted mean jackknife empirical likelihood, Mean adjusted
jackknife empirical likelihood
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CHAPTER 1

INTRODUCTION

Measurement errors are inevitable during research and experiments. The existence of

such errors could lead to inflated bias and variation, while affecting corresponding coefficients

in linear regression. When studying the correlation coefficient between two variables, a

confounding variable may exist in an additive way to the variables being studied, which could

either underestimate or overestimate the true correlation coefficient between the variables of

interest. The model of additive distortion errors is first introduced by Senturk and Muller

(2005) and can be modeled as: 
X̃ = X + ψ(U),

Ỹ = Y + φ(U),

(1.1)

where (X̃, Ỹ ) are the observable variables while (X, Y ) are the corresponding unobservable

true values of interest. φ(U) and ψ(U) are unknown functions of an observed confounding

variable U with identifiability condition E[φ(U)] = E[ψ(U)] = 0. Senturk and Muller (2005)

also proposed a model for multiplicative errors. The multiplicative error model suggests

that X̃ = ψ(U)X and Ỹ = ψ(U)Y where E[φ(U)] = E[ψ(U)] = 1. Different models of

φ(·) and ψ(·) have been studied under the scenario of multiplicative distortion measurement

errors. Senturk and Muller (2008) investigated linear and generalized linear models. Zhang

et al. (2019) studied multiplicative regression models with distortion measurement errors.

Three kinds of estimators are proposed in Zhang’s research. By taking the logarithm of the

response variable, a least squares estimator and a moment-based estimator can be calculated.

Without the logarithmic transformation, a least product relative error estimator is proposed.

As to the additive fashion of distortion measurement errors, Feng et al. (2018) studied linear

regression models. In this study, a residual based least squares estimator is proposed under

restricted and unrestricted conditions. Then, a hypothesis testing method is proposed by
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introducing a test statistic according to the normalized difference of residual sums of squares

under null and alternative hypotheses. In addition, an estimation and hypothesis testing

method is also studied on partial linear models by Zhang et al. (2017b) under additive

fashion of distortion measurement errors.

To study the correlation coefficient between X and Y , Zhang et al. (2017a) proposed a

direct plug-in estimator and a residual-based estimator. Under the method of direct plug-in

estimator, estimators of φ(U) and ψ(U), denoted as φ̂(U) and ψ̂(U), are subtracted from the

observed response and predictor to obtain calibrated X, Y and construct the estimation using

the calibrated values. The method of residual-based estimator first obtains the residuals by:


eX̃U = X̃ − E[X̃|U ],

eỸ U = Ỹ − E[Ỹ |U ],

(1.2)

and then we calculate ρ(X, Y ) based on the fact that ρ(X, Y ) = ρ(eX̃U , eỸ U). An empirical

likelihood statistic of residual-based estimation is then used to construct the confidence

interval of ρ(X, Y ).

First introduced by Owen (1988, 1990), empirical likelihood has shown its advantage as

a non-parametric tool that does not need a distribution assumption. Huang and Zhao (2017)

published an article using empirical likelihood for bivariate survival function under univariate

censoring. Cheng et al. (2012) introduced empirical likelihood inference for semiparametric

additive isotonic regression. The method of adjusted empirical likelihood has been shown

by Chen (2008). Adjusted empirical likelihood has been applied to a variety of research

fields since then. Yu and Zhao (2019) proposed empirical likelihood inference and adjusted

empirical likelihood for semi-parametric transformation models with length-biased sampling.

Wang et al. (2019) proposed the method of penalized empirical likelihood when dealing

with the sparse Cox model. However, in situations with small sample sizes, the coverage

probability and the confidence region could be inaccurate using empirical likelihood. Thus,

Liang et al. (2019) proposed mean empirical likelihood by constructing a pseudo dataset
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through the means of observed values. It has been shown that the method of MEL satisfies

Wilk’s theorem.

When dealing with complicated statistics, the calculation of empirical likelihood can

still be redundant. Thus, jackknife empirical likelihood was introduced by Jing et al. (2009)

to simplify the application of empirical likelihood to complicated statistics. Various research

articles have been published using jackknife empirical likelihood. Sang et al. (2019) proposed

JEL method for estimating Gini correlations. Lin et al. (2017) published the method for

the error variance using JEL in linear regression models. JEL is also introduced for the

accelerated failure time model by Yu and Zhao (2019). The method of JEL can also be

applied to Bayesian inference, which was published by Cheng and Zhao (2019). When

measuring the spread of data using mean absolute deviation, Zhao et al. (2015) have shown

the JEL inference for mean absolute deviation. To compare two correlated Gini indices,

Alemdjrodo and Zhao (2019) proposed a new method to reduce the computation in jackknife

empirical likelihood. According to Zhao et al. (2018), Jackknife empirical likelihood can also

be used for skewness and kurtosis.

From the basis of JEL, the method of adjusted jackknife empirical likelihood was pro-

posed by Zhao et al. (2015) and Chen and Ning (2016). AJEL preserves the property of

JEL while providing better coverage probability with slightly longer confidence intervals ac-

cording to Zhao et al. (2015). AJEL is also widely applied as a supplement to JEL method.

Yang and Zhao (2017) applied both methods to obtain the quantile difference using smoothed

non-parametric estimating equation.

In this paper, we propose applications of mean and jackknife empirical likelihood into

the estimation of ρ(eX̃U , eỸ U). The residual based estimator, ρ(eX̃U , eỸ U), is first calculated

according to Zhang et al. (2017a). The JEL method is then applied to calculate the jackknife

estimator of ρ(X, Y ). The confidence intervals based on mean and jackknife empirical like-

lihood are proposed in this paper. Furthermore, the confidence interval from the adjusted

jackknife empirical likelihood is constructed. Simulation studies use normal distribution,

beta distribution and Weibull distribution to generate the confounding variable U . The ad-
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ditive error terms are linear functions of U . In the simulation, the true values of ρ(X, Y )

are -0.9, -0.5, 0, 0.5 and 0.9. Sample sizes vary from 25 to 100 to show the performance of

proposed methods in small sample size cases. In a real data analysis, the well-known Boston

House Price data set is used where the location and house price are considered as X and Y

while the education level is used as the confounding variable.

The organization of the thesis is as follows. In Chapter 2, we first review the method

of residual-based estimation and construction of empirical likelihood proposed by Zhang

et al. (2017a). In Chapter 3, application of jackknife empirical likelihood is proposed.

The applications of mean jackknife empirical likelihood and adjusted jackknife empirical

likelihood are proposed in Chapter 4. In Chapter 5, we propose AMJEL and MAJEL to

improve the performance for small sample size situations. In Chapter 6, a simulation study

is conducted using Normal, Beta and Weibull distributions. In Chapter 7, the real data

analyses using the new methods are performed for illustrative purpose. The well-known

1993 new car dataset and Boston housing price dataset are used for the analysis. In Chapter

8, we make a conclusion that jackknife empirical likelihood performs better than empirical

likelihood in small sample size situations.
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CHAPTER 2

RESIDUAL-BASED ESTIMATOR AND EMPIRICAL LIKELIHOOD FOR

CORRELATION COEFFICIENTS WITH ADDITIVE ERRORS

In this chapter, we review the EL method for correlation coefficients with additive

errors, which is developed by Zhang et al. (2017a). We use similar notations which are used

in Zhang et al. (2017a). The residuals of X and Y are defined as:


êiX̃U = X̃i − Êh(X̃i|U = Ui),

êiỸ U = Ỹi − Êh(Ỹi|U = Ui),

(2.1)

where

Êh(X̃|U = u) =
n−1

∑n
j=1Kh(Uj − u)X̃j

n−1
∑n

j=1Kh(Uj − u)
,

Êh(Ỹ |U = u) =
n−1

∑n
j=1Kh(Uj − u)Ỹj

n−1
∑n

j=1Kh(Uj − u)
,

(2.2)

with kernel function Kh(·) = h−1K(·/h), where h = σ̂Un
−1/3 and σ̂U is the sample standard

deviation of U .

Then, the residual based estimator is calculated as:

ρ̂(eỸ U ,eX̃U ) =
Ĉov(eỸ U , eX̃U)√

σ̂2
eỸ U

σ̂2
eX̃U

,

Ĉov(eỸ U , eX̃U) = n−1
n∑
i=1

êiX̃U êiỸ U − ¯̂eX̃U
¯̂eỸ U ,

σ̂2
eX̃U

= n−1
n∑
i=1

ê2
iX̃U
− [¯̂eX̃U ]2,

σ̂2
eỸ U

= n−1
n∑
i=1

ê2
iỸ U
− [¯̂eỸ U ]2,

(2.3)

where ¯̂eX̃U = n−1
∑n

i=1 êiX̃U and ¯̂eỸ U = n−1
∑n

i=1 êiỸ U .
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The empirical likelihood is constructed based on the fact that

E

1

2

 eX̃U√
σ2
eX̃U

− ρ(X, Y )
eỸ U√
σ2
eỸ U

 eỸ U√
σ2
eỸ U

+

E

1

2

 eỸ U√
σ2
eỸ U

− ρ(X, Y )
eX̃U√
σ2
eX̃U

 eX̃U√
σ2
eX̃U

 = 0.

(2.4)

The empirical log-likelihood ratio function is then defined as:

l̂(ρ(X, Y )) = −2sup

{
n∑
i=1

log(npi); pi > 0;
n∑
i=1

pi = 1;
n∑
i=1

piς̂n,i(ρ(X, Y )) = 0

}
, (2.5)

where

ς̂n,i =
1

2

 eiX̃U√
σ2
eX̃U

− ρ(X, Y )
eiỸ U√
σ2
eỸ U

 eiỸ U√
σ2
eỸ U

+

 eiỸ U√
σ2
eỸ U

− ρ(X, Y )
eiX̃U√
σ2
eX̃U

 eX̃U√
σ2
eX̃U

 .
Using the method of Lagrange multiplier, l̂n(ρ(X, Y )) can be obtained as:

l̂n(ρ(X, Y )) = 2
n∑
i=1

log{1 + λς̂n,i(ρ(X, Y ))},

where λ is a solution of the following equation

1

n

n∑
i=1

ς̂n,i(ρ(X, Y ))

1 + λς̂n,i(ρ(X, Y ))
= 0.

The EL confidence interval proposed by Zhang et al. (2016) can be then constructed as

Iρ(X,Y ) = {ρ(X, Y ) : l̂n(ρ(X, Y )) ≤ cκ},

where cκ is the κ quantile of χ2
1 distribution.
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CHAPTER 3

JACKKNIFE EMPIRICAL LIKELIHOOD FOR CORRELATION

COEFFICIENTS WITH ADDITIVE ERRORS

In this chapter, we develop JEL methods for correlation coefficients with additive er-

rors. Let ρ̂i,(eỸ U ,eX̃U ) denote the residual based estimator of ρ(X, Y ) calculated with the ith

observation deleted, where i = 1, ..., n. Let V̂i denote the jackknife pseudo-value, which is

obtained by

V̂i = nρ̂(eỸ U ,eX̃U ) − (n− 1)ρ̂i,(eỸ U ,eX̃U ); i = 1, ..., n. (3.1)

The jackknife estimator ρ̂J(X, Y ) is defined as

ρ̂J(X, Y ) = n−1
n∑
i=1

V̂i. (3.2)

The jackknife empirical likelihood of ρ(X, Y ) can be then defined as

J(ρ(X, Y )) = sup
p=(p1,...,pn)

(
n∏
i=1

npi; pi ≥ 0;
n∑
i=1

pi = 1;
n∑
i=1

pi(V̂i − ρ(X, Y )) = 0

)
. (3.3)

The maximum of pi occurs at

pi =
1

n

(
1 + λ(V̂i − ρ(X, Y ))

)−1
, i = 1, ..., n,

where λ is the solution of the following equation

1

n

n∑
i=1

V̂i − ρ(X, Y )

1 + λ(V̂i − ρ(X, Y ))
= 0. (3.4)
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With λ, we can now calculate the -2log of the empirical likelihood ratio as

−2logJ(ρ(X, Y )) = 2
n∑
i=1

log{1 + λ((V̂i − ρ(X, Y ))} (3.5)

Five conditions are needed to obtain asymptotic results.

1. The density function fU(u) of the random variable U is bounded away from 0 and

satisfies the Lipschitz condition of order 1 on U , which is a compact support set of U.

2. φ(·), ψ(·) have three bounded and continuous derivatives. E[φ(U)] = 0 and E[ψ(U)] =

0.

3. The kernel function K(·) is a univariate bounded, continuous and symmetric density

function about zero.

4. E[|X|4] <∞, E[|Y |4] <∞.

5. As n −→∞, nh4 −→ 0, log2n/(nh2) −→ 0.

We can derive the Wilks’ theorem as follows:

Theorem 3.1. Assume that conditions 1-5 hold. Let ρ0(X, Y ) be the true value of ρ(X, Y ).

When n −→∞, we have

−2 log J(ρ0(X, Y ))
D−→ χ2

1.

Following the theorem, the JEL confidence interval for ρ(X, Y ) is obtained by

IJρ(X,Y ) = {ρ(X,Y ) : −2 logR(ρ(X,Y )) ≤ χ2
1−α(1)}, (3.6)

where χ2
1−α(1) is the 1− α quantile of χ2(1).
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CHAPTER 4

ADJUSTED AND MEAN JEL FOR CORRELATION COEFFICIENTS

WITH ADDITIVE ERRORS

Simulation studies have shown that under-coverage issues still exist when the sample

size is smaller than 25. Thus, we use adjusted jackknife empirical likelihood to improve the

performance of JEL. In order to construct an adjusted jackknife empirical likelihood ratio

for ρ(X, Y ), first define Wi as

Wi(ρ(X, Y )) = V̂i − ρ(X, Y ), i = 1, ..., n, (4.1)

and then add one more pseudo value Wn+1 to Wi

Wn+1(ρ(X, Y )) = −an
n

n∑
i=1

Wi(ρ(X, Y )), (4.2)

where an = max(1, log(n)/2) according to Chen et al. (2008). Let Ŵi denote the new vector

obtained from Wi. AJEL is an adjustment to the JEL. Thus, we can calculate the AJEL

estimator as follows by implementing the adjustment to the JEL estimator

ρ̂A(X, Y ) = ρ̂J(X, Y ) +
1

n+ 1

n+1∑
i=1

Wi(ρ̂J(X, Y )). (4.3)

The adjusted jackknife empirical likelihood ratio for ρ(X, Y ) is defined as

JA(ρ(X, Y )) = sup
p=(p1,...,pn+1)

(
n+1∏
i=1

(n+ 1)pi : pi ≥ 0;
n+1∑
i=1

pi = 1;
n+1∑
i=1

piŴi(ρ(X, Y )) = 0

)
.

(4.4)
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Hence, the adjusted jackknife empirical log-likelihood ratio for ρ(X, Y ) is

lA(ρ(X, Y )) = −
n+1∑
i=1

log(1 + λaŴi(ρ(X, Y ))), (4.5)

where λa is a solution to the following equation:

1

n+ 1

n+1∑
i=1

Ŵi(ρ(X, Y ))

1 + λaŴi(ρ(X, Y ))
= 0.

Once we calculate λa, the -2log of adjusted jackknife empirical likelihood ratio can be ob-

tained by

−2logJA(ρ(X, Y )) = 2
n+1∑
i=1

log{1 + λŴi}. (4.6)

The Wilks’ theorem also holds for the adjusted jackknife empirical likelihood and it

states as follows:

Theorem 4.1. Suppose that ρ0(X, Y ) is the true value of ρ(X, Y ). Under the same assump-

tions in Theorem 3.1, when n→∞

−2 log JA(ρ0(X, Y ))
D−→ χ2

1. (4.7)

Thus, following the theorem, the 100(1− α)% AJEL confidence interval is defined as:

IAρ(X,Y ) = {ρa(X, Y ) : −2 log JA(ρa(X, Y )) ≤ χ2
1−α(1)}. (4.8)

By using AJEL, the length of AJEL confidence interval is usually longer than JEL but, the

coverage probability of AJEL is better in small sample cases. To combine the methods of

mean and jackknife empirical likelihood, first we let M denote the pseudo vector calculated

from Ŵi, where

M =
{Ŵi + Ŵj

2
: 1 ≤ i ≤ j ≤ n

}
. (4.9)

Through the equation above, the original Ŵi is expanded into a vector of size N =
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n(n+ 1)/2. Meanwhile, M maintains the same mean as Ŵi. The expected value of the new

M is close to 0. Similar to the adjusted jackknife estimator, the mean jackknife estimator

can be defined as follows by adding an adjustment term to the jackknife estimator:

ρ̂M(X, Y ) = ρ̂J(X, Y ) +
1

N

N∑
i=1

Mi(ρ̂J(X, Y )). (4.10)

Now, we can construct the empirical likelihood based on the new vector M . The mean

empirical likelihood ratio, denoted as R̂M(ρ(X, Y )), is defined as:

R̂M(ρ(X, Y )) = max
p=(p1,...,pn)

(
N∏
i=1

Npi; pi ≥ 0;
N∑
i=1

pi = 1;
N∑
i=1

piMi(ρ(X, Y )) = 0

)
. (4.11)

By the properties of empirical likelihood, the log-likelihood l̂M(ρ(X, Y )) can then be

calculated as:

l̂M(ρ(X, Y )) =
−2 log R̂M(ρ(X, Y ))

n+ 1

=
2

n+ 1

N∑
i=1

log(1 + λMi(ρ(X, Y ))),

(4.12)

where λ is the solution of the following equation

N−1
N∑
i=1

Mi(ρ(X, Y ))

1 + λMi(ρ(X, Y ))
= 0. (4.13)

To construct the confidence interval of ρ(X, Y ), we obtain Wilk’s theorem as follows:

Theorem 4.2. Assuming the same condition as we did in Theorem 3.1. We have that

l̂M(ρ0(X, Y ))
D−→ χ2

1. (4.14)

Then, the mean jackknife empirical likelihood confidence interval is defined as follows:

IMρ(X,Y ) = {ρ(X, Y ) : l̂M (ρ(X, Y )) ≤ χ2
1−α(1)},
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where χ2
1−α(1) is the 1− α quantile of χ2

1.

Like the jackknife empirical likelihood, there is no exact formula for the confidence

interval of mean jackknife empirical likelihood. Thus, the calculation of CI for MJEL is the

same as that for EL by fitting a vector of estimators into the non-parametric models and

compare the lM(ρ(X, Y )) to the desired quantile. In general cases, the length of confidence

interval decreases with the larger sample size. Simulation studies have shown that the

confidence interval of MJEL is longer than that of empirical likelihood. The results of

simulation studies will be shown in Chapter 6.
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CHAPTER 5

ADJUSTED MEAN AND MEAN ADJUSTED JEL FOR CORRELATION

COEFFICIENTS WITH ADDITIVE ERRORS

To increase the performance in small sample situations, we combine the methods of

MJEL and AJEL and propose the methods of adjusted mean jackknife empirical likelihood

(AMJEL) and mean adjusted jackknife empirical likelihood (MAJEL). In AMJEL, we cal-

culate the vector M from equation (4.8) and then add one more point to the vector. For

MAJEL, we first obtain the vector Ŵi from equation (4.2) and then expand the vector using

the equation similar to equation (4.8).

For AMJEL, M is obtained by using equation (4.8) and has N = n(n+ 1)/2 elements.

We add one additional point to M using

MN+1 = −aN
N

N∑
i=1

Mi, (5.1)

where aN = max(1, log(N)/2). The adjusted mean jackknife estimator is then defined as

ρ̂AM(X, Y ) = ρ̂M(X, Y ) +
1

N + 1

N+1∑
i=1

Mi(ρ̂M(X, Y )). (5.2)

The adjusted mean jackknife empirical likelihood ratio is then defined as:

JAM(ρ(X, Y )) = sup

(
N+1∏
i=1

(N + 1)pi; pi ≥ 0;
N+1∑
i=1

pi = 1;
N+1∑
i=1

piMi(ρ(X, Y )) = 0

)
. (5.3)

The log-likelihood of AMJEL can be then calculated by

lAM(ρ(X, Y )) =
2

n+ 1

N+1∑
i=1

log(1 + λMi(ρ(X, Y ))), (5.4)
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where λ is a solution to the following equation:

1

N + 1

N+1∑
i=1

Mi(ρ(X, Y ))

1 + λMi(ρ(X, Y ))
= 0. (5.5)

The Wilks’ theorem holds for AMJEL as follows:

Theorem 5.1. Under the same assumptions in Theorem 3.1, when n→∞,

−2logJAM(ρ0(X, Y ))
D−→ χ2

1. (5.6)

Following the theorem, the 100(1− α)% AMJEL confidence interval is as follows

IAMρ(X,Y ) = {ρ(X, Y ) : −2logJAM(ρ(X, Y )) ≤ χ2
1−α(1)}. (5.7)

The confidence interval of AMJEL appears to be longer than the confidence interval of

MJEL, which will be shown in the simulation study in Chapter 6.

For MAJEL, we use Ŵi obtained from equations (4.1)-(4.2) and calculate MA as follows:

Ma =
{Ŵi + Ŵj

2
: 1 ≤ i ≤ j ≤ n+ 1

}
. (5.8)

The expectation of Ma remains close to 0 and Ma has Na =
(n+ 1)(n+ 2)

2
values. The

mean adjusted jackknife estimator is then defined as

ρ̂MA(X, Y ) = ρ̂A(X, Y ) +
1

Na

Na∑
i=1

Ma(ρ̂A(X, Y )). (5.9)

The mean adjusted jackknife empirical likelihood ratio is then defined as follows:

JMA(ρ(X, Y )) = sup

(
Na∏
i=1

Napi; pi ≥ 0;
Na∑
i=1

pi = 1;
Na∑
i=1

piM
a
i = 0

)
. (5.10)
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The log-likelihood of MAJEL can be calculated by the following equation:

lMA(ρ(X, Y )) =
2

n+ 2

Na∑
i=1

log(1 + λMa
i (ρ(X, Y ))), (5.11)

where λ is the solution of the following equation:

1

Na

Na∑
i=1

Ma
i (ρ(X, Y ))

1 + λMa
i (ρ(X, Y ))

= 0. (5.12)

We can also obtain the Wilks’ theorem for MAJEL.

Theorem 5.2. Under the same assumption in Theorem 3.1, when n→∞,

−2logJMA(ρ0(X, Y ))
D−→ χ2

1. (5.13)

From the theorem, we can construct the 100(1 − α)% MAJEL confidence interval as

follows:

IMA
ρ(X,Y ) = {ρ(X, Y ) : −2logJMA(ρ(X, Y )) ≤ χ2

1−α(1)}. (5.14)

MAJEL performs better than AMJEL, JEL, MJEL and AJEL when the sample size

is small. The average length of the MAJEL confidence interval is longer than AJEL and

MJEL. The simulation study in Chapter 6 shows the comparison of estimation, coverage

probability and average length of confidence intervals among the methods.
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CHAPTER 6

SIMULATION STUDIES

For the simulation study, (X, Y ) is generated by multivariate normal distribution with

µ = (2, 4) and ρ(X, Y ) = −0.9,−0.5, 0, 0.5, 0.9. To ensure X and Y are generated with

predefined correlation coefficient, we let the (1,1) and (2,2) of the covariance matrix to be

1 while the (1,2) and (2,1) elements equal to the predefined correlation coefficients. U is

simulated with Normal, Beta and Weibull distributions. The Normal distribution of µ = 2

and σ = 1 is used to generate U . We set ψ(U) = U − 2 and φ(U) = 2 − U . In the

Beta distribution, Beta(α, β), we let α = 2 and β = 8 such that ψ(U) = U − 0.2 and

φ(U) = 0.2−U . For the Weibull distribution, W (λ, κ), we have λ = 1.2 and κ = 1. We also

let ψ(U) = U −0.9407 and φ(U) = 0.9407−U to ensure E[ψ(U)] = 0 and E[φ(U)] = 0. The

observed values (X̃, Ỹ ) are set up as:


X̃ = X + ψ(U),

Ỹ = Y + φ(U).

Each simulation was repeated 2,000 times with the sample size n = 25, 50, 75, 100. For the

kernel function, we choose to use the Epanechnikov kernel functions, K(t) = 0.75(1− t2)+,

as suggested by Zhang et al. (2017a). The bandwidth is chosen as suggested by Silverman

(1986) such that h = σ̂Un
−1/3, where σ̂U is the sample standard deviation of U . Six methods,

EL, JEL, AJEL, MJEL, AMJEL and MAJEL are compared in terms of estimators, coverage

probability and average lengths of 95% confidence intervals. The results are shown in the

following tables.
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Table (6.1) Comparison of all methods under the Normal distribution

EL JEL AJEL MJEL AMJEL MAJEL
ρ(X, Y ) n ρ̂(X, Y ) AL CP ρ̂J(X, Y ) AL CP ρ̂A(X, Y ) AL CP ρ̂M(X, Y ) AL CP ρ̂AM(X, Y ) AL CP ρ̂MA(X, Y ) AL CP
-0.9 25 -0.895 0.162 0.854 -0.903 0.255 0.893 -0.903 0.294 0.909 -0.903 0.292 0.913 -0.903 0.496 0.986 -0.903 0.314 0.928

50 -0.898 0.112 0.910 -0.900 0.151 0.935 -0.900 0.163 0.943 -0.900 0.166 0.948 -0.900 0.168 0.949 -0.900 0.173 0.951
75 -0.899 0.090 0.917 -0.900 0.113 0.938 -0.900 0.120 0.941 -0.900 0.122 0.944 -0.900 0.122 0.944 -0.900 0.125 0.948
100 -0.898 0.078 0.916 -0.899 0.095 0.942 -0.899 0.099 0.947 -0.899 0.100 0.951 -0.899 0.100 0.951 -0.899 0.102 0.956

-0.5 25 -0.485 0.551 0.835 -0.496 0.935 0.895 -0.496 1.076 0.911 -0.496 1.071 0.917 -0.496 1.817 0.992 -0.496 1.150 0.929
50 -0.494 0.408 0.894 -0.499 0.576 0.926 -0.499 0.622 0.934 -0.499 0.634 0.938 -0.499 0.640 0.940 -0.499 0.661 0.944
75 -0.5 0.337 0.909 -0.504 0.439 0.942 -0.504 0.464 0.950 -0.504 0.471 0.955 -0.504 0.473 0.956 -0.504 0.485 0.965
100 -0.496 0.295 0.918 -0.498 0.368 0.947 -0.498 0.384 0.951 -0.498 0.388 0.954 -0.498 0.389 0.954 -0.498 0.398 0.960

0 25 -0.005 0.695 0.841 0.002 1.215 0.904 0.002 1.398 0.926 0.002 1.392 0.930 0.002 2.361 0.995 0.002 1.493 0.945
50 -0.002 0.529 0.886 0.001 0.758 0.928 0.001 0.819 0.937 0.001 0.834 0.942 0.001 0.843 0.946 0.001 0.870 0.951
75 0.003 0.444 0.918 0.004 0.586 0.953 0.004 0.619 0.960 0.004 0.630 0.965 0.004 0.632 0.966 0.004 0.649 0.970
100 0.003 0.388 0.930 0.004 0.488 0.957 0.004 0.510 0.958 0.004 0.515 0.959 0.004 0.516 0.959 0.004 0.528 0.963

0.5 25 0.481 0.551 0.864 0.500 0.928 0.906 0.500 1.068 0.927 0.500 1.061 0.928 0.500 1.807 0.995 0.500 1.139 0.944
50 0.490 0.410 0.905 0.499 0.578 0.936 0.499 0.624 0.944 0.499 0.635 0.950 0.499 0.641 0.953 0.499 0.661 0.959
75 0.490 0.341 0.915 0.497 0.443 0.941 0.497 0.468 0.947 0.497 0.475 0.952 0.497 0.477 0.954 0.497 0.490 0.960
100 0.496 0.295 0.924 0.500 0.367 0.946 0.500 0.383 0.952 0.500 0.387 0.953 0.500 0.388 0.953 0.500 0.396 0.957

0.9 25 0.884 0.177 0.856 0.904 0.280 0.894 0.904 0.322 0.912 0.904 0.320 0.911 0.904 0.546 0.986 0.904 0.344 0.927
50 0.894 0.114 0.886 0.901 0.154 0.915 0.901 0.167 0.926 0.901 0.169 0.930 0.901 0.171 0.931 0.901 0.177 0.939
75 0.895 0.093 0.906 0.899 0.118 0.936 0.899 0.124 0.941 0.899 0.126 0.942 0.899 0.126 0.944 0.899 0.130 0.950
100 0.899 0.078 0.929 0.901 0.094 0.945 0.901 0.098 0.950 0.901 0.099 0.951 0.901 0.099 0.953 0.901 0.102 0.954
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Table (6.2) Comparison of all methods under the Beta distribution

EL JEL AJEL MJEL AMJEL MAJEL
ρ(X, Y ) n ρ̂(X, Y ) AL CP ρ̂J(X, Y ) AL CP ρ̂A(X, Y ) AL CP ρ̂M(X, Y ) AL CP ρ̂AM(X, Y ) AL CP ρ̂MA(X, Y ) AL CP
-0.9 25 -0.894 0.161 0.857 -0.902 0.248 0.891 -0.902 0.285 0.905 -0.902 0.284 0.910 -0.902 0.482 0.983 -0.902 0.304 0.924

50 -0.898 0.110 0.912 -0.902 0.148 0.924 -0.902 0.160 0.936 -0.902 0.163 0.941 -0.902 0.164 0.943 -0.902 0.169 0.948
75 -0.899 0.089 0.925 -0.901 0.112 0.945 -0.901 0.118 0.947 -0.901 0.120 0.950 -0.901 0.120 0.950 -0.901 0.124 0.956
100 -0.899 0.077 0.916 -0.900 0.093 0.940 -0.900 0.097 0.946 -0.900 0.098 0.949 -0.900 0.099 0.949 -0.900 0.101 0.951

-0.5 25 -0.494 0.544 0.863 -0.511 0.908 0.907 -0.511 1.044 0.923 -0.511 1.039 0.926 -0.511 1.764 0.993 -0.511 1.114 0.939
50 -0.499 0.407 0.904 -0.505 0.566 0.943 -0.505 0.612 0.950 -0.505 0.623 0.954 -0.505 0.629 0.954 -0.505 0.649 0.960
75 -0.498 0.338 0.913 -0.503 0.435 0.937 -0.503 0.459 0.945 -0.503 0.466 0.950 -0.503 0.468 0.951 -0.503 0.481 0.955
100 -0.499 0.293 0.909 -0.501 0.360 0.940 -0.501 0.376 0.943 -0.501 0.380 0.946 -0.501 0.380 0.946 -0.501 0.389 0.948

0 25 -0.001 0.685 0.834 0.003 1.172 0.891 0.003 1.349 0.910 0.003 1.341 0.915 0.003 2.279 0.988 0.003 1.439 0.931
50 0.002 0.528 0.888 0.000 0.745 0.929 0.000 0.805 0.938 0.000 0.819 0.946 0.000 0.828 0.948 0.000 0.854 0.952
75 0.002 0.442 0.915 0.002 0.577 0.940 0.002 0.609 0.948 0.002 0.619 0.952 0.002 0.622 0.952 0.002 0.638 0.957
100 -0.003 0.386 0.918 -0.003 0.480 0.946 -0.003 0.502 0.950 -0.003 0.507 0.953 -0.003 0.508 0.953 -0.003 0.519 0.956

0.5 25 0.493 0.544 0.857 0.507 0.908 0.900 0.507 1.044 0.919 0.507 1.039 0.925 0.507 1.764 0.990 0.507 1.115 0.941
50 0.497 0.404 0.898 0.503 0.563 0.924 0.503 0.608 0.930 0.503 0.619 0.936 0.503 0.625 0.940 0.503 0.645 0.944
75 0.497 0.337 0.912 0.501 0.434 0.945 0.501 0.459 0.951 0.501 0.466 0.955 0.501 0.468 0.957 0.501 0.480 0.961
100 0.497 0.294 0.915 0.500 0.363 0.940 0.500 0.379 0.943 0.500 0.383 0.945 0.500 0.384 0.945 0.500 0.392 0.949

0.9 25 0.895 0.159 0.848 0.901 0.246 0.877 0.901 0.283 0.896 0.901 0.282 0.902 0.901 0.480 0.984 0.901 0.302 0.923
50 0.899 0.110 0.885 0.902 0.146 0.915 0.902 0.158 0.922 0.902 0.161 0.928 0.902 0.162 0.928 0.902 0.167 0.932
75 0.900 0.089 0.929 0.901 0.111 0.941 0.901 0.118 0.946 0.901 0.119 0.947 0.901 0.120 0.949 0.901 0.123 0.954
100 0.899 0.077 0.916 0.900 0.093 0.944 0.900 0.098 0.946 0.900 0.099 0.948 0.900 0.099 0.948 0.900 0.101 0.953
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Table (6.3) Comparison of all methods under the Weibull distribution

EL JEL AJEL MJEL AMJEL MAJEL
ρ(X, Y ) n ρ̂(X, Y ) AL CP ρ̂J(X, Y ) AL CP ρ̂A(X, Y ) AL CP ρ̂M(X, Y ) AL CP ρ̂AM(X, Y ) AL CP ρ̂MA(X, Y ) AL CP
-0.9 25 -0.895 0.160 0.865 -0.902 0.233 0.882 -0.902 0.268 0.903 -0.902 0.266 0.909 -0.902 0.453 0.980 -0.902 0.286 0.923

50 -0.898 0.112 0.914 -0.900 0.142 0.923 -0.900 0.154 0.930 -0.900 0.157 0.936 -0.900 0.158 0.938 -0.900 0.163 0.943
75 -0.899 0.091 0.923 -0.900 0.110 0.937 -0.900 0.116 0.943 -0.900 0.118 0.946 -0.900 0.119 0.947 -0.900 0.122 0.953
100 -0.900 0.077 0.927 -0.901 0.091 0.938 -0.901 0.095 0.941 -0.901 0.096 0.944 -0.901 0.096 0.946 -0.901 0.098 0.951

0.5 25 -0.493 0.550 0.870 -0.503 0.862 0.906 -0.503 0.991 0.923 -0.503 0.987 0.927 -0.503 1.673 0.992 -0.503 1.059 0.943
50 -0.497 0.410 0.912 -0.500 0.545 0.933 -0.500 0.588 0.942 -0.500 0.599 0.947 -0.500 0.605 0.948 -0.500 0.625 0.953
75 -0.499 0.339 0.926 -0.501 0.421 0.937 -0.501 0.445 0.944 -0.501 0.451 0.949 -0.501 0.453 0.950 -0.501 0.465 0.956
100 -0.497 0.297 0.915 -0.500 0.356 0.944 -0.500 0.371 0.946 -0.500 0.375 0.949 -0.500 0.376 0.949 -0.500 0.384 0.953

0 25 -0.006 0.691 0.868 0.000 1.110 0.908 0.000 1.277 0.925 0.000 1.270 0.931 0.000 2.159 0.995 0.000 1.362 0.943
50 -0.001 0.532 0.918 0.003 0.718 0.943 0.003 0.775 0.956 0.003 0.789 0.963 0.003 0.797 0.963 0.003 0.823 0.969
75 0.001 0.444 0.926 0.004 0.559 0.945 0.004 0.590 0.951 0.004 0.599 0.955 0.004 0.602 0.956 0.004 0.618 0.962
100 -0.001 0.389 0.928 0.001 0.469 0.949 0.001 0.490 0.953 0.001 0.495 0.955 0.001 0.496 0.955 0.001 0.507 0.959

0.5 25 0.483 0.556 0.869 0.510 0.878 0.903 0.510 1.011 0.919 0.510 1.007 0.923 0.510 1.705 0.991 0.510 1.080 0.939
50 0.490 0.412 0.913 0.500 0.547 0.941 0.500 0.591 0.946 0.500 0.601 0.949 0.500 0.607 0.951 0.500 0.626 0.956
75 0.496 0.340 0.917 0.502 0.422 0.933 0.502 0.446 0.938 0.502 0.452 0.944 0.502 0.454 0.945 0.502 0.466 0.949
100 0.497 0.296 0.935 0.502 0.354 0.944 0.502 0.370 0.950 0.502 0.373 0.952 0.502 0.374 0.953 0.502 0.382 0.958

0.9 25 0.884 0.176 0.878 0.906 0.259 0.891 0.906 0.298 0.908 0.906 0.296 0.912 0.906 0.505 0.989 0.906 0.318 0.925
50 0.892 0.117 0.923 0.900 0.148 0.939 0.900 0.160 0.943 0.900 0.163 0.948 0.900 0.165 0.950 0.900 0.170 0.954
75 0.895 0.093 0.919 0.900 0.112 0.947 0.900 0.119 0.950 0.900 0.120 0.954 0.900 0.121 0.954 0.900 0.124 0.960
100 0.897 0.079 0.936 0.901 0.093 0.945 0.901 0.097 0.947 0.901 0.098 0.951 0.901 0.098 0.951 0.901 0.100 0.953
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Figure 6.1 shows trends of average length and coverage probability from the simulation

under Weibull distribution. The trends are similar across all scenarios with different ρ(X, Y ),

but actual values vary. If ρ(X, Y ) is closer to 0, average length tends to be longer.

Conclusions from the simulations are as follows:

1) The average lengths of all five jackknife methods are longer than those of EL. The

average length of the AJEL confidence interval is longer than that of JEL but the

length of MJEL and AJEL are close. The AL of the MJEL confidence interval is

shorter than that of AJEL when the sample size is as small as 25. When the sample

size is greater than 50, MJEL has longer length than AJEL.

2) All new methods give better performance with an increase in the sample size.

3) MJEL and AJEL have similar performances. AMJEL and MAJEL show overall im-

provement from MJEL and AJEL.

4) The performance of estimators varies under the same sample size. However, with larger

sample sizes, JEL gives better estimators than the EL method.

5) The estimator, coverage probability and average length are consistent under the nor-

mal, Beta and Weibull distributions. The methods are consistent regardless of sym-

metric or asymmetric distributions.

6) The AMJEL method has over-coverage when sample size is 25. However, when the

sample size increases, the coverage probability of the AMJEL confidence interval is

close to the nominal level 0.95.

7) MAJEL outperforms all the other methods in the small sample size (n = 25) situations.

When the sample sizes are larger than 50, MAJEL has over-coverage issues, which is

similar to what we have observed in the MJEL method.
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Figure (6.1) Average length and coverage probability trend plot.
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CHAPTER 7

REAL DATA ANALYSIS

To compare the new methods to the original EL method proposed by Zhang et al.

(2017a), we use the 1993 new car data and Boston house price data to conduct the real data

analysis. The 1993 new car data is collected by Lock (1993). The data has 93 observations

with 27 variables. We choose the horsepower as X̃ and the highway MPG as Ỹ . Weights

of cars are considered as the confounding distortion errors U . The Boston house data is

retrieved from Harrison and Rubinfield (1978). The data contains 506 observations with 14

variables. We study the correlation coefficient between the house prices (medv) and distance

to employment centers (dis), where dis is considered as X̃ and medv is considered as Ỹ . The

lower status of the population (lstat) is considered as the confounding variable U . In the

real data analysis, to calculate the bandwidth h for the kernel function Kh(·) = h−1K(·/h),

we let h = σ̂Un
−1/3 where σ̂U is the sample standard deviation of confounding variable. For

the first part of the real data analysis, we compare the EL, JEL, AJEL, MJEL, AMJEL and

MAJEL methods using the whole dataset.

Table (7.1) 1993 new car data analysis

Method Estimator Lower Upper Length

EL -0.1083 -0.3451 -0.0599 0.4050

JEL -0.1220 -0.4518 0.1450 0.5968

AJEL -0.1220 -0.4671 0.1574 0.6245

MJEL -0.1220 -0.5145 0.1803 0.6948

AMJEL -0.1220 -0.5154 0.1810 0.6964

MAJEL -0.1220 -0.5320 0.1481 0.6801

Figure 7.1 concludes the analysis result for the new car dataset. The vertical lines show

the confidence intervals for all methods including EL. The blue line shows the change of

confidence interval length. The results are consistent with simulation studies that the 95%
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Table (7.2) Comparison of Boston house price analysis

Method Estimator Lower Upper Length

EL -0.2522 -0.3420 -0.1549 0.1701

JEL -0.2478 -0.3524 -0.1495 0.2029

AJEL -0.2478 -0.3536 -0.1484 0.2052

MJEL -0.2478 -0.3531 -0.1492 0.2039

AMJEL -0.2478 -0.3532 -0.1492 0.2040

MAJEL -0.2478 -0.3543 -0.1481 0.2062

confidence intervals of new methods are longer than those of EL. The AMJEL confidence

interval is longer than MJEL confidence interval and MAJEL confidence interval is longer

than AJEL confidence interval. The naive correlation coefficient between horsepower and

highway MPG from the 1993 cars data, ρ(X̃, Ỹ ), is -0.8107, which indicates that there exists

a strong negative correlation between MPG and horsepower. After taking the confounding

variable of weight into consideration, the 95% confidence intervals of all proposed methods

contain zero, meaning the horsepower and MPG are uncorrelated. However, the EL confi-

dence interval proposed by Zhang et al. (2017a) does not include zero.

For the Boston housing price analysis, the naive correlation coefficient, ρ(X̃, Ỹ ), between

the distance and median price is 0.2499. However, the new methods indicate a negative

correlation between these two variables. Also, all confidence intervals are exclusively less

than zero, meaning the distance to employment centers and house prices are negatively

correlated. The next part of the real data analysis focuses on the fact that new methods

outperform EL with the small sample size. Thus, the Boston data set is partitioned into

five sets depending on the lower status of the population. The partition and the results are

as shown in Table 7.3. A plot is drawn in Figure 7.2 to demonstrate how all the methods

perform in the partitioned Boston house price analysis.

The results show that the correlation coefficient between the distance and house price

increases with the increase of the lower status of population (lstat). House price is positively
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Figure (7.1) Confidence intervals for the new car dataset.

Table (7.3) Partitioned Boston house price analysis

lstat (0,5] (5,10] (10,15] (15,20] (20,100]

n 62 157 125 88 74

ρ̂(LB, UB) -0.465 (-0.630, -0.242) -0.387 (-0.506, -0.236) -0.180 (-0.301, -0.033) 0.360 (0.174, 0.524) 0.437 (0.290, 0.565)

ρ̂J(LB, UB) -0.493 (-0.717, -0.227) -0.391 (-0.542, -0.228) -0.197 (-0.339, -0.033) 0.374 (0.082, 0.636) 0.460 (0.292, 0.647)

ρ̂A(LB, UB) -0.493 (-0.732, -0.210) -0.391 (-0.553, -0.223) -0.197 (-0.344, -0.027) 0.374 (0.068, 0.649) 0.460 (0.283, 0.658)

ρ̂M(LB, UB) -0.493 (-0.723, -0.200) -0.391 (-0.557, -0.223) -0.197 (-0.341, -0.019) 0.374 (0.029, 0.675) 0.460 (0.284, 0.657)

ρ̂AM(LB, UB) -0.493 (-0.725, -0.199) -0.391 (-0.557, -0.223) -0.197 (-0.341, -0.019) 0.374 (0.029, 0.675) 0.460 (0.283, 0.658)

ρ̂MA(LB, UB) -0.493 (-0.738, -0.181) -0.391 (-0.562, -0.218) -0.197 (-0.346, -0.013) 0.374 (0.013, 0.689) 0.460 (0.274, 0.668)

correlated with the distance to employment centers when lstat is greater than 15 and the

correlation is moderate. Also, when the lower status of population (lstat) is less than 5,

house prices can be moderately correlated to the distance in a negative fashion.
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Figure (7.2) Confidence intervals for the partitioned house price dataset.
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CHAPTER 8

CONCLUSIONS

In this paper, we proposed the JEL, AJEL and MJEL for a correlation analysis when

the response variable is influenced by a confounding variable and the error terms are assumed

to be additions to the unobserved true values of interest. By the nature of JEL, MJEL and

AJEL, all confidence intervals are larger than those of empirical likelihood by Zhang et al.

(2017a). AJEL and MJEL have longer confidence intervals than JEL. AJEL provides longer

confidence intervals compared to MJEL, when sample sizes are as small as 25. When the

sample size, n, is between 50 and 100, the length of MJEL is larger than that of AJEL. Both

MJEL and AJEL have larger length than JEL. When the true value of ρ(X, Y ) = 0, all

proposed methods generate longer confidence intervals compared with other situations. In

the cases with 25 ≤ n ≤ 100, all new methods provide better coverage probability compared

to the conventional empirical likelihood. But the performance varies case by case. MJEL

and AJEL could have over-coverage when the sample size is greater than or equal to 75.

Generally, MAJEL and AMJEL show better performances when n = 50. The coverage

probability of AMJEL could be close to 0.99 when the sample size is 25 and drops when the

sample sizes become 50. The reason of unexpected overcoverage for AMJEL with the small

sample sizes needs further investigation. MAJEL shows the best performance when sample

sizes are 25. When applied to real data sets, the new methods make it more convenient to

partition a data set into smaller subgroups without losing efficacy such that the analysis of

trend is possible even when we are dealing with small data sets. For future research, the tool

of jackknife empirical likelihood can be further applied to scenarios where the measurement

error acts as a factor to the unobserved variables of interest.



28

REFERENCES

Alemdjrodo, K., Zhao, Y., Reduce the computation in jackknife empirical likelihood for

comparing two correlated Gini indices, Journal of Nonparametric Statistics, 31(4), 849-

866, 2019.

Chen, Y., Ning, W., Adjusted jackknife empirical likelihood, arXiv:1603.04093, 2016.

Chen, J., Variyath, A., Abraham, Bovas., Adjusted empirical likelihood and its properties,

Journal of Computational and Graphical Statistics, 17(2), 426-443, 2008.

Cheng, G., Zhao, Y., Li, B., Empirical likelihood inferences for the semiparametric additive

isotonic regression, Journal of Multivariate Analysis, 112, 172-182, 2012.

Cheng, Y., Zhao, Y., Bayesian jackknife empirical likelihood, Biometrika, 106(4), 981-988,

2019.

Feng, Z., Zhang, J., Chen, Q., Statistical inference for linear regression models with additive

distortion measurement errors, Statistical Papers, 1-27, 2018.

Harrison, D.J., Rubinfeld, D.L., Hedonic housing prices and demand for clean air, J Environ

Econ Manage, 5, 81-108, 1978.

Huang, H., Zhao, Y., Empirical likelihood for the bivariate survival function under univariate

censoring, Journal of Statistical Planning and Inference, 194, 32-46, 2018.

Liang, W., Dai, H., He, S., Mean empirical likelihood, Computational Statistics and Data

Analysis, 138(C), 155-169, 2019.

Lin, H., Li, Z., Wang, D., Zhao, Y., Jackknife empirical likelihood for the error variance in

linear models, Journal of Nonparametric Statistics, 29, 151-166, 2017.

Lock, R., New car data, Journal of Statistical Education, 1(1), 1993.



29

Owen, A.B., Empirical likelihood ratio confidence intervals for a single functional,

Biometrika, 75, 237-249, 1988.

Owen, A.B., Empirical likelihood confidence regions, Annuals of Statistics, 18, 90-120, 1990.

Owen, A.B., Empirical Likelihood, Chapman and Hall, London, 2001.

Sang, Y., Dang, X., Zhao, Y., Jackknife empirical likelihood methods for Gini correlations

and their equality testing, Journal of Statistical Planning and Inference, 199, 45-59, 2019.

Silverman, B.W., Density Estimation for Statistics and Data Analysis, Chapman and Hall,

London, 1986.

Silverman, B.W., Monographs on Statistics and Applied Probability, Chapman and Hall,

London, 1986.

Senturk, D., Muller, H., Covariate adjusted correlation analysis via varying coefficient mod-

els, Journal of Statistics, 32(3), 365-383, 2005.

Senturk, D., Muller, H., Generalized varying coefficient models for longitudinal data,

Biometrika, 95(3), 653-666, 2008.

Wang, D., Wu, T., Zhao, Y., Penalized empirical likelihood for the sparse Cox regression

model, Journal of Statistics Planning and Inference, 201, 71-85, 2019.

Wang, D., Zhao, Y., Gilmore, D., Jackknife empirical likelihood confidence interval for the

Gini index, Statistics and Probability Letters, 110, 289-295, 2015.

Yang, H., Zhao, Y., Smoothed jackknife empirical likelihood for the one-sample difference of

quantiles, Computational Statistics and Data Analysis, 120, 58-69, 2017.

Yu, X., Zhao, Y., Empirical likelihood inference for semi-parametric transformation models

with length-biased sampling, Computational Statistics and Data Analysis, 132(C), 115-

125, 2019.



30

Yu, X., Zhao, Y., Jackknife empirical likelihood inference for the accelerated failure time

model, Test, 28, 269–288, 2019.

Zhang, J., Chen, Q., Zhou, N., Correlation analysis with additive distortion measurement

errors, Journal of Statistical Computation and Simulation, 87(4), 664-688, 2017a.

Zhang, J., Zhou, Y., Lin, B., Yu, Y., Estimation and hypothesis test on partial linear models

with additive distortion measurement errors, Computational Statistics and Data Analysis,

112, 114-128, 2017b.

Zhang, J., Zhu, J., Zhou, Y., Cui, X., Lu, T., Multiplicative regression models with distortion

measurement errors, Statistical Papers, 1-27, 2019.

Zhao, Y., Meng, X., Yang, H., Jackknife empirical likelihood inference for the mean absolute

deviation, Computational Statistics and Data Analysis, 91, 92-101, 2015.


	Jackknife Empirical Likelihood For The Correlation Coefficient With Additive Distortion Errors
	Recommended Citation

	tmp.1588613789.pdf.OSbQU

