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IYANUOLUWA AYODELE

Under the Direction of Yichuan Zhao, PhD

ABSTRACT

In diagnostic medicine, it is important to be able to accurately distinguish between a

diseased and non-diseased population. The area under the curve (AUC) is a commonly used

measure index to evaluate the accuracy of the diagnostic test. Sometimes in research, it is

costly and time consuming to sample the variables of interest, ranked set samples (RSS) is

a more effective sampling method than the simple random sampling which can be obtained

by ranking, thereby providing samples which are representative of the population of interest,

in balanced ranked set samples (BRSS), there is an equal number of cycles for each set. In

this thesis, we propose the empirical likelihood and jackknife empirical likelihood methods

using BRSS and multistage RSS for the AUC. The simulation results show that our proposed

method improves on the estimation of AUC. We performed two real data analysis to illustrate

the proposed methods.

INDEX WORDS: Area under the ROC curve, empirical likelihood, jackknife empirical
likelihood, adjusted jackknife empirical likelihood
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In diagnostic medicine, it is important to be able to accurately distinguish a population

as being diseased or non-diseased, which can be measured by the specificity and sensitiv-

ity. Let X and Y be continuous random variables denoting the non-diseased and diseased

individuals respectively, and F and G be their corresponding distribution functions. The

receiver operating characteristic (ROC) curve is a plot of the true positive rate (sensitivity),

p = P (Y ≥ c) = 1−G(c) against the false negative rate (1 - specificity), q = 1− P (X ≤ c),

allowing the diagnostic test to classify an individual as diseased if the measurement is greater

than a predetermined threshold, denoted by c. The ROC curve is then given as

R(p) = 1−G(F−1(p)), 0 ≤ p ≤ 1.

The area under ROC curve (AUC) denoted as δ is a summary index of the ROC curve

commonly used to evaluate the ability of a diagnostic test to distinguish a diseased one from

a non-diseased one. Bamber (1975) established that the AUC is given as

δ = P (Y ≥ X) =

∫ 1

0

R(p)dp,

which is interpreted as the probability that the measurement of a randomly selected diseased

one would be greater than or equal to that of the non-diseased one.

In the past, several studies have been conducted on the estimation of AUC using non-

parametric approaches. An unbiased estimator of the AUC is the Mann-Whitney (MW) U

statistic which can be used to construct the confidence interval for AUC using asymptotic

normality (Bamber, 1975; Hanley and McNeil, 1982). Although the MW is asymptotically
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correct, the MW intervals result in a low coverage accuracy when the AUC is high (Qin and

Zhou, 2006). The MW statistics is given as:

δ̂ =
1

nx

1

ny

nx∑
i=1

ny∑
j=1

I(Yj ≥ Xi).

Zou et al. (1997) and Lloyd (1998) proposed a kernel method which uses smoothed

estimators rather than the empirical ones. Yin et al. (2016) evaluated the efficiency of the

kernel estimator of AUC using ranked based sampling (RSS) instead of the simple random

sample, however, the kernel estimates results in an under-estimation of the AUC, which

usually does not include the true AUC value (Moon et al., 2020).

Qin and Zhou (2006) proposed an empirical likelihood (EL) approach for the inference

of the AUC based on the MW estimator using simple random samples (SRS) and they

determined that this approach is better than the previous methods. Recently, Moon et al.

(2020) proposed an EL based approach to estimate the AUC using balanced and unbalanced

ranked set samples and it was shown that the approach performs better than the SRS-EL

even when the concomitant variable used for judgment ranking is poor.

Liu et al. (2009) proposed an EL approach for hypothesis testing and confidence interval

estimation with balanced RSS and the results show that RSS is a more efficient sampling

technique than the SRS. Also, Zhang et al. (2016) proposed a jackknife empirical likelihood

approach to make inference for the population mean and the difference between two popu-

lation mean using RSS, and the efficiency of JEL approach using RSS was determined over

the EL approach using SRS.

The empirical likelihood is a nonparametric approach used to make inferences about

the confidence region and was first introduced by Owen (1988,1990). The EL method is

advantageous because it does not make assumptions about the distribution yet retains the

asymptotic properties of the conventional likelihood method such as Wilk’s theorem (Owen,

1990) and Bartlett correction (DiCiccio et al.,1991). The EL combines the effectiveness of

the likelihood method with the reliability of the nonparametric method which makes it a
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powerful method. The coverage probabilities of the EL are frequently lower than the nominal

level when the sample size is small (Owen (2001)). The EL method becomes increasingly

difficult to compute as the sample size increases and this is why the jackknife empirical

likelihood (JEL) was proposed.

The jackknife empirical likelihood (JEL) method was proposed by Jing et al. (2009), by

employing a combination of the EL and jackknife approaches. Few of the advantages of the

JEL method are the simplicity and the effectiveness when dealing with U -statistics (Jing et

al. (2009)). In this thesis, we review BRSS-EL, then we propose BRSS-JEL, kernel-based

empirical likelihood BRSS (KERNEL-EL), kernel-based jackknife empirical likelihood BRSS,

(KERNEL-JEL), and kernel-based adjusted jackknife empirical likelihood BRSS (KERNEL-

AJEL) based approaches to make inference on the AUC using BRSS approach. In addition,

we propose kernel-based empirical likelihood MSRSS (KERNEL-MSRSS-EL), kernel-based

jackknife empirical likelihood MSRSS (KERNEL-MRSS-JEL), empirical likelihood MSRSS

(MSRSS-EL), and jackknife empirical likelihood MSRSS (MRSS-JEL) based approaches to

make inference on the AUC using MSRSS approach.

The adjusted jackknife empirical likelihood (AJEL) method combines the advantages

of the adjusted empirical likelihood (AEL) and EL and was proposed by Chen et al. (2008).

AJEL improves on the JEL method especially when the sample size is small.

This thesis is organized as follows. In Chapter 2, we review the EL-BRSS and then

we will propose the BRSS-JEL, KERNEL-EL, KERNEL-JEL, KERNEL-AJEL, KERNEL-

MSRSS-EL, and KERNEL-MSRSS-JEL approaches to construct confidence intervals for δ.

In Chapter 3, we conduct an extensive simulation study in terms of coverage probablity and

average length of the confidence interval. In Chapter 4, we illustrate the proposed methods

using two real data sets. Finally, in Chapter 5, we make a conclusion for the proposed

methodology.
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CHAPTER 2

METHODOLOGY

2.1 Ranked set sampling

Ranked set sampling (RSS) is a more effective sampling method that reduces cost when

compared with SRS. RSS is useful when it is costly or time consuming to sample the variables

of interest but observations can be easily obtained by ranking which in-turn provides a sample

that is more representative of the population. Let X and Y be non-diseased and diseased

variables generated by RSS respectively.

The RSS procedure is described as follows, a set size, say m is randomly generated

and ranked using a concomitant variable used for judgement. The smallest of the sample is

measured and the remaining m−1 samples are discarded, another SRS of size m is generated,

ranked, and the second smallest is taken note of. This process is repeated m times while

taking note of the i-th smallest sample where i = 1, ...,m. This entire process is known as a

cycle. The cycle is repeated k times, j = 1, ..., k which generates an RSS of size nx = mk and

the corresponding sample is given as X[i]j which is the i-th non-diseased observation in the

j-th cycle judged to be the the i-th smallest. The same procedure is applied to the diseased

observations with set size n, r = 1, ..., n, repeated l times, s = 1, ..., l with total RSS size of

ny = nl and corresponding sample is given as Y[r]s which is the r-th diseased observation in

the s-th cycle judged to be the the r-th smallest. Furthermore, this type of RSS is referred

to a balanced ranked set sample because in each ranked statistics,there is an equal number

of measurements.

2.2 Multiple stage ranked set sampling

Multistage ranked set sampling (MSRSS) was proposed by Al-Saleh and Al-omari (2002)

and is an extension of the RSS sampling technique. MSRSS improves the efficiency of the
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mean estimator of the variable of interest with respect to the SRS and RSS. However, the

technique can be more complicated than the RSS. Let X and Y be non-diseased and diseased

variables generated by MSRSS respectively. The procedure is described as follows.

Let a be the number of stages, ma+1 sample units are randomly selected from the

population of interest and allocated randomly into ma−1 sets with set size m2 each, the RSS

procedure described in Section 2.1 is applied to the ma−1 sets to obtain ma−1 sets of m set

size each. The RSS procedure is continued until we end up with a sample of set size m. The

process can be repeated k times and the corresponding sample is given as X
(a)
[i]j , i = 1, ...,m,

j = 1, ..., k. The same procedure is applied to the diseased individuals with b number stages

, set size n and number of cycles l to obtain a corresponding sample Y
(b)
[r]s, r = 1, ..., n,

s = 1, ..., l. In the MSRSS procedure, only the last set size generated is quantified.

2.3 Empirical likelihood confidence interval for δ

In this section, we review EL inference method for the AUC using BRSS as proposed by

Moon et al., (2020). For completeness, the full details of the proposed method is as follows.

We adopt the same notations as Moon et al. (2020) did. Let

φ(X[i]j, Y[r]s) =

 1, X[i]j < Y[r]s

0, otherwise.

The MW statistic of the AUC based on BRSS is given as

δ̂BRSS = UBRSS(Y[1]1, ..., Y[1]l, ..., Y[n]1, ..., Y[n]l;X[1]1, ..., X[1]k, ..., X[m]1, ..., X[m]k)

=
1

mknl

m∑
i=1

k∑
j=1

n∑
r=1

l∑
s=1

φ(X[i]j, Y[r]s).

The placement value of Y[r]s can then be defined similar to Pepe and Cai (2004) as

Urs = 1− F (Y[r]s).
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We can easily show that

E

[
n∑
r=1

l∑
s=1

1

nl
(1− Urs)

]
= E [F (Y )] = δ.

EL procedure can be derived using the relationship between δ and Urs. Let prs =

dG(Y[r]s) for r = 1, ..., n and s = 1, ..., l. The EL for the AUC using balanced ranked set

samples evaluated at AUC value δ can be given as

L(δ) = sup

{ n∏
r=1

l∏
s=1

prs :
n∑
r=1

l∑
s=1

prs = 1, prs ≥ 0,
n∑
r=1

l∑
s=1

prs(1− Urs − δ) = 0

}
.

By replacing Urs with Ûrs, we have

Ûrs = (1− 1

mk

m∑
i=1

k∑
j=1

φ(X[i]j, Y[r]s))

and solving the Lagrange multipliers, we obtain the empirical log-likelihood ratio which is

given as

l(δ) = 2
n∑
r=1

l∑
s=1

log
(

1 + λ(1− Ûrs − δ)
)
,

where λ is the solution to

1

nl

n∑
r=1

l∑
s=1

(1− Ûrs − δ)
1 + λ(1− Ûrs − δ)

= 0.

The maximum empirical likelihood estimator (MELE) δ̃BRSS is given as

δ̃BRSS = argmin
δ

l(δ).

We set δ̃BRSS = δ̂BRSS because the dimension of δ̂ and the constraint are equivalent and

thus δ̂BRSS is the solution of
n∑
r=1

l∑
s=1

(1 − Ûrs − δ) = 0 (Qin and Lawless, 1994). Since Urs
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are not independent, we cannot apply the standard EL theory to the empirical log-likelihood

ratio. Instead, we study a limiting distribution of the scaled EL (Wang and Rao, 2002a,b;

Wang et al., 2004). The theorem below shows an asymptotic distribution of l(δ0) follows a

scaled chi-square distribution.

Theorem 2.1 (cf. Moon et. al., 2020). Assume that ranking of BRSS are consistent, the

true value of the AUC is δ0 and E(|F (Y )|3) <∞. For fixed m and n as k −→∞ and l −→∞,

r(δ0)l(δ0) −→ χ2
1,

where

r(δ0) =
mk

mk + nl

n∑
r=1

l∑
s=1

1

nl
(1− Ûrs − δ0)2

S2
,

S2 =
nl(S10)2 +mk(S01)2

mk + nl
,

(S10)2 =
m∑
i=1

k∑
j=1

1

m(k − 1)
(V 10(X[i]j − V̄ 10

[i] )2,

(S01)2 =
n∑
r=1

l∑
s=1

1

n(l − 1)
(V 01(Y[r]s − V̄ 10

[r] )2,

V 10(X[i]j) =
1

nl

n∑
r=1

l∑
s=1

φ(X[i]j, Y[r]s), V
01(Y[r]s) =

1

mk

m∑
i=1

k∑
j=1

φ(X[i]j, Y[r]s), V̄
10
[i] =

1

k

k∑
j=1

V 10(X[i]j)

and V̄ 01
[r] = 1

l

l∑
s=1

V 01(Y[r]s).

Theorem 2.1 can then be used to obtain the confidence interval for δ0. A BRSS-EL

100(1− α)% confidence interval for AUC can be found as

CIα(δ) =
{
δ : r(δ̂BRSS)l(δ) ≤ χ2

1,1−α
}
,

where χ2
1,1−α is the (1−α)-th quantile of the chi-square distribution with 1 degree of freedom.
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2.4 Jackknife empirical likelihood confidence interval for δ

In this section, we propose the JEL inference method for the AUC using BRSS. The

basic idea of the JEL is to use the jackknife pseudo-values to turn the variable of interest

into a sample mean (Jing et al. (2009)).

Recall that the MW statistic for AUC using the BRSS is given as

δ̂BRSS =
1

mknl

m∑
i=1

k∑
j=1

n∑
r=1

l∑
s=1

φ(X[i]j, Y[r]s)

= UBRSS(Y[1]1, ..., Y[1]l, ..., Y[n]1, ..., Y[n]l;X[1]1, ..., X[1]k, ..., X[m]1, ..., X[m]k) = UBRSS(Z1, ..., Zw).

where i = 1, ..., w, w = nl +mk,.

Let V̂i be the jackknife pseudo-value that are asymptotically independent random vari-

ables which are given as

V̂i = w ∗ (UBRSS)− (w − 1) ∗ U (−i)
BRSS,

=
w(w − 1)

w − 2

[
Vi,0
mk

I{1 ≤ i ≤ mk}+
V0,i−mk
nl

I{mk + 1 ≤ i ≤ w}
]
− w

w − 2
UBRSS, i = 1, ..., w,

and

EV̂i ≈
wδ

(w − 2)

[
nl − 1

mk
I{1 ≤ i ≤ mk}+

mk − 1

nl
I{mk + 1 ≤ i ≤ w}

]
,

where

Vi,0 = mkU0
BRSS − (mk − 1)U

−[i]j,[0]0
BRSS , i = 1, ..., w,

V0,i−mk = nlU0
BRSS − (nl − 1)U

[0]0,−[r]s
BRSS , i = 1, ..., w,

U0
BRSS is the original AUC based on all observations,

U
−[i]j,[0]0
BRSS = 1

(mk−1)(nl)

m∑
i=1

k∑
j=1

n∑
r=1

l∑
s=1

φ(X[i]j, Y[r]s) is the AUC, when X[i]j is left out, for i =

1, ...,m, j = 1, ..., k,
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U
[0]0,−[r]s
BRSS = 1

mk(nl−1)

m∑
i=1

k∑
j=1

n∑
r=1

l∑
s=1

φ(X[i]j, Y[r]s) is the AUC, when Y[r]s is left out, for r =

1, ..., n, s = 1, ..., l,

Then the jackknife estimator of the δ is given as

UBRSS,jel =
1

w

w∑
i=1

V̂i,0 =
1

w

l∑
i=1

V̂0,i−mk.

When the pseudo-values are applied, the JEL ratio at δ using BRSS is given as

R(δ) = sup

{ w∏
i=1

(wpi) :
w∑
i=1

pi = 1, pi ≥ 0,
w∑
i=1

pi(V̂i(δ)− EV̂i(δ)) = 0

}
.

Using the Lagrange multiplier, the jackknife empirical log-likelihood function at δ can then

be given as

−2logR(δ) = 2
w∑
i=1

log(1 + λ(V̂i(δ)− EV̂i(δ))),

where λ is the solution to the equation

0 =
1

w

w∑
i=1

(V̂i(δ)− EV̂i(δ))
1 + λ(V̂i(δ)− EV̂i(δ))

.

We establish the Wilk’s theorem as follows.

Theorem 2.2 Assume that the true value of the AUC is δ0. There is a consistent ranking

of BRSS, and E(|F (Y )|3) <∞. For fixed m and n as k −→∞ and l −→∞,

−2logR(δ0) −→ χ2
1.

Theorem 2.2 can then be used to obtain the confidence interval for δ0. A BRSS-JEL 100(1−

α)% confidence interval for AUC can be found as

CIα(δ) =
{
δ : −2logR(δ) ≤ χ2

1,1−α
}
.
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2.5 Kernel-based empirical likelihood confidence interval for δ

In this section, we propose the kernel-based EL inference method for the AUC using

BRSS. The kernel-based AUC estimator using the BRSS is given as

δ̂BRSS =
1

mknl

m∑
i=1

k∑
j=1

n∑
r=1

l∑
s=1

K(X[i]j, Y[r]s),

where K(X[i]j, Y[r]s) = Φ

(
(Y[r]s −X[i]j)/

√
h2x + h2y

)
,Φ is the CDF of the standard normal,

and hx = 0.9min(sx, iqrx/1.34)n−0.2
x and hy = 0.9min(sy, iqry/1.34)n−0.2

y are the bandwidths

where sd(·) is the sample standard deviation and iqr(·) is the inter quartile range, such

bandwidths were recommended by Silverman (1986). The kernel-based EL ratio at δ using

BRSS is given as

R(δ) = sup

{ n∏
r=1

l∏
s=1

(nlprs) :
n∑
r=1

l∑
s=1

prs = 1, prs ≥ 0,
n∑
r=1

l∑
s=1

prs(1− Ûrs − δ) = 0

}
.

Using the Lagrange multiplier, the kernel-based empirical log-likelihood ratio is given

as

l(δ) = 2
n∑
r=1

l∑
s=1

log
(

1 + λ(1− Ûrs − δ)
)
,

where Ûrs = (1− 1
mk

m∑
i=1

k∑
j=1

K(X[i]j, Y[r]s)) and λ is the solution to

1

nl

n∑
r=1

l∑
s=1

(1− Ûrs − δ)
1 + λ(1− Ûrs − δ)

= 0.

The theorem below shows an asymptotic distribution of l(δ0) follows a scaled chi-square

distribution. We establish the Wilk’s theorem as follows.

Theorem 2.3 Assume that the true value of the AUC is δ0. There is a consistent ranking
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of BRSS, and E(|F (Y )|3) <∞. For fixed m and n as k −→∞ and l −→∞,

r(δ0)l(δ0) −→ χ2
1,

where

r(δ0) =
mk

mk + nl

n∑
r=1

l∑
s=1

1

nl
(1− Ûrs − δ0)2

S2
,

S2 =
nl(S10)2 +mk(S01)2

mk + nl
,

(S10)2 =
m∑
i=1

k∑
j=1

1

m(k − 1)
(V 10(X[i]j − V̄ 10

[i] )2,

(S01)2 =
n∑
r=1

l∑
s=1

1

n(l − 1)
(V 01(Y[r]s − V̄ 10

[r] )2,

V 10(X[i]j) =
1

nl

n∑
r=1

l∑
s=1

K(X[i]j, Y[r]s), V
01(Y[r]s) =

1

mk

m∑
i=1

k∑
j=1

K(X[i]j, Y[r]s), V̄
10
[i] =

1

k

k∑
j=1

V 10(X[i]j)

and V̄ 01
[r] = 1

l

l∑
s=1

V 01(Y[r]s).

Theorem 2.3 can then be used to obtain the confidence interval for δ0. A KERNEL-EL

100(1− α)% confidence interval for AUC can be found as

CIα(δ) =
{
δ : r(δ̂)l(δ) ≤ χ2

1,1−α
}
.

.

2.6 Kernel-based jackknife empirical likelihood confidence interval for δ

In this section, we propose the kernel-based JEL inference method for the AUC using

BRSS. Recall that the kernel-based AUC estimator using the BRSS is given as
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δ̂BRSS =
1

mknl

m∑
i=1

k∑
j=1

n∑
r=1

l∑
s=1

K(X[i]j, Y[r]s)

= UBRSS(Y[1]1, ..., Y[1]l, ..., Y[n]1, ..., Y[n]l;X[1]1, ..., X[1]k, ..., X[m]1, ..., X[m]k) = UBRSS(Z1, ..., Zw).

where i = 1, ..., w, w = nl +mk,.

Let V̂i be the jackknife pseudo-value that are asymptotically independent random vari-

ables which is given as

V̂i = w ∗ (UBRSS)− (w − 1) ∗ U (−i)
BRSS,

=
w(w − 1)

w − 2

[
Vi,0
mk

I{1 ≤ i ≤ mk}+
V0,i−mk
nl

I{mk + 1 ≤ i ≤ w}
]
− w

w − 2
UBRSS, i = 1, ..., w,

and

EV̂i ≈
wδ

(w − 2)

[
nl − 1

mk
I{1 ≤ i ≤ mk}+

mk − 1

nl
I{mk + 1 ≤ i ≤ w}

]
,

where

Vi,0 = mkU0
BRSS − (mk − 1)U

−[i]j,[0]0
BRSS , i = 1, ..., w,

V0,i−mk = nlU0
BRSS − (nl − 1)U

[0]0,−[r]s
BRSS , i = 1, ..., w,

U0
BRSS is the original AUC based on all observations,

U
−[i]j,[0]0
BRSS = 1

(mk−1)(nl)

m∑
i=1

k∑
j=1

n∑
r=1

l∑
s=1

K(X[i]j, Y[r]s) is the AUC, when X[i]j is left out, for

i = 1, ...,m, j = 1, ..., k,

U
[0]0,−[r]s
BRSS = 1

mk(nl−1)

m∑
i=1

k∑
j=1

n∑
r=1

l∑
s=1

K(X[i]j, Y[r]s) is the AUC, when Y[r]s is left out, for r =

1, ..., n, s = 1, ..., l,

Then the kernel-based jackknife estimator of the δ is given as

UKernelBRSS,jel =
1

w

w∑
i=1

V̂i,0 =
1

w

w∑
i=1

V̂0,i−mk.

When the pseudo-values are applied, the kernel-based JEL ratio at δ using BRSS is given as
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R(δ) = sup

{ w∏
i=1

(wpi) :
w∑
i=1

pi = 1, pi ≥ 0,
w∑
i=1

pi(V̂i(δ)− EV̂i(δ)) = 0

}
.

Using the Lagrange multiplier, the kernel-based jackknife empirical log-likelihood function

at δ can then be given as

−2logR(δ) = 2
w∑
i=1

log(1 + λ(V̂i(δ)− EV̂i(δ)),

where λ is the solution to the equation

0 =
1

w

w∑
i=1

(V̂i(δ)− EV̂i(δ))
1 + λ(V̂i(δ)− EV̂i(δ))

.

We establish the Wilk’s theorem as follows.

Theorem 2.4 Assume that the true value of the AUC is δ0. There is a consistent ranking

of BRSS, and E(|F (Y )|3) <∞. For fixed m and n as k −→∞ and l −→∞,

−2logR(δ0) −→ χ2
1.

Theorem 2.4 can then be used to obtain the confidence interval for δ0. A KERNEL-JEL

100(1− α)% confidence interval for AUC can be found as

CIα(δ) =
{
δ : −2logR(δ) ≤ χ2

1,1−α
}
.

2.7 Kernel-based adjusted jackknife empirical likelihood confidence interval for

δ

In this section, we propose the kernel-based AJEL inference method for the AUC using

BRSS. The basic idea of the AJEL is to add an observation to the jackknife pseudo-values

(Chen et al. (2008)). To simplify the notation, let

Di(δ) = V̂i(δ)− EV̂i(δ), i = 1, ..., w.
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Also, let Dw+1(δ) be the observation added which is given as

Dw+1(δ) = −aw
w

w∑
i=1

Di(δ),

where aw = max(1, log(w)/2) and aw > 0. When the new pseudo-values is added, the

kernel-based AJEL ratio at δ using BRSS is given as

Radj(δ) = sup

{ w+1∏
i=1

(w + 1)pi :
w+1∑
i=1

pi = 1, pi ≥ 0,
w+1∑
i=1

piDi(δ) = 0

}
.

Using the Lagrange multipliers, the kernel-based adjusted jackknife empirical log-likelihood

function at δ can then be given as

−2logRadj(δ) = 2
w+1∑
i=1

log(1 + λDi(δ)),

where λ is the solution to the equation

0 =
1

w + 1

w+1∑
i=1

Di(δ)

1 + λDi(δ)
.

The same conditions in Jing et al. (2009) are applied and we establish the Wilk’s

theorem as follows.

Theorem 2.5 Assume that the true value of the AUC is δ0. There is a consistent ranking

of BRSS, and E(|F (Y )|3) <∞. For fixed m and n as k −→∞ and l −→∞,

−2logRadj(δ0) −→ χ2
1.

Theorem 2.5 can then be used to obtain the confidence interval for δ0. A KERNEL-AJEL

100(1− α)% confidence interval for AUC can be found as

CIα(δ)adj =
{
δ : −2logRadj(δ) ≤ χ2

1,1−α
}
.
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2.8 Kernel-based empirical likelihood confidence interval for δ using multi-stage

RSS

In this section, we propose the kernel-based EL inference method for the AUC using

MSRSS. The kernel-based AUC estimator using the MSRSS is given as

δ̂ =
1

mknl

m∑
i=1

k∑
j=1

n∑
r=1

l∑
s=1

K(X
(a)
[i]j , Y

(b)
[r]s),

where K(X
(a)
[i]j , Y

(b)
[r]s) = Φ

(
(Y

(b)
[r]s −X

(a)
[i]j )/

√
h2x + h2y

)
,Φ is the CDF of the standard normal,

and hx = 0.9min(sx, iqrx/1.34)n−0.2
x and hy = 0.9min(sy, iqry/1.34)n−0.2

y are the bandwidths

where sd(·) is the sample standard deviation and iqr(·) is the inter quartile range, such

bandwidths were recommended by Silverman (1986). The kernel-based EL ratio at δ using

MSRSS is given as

R(δ) = sup

{ n∏
r=1

l∏
s=1

(nlprs) :
n∑
r=1

l∑
s=1

prs = 1, prs ≥ 0,
n∑
r=1

l∑
s=1

prs(1− Ûrs − δ) = 0

}
.

Using the Lagrange multipliers, the kernel-based empirical log-likelihood ratio using

MSRSS is given as

l(δ) = 2
n∑
r=1

l∑
s=1

log
(

1 + λ(1− Û (b)
rs − δ)

)
,

where Û
(b)
rs (δ) = (1− 1

mk

m∑
i=1

k∑
j=1

K(X
(a)
[i]j , Y

(b)
[r]s)) and λ is the solution to

1

nl

n∑
r=1

l∑
s=1

(1− Û (b)
rs − δ)

1 + λ(1− Û (b)
rs − δ)

= 0.

The theorem below shows an asymptotic distribution of l(δ0) follows a scaled chi-square

distribution. We establish the Wilk’s theorem as follows.

Theorem 2.6 Assume that the true value of the AUC is δ0. There is a consistent ranking
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of MSRSS, and E(|F (b)(Y )|3) <∞. For fixed m and n as k −→∞ and l −→∞,

r(δ0)l(δ0) −→ χ2
1,

where

r(δ0) =
mk

mk + nl

n∑
r=1

l∑
s=1

1

nl
(1− Û (b)

rs − δ0)2

S2
,

S2 =
nl(S10)2 +mk(S01)2

mk + nl
,

(S10)2 =
m∑
i=1

k∑
j=1

1

m(k − 1)
(V 10(X

(a)
[i]j − V̄

10
[i] )2,

(S01)2 =
n∑
r=1

l∑
s=1

1

n(l − 1)
(V 01(Y

(b)
[r]s − V̄

10
[r] )2,

V 10(X[i]j) =
1

nl

n∑
r=1

l∑
s=1

K(X
(a)
[i]j , Y

(b)
[r]s), V

01(Y[r]s) =
1

mk

m∑
i=1

k∑
j=1

K(X
(a)
[i]j , Y

(b)
[r]s), V̄

10
[i] =

1

k

k∑
j=1

V 10(X
(a)
[i]j )

and V̄ 01
[r] = 1

l

l∑
s=1

V 01(Y
(b)
[r]s).

Theorem 2.6 can then be used to obtain the confidence interval for δ0. A KERNEL-MRSS-EL

100(1− α)% confidence interval for AUC using MSRSS can be found as

CIα(δ) =
{
δ : r(δ̂)l(δ) ≤ χ2

1,1−α
}
.

2.9 Kernel-based jackknife empirical likelihood confidence interval for δ using

multi-stage RSS

In this section, we propose the kernel-based JEL inference method for the AUC using

MSRSS. Recall that the kernel-based AUC estimator using the MSRSS is given as
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δ̂MSRSS =
1

mknl

m∑
i=1

k∑
j=1

n∑
r=1

l∑
s=1

K(X
(a)
[i]j , Y

(b)
[r]s)

= UMSRSS(Y
(b)
[1]1, ..., Y

(b)
[1]l , ..., Y

(b)
[n]1, ..., Y

(b)
[n]l;X

(a)
[1]1, ..., X

(a)
[1]k, ..., X

(a)
[m]1, ..., X

(a)
[m]k) = UMSRSS(Z1, ..., Zw).

where i = 1, ..., w, w = nl +mk,.

Let V̂i be the jackknife pseudo-value that are asymptotically independent random vari-

ables which is given as

V̂i = w ∗ (UMSRSS)− (w − 1) ∗ U (−i)
MSRSS,

=
w(w − 1)

w − 2

[
Vi,0
mk

I{1 ≤ i ≤ mk}+
V0,i−mk
nl

I{mk + 1 ≤ i ≤ w}
]
− w

w − 2
UMSRSS, i = 1, ..., w,

and

EV̂i ≈
wδ

(w − 2)

[
nl − 1

mk
I{1 ≤ i ≤ mk}+

mk − 1

nl
I{mk + 1 ≤ i ≤ w}

]
,

where

Vi,0 = mkU0
BRSS − (mk − 1)U

−[i]j,[0]0
BRSS , i = 1, ..., w,

V0,i−mk = nlU0
BRSS − (nl − 1)U

[0]0,−[r]s
BRSS , i = 1, ..., w,

U0
BRSS is the original AUC based on all observations,

U
−[i]j,[0]0
BRSS = 1

(mk−1)(nl)

m∑
i=1

k∑
j=1

n∑
r=1

l∑
s=1

K(X
(a)
[i]j , Y

(b)
[r]s) is the AUC when X

(a)
[i]j is left out, for

i = 1, ...,m, j = 1, ..., k,

U
[0]0,−[r]s
BRSS = 1

mk(nl−1)

m∑
i=1

k∑
j=1

n∑
r=1

l∑
s=1

K(X
(a)
[i]j , Y

(b)
[r]s) is the AUC when Y

(b)
[r]s is left out, for r =

1, ..., n, s = 1, ..., l,

Then the kernel-based jackknife estimator of the δ is given as

UKernelMSRSS,jel =
1

w

w∑
i=1

V̂i,0 =
1

w

w∑
i=1

V̂0,i−mk.
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When the pseudo-values are applied, the kernel-based JEL ratio at δ using MSRSS is given

as

R(δ) = sup

{ w∏
i=1

(wpi) :
w∑
i=1

pi = 1, pi ≥ 0,
w∑
i=1

pi(V̂i(δ)− EV̂i(δ)) = 0

}
.

Using the Lagrange multiplier, the kernel-based jackknife empirical log-likelihood func-

tion at δ using MSRSS can then be given as

−2logR(δ) = 2
w∑
i=1

log(1 + λ(V̂i(δ)− EV̂i(δ)),

where λ is the solution to the equation

0 =
1

w

w∑
i=1

(V̂i(δ)− EV̂i(δ))
1 + λ(V̂i(δ)− EV̂i(δ))

.

We establish the Wilk’s theorem as follows.

Theorem 2.7 Assume that the true value of the AUC is δ0. There is a consistent ranking

of MSRSS, and E(|F (b)(Y )|3) <∞. For fixed m and n as k −→∞ and l −→∞,

−2logR(δ0) −→ χ2
1.

Theorem 2.7 can then be used to obtain the confidence interval for δ0. A KERNEL-MSRSS-

JEL 100(1− α)% confidence interval for AUC using MSRSS can be found as

CIα(δ) =
{
δ : −2logR(δ) ≤ χ2

1,1−α
}
.

2.10 Empirical likelihood confidence interval for δ using multi-stage RSS

In this section, we propose the EL inference method for the AUC using MSRSS. The

AUC estimator using the MSRSS is given as

δ̂ =
1

mknl

m∑
i=1

k∑
j=1

n∑
r=1

l∑
s=1

φ(X
(a)
[i]j , Y

(b)
[r]s),
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The EL ratio for δ using MSRSS is given as

R(δ) = sup

{ n∏
r=1

l∏
s=1

(nlprs) :
n∑
r=1

l∑
s=1

prs = 1, prs ≥ 0,
n∑
r=1

l∑
s=1

prs(1− Ûrs − δ) = 0

}
.

Using the Lagrange multipliers, the empirical log-likelihood ratio using MSRSS is given

as

l(δ) = 2
n∑
r=1

l∑
s=1

log
(

1 + λ(1− Û (b)
rs − δ)

)
,

where Û
(b)
rs (δ) = (1− 1

mk

m∑
i=1

k∑
j=1

φ(X
(a)
[i]j , Y

(b)
[r]s)) and λ is the solution to

1

nl

n∑
r=1

l∑
s=1

(1− Û (b)
rs − δ)

1 + λ(1− Û (b)
rs − δ)

= 0.

The theorem below shows an asymptotic distribution of l(δ0) follows a scaled chi-square

distribution. We establish the Wilk’s theorem as follows.

Theorem 2.8 Assume that the true value of the AUC is δ0. There is a consistent ranking

of MSRSS, and E(|F (b)(Y )|3) <∞. For fixed m and n as k −→∞ and l −→∞,

r(δ0)l(δ0) −→ χ2
1,

where

r(δ0) =
mk

mk + nl

n∑
r=1

l∑
s=1

1

nl
(1− Û (b)

rs − δ0)2

S2
,

S2 =
nl(S10)2 +mk(S01)2

mk + nl
,

(S10)2 =
m∑
i=1

k∑
j=1

1

m(k − 1)
(V 10(X

(a)
[i]j − V̄

10
[i] )2,
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(S01)2 =
n∑
r=1

l∑
s=1

1

n(l − 1)
(V 01(Y

(b)
[r]s − V̄

10
[r] )2,

V 10(X[i]j) =
1

nl

n∑
r=1

l∑
s=1

φ(X
(a)
[i]j , Y

(b)
[r]s), V

01(Y[r]s) =
1

mk

m∑
i=1

k∑
j=1

φ(X
(a)
[i]j , Y

(b)
[r]s), V̄

10
[i] =

1

k

k∑
j=1

V 10(X
(a)
[i]j )

and V̄ 01
[r] = 1

l

l∑
s=1

V 01(Y
(b)
[r]s).

Theorem 2.8 can then be used to obtain the confidence interval for δ0. A MRSS-EL 100(1−

α)% confidence interval for AUC using MSRSS can be found as

CIα(δ) =
{
δ : r(δ̂)l(δ) ≤ χ2

1,1−α
}
.

2.11 Jackknife empirical likelihood confidence interval for δ using multi-stage

RSS

In this section, we propose the JEL inference method for the AUC using MSRSS. Recall

that the AUC estimator using the MSRSS is given as

δ̂MSRSS =
1

mknl

m∑
i=1

k∑
j=1

n∑
r=1

l∑
s=1

φ(X
(a)
[i]j , Y

(b)
[r]s)

= UMSRSS(Y
(b)
[1]1, ..., Y

(b)
[1]l , ..., Y

(b)
[n]1, ..., Y

(b)
[n]l;X

(a)
[1]1, ..., X

(a)
[1]k, ..., X

(a)
[m]1, ..., X

(a)
[m]k) = UMSRSS(Z1, ..., Zw).

where i = 1, ..., w, w = nl +mk,.

Let V̂i be the jackknife pseudo-value that are asymptotically independent random vari-

ables which is given as

V̂i = w ∗ (UMSRSS)− (w − 1) ∗ U (−i)
MSRSS,

=
w(w − 1)

w − 2

[
Vi,0
mk

I{1 ≤ i ≤ mk}+
V0,i−mk
nl

I{mk + 1 ≤ i ≤ w}
]
− w

w − 2
UMSRSS, i = 1, ..., w,
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and

EV̂i ≈
wδ

(w − 2)

[
nl − 1

mk
I{1 ≤ i ≤ mk}+

mk − 1

nl
I{mk + 1 ≤ i ≤ w}

]
,

where

Vi,0 = mkU0
BRSS − (mk − 1)U

−[i]j,[0]0
BRSS , i = 1, ..., w,

V0,i−mk = nlU0
BRSS − (nl − 1)U

[0]0,−[r]s
BRSS , i = 1, ..., w,

U0
BRSS is the original AUC based on all observations,

U
−[i]j,[0]0
BRSS = 1

(mk−1)(nl)

m∑
i=1

k∑
j=1

n∑
r=1

l∑
s=1

φ(X
(a)
[i]j , Y

(b)
[r]s) is the AUC when X

(a)
[i]j is left out, for i =

1, ...,m, j = 1, ..., k,

U
[0]0,−[r]s
BRSS = 1

mk(nl−1)

m∑
i=1

k∑
j=1

n∑
r=1

l∑
s=1

φ(X
(a)
[i]j , Y

(b)
[r]s) is the AUC when Y

(b)
[r]s is left out, for r =

1, ..., n, s = 1, ..., l,

Then the kernel-based jackknife estimator of the δ is given as

UKernelMSRSS,jel =
1

w

w∑
i=1

V̂i,0 =
1

w

w∑
i=1

V̂0,i−mk.

When the pseudo-values are applied, the JEL ratio at δ using MSRSS is given as

R(δ) = sup

{ w∏
i=1

(wpi) :
w∑
i=1

pi = 1, pi ≥ 0,
w∑
i=1

pi(V̂i(δ)− EV̂i(δ)) = 0

}
.

Using the Lagrange multiplier, the jackknife empirical log-likelihood function at δ using

MSRSS can then be given as

−2logR(δ) = 2
w∑
i=1

log(1 + λ(V̂i(δ)− EV̂i(δ)),

where λ is the solution to the equation

0 =
1

w

w∑
i=1

(V̂i(δ)− EV̂i(δ))
1 + λ(V̂i(δ)− EV̂i(δ))

.
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We establish the Wilk’s theorem as follows.

Theorem 2.9 Assume that the true value of the AUC is δ0. There is a consistent ranking

of MSRSS, and E(|F (b)(Y )|3) <∞. For fixed m and n as k −→∞ and l −→∞,

−2logR(δ0) −→ χ2
1.

Theorem 2.9 can then be used to obtain the confidence interval for δ0. A MSRSS-JEL

100(1− α)% confidence interval for AUC using MSRSS can be found as

CIα(δ) =
{
δ : −2logR(δ) ≤ χ2

1,1−α
}
.
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CHAPTER 3

SIMULATION STUDY

In this chapter, we report the performance of the proposed methods; BRSS-JEL,KERNEL-

EL, KERNEL-JEL, KERNEL-AJEL, MRSS-EL, MRSS-JEL, KERNEL-MSRSS-EL, KERNEL-

MSRSS-JEL and compare with BRSS-EL of (Moon et al., 2020), and KERNEL-BRSS of

Yin et al. (2016) using the average length and the coverage probabilities of the confidence

interval. We run simulation for sample sizes nx = ny= 20, 40, 80, and with δ 0.8, 0.9, 0.95.

We run simulations 5000 times for each combination of the sample size pairs and δ referred

to in the sentence above.

For the Kernel-based approaches, the Gaussian kernel would be applied with band-

widths; hx = 0.9min(sx, iqrx/1.34)n−0.2
x and hy = 0.9min(sy, iqry/1.34)n−0.2

y where sd(·) is

the sample standard deviation and iqr(·) is the inter quartile range.

The chosen set sizes are n = m = 2, the number of cycles is given as k = nx/m, l = ny/n

and for the MSRSS, the number of stages are a = b: 2, 3. The concomitant variables used

for the judgement ranking are related to the samples and given as:

Cx = ρx

(
X − µx
σx

)
+ (1− ρ2x)Zx

Cy = ρy

(
Y − µy
σy

)
+ (1− ρ2y)Zy,

where µ(·) denotes the mean, σ(·) denotes the standard deviation, Z(·) follows a standard

normal distribution, and ρ(·) is the Pearson correlation coefficient representing accuracy of

the rankings and is set as ρx = ρy= 0.9 and 1, which signifies good and perfect judgment

respectively.

For this simulation study, three distributions; Normal, Uniform distribution, and Log-

normal will be used. In the first simulation, X is generated from a standard normal distri-
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bution N(0, 1) and Y follows a normal distribution N(
√

5Φ−1(δ), 4), where Φ is the CDF of

a standard normal distribution. For the second simulation, X is generated from a standard

uniform distribution U(0, 1) and Y follows a uniform distribution U
(

0, 1
2(1−δ)

)
. For the third

simulation, X is generated from a standard log-normal distribution LN(0, 1) and Y follows a

log-normal distribution LN(
√

5Φ−1(δ), 4). The nominal confidence level 1−α is 0.95. From

Tables 3.1, 3.2, and 3.2, which show the simulation studies, we can conclude that.

1) As the AUC value increases, the coverage probability and average length of the con-

fidence interval decreases and as the sample size increases, the average length of the

confidence intervals decreases.

2) The kernel-based methods tend to have shorter average lengths than their correspond-

ing methods based on the Mann-Whitney statistic.

3) Although KERNEL-BRSS has the shortest average lengths, the coverage probability

of the confidence intervals is lower than all of the other methods.

4) The JEL methods have longer average length and better coverage probability of the

confidence intervals than the EL methods and the AJEL method also have longer

average length and better coverage probability of the confidence intervals than the

JEL methods.

5) The two-stage KERNEL-MSRSS-EL has shorter average lengths than the KERNEL-

EL and the three-stage KERNEL-MSRSS-EL tends to have shorter average lengths

than the KERNEL-EL in some cases. The kernel-based JEL approaches for the MSRSS

tend to have comparable average length of the confidence intervals with KERNEL-JEL.

6) The two-stage MRSS-EL approaches has shorter average lengths of the confidence

intervals than the three-stage MRSS-EL.

7) The MSRSS-EL have longer average length and better coverage probability of the

confidence interval than the KERNEL-MSRSS-EL. However, the KERNEL-MRSS-JEL
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have longer average length and better coverage probability of the confidence interval

than the MSRSS-EL in most cases.

8) As the sample size increases, the coverage probability of the confidence interval tends

to be more stable and be closer to the nominal level.

9) For the Log-normal distribution, the coverage probability of the confidence interval

reduces drastically as the AUC value increases.

Table (3.1) Normal Distribution: 95% Coverage Probabilities and Average Interval Lengths

ρ (nx, ny) AUC KERNEL-BRSS BRSS-EL KERNEL-EL BRSS-JEL KERNEL-JEL KERNEL-AJEL

1 (20, 20) 0.80 .876 (.193) .942 (.250) .912 (.223) .972 (.295) .967 (.279) .983 (.300)

0.90 .854 (.143) .906 (.186) .864 (.170) .931 (.209) .938 (.211) .968 (.227)

0.95 .853 (.102) .864 (.129) .825 (.122) .883 (.141) .922 (.153) .956 (.165)

(40, 40) 0.80 .876 (.138) .949 (.177) .914 (.161) .976 (.205) .966 (.197) .978 (.205)

0.90 .848 (.103) .939 (.133) .875 (.124) .959 (.147) .949 (.148) .966 (.155)

0.95 .838 (.073) .901 (.093) .848 (.090) .919 (.099) .927 (.106) .949 (.110)

(80, 80) 0.80 .871 (.099) .950 (.124) .910 (.116) .977 (.144) .961 (.139) .971 (.143)

0.90 .851 (.074) .954 (.094) .875 (.089) .966 (.103) .941 (.104) .952 (.106)

0.95 .839 (.052) .934 (.067) .864 (.065) .945 (.071) .928 (.074) .940 (.076)

0.9 (20, 20) 0.80 .860 (.191) .938 (.257) .916 (.231) .967 (.295) .960 (.279) .982 (.300)

0.90 .841 (.141) .906 (.189) .875 (.175) .923 (.209) .931 (.211) .960 (.227)

0.95 .837 (.101) .865 (.132) .822 (.124) .881 (.141) .918 (.153) .951 (.165)

(40, 40) 0.80 .862 (.137) .952 (.182) .917 (.166) .974 (.205) .959 (.197) .972 (.205)

0.90 .847 (.101) .943 (.135) .886 (.127) .953 (.147) .943 (.149) .960 (.155)

0.95 .839 (.072) .910 (.095) .855 (.092) .912 (.099) .923 (.106) .942 (.111)

(80, 80) 0.80 .854 (.099) .951 (.128) .916 (.120) .970 (.144) .954 (.140) .967 (.142)

0.90 .836 (.073) .950 (.095) .884 (.090) .962 (.103) .941 (.104) .950 (.106)

0.95 .812 (.051) .934 (.067) .860 (.066) .945 (.071) .926 (.074) .939 (.076)
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Table (3.2) Uniform Distribution: 95% Coverage Probabilities and Average Interval Lengths

ρ (nx, ny) AUC KERNEL-BRSS BRSS-EL KERNEL-EL BRSS-JEL KERNEL-JEL KERNEL-AJEL

1 (20, 20) 0.80 .888 (.187) .943 (.249) .927 (.211) .972 (.296) .975 (.264) .990 (.284)

0.90 .729 (.131) .913 (.196) .866 (.158) .934 (.934) .953 (.201) .980 (.215)

0.95 .664 (.104) .901 (.154) .685 (.123) .919 (.168) .914 (.170) .961 (.182)

(40, 40) 0.80 .895 (.135) .949 (.176) .935 (.155) .978 (.206) .976 (.188) .987 (.196)

0.90 .828 (.095) .945 (.140) .871 (.117) .959 (.155) .955 (.140) .972 (.145)

0.95 .610 (.071) .916 (.106) .656 (.089) .920 (.112) .899 (.110) .934 (.115)

(80, 80) 0.80 .901 (.098) .953 (.125) .933 (.113) .979 (.145) .976 (.134) .980 (.137)

0.90 .812 (.069) .948 (.100) .873 (.085) .966 (.109) .956 (.099) .967 (.101)

0.95 .520 (.050) .943 (.075) .601 (.064) .946 (.079) .871 (.075) .895 (.077)

0.9 (20, 20) 0.80 .888 (.185) .953 (.256) .936 (.217) .970 (.295) .970 (.264) .985 (.283)

0.90 .833 (.131) .941 (.143) .864 (.162) .931 (.221) .950 (.200) .977 (.215)

0.95 .675 (.104) .899 (.156) .686 (.126) .920 (.168) .909 (.170) .963 (.182)

(40, 40) 0.80 .882 (.134) .954 (.181) .938 (.160) .973 (.206) .970 (.188) .981 (.196)

0.90 .813 (.094) .941 (.143) .953 (.147) .958 (.155) .960 (.135) .966 (.146)

0.95 .612 (.070) .908 (.105) .666 (.091) .921 (.112) .896 (.110) .932 (.115)

(80, 80) 0.80 .888 (.097) .951 (.128) .936 (.116) .974 (.144) .973 (.134) .978 (.137)

0.90 .801 (.068) .947 (.101) .881 (.087) .964 (.109) .953 (.099) .963 (.101)

0.95 .519 (.050) .937 (.076) .660 (.065) .947 (.079) .864 (.075) .887 (.077)

Table (3.3) Log-normal Distribution: 95% Coverage Probabilities and Average Interval
Lengths

ρ (nx, ny) AUC KERNEL-BRSS BRSS-EL KERNEL-EL BRSS-JEL KERNEL-JEL KERNEL-AJEL

1 (20, 20) 0.80 .636 (.149) .945 (.251) .847 (.201) .968 (.278) .852 (.246) .898 (.264)

0.90 .051 (.131) .907 (.187) .484 (.158) .945 (.193) .672 (.209) .730 (.228)

0.95 .004 (.125) .866 (.128) .204 (.129) .912 (.126) .554 (.192) .618 (.214)

(40, 40) 0.80 .433 (.105) .950 (.177) .771 (.146) .981 (.194) .818 (.175) .837 (.182)

0.90 .005 (.092) .943 (.134) .303 (.114) .968 (.135) .578 (.147) .610 (.157)

0.95 .000 (.087) .901 (.093) .073 (.093) .946 (.089) .432 (.132) .492 (.147)

(80, 80) 0.80 .236 (.075) .949 (.125) .674 (.105) .981 (.136) .775 (.125) .767 (.128)

0.90 .000 (.065) .951 (.094) .156 (.082) .970 (.094) .479 (.102) .503 (.108)

0.95 .000(.061) .932 (.067) .012 (.066) .957 (.063) .277(.091) .384 (.099)

0.9 (20, 20) 0.80 .636 (.149) .945 (.251) .888 (.222) .961 (.278) .847 (.247) .899 (.265)

0.90 .051 (.131) .907 (.187) .556 (.174) .933 (.192) .683 (.210) .735 (.229)

0.95 .004 (.125) .866 (.128) .236 (.143) .901 (.126) .554 (.192) .634 (.215)

(40, 40) 0.80 .433 (.105) .950 (.177) .818 (.160) .971 (.194) .818 (.175) .817 (.182)

0.90 .005 (.092) .943 (.134) .369 (.125) .960 (.135) .575 (.146) .596 (.157)

0.95 .000 (.087) .901 (.093) .090 (.102) .936 (.089) .443 (.133) .488 (.146)

(80, 80) 0.80 .765 (.102) .946 (.150) .744 (.115) .965 (.136) .758 (.124) .749 (.127)

0.90 .000 (.065) .951 (.094) .215 (.089) .960 (.094) .473 (.102) .496 (.107)

0.95 .000 (.061) .932 (.067) .025 (.072) .951 (.063) .456 (.091) .477 (.099)
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Table (3.4) Normal Distribution: 95% Coverage Probabilities and Average Interval Lengths
for Multistage Ranked Set Sampling

Two-stage RSS Three-stage RSS

ρ (nx, ny) AUC MSRSS-EL KERNEL-MSRSS-EL MSRSS-JEL KERNEL-MSRSS-JEL MSRSS-EL KERNEL-MSRSS-EL MSRSS-JEL KERNEL-MSRSS-JEL

1 (20, 20) 0.80 .945 (.229) .894 (.197) .982 (.296) .982 (.280) .943 (.251) .910 (.223) .971 (.295) .963 (.279)

0.90 .911 (.180) .852 (.163) .939 (.210) .954 (.211) .914 (.187) .863 (.170) .933 (.209) .939 (.211)

0.95 .865 (.126) .815 (.117) .890 (.141) .919 (.150) .874 (.128) .823 (.122) .887 (.140) .911 (.150)

(40, 40) 0.80 .949 (.161) .894 (.143) .985 (.206) .971 (.203) .951 (.177) .909 (.161) .977 (.206) .969 (.197)

0.90 .941 (.128) .864 (.116) .967 (.147) .956 (.157) .940 (.133) .885 (.125) .955 (.147) .948 (.149)

0.95 .912 (.091) .844 (.087) .923 (.100) .935 (.115) .906 (.093) .852 (.090) .913 (.100) .926 (.106)

(80, 80) 0.80 .947 (.113) .890 (.103) .986 (.144) .976 (.139) .955 (.952) .903 (.116) .981 (.144) .968 (.140)

0.90 .947 (.090) .875 (.084) .969 (.103) .959 (.106) .952 (.094) .877 (.089) .968 (.103) .949 (.104)

0.95 .933 (.065) .859 (.063) .947 (.070) .935 (.074) .936 (.067) .856 (.065) .944 (.071) .929 (.075)

0.9 (20, 20) 0.80 .945 (.231) .897 (.198) .982 (.296) .982 (.280) .945 (.251) .910 (.223) .972 (.295) .969 (.279)

0.90 .913 (.180) .861 (.160) .942 (.210) .950 (.212) .914 (.186) .865 (.170) .932 (.208) .939 (.210)

0.95 .864 (.127) .817 (.118) .887 (.141) .919 (.150) .863 (.128) .825 (.121) .880 (.139) .906 (.149)

(40, 40) 0.80 .948 (.162) .894 (.144) .986 (.206) .977 (.197) .952 (.177) .917 (.161) .978 (.206) .966 (.197)

0.90 .941 (.128) .868 (.117) .965 (.147) .953 (.149) .941 (.133) .883 (.124) .957 (.147) .946 (.149)

0.95 .911 (.092) .844 (.087) .922 (.010) .930 (.115) .907 (.093) .848 (.091) .914 (.099) .927 (.106)

(80, 80) 0.80 .949 (.114) .892 (.104) .985 (.114) .976 (.139) .958 (.125) .911 (.115) .982 (.144) .968 (.140)

0.90 .948 (.090) .875 (.084) .971 (.103) .945 (.106) .957 (.094) .874 (.089) .970 (.103) .948 (.104)

0.95 .937 (.065) .856 (.063) .948 (.071) .933 (.078) .941 (.067) .855 (.060) .950 (.071) .932 (.074)

Table (3.5) Uniform Distribution: 95% Coverage Probabilities and Average Interval Lengths
for Multistage Ranked Set Sampling

Two-stage RSS Three-stage RSS

ρ (nx, ny) AUC MSRSS-EL KERNEL-MSRSS-EL MSRSS-JEL KERNEL-MSRSS-JEL MSRSS-EL KERNEL-MSRSS-EL MSRSS-JEL KERNEL-MSRSS-JEL

1 (20, 20) 0.80 .936 (.225) .912 (.183) .982 (.297) .986 (.265) .940 (.248) .929 (.210) .969 (.295) .971 (.264)

0.90 .909 (.191) .831 (.147) .935 (.221) .958 (.200) .910 (.195) .857 (.157) .931 (.219) .942 (.198)

0.95 .906 (.154) .639 (.117) .926 (.169) .916 (.161) .889 (.153) .689 (.122) .910 (.166) .894 (.158)

(40, 40) 0.80 .951 (.159) .924 (.135) .987 (.206) .988 (.188) .949 (.176) .931 (.155) .974 (.206) .974 (.188)

0.90 .941 (.136) .851 (.109) .965 (.155) .966 (.140) .934 (.140) .872 (.124) .953 (.154) .954 (.139)

0.95 .911 (.104) .626 (.086) .926 (.112) .901 (.110) .911 (.105) .653 (.089) .926 (.112) .896 (.109)

(80, 80) 0.80 .946 (.112) .926 (.099) .986 (.145) .988 (.136) .951 (.124) .933 (.113) .975 (.144) .972 (.134)

0.90 .946 (.097) .850 (.080) .968 (.109) .964 (.100) .943 (.099) .867 (.085) .962 (.108) .948 (.099)

0.95 .942 (.075) .560 (.062) .954 (.079) .879 (.077) .933 (.075) .602 (.064) .944 (.079) .876 (.075)

0.9 (20, 20) 0.80 .938 (.225) .910 (.185) .982 (.297) .987 (.265) .942 (.248) .931 (.210) .970 (.294) .974 (.265)

0.90 .912 (.192) .831 (.147) .938 (.223) .954 (.200) .908 (.196) .860 (.157) .928 (.219) .941 (.198)

0.95 .906 (.154) .637 (.118) .924 (.170) .912 (.161) .896 (.154) .674 (.123) .916 (.167) .900 (.158)

(40, 40) 0.80 .948 (.160) .922 (.137) .988 (.206) .988 (.188) .942 (.176) .923 (.155) .971 (.206) .969 (.187)

0.90 .937 (.136) .851 (.109) .963 (.155) .962 (.140) .938 (.140) .869 (.116) .956 (.154) .950 (.139)

0.95 .911 (.104) .626 (.086) .924 (.112) .901 (.109) .914 (.105) .651 (.090) .927 (.112) .893 (.109)

(80, 80) 0.80 .952 (.113) .925 (.100) .985 (.145) .988 (.136) .946 (.124) .940 (.113) .975 (.144) .974 (.134)

0.90 .949 (.097) .850 (.080) .972 (.109) .965 (.100) .949 (.099) .872 (.085) .967 (.108) .957 (.098)

0.95 .940 (.074) .565 (.062) .954 (.079) .880 (.077) .935 (.075) .592 (.064) .947 (.079) .875 (.075)
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Table (3.6) Log-normal Distribution: 95% Coverage Probabilities and Average Interval
Lengths for Multistage Ranked Set Sampling

Two-stage RSS Three-stage RSS

ρ (nx,ny) AUC MSRSS-EL KERNEL-MSRSS-EL MSRSS-JEL KERNEL-MSRSS-JEL MSRSS-EL KERNEL-MSRSS-EL MSRSS-JEL KERNEL-MSRSS-JEL

1 (20, 20) 0.80 .951 (.213) .759 (.172) .986 (.280) .873 (.244) .948 (.239) .843 (.202) .973 (.279) .859 (.246)

0.90 .931 (.162) .580 (.145) .963 (.194) .655 (.208) .928 (.172) .481 (.158) .949 (.193) .671 (.209)

0.95 .895 (.112) .011 (.115) .932 (.127) .535 (.192) .890 (.115) .200 (.129) .921 (.127) .556 (.191)

(40, 40) 0.80 .952 (.148) .674 (.126) .991 (.194) .819 (.174) .957 (.168) .764 (.146) .978 (.194) .818 (.175)

0.90 .946 (.155) .234 (.100) .976 (.135) .568 (.146) .950 (.124) .313 (.114) .968 (.135) .567 (.146)

0.95 .929 (.082) .058 (.082) .950 (.089) .431 (.132) .930 (.085) .070 (.093) .943 (.089) .424 (.133)

(80, 80) 0.80 .945 (.103) .580 (.091) .988 (.136) .787 (.124) .959 (.117) .674 (.106) .981 (.136) .764 (.125)

0.90 .946 (.080) .127 (.073) .976 (.094) .490 (.103) .954 (.086) .168 (.082) .969 (.095) .469 (.102)

0.95 .942 (.058) .011(.059) .959 (.062) .263 (.090) .945 (.060) .014 (.066) .960 (.063) .287 (.091)

0.9 (20, 20) 0.80 .946 (.217) .780 (.178) .989 (.280) .875 (.245) .948 (.239) .841 (.202) .975 (.279) .855 (.246)

0.90 .927 (.164) .401 (.142) .962 (.194) .663 (.209) .921 (.172) .481 (.158) .943 (.192) .675 (.209)

0.95 .898 (.114) .164 (.116) .933 (.127) .585 (.193) .888 (.115) .204 (.129) .918 (.127) .567 (.193)

(40, 40) 0.80 .951 (.152) .697 (.130) .990 (.194) .821 (.175) .953 (.168) .765 (.146) .976 (.194) .802 (.175)

0.90 .944 (.117) .245 (.104) .976 (.135) .574 (.146) .946 (.124) .312 (.114) .965 (.135) .578 (.146)

0.95 .927 (.082) .058 (.085) .950 (.089) .419 (.133) .929 (.085) .080 (.093) .944 (.089) .430 (.133)

(80, 80) 0.80 .949 (.106) .606 (.094) .985 (.136) .663 (.125) .958 (.117) .673 (.106) .979 (.136) .769 (.129)

0.90 .947 (.081) .139 (.075) .974 (.094) .487 (.102) .952 (.086) .166 (.082) .971 (.095) .468 (.103)

0.95 .941 (.058) .012 (.061) .961 (.062) .440 (.090) .941 (.060) .014 (.066) .960 (.063) .289 (.091)
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CHAPTER 4

REAL DATA ANALYSIS

In this chapter, we would assess the performance of the proposed methodologies using

two real data sets and make conclusions based on the analysis. The confidence intervals and

interval lengths for the AUC would be used to demonstrate these application using KERNEL-

BRSS, EL-BRSS, KERNEL-EL, KERNEL-JEL, KERNEL-AJEL, MRSS-EL, MRSS-JEL,

KERNEL-MSRSS-EL, and KERNEL-MRSS-JEL.

4.1 Application using Diabetes data

For our first real data analysis application, we would be using the National Health and

Nutrition Examination Survey (NHANES) for the 2009 to 2012 sample years. The NHANES

is a survey data which was collected by the US National Center for Health Statistics (NCHS)

and contains 10,000 observations and 75 variables which includes demographic variables,

physical measurements, health variables, and lifestyle variables.

For the purpose of this thesis, we would focus on the two groups; those who have

diabetes (y) and those who do not have Diabetes (x). The body mass index (BMI) would be

used as the predictor for diabetes with an estimated AUC value of 0.73 and the concomitant

variable chosen is weight which has a strong Pearson correlation coefficient with BMI (ρx =

0.901, ρy = 0.881). Our chosen set size is m = n = 2 and sample sizes are nx = ny =

20, 40, 80, the number of cycle is determined by k = nx/m, l = ny/n. The 95% confidence

intervals and interval lengths for the AUC using BRSS and MRSS summarized in Table 4.1

indicates that the Two-stage KERNEL-MSRSS-EL has the shortest lengths, the kernel-based

methods have shorter confidence lengths than the MW statistic methods, the JEL methods

have longer interval lengths than the EL methods, and all other results are consistent with

the simulation study.
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Table (4.1) 95% Confidence Intervals and Interval Lengths using the Diabetes data

(20,20) (40,40) (80,80)

Method Length LB UB Length LB UB Length LB UB

KERNEL-BRSS 0.2100 0.5842 0.7942 0.1553 0.5993 0.7546 0.1069 0.6475 0.7544

BRSS-EL 0.3073 0.5425 0.8498 0.2051 0.5852 0.7904 0.1402 0.6379 0.7781

KERNEL-EL 0.2635 0.5556 0.8190 0.1907 0.5758 0.7664 0.1295 0.6333 0.7628

BRSS-JEL 0.3279 0.5328 0.8607 0.2335 0.5721 0.8056 0.1579 0.6303 0.7882

KERNEL-JEL 0.2844 0.5361 0.8205 0.2190 0.5657 0.7847 0.1459 0.6139 0.7598

KERNEL-AJEL 0.3305 0.4807 0.8112 0.2392 0.5369 0.7762 0.1558 0.5974 0.7532

Two-stage MSRSS-EL 0.2248 0.6491 0.8739 0.1471 0.6768 0.8239 0.1121 0.6389 0.7510

Two-stage KERNEL-MSRSS-EL 0.2043 0.6308 0.8352 0.1388 0.6629 0.8017 0.1024 0.6332 0.7356

Two-stage MSRSS-JEL 0.2934 0.6161 0.9095 0.2108 0.6442 0.8551 0.1606 0.6146 0.7752

Two-stage KERNEL-MSRSS-JEL 0.2806 0.6287 0.9093 0.1938 0.6629 0.8017 0.1470 0.6137 0.7607

Three-stage MSRSS-EL 0.2876 0.4989 0.7866 0.1653 0.7044 0.8697 0.1264 0.6927 0.8190

Three-stage KERNEL-MSRSS-EL 0.2436 0.5289 0.7725 0.1530 0.6951 0.8480 0.1201 0.6758 0.7959

Three-stage MSRSS-JEL 0.3458 0.4693 0.8151 0.1969 0.6933 0.8901 0.1463 0.6839 0.8302

Three-stage KERNEL-MSRSS-JEL 0.2924 0.5126 0.8050 0.1921 0.6742 0.8663 0.1386 0.6738 0.8124

4.2 Application using Heart disease data

For our second real data analysis application, we would be using the coronary heart

disease (CHD) data from the Framingham Heart Study. The study began in 1948 and is

under the direction of the National Heart, Lung, and Blood Institute (NHLBI). When the

study began, 5,209 women and men from the town of Framingham between the ages of 30

and 62 who have not shown any symptom of cardiovascular disease or suffered from stroke or

heart attack were recruited and several offspring cohort studies have been added since then.

The dataset contains risk factors for CHD such as systolic blood pressure (SBP), diastolic

blood pressure (DBP), cholesterol, body mass index (BMI), glucose level, heart rate, etc.

For the purpose of this thesis, we would focus on the two groups; those who have 10

year risk of coronary heart disease (y) and those who do not have 10 year risk of coronary

heart disease (x). The SBP would be used as the predictor for diabetes with an estimated

AUC value of 0.62 and the concomitant variable chosen is DBP whose Pearson correlation

coefficient with SBP is (ρx = 0.785, ρy = 0.760). Our chosen set set is m = n = 2 and sample
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sizes are nx = ny = 20, 40, 80, the number of cycle is determined by k = nx/m, l = ny/n.

The 95% confidence intervals and interval lengths for the AUC using BRSS and MRSS

summarized in Table 4.2 indicates that the KERNEL-BRSS has the shortest interval lengths,

the kernel-based methods have shorter interval lengths than the MW statistic methods, and

all other results are consistent with the simulation study.

Table (4.2) 95% Confidence Intervals and Interval Lengths using the CHD data

(20,20) (40,40) (80,80)

Method Length LB UB Length LB UB Length LB UB

KERNEL-BRSS 0.2234 0.5156 0.7390 0.1620 0.5982 0.7602 0.1159 0.5394 0.6553

BRSS-EL 0.3157 0.4692 0.7849 0.2021 0.5836 0.7856 0.1582 0.5255 0.6837

KERNEL-EL 0.2776 0.4866 0.7642 0.1897 0.5748 0.7645 0.1454 0.5236 0.6690

BRSS-JEL 0.3524 0.4547 0.8071 0.2342 0.5725 0.8066 0.1757 0.5176 0.6933

KERNEL-JEL 0.3061 0.4747 0.7808 0.2346 0.5725 0.8066 0.1620 0.5141 0.6761

KERNEL-AJEL 0.3487 0.4244 0.7731 0.2562 0.5478 0.8039 0.1698 0.5009 0.6707

Two-stage MSRSS-EL 0.2645 0.4972 0.7617 0.1753 0.5267 0.7020 0.1695 0.5841 0.7202

Two-stage KERNEL-MSRSS-EL 0.2461 0.5059 0.7520 0.1661 0.5231 0.6892 0.1286 0.5749 0.7035

Two-stage MSRSS-JEL 0.3504 0.4553 0.8057 0.2476 0.4904 0.7380 0.1695 0.5685 0.7381

Two-stage KERNEL-MSRSS-JEL 0.3150 0.4680 0.7830 0.2328 0.4923 0.7250 0.1626 0.5631 0.7258

Three-stage MSRSS-EL 0.2848 0.4565 0.7413 0.1956 0.5128 0.7085 0.1388 0.5908 0.7296

Three-stage KERNEL-MSRSS-EL 0.2535 0.4745 0.7281 0.1747 0.5189 0.6936 0.1309 0.5805 0.7114

Three-stage MSRSS-JEL 0.3640 0.4173 0.7812 0.2505 0.4856 0.7362 0.1679 0.5771 0.7450

Three-stage KERNEL-MSRSS-JEL 0.3286 0.4244 0.7731 0.2254 0.4951 0.7205 0.1596 0.5698 0.7293
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CHAPTER 5

CONCLUSIONS

In this thesis, we focused on the estimation of the area under the ROC curve (AUC)

using ranked set samples which is an important measure in diagnostic medicine. We proposed

EL, JEL, and AJEL methods to obtain the average length of the confidence interval and

coverage probability for AUC and compared with some methods previously proposed.

We conducted simulation studies under Normal, Uniform, and Log-normal distribution

and assessed the coverage and average lengths of the 95% confidence interval. From the

results, we concluded that kernel-based methods tend to give shorter lengths than those

calculated using the Mann-Whitney statistic. The AJEL confidence intervals have longer

average lengths and better coverage probability of the confidence interval than JEL, while

JEL confidence intervals have longer average lengths and better coverage probability of the

confidence intervals than the EL methods. The MSRSS-EL have longer average length and

better coverage probability of the confidence interval than the KERNEL-MSRSS-EL. How-

ever, the KERNEL-MRSS-JEL have longer average length and better coverage probability

of the confidence interval than the MSRSS-EL in most cases.

Furthermore, we illustrated the methods using two real data sets with the help of the

confidence intervals and confidence interval lengths and we confirmed that in some cases, the

two-stage KERNEL-MSRSS-EL has shorter interval lengths than the KERNEL-BRSS. The

KERNEL methods have shorter interval lengths than the methods based on the MW statistic

and the results were consistent with the results from the simulation studies. In the future,

multistage ranked set sampling technique can be applied to the Mann-Whitney statistics

for estimating the AUC using some empirical methods to study the effect of increasing the

stages of RSS on the statistic especially when the AUC value is close to 1.



33

REFERENCES

“About the Framingham Heart Study,” Framingham Heart Study, Boston University and

the National Heart, Lung, and Blood Institute, https://framinghamheartstudy.org/fhs-

about/, Accessed 15 April 2021.

Al-Saleh, M.F. and Al-Kadiri, M. (2000), ”Double ranked set sampling,” Statistics and

Probability Letters 48, 205–212.

Al-Saleh, M.F.and Al-Omari, A.I. (2002), ”Multistage ranked set sampling,” Journal of

Statistical Planning and Inference, 102, 273–286

Al-Saleh, M. F. and Samuh, M. H. (2008), ”On multistage ranked set sampling for distribu-

tion and median estimation,” Computational Statistics and Data Analysis, 52, 2066–2078.

Bamber, D. (1975), “The area above the ordinal dominance graph and the area below the

receiver operating characteristic graph,” Journal of Mathematical Psychology, 12, 387–415.

Berger, Y. G. and De La Riva Torres, O. (2016), “Empirical likelihood confidence intervals for

complex sampling designs,” Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 78, 319–341.

Bohn, L. L. and Wolfe, D. A. (1992), “Nonparametric two-sample procedures for ranked set

samples data,” Journal of the American Statistical Association, 87, 552–561.

Chang, J., Tang, C. Y., and Wu, T. T. (2018), “A new scope of penalized empirical likelihood

with high-dimensional estimating equations,” Annals of Statistics, 46, 3185–3216.

Chen, J., Variyath, A., and Abraham, B. (2008). ”Adjusted empirical likelihood and its

properties,” Journal of Computational and Graphical Statistics, 17:426-443.

Chen, Z., Bai, Z., and Sinha, B. K. (2004), ”Ranked Set Sampling: Theory and Applica-

tions,” Springer, New York, NY.



34

Cheng, C., Liu, Y., Liu, Z., and Zhou, Z. (2018). ”Balanced augmented jackknife empirical

likelihood for two sample U -statistics,” Science China Mathematics 61, 1129–1138.

Devroye, L.P. and Wagner, T. (1979), “The L1 convergence of kernel density estimates,”

Annals of Statistics, 7, 1136–1139.

DiCiccio, T. J., Hall, P., and Romano, J. P. (1991), “Empirical likelihood is Bartlett cor-

rectable,” Annals of Statistics, 19, 1053–1061.
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