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THE GENERATORS, RELATIONS AND TYPE OF THE BACKELIN SEMIGROUP

by

ARUN B. SURESH

Under the Direction of Florian Enescu, PhD

ABSTRACT

We present an explicit minimal set of generators for the defining ideal of the family of Backe-

lin semigroups, introduced first in [8], and find its Betti numbers. In particular, we compute

the type of the semigroup as well, correcting a claim in the literature. Additionally, we show

that the Betti numbers of the associated numerical semigroup ring coincide to those of its

tangent cone.
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CHAPTER 1

INTRODUCTION

Numerical semigroups have been objects of interest since the late 19th century. Owing

to their simplicity in definition, in addition to naturally arising in various problems across

mathematics, they make it possible to state these problems in very simple terms, even if the

solutions to said problems are themselves far from being trivial. To that end, let us start

by defining numerical semigroups and related terminology in order to further motivate the

study of these objects.

Definition 1.0.1 (Numerical semigroup). A numerical semigroup S is a non-empty subset

of N that contains 0, closed under + and satisfies |Sc| < ∞. If n1, n2, . . . , nd ∈ N satisfy

gcd(n1, . . . , nd) = 1, then we say S = 〈n1, n2, . . . , nd〉 = {
∑d

i=1 λini|λi ∈ N for all i ∈ 1, d}

is the semigroup generated by n1, . . . nd.

As a convention, throughout this manuscript we will assume 0 ∈ N. In fact, one can

show that any numerical semigroup S is a commutative monoid and is generated by some

n1 . . . nd ∈ N. Initially, numerical semigroups were conceived as a way to study linear non-

homogeneous equations with positive integer coefficients. This line of study, in fact gave rise

to the Frobenius coin problem that seeks to find the largest monetary amount that can not

be achieved using only coins of specified denominations. In technical terms, given a semi-

group S = 〈n1, . . . , nd〉, the coin problem seeks to find a formula for the largest integer not

belonging to S. This integer is often called the Frobenius number of the semigroup S. The

Frobenius problem remains unsolved to this day for general semigroups with four or more

generators. In [4] the authors derive a rather surprising formula for the Frobenius number

of a general two generated semigroup (a result originally due to Sylvester) and motivate the

solution for the much more complicated case of a three generated semigroup.

While this classical approach presented a lot of interesting problems in semigroup theory

in the late nineteenth century, numerical semigroups went overlooked for the better part

of the early twentieth century. During the second half of the twentieth century, however,
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numerical semigroups started reappearing in the literature substantially, because of their

new found applications to algebraic geometry and commutative algebra. It is known that

the valuations of an analytically unramified one-dimensional local Noetherian domain R is a

numerical semigroup if the completion R̂ is a domain, and is reduced. In fact, many proper-

ties of these domains can be characterized via studying their associated value semigroup and

conversely, one may use these numerical semigroups to construct one dimensional Noethe-

rian local domains with desirable properties. In [2], the authors point out that an important

class of examples of such rings are local rings of algebraic curves, which lends credence to

the importance of the subject. This modern pursuit of numerical semigroups with a view

towards algebraic geometry, also gave rise to the discovery of various important invariants

like multiplicity, embedding dimension, pseudo-Frobenius number and type. We will define

and study these invariants as we apply them to our problem at hand concerning the Backe-

lin semigroup. On the other hand, over the course of the last fifty years various families of

numerical semigroups have also been introduced to serve as counterparts of different objects

in ring theory. Some examples, as pointed out in [12], are symmetric and pseudo-symmetric

numerical semigroups, numerical semigroups with maximal embedding dimension and with

the Arf property, saturated numerical semigroups and complete intersections. While the

scope of numerical semigroups extends beyond the realm of algebraic geometry, into number

theory, factorization on integral domains and linear integer programming – for the purposes

of this short exposition, we refrain from discussing those applications.

In the following section, we will proceed to establish relevant definitions, terminology and

some fundamental results from the literature on numerical semigroups to understand these

objects a little better so that we may work with them. In section 1.3 we will introduce and

study a smaller example problem due to Bresinsky [5] and present relevant work done in that

area. In section 1.4 we will introduce the main problem concerning the Backelin semigroup,

present relevant theorems from previous work done in this area, and motivate our proof.
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CHAPTER 2

BACKGROUND

Let S be a numerical semigroup and let S× = S \{0}. Denote by S×+S× the elements of S

that are the sum of two non-zero elements of S. In what follows, we will provide some simple

results (without proof) that will be useful for further discussion. The reader is encouraged

to refer to [12] for proofs and clarifications.

Theorem 2.0.1. Let S be a numerical semigroup as above, and S× = S \ {0}. S admits

a unique minimal system of generators given by S× \ (S× + S×). This minimal system is

finite.

With a unique minimal generating for any given numerical semigroup S guaranteed by

Theorem 2.0.1, we can now concretely formulate the following definition.

Definition 2.0.2 (Multiplicity and Embedding dimension). Let S be a numerical semigroup

and let {n1 < n2 < · · · < nh} be its unique minimal generating set. We call n1 the multiplicity

of S, often denoted m(S) and h the embedding dimension of S, denoted by embdim(S).

A few things that are straightforward to note are that m(S) is the least positive integer

in S and that embdim(S) = 1 if and only if S = N. With this set up in place one can also

formally define the two important invariants of S, namely the Frobenius number of S and

the genus of S.

Definition 2.0.3 (Frobenius number and genus). If x in N \ S such that x + n ∈ S for all

n ∈ N, then x is called the Frobenius number of S and is often denoted by F (S). The set

N \ S is known as the set of gaps of S, and its cardinality is called the genus of S.

While the genus of S does not play an important role in this study, the Frobenius number

is rather central to our exploration. Presented below is a result due to Sylvester on the

Frobenius number of a general two generated semigroup. The reader is encouraged to refer

Chapter 1 of [4] for a detailed proof.
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Theorem 2.0.4. Let S = 〈a, b〉, the Frobenius number of S is given by F (〈a, b〉) = ab−a−b.

One may relax the definition of the Frobenius number to allow for the so called pseudo-

Frobenius numbers of S. An associated invariant is the so called type of the numerical

semigroup. Both of these play an important role in our study, and are central to the con-

nection between numerical semigroups and objects in commutative algebra.

Definition 2.0.5 (Pseudo-Frobenius numbers and Type). An integer x ∈ N \ S is called

a pseudo-Frobenius number if x + s ∈ S for all s ∈ S∗. The set of all pseudo-Frobenius

numbers are often denoted by PF (S). The cardinality of PF (S) is known as the type of S

and is often denoted by t(S).

An easy thing to notice is that F (S) ∈ PF (S) and is, the maximal element of PF (S). In

fact, if we introduce an ordering ≤S over the integers given by a ≤s b ⇐⇒ b− a ∈ S, then

it can be easily shown from the definition that PF (S) is the same as the set of all maximal

elements in the gaps of S with respect to ≤S. The following example illustrates all the above

definitions in action for a given semigroup S.

Example 1. Let S = 〈5, 7, 11〉. S is given by {0, 5, 7, 10, 11, 12, 14, 15, . . . }. The multiplicity

of S is m(S) = 5, the Frobenius number of S is F (S) = 13. The gaps of S is the set

{1, 2, 3, 4, 6, 8, 9, 13} and which gives that the genus of S is 8. The pseudo-Frobenius numbers

of S are given by PF (S) = {9, 13}, and thus the type of S is simply t(S) = 2.

In fact, work in [8], extends Herzög’s work in [9] to show that any three generated

semigroup has type at most 2. This case of embdim(S) = 3 is also further explored in

Chapter 9 of [12]. It is noteworthy that a lot of concrete computations in this concerning

numerical semigroups can be made using numericalsgps package that comes integrated

with the computer algebra software GAP.

In order to make further progress, we now want to establish the mechanism that lets us

translate and reinterpret the above definitions into commutative algebraic terms. To that

end, let K be a field and consider the following definition
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Definition 2.0.6 (Numerical semigroup ring). To a given semigroup H = 〈a1, . . . , ah〉, we

can associate the so called numerical semigroup ring given by K[H] = K[ta : a ∈ H], which

is simply a K-subalgebra of K[t].

In what follows we outline the necessary ideas and concepts from commutative algebra

which will serve us well in our exploration. In section 3.1 we will reinterpret these ideas in

the context of semigroup rings. A much more thorough treatment of the following concepts

can be found in chapter 1 of [6] or chapter 15 of [7].

Definition 2.0.7 (Syzygy module). Let (R,m) be a commutative, Noetherian, local ring and

let M be a finitely generated R-module, say with minimal generators z1, . . . , zβ0. A syzygy of

M is an element (a1, . . . , an) ∈ Rβ0 such that a1z1 + · · ·+ aβ0zβ0 = 0. The set of all syzygies

(relative to a given generating set) forms a submodule of Rβ0 and is known as the (first)

syzygy module of M . In other words, it is the kernel of the map φ0 : Rβ0 → M where the

canonical basis elements of Rβ0 are mapped to the generators of M .

It is also worth noting that for any two choices of minimal generating sets, their corre-

sponding syzygy modules are isomorphic. Proceeding similarly, upon the construction of the

first syzygy module, say M1 = Ker(φ0) of M , one can choose a minimal generating set of M1

to create the second syzygy module, of M , say M2 = Ker(φ1) where φ1 : Rβ1 → Rβ0 defined

similar to φ1; and so on. This way one gets a minimal free resolution

· · · → Rβi → · · · → Rβ1 → Rβ0 →M → 0

where the ith syzygy module of M is simply Ker(φi−1).

While the above construction was made for the Noetherian local case, it is worth noting

that the above definitions and discussions also hold for finitely generated graded modules

over polynomial rings with a minimal graded set of generators.
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Definition 2.0.8 (Betti Numbers). With the above setup, we say βi is the ith Betti number

of M .

With the above set up in place, one can now define the projective dimension of M

Definition 2.0.9 (Projective dimension). If for some h ∈ N we have βh 6= 0 but βi = 0 for

all i > h, then, h is called the projective dimension of M , often denoted by projdim(M). If

no such h exists, then projdim(M) =∞.

Often times when working with Cohen-Macaulay (Noetherian) local rings R with finite

projective dimension, one can concretely compute the projective dimension of an R−module

M using the Auslander Buchsbaum formula presented below.

Theorem 2.0.10 (Auslander-Buchsbaum). Let (R,m, K) be a Noetherian local ring and M

a finitely generated R module. If projdim(M) <∞ then we have

projdim(M) = depth(R)− depth(M).

While Theorem 2.0.10 is given for the Noetherian local case, a version of it is also true

for a finitely generated graded module over a polynomial ring (over a field). That is to say,

if we let S = K[x1, . . . , Sh] and V a finitely generated graded module over S, then

projdim(V ) = h− depth(V ).

Without loss of generality, when we consider finitely generated graded modules over a poly-

nomial ring, we will treat the above equation as the result given by Theorem 2.0.10. A

special case of the above that is of importance to us is when V = S/p where p is some prime

ideal of S. In this case, we get more flexibility because we know that V is Cohen-Macaulay

and thus there is equality in depth and dimension. So we get

projdim(V ) = h− dim(V ) = h− (dim(S)− ht(p)) = ht(p).
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The last non-trivial Betti number of M is known as the Cohen-Macaulay type of M

and is denoted by t(M) (a temporary abuse of notation, refer Section 3.1 for clarification),

explicitly given by dimK ExthM(K,M) where h = depth(M). However, by reducing the

homological degrees, one is able to show that t(M) = dimK Soc(M/xM), where x is a

maximal regular sequence and Soc(·) refers to the Socle, defined (in the Noetherian local

case) as Soc(M) = (0 : m)M ∼= HomR(K,M); see [6].

Another object that is relevant to our study is the associated graded ring of R.

Definition 2.0.11. Let I be an ideal of a ring R. The associated graded ring of R with

respect to I is given by

grIR =
∞⊕
i=0

I i

I i+1
.

Letting Ii

Ii+1 be the homogeneous component of degree i we can see that grIR is a graded

K−algebra under the standard grading. This object is often called the tangent cone of K[H].

Chapter 5 of [7] provides a very nice explanation on the reason for this terminology.
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CHAPTER 3

PREVIOUS RESULTS

3.1 Set up

In this section we will reinterpret the commutative algebra tools established in the previous

chapter in terms of semigroup rings. To this end, we start by constructing the semigroup

ring associated to a given semigroup H = 〈a1, . . . , ah〉.

Let S = K[x1, . . . , xh], and consider the natural homomorphism φ : S → K[t] with φ(xi) =

tai . This can be thought of as a gradedK-algebra homomorphism mapping ontoK[ta1 , . . . , tah ] =

K[H] with the grading given by deg(xi) = ai. The kernel of this map is the central object of

study, and is generally known in the literature as the presentaton ideal or the defining ideal

of the semigroup ring K[H]. We will denote this presentation ideal by IH . The importance

of IH is clear as it describes the relations between the generators of H. Furthermore, it is

clear that we have S/IH ∼= K[H], and so obtaining the relations in IH gives us a realistic

way to understand K[H]. Furthermore, in [9], Herzög points out that IH is generated by

binomials and in fact,

IH =

〈
xu − xv : u, v ∈ Nn with

h∑
i=1

uiai =
h∑
i=1

viai

〉

where xu =
∏h

i=1 x
ui
i .

With this in place we first note that in our case, we have M = K[H] ∼= S/IH . So, we

construct a minimal free resolution of K[H] as

. . .
φ2−→ Sβ1

φ1−→ S1 φ0=φ−−−→ K[H]→ 0

It is clear that minimal generating set of IH generates the first syzygy module of K[H]
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and that the cardinality of the minimal generating set of IH makes up the first Betti number

of K[H]. Moreover, since K[H] is a finitely generated module over the polynomial ring S,

we can use Hilbert’s syzygy theorem to produce non-trivial syzygies until the the projective

dimension is reached.

In case of numerical semigroup rings we also enjoy more benefits, as we are able to con-

cretely compute the projective dimension of K[H] using the Auslander-Buchsbaum formula.

Letting M = S/IH and R = S in Theorem 2.0.10, it is straightforward to check that the

hypothesis of Theorem 2.0.10 holds in this case. Since K[H] ∼= S/IH is a one dimensional

domain and S is just a polynomial ring over a field, both objects are Cohen-Macaulay and

thus, we have equality in dimension and depth. This gives

projdim(K[H]) = dim(S)− dim(S/IH) = h− 1 = embdim(H)− 1.

Therefore, the Betti sequence of K[H] is simply (β0(K[H]), β1(K[H]), . . . , βh−1(K[H])),

where β0(K[H]) = 1. It is also generally known that µ(IH) = β1(K[H]) equals the minimal

number of graded generators of IH and this number is the same for any set of minimal graded

generators for IH .

Furthermore, in section 3 of [13], Stamate shows that the Cohen-Macaulay type of K[H]

coincides with the t(H). Examples of families of semigroups with unbounded type and fixed

embedding dimension have been always of interest and are scarce in the literature.

Finally, we also consider the associated graded ring of K[H] with respect to the maximal

ideal m = 〈th : h ∈ H∗〉. This is explicitly given as

grm(K[H]) =
∞⊕
i=0

mi

mi+1
.

We recall that, letting mi

mi+1 be the homogeneous component of degree i, we notice that
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grm(K[H]) is a graded K-algebra under the standard grading. Working with grm(K[H])

lets us work around the non-standard grading on K[H], and instead work with a standard

grading, which often times, is much nicer.

An interesting fact about the tangent cone of K[H] and its Betti numbers that is impor-

tant to our exploration, is given by the following theorem

Theorem 3.1.1. The Betti numbers of grm(K[H]) bound by above the Betti numbers of

K[H]. That is to say for any i, we have β̂i ≥ βi where β̂i is the ith Betti number of

grm(K[H]) and βi is the ith Betti number of K[H].

Moreover, a special case of the above theorem requires its own terminology as defined

below

Definition 3.1.2 (Homogeneous type). Let β̂i and βi be as in Theorem 3.1.1. When β̂i = βi

for all i, then we say that K[H] is of Homogeneous type.

The reader may refer to [10] for further reading.

3.2 Previous results

In this section we will enumerate, explore and motivate some previous results in this area.

When embdim(H) = h = 2, IH turns out to be principal. This can be seen as a consequence

of Theorem 2.0.10. In particular, notice that we are in the Cohen-Macaulay local case with

M = S/IH and IH prime. So

1 = 2− 1 = embdim(K[H])− 1 = projdim(K[H]) = ht(IH).

Since we are working with a UFD and IH is prime, we know that ht(IH) = 1 =⇒ IH is

principal.

When h = 3, a result of Herzog in [9] shows that µ(IH) ≤ 3 and in fact IH can be de-

scribed precisely. However, if h ≥ 4, the situation changes drastically. Bresinsky was first to
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show that for h = 4 there is no upper bound for µ(IH) in [5]. Specifically, Bresinsky’s family

of semigroups is given as follows: let n ≥ 2 be an integer and let

H = 〈(2n− 1)2n, (2n− 1)(2n+ 1), 2n(2n+ 1), 2n(2n+ 1) + 2n− 1〉

and µ(IH) = 4n. Subsequently, Arslan has also provided an example by letting

H = 〈n(n+ 1), n(n+ 1) + 1, (n+ 1)2, (n+ 1)2 + 1〉,

for n ≥ 2 and showing that µ(IH) = 2n + 2, see [1]. In what follows, we will look at

Bresinsky’s semigroup and use it as an example to motivate our problem at hand. To this

end, let n ≥ 2 and consider

H = 〈(2n− 1)2n, (2n− 1)(2n+ 1), 2n(2n+ 1), 2n(2n+ 1) + 2n− 1〉.

Construct the canonical homomorphism as outlined in the previous chapter. In [5], Bresinsky

introduces H only to show that µ(IH) can be arbitrarily large. It is done so in the following

fashion. We start by defining sets

A1 = {fi = xi+1y2n−i − zi−1w2n−i : 1 ≤ i ≤ 2n}

A2 = {f = xν1zν3 − yµ2wµ4 : ν3, µ4 ≤ 2n− 1, f ∈ IH}

E = {g1 = z2n−1 − y2n, g2 = xw − yz}

A = A1 ∪ A2 ∪ E and

A′ = A ∪ {xν1zν3 − yµ2wµ4 ∈ IH}

After defining these sets, Bresinsky took the following four-step approach

1. (Lemma 2 ) (A′) = IH =⇒ (A) = IH

2. (Lemma 3 ) (A′) = IH
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3. (Lemma 4 ) Elements of A1 are necessarily in the minimal generating set.

4. (Corollary 1 ) µ(IH) ≥ 2n

Since n is arbitrary, Corollary 1 ensures that µ(IH) can be arbitrarily large. The heart of

Bresinsky’s argument lies in Lemma 2, and this technique proves to be vital in our problem

as well. So, let us consider an example to illustrate what happens in Lemma 2.

Example 2. Let n = 2 and so we have H = 〈12, 15, 20, 23〉.

Consider f = x6z7 − y8w4 ∈ (A′) and construct f ′ given by

f ′ = f + x6z4f4 = f + x6z4(x5 − z3) = x11z4 − y8w4

Notice that we have decreased the exponent of z by 3. Similarly, we construct once more

f ′′ = f ′ + x6z4f4 = x16z1 − y8w4

Finally, for one last time, we consider

f ′′′ = f ′′ − y8w1f1 = f ′′ − y8w1(x2y3 − w3) = x2(x14z1 − y11w1) ∈ A

Now, we simply work backwards to write

f = f ′′′ + y8wf1 − 2x6z4f4 ∈ A

The technique highlighted in the above example is what we in our work call the process

of reduction. This is because at the end of the entire process, we have essentially written f

as a combination of elements with lesser homogeneous degree than that of the binomial f –

which allows us to shift our focus from f to the “reduced” components of f .

In a clever inductive argument, Bresinsky was able to also show that for any h ≥ 4, µ(IH)

can be arbitrarily large as well. But of course, the set A2 is an infinite set in Bresinsky’s
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example, and thus a closed form for the cardinality of the minimal generating set for IH was

unknown for a long period of time. It was only in 2014, a complete 44 years after Bresinsky’s

original work, that a generating set was completely written for Bresinsky’s example. In [10]

the authors revise Bresinksy’s A2 set with

A3 = {uj = x2n+1−jzj − y2n−jwj : 0 ≤ j ≤ 2n− 2}

to write an explicit generating set for IH . Notice that this replacement allows for the removal

of g1 from the set E. So the final minimal generating set for IH is given by B = A1∪{g2}∪A3

with 4n elements.

The last piece of the puzzle we need is a way to ensure the minimality of a generating set.

To that end consider the following set up. Once again, let S = K[x1, . . . , xh] and I an ideal

of S. Consider the standard grading on S where all variables have degree 1. For a nonzero

element f ∈ I, the nonzero homogeneous part of f of lowest degree is called the initial form

of f , and is denoted by f ∗. Let I∗ = (f ∗ : f ∈ I). We say that f1, . . . , fk ∈ I form a

standard basis for I if I∗ = (f ∗1 , . . . , f
∗
k ). The following theorem is useful in establishing the

minimality of our generating set.

Theorem 3.2.1 (Herzog, see [10]). Let I ⊆ n = (x1, . . . , xn) be an ideal in S = K[x1, . . . , xh].

Let Ŝ = K[[x1, . . . , xh]] and assume that x1 is a nonzerodivisor on Ŝ/IŜ.

Let π : S → K[x2, . . . , xh] defined by π(x1) = 0, π(xi) = xi for all i = 2, . . . , h and denote

I = π(I). Assume that g1, . . . , gr form a standard basis for I in K[x2, . . . , xh] and let fi ∈ I

such that π(fi) = gi and deg(f ∗i ) = deg(g∗i ) for all i = 1, . . . , r. Let S = π(S) = K[x2, . . . , xn]

and n = π(n) = (x2, . . . , xn).

1. Then f1, . . . , fr form a standard basis for I.

2. x1 is a nonzerodivisor on grn(S/I).
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3. We have a graded K-algebra isomorphism

grn(S/I)

x1 · grn(S/I)
' grn(S/I).

The above theorem plays a very important role in our study. This is because, with a

clever representation of the minimal generating set and a good choice of π, the above theorem

gives us a way to translate our binomial ideal IH into a monomial ideal and reduces the entire

problem into ensuring the minimal generation of a monomial ideal by the images, which is

a much easier endeavor. In addition, since the Betti numbers are preserved under modding

out by a nonzero-divisor, we know that all the Betti numbers are preserved through this map

π. This reduces the computational complexity of the problem and boils the non-triviality

down to simply just obtaining a proper generating set of IH .
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CHAPTER 4

THE MAIN RESULT

4.1 Introducing the problem and preliminary results

In what follows, we focus on the case where h = 4, and in particular we study Backelin’s

family of semigroups defined as done below:

Given n ≥ 2, r ≥ 3n+ 2, let

H = Hn,r = 〈r(3n+ 2) + 3, r(3n+ 2) + 6, r(3n+ 2) + 3n+ 4, r(3n+ 2) + 3n+ 5〉.

Fröberg, Gottlieb, and Häggkvist have communicated this example in their work [8] as the

first family with fixed embedding dimension, but with unbounded type, attributing the claim

to Backelin. In the paper, they verified the claim by showing that the type is at least 2n+ 2,

and also stated, however incorrectly, that the type equals 2n + 3 (see Example on page 75

of their paper).

The goal of the chapter is multifold. We will produce an explicit minimal generating set

for IH and prove therefore that µ(IH) = 3n+ 4, which was stated in [13] based on numerical

evidence obtained with Singular and GAP. Secondly, we verify that the type of this semi-

group is 3n+ 2 correcting the wrong claim from [8]. This discrepancy was noted by Stamate

in his paper [13], based upon computer algebra computations, but we verify it here in full

generality. Moreover, there has been interest in the literature in numerical semigroup rings

for which the Betti numbers coincide with the Betti numbers of their tangent cone. We show

that this is the case for the Backelin family of numerical semigroups, confirming numerical

evidence from [13].

We start by letting n, r and H = Hn,r as above. As done in chapter 2, we let S =
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K[x, y, z, w] and φ : S → K[H], defined by

φ(x) = tr(3n+2)+3, φ(y) = tr(3n+2)+6, φ(z) = tr(3n+2)+3n+4, φ(w) = tr(3n+2)+3n+5.

We put a grading on S by letting deg(x) = r(3n+2)+3, deg(y) = r(3n+2)+6, deg(z) =

r(3n+ 2) + 3n+ 4, deg(w) = r(3n+ 2) + 3n+ 5 and consider the grading on K[H] induced

by the natural grading on K[t]. This turns φ into a graded homomorphism. As before, we

let IH = Ker(φ) which is a graded ideal under this N-grading. It is known that this equals

the minimal number of graded generators of I and this number is the same for any set of

minimal graded generators for I.

Definition 4.1.1. Consider the following sets of elements in K[x, y, z, w]:

S1 = {xn−kz3k−1 − yn−k+1w3k−2 : k = 1, . . . , n},

S2 = {xr−k+3yk−1 − z3(n−k)+2wr−3(n−k)−1 : k = 1, . . . , n},

S3 = {xr−(n+k)+3yn+k − z3(n−k)+1wr−3(n−k)+1 : k = 1, . . . , n},

and

E = {xw3 − yz3, xnw2 − yn+1z, xr−n+2ynz − wr+2, x2n−1zw − y2n+1}.

With these notations we can state the main results of this note.

Theorem 4.1.2. The set S1 ∪ S2 ∪ S3 ∪ E generates the defining ideal of K[H].

Moreover, the following result holds.

Corollary 4.1.3. 1. A minimal generating set of the presentation ideal of the semigroup

ring K[H] is given by S1 ∪ S2 ∪ S3 ∪ E.

2. The type of K[H] is 3n + 2 and the sequence of Betti numbers of K[H] is (1, 3n +

4, 6n+ 5, 3n+ 2).
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The proof of Theorem 4.1.2 will occupy the bulk of this article. Using it, one can show

Corollary 4.1.3. So, we will show this first.

Proof of Corollary 4.1.3 while assuming Theorem 4.1.2. Our proof will use the notations in

Theorem 3.2.1. Let x1 = x, x2 = y, x3 = z, x4 = w and I = π(I), where π is defined by

π(x) = x, π(y) = y, π(z) = z, π(w) = 0, as it is done in Theorem 3.2.1.

The minimal number of generators of I is given by the number of generators of a minimal

graded set of generators. The Betti numbers of the graded ideal I is invariant under modding

out by a nonzerodivisor on S/I, in this case w. So it is enough to find the Betti numbers of

I.

Theorem 4.1.2 shows that the defining ideal I of φ is (S1, S2, S3, E). This shows that, if

we let w = 0, the ideal I is generated by

xn−kz3k−1, xr−k+3yk−1, xr−(n+k)+3yn+k, k = 1, . . . , n

and

yz3, yn+1z, xr−n+2ynz, y2n+1.

Clearly this forms a minimal set of generators for I which is a monomial ideal. So, µ(I) =

3n + 4 which also shows that µ(I) = 3n + 4. As the cardinality of S1 ∪ S2 ∪ S3 ∪ E is also

3n+ 4 this proves that it is also a minimal set of generators for I.

For the second claim of the Corollary, we will first compute the type of K[H] ' S/I,

which reduces to finding the type of S/I. This can be computed by finding the dimension

of the socle of K[x, y, z]/I, which is I:(x,y,z)

I
(see Definition 1.2.15 and Lemma 1.2.19 in [? ]).

Hence, to compute the type, we will find the set B of monomials whose images form a

basis for
I : (x, y, z)

I
.

Since I is monomial, it can be easily seen by looking at the exponents, that the following
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3n+ 2 monomials

xn−kz3k−2 for k = 2, . . . , n

xr−(n+k)+3yn+k−1, xr−k+2yk−1z for k = 1, . . . , n

and

xr−n+1ynz, xn−2ynz2, xr−2n+2y2n

have nonzero images in I:(x,y,z)

I
.

Let us consider a monomial xaybzc whose image belongs to the basis B. We will show it

belongs to the list above by examining each possible value for c. Clearly, c ≤ 3n− 2.

If c = 0, then b ≤ 2n. If b = 2n, then the only possibility for a is r − 2n + 2. For

n ≤ b < 2n, then b = n+ k− 1 for some k with 1 ≤ k ≤ n. In this case, a = r− (n+ k) + 3.

Further examination shows that b < n is not possible.

If c = 1, then b ≤ n. If b = n, it follows easily that a = n − 2. If b < n, then b = k − 1

for some k = 1, . . . , n and it can be seen that a = r − k + 2.

The rest of the cases c ≥ 2 can be examined similarly.

Finally, the zeroth Betti number is 1, the first Betti number is 3n+ 4 and the third Betti

number is 3n+ 2. Since the alternating sum of Betti numbers is 0 it follows that the second

Betti number is 6n+ 5.

The following Lemma is well-known and easy to check and so it will be used without

proof.

Lemma 4.1.4. Let K be a field and f1, . . . , fn be elements of K[x1, . . . , xn] that are homoge-

nous under the standard grading. Let I = (f1, . . . , fn). Then f1, ...., fn form a standard basis

for I.

We can derive now the following consequence of our work.
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Corollary 4.1.5. 1. The set S1∪S2∪S3∪E forms a standard basis for the defining ideal

I of K[H].

2. Let n = (x, y, z, w) in K[x, y, z, w] which maps onto the maximal graded ideal of K[H] =

K[x, y, z, w]/I. Then K[H] and grn(K[H]) have the same Betti numbers.

Proof. This result is a straightforward consequence of Theorem 3.2.1. The reasoning is well

known, mentioned explicitly in [10] in the proof of their Theorem 1.4.

As in Theorem 3.2.1, let S = K[x, y, z, w], I be the defining ideal of K[H], and I, n, S

resulting from sending x→ 0.

The elements we obtain in I are all homogenous:

z3n−1−yw3n−2, yn−l+1w3l−2, z3(n−k)+2wr−3(n−k)−1, z3(n−k)+1wr−3(n−k)+1, yz3, yn+1z, wr+2, y2n+1

with l = 1, . . . , n − 1 and k = 1, . . . , n. They form a standard basis for I, according to

Lemma 4.1.4. Now Theorem 3.2.1 gives the first part.

For the second part, on one hand, because x is a nonzerodivisor on K[H], we have that

the Betti numbers of K[H] coincide to the Betti numbers of S/I.

On the other hand, because x is nonzerodivisor on grn(S/I), then the Betti numbers of

grn(S/I) coincide to the Betti numbers of

grn(S/I)

x · grn(S/I)
' grn(S/I).

But S/I and grn(S/I) have the same Betti numbers, as I is a homogenous ideal.

We will end this section by computing the pseudo-Frobenius numbers of the Backelin

semigroup Hn,r.
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Definition 4.1.6. For a numerical semigroup H, the pseudo-Frobenius numbers are the

elements of the set

PF (H) = {n ∈ Z \H : n+ h ∈ H for all h ∈ H \ {0}}.

The cardinality of this set equals the type of H.

Mainting the notations used in introducing the Backelin semigroup, let us denote a1 =

r(3n+ 2) + 3, a2 = r(3n+ 2) + 6, a3 = r(3n+ 2) + 3n+ 4, a4 = r(3n+ 2) + 3n+ 5.

Proposition 4.1.7. Let n ≥ 2, r ≥ 3n+ 2. The pseudo-Frobenius numbers of Hn,r are

(n− k)a1 + (3k − 2)a3 − a4, for k = 2, . . . , n

(r − (n+ k) + 3)a1 + (n+ k − 1)a2 − a4, for k = 1, . . . , n

(r − k + 2)a1 + (k − 1)a2 + a3 − a4, for k = 1, . . . , n

(r − n+ 1)a1 + na2 + a3 − a4, (n− 2)a1 + na2 + 2a3 − a4, (r − 2n+ 2)a1 + 2na2 − a4.

Proof. The homomorphism φ : S → K[H], where w → 0, induces an isomorphism S/(w) '

K[H]/(ta4). But S/(w) = K[x, y, z]/I, where I is the ideal resulting from sending w →

0. According to Lemma 8 in [3] we need compute the nonzero monomials of the socle of

K[H]/(ta4) ' K[x, y, z]/I and this was in done in the proof of Corollary 4.1.3.

4.2 Proof of Theorem 4.1.2

The arguments behind the proof of Theorem 4.1.2 will cover the remainder of this paper and

will be rather lengthy. We introduce some auxiliary notations needed in section.

As we mentioned in the Introduction, the defining ideal I is generated by binomials

xν1yν2zν3wν4 − xµ1yµ2zµ3wµ4 ,
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with ν = (ν1, . . . , ν4), µ = (µ1, . . . , µ4),
∑
νiai =

∑
µiai. Let d =

∑
νiai =

∑
µiai the total

degree of the binomial under the natural grading induced by the semigroup H. Since the

defining ideal is prime, it can be easily seen that each such binomial can be assumed to be

a difference of non-overlapping monomials, that is, νi · µi = 0, for each i = 1, . . . , 4. In this

section, we study all the different types of binomials in the presentation ideal.

Let J be the ideal generated by S1 ∪ S2 ∪ S3 ∪ E. Since J ⊆ I, we plan to show that

I ⊆ J .

The proof of this statement will go by induction on d =
∑
νiai =

∑
µiai in the following

way:

to show that I ⊆ J , we will show that, for any d ≥ 1, the binomial xν1yν2zν3wν4 −

xµ1yµ2zµ3wµ4 of degree d either belongs to J or it belongs to the ideal generated by binomials

of I of degree strictly less than d.

The reader should note that, if a binomial belongs to the ideal generated by binomials

in I of strictly lower degree, we will say that the binomial reduces to a lower degree.

Our analysis will consider all possible types of binomials in I, assumed non-overlapping.

First, we start with a lemma.

Lemma 4.2.1. xw3n+1 − z3n+2, xyw6n−1 − z6n+1 belong to J.

Proof. We know that S1, respectively E, is in J and, so, z3n−1 − yw3n−2 and, respectively

xw2−z3, is in J . Modulo J we have z3n+2 = z3·z3n−1 = z3·yw3n−2 = xw2w3n−2 = xw3n+1.

Now, we move to analyzing each binomial based upon type.

4.2.1 Type: xν1yν2 − zµ3wµ4

Consider xν1yν2 − zµ3wµ4 ∈ I. This binomial satisfies

ν1[r(3n+2)+3]+ν2[r(3n+2)+6] = µ3[r(3n+2)+3n+4]+µ4[r(3n+2)+3n+5] (4.2.1.1)

Claim 4.2.2. ν1 + ν2 ≥ r + 2 and µ1 + µ2 ≥ r + 1.
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Proof. In equation 4.2.1.1, denote ν1 + ν2 = k, 3ν2 = l, µ3 + µ4 = k′ and µ4 = l′ and note

that 0 ≤ l ≤ 3k and 0 ≤ l′ ≤ k′. So we get k[r(3n+ 2) + 3] + l = k′[r(3n+ 2) + 3n+ 4] + l′.

Case 1: If k ≤ k′, we have k′ = k + k′′ with k′′ ≥ 0.

This gives l = k(3n+ 1) + k′′[r(3n+ 2) + 3n+ 4] + l′ > 3k, contradiction!

Case 2: If k > k′, we have k = k′ + k′′, with k′′ > 0. We get

k′′[r(3n+ 2) + 3] + l = (3n+ 1)k′ + l′ ≤ (3n+ 2)k′

and so

k′ ≥ r(3n+ 2) + 3

3n+ 2

which further gives k′ ≥ r + 1 =⇒ k ≥ r + 2, proving our claim.

Rearranging equation 4.2.1.1, we have

3ν1 + 6ν2 − 2µ3 − 3µ4 = p(3n+ 2) (4.2.2.1)

where

(µ3 + µ4)(r + 1)− (ν1 + ν2)r = p (4.2.2.2)

It is easy to notice that p > 0. Now, if µ3 +µ4 = r+m with m ≥ 1, then ν1 +ν2 ≥ r+m+1.

Let ν1 + ν2 = r +m+m′ with m′ ≥ 1. Going back to equation 4.2.2.2 we have

(r+m)(r+1)−(r+m+m′)r = p > 0 =⇒ r+m−m′r = p > 0 =⇒ m+r(1−m′) = p > 0.

Therefore, we have two cases to consider.

Case 1: m′ = 1 =⇒ m = p. Let ν1 +ν2 = r+p+1+k′−k′ =⇒ ν1 = r+p+1−k′ and

ν2 = k′. Solving for µ3, µ4 we get µ3 = 3(pn− k′) + 2p− 3 and µ4 = r− 3(pn− k′) + (3− p).

Since k′, ν1, ν2, µ3 and µ4 all depend on p, let us start denoting them by k′p, ν1p, ν2p, µ3p
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and µ4p respectively.

Case 1.1 Now, when p = 1, we get

ν11 = r + 2− k′1, ν21 = k′1, µ31 = 3(n− k′1)− 1, µ41 = r − 3(n− k′1) + 2.

Notice that µ31 ≥ 0 implies that k′1 ∈ 0, n− 1.

With the change of variables k′1 → k′1 − 1 we obtain a set of binomials

S2 = {xr−k′1+3yk
′
1−1 − z3(n−k′1)+2wr−3(n−k

′
1)−1 : k′1 ∈ 1, n}.

Case 1.2 Now, when p = 2, we get

ν12 = r + 3− k′2, ν22 = k′2, µ32 = 3(2n− k′2) + 1, µ42 = r − 3(2n− k′2) + 1

Notice that from µ32 ≥ 0 we obtain that k′2 ∈ 0, 2n.

This gives us the set of polynomials

{xr−k′2+3yk
′
2 − z3(2n−k′2)+1wr−3(2n−k

′
2)+1 : k′2 ∈ 0, 2n}

Some of the binomials in this set can be further reduced to lower degree: when 0 ≤ k′2 =

i ≤ n− 1 we see that ν12|k′2=i > ν11|k′1=i and ν22|k′2=i = ν21|k′1=i = i.

So,

xν12yν22−zµ32wµ42 = xν12−ν11yν22−ν21(xν11yν21−zµ31wµ41)+zµ31wµ42(xν12−ν11yν22−ν21wµ41−µ42−zµ32−µ31).

Note that xν12−ν11yν22−ν21wµ41−µ42 − zµ32−µ31 equals xw3n+1 − z3n+2 which is in J by
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Lemma 4.2.1. Also xν11yν21−zµ31wµ41 is in J by the preceding case and so xν12yν22−zµ32wµ42

is in J for these special values of k′2.

Also, when k′2 = n, we have ν12|k′2=n = ν11|k′1=n−1 and ν22|k′2=n = n > ν21|k′1=n−1 = n− 1.

So this binomial can be reduced to lower degree in similar fashion as above using that

z3n−1 − yw3n−2 is in J . Therefore, we can eliminate all cases where k′2 ∈ 0, n and under a

renaming of variables k′2 → n+ k′2 we have

S3 = {xr−(n+k′2)+3yn+k
′
2 − z3(n−k′2)+1wr−3(n−k

′
2)+1 : k′2 ∈ 1, n}

Case 1.3 We now aim to show that for p ≥ 3, the set of binomials obtained belong to

the ideal J or can be reduced to lower degree. We will employ the same method as before

using binomials in J . In order to do this, we set up an induction on p. We plan show that

all binomials obtained when p ≥ 3, belong to J or can be reduced to lower degree.

Base Case: p = 3.

ν13 = r − k′3 + 4, ν23 = k′3, ν33 = 3(3n− k′3) + 3, ν4 = r − 3(3n− k′3).

Notice that 0 ≤ k′3 ≤ 3n+ 1.

This gives us the set of binomials

{xr−k′3+4yk
′
3 − z3(3n−k′3)+3wr−3(3n−k

′
3) : k′3 ∈ 0, 3n+ 1}.

However, notice that

for k′3 ∈ 0, n− 1, ν13|k′3=i > ν11|k′1=i+1 and ν23|k′3=i = ν21|k′1=i+1;

for k′3 = n, ν13|k′3=n > ν11|k′1=n and ν23|k′3=n > ν21|k′1=n;

for k′3 = n+ 1, ν13|k′3=n+1 = ν11|k′1=n and ν23|k′3=n+1 > ν21|k′1=n.
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for k′3 ∈ n+ 2, 2n+ 1, ν13|k′3=i = ν12|k′2=i−n−1 and ν23|k′3=i > ν22|k′2=i−n−1.

for k′3 ∈ 2n+ 2, 3n, µ33|k′3=i > µ31|k′2=i−2n and µ43|k′3=i > µ41|k′2=i−2n.

for k′3 = 3n+ 1, µ33|k′3=3n+1 = 0 and µ43|k′3=3n+1 > r + 2.1

So all polynomials obtained in case p = 3 are reducible to lower degree with S2,

S3 and E.

This concludes the base case.

Induction Step:

Fix p ≥ 4. Assume that all polynomials obtained for 1, . . . , p − 1 belong to J . We

will show that this holds too for the binomials obtained for p.

Case p:

Notice that µ3p = 3(pn− k′p) + 2p− 3

=⇒ 0 ≤ k′p ≤ pn +
[
2p−3
3

]
, where [x] denotes the greatest integer less than or equal

to x.

For comparison, notice that in case p− 1, 0 ≤ k′p−1 ≤ (p− 1)n+
[2(p−1)−3

3

]
(p− 1)n+

[
2(p−1)−3

3

]
= pn+

[
2p−3
3
− 2

3

]
− n = pn+

[
2p−3
3

]
− n or pn+

[
2p−3
3

]
− n− 1.

That is to say, max(k′p) = n+ max(k′p−1) or max(k′p) = n+ 1 + max(k′p−1)

Notice that when k′p ∈ 0,max(k′p−1), ν1p|k′p=i > ν1(p−1)|k′p−1=i
and ν2p|k′p=i ≥ ν2(p−1)|k′p−1=i

.

So these polynomials can be reduced using the polynomials from case p−1. By the induction

hypothesis, they can be reduced to lower degree using S2, S3 and E.

1This binomial is reducible to a lower degree with xr−n+2ynz − wr+2 ∈ E
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Let us now look at µ3p|k′p=max(k′p−1)+1.

When, max(k′p−1) = (p− 1)n+
[
2p−3
3

]
− 1,

µ3p = 3(pn− (p− 1)n−
[
2p−3
3

]
) + 2p− 3 = 3n− 3

[
2p−3
3

]
+ 2p− 3

µ3p = 3n+ 3
(
2p−3
3

)
− 3
[
2p−3
3

]
= 3n+ 3

{
2p−3
3

}
3n ≤ µ3p < 3n+ 3

Similarly when max(k′p−1) = (p− 1)n +
[
2p−3
3

]
, we will have 3n− 3 ≤ µ3p < 3n. So,

we have 3n−3 ≤ µ3p|k′p=max(k′p−1)+1 ≤ 3n+2. This can now be studied in a case by case basis.

Let µ3p|k′p=max(k′p−1)+1 = 3n− 3 > µ31|k′=1.

µ4p = r + p− 3n+ 3 ≥ r + 4− 3n+ 3 = r − 3n+ 7 > r − 3n+ 5 = µ41|k′=1

Let µ3p|k′p=max(k′p−1)+1 = 3n− 2 > µ31|k′=1.

µ4p = r + p− 3n+ 2 ≥ r + 4− 3n+ 2 = r − 3n+ 6 > r − 3n+ 5 = µ41|k′=1

The other cases can be studied similarly. Therefore, when k′p = max(k′p−1) + 1, the

binomial we obtain in case p is reducible to lower degree using the polynomials in S2. Since

both µ3p and µ31 decrease by 3, and at the same time both µ4p and µ41 increase by 3, with each

increment of k′; the inequalities are preserved. Therefore, when k′p ∈ max(k′p−1) + 1,max(k′p)

all the resulting polynomials are reducible to lower degree using S2. Therefore, all polynomi-

als in case p are reducible to lower degree using S2, S3 and E. This completes the induction �
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Case 2: m′ > 1 and m > r(m′ − 1)

Let ν1 = r + m + m′ − k′ and ν2 = k′. We have µ3 + µ4 = r + m and ν1 + ν2 =

r +m+m′ + k′ − k′.

Similar to previous case, solving for µ3 and µ4 using equation 3, we arrive at:

µ3 = p(3n+ 2)− 3m′ − 3k′ and

µ4 = r +m− p(3n+ 2) + 3m′ + 3k′.

Notice that the minimum value attained by ν1 in S2 ∪ S3 is r − 2n + 3 (in S2 with

k′1 = n). This means, for k′ ≤ m + m′ + 2n − 3, we would always have ν1 > ν11 and

ν2 = ν21 or ν1 > ν21 and ν2 ≥ ν22, meaning that we can use binomials from S2 or S3 to

show that our binomial is in J . When k′ ≥ m + m′ + 2n − 2 it is straightforward to show

that all binomials in this case can be reduced using z3n−1− yw3n−2, xr−2n+3y2n− zwr+1 and

wr+2 − xr−n+2ynz ∈ J .

4.2.2 Type: xν1zν3 − yµ2wµ4

Consider xν1zν3 − yµ2wµ4 ∈ I.

Just like our previous section, we can write out our relation and simplify to obtain

(ν1 + ν3)[r(3n+ 2) + 3] + (3n+ 1)ν3 = (µ4 + µ2)[r(3n+ 2) + 6] + (3n− 1)µ4

For ease of writing, let ν1 + ν3 = k, (3n + 1)ν3 = l, (µ2 + µ4) = k′, (3n − 1)µ4 = l′, with

l ≤ (3n+ 1)k and l′ ≤ (3n− 1)k′.

We can therefore rewrite the above equation as the following

k[r(3n+ 2) + 3] + l = k′[r(3n+ 2) + 6] + l′ (4.2.2.3)
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This brings us to three cases.

Case 1: k = k′. Write ν3 − µ4 = p = µ2 − ν1 for some p. Choose η ∈ Z such that

ν1 = p(n− 1)− η. We obtain

µ2 = pn− η, ν3 = 3η + 2p and µ4 = 3η + p.

Since ν1, ν3, µ2, µ4 depend on p, let us now call them ν1p, ν3p, µ2p and µ4p respectively.

Notice that from the constraints ν1p ≥ 0 and µ4p ≥ 0, we have −p
3
≤ η ≤ p(n− 1).

Let us first consider 0 ≤ η ≤ p(n− 1).

Notice that when p = 1, 0 ≤ η ≤ n−1 which yields 0 ≤ ν11 ≤ n−1 and 2 ≤ ν31 ≤ 3n−1.

Now, for p > 1, when 0 ≤ η < (p− 1)(n− 1), it is possible to verify that ν1p > n− 1 and

ν3p ≥ 2 for all 0 ≤ η ≤ (p− 1)(n− 1). Therefore, all these binomials are reducible to lower

degree using xn−1z2−ynw that we obtain when p = 1 and η = 0. When (p−1)(n−1) ≤ η ≤

p(n− 1), we observe that 0 ≤ ν1p ≤ n− 1 and 3(n− 1)(p− 1) + p ≤ ν3p ≤ 3(p+ 1)(n− 1).

Thus these binomials can be reduced by the ones obtained in the case p = 1.

This leaves the question of −p
3
≤ η < 0. Let η = −η′ with η′ > 0. In fact, 0 < η′ ≤ p

3
. (Notice

that this implicitly means p > 3). Now let us consider the ν ′s and µ′s with respect to η′ and

for purposes of comparison to other binomials, we rename them as ν̃1, µ̃2, ν̃3, µ̃4. One can

check easily that p < ν̃3 ≤ 2p and p(n − 1) < ν̃1 ≤ p(n − 1) +
⌊
p
3

⌋
. But this means, ν̃3 > 3

and ν̃1 > 3(n − 1). Therefore, all these binomials are reducible to lower degree using

xn−1z2 − ynw that we obtain when p = 1 and η = 0. Therefore all binomials obtained with

permitted negative η can be reduced, and are thus belonging to the ideal J . It is possible

to reduce all polynomials obtained in the case p > 1 with the set of polynomials obtained in

the case p = 1.
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Case 2: k < k′. As in Claim 2.2, one can show that ν1 + ν3 ≥ r + 4 and µ2 + µ4 ≥ r + 5.

Writing the relations out and simplifying gives the following equation

(ν1 + ν3)r − (µ2 + µ4)r + (ν3 − µ4) = p′.

for some integer p′. Furthermore, since k < k′, we have

ν1 + ν3 < µ2 + µ4 =⇒ 3ν1 + 3ν3 < 3µ2 + 3µ4

leading to

3ν1+2ν3 < 3µ3+3µ4 =⇒ 3ν1+2ν3 < 6µ2+3µ4 =⇒ 6µ2+3µ4−3ν1−2ν3 > 0 =⇒ p′ > 0.

Let ν1 + ν3 = r +m and µ2 + µ4 = r +m+m′ where m ≥ 4,m′ ≥ 1. So, we have

(r +m)r − (r +m+m′)r + (ν3 − µ4) = p′ > 0

leading to ν3 − µ4 − rm′ = p′ > 0 and so ν3 > r ≥ 3n+ 2.

It can be easily seen now that the binomials in this case be reduced to lower degree with

z3n−1 − yw3n−2.

Case 3: k > k′. As in Claim 2.2, one can show that ν1 + ν3 ≥ r + 2 and µ2 + µ4 ≥ r + 3.

By using a very similar argument to that used in case 2, we notice that binomials attained

through this case are also reducible using the binomials in S1.



30

4.2.3 Type: xν1wν4 − yµ2zµ3

We have two such binomials xw3− yz3 and xnw2− zyn+1 in the list of generators of J . Now,

we aim to show that these two are the only generators for this type needed to generate all

other binomials of this type from I. Eliminating the trivial cases, we are led to binomials

with the following restrictions that require a detailed analysis:

Restrictions on µ2, µ3 :

1. µ2 = 0, µ3 = k k ∈ N

2. µ2 = j, µ3 = 0 j ∈ N

3. µ2 = 1, µ3 = 1

4. µ2 = 1, µ3 = 2

5. µ2 = i, µ3 = 1 i < n+ 1

To these restrictions, we need to add the ones on ν1 and ν4, for which we get the following

cases

1. xν1w − yµ2zµ3 where ν1 < r + 2.

2. xν1 − yµ2zµ3 where ν1 < r + 2.

3. wν4 − yµ2zµ3 where ν4 < r + 2.

Let us now tackle each case.

Case 1: ν4 = 1

xν1w−yµ2zµ3 ∈ I =⇒ (ν1+1)r(3n+2)+3(ν1+1)+3n+2 = (µ2+µ3)r(3n+2)+6µ2+(3n+4)µ3
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This further implies that

(ν1 + 1)r(3n+ 2) + (µ2 +µ3)r(3n+ 2) = 6µ2 + (3n+ 4)µ3− 3(ν1 + 1)− (3n+ 2) = pr(3n+ 2)

This leads us to three subcases.

1. p > 0 We have

6µ2 + (3n+ 4)µ3 = (pr + 1)(3n+ 2) + 3(ν1 + 1) > r(3n+ 2) ≥ (3n+ 2)2.

Looking at the conditions on µ2, µ4, most can be easily ruled out by straightforward substi-

tution. We need to explain only the following two situations.

(a) µ2 = 0, µ3 = k : We need k such that k(3n+ 4) > (3n+ 2)2. Note that (3n− 1)(3n+

4) = 9n2 + 9n− 4 < (3n + 2)2 implies k > 3n− 1. But this means, this polynomial can be

reduced using z3n−1 − yw3n−2 ∈ J .

(b) µ2 = j, µ3 = 0 : We need j such that 6j > (3n + 2)2 implies j > (3n+2)2

6
> 3n + 2.

But this means, this binomial can be reduced to lower degree using y2n+1 − x2n−1zw ∈ J .

2. p = 0. Under this condition, the initial equation breaks down to 3µ2+(3n+1)µ3 = 3n+2,

which is impossible.

3. p < 0. Under this condition, substitute p → −p′ where now p′ > 0. Which then

forces

ν1 + 1 ≥ (p′r − 1)(3n+ 2)

3
= (n+

2

3
)(p′r − 1) ≥ 2(r − 1) > r + 2

(which is true for all r ≥ 3n+ 2). So, we get ν1 ≥ r + 2.

This means, this binomial will be reducible to lower degree using xr+2−z3n−1wr−3n+2 ∈ J .

So we have seen that in all three subcases, the binomials we encounter are either reducible
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using other binomials in our generating set, or our restrictions provide a contradiction. One

can check that the same arguments work for the other two main cases on ν1, ν4 (ν4 = 0 and

ν1 = 0), thereby completing the investigation of all binomials of this type.

4.2.4 Type wµ4 − xν1yν2zν3:

We will assume ν1, ν2, ν3 are all positive otherwise this binomial has been treated in an earlier

case.

As in Claim 2.2, one can show µ4 ≥ r + 2. Since for any Q = wµ4 − xν1yν2zν3 ∈ I we have

µ4 ≥ r + 2, Q can be reduced using wr+2 − xr−n+2ynz ∈ I and therefore wr+2 − xr−n+2ynz

is the only binomial we need of this type in J .

Using similar arguments, one may also deduce that y2n+1− x2n−1zw is the only binomial we

would need of the type yν2 − xµ1zµ3wµ4 . It is also easily verified in a similar fashion that

any binomial of the types xν1 − yµ2zµ3wµ4 and zν3 − xµ1yµ2wµ4 are reducible to lower degree

using xr+2 − z3n−1wr−3n+2 ∈ S2 and z3n−1 − yw3n−2 ∈ S1 respectively.

With this we have exhausted all types of binomials we could have in four variables and

showed that J equals I, hence establishing a minimal generating set for I.

4.3 Different approach using indispensable binomials

We would like to discuss our results and the consequences presented in the proof in this

section in relation to the classification of monomial curves embedded in a four dimensional

affine space in [11].

We recall the following definition from [11].

Definition 4.3.1. A bionomial xcii −
∏

j 6=i x
aij
j ∈ IH is called critical with respect to xi if ci

is the least positive integer such that ciai ∈
∑

j 6=iNaj.
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The ideal generated by all critical binomials is called the critical ideal of H and is denoted

by CH .

In general, computing the critical binomials can be difficult. A consequence of our proof

is that we can establish what the critical binomials are for the Backelin semigroup.

Proposition 4.3.2.

CH = 〈C〉 = 〈z3n−1 − yw3n−2, y2n+1 − x2n−1zw, wr+2 − xr−n+2ynz, xr+2 − z3n−1wr−3n+2〉

Proof. It is clear that C ⊆ S1 ∪ S2 ∪ S3 ∪ E. Proposition 3.2 from [11] ensures us that we

just have to show for every xcii −
∏

j 6=i x
aij
j ∈ C, ci is the least positive integer such that

ciai ∈
∑

j 6=iNaj. However, this is precisely what we do in subsection 2.4 with the help of

Claim 2.2 for the case of wr+2 − xr−n+2ynz. All other critical binomials can be treated sim-

ilarly. For purposes of completion, a similar proof as in claim 2.2 is provided below for the

treatment of xr+2 − z3n−1wr−3n+2

Writing out the relations, we have

ν1[r(3n+ 2) + 3] = µ2[r(3n+ 2) + 6] + µ3[r(3n+ 2) + 3n+ 4] + µ4[r(3n+ 2) + 3n+ 5]

Let ν1 = k, µ2 + µ3 + µ4 = k′ and (3n− 2)µ3 + (3n− 1)µ4 = l′. Notice that l′ < (3n− 1)k′

So, we have k[r(3n+ 2) + 3] = k′[r(3n+ 2) + 6] + l′

If k ≤ k′, let k′ = k + k′′ which gives

k[r(3n+ 2) + 3] = k[r(3n+ 2) + 6] + k′′[r(3n+ 2) + 6] + l′ ≥ k[r(3n+ 2) + 6]

which is clearly a contradiction! as k > 0.
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If k > k′, let k = k′ + k′′ this gives k′′[r(3n+ 2) + 3] = 3k′ + l′ < (3n+ 2)k′2. So,

k′ >
k′′[r(3n+ 2) + 3]

3n+ 2
=⇒ k′ > r

So k′ ≥ r + 1, which means k ≥ r + 2. So if we can show that there exists some f ∈ IH of

this type with ν1 = r + 2 then we will be done. Notice we have, xr+2 − z3n−1wr−3n+2 ∈ IH

of this type. So, c1 = r + 2.

Remark 4.3.3. C is not uniquely determined. In fact, we have a C′ such that

CH = 〈C′〉 = 〈z3n−1 − yw3n−2, y3n+2 − x3n−1w3, wr+2 − xr−n+2ynz, xr+2 − ywr〉

Given an ideal J ⊆ K[x, y, z, w], let MJ denote monomial ideal generated by all xu for

which there exists a non-zero xu − xv ∈ J . Now consider the following Theorems from [11]

(re-written for our case) that will prove helpful in understanding our results from the context

of critical and indispensable binomials.

Theorem 4.3.4 (Prop 1.5 in [11]). The indispensable monomials of J are precisely the

minimal generating set of MJ

Theorem 4.3.5 (Prop 3.6 in [11]). After permuting the variables (if necessary), there exists

a minimal system of binomial generators C of CH of the following form

1. CASE 1: If ciai 6= cjaj for any i 6= j, then C = {xcii − xui , i = 1, . . . , 4}

Theorem 4.3.6 (Theorem 3.10 in [11] ). The union of C, the set Γ of all binomials in IH

of the form x
ui1
i1
x
ui2
i2
− x

ui3
i3
x
ui4
i4

that satisfy 0 < uij < cj for j = 1, 2 and ui3 , ui4 > 0 with

x
ui3
i3
x
ui4
i4

indispensable is a minimal system of generators of IH
3.

2notice that this automatically implies that k′′ 6= 0 for non-trivial homogeneous degree.
3Borrowing notation from [11], since we are in CASE 1, by Theorem 4.3.5 we automatically have R = ∅
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Looking at Theorem 4.3.5, we see that the Backelin semigroup does indeed fall into

CASE 1. This allows us to consult Theorem 4.3.6 to obtain a minimal generating set for

IH . Our work in proving Theorem 4.1.2 and Corollary 4.1.3 shows that in our case Γ =

(S1∪S2∪S3∪E)\C. In particular, Theorem 4.1.2 bounds uij in Γ as required while Corollary

4.1.3 guarantees that x
ui3
i3
x
ui4
i4

are indispensable. This proves once again that S1∪S2∪S3∪E

is a minimal generating set of IH . In addition to that, we obtain a lot more information about

our generating set and consequently IH . For instance, Proposition 3.9 from [11] informs us

that IH is generic. We also obtain from Theorem 3.11 in [11] that IH does not have a unique

minimal system of generators since CH does not (see remark 4.3.3). Viewing the minimal

generators from the context of indispensable binomials provides a new perspective and opens

up various other avenues of exploration in close relation to classical semigroup theory.
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