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EMPIRICAL LIKELIHOOD INFERENCE FOR THE MEAN PAST LIFETIME

FUNCTION

by

EDEM DEFOR

Under the Direction of Yichuan Zhao, PhD

ABSTRACT

In several fields, such as survival analysis, reliability theory, and forensic science, the

mean past lifetime (MPL), also known as the expected inactivity time function, plays

a vital role. For inference on the MPL function, some procedures have been proposed

in the literature, based on a Central Limit Theorem result for the MPL function’s es-

timator. In this thesis, an empirical likelihood (EL) inference procedure of the MPL

function is proposed. In addition to that, we obtain the adjusted EL and mean EL con-

fidence interval for the MPL function. The proposed confidence intervals are compared

through simulation studies in terms of coverage probability and the average length of the

confidence interval. The simulation studies showed that the proposed EL methods have

better coverage probability and shorter average lengths than the normal approximation

result. Finally, the proposed methods are illustrated by two real data analyses.

INDEX WORDS: Confidence interval, Estimating equation, Empirical likelihood, Ad-
justed empirical likelihood, Mean empirical likelihood, Wilks’ theorem.
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1 INTRODUCTION

The mean past lifetime (MPL), also known as the expected inactivity time, remains

significant in survival analysis and reliability theory. The inactivity time of a component,

corresponds to the time elapsed from the failure of the component, given that its lifetime

T , is less than or equal to t, denoted by kt = (t− T | T ≤ t), (see Ruiz and Navarro

(1996)). The reversed mean past life (or mean residual life) of a system is well known to

be defined as the expected value of the remaining lifetime of a system, provided that it

has survived up to time t, that is, m (t) = E (T − t | T > t), at time t ≥ 0. Conversely

the MPL, following from the inactivity time and mean residual life, is defined as the

expected value of the conditional random variable k (t) = E (t− T | T ≤ t) which is the

mean time elapsed since the failure time of T , given that T ≤ t, at time t ≥ 0.

Over the years, the mean past lifetime has been an area of increasing interest among

researchers. Navarro et al. (1997) first studied the stochastic order of the reverse mean

residual life order (RMRL). In parallel systems, the stochastic comparisons of residual

lifetime and inactivity time were discussed by Li and Lu (2003). For aging properties

of the residual lifetime and past lifetime, Gupta et al. (2012) examined the conditions

sufficient for series and parallel systems. To establish various properties of the stochastic

comparisons in both reliability theory and survival analysis, the MPL function was also

studied by Kayid and Ahmad (2004). The relationship between the reversed hazard rate

(the ratio of the density to the distribution function) with the RMRL was also studied

by Li and Lu (2003). Nanda and Kundu (2008) showed that the one partial moment and

second-order moment of inactivity time determines the distribution uniquely. Kundu et

al. (2010) considered m(t) for characterizations of quite a few distributions, which can

be established to the k(t) proposed by Chandra and Roy (2001).

The MPL function is crucial for characterizing aging and reliability properties, and it

has been extensively studied in the literature by Jayasinghe and Zeephongsekul (2013).
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Regarding statistical estimation, Asadi and Berred (2012) investigated the properties

of the MPL along with other reliability measures, taking into account the empirical

estimator and proved that it is a consistent estimator. The importance of the hazard

rate, mean residual life, and the reversed hazard rate in studying the properties of the

MPL function was also established. Ortega (2009) explained the relationship between the

MPL order and the mean residual life order. Furthermore, Nanda et al. (2003) obtained

some results on the order of the MPL. Finkelstein (2002) has shown that the reversed

hazard rate ordering implies the MPL ordering. Jayasinghe and Zeephongsekul (2013)

used a local polynomial fitting technique to obtain several nonparametric estimators for

the MPL function. It was also shown by Jayasinghe and Zeephongsekul (2013) that

the proposed estimators are asymptotically unbiased, consistent and also when they are

standardized, have an asymptotic normal distribution.

The MPL can also be used to predict the time of occurrence of an event such as

time of death, particularly in forensic science and insurance (Gupta and Nanda, 2001).

Another significant usage of the MPL function is to investigate the aging properties of a

system. Goliforushani and Asadi (2008) discussed the use of the MPL on the reliability of

a system. The MPL function is also useful in biomedicine to study the incubation times

of diseases and maintenance policies in reliability. For example, Eeckhoudt and Gollier

(1995) studied this reliability measure and applied it to risk theory and econometrics.

The MPL has also proven useful in determining maintenance policies in the reliability of

a system (Finkelstein, 2002). More so, in a medical test to test for the novel coronavirus,

one may mainly be interested in knowing how much time has elapsed since being infected

by the virus.

For additional applications of the MPL, we refer the reader to Li and Zuo (2004),

Kayid and Ahmad (2004), Tavangar and Asadi (2010), Jayasinghe and Zeephongsekul

(2013), etc.
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1.1 The review of the empirical likelihood

There are a variety of ways to compute the MPL function in parametric and non-

parametric settings. The drawbacks associated with the parametric approach are enor-

mous. To the best of our knowledge and based on the literature by Jayasinghe and

Zeephongsekul (2012), the empirical likelihood, which is a nonparametric method, out-

performs the parametric approach. The empirical likelihood in survival analysis was

first introduced by Thomas and Grunkemeier (1975). Owen (1998, 1990) introduced

the empirical likelihood confidence regions. The empirical likelihood method is a ro-

bust nonparametric method that requires no parametric assumptions. Inference based

on the EL method does not require estimation of variance and has unique properties

of transformation-preserving, Bartlett correctability, and demonstrates better coverage

probability for small sample sizes, see (Zhao and Qin, 2006). A review of inference based

on the EL can be found in Owen (2001).

An extensive application of the EL approach exists. For instance, Yang and Zhao

(2012) proposed EL methods for the semiparametric linear transformation model. Chen

et al. (2009) proposed an EL confidence interval for copulas. In regression analysis, where

observations can be missing not at random, the EL approach has also been considered

based on the rank-based gradient function (Bindele and Zhao, 2018). Further studies

have also been done using the jackknife empirical likelihood (JEL), introduced by Jing et

al. (2009). JEL methods are known to provide superior coverage probabilities, even for

the skewness and kurtosis coefficients (Zhao et al., 2018). Zhao et al. (2015) extended

the JEL to construct confidence intervals for the mean absolute deviation. Furthermore,

Cheng and Zhao (2018) introduced the Bayesian jackknife empirical likelihood to replace

the likelihood component with the JEL. Also, Wang and Zhao (2016) derived the JEL

for the difference of two Gini indices.

Zardasht (2017) proposed an EL methodology for the mean past lifetime function
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based on random censorship. For the MPL function, the variance estimate is too con-

servative and leads to heavy overcoverage in the normal approximation based confidence

intervals from Zardasht (2017). The procedure in this thesis primarily follows from Zhao

and Qin (2006), where the EL method was applied to the mean residual life function.

1.2 The review of the adjusted empirical likelihood

Chen et al. (2008) introduced the adjusted empirical likelihood to solve the problem

posed by the non-existence of solutions while computing the profile empirical likelihood.

Most importantly, the adjusted empirical likelihood upholds the optimal asymptotic

properties of the empirical likelihood, and its associated confidence regions have demon-

strated to be closer in terms of coverage probabilities of confidence intervals. Further-

more, for small sample sizes, the EL method is affected by the low precision of the

chi-square approximation. Also, Liu and Chen (2010) showed that if the dimension of

the accompanying estimating function is high, the EL method tends to be affected. How-

ever, the adjusted empirical likelihood can address this problem successfully. This thesis

proposes the AEL method for the mean past lifetime function.

1.3 The review of the mean empirical likelihood

To further overcome the poor accuracy, particularly for small sample sizes and multi-

dimensional situations of the EL method, Liang et al. (2019) proposed a novel approach

known as the mean empirical likelihood (MEL) method. Currently, the MEL approach

has proven to yield much more accurate confidence regions and coverage probabilities.

This method achieves its merits by using pairwise-mean data. It should be noted that

the Hodges–Lehmann sign-based estimator, by Hodges and Lehmann (1963), uses a sim-

ilar mean-pair data concept, which gives much more reliable nonparametric estimators

compared to the standard median estimator. In this thesis, the MEL method for the

mean past lifetime function is also proposed.
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1.4 Purpose of study

The main aim of this thesis is to estimate the mean past lifetime function and make

inference via constructing confidence intervals, using both normal approximation and

empirical likelihood methods. The empirical likelihood method is then extended to the

adjusted empirical likelihood and the mean empirical likelihood. This thesis is organized

as follows. In Chapter 2, we review the estimation of the mean past lifetime function

in detail. In Chapter 3, confidence bands of the mean past lifetime for the empirical

likelihood, adjusted empirical likelihood, and mean empirical likelihood methods are

proposed. We conduct extensive simulation studies to evaluate the proposed methods

in Chapter 4. In Chapter 5, an application to two real datasets is provided. Some

concluding remarks are given in Chapter 6.
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2 ESTIMATION OF THE MEAN PAST LIFETIME

In this chapter, we review the normal approximation method for the mean past lifetime

for completeness. We adopt similar notations as in Asadi and Berred (2012). Let T

be a lifetime random variable with distribution function F . The survival function is

F̄ = 1 − F , density function is f(t), MPL is k(t) and such that E (T ) < ∞. Denote

τ0 = inf{t : F (t) > 0} and MF = sup{t : F (t) < 1}.

The mean past lifetime (MPL) function k(t) of T at time t ≥ τ0 is

k (t) = E (t− T |T ≤ t) =

∫ t
0
F (x) dx

F (t)

= t−
∫ t
0
xf(x)dx

F (t)
,

for t, such that F (t) > 0.

Let T1, . . . ,Tn be a random sample drawn from a random variable T having a con-

tinuous distribution function F . We consider the empirical MPL kn(t) as

kn (t) =

∫ t
0
Fn (x) dx

Fn (t)
I[t≥T1:n],

=
n∑
k=1

(
t− 1

k

k∑
j=1

T1:j

)
I[T1:k≤t<Tk+1:n],

where Tn+1:n = MF = sup{t : F (t) < 1} by the convention, and T1:n < . . . < Tn:n are

the ordered statistics.

In some situations, the observations may contain ties. Hence, the empirical estimator

needs to be adjusted by taking into account the number of tied observations. See the

discussions in Jayasinghe and Zeephongsekul (2013) about ties.

The mean of the empirical estimator kn (t) is

E (kn (t)) = k(t)(1− F̄ n (t)).
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The variance of the empirical estimator proposed by Asadi and Berred (2012), is

V (kn(t)) = k2(t)(1− F̄ n (t))F n(t) + vn(t)

(
2
ρ1(t)

F (t)
− (k(t))2

)
,

where the survival function F̄ (t) = 1 − F (t), vn (t) =
n∑
i=1

F̄ n−i(t)(1− F̄ i (t))

i
and

ρ1 (t) =

∫ t

a

(t− z)F (z) dz. Since 0 < F̄
n

(t) < 1, it follows that kn (t) is asymptoti-

cally unbiased for k(t) as n → ∞. For τ0 < s ≤ t < MF , Asadi and Berred (2012) also

showed the covariance as

Cov [kn (s) , kn (t)] = k (s) k (t)
(
1− F̄ n (t)

)
F n (s) + vn (s, t)

(
2
ρ1 (t)

F (t)
− k2 (t)

)
+

F̄ n (s)− F̄ n (t)

F̄ (s)− F̄ (t)
ρ0(s)

(
t− s− ρ0 (t)− ρ0(s)

F (s)

)
,

where vn (s, t) =
n∑
i=1

F̄ n−i(s)(1− F̄ i (t))

i
.

Thus, an asymptotic 100 (1− α) % normal approximation (NA) confidence interval

for k(t) at the fixed time t > τ0 is given by (see Asadi and Berred (2012))

I1 (t) =

{
k (t) : n

(
k̂ (t)− k (t)

)2
≤ V̂ (kn(t))χ2

1,α

}
,

where χ2
1,α is the upper α-quantile of the chi-square distribution with one degree of free-

dom and V̂ (kn(t)) is a consistent estimator of V (kn(t)).
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3 CONFIDENCE BANDS USING EMPIRICAL LIKELIHOOD

METHODS

In this chapter, we propose empirical likelihood, mean empirical likelihood, and ad-

justed empirical likelihood methods for the mean past lifetime function. The procedure

for the empirical likelihood in this chapter uses the approach by Zhao and Qin (2006).

3.1 The empirical likelihood method for k(t)

Let T1, . . . , Tn be independent and identically distributed (i.i.d.) samples of T with

distribution function F (t). Under the EL approach, the estimation equation is defined

at the fixed time t > τ0 as follows:

U(k(t)) =

∫ t

0

1

n

n∑
i=1

I (Ti ≤ u) du− k (t)
1

n

n∑
i=1

I (Ti ≤ t). (3.1)

Also, it can be easily inferred that the equation U(k(t)) = 0 has the solution k̂(t).

Let the true value of k(t) at time t be k0(t). By the estimation from Eq. (3.1) it can be

further proven that E[U(k0(t))] = 0. For 1 ≤ i ≤ n, we can then define for each fixed

time t > τ0:

Wi(k(t)) =

∫ t

0

I(Ti ≤ u)du− k(t)I(Ti ≤ t)

= I(Ti ≤ t)(t− Ti − k(t)). (3.2)

Then, the EL at k(t) is given by

L (k(t)) = sup

{
n∏
i=1

pi :
n∑
i=1

piWi(k(t)) = 0, pi ≥ 0,
n∑
i=1

pi = 1, i = 1, . . . , n

}
,

where p = (p1, . . . , pn) is a probability vector, i.e.,
n∑
i=1

pi = 1 and pi ≥ 0 for 1 ≤ i ≤ n.
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The EL ratio at k(t) is defined by

R (k(t)) = sup

{
n∏
i=1

npi :
n∑
i=1

piWi(k(t)) = 0, pi ≥ 0,
n∑
i=1

pi = 1, i = 1, . . . , n

}
.

We know by using Lagrange multipliers that R(k(t)) is maximized. Hence, we have

−2 logR (k (t)) = 2
n∑
i=1

log {1 + λ(t)Wi(k(t))} ,

where λ(t) satisfies the following nonlinear equation

1

n

n∑
i=1

Wi(k(t))

1 + λ(t)Wi(k(t))
= 0.

We may find the value of λ(t) by numerical search. (See Hall and La Scala (1990)

and Owen (2001)). Let k0(t) be the true value of k(t). We establish the main result for

the EL ratio statistic as follows:

Theorem 3.1. Suppose E(T 2) <∞ and Γ(t) = Var(W1(k0(t))) = E[(t−T−k0(t))2I(T ≤

t)] > 0 for each fixed time t > τ0. −2 logR(k0(t)) converges in distribution to χ2
1, that

is,

−2 logR(k0(t))
D→ χ2

1 ,

where χ2
1 is a chi-square distribution with one degree of freedom.

Thus, an asymptotic 100(1 − α)% pointwise confidence band for k(t) in t ∈ [a, b],

a > τ0 can be written from Theorem 3.1 as

I2 (α) = {k (t) : −2 logR (k (t)) ≤ χ2
1 (α)} ,

where χ2
1,α is the upper α-quantile of the distribution of χ2

1.
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In addition, we can establish simultaneous confidence bands as follows:

Theorem 3.2. Suppose E(T 2) < ∞ and Γ(t) > 0 for t ∈ [a, b], τ0 < a < b <

MF . −2 logR(k0(t)) weakly converges to U2(t)/Γ(t) in D[a, b], where U(t) is a Gaussian

process with zero mean and covariance function

Cov(U(s), U(t)) = E[(s− T − k0(s))(t− T − k0(t))I(T ≤ s)]

where a ≤ s ≤ t ≤ b.

Thus, an asymptotic 100(1 − α)% simultaneous confidence band for k(t) in t ∈

[a, b], a > τ0 is

I3 (α) = {k (t) : −2 logR (k (t)) ≤ c(α), t ∈ [a, b]},

where c(α) is the upper α-quantile of the distribution of sup
a≤t≤b

{U2(t)/Γ(t)}.

3.2 The adjusted empirical likelihood method for k(t)

The empirical likelihood poses a zero convex hull problem. To deal with this problem,

Chen et al. (2008) proposed the adjusted empirical likelihood (AEL). The proposed

method attempts to solve the problem by adding one more data point to Wi(k(t)), and

this is applied to the empirical likelihood.

From the generated Wi(k(t))’s in Eq. (3.2), the extra data point is obtained by using

the proposed convention;

Wn+1(k(t)) = −an
∑n

i=1Wi(k(t))

n
.

In the above equation, an is a positive constant. By following the recommendation

by Chen et al. (2008), to choose the value of an, we thereby use

an = max(1, log(n)/2).
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With the (n+ 1) data points, the empirical likelihood ratio at k(t) is

Radj(k(t)) = sup

{
n+1∏
i=1

(n+ 1) pi :
n+1∑
i=1

piWi(k(t)) = 0, pi ≥ 0,
n+1∑
i=1

pi = 1, i = 1, 2, . . . , n+ 1

}
.

The adjusted empirical likelihood ratio at k(t) is given by

ladj(k(t)) = −2 logRadj (k(t)) = 2
n+1∑
i=1

log {1 + λa (t)Wi(k(t))} ,

where λa is the solution to the following equation

n+1∑
i=1

Wi(k(t))

1 + λa (t)Wi(k(t))
= 0 . (3.3)

We can establish the following Wilks’ theorem for the adjusted empirical likelihood

(AEL) at k0(t).

Theorem 3.3. Under regularity conditions as in Theorem 3.1, the ladj(k0(t)) converges

in distribution to a chi-square distribution with one degree of freedom given as χ2
1 as

n→∞.

From Theorem 3.3, we can then construct the asymptotic 100 (1− α) % adjusted

empirical likelihood confidence interval for k0(t) as

I4 (α) = {k (t) : −2 logRadj (k (t)) ≤ χ2
1 (α)}.

3.3 The mean empirical likelihood method for k(t)

The accuracy of the empirical likelihood confidence interval for small sample sizes

can be further improved. To construct more accurate confidence intervals, the mean

empirical likelihood (MEL) proposed by Liang et al. (2019), is further used to assess the

performance since their proposed MEL method provides higher accuracy than that of
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other empirical likelihood methods. The main idea of the MEL method is to generate a

pseudo data set using the means of observation values and apply the empirical likelihood

to the new data set. We denote the pairwise-mean data set as follows,

V (k(t)) =

{
Wi(k(t)) +Wj(k(t))

2
: 1 ≤ i ≤ j ≤ n

}
,

which can be written as

V (k(t)) = {V1(k(t)), V2(k(t)), . . . , VN(k(t))} ,

N = n(n+ 1)/2 .

With the pseudo data set, the empirical likelihood ratio at k(t) is

Rm(k(t)) = sup

{
N∏
i=1

Npi :
N∑
i=1

piVi(k(t)) = 0, pi ≥ 0,
N∑
i=1

pi = 1, i = 1, 2, . . . , N

}
.

The mean empirical likelihood ratio at k(t) is given as

lm(k(t)) =
−2 logRm (k(t))

n+ 1

=
2

n+ 1

N∑
i=1

log {1 + λm (t)Vi(k(t))} , (3.4)

where λm is the solution to the following equation

N∑
i=1

Vi(k(t))

1 + λm (t)Vi(k(t))
= 0 .

We establish Wilks’ theorem for the mean empirical likelihood as follows.

Theorem 3.4. Under regularity conditions as in Theorem 3.1, the lm(k0(t)) converges

in distribution to a χ2
1 as n→∞.
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From Theorem 3.4, we can then construct the asymptotic 100 (1− α) % mean empir-

ical likelihood (MEL) confidence interval for k0(t) as

I5 (α) = {k (t) : −2 logRm (k (t)) ≤ χ2
1 (α)}.
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4 SIMULATION STUDY

Simulation studies were carried out to assess the performance of the normal approxi-

mation (NA), empirical likelihood (EL), adjusted empirical likelihood (AEL), and mean

empirical likelihood (MEL) methods. Three distributions of T were used to conduct

the simulations. Each simulation was repeated 2000 times. Under each distribution,

the MPL function, 95% confidence interval, coverage probabilities, and average lengths

were computed and summarized. The 95% confidence intervals were used to obtain the

coverage probabilities, that is, the proportion of the confidence intervals, which contain

the true value k0(t).

Given that T follows a uniform distribution on the interval (0, 1), then at time t, its

mean past lifetime function k0(t) is t/2. Table 4.1, gives the coverage probabilities and

average lengths at time (0.2, 0.4, 0.6, 0.8) on 30, 50 and 100 sample sizes (n).

Table 4.1: Empirical coverage probabilities and (average lengths) of 95% confidence
intervals for the NA, EL, AEL, and MEL methods for the uniform distribution.

n Method t = 0.2 t = 0.4 t = 0.6 t = 0.8

30 NA 0.997 (0.315) 0.999 (0.409) 1.000 (0.489) 1.000 (0.583)

EL 0.923 (0.057) 0.932 (0.123) 0.938 (0.154) 0.945 (0.179)

AEL 0.956 (0.070) 0.959 (0.151) 0.963 (0.172) 0.961 (0.194)

MEL 0.954 (0.066) 0.956 (0.137) 0.964 (0.167) 0.960 (0.190)

50 NA 0.999 (0.234) 1.000 (0.313) 1.000 (0.376) 1.000 (0.433)

EL 0.914 (0.059) 0.934 (0.095) 0.944 (0.121) 0.944 (0.141)

AEL 0.964 (0.091) 0.955 (0.107) 0.960 (0.130) 0.954 (0.148)

MEL 0.945 (0.069) 0.957 (0.104) 0.960 (0.127) 0.953 (0.146)

100 NA 0.999 (0.157) 1.000 (0.218) 1.000 (0.264) 1.000 (0.304)

EL 0.946 (0.046) 0.949 (0.066) 0.944 (0.082) 0.958 (0.099)

AEL 0.963 (0.052) 0.958 (0.071) 0.954 (0.086) 0.962 (0.103)

MEL 0.964 (0.051) 0.956 (0.069) 0.951 (0.085) 0.961 (0.102)
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Given that T follows an exponential distribution, with mean 1. At time t, it can be

readily shown that its corresponding mean past lifetime function is given by,

k0(t) =
t+ exp(−t)− 1

1− exp(−t)
I(t > 0) .

The time points taken into account to conduct the simulation are (0.5, 1, 2, 4), and

the results are summarized in Table 4.2.

Table 4.2: Empirical coverage probabilities and (average lengths) of 95% confidence
intervals for the NA, EL, AEL, and MEL methods for the exponential distribution.

n Method t = 0.5 t = 1 t = 2 t = 3

30 NA 0.980 (0.207) 0.983 (0.315) 0.992 (0.662) 1.000 (2.866)

EL 0.928 (0.151) 0.947 (0.245) 0.943 (0.394) 0.938 (0.513)

AEL 0.957 (0.181) 0.963 (0.272) 0.962 (0.426) 0.953 (0.551)

MEL 0.954 (0.169) 0.962 (0.266) 0.961 (0.421) 0.955 (0.551)

50 NA 0.998 (0.229) 0.998 (0.348) 1.000 (0.607) 1.000 (3.747)

EL 0.941 (0.123) 0.943 (0.192) 0.939 (0.308) 0.947 (0.400)

AEL 0.965 (0.137) 0.956 (0.205) 0.953 (0.324) 0.958 (0.419)

MEL 0.963 (0.133) 0.955 (0.202) 0.953 (0.321) 0.955 (0.417)

100 NA 0.996 (0.148) 0.999 (0.226) 0.999 (0.356) 1.000 (2.692)

EL 0.952 (0.088) 0.949 (0.138) 0.950 (0.220) 0.949 (0.284)

AEL 0.962 (0.093) 0.959 (0.143) 0.958 (0.226) 0.954 (0.291)

MEL 0.960 (0.092) 0.956 (0.141) 0.957 (0.224) 0.953 (0.289)

If T follows a a Pareto distribution, with scale parameter 2, and shape parameter 1,

then at time t its mean past lifetime function can be defined as,

k0(t) =
t(t− 1)

t+ 1
I(t > 1) .
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Table 4.3: Empirical coverage probabilities and (average lengths) of 95% confidence
intervals for the NA, EL, AEL, and MEL methods for the Pareto distribution.

n Method t = 1.5 t = 2 t = 2.5 t = 3

30 NA 0.999 (0.260) 0.999 (0.288) 0.980 (0.348) 0.976 (0.462)

EL 0.939 (0.129) 0.934 (0.213) 0.941 (0.285) 0.931 (0.350)

AEL 0.962 (0.145) 0.953 (0.233) 0.952 (0.308) 0.947 (0.377)

MEL 0.960 (0.141) 0.956 (0.230) 0.953 (0.307) 0.950 (0.378)

50 NA 0.993 (0.227) 0.987 (0.253) 0.983 (0.329) 0.979 (0.438)

EL 0.948 (0.102) 0.948 (0.168) 0.944 (0.224) 0.953 (0.274)

AEL 0.961 (0.110) 0.958 (0.177) 0.957 (0.236) 0.962 (0.287)

MEL 0.961 (0.108) 0.961 (0.176) 0.959 (0.235) 0.963 (0.287)

100 NA 0.962 (0.202) 0.973 (0.239) 0.980 (0.311) 0.986 (0.452)

EL 0.953 (0.073) 0.956 (0.120) 0.953 (0.159) 0.949 (0.195)

AEL 0.962 (0.076) 0.962 (0.123) 0.958 (0.164) 0.952 (0.200)

MEL 0.961 (0.075) 0.960 (0.122) 0.958 (0.163) 0.951 (0.199)

It can be observed from the simulation studies in Tables 4.1, 4.2, and 4.3 that the

coverage probabilities based on the NA method far exceed the nominal level of 0.95.

This indicates that the NA based method leads to high overcoverage. The proposed

EL methods appear to be consistent with the reviewed literature as it produces better

coverage than the normal approximation method. For the sample size of 30, the EL

method falls below the nominal level of 0.95 but still better in comparison to the coverage

probabilities based on the NA method.

At the base time points, for all distributions, the AEL and MEL results are almost

close to the nominal level and even get better as the time increases. The average lengths

of the confidence intervals for the EL, AEL, and MEL methods appear to decrease as

the sample size increases. However, the average lengths for the AEL and MEL under all

distributions, are larger than the EL method. Consequently, the average length for the

MEL method under all distributions is shorter than or equal to the AEL method.
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5 REAL DATA ANALYSIS

In this chapter, the performance of the proposed EL methods is further assessed by

considering real data in survival analysis and reliability theory. These applications are

demonstrated by obtaining the confidence intervals and average lengths for the MPL

function by using the NA, EL, AEL, and MEL methods. These applications are critical

since the simulation study has proven the EL-based methods outperform the NA-based

methods. Hence, an application to real data would be considered sufficient to show how

the performance of the proposed methods. Therefore, an application to a burn dataset

is considered in the first example. In the second example, an application in reliability

theory using an insulating fluid data is illustrated.

An application using burn data:

A dataset from the study (Ichida et al., 1993) on burn infection of 154 patient records

and charts is reviewed in the first example. A burn wound infection is a common com-

plication resulting in extended hospital stays and the death of severely burned patients.

Table 5.1 summarizes the estimated MPL function of the infection times with its cor-

responding 95% confidence intervals based on the NA, EL, AEL, and MEL methods

at time points (15, 25, 35, 50). Furthermore, the confidence intervals and length of the

intervals are illustrated in Figures 5.1 and 5.2, respectively.

Table 5.1: Estimated MPLs, 95% confidence intervals and length of the intervals of
the normal approximation (NA), empirical likelihood (EL), adjusted empirical likelihood
(AEL), and mean empirical likelihood (MEL) methods using the burn dataset.

t MPL NA EL AEL MEL

15 6.52 (3.660, 9.380) (5.720) (5.694, 7.552) (1.858) (5.662, 7.585) (1.923) (5.675, 7.574) (1.899)

25 12.43 (7.569, 17.291) (9.722) (11.477, 13.858) (2.381) (11.448, 13.887) (2.439) (11.460, 13.875) (2.415)

35 19.44 (10.474, 28.407) (17.933) (18.206, 21.242) (3.036) (18.174, 21.272) (3.098) (18.186, 21.258) (3.072)

50 30.96 (14.640, 47.280) (32.640) (28.887, 32.888) (4.001) (28.849, 32.923) (4.074) (28.862, 32.905) (4.043)
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Figure 5.1: Confidence intervals for the estimated MPLs for the burn data.

Figure 5.2: Length of intervals for the time (in minutes) for the burn data.

An application using insulating fluid data:

In the second example, an application of the MPL function in reliability theory is con-

sidered. We refer to Hettmansperger and McKean (2011) for a study on the breakdown

time of an electrical insulating fluid on different levels of voltage stress. The purpose of

an electrical insulating fluid is to prevent electric discharges. Hence, they are primar-

ily used in high voltage machines to give electrical insulation. Its breakdown can have

a tremendous effect on thermal stability and cost. The MPL function is estimated at

different time points t and is summarized in Table 5.2, along with the 95% confidence

intervals and average lengths for the NA, EL, AEL, and MEL based methods. Figure

5.3 shows the confidence intervals, and Figure 5.4 shows the length of the intervals.
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Table 5.2: Estimated MPLs, 95% confidence intervals and length of the intervals of
the normal approximation (NA), empirical likelihood (EL), adjusted empirical likelihood
(AEL), and mean empirical likelihood (MEL) methods using the insulating fluid dataset.

t MPL NA EL AEL MEL

7.5 5.009 (3.213, 6.805) (3.592) (3.934, 5.865) (1.931) (3.828, 5.955) (2.127) (3.814, 5.903) (2.089)

21.5 16.151 (8.994, 23.308) (14.314) (13.514, 18.005) (4.491) (13.318, 18.152) (4.834) (13.221, 18.062) (4.841)

35.5 26.942 (13.619, 40.265) (26.646) (22.842, 29.949) (7.107) (22.570, 30.159) (7.589) (22.491, 30.028) (7.537)

55.5 43.951 (20.736, 67.166) (46.430) (38.737, 47.912) (9.175) (38.418, 48.164) (9.746) (38.314, 48.009) (9.695)

100.5 87.198 (37.465, 136.931) (99.466) (80.373, 91.882) (11.509) (79.969, 92.174) (12.205) (79.310, 91.989) (12.679)

Figure 5.3: Confidence intervals for the estimated MPLs for the insulating fluid data.

Figure 5.4: Length of intervals for the time (in minutes) for the insulating fluid data.
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Summary of the real data analysis:

Employing an application of the proposed EL, AEL, and MEL methods to real data,

it is evident that the methods perform better than the NA method. In the case of

the burn data, the MPL estimator was computed by using the MPL function for tied

observations since there were tied observations present in the data. However, the MPL

estimator for the insulating fluid data was computed using the MPL function with no

tied observations as the data had no ties. As the time t increases, the MPL estimator

correspondingly increases. For the NA-based confidence intervals in Table 4.3, the length

of the intervals tends to become two times more than the previous time point. Thus, the

length of the intervals increases with time t. This may be attributed to the conservative

behavior of the variance of the MPL function. This behavior may also be seen in Table

5.1 for the insulating fluid data.

The length of the intervals for the EL, AEL, and MEL appear to be consistent from

Figures 5.2 and 5.4. Their trend lines appear smooth, although the confidence intervals

for the AEL and MEL methods are longer than the EL method in Figures 5.1 and 5.3.

Overall, the NA-based confidence intervals and lengths have high overcoverage compared

to the EL, AEL, and MEL methods, which produce more accurate confidence intervals

with shorter lengths.
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6 CONCLUSIONS

In this thesis, we proposed empirical likelihood methods to construct confidence in-

tervals for the mean past lifetime (MPL) function. The confidence interval for the MPL

function was first considered using the normal approximation (NA) method followed by

the empirical likelihood (EL), adjusted empirical likelihood (AEL), and mean empirical

likelihood (MEL) approach. Extensive simulation experiments were performed to assess

the performance in terms of coverage probability and average lengths of the NA, EL,

AEL, and MEL confidence intervals.

The simulation studies show that overall, the EL interval estimates have more ac-

curate coverage probability and shorter average lengths than intervals based on normal

approximation. Although the proposed AEL and MEL methods produced longer average

lengths than the EL method, they outperformed the NA method in terms of coverage

probability and shorter average length. The efficiency of the EL, AEL, and MEL methods

was illustrated using a real dataset to construct confidence intervals and was compared

with the NA-based method in terms of confidence intervals and average lengths.
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APPENDICES

Appendix A: Proofs of theorems

The proof follows from Zhao and Qin (2006). Although the proofs of Theorem 3.1.

is straightforward, it is helpful to understand the proof of Theorem 3.2 in space D[a, b].

The following lemma is helpful for the proof of the theorems.

Lemma 1. Let τ0 < a < b < MF . Assume E(T 2) <∞. We have

(i) n−1/2
n∑
i=1

Wi(k0(t))
D→ U(t) in D[a, b],

(ii) n−1
n∑
i=1

W 2
i (k0(t))

P→ Γ(t) uniformly over t ∈ D[a, b].

We state a proposition in order to prove Lemma 1 (cf. Theorem 3 of van der Vaart

and Wellner, 2000).

Proposition 1 Suppose that F1, F2, . . . , Fk are P-Glivenko-Cantelli classes of func-

tions and that φ : Rk to R is a continuous function. Then the class of functions

H = φ(F1, F2, . . . , Fk) is P-Glivenko-Cantelli, provided it has an integrable envelope

function. The class H is the collection of all functions h(u) which are of the form

h (u) = φ(f1 (u) , f2 (u) , . . . , fk(u)), where fi is in Fi.

Proof of Lemma 1. We note that n−1/2
n∑
i=1

Wi(k0(t)) = F̂ (t)n1/2(kn(t) − k0(t)). By

Theorem 2.1 of Zardasht (2017), Lemma 1 (i) follows. For the proof of Lemma 1 (ii), we

follow the similar argument of Zhao and Qin (2006). Take F1 to be the class I (T ≤ t)

for τ0 < a ≤ t ≤ b < MF , and Fi to be the class t− T − k0 (t) , i = 2, 3. Then, F1 is P-

Glivenko-Cantelli by the usual Glivenko-Cantelli theorem, and Fi is P-Glivenko-Cantelli

by the strong law of large numbers for i = 2, 3. Take the function φ (b, c, d) = bcd, which

is continuous. Recall that τ0 < a < b < MF < ∞ and [a, b] is a compact interval. We

have 0 ≤ t + k0 (t) ≤ M for t ∈ [a, b], where M is a constant. Finally, the class of
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functions H : {I (T ≤ t) (t− T − k0 (t))2 : t ∈ [a, b]} certainly has an integrable envelope

function (|T |+M)2. Because I (T ≤ t) (t− T − k0 (t))2 ≤ (|T |+M)2 for t ∈ [a, b] and

E (|T |+M)2 < ∞ by the assumption E
(
T 2
)
< ∞. Thus, Lemma 1 (ii) follows from

Proposition 1.

Lemma 2. Recall that Var(Wi(k0(t))) = Γ(t). We have

(i) max
1≤i≤N

|V (k0(t))| = op(n
1/2),

(ii)
1

N

N∑
i=1

(Vi(k0(t)))
2 =

Γ(t)

2
+ op(1).

Proof of Lemma 2. We give the proof of Lemma 2, following the argument from Liang

et al. (2019).

(i) Since Var(Wi(k0(t))) = Γ(t) exists, we have maxi|Wi(k0(t))| = op(n
1/2) and

max
1≤i≤N

|Vi(k0(t))| = max
i≤j

∣∣∣∣Wi(k0(t)) +Wj(k0(t))

2

∣∣∣∣
≤ 1

2

(
max
1≤i≤n

|Wi(k0(t))|+ max
1≤j≤n

|Wj(k0(t))|
)

= op(n
1/2).

(ii) We notice that

1

N

N∑
i=1

(Vi(k0(t)))
2 =

1

2N

[
n∑
i=1

n∑
j=1

(
Wi(k0(t)) +Wj(k0(t))

2

)2

+
n∑
i=1

(Wi(k0(t))
2

]

=
1

2(n+ 1)

(
1√
n

n∑
i=1

(Wi(k0(t)))
2

)
+

n+ 2

2(n+ 1)

(
1

n

n∑
i=1

(Wi(k0(t)))
2

)

=
Γ(t)

2
+ op(1).

Proof of Theorem 3.1. Throughout the proof, we fix t ∈ (τ0,∞). Recall that E
(
W 2
i (k0(t))

)
<
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∞ for fixed t ∈ [τ0,∞). Following the proof of Lemma 3 of Owen (1990) we have

max
1≤i≤n

|Wi(k0(t))| = op
(
n1/2

)
.

Let

Γ̂ (t) =
1

n

n∑
i=1

W 2
i (k0(t)).

Note that for the fixed t, W1(k0(t)), . . . ,Wn(k0(t)) are i.i.d random variables and

Var (Wi(k0(t))) = E
[
(ti − Ti − k0 (t))2 I(Ti ≤ t)

]
= Γ (t) .

Note that E
[
W 2
i (k0(t))

]
= Γ(t) and n−1

n∑
i=1

W 2
i (k0(t))

P→ Γ (t) follows from the Law of

Large Numbers. Thus, we have

Γ̂ (t) = Γ (t) + op(1).

By the Central Limit Theorem, n−1/2
n∑
i=1

Wi(k0(t))
D→ N(0,Γ (t)) follows. Similar to the

proof of Zhao and Qin (2006), we have

−2 logR (k0 (t)) =
n∑
i=1

λ (t)Wi(k0(t)) + op(1)

=

(
n−1/2

n∑
i=1

Wi(k0(t))

)2(
n−1

n∑
i=1

Wi(k0(t))Wi(k0(t))

)−1
+ op(1)

D→ χ2
1.

Proof of Theorem 3.2. Recall that E
(
T 2
)
<∞. We have

max
1≤i≤n

|Ti| = op
(
n1/2

)
.
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Therefore, we have

max
1≤i≤n

|Wi(k0(t))| ≤ max
1≤i≤n

|Ti|+ (t+ k0 (t))

≤ max
1≤i≤n

|Ti|+M,

for t ∈ [a, b], where M is a constant which satisfies that t+ k0 (t) ≤ M for t ∈ [a, b].

Hence,

max
1≤i≤n

|Wi(k0(t))| = op
(
n1/2

)
,

uniformly over t ∈ [a, b]. Then by Lemma 1 and the proof of Theorem 3.1, we have

−2 logR (k0 (t)) =
n∑
i=1

λ (t)Wi(k0(t)) + op(1)

=

(
n−1/2

n∑
i=1

Wi(k0(t))

)2(
n−1

n∑
i=1

Wi(k0(t))Wi(k0(t))

)−1
+ op(1)

D→ U2(t)

Γ(t)

in D[a, b], where op(1) is uniformly over t ∈ [a, b].

Proof of Theorem 3.3. We first prove that |λa| = Op(n
−1/2). From Eq. (3.3), we can

write

0 =
1

n

∣∣∣∣∣
n+1∑
i=1

Wi(k0(t))− λa
n+1∑
i=1

W 2
i (k0(t))

1 + λa (t)Wi(k0(t))

∣∣∣∣∣
≥ |λ

a|
n

n+1∑
i=1

W 2
i (k0(t))

1 + λa (t)Wi(k0(t))
− 1

n

∣∣∣∣∣
n+1∑
i=1

Wi(k0(t))

∣∣∣∣∣
≥ |λa|s2n(t)

1 + |λa(t)|W ∗
i (k0(t))

−

∣∣∣∣∣ 1n
n∑
i=1

Wi(k0(t))

∣∣∣∣∣ (1− an
n

)
,

where s2n(t) = n−1
n∑
i=1

W 2
i (k0(t)) and W ∗

n(k0(t)) = max
1≤i≤n

|Wi(k0(t))|. By Lemma 1 (i),

W n(k0(t)) = n−1
n∑
i=1

Wi(k0(t)) = Op(n
−1/2). By Lemma 1 (ii), s2n(t) = Γ(t) + op(1) and
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by the result (i) in the proof of Theorem 3.1, we have W ∗
n(k0(t)) = op(n

1/2). These results

coupled with an = op(n), give |λa| = Op(n
−1/2). Hence, λa = W n(k0(t))/s

2
n(t)+op(n

−1/2).

Finally, by replacing λa in the Taylor expansion of ladj(k0(t)), we have,

ladj(k0(t)) = 2
n+1∑
i=1

(
λaWi(k0(t))−

1

2
(λa)2Wi(k0(t))

2

)
+ op(1)

=
nW

2
(k0(t))

s2n(t)
+ op(1).

By Lemma 1, ladj(k0(t)) converges to χ2
1.

Proof of Theorem 3.4. The proof of Theorem 3.4 follows the proof of Theorem 3.3. From

the arguments used in Owen (1990) and Liang et al. (2019), we have |λm(t)| = Op(n
−1/2).

Now, with the following equation

0 =
1

N

N∑
i=1

Vi (k0(t))

1 + λm(t)Vi (k0(t))

=
1

N

N∑
i=1

Vi(k0(t))−
λm

N

N∑
i=1

Vi(k0(t))
2 +

1

N

N∑
i=1

(λm)2Vi(k0(t))
3

1 + λm(t)Vi(k0(t))

=
1

N

N∑
i=1

Vi(k0(t))−
λm

N

N∑
i=1

Vi(k0(t))
2 + zn ,

where

|zn| ≤ (λm)2 max
i≤i≤n

|Vi(k0(t))|
1

N

N∑
i=1

(Vi(k0(t))
2 1

1 + λmVi(k0(t))

= Op(n
−1)op(n

1/2)Op(1)Op(1)

= op(n
−1/2).

Then, we obtain

λm =

(
N∑
i=1

(Vi(k0(t)))
2

)−1( N∑
i=1

Vi(k0(t))

)
+ op(n

−1/2).
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Applying Taylor’s expansion to Eq. (3.4), we have

lm(k0(t) =
2

n+ 1

N∑
i=1

(
λmVi(k0(t))−

1

2
(λm(Vi(k0(t))

2

)
+

rN
n+ 1

, (6.1)

where

|rN | ≤ C |λm (t)|3 max
1≤i≤N

|V (k0(t))|
n∑
i=1

|Vi(k0(t)) |2

= Op(n
−3/2)op(n

1/2)Op(n
2)

= op(n).

Substituting λm into Eq. (6.1), and noticing that

1

N

N∑
k=1

Vk(k0(t)) =
1

2N

(
n∑
i=1

n∑
j=1

Wi(k0(t)) +Wj(k0(t))

2
+

n∑
i=1

Wi(k0(t))

)

=
n+ 1

2N

n∑
i=1

Wi(k0(t)) = W n(k0(t)) ,

Hence, we have that

lm(k0(t)) =
1

n+ 1

(
N∑
i=1

Vi(k0(t))

)2( N∑
i=1

V 2
i (k0(t))

)−1
+ op(1)

=
1

n+ 1

(
N∑
i=1

Vi(k0(t))

)2(
NΓ(t)

2

)−1
+ op(1)

=
2

N(n+ 1)(Γ(t))

(
N∑
i=1

Vi(k0(t))

)2

+ op(1)

=
2N2

N(n+ 1)(Γ(t))

(
1

N

N∑
i=1

Vi(k0(t))

)2

+ op(1)

=
2N

(n+ 1)(Γ(t))
W n(k0(t))

2 + op(1)

=
nW n(k0(t))

2

Γ(t)
+ op(1)

D→ χ2
1.
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