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ABSTRACT 

Increasing global energy demand presents the challenge of insufficient supply of energy 

in cities and an ever-increasing carbon footprint. Out of the plethora of renewable energy 

options, solar energy presents the most viable option as it is geographically unconstrained. 

Implementation of a solar project requires solar resource assessment and consideration of 

limiting factors such as slope aspect, temperature and GHI. Multi-criteria selection method is 

often used in delineating optimal site for the establishment of solar farms. The purpose of this 

study was to determine solar index of optimal site selection for solar farms by using satellite 

images, GIS and AHP in the study area.  The final composite index yielded the three 

categorizations of least suitable, moderately suitable, and most suitable areas. The resulting size 

and percentage of the study area optimal for solar panels was 3% and 234.96 sq km respectively. 
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1 INTRODUCTION  

Meeting the energy demands of the world is one of the most challenging needs that face 

humanity today (Jarvis et al, 2012; Gasparovic, 2019; Dazhi et al., 2015; Mierzwiak and Calka, 

2017  ). Yet, in recent times, advancement in the technology needed to extract fossil fuels has led 

to increased production of energy, widespread accessibility to energy, and consequently massive 

consumption of energy (Jarvis et al., 2012). While the increased accessibility to energy worldwide 

is welcomed, the environmental toll caused by the accompanying consumption of fossil fuel cannot 

be ignored (Gasparovic, 2019). The negative consequence has shifted the world’s focus towards 

developing sustainable energy sources (Schneider et al., 2000). Renewable energy sources such as 

solar power, wind power, hydropower, biomass, and geothermal energy present many options 

(Gasparovic, 2019). However, solar energy has emerged as one of the most promising alternatives. 

Solar energy impinging on the surface of the Earth is widely distributed over the surface of the 

Earth in abundant quantities, thus fostering a concerted global effort in investing in them. This 

property of solar energy is of great advantage as the benefits of solar energy can be harnessed 

everywhere.  Knowledge of local solar radiation is the key to implementing solar energy systems 

(Gasparovic, 2019). The viability of a solar energy project relies on the bankability of the amount 

of surface solar irradiance available at the chosen site. Solar energy resource assessment is 

determined by either measurement of radiation values from local ground stations or by satellite 

observations (Ohmura et al., 1998). However, the network of accurate ground-based solar 

measurement stations is sparse, and the interpolation of solar data from these stations is inadequate 

to satisfy the standards required for constructing a solar plant (Ohmura et al., 1998). In lieu of this, 

solar products from geostationary satellite images have become the industry standard for 
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preliminary assessment of solar potential in areas where ground-based measurement is lacking 

(Hafeznia et al., 2017). 
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2 LITERATURE REVIEW 

2.1 Ground-Based And Satellite-Based Solar Irradiance Data 

The exploitation of solar energy is dependent on the accurate quantification of the amount 

of solar radiation that impinges on the surface of the Earth under consideration (Huang et al., 

2020). A review of current data repositories of solar resources classified the databases into two 

categories: satellite-derived databases and ground-based databases (Huang et al., 2020). The 

ground-based solar radiation database is derived from solar irradiance measurements made by 

radiometers. Gueymard (2009) identified the three primary sources of ground-based solar 

measurement as solar monitoring sites, conventional long-term measurements by weather 

monitoring stations, and research sites (Atmospheric Radiation Measurement (ARM) program or 

the Baseline Solar Radiation Network (BSRN). Given the reliance on empirical and theoretical 

models of meteorological stations and research sites, data captured from these sources is 

measured by proven techniques with robust instruments that derive the highest accuracy possible 

(Geuder et al., 2006). 

The HelioClim-3 databases (version 4 and version 5) and the Copernicus Atmosphere 

Monitoring Radiation Service (version 2) are two of the several satellite solar databases that have 

been constructed from images captured by the Meteosat series of satellites (Marchand,2018). 

2.2 Satellite-Based Estimates of Solar Potential 

Satellite imagery offers one of the best opportunities to assess the incoming amount of 

solar insolation that reaches the surface of the Earth. As the temporal and spatial coverage of 

geostationary satellites has improved, it has become accepted to use solar satellite estimates from 

regions where ground stations are sparse or non-existent (Alonso-Montesinos et al., 2015). In its 

initial development, studies were critical of the relevant uncertainties between satellite 
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measurements and ground stations. Uncertainties are attributable to the inability of the solar 

algorithms to properly characterize atmospheric aerosols or account for the significant temporal 

changes in cloud cover and transmissivity.  However, recent studies have proven satellite errors 

are within the range of uncertainties associated with ground measurements (Journée, 2010).   

2.2.1 Theoretical Framework of Satellite Estimation 

Satellites record both surface reflectance at the top of the atmosphere (TOA) and the 

atmosphere.  The framework of deriving solar surface irradiance (SSI) is determined by 

accounting for the attenuation of incident solar radiation by the composition of the atmosphere. 

In principle, the effect of atmospheric constituents is determined either directly or indirectly from 

TOA radiances captured by the satellite (Bhartia et al., 1996). Consequently, the TOA readings 

are used as a proxy to quantify the solar radiation that impinges on the surface of Earth. 

Ozone, water vapor, and aerosols have the most influence on the depletion of solar 

radiation on a clear sky day. Different amounts of these constituents in the atmosphere yields 

varying SSI values. Atmospheric constituents are wavelength-dependent. Hence, a comparison 

of the absorption profile of solar radiation specific to portions of the electromagnetic 

wavelengths to the atmospheric window enables the estimation of the amounts of constituents 

(water vapor, aerosols, and ozone) present in the atmosphere (Liu, 2017). Complementary ozone 

products from Total Ozone Mapping Spectrometer (TOMS) Earth Probe and MODIS enable the 

estimation of ozone content and gauge its effect on solar attenuation. The most significant 

regulator of SSI is cloud cover. The constant evolution of the theoretical framework and 

algorithm to estimate SSI is premised on perfecting the accounting process for the radiative 

attenuation by clouds and aerosols (scattering and absorption by clouds and aerosols) in the 

atmosphere. Solar depletion attributable to clouds is obtained from TOA satellite observations or 
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by using cloud data derived from raw satellite data (Huang, 2020). Figure 1 illustrates a 

simplified version of the interaction of shortwave radiation (visible radiation) with the 

atmosphere and the surface of the Earth on a clear-sky day and a cloudy day. 

 

Figure 1 Simplified relations between satellite observations and SSI according to one-

dimensional radiative transfer theory for a) clear sky and b) cloudy sky (Huang et al., 2020). 

2.2.2 Estimation of SSI From Satellites 

Several algorithms have been developed over the years to estimate surface irradiance 

values. These algorithms can be classified into two groups:  RTM and Conventional Statistical 

Methods (Huang, 2020). 

The Radiative Transfer Model (RTM) is based on the acquisition of atmospheric spectral 

properties and the development of radiative transfer equations to solve the problem of estimating 

accurate SSI. Popular RTM includes Moderate Resolution Atmospheric Transmission 

(MODTRAN) or LibRadtran (Emde, 2016; Mayer, 2020) used to calculate the surface solar 

insolation. The goal of radiative transfer models is to minimize spectral dependence, simplify 

radiative transfer solutions while maintaining the accuracy of methodologies that depend on 

them. However, it should be noted that it is costly to run RTMs, especially complex RTMs 

(Huang, 2020). 
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The conventional statistical method uses empirical-based functions to correlate satellite 

data to SSI values. The premise of the conventional statistical method is that the TOA reflectance 

measured by the satellite depends on the transmissivity of the cloud. The Heliosat Method, a 

popular conventional statistical method, uses an empirical model to calculate surface irradiances 

(Cano,1986; Rigollier, 2004). The empirical method uses the Linke turbidity factor to 

characterize the atmospheric transmittance. The Linke turbidity factor defines the effect of 

scattering and absorption by atmospheric gases and water vapor in the atmosphere. 

The dynamic nature of atmospheric aerosols and the climatic nature of different 

geographic locations introduces biases that affect the efficacy and accuracy of the Heliosat 

model. Badescu et al., 2013 indicated the relevance of validating Heliosat models as it has never 

been validated in some regions with differences in atmospheric constituents compared to the area 

where the model was developed. Engerer et al., 2015 validated the statistical method in Australia 

using reference 1-min data from 14 sites and concluded the model produced differing accuracy 

levels in different climate zones of Australia. Dazhi et al., 2015 compared test the statistical 

models in Singapore, whose climate is generally equatorial and fully humid and concluded that 

the accuracy level of the model was not acceptable. Different statistical model validation studies 

were reviewed, and the performances of the models were found to be influenced by the aerosol 

profile of the region. Perez (1997) found the usage of surface measurements to calibrate or tune 

statistical methods substantially improved the accuracy of its solar estimates. Statistical method 

are commercially pervasive and are the default tool for solar energy assessment applications. A 

review of existing literature indicated no validation study of statistical method (Heliosat) had 

been conducted in an urban area such as Metropolitan Atlanta and an even limited work of 

validation of the model in the humid subtropic climatic zone of Atlanta. 
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2.3 Selection of Optimal Sites Using Geographical Information Systems (GIS) 

Once the global horizontal irradiance(GHI) has been estimated for a region, it is imperative 

to refine parameters to determine active solar radiation at a small spatial resolution. Studies using 

GIS to analyze solar power plant siting have identified key determinants that affect the selection 

of an optimal site (Gasparovic,2019). It is critical to assess parameters (assigning weights) that 

contribute to the determination of sites to leverage the full potential of solar radiation. The work 

of Gasparovic (2019) identified these physical parameters such as slope, aspect, temperature, 

sunshine duration, and land-use restrictions 

Slope and aspect (constraint factors) affect the intensity of solar radiation that the solar 

panels can harness. Studies have shown that panels oriented southward coupled with a sloping 

incline of less than 10% generate the highest quantity of electricity (Mierzwiak and Calka, 2017). 

Thus, the factors of slope and aspect are unproductive as they restrict the availability of probable 

optimal solar farm sites. Likewise, temperature as a variable is negative (constraining factor) as 

the study of Mierzwiak and Calka, 2017, Mujabar, 2021 correlated drop in electricity production 

to increased temperature. However, sunshine hours and GHI were favorable factors as increasing 

values of these criteria correlate with increased electricity generation from the solar panel 

systems (Mierzwiak and Calka, 2017).  The exploitation of local solar resources is constrained 

by space and local physical conditions/ecosystems. Essentially, all solar project development is 

local, and specific knowledge of the locale is essential for a rewarding project development 

process. For the development of PV farms in Metropolitan Atlanta, suitability analysis is an 

indispensable process conducted via GIS. 
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2.4 Research Problem 

At the 2015 United Nations Climate Change conference, Atlanta resolved to reduce the 

city’s greenhouse gas and carbon dioxide emissions by exploiting renewable energy alternatives 

(Clean Energy Atlanta, 2017). Following the conference, Atlanta’s city council passed a 

resolution on May 1, 2017, requiring the mayor’s office to develop a plan for the city to achieve 

100% clean energy by 2035 (Clean Energy Atlanta,2017). The resolution called for the 

exploitation and development of renewable energy as the preferred option. The city is adopting 

solar energy to achieve its 100% clean energy aspiration. Programs such as Solar Atlanta is 

adding 1.3 MW to 24 municipal buildings via solar panels (Clean Energy Atlanta, 2017). 

Presently, solar energy accounts for only 6% of Atlanta’s energy portfolio, and the city plans 

to construct large solar farms to meet half of the city’s energy demand. Mega-scale solar farms in 

Atlanta would require accurate solar radiation data from satellite estimates. 

The geographic confine of Metropolitan Atlanta lacks the density or network of ground solar 

stations needed to interpolate accurate solar data for the city. Thus, satellite estimates of global 

horizontal irradiation impinging on Atlanta will be calculated by conventional statistical methods 

(Heliosat-2). This presents an interesting challenge as the Heliosat-2 method has never been 

validated in an urban setting, nor has the accuracy method been assessed in a humid sub-tropic 

climatic zone solar. It is essential to assess the accuracy of the estimations using solar data 

derived from the ground data. 

Subsequently, once solar data is derived, identifying suitable solar farm sites requires the 

consideration of local characteristics and the numerous parameters that affects the processes for 

modeling the exact amount of solar insolation received by points of interest. Metropolitan has an 
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unparallel ecosystem of characteristics and parameters whose exact effect on incident solar 

radiation will need to be considered when determining areas suitable for solar farms. 

This thesis is an attempt to satisfy these requirements by answering the following questions: 

• How does the accuracy of Atlanta’s GHI estimates derived from the Heliosat-2 method 

compare to that of ground measured solar radiation data? 

• What is the size of the optimal sites available in Metropolitan Atlanta for mounting solar 

panels when the effect of physical environmental factors are considered? 

2.5 Research Objective 

A review of existing literature reveals studies involving solar resource assessment falls into 

two classes. The first class entails studies that are purposely conducted to validate solar data 

estimated from statistical models, and the second class comprise studies that uses already 

validated solar data and physical variables to delineate solar site. This study is a merger of both 

classes of studies. 

1) The first objective of this research study was to use satellite data to calculate GHI 

incidents in Metropolitan Atlanta and validate the calculated GHI against values measured by 

ground stations 

2) The second objective of this research study was to identify the optimal sites for mounting 

solar panels in Metropolitan Atlanta  using physical factors that affect incident solar GHI 
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3 METHODOLOGY 

3.1 Study Area 

The chosen study area for this research is Metropolitan Atlanta. Metropolitan Atlanta is 

located on 33°45′18″N latitude, 84° 23’ 16.737” W longitude and has a sub-tropical climate. 

Metropolitan Atlanta has a population of 6,089,815 per the recent 2020 census and has an 

average population density of 1,416.78 km sq. Metropolitan Atlanta comprises ten counties: 

Fulton, Dekalb, Gwinnett, Cobb, Clayton, Rockdale, Cherokee, Fayette, Douglas, and Henry. 

The metropolitan Atlanta area occupies a land size of 7832.124 km sq. The extent of the 

geographic area of the study is shown in Figure 1 below. 

 

Figure 2 A map showing the geographical limits of the study area. It includes all the ten 

counties that makeup Metropolitan Atlanta 
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3.2 Data 

The methodology adopted was implemented in two stages. The first stage involved the 

calculation of global horizontal irradiation using Linke Turbidity and clearness index as input 

parameters(Table 1). While the second stage distinguished favorable sites using multi-criteria 

selection factors such as slope, aspect temperature, land cover, global horizontal irradiance, and 

sunshine hours. Each stage of the methodology of this research project required different raster 

datasets. 

Raster datasets of Linke turbidity, clearness index, Digital Elevation Model (DEM), 

temperature, hours of sunshine, and land cover types for metropolitan Atlanta were downloaded. 

Linke turbidity data were downloaded from the SoDa solar radiation project. The SoDa project is 

a European Union initiative tasked with monitoring the energy exchange between the surface of 

the Earth and the atmosphere. As a result, the project continually produces monthly averages of 

Linke turbidity data at a spatial resolution of 1 km.  Clearness index data for metropolitan 

Atlanta were downloaded from the HOMER Pro project, which compiles monthly clearness 

index values for geographic locations worldwide. 

The physical factors of annual average hours of sunshine, aspect, and slope were calculated 

using r.sun, r.aspect, and r.slope geoprocessing tools of QGIS. r.slope and r.slope are 

geoprocessing tools that generate a raster map of slope and aspect from an input of a raster DEM. 

Similar to r.aspect and r.slope, the r.sun is also a QGIS geoprocessing tool that produces a raster 

map indicating the average annual hours of sunshine hours given a specific geographic 

location(point) or an area(polygon).  DEM and annual surface temperatures were downloaded 

from Diva GIS and climate signals, respectively. Finally, the 2019 land cover classification of 
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the study area was downloaded from the Multi-Resolution Land Characteristics consortium 

group’s land cover classification dataset database. 

Table 1 shows a detailed description of the datasets that were used in this research study  

Table 1 Attributes of the datasets used in this research study 

 

3.3 Heliosat-2 Methodology 

The Heliosat-2 method maintains the core principles of cloud index and clear-sky 

irradiance from Heliosat-1. However, satellite inputs into Heliosat-2 are radiances rather than the 

numerical counts in Heliosat (Rigollier, 2004). The change allows for the calculation of gain and 

calibration for long-term measurements. Also, it factors into account the effect of change of 

sensors. Fundamentally, the Heliosat-2 method shifts the over-reliance of the previous method on 

empirical parameters to the usage of known physical parameters. 

Data Data 

Production 

Date 

Resolution Source Data 

Type 

Metropolitan 

Atlanta 

Boundary 

2019 N/A Atlanta Regional Commission(atlantaregional.org) Feature 

Class 

Linke 

Turbidity 

2019 1 km SoDa(soda-pro.com/help/general-knowledge/ 

linke-turbidity-factor) 

Raster 

     

Clearness 

Index 

2019 N/A Homer 

Pro(www.homerenergy.com/products/pro/docs/latest/ 

clearness_index.html) 

Raster 

Sunshine 

Hours 

2019 10m r.sun(QGIS tool) Raster 

Aspect 2019 10m r.aspect(QGIS tool) Raster 

Slope 2019 10m r.slope(QGIS tool) Raster 

Land Cover 2019 10m Multi-Resolution Land Characteristics (MRLC) 

( mrlc.gov) 

Raster 

Temperature 2019 3m 
 

Raster 

Global 

Horizontal 

Irradiance 

(GHI) 

2019 N/A National Renewable Energy Laboratory(nrel.gov) Point 

Feature 

Digital 

Elevation 

Model 

 2019    Diva GIS(diva-gis.org) Raster 
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3.3.1 Calculating Global Horizontal Irradiance 

In calculating the annual solar insolation that impinged on the surface of our study area, 

the r.sun geoprocessing tool of QGIS was used. The r.sun model is based on the Heliosat-2 

methodology developed by the European Solar Radiation Atlas project. 

3.3.2 Cloudless Surface Solar Irradiance (SSI) 

The Heliosat-2 model first calculates global horizontal irradiation by calculating the 

cloudless surface solar insolation. On a cloudless day, the SSI reaching the surface is a 

combination of the direct beam component and the diffused fraction of the incident extra-

terrestrial solar radiation that permeates the Earth’s atmosphere to reach the surface of the earth.  

The beam component is the portion of the extra-terrestrial irradiance that travels directly from 

the top of the atmosphere to the Earth’s surface without experiencing any reflection or refraction, 

while the diffused fraction quantifies the irradiance reflected by the gases and aerosols present in 

the atmosphere. Equation 1 below demonstrates how the clear-sky global horizontal irradiance 

was calculated for this study. 

𝐺𝑐𝑙𝑒𝑎𝑟−𝑠𝑘𝑦 = 𝐵 + 𝐷                                            eq. (1) 

 Where 𝐺𝑐𝑙𝑒𝑎𝑟−𝑠𝑘𝑦 is SSI under cloudless conditions, 𝐵 is beam irradiance, and 𝐷  is the diffused 

irradiance. 

3.3.3 Beam Component 

The beam component of the incoming solar radiation was calculated by quantifying the 

amount of solar radiation impinging on the surface under the condition of a clear sky. A clear sky 

condition refers to a state where the atmosphere was cloudless; thus, the incident surface beam 

solar radiation was accounted for by subtracting the lost solar radiation attributable to Rayleigh 

scattering, scattering by aerosols and the absorption of radiation by the gaseous composition from 



14 

the incident extra-terrestrial irradiance.  The formula used for the calculation of the beam 

component is shown in equation 2: 

𝐵 = 𝐺𝑂exp⁡{−0.8662𝑇𝐿𝐾𝑀𝜕𝑅(𝑚)}                  eq. (2) 

𝐺𝑂 is the extra-terrestrial irradiance incident upon the top of the atmosphere, and the term  

−0.8662TLK is the Linke atmospheric turbidity factor (Linke turbidity is dimensionless) corrected 

by Kasten (1996) for an air mass of two. The parameter 𝑀 in equation (1) is the relative optical air 

mass and 𝜕𝑅 is Rayleigh optical thickness of the atmosphere. 

3.3.4 Diffuse Component 

Under cloudless conditions, as the atmosphere becomes more turbid, the diffuse 

irradiance increases while the beam irradiance decreases. The estimation of the diffuse 

component on a horizontal surface D [𝑊𝑚−2 ] is made as a product of the normal extraterrestrial 

irradiance 𝐺0, a diffuse transmission function 𝑇𝑛 dependent only on the Linke turbidity factor 

𝑇𝐿𝐾 and a diffuse solar altitude function 𝐹𝐷 dependent only on the solar altitude ℎ0 (Scharmer 

and Greif 2000): 

 𝐷 = 𝐺0𝑇𝑛(𝑇𝐿𝐾)𝐹𝐷(ℎ0)                             eq. (3) 

The r.sun geoprocessing tool accepts as input a raster dataset of the Linke turbidity of the 

area for which the cloudless SSI is being calculated. The monthly averages of Linke turbidity of 

the study area were inputted as a parameter of the r.sun geoprocessing tool designated for Linke 

turbidity, and the cloudless SSI was calculated for each month of the year 2019. 
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3.3.5 Calculation of GHI Under Overcast Conditions 

The typical normal weather condition has no cloudless days (NREL, 2021). Metropolitan 

Atlanta has 217 mostly sunny days annually (NREL, 2021). Yet even on the mostly sunny days, 

25% of the sky was covered in clouds during the daylight hours (NREL, 2021). 

Cloud cover has a significant impact on solar radiation reaching the surface. Thus, to 

truly quantify the GHI impinging on the surface of the study area, the overcast irradiance was 

calculated from the clear-sky GHI raster data calculated from equation (1) via a factor that 

parameterizes the attenuation of incoming solar radiation by clouds. This factor is known as the 

clearness index. The clearness index (𝐾𝑐) represents the atmospheric transmission of clouds 

expressed as a ratio between the global radiation under overcast and clear-sky conditions. The 

clearness index accounts for the different states of cloud cover (Rigollier, 2004). The clearness 

index is dimensionless and varies between 0 to 1. 1 indicates 100% transmissivity while 0 

correlates to no transmissivity. At any point, the percentage of incident extra-terrestrial solar 

radiation reaching the surface of Earth is dependent on the transmissivity of the cloud. The 

Heliosat-2 method calculated the SSI on any day using the equation 4:  

𝐺 = 𝐺𝑐𝑙𝑒𝑎𝑟−𝑠𝑘𝑦𝐾𝑐                          (4) 

Where 𝐺 is the global horizontal irradiance under normal weather conditions, 𝐺𝑐𝑙𝑒𝑎𝑟−𝑠𝑘𝑦 is the 

global horizontal irradiance on a cloudless day and  𝐾𝑐 is the clearness index representing the 

transmissivity of the clouds present in the atmosphere at any point in time. 
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3.4 Comparison of Calculated GHI With Ground Measured GHI 

It is the standard practice to compare calculated GHI values from the Heliosat-2 

methodology to GHI values measured by ground stations.  To analyze the GHI values resulting 

from the implemented Heliosat-2 method, a validation against measurements made by ground 

stations was done. Firstly, the selected solar values calculated from the Heliosat-2 methodology 

corresponding to the locations of the control ground stations were extrapolated from the 

calculated GHI raster dataset. Secondly, measurements recorded during 2019 at the network of 

ground stations belonging to the National Renewable Energy Laboratory (NREL) were obtained 

The NREL is a government science initiative that seeks to advance the sciences and 

engineering of energy efficiency, sustainable transportation, and renewable power technologies 

and provides the knowledge to integrate and optimize energy systems. The NREL has a network 

of partner ground stations that measure ground solar radiation and outputs average annual solar 

radiation values as part of this mission. 

Some statistical parameters were calculated to compare the results provided by the 

Heliosat-2 methodology and the measured ground station values for the research study. These 

parameters are: 

• Mean Absolute Error (MAE): 

The mean absolute error is a statistical parameter that measures the errors between paired 

observations expressing the same phenomenon. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑝𝑖 −𝑚𝑖|
𝑛
𝑖=1                 eq. (5) 

Where 𝑝𝑖  is the estimated values, 𝑚𝑖 is the measured values, and 𝑛 represents the number of 

compared values. 

• MAE (%): Mean Absolute Error (%): 
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The mean absolute percentage error (MAPE) is the mean or average of the absolute percentage 

errors of forecasts. Error is defined as actual or observed value minus the forecasted value. The 

mean absolute percentage error for the calculated GHI of our study area and its accompanying 

measured GHI from the same area was calculated using equation 6 below 

𝑀𝐴𝐸(%) = 100
𝑀𝐴𝐸

𝑚̅
               eq. (6) 

where 𝑚̅  is the mean of the measured values. 

• MBE: Mean Bias Error: 

MBE quantified the overall bias and detected if the Heliosat-2 model is producing 

overestimation (MBE>0) or underestimation (MBE<0). The mean bias error for the calculated 

GHI and the measured GHI was derived using equation 7 below: 

𝑀𝐵𝐸 =
1

𝑛
∑ (𝑝𝑖 −𝑚𝑖)
𝑛
𝑖=1 ⁡          eq. (7) 

Where 𝑝𝑖  is the estimated values, 𝑚𝑖 is the measured values, and 𝑛 represents the number of 

compared values. 

• MBE (%): Mean Bias Error (%): 

The mean bias error for this research measured the average of percentage biases between the 

calculated GHI from the Heliosat-2 using the equation 8 below 

𝑀𝐵𝐸(%) = 100
𝑀𝐵𝐸

𝑚̅
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡    eq. (8) 

where 𝑚̅  is the mean of the measured values. 

• RMSE: Root Mean Square Error: 

The RMSE is the square root of the average of the squared differences between forecast and 

observed values. The value of the RMSE can be interpreted as the average error one can expect. 

The RMSE calculated during this study was to measure the accuracy of the calculated GHI from 

the methodology. 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑝𝑖 −𝑚𝑖)2
𝑛
𝑖=1                    eq. (9) 

𝑝𝑖  is the estimated values, 𝑚𝑖 is the measured values, and 𝑛 represents the number of compared 

values. 

• RMSE (%): Root Mean Square Error (%): 

𝑅𝑀𝑆𝐸(%) = 100
𝑅𝑀𝑆𝐸

𝑚̅
                           eq. (10) 

3.5 Site Selection and Multi-Criteria Decision Analysis 

In identifying the sites in Metropolitan Atlanta that would be favorable to building solar 

farms, the multi-criteria decision analysis was adopted. The methodology consisted of 

identifying the physical suitability factors, developing a composite site suitability index and 

delineating a suitable site. 

3.5.1 Identifying Physical Suitability Criteria 

This step involved the identification of a list of criteria and the analysis of criteria primarily. 

The identified physical suitability criteria are listed below: 

• Global Horizontal Irradiance (Solar Radiation): The selected sites for solar farms should 

receive relatively high solar radiation. 

• Physical Suitability: The physical suitability factors refer to a list of conditions that affect 

the performance of solar power systems. These factors include climatic variables such as 

temperature, sunshine duration and topographic variables, particularly slope and aspect. 

• Land Availability: The selected site for the solar farm should be bare or empty spaces 

that are currently not being used for any activity. 

The listed criteria above were then put into two categories of Boolean and favorable factors.  

Land availability was categorized as Boolean and reclassified into the binary of 0 and 1. 0 
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represented areas that were classified as developed, forest, water bodies and essentially any 

space that was not barren. 1 was assigned to areas that had a land cover class of either bare or 

barren. The other physical factors such as GHI, sunshine hours, aspect and slope were put in the 

category of favorable. The table 2 below shows the list of identified criteria as either favorable or 

Boolean: 

Table 2 A table of the list of the identified physical suitability criteria/factors 

 

3.5.2 Developing a Composite Suitability Index 

Composite indices are usually used in supporting the decision-making process through 

summarizing multi-dimensional realities and reducing the visible size of a set of indicators 

without disregarding the underlying information base (OECD). For this study, a composite 

suitability index was created by factoring in all the indicators listed in Table 2. 

The indicators listed as favorable were normalized by one of the two listed formulae below: 

𝑁𝑥 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                      eq. (10) 

Criteria Type Indicator Unit Relationship 

Solar Irradiation Favorable GHI 𝑊/𝑚2 

 

Positive 

Physical 

Suitability 

Favorable Sunshine Hours Hour Positive 

  
 

Aspect ◦ Negative 

  
 

Slope ◦ Negative 

  
 

Temperature ◦C Negative 

Land Availability Boolean Bare/Barren   Logical 
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𝑁𝑥 = 1 − [
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
]            eq. (11) 

Where: 

𝑁𝑥= normalized pixel value 

𝑋= Pixel value 

𝑋𝑚𝑖𝑛= minimum pixel value in the raster surface 

𝑋𝑚𝑎𝑥= maximum pixel value in the raster surface 

The usage of the two formulae above ensured the range values for the normalized 

indicator/criteria fell within 0 to 1, with 0 representing the least suitability while 1 represented 

the highest suitability.  

All the indicators/criteria which had a positive relationship were deemed as increasing the 

efficiency of solar systems were normalized using equation 10. GHI and sunshine duration raster 

were normalized using equation 10, while the raster surfaces of temperature and slope were 

normalized using equation 11 because of their negative effects on the efficiency of a solar 

system.  

The normalization of the aspect raster surface was undertaken in two steps. Firstly, the 

aspect raster surface was reclassified into five classes according to the Likert scale (1– 9) shown 

in Table 3. The pixels with southward orientation were assigned a value of 9, and pixels with 

northward orientation were assigned a value of 1. Next, the generated binary raster surface was 

normalized according to equation 11. 

Weights to the individual factors influencing the siting of the solar system were assigned 

using the Analytical Hierarchy Process (AHP).  AHP allows for the designation of relative 

weights for different factors through applying pairwise comparisons (Whitaker, 2007). 
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According to pairwise comparisons (Hassan,2020), the relative importance of all 

considered indicators was compared and evaluated to each other according to an evaluation scale 

ranging from 1 to 9. Stemming from the pairwise comparison; a reciprocal matrix was produced, 

where each element in the matrix represents the dominance of a particular factor over the another 

in terms of their suitability for the siting of a solar farm. This was followed by dividing each 

element in the reciprocal matrix by the sum of its column. Finally, the weight of each factor was 

estimated by averaging across the rows (Khemiri et al., 2018; Uyan, 2013; Whitaker, 2007). 

Thereafter, the consistency of the estimated weights was assessed by calculating the Consistency 

Ratio (CR) (Khemiri et al., 2018) according to the following formula: 

𝐶. 𝑅 =
𝜆𝑚𝑎𝑥−𝑛

(𝑛−1)∗𝑅𝐼
                                        eq. (12) 

where:  

𝐶. 𝑅 = Consistency ratio  

𝜆𝑚𝑎𝑥 = Maximum eigenvalue of the reciprocal matrix  

 𝑛 = Number of indicators  

𝑅𝐼 = Random consistency value = 1.12 in case of 5 indicators 
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Table 3 A table of the Likert Scale 

 

3.5.3 Identifying Sites Suitable for Mounting Solar Panels 

Delineating the solar site involved calculating the composite suitability index by 

aggregating normalized raster surfaces of various favorable indicators based on their weights and 

multiplying the resulting aggregated raster surface by the binary land cover raster surface of the 

Boolean indicator according to the following equation 13: 

𝑆 = 𝑥 ∗ ∑ (𝑁𝑖 ∗ 𝑊𝑖)
𝑛
𝑖=1                 eq. (13) 

Where:  

𝑆 = Suitability index  

𝑥 = Pixel value of binary raster surface representing Boolean criteria  

𝑁𝑖 = Normalized pixel value of indicator I  

𝑊𝑖 = Weight of indicator 𝑁𝑖 
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4 RESULTS 

4.1 Calculated Monthly and Annual GHI Values 

The results of the monthly GHI (Figure 3) values indicated January and December as 

having the lowest values of SSI throughout the year. As the data from figure 3 indicate, GHI 

gradually increased in value from January, with peak values recorded during the summer months 

of May, June, and July when GHI values of 5405.04 𝑊/𝑚2, 5430.7 𝑊/𝑚2, and 5321 𝑊/𝑚2 

were observed, respectively.  

The annual GHI values (Figure 3) show the values of solar insolation impinging on 

Metropolitan Atlanta ranging from 3690 𝑊/𝑚2 to 4249 𝑊/𝑚2. Figure 4 shows portions of 

Metropolitan Atlanta that recorded the highest value of incident GHI. 

 

Figure 3 A graph showing the monthly GHI values for Metropolitan Atlanta. Atlanta 

received its highest solar radiation values during the months of May, June, and July 
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Figure 4 Annual GHI values for Metropolitan Atlanta. The values ranged between 3690 

watts per meter squared to 4249 watts per meter squared 

4.2 Validation of The Heliosat-2 Methodology 

The statistical parameters used to validate the calculated Heliosat-2 GHI values revealed 

that the calculated GHI has a mean bias error of -684.1 𝑊/𝑚2, the mean absolute error of 684.1 

𝑊/𝑚2And a root mean square error of 686.6345 𝑊/𝑚2. 

The resulting values of MAE, RMSE, and MBE indicate an error of magnitude 

684.1𝑊/𝑚2 exists between the estimated value and the ground measured value. Overall, the 

Heliosat-2 method underestimates the recorded GHI value by 14%. The accuracy statistics of the 

calculated values have been summarized in Table 4 and visualized in figure 5. 

. 
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Table 4 Results statistical parameters used for the comparison of the Heliosat-2 values 

and ground-based station values 

 

 

COUNTY Calculated 

GHI 

Observed 

GHI 

MAE MAE(%) MBE MBE(%) RMSE RMSE(%) 

Fayette 3943.44678 4666.59 723.14322 14.78577 -

723.143 

-14.7858 522936.1 14.84027 

Rockdale 4009.19189 4697.25 688.05811 
 

-

688.058 

 
473424 

 

Cobb 3911.13916 4550.02 638.88084 
 

-

638.881 

 
408168.7 

 

Clayton 3939.55615 4612.64 673.08385 
 

-

673.084 

 
453041.9 

 

Henry 3921.65625 4691.67 770.01375 
 

-

770.014 

 
592921.2 

 

Gwinnet 3950.73364 4601.88 651.14636 
 

-

651.146 

 
423991.6 

 

Fulton 3970.72266 4610.09 639.36734 
 

-

639.367 

 
408790.6 

 

Douglas 3902.95093 4565.82 662.86907 
 

-

662.869 

 
439395.4 

 

DeKalb 3885.51294 4681.77 796.25706 
 

-

796.257 

 
634025.3 

 

Cherokee 3992.28027 4590.59 598.30973 
 

-598.31 
 

357974.5 
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Figure 5 Results of the statistical parameters of MBE and RMSE used in the validation of      

calculated GHI compared against ground station measured value from the NREL network 

4.3 Resulting Comparison Matrix and Weights of Physical Factors 

Table 4 shows the resulting comparison matrix and the accompanying weights derived 

from the qualitative comparison of the identified physical factors that affect the siting of solar 

panels. The results revealed the factors of sunshine duration and GHI as the two factors that 

significantly influence the siting of panels. Both factors are of equal importance and had a weight 

of 38.6 % each. Aspect and slope, like the two factors mentioned earlier, were equally weighted 

at a value of 9.3%. Lastly, the temperature had a negligible weight value of 4.2%. 

          The consistency ratio gauges the measure of the resultant weights assigned to the factors. 

If the consistency ratio (CR) value is smaller or equal to 10%, the inconsistency is acceptable. If 

the consistency ratio is greater than 10 %, then the subjective judgment needs to be revised. The 

consistency ratio of the implemented Analytical Hierarchy Process (AHP) yielded a value of 

3.29 %. The CR value is far below 10 %; hence, this affirms the accuracy of the subjective 

evaluation of weights that were assigned to the factors. 
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Table 5 Weights of various favorable criteria indicators. 

 

4.4 Resulting Normalized Raster Surfaces 

The normalized raster surfaces of the physical suitability factor revealed that different parts 

of Metropolitan Atlanta have differing levels of suitability for siting solar farms. Figures 6, 7, 8, 

9, and 10 show such areas for each of the physical factors that influence the siting of solar PV 

systems. The normalized raster had pixel values between 0 and 1.  

Areas with pixel values of 0.75 and up indicates favorable sites, and those with normalized 

values below 0.5 represent the least favorable sites. The normalized values for aspect (Figure 4) 

and slope (Figure 4) indicates much of the study area satisfies the threshold needed to mount 

solar panels.  
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Figure 6 Normalized aspect raster data indicating areas favorable for solar siting based 

on only the aspect criterion 
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Figure 7 A normalized slope map of Metropolitan Atlanta showing suitable areas for 

mounting solar panels based on the slope criterion alone 
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Figure 8 The map displays the normalized values of the annual GHI values of Atlanta. 

Blue indicates areas least favorable per the GHI criterion, while the red color shows the most 

area 
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Figure 9 Normalized temperature values for Metropolitan. Areas with values of 0.75 and 

above are not susceptible to decreased efficiency because of temperature 
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Figure 10 Normalized Map of Land Cover of Metropolitan Atlanta showing areas of bare 

ground designation. Developed areas unsuitable for solar siting are shown in the black 

coloration, while suitable areas are shown via the white coloration 

4.5 Solar Composite Index 

Most suitable sites with suitability index values greater than 0.7 were selected, and 

therefore areas suitable for siting solar PV systems in Metropolitan Atlanta were delineated (Fig. 

10). More suitable sites for siting solar PV systems were in western and middle southern parts of 

Metropolitan Atlanta, covering a total area of 234.96 sq km, representing about 3% of the 

Metropolitan Atlanta territory. Also, the major proportion of the most suitable areas (80.2%) is in 

Dekalb, Rockdale, and Henry County, while the remaining locations were found in Fulton and 

Douglas County, respectively. 
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Figure 11 A map showing the solar composite suitability index for Metropolitan Atlanta. 

 

 

 

 

 

 

 

 

 



34 

5 DISCUSSION 

The findings from this study based on Heliosat-2 calculation for Metropolitan Atlanta, 

located in the northern hemisphere, show the months of May, June, and July to have the highest 

GHI values (Figure 3), which affirms the pattern identified in past studies (e.g., Pagola et al., 

2014; Vignola et al., 2007).  Both Pagola et al. (2014) and Vignola et al. (2007) not only showed 

the summer to have the highest GHI, but they also revealed that the months of maximum GHI 

vary depending on geographic location and the hemisphere of the area under observation. Fillol 

et al.'s (2017) study in Guiana determined the months of December, January, and February as 

having the maximum recorded GHI values.  Findings from this study somewhat deviate from 

previous studies in the northern hemisphere, which have shown the months of June, July, and 

August as the period of maximum GHI.  

However, the months of maximum GHI values derived from the methodology deviate 

slightly from those based on ground data and research studies in similar geographic locations. 

Typically, ground stations observe maximum GHI values beginning the month of June through 

July to the end of August. Peak GHI values are reached in August, after which GHI values start 

to decrease. In our study, high GHI values started in May rather than June. This deviation from 

the established pattern could be due to the large value of the clearness index recorded for May 

(0.60) when compared to June (0.57), July (0.57), and August (0.56). Our findings show that 

May had the highest clearness index for Metropolitan Atlanta in 2019. Although maximum GHI 

values are typically associated with summer months (June, July, and August), in Metropolitan 

Atlanta, the intensity of summer GHI values is directly correlated to the atmosphere's 

transmissivity values (i.e., clearness index).    
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The Heliosat-2 methodology used for the study underestimated GHI values by 14% (Table 3 

and Figure 5) points compared to the ground measured solar radiation. This finding corroborates 

the established conclusions of past comparisons of Heliosat-2 derived values to that of ground 

stations. On average, satellite-based algorithms underestimate GHI compared to observed 

ground-measured solar values. The range of underestimation by satellite-based algorithms falls 

between the 7% to 22% range observed by Marchand (2018). The RMSE of 14.84 % for the 

methodology adopted for the study thus falls within the acceptable range of established error. 

The AHP (Table 4) found the two variables of GHI and sunshine duration as the two most 

consequential physical variables out of the five identified. Both had an individual weight 

assignation of 0.386 and cumulatively had an impact of 77.2%. This observation proves to be 

accurate as solar farms cannot be built without GHI, and sunshine duration is inherently coupled 

to GHI(Figure 12).  Suehrcke, 2013 and Mujabar, 2021 studies (Figure 12) found a positive 

correlation between sunshine duration and GHI. A decrease in sunshine duration yields low GHI 

values. Thus, the output of solar power plants decreases precipitously during the season of 

winter. Daylight hours are shorter than 12 hours during winter, and the opposite is true during 

summer. 

AHP also found the physical factors of slope and aspect to be a limiting factor (Yousef et al., 

2018). Hence, both were assigned a weight of 0.093 each. Temperature negatively affected the 

efficacy of photovoltaic cells and was awarded the least weight of 0.042 out of the five physical 

suitability factors that were considered. 

A minimum threshold of 3.5 Kw/h (Gasparovic, 2019) has been shown as the least amount 

of annual impinging GHI values required to establish a commercial solar farm. From figure 4, 

the annual average GHI values indicate Metropolitan Atlanta can support solar farms as the least 
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GHI value estimated was 3.7 Kw/h. The most optimal sites based on the normalized GHI (Figure 

9) revealed the northern and middle portions of Metropolitan Atlanta to be the most conducive 

places to harness an intense amount of solar energy as the incident GHI is intense.  A deviation 

was the pixel with the lowest GHI value and the pixel with the highest GHI value adjacent to 

each other. This phenomenon can be attributed to either the clearness index value or the Linke 

turbidity value. Both pixels had a clearness index of 0.57 but a differing value of Linke turbidity 

of 2.8 and 4.6, respectively. Since the clearness values are the same, the variation in GHI is not 

due to the clearness index/cloud coverage but rather due to the Linke Turbidity. However, no 

anthropogenic activity was found within the geographic span of the pixels to account for such 

vast variation in the Linke Turbidity. Hence, the conclusion is an error in the Linke turbidity data 

set values for the two pixels. 

The characteristics of the aspect and the slope of the area under consideration significantly 

impact the intensity of solar radiation impinging on the area. Slope and aspect are considered 

limiting factors (Yousef et al., 2018). Suh,2016 demonstrated the constraining designation of the 

slope when his study determined alternating the slope threshold between the percentages of 5 to 

10 while other physical variable was held constant greatly diminished the size of suitable areas 

for solar farms. For a 5% threshold, only 5.1 % of the study area could support a solar, while the 

area of suitability increased to 9% when the threshold was pegged at 10%.  Observed patterns 

based on past studies (Fillol et al. 2017; Gasparovic, 2019; Yousef et al., 2018) show areas of 

southern orientation coupled with a slope percentage below 10% received more solar radiation 

than locations oriented north with a slope percentage above 10%. The findings from this study 

found the vast majority of Metropolitan Atlanta satisfies the aspect and slope criteria. 52% of 

Metropolitan Atlanta (Figure 6) is south facing, while 85% (Figure 7) has a sloping incline below 
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10%. On the criteria of slope and aspect alone, the majority of Metropolitan Atlanta satisfies the 

requirement needed to host solar farms. 

Hofierka J, Suri M (2002)’s study found a proportionate increase in incident GHI with 

increasing air temperature (Figure 13). Similarly, in Mujabar (2021)’s study of the relationship 

between temperature and GHI in Saudi Arabia, he concluded a positive correlation exists 

between GHI and temperature, thus concluding areas of high temperature will have GHI values 

as well.  However, (Dubey 2013) study found warmer temperatures reduce photovoltaics’ cells 

energy production. For every degree above 77 F, the solar panel experiences a drop in efficiency 

by 5% (Dubey,2013). The results of the normalized temperature profile for Metropolitan Atlanta 

show sites in the southern part of Metropolitan Atlanta (Figure 10) to be the most susceptible to 

decreased panel efficiency as they experience annual average temperatures above 77 F.  65% of 

the Metropolitan Atlanta experiences annual temperature values above the threshold of 77 F; 

thus, a sited solar farm is likely to experience a decrease in efficiency. Hence, the most favorable 

location for siting a solar farm, based on temperature, is the northern part of Metropolitan 

Atlanta. 

Despite the influences of the physical variables considered and discussed above, the location 

of the delineated optimal solar sites in this study is heavily influenced by the geographic location 

of the bare grounds (Figure 11) identified from the land cover dataset. Ultimately, the most 

relevant variable that influences the optimal site selection is the availability of barren lands to 

accommodate the solar plant. Metropolitan Atlanta’s total area of bare ground based on the 

landcover dataset was 234.96 sq km (Figure 10).  Similarly, the size of the area identified to be 

optimal solar farms was equal to 234.96 sq km (Figure 11). 

 



38 

6 CONCLUSION 

The goal of this research was in two-folds. The first goal was the assessment of the accuracy 

of solar data for Metropolitan Atlanta derived from Heliosat-2. Heliosat-2 methodology was used 

to calculate GHI values for Atlanta. The ground measured solar radiation data for stations within 

the NREL network of Atlanta was downloaded. The calculated GHI values were compared to 

ground measured radiation values using the statistical parameters MBE and RMSE. GHI values 

derived from the Heliosat-2 methodology had an MBE of 684.113 W/m^2 and an RMSE of 

14.84027 %. GHI values from the Heliosat-2 method underestimated ground measured values by 

14.84 %. 

The second goal of this research was to delineate the suitable areas in Metropolitan Atlanta 

that could host solar power systems using physical suitability factors and the Analytical 

Hierarchy Process. GHI and other important physical parameters, including slope, aspect, 

temperature, land cover classes and sunshine duration hours, were applied in this research study. 

AHP defined the weights for each criterion or physical parameter. GHI and sunshine duration 

had the largest impact on solar siting, followed by slope and aspect, with temperature having the 

least effect on the weight obtained via AHP.  Metropolitan Atlanta had a total area of 234.96 sq 

km viable for the installation of solar power systems. 
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7 RECOMMENDATION AND FUTURE WORK 

For future works, the following factors need to be considered in selecting suitable sites for 

solar panels: 

• Rooftops of buildings within Metropolitan Atlanta needs to be factored into the 

available space under consideration for mounting solar panels as the results of this 

study has a relatively small area for building solar farms. 

• Information regarding the zoning designation of identified bare areas should be 

included in deciding which areas are suitable to exclude private lands. 

• Cost criteria such as proximity to transmission lines and highways should be included 

in the future analysis of optimal site delineation. 

  



40 

REFERENCES 

A.J. Jarvis, D.T. Leedal, C.N. Hewitt. Climate-society feedbacks and the avoidance of 

dangerous climate change. Nat Clim Change, 2 (2012), pp. 668-671 

Adeh, E.H., Good, S.P., Calaf, M. et al. Solar PV Power Potential is Greatest Over 

Croplands. Sci Rep 9, 11442 (2019). https://doi.org/10.1038/s41598-019-47803-3 

Atsumu Ohmura et al. (1998). Baseline Surface Radiation Network (BSRN/WCRP): New 

Precision Radiometry for Climate Research. Bulletin of the American Meteorological Society, 

79(10). 

Atlanta, C. o. (n.d.). Atlanta Department of City Planning GIS. Retrieved 06 06, 2020, 

from Atlanta Department of City Planning GIS: https://gis.atlantaga.gov/ 

Beyer, H. G. (1996). Modifications of the Heliosat procedure for irradiance estimates 

from satellite data. Solar Energy, 56, 121– 207. doi:10.1016/0038-092X(95)00092-6 

Bhartia, P.K., McPeters, R.D., Mateer, C.L., Flynn, L.E., Wellemeyer, C. (1996). 

Algorithm for the estimation of vertical ozone profiles from the backscattered ultraviolet 

technique. Journal of Geophysical Research Atmospheres, 101(13), 18793-18806. 

C. Rigollier, M. L. (2004). The method Heliosat-2 for deriving shortwave solar radiation 

from satellite images. Solar Energy, 77, 159-169. doi:hal-00361364  

Chaoshun Liu, Y. L. (2011). Retrieval of columnar water vapor using multispectral 

radiometer measurements over northern China. Journal of Applied Remote Sensing, 5(1), 3558. 

doi:10.1117/1.3647483 

Christelle Rigollier, M. L. (2004). The Method Heliosat-2 For Deriving Shortwave Solar. 

Solar Energy, 2, 159-169. doi: hal-00361364  

https://gis.atlantaga.gov/


41 

Christian A. Gueymard, D. R. (2009). Evaluation of conventional and high-performance 

routinesolar radiation measurements for improved solarresource, climatological trends, and 

radiative modeling. Solar Energy, 83, 171–185. doi:10.1016/j.solener.2008.07.015 

Chuck Long, J. M.-L. (2014). The Baseline Surface Radiation Network: Surface 

Radiation Observations for Climate Research. Global Monitoring Annual Conference (p. 20). 

Bologna: World Climate Research Programme. 

Claudia Emde, R. B.-S. (2016). The libRadtran software package for radiative transfer 

calculations. Geoscientific Model Development, 9, 1647–1672. doi:10.5194/gmd-9-1647-2016, 

2016 

D.Cano, J. M. (1986). A method for the determination of the global solar radiation from 

meteorological satellite data. Solar Energy, 37(1), 31-39. doi:10.1016/0038-092X(86)90104-0 

Dumortier, D. (1995). Modelling global and diffuse horizontal irradiances under 

cloudless skies with different. Daylight II, final report vol. 2. Tech. rep, jou2-ct92-0144. 

Erwann Fillol, Tommy Albarelo, Antoine Primerose, Lucien Wald, Laurent Linguet. 

Spatiotemporal indicators of solar energy potential in the Guiana Shield using GOES images. 

Renewable Energy,Elsevier, 2017, 111, pp.11-25. 10.1016/j.renene.2017.03.081. hal-01512562 

Atsumu Ohmura et al. (1998). Baseline Surface Radiation Network (BSRN/WCRP): New 

Precision Radiometry for Climate Research. Bulletin of the American Meteorological Society, 

79(10). 

Atlanta, C. o. (n.d.). Atlanta Department of City Planning GIS. Retrieved 06 06, 2020, 

from Atlanta Department of City Planning GIS: https://gis.atlantaga.gov/ 

Badescu, V.; Gueymard, C.A.; Cheval, S.; Oprea, C.; Baciu, M.; Dumitrescu, A.; 

Iacobescu, F.; Milos, I.; Rada, C. Accuracy analysis for fifty-four clear-sky solar radiation 



42 

models using routine hourly global irradiance measurements in Romania. Renew. Energy 2013, 

55, 85–103 

Beyer, H. G. (1996). Modifications of the Heliosat procedure for irradiance estimates 

from satellite data. Solar Energy, 56, 121– 207. doi:10.1016/0038-092X(95)00092-6 

Bhartia, P.K., McPeters, R.D., Mateer, C.L., Flynn, L.E., Wellemeyer, C. (1996). 

Algorithm for the estimation of vertical ozone profiles from the backscattered ultraviolet 

technique. Journal of Geophysical Research Atmospheres, 101(13), 18793-18806. 

C. Rigollier, M. L. (2004). The method Heliosat-2 for deriving shortwave solar radiation 

from satellite images. Solar Energy, 77, 159-169. doi:hal-00361364  

Chaoshun Liu, Y. L. (2011). Retrieval of columnar water vapor using multispectral 

radiometer measurements over northern China. Journal of Applied Remote Sensing, 5(1), 3558. 

doi:10.1117/1.3647483 

Christelle Rigollier, M. L. (2004). The Method Heliosat-2 For Deriving Shortwave Solar. 

Solar Energy, 2, 159-169. doi: hal-00361364  

Christian A. Gueymard, D. R. (2009). Evaluation of conventional and high-performance 

routinesolar radiation measurements for improved solarresource, climatological trends, and 

radiative modeling. Solar Energy, 83, 171–185. doi:10.1016/j.solener.2008.07.015 

Chuck Long, J. M.-L. (2014). The Baseline Surface Radiation Network: Surface 

Radiation Observations for Climate Research. Global Monitoring Annual Conference (p. 20). 

Bologna: World Climate Research Programme. 

Claudia Emde, R. B.-S. (2016). The libRadtran software package for radiative transfer 

calculations. Geoscientific Model Development, 9, 1647–1672. doi:10.5194/gmd-9-1647-2016, 

2016 



43 

D.Cano, J. M. (1986). A method for the determination of the global solar radiation from 

meteorological satellite data. Solar Energy, 37(1), 31-39. doi:10.1016/0038-092X(86)90104-0 

Dumortier, D. (1995). Modelling global and diffuse horizontal irradiances under 

cloudless skies with different. Daylight II, final report vol. 2. Tech. rep, jou2-ct92-0144. 

Engerer, N.A.; Mills, F.P. Validating nine clear sky radiation models in Australia. Sol. 

Energy 2015, 120, 9–24 

Erwann Fillol, Tommy Albarelo, Antoine Primerose, Lucien Wald, Laurent Linguet. 

Spatiotemporal indicators of solar energy potential in the Guiana Shield using GOES images. 

Renewable Energy, Elsevier, 2017, 111, pp.11-25. 10.1016/j.renene.2017.03.081. hal-01512562 

Gasparovic, I. G. (2019). Determining Optimal Solar Power Plant Locations Based on 

Remote Sensing and GIS Methods: A Case Study from Croatia. Remote Sensing, 11, 1481. 

doi:10.3390/rs11121481 

Gašparovic, I. G. (2019). Determining Optimal Solar Power Plant Locations Based on 

Remote Sensing and GIS Methods: A Case Study from Croatia. Remote Sensing(11), 1481. 

doi:10.3390/rs11121481 

Geuder, N. et al., 2006. (2006). Examination of different irradiation sensors: operation 

experiences and comparative study. 4th InternationalConference on Experiences with Automatic 

Weather Stations, (p. Solar Energy). Lisbon, Portugal. 

Guanghui Huang, Z. L. (2020). Estimating surface solar irradiance from satellites: Past, 

present, and future perspectives. Remote Sensing of the Environment, 233, 111371. 

doi:10.1016/j.rse.2019.111371 



44 

Guanghui Huang, Z. L. (2020). Estimating surface solar irradiance from satellites: Past, 

present, and future perspectives. Remote Sensing of the Environment, 233, 111371. 

doi:doi:10.1016/j.rse.2019.111371 

H.Piazena. (1996). The Effect of Altitude Upon The Solar UV-B and UV-A Irradiance In 

The Tropical Chilean Andes. Solar Energy, 57(2), 133-140. doi:10.1016/S0038-092X(96)00049-

7 

Hailei Liu, S. T. (2017). An improved physical split-window algorithm for precipitable 

water vapor retrieval exploiting the water vapor channel observations. Remote Sensing of the 

Environment, 174, Pages 366-378. doi:10.1016/j.rse.2017.03.031 

Hamed Hafeznia, Hossein Yousefi, Fatemeh Razi Astaraei, A novel framework for the 

potential assessment of utility-scale photovoltaic solar energy, application to eastern Iran, 

Energy Conversion and Management, 151, Pages 240-258, 

doi.org/10.1016/j.enconman.2017.08.076. 

Hofierka J, Suri M (2002) The solar radiation model for Open source GIS: 

implementation and applications. In: International GRASS users conference in Trento, Italy, 

September 2002, pp 11–13 

Hossein Yousefi , Hamed Hafeznia  and Amin Yousefi-Sahzabi (2018). Spatial Site 

Selection for Solar Power Plants Using a GIS-Based Boolean-Fuzzy Logic Model: A Case Study 

of Markazi Province, Iran. Energies 2018, 11, 1648; doi:10.3390/en11071648 

 

I. M. Peters, S. K. (n.d.). Urban Haze and Photovoltaics.  



45 

Ibrahim Reda,Tom Stoffel,Daryl Myers. (2003). A method to calibrate a solar 

pyranometer for measuring reference diffuse irradiance. Solar Energy, 74(2), 103-112. 

doi:10.1016/S0038-092X(03)00124-5 

J. Alonso-Montesinos, F.J. Batlles, J.L. Bosch, J. Alonso-Montesinos, F.J. Batlles, J.L. 

Bosch(2015).Beam, diffuse and global solar irradiance estimation with satellite imagery,Energy 

Conversion and Management,105,Pages 1205-1212, doi.org/10.1016/j.enconman.2015.08.037. 

J.Poloa, F.Antonanzas-Torres, J.M.Vindela, L.Ramireza. (2014). Sensitivity of satellite-

based methods for deriving solar radiation to different choice of aerosol input and models. 

Renewable Energy, 68, 785-792. doi:10.1016/j.renene.2014.03.022 

Jay R.S.Doorgaa, S. D. (2019). Multi-criteria GIS-based modelling technique for 

identifying potential solar farm sites: A case study in Mauritius. Renewable Energy, 133, 1201-

1219. doi:10.1016/j.renene.2018.08.105 

Kasten, F. (1996). THE Linke Turbidity Factor Based on Improved Values of the Integral 

Rayleigh Optical Thickness. Solar Energy, 56(3), 239-244. doi:0038-092X(95)00114-X 

Khemiri, W., Yaagoubi, R., Miky, Y., 2018. Optimal Placement of Solar Photovoltaic 

Farms Using Analytical Hierarchical Process and Geographic Information System in Mekkah, 

Saudi Arabia. in: 1st International Congress on Solar Energy Research, Technology and 

Applications (ICSERTA 2018), May 8-10 2018 Ouarzazate, Morocco AIP, 020025-1–020025-10 

10.1063/1.5084998 

Laszlo, P. a. (1992). Modeling surface solar irradiance for satellite applications on a 

global scale. Journal of Applied Meteorology, 31, 194-211. 



46 

M. Hess, P. K. (1998). Optical properties of aerosol and clouds: the software package 

OPAC. Bulletin of the American Meteorological Society, 79, 831-844. doi:10.1175/1520-

0477(1998)079<0831:OPOAAC>2.0.CO;2 

M.A. Hassaan, A. Hassan and H. Al-Dashti, GIS-based suitability analysis for siting solar 

power plants in Kuwait, The Egyptian Journal of Remote Sensing and Space Sciences, 

https://doi.org/10.1016/j.ejrs.2020.11.004 

Mujabar, S., Chintaginjala Venkateswara, R. Empirical models for estimating the global 

solar radiation of Jubail Industrial City, the Kingdom of Saudi Arabia. SN Appl. Sci. 3, 95 

(2021). https://doi.org/10.1007/s42452-020-04043-9 

Mayer, B. a. (2020). The libRadtran software package for radiative transfer calculations - 

description and examples of use. Atmospheric Chemistry and Physics, 20, 3317–3332. 

doi:10.5194/acp-20-3317-2020, 2020 

Michel Journée, C. (2010). Improving the spatio-temporal distribution of surface solar 

radiation data by merging ground and satellite measurements. Remote Sensing of Environment, 

114(11), 2692-2704. doi:10.1016/j.rse.2010.06.010 

Myers, D.R. et al. (2002). Recent progress in reducing the uncertainty inand improving 

pyranometer calibration. Solar Energy Engineering, Transactions of the ASME, 124, 44–50. 

doi:10.1115/1.1434262 

NREL. (2021, November 10). NREL Research. Retrieved from NREL: www.nrel.gov 

 

 

Page, J. (1996). Algorithms for the Satellight programme. Projektinterner Berich Tech 

rep. 



47 

Rasool, S. (1964). Global distribution of net energy balance of atmosphere from Tiros 

radiation data. Science, 143, 567. 

Resilience, C. o. (2017, May 15). Clean Energy Atlanta. Retrieved April 29, 2020, from 

100atl: www.100atl.com 

Richard Perez, R. A. (1997). Comparing satellite remote sensing and ground network 

measurements for the production of site/time specific irradiance data. Solar Energy, 60(2), 89-

96. doi:10.1016/S0038-092X(96)00162-4 

Robert E. Holz, S. P. (2016). Resolving ice cloud optical thickness biases between 

CALIOP and MODIS using infrared retrievals. Atmospheric Physics and Chemistry, 16, 5075–

5090. doi:10.5194/acp-16-5075-2016, 2016 

Schmetz, J. P. (2002). An introduction to Meteosat Second Generation (MSG). Bulletin 

of the American Meteorological Society, 83, 977-992. 

Schneider SH Easterling WE Mearms LO. 2000.  Adaptation: Sensitivity to natural 

variability, agent assumptions, and dynamic climatic changes. Climatic Change. 45: 203-221 

Swapnil Dubey, Jatin Narotam Sarvaiya, Bharath Seshadri(2013).Temperature 

Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A 

Review,Energy Procedia, 33, Pages 311-321, https://doi.org/10.1016/j.egypro.2013.05.072. 

 

Uyan, Mevlut, 2013. GIS-based solar farms site selection using analytic hierarchy 

process (AHP) in Karapinar region, Konya/Turkey. Renew. Sustain. Energy Rev. 28, 11–17. 

https://doi.org/10.1016/j.rser.2013.07.042. 



48 

Vignola F., Harlan P., Perez R., Kmiecik M. Analysis of satellite derived beam and 

global solar radiation data, Solar Energy, Volume 81, Issue 6, June 2007, Pages 768-772, ISSN 

0038-092X, 10.1016/j.solener.2006.10.003 

Whitaker, Rozann, 2007. Validation examples of the analytic hierarchy process and 

analytic network process. Math. Comput. Modell. 46, 840–859. https://doi.org/ 

10.1016/j.mcm.2007.03.018. 

Whitlock, C. H. (1995). First global WCRP shortwave surface radiation budget dataset. 

Bulletin of American Society of Meteorology, 76, 905-922. 

Y.C. Zhang, W. R. (2004). Calculation of radiative fluxes from the surface to top of 

atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer 

model and the input data. Journal of Geophysical Research, 109. doi:10.1029/2003JD004457 

 

 

 

 

 

 

 

 

 

 

 


	Delineating Optimal Solar Sites in Atlanta Using GIS and Remote Sensing
	Recommended Citation

	MANUSCRIPT TITLE

