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SMOOTHED EMPIRICAL LIKELIHOOD FOR THE DIFFERENCE OF TWO

QUANTILES WITH PAIRED SAMPLE

by

PANGPANG LIU

Under the Direction of Yichuan Zhao, PhD

ABSTRACT

In this thesis, we propose a smoothed empirical likelihood method for the difference of

quantiles with paired samples. The empirical likelihood for the difference of two quantiles

with independent samples has been studied by some researchers. However, for many vari-

ables, we cannot ignore the correlation between the data. In this study, we construct two

estimating equations for the difference of two quantiles and introduce a nuisance parameter

in our proposed smoothed empirical likelihood. The limiting distribution of the smoothed

empirical likelihood is the χ2 distribution. Simulation studies demonstrate that our method

is valid for the difference of quantiles. We also apply the proposed method to a real data set

to illustrate the interval estimate of the quantile difference of GDP between different years.

INDEX WORDS: Quantile difference, Paired sample, Smoothed empirical likelihood
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CHAPTER 1

INTRODUCTION

The quantile is an interesting topic in statistics and probability. The p-th quantile is

defined as F−1(p) =inf{x ∈ R : F (x) ≥ p}, where 0 < p < 1. The quantile is broadly ap-

plied in risk measurement, econometrics and many other subjects. To estimate the quantiles,

Harrell and Davis (1982) proposed a distribution-free quantile estimator. Hutson (2002) de-

veloped the estimator of the tail extrapolation quantile function. Parrish (1990) compared

ten nonparametric quantile estimators in terms of the bias and mean squared error. In the

aspect of confidence interval of quantiles, Chen and Hall (1993) developed the confidence

interval of quantiles by smoothed empirical likelihood. Zhou and Jing (2003a) introduced an

adjusted empirical likelihood method to construct the confidence interval of quantiles. For

the difference of quantiles, Zhou and Jing (2003b) proposed a smoothed empirical likelihood

method for the difference of one-sample quantiles. In order to improve the performance and

the efficiency of empirical likelihood on one-sample difference of quantiles, Yang and Zhao

(2018) developed a smoothed jackknife empirical likelihood method. In the two-sample sce-

nario, Qin and Zhao (1997) constructed the confidence interval for the difference of two

independent population quantiles. Yu et al. (2014) compared the upper quantile difference

of two independent groups by the classical empirical likelihood and ’plug-in’ empirical like-

lihood methods. Yang and Zhao (2016) proposed a smoothed jackknife empirical likelihood

method for the quantiles difference with two independent samples. For the difference of

two dependent samples quantiles, Wilcox (1992, 2006) compared the quantiles of dependent

groups based on Harrell–Davis estimator (Harrell and Davis (1982)). Lombard (2005) com-

pared the marginals of a bivariate distribution by the quantile comparison function. Wilcox

and Erceg-Hurn (2012) obtained the quantiles for two marginal distributions by the Har-

rell–Davis estimator, and then compared the quantiles of two dependent groups using the
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bootstrap technique. To the best of our knowledge, empirical likelihood for the quantile

difference of two correlated samples has not been studied. In this thesis, we proposed a

smoothed empirical likelihood method for the difference of quantiles with paired samples

and obtain the interval estimate.

Since Owen (1988, 1990, 1991, 2001) introduced the empirical likelihood (EL) method

and obtained the interval estimate, it has been applied to many statistical problems. For

instance, Qin and Lawless (1994) considered the empirical likelihood in general estimating

equations. Qin (1994) constructed the interval estimate for the difference of two-sample

means by semi-empirical likelihood. Chen, Peng, and Zhao (2009) constructed confidence

intervals for copulas based on smoothed empirical likelihood. Many versions of empirical

likelihood were developed by researchers, for example, adjusted empirical likelihood (Chen,

Variyath and Abraham (2008)), jackknife empirical likelihood (Jing, Yuan and Zhou (2009)),

mean empirical likelihood (Liang, Dai and He (2019)), Bayesian empirical likelihood (Lazar

(2003)), Bayesian jackknife empirical likelihood (Cheng and Zhao (2019)) and different com-

binations of these above mentioned methods.

Unlike one sample and two independent samples, it is challenging to develop normal

approximation confidence interval for the paired-sample difference of quantiles and to esti-

mate the difference of quantiles for the paired data. Lopez et al. (2009) developed empirical

likelihood for non-smooth criterion functions. Rather than using the discrete functions, we

propose a smoothed nonparametric estimating functions. In our simulation study, we ob-

served that the non-smooth empirical likelihood has a severe over-coverage problem. After

applying a smoothing kernel on the estimating equations, we were able to solve the over-

coverage problem significantly. We will compare our method with the method (Method M)

proposed by Wilcox and Erceg-Hurn (2012) in terms of coverage probability and average

length of 95% confidence interval in the simulation study.

The rest of the thesis is formed as follows. In Chapter 2, we develop the inference

procedure of the smoothed empirical likelihood for the difference of paired-sample quantiles.

A simulation study is conducted to compare our method with existing methods in Chapter
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3. In Chapter 4, we apply our method to a real data set from the Penn World Tables (PWT)

database. A discussion is provided in Chapter 5, and we present the proofs in the Appendix.
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CHAPTER 2

INFERENCE PROCEDURE

Consider a two-dimensional random variable X = (X1, X2) with the distribution func-

tion F (x1, x2). Let (X1i, X2i), i = 1, ..., n be independent samples from the distribution

function F (x1, x2). Denote marginal distribution functions F (x1), F (x2) of X1 and X2, re-

spectively. Define the difference of quantiles ξ = F−11 (p)−F−12 (p), where F−11 (p) and F−12 (p)

denote the quantile functions of F1(p) and F2(p), respectively.

Denote F̂j(t) = 1/n
∑n

i=1 I(Xji ≤ t), j = 1, 2. Define F̂−1j (p) as an empirical estimate

of F−1j (p), j = 1, 2. ξ̂ = F̂−11 (p)− F̂−12 (p) is an estimate of ξ. Let t1 = F−11 (p), t2 = F−12 (p).

It is clear that F1(t1)− p = 0 and F2(t2)− p = 0. As an estimation of these two equations,

we obtain 1/n
∑n

i=1(I(X1i ≤ t1) − p) = 0, and 1/n
∑n

i=1(I(X2i ≤ t2) − p) = 0. Then, we

propose two smoothed equations as follows,

Wi(ξ, t1) =

W1i(ξ, t1)

W2i(ξ, t1)


=

 K( t1−X1i

h1
)− p

K( t1−ξ−X2i

h2
)− p


= 0, i = 1, ..., n,

(2.1)

where K(t) =
∫ t
−∞ k(u)du, k(·) is a kernel density function, and h1 and h2 are the band-

widths.

Now, the empirical likelihood ratio for (ξ, t1) based on Wi(ξ, t1) is defined as

r(ξ, t1) = sup
p1,...,pn

{ n∏
i=1

(npi) :
n∑
i=1

pi = 1,
n∑
i=1

Wipi = 0, pi ≥ 0, i = 1, ..., n

}
. (2.2)

Let λT = (λ1, λ2). Using the Lagrange multiplier method, the empirical log-likelihood ratio
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can be derived as

l(ξ, t1, λ
T ) = −2 log r(ξ, t1)

= 2
n∑
i=1

log(1 + λTWi(ξ, t1)),
(2.3)

where λ satisfies

1

n

n∑
i=1

Wi(ξ, t1)

1 + λTWi(ξ, t1)
= 0. (2.4)

We profile the nuisance parameter t1 from log r(ξ, t1), and obtain

− 2 log r(ξ) = min
t1

[−2 log r(ξ, t1)]. (2.5)

Denote the solutions of the two equations (2.4) and (2.5) as t1 = t̃1 and λT = λ̃T . It is easy

to see that

− 2 log r(ξ) = 2
n∑
i=1

log[1 + λ̃TWi(ξ, t̃1)]. (2.6)

For the detailed computation of the coverage probability and the confidence interval,

we propose the corresponding Algorithm 1, Algorithm 2 and Algorithm 3 in the Appendix.

In order to establish theoretical results, similar to Zhou and Jing (2013b), we assume the

following conditions.

C.1 The (r−1)-th derivatives of F1(x) and F2(x) exist in the corresponding neighborhood

of t1p = F−11 (p) and t2p = F−12 (p), and are continuous at t1p and t2p, respectively for some

integer r ≥ 2. Specifically, we denote the first derivatives of F1(x) and F2(x) as f1(x) = F ′1(x)

and f2(x) = F ′2(x), and assume f1(t1p)f2(t2p) > 0.

C.2 The kernel function k(·) and its second derivative k′′(·) are bounded. We assume

∫
ujk(u)du =


1, j = 0,

0, 1 ≤ j ≤ r − 1,

C0, j = r,

where C0 is a constant.

C.3 h2 = O(h1), nh
4r
1 → 0, nh4r2 → 0, n4s−1h41 → ∞, n4s−1h42 → ∞, as n → ∞, where
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1/3 < s < 1/2.

Condition C.1 requires the distribution functions F1 and F2 are smooth in the corre-

sponding neighborhood of t1p and t2p. Condition C.2 is a common requirement for kernel

methods. Condition C.3 ensures that the convergence of the bandwidths to zero is neither

too fast nor too slow. Then, the Wilk’s theorem is established as follows.

Theorem 2.1. Under regularity conditions, as n→∞, we have

− 2 log r(ξ)
D−→ χ2

1. (2.7)

Therefore, the EL confidence interval with (1− α) confidence level for ξ is constructed

as

IEL(ξ) =
{
ξ : −2 log r(ξ) ≤ χ2

1(α)
}
, (2.8)

where χ2
1(α) is the upper α-quantile of χ2

1.

Chen, Variyath, and Abraham (2008) introduced the adjusted empirical likelihood

(AEL) to increase the coverage probability. The AEL method adds one artificial data point

such that it guarantees the inclusion of zero in the convex hull. We adapt the AEL in the

estimation of quantile difference for the paired samples. Let an = max(1, log(n)/2). Denote

Wn+1(ξ, t1) = −an/n
n∑
i=1

Wi(ξ, t1). (2.9)

The adjusted EL ratio is

ladj(ξ, t1, λ
T ) = −2 log radj(ξ, t1)

= 2
n+1∑
i=1

log(1 + λTWi(ξ, t1)),
(2.10)

where λ satisfies

1

n+ 1

n+1∑
i=1

Wi(ξ, t1)

1 + λTWi(ξ, t1)
= 0. (2.11)
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We profile the nuisance parameter t1 from log radj(ξ, t1), and obtain

− 2 log radj(ξ) = min
t1

[−2 log radj(ξ, t1)]. (2.12)

Denote t1 = t̃1 and λT = λ̃T are the solutions of the two equations (2.11) and (2.12).

We can obtain that

− 2 log radj(ξ) = 2
n∑
i=1

log[1 + λ̃TWi(ξ, t̃1)]. (2.13)

Then, we establish the following Wilk’s theorem for AEL.

Theorem 2.2. Under regularity conditions, as n→∞, we have

− 2 log radj(ξ)
D−→ χ2

1. (2.14)

Therefore, the AEL 100(1− α)% confidence interval for ξ is constructed as

IAEL(ξ) =
{
ξ : −2 log radj(ξ) ≤ χ2

1(α)
}
. (2.15)
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CHAPTER 3

NUMERICAL STUDIES

In this chapter, Monte Carlo simulations are used to examine the performance of our

method. The coverage probabilities and the average lengths of confidence intervals for ξ

are studied under different distributions of F (X1, X2). For k, the standard normal kernel

function, which satisfies condition C.2 with r = 2, is used and the cross-validation method

is applied to select the optimal bandwidth. We consider nine scenarios to generate paired

data with a specific correlation (ρ) as follows.

S1 : X1 ∼ Normal(1, 1) and X2 ∼ Normal(2, 1), ρ = 0.4,

S2 : X1 ∼ Normal(1, 1) and X2 ∼ Normal(2, 1), ρ = 0.8,

S3 : X1 ∼ Uniform(0, 1) and X2 ∼ Uniform(0, 1), ρ = 0.8,

S4 : X1 ∼ Uniform(0, 1) and X2 ∼ Uniform(0, 1), ρ = 0.1,

S5 : X1 ∼ Weibull(0.5, 2) and X2 ∼ Weibull(0.5, 2), ρ = 0.75,

S6 : X1 ∼ Exponential(1) and X2 ∼ Exponential(1), ρ = 0.8,

S7 : X1 ∼ Gamma(0.6, 1.6) and X2 ∼ Gamma(0.6, 1.6), ρ = 0.7,

S8 : X1 ∼ Normal(0, 1) and X2 ∼ Exponential(1), ρ = 0.75,

S9 : X1 ∼ Normal(0, 1) and X2 ∼ Uniform(0, 1), ρ = 0.8.

In different scenarios, we set the probability parameter p at 0.25, 0.5, 0.75, and the

sample sizes are chosen as 30, 40, 50. We conduct the simulation studies 2000 times at the

nominal level 95%. The coverage probabilities under different scenarios are shown in Table

3.1 and the corresponding average lengths of confidence intervals are displayed in Table 3.2.

In all scenarios, we can see that the coverage probabilities of AEL are larger than EL

and the corresponding average lengths are longer. As the sample size increases, the average

length of 95% confidence interval decreases for EL and AEL. For Method M (Wilcox and

Erceg-Hurn (2012)), the coverage probabilities have over-coverage for most scenarios, and
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the average lengths of 95% confidence interval for Method M are longer than those for EL

and AEL in most cases.
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Table (3.1) Coverage probability of 95% confidence interval for the difference of quantiles

S1 S2 S3

p n EL AEL M EL AEL M EL AEL M

0.25

30 0.917 0.931 0.951 0.892 0.915 0.961 0.947 0.958 0.960

40 0.922 0.941 0.961 0.906 0.918 0.971 0.946 0.964 0.959

50 0.910 0.922 0.954 0.906 0.914 0.960 0.957 0.964 0.970

0.5

30 0.949 0.959 0.950 0.939 0.956 0.966 0.954 0.965 0.964

40 0.953 0.962 0.955 0.948 0.958 0.963 0.959 0.968 0.958

50 0.943 0.950 0.954 0.946 0.957 0.961 0.952 0.960 0.970

0.75

30 0.911 0.927 0.945 0.895 0.910 0.957 0.934 0.949 0.964

40 0.924 0.937 0.954 0.921 0.929 0.964 0.940 0.950 0.961

50 0.918 0.930 0.949 0.912 0.923 0.970 0.931 0.934 0.963

S4 S5 S6

p n EL AEL M EL AEL M EL AEL M

0.25

30 0.945 0.959 0.943 0.922 0.936 0.967 0.956 0.964 0.964

40 0.949 0.957 0.946 0.929 0.945 0.953 0.955 0.965 0.959

50 0.955 0.964 0.962 0.934 0.950 0.954 0.946 0.955 0.957

0.5

30 0.948 0.962 0.954 0.947 0.957 0.961 0.936 0.949 0.961

40 0.952 0.959 0.951 0.942 0.955 0.965 0.949 0.958 0.965

50 0.955 0.961 0.957 0.937 0.944 0.966 0.950 0.960 0.966

0.75

30 0.945 0.955 0.951 0.967 0.963 0.955 0.949 0.956 0.952

40 0.937 0.947 0.957 0.967 0.969 0.964 0.948 0.954 0.963

50 0.937 0.945 0.947 0.971 0.973 0.964 0.949 0.949 0.965

S7 S8 S9

p n EL AEL M EL AEL M EL AEL M

0.25

30 0.948 0.960 0.963 0.900 0.907 0.947 0.864 0.890 0.898

40 0.936 0.951 0.954 0.898 0.891 0.948 0.855 0.872 0.893

50 0.937 0.946 0.953 0.901 0.903 0.946 0.865 0.883 0.884

0.5

30 0.948 0.963 0.960 0.940 0.949 0.944 0.943 0.958 0.839

40 0.953 0.965 0.967 0.949 0.955 0.950 0.947 0.957 0.819

50 0.960 0.973 0.961 0.951 0.960 0.944 0.944 0.955 0.785

0.75

30 0.947 0.952 0.952 0.914 0.936 0.941 0.875 0.899 0.928

40 0.947 0.950 0.958 0.902 0.925 0.948 0.861 0.882 0.934

50 0.947 0.950 0.962 0.907 0.916 0.958 0.865 0.884 0.940
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Table (3.2) Average length of 95% confidence interval for the difference of quantiles

S1 S2 S3

p n EL AEL M EL AEL M EL AEL M

0.25

30 0.987 1.054 1.071 0.626 0.669 0.722 0.192 0.206 0.216

40 0.857 0.903 0.938 0.547 0.576 0.645 0.170 0.180 0.195

50 0.767 0.801 0.850 0.493 0.515 0.589 0.154 0.161 0.181

0.5

30 0.897 0.959 0.973 0.562 0.601 0.657 0.226 0.241 0.245

40 0.777 0.819 0.849 0.489 0.516 0.584 0.202 0.212 0.221

50 0.696 0.727 0.767 0.441 0.460 0.533 0.185 0.193 0.205

0.75

30 0.988 1.056 1.065 0.626 0.668 0.719 0.193 0.206 0.218

40 0.865 0.911 0.942 0.551 0.581 0.646 0.171 0.180 0.196

50 0.768 0.803 0.851 0.494 0.516 0.592 0.155 0.162 0.181

S4 S5 S6

p n EL AEL M EL AEL M EL AEL M

0.25

30 0.337 0.361 0.360 0.117 0.127 0.080 0.282 0.303 0.324

40 0.295 0.311 0.323 0.094 0.100 0.064 0.241 0.255 0.288

50 0.267 0.279 0.293 0.079 0.083 0.055 0.213 0.223 0.260

0.5

30 0.397 0.423 0.418 0.240 0.263 0.281 0.488 0.527 0.554

40 0.352 0.371 0.370 0.191 0.205 0.229 0.423 0.448 0.485

50 0.319 0.333 0.339 0.163 0.172 0.200 0.378 0.396 0.443

0.75

30 0.336 0.360 0.366 0.980 1.055 0.972 1.034 1.110 0.970

40 0.294 0.311 0.321 0.832 0.890 0.799 0.900 0.955 0.857

50 0.266 0.278 0.293 0.729 0.769 0.695 0.801 0.841 0.779

S7 S8 S9

p n EL AEL M EL AEL M EL AEL M

0.25

30 0.120 0.129 0.123 0.646 0.665 0.777 0.644 0.716 0.730

40 0.100 0.106 0.105 0.594 0.657 0.686 0.578 0.624 0.643

50 0.086 0.090 0.094 0.548 0.593 0.614 0.524 0.557 0.576

0.5

30 0.240 0.260 0.272 0.605 0.643 0.661 0.581 0.631 0.644

40 0.203 0.217 0.234 0.530 0.558 0.583 0.513 0.542 0.567

50 0.180 0.189 0.211 0.477 0.498 0.529 0.464 0.481 0.514

0.75

30 0.622 0.669 0.563 0.670 0.718 0.708 0.665 0.719 0.735

40 0.536 0.570 0.490 0.582 0.615 0.626 0.591 0.624 0.640

50 0.473 0.498 0.441 0.520 0.545 0.573 0.536 0.553 0.582
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CHAPTER 4

REAL DATA ANALYSIS

In this chapter, one real data set from the Penn World Tables (PWT) database is

used in our analysis. The database includes many kinds of data, for example, Real GDP,

employment, population levels, etc. We apply the EL method to the expenditure-side real

GDP of selected fifty countries in the years 1970 and 1990. The magnitude is measured

in 10 billions U.S. dollars. The correlation of the expenditure-side real GDP between the

year 1970 and the year 1990 is 0.912, and the sample size is 50. Table 4.1 shows the 95%

confidence intervals of the data.

We compare EL, AEL and Method M (Wilcox and Erceg-Hurn (2012)) in this section.

The lower bound, the upper bound, and the interval length for the difference of quantiles

at 95% confidence level are shown in Table 4.1. We notice that the interval length of the

quantile difference of AEL is longer than that of EL, which is consistent with our findings

from the numerical studies. The interval length of Method M is longer than EL, and shorter

than AEL for most quantiles. This indicates that EL performs better than Method M. As the

probability p increases, the magnitudes of the lower bound, the upper bound and the interval

length of the quantile difference increase for EL, AEL and Method M. This is due to the

increase in magnitude of GDP as p increases. Because the gap is calculated by subtracting

the GDP of the year 1990 from the GDP of the year 1970, the negative difference means

the GDP of the year 1990 is larger than the GDP of the year 1970. At each p, zero is not

included in the confidence interval, implying the quantiles of the expenditure-side real GDP

in the year 1970 and the year 1990 are significantly different.
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Table (4.1) Estimation of the difference of quantiles at 95% confidence level

EL AEL M

p Lower Upper Length Lower Upper Length Lower Upper Length

0.1 -3.736 -0.078 3.658 -3.836 -0.012 3.824 -5.658 -1.809 3.849
0.15 -5.312 -1.620 3.692 -5.409 -1.551 3.858 -6.551 -2.796 3.755
0.2 -6.530 -2.842 3.688 -6.631 -2.771 3.860 -7.282 -3.586 3.696
0.25 -7.796 -3.864 3.932 -7.918 -3.792 4.126 -8.190 -4.020 4.170
0.3 -9.128 -4.760 4.368 -9.267 -4.688 4.579 -9.171 -4.413 4.758
0.35 -10.490 -5.600 4.890 -10.648 -5.522 5.126 -10.307 -4.980 5.327
0.4 -11.887 -6.397 5.490 -12.065 -6.310 5.755 -11.521 -5.697 5.824
0.45 -13.353 -7.065 6.288 -13.555 -6.961 6.594 -12.753 -6.246 6.507
0.5 -15.010 -7.797 7.213 -15.245 -7.682 7.563 -14.415 -7.084 7.331
0.55 -17.125 -8.702 8.423 -17.427 -8.573 8.854 -16.409 -7.820 8.589
0.6 -20.104 -9.819 10.285 -20.558 -9.671 10.887 -18.520 -8.326 10.194
0.65 -24.555 -11.170 13.385 -25.258 -11.001 14.257 -21.669 -9.6400 12.029
0.7 -28.326 -12.300 16.026 -29.838 -12.069 17.769 -27.164 -10.527 16.637
0.75 -35.597 -11.122 24.475 -36.083 -10.888 25.195 -33.453 -10.972 22.481
0.8 -38.197 -11.055 27.142 -38.578 -10.946 27.632 -39.751 -12.998 26.753
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CHAPTER 5

CONCLUSIONS

Due to the correlation between two samples, the estimation of the difference of quantiles

becomes more challenging. The difference of quantiles for paired samples plays an important

role in statistics. In this thesis, we propose the smoothed empirical likelihood method for the

difference of quantiles of paired samples and establish the Wilk’s theorem. The simulation

studies show that the EL and AEL methods have good performance in terms of the coverage

probability and the interval length. The efficiency of the proposed methods are illustrated

using a real data set to construct confidence intervals. Although the method performs

well, it has room for improvement. The introduction of the nuisance parameter makes the

calculation complicated. Yang and Zhao (2018) applied the smoothed jackknife empirical

likelihood in the estimation of the one-sample difference of quantiles. Their idea might be

valid to estimate the difference of quantiles with the paired sample. In the future, the novel

empirical likelihood may be developed for this problem.
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APPENDICES

Proofs of Theorems

In the following proofs, C represents a constant and has different values at different occasions.

Denote δ = hr1 + n−s, where 1/3 < s < 1/2.

Lemma 6.1. Under the conditions C.1-C.3, for t1 satisfying |t1 − t1p| ≤ δ, we have

E[W1i(ξ, t1)] = F1(t1)− p+O(hr1), (6.1)

E[W2i(ξ, t1)] = F2(t1 − ξ)− p+O(hr2), (6.2)

Var[W1i(ξ, t1)] = F1(t1)(1− F1(t1)) +O(hr1), (6.3)

Var[W2i(ξ, t1)] = F2(t1 − ξ)[1− F2(t1 − ξ)] +O(hr2), (6.4)

E[W1i(ξ, t1)W2i(ξ, t1)] = F (t1, t1 − ξ)− p
[
F1(t1) + F2(t1 − ξ)

]
+ p2 +O(h21). (6.5)

Proof. Under the conditions C.1 to C.3, by Taylor expansions, we have

E[W1i(ξ, t1)] =

∫ +∞

−∞
K

(
t1 − z
h1

)
f1(z)dz − p

= h1

∫ +∞

−∞
K(v)f1(t1 − h1v)dv − p

= −
∫ +∞

−∞
K(v)dF1(t1 − h1v)− p

=

∫ +∞

−∞
k(v)F1(t1 − h1v)dv − p

=

∫ +∞

−∞
k(v)

[
F1(t1)− F ′1(t1)h1v

]
dv +O(h21)− p

= F1(t1)− p+O(hr1).

(6.6)

Thus, equation (6.1) is proved. Equation (6.2) can be proved in the same way.
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To prove equation (6.3), we have

E[W 2
1i(ξ, t1)] =

∫ +∞

−∞
K2

(
t1 − z
h1

)
f1(z)dz − 2p

∫ +∞

−∞
K

(
t1 − z
h1

)
f1(z)dz + p2

= h1

∫ +∞

−∞
K2(v)f1(t1 − h1v)dv − 2pF1(t1) +O(hr1) + p2

= −
∫ +∞

−∞
K2(v)dF1(t1 − h1v)− 2pF1(t1) +O(hr1) + p2

=

∫ +∞

−∞
2K(v)k(v)F1(t1 − h1v)dv − 2pF1(t1) +O(hr1) + p2

=

∫ +∞

−∞
2K(v)k(v)

[
F1(t1)− F ′1(x)h1v

]
dv − 2pF1(t1) +O(hr1) + p2

= F1(t1)− 2pF1(t1) + p2 +O(hr1).

Using equation (6.1), equation (6.3) is proved as follows,

Var[W1i(ξ, t1)] = E[W 2
1i(ξ, t1)]− [EW1i(ξ, t1)]

2

= F1(t1)(1− F1(t1)) +O(hr1).

Equation (6.4) can be proved in the same way. The proof of equation (6.5) is as follows.

E[W1i(ξ, t1)W2i(ξ, t1)] =

∫∫ +∞

−∞
K

(
t1 − z1
h1

)
K

(
t1 − ξ − z2

h2

)
f(z1, z2)dz1dz2

− p
∫∫ +∞

−∞

[
K

(
t1 − z1
h1

)
+K

(
t1 − ξ − z2

h2

)]
f(z1, z2)dz1dz2 + p2

= F (t1, t1 − ξ)− p
[
F1(t1) + F2(t1 − ξ)

]
+ p2 +O(h21).
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In the proof, equations (6.7), (6.8) and (6.9) are used.

∫∫ +∞

−∞
K

(
t1 − z1
h1

)
K

(
t1 − ξ − z2

h2

)
f(z1, z2)dz1dz2

= h1h2

∫∫ +∞

−∞
K(v1)K(v2)f(t1 − h1v1, t1 − ξ − h2v2)dv1dv2

= h1h2

∫ +∞

−∞
K(v2)dv2

∫ +∞

−∞
K(v1)f(t1 − h1v1, t1 − ξ − h2v2)dv1

= −h2
∫ +∞

−∞
K(v2)dv2

∫ +∞

−∞
K(v1)dF

′
v2

(t1 − h1v1, t1 − ξ − h2v2)

= h2

∫ +∞

−∞
K(v2)dv2

∫ +∞

−∞
K ′(v1)F

′
v2

(t1 − h1v1, t1 − ξ − h2v2)dv1

= h2

∫ +∞

−∞
K ′(v1)dv1

∫ +∞

−∞
K(v2)F

′
v2

(t1 − h1v1, t1 − ξ − h2v2)dv2

= −
∫ +∞

−∞
K ′(v1)dv1

∫ +∞

−∞
K(v2)dF (t1 − h1v1, t1 − ξ − h2v2)

=

∫ +∞

−∞
K ′(v1)dv1

∫ +∞

−∞
K ′(v2)F (t1 − h1v1, t1 − ξ − h2v2)dv2

=

∫∫ +∞

−∞
K ′(v1)K

′(v2)
[
F (t1, t1 − ξ)− F ′1(t1, t1 − ξ)h1v1 − F ′2(t1, t1 − ξ)h2v2

]
dv1dv2

+O(h21) +O(h22) +O(h1h2)

= F (t1, t1 − ξ) +O(h21) +O(h22) +O(h1h2).

(6.7)

∫∫ +∞

−∞
K

(
t1 − z1
h1

)
f(z1, z2)dz1dz2 =

∫ +∞

−∞
K

(
t1 − z1
h1

)
f1(z1)dz1

= −
∫ +∞

−∞
K(v)dF1(t1 − h1v)

=

∫ +∞

−∞
k(v)F1(t1 − h1v)dv

=

∫ +∞

−∞
k(v)

[
F1(t1)− F ′1(t1)h1v

]
dv +O(h21)

= F1(t1) +O(h21).

(6.8)
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∫∫ +∞

−∞
K

(
t1 − ξ − z2

h1

)
f(z1, z2)dz1dz2 =

∫
−∞

K

(
t1 − ξ − z2

h2

)
f2(z2)dz2

= −
∫ +∞

−∞
K(v)dF1(t1 − ξ − h2v)

=

∫ +∞

−∞
k(v)F2(t1 − ξ − h2v)dv

=

∫ +∞

−∞
k(v)

[
F2(t1 − ξ)− F ′2(t1 − ξ)h2v

]
dv +O(h22)

= F2(t1 − ξ) +O(h22).

(6.9)

Lemma 6.2. Under the conditions C.1-C.3, uniformly for t1 ∈ {t1 : |t1 − t1p| ≤ δ}, we

have

W 1(ξ, t1) =
1

n

n∑
i=1

W1i(ξ, t1)

= Op(δ),

(6.10)

W 2(ξ, t1) =
1

n

n∑
i=1

W2i(ξ, t1)

= Op(δ),

(6.11)

S2
1(ξ, t1) =

1

n

n∑
i=1

W 2
1i(ξ, t1)

= p(1− p) +Op(δ + h1),

(6.12)

S2
2(ξ, t1) =

1

n

n∑
i=1

W 2
2i(ξ, t1)

= p(1− p) +Op(δ + h2),

(6.13)

S12(ξ, t1) =
1

n

n∑
i=1

W1i(ξ, t1)W2i(ξ, t1)

= γ − p2 +Op(δ + h1),

(6.14)

where γ = F (t1p, t1p − ξ).
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Proof. Since

W1i(ξ, t1)−W1i(ξ, t1p) =
t1 − t1p
h1

k
(t1 −X1i

h1

)
+

(t1 − t1p)2

2h21
k′
(ti −X1i

h1

)
,

where ti is between t1p and t1, we have

W 1(ξ, t1) = W 1(ξ, t1p) +
t1 − tp
nh1

n∑
i=1

k
(t1 −X1i

h1

)
+

(t1 − t1p)2

2nh21

n∑
i=1

k′
(ti −X1i

h1

)
. (6.15)

Combining Lemma 6.1 and the CLT, it follows that

W 1(ξ, t1p) = E[W1i(ξ, t1p)] + [W 1(ξ, t1p)− E[W1i(ξ, t1p)]]

= O(hr1) +O(n−
1
2 )

= Op(δ).

(6.16)

As the similar way of proving equation (6.40) later in the thesis, we can get

1

nh1

n∑
i=1

[
k

(
t1p −X1i

h1

)
− Ek

(
t1p −X1i

h1

)]
−→ 0 a.s. (6.17)

By Taylor expansions, we obtain

Ek

(
t1p −X1i

h1

)
=

∫ +∞

−∞
k

(
t1p − z
h1

)
f1(z)dz

= h1

∫ +∞

−∞
k(v)f1(t1p − h1v)dv

= h1

∫ +∞

−∞
k(v)

[
f1(t1p) +O(h1)

]
dv

= h1f1(t1p) +O(h21).

(6.18)

Combining equations (6.17) and (6.18), we get

t1 − tp
nh1

n∑
i=1

k
(t1 −X1i

h1

)
= O(δ). (6.19)
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Regarding to condition C.2, we have

k′
(ti −X1i

h1

)
< C. (6.20)

Under condition C.3, we have

δ

h21
= hr−21 +

n−s

h21

= hr−21 +
ns−1/2

(h41n
4s−1)1/2

< C.

(6.21)

Combining equations (6.20) and (6.21), we have

(t1 − t1p)2

2nh21

n∑
i=1

k′
(ti −X1i

h1

)
= O(δ). (6.22)

Equation (6.10) is proved following equations (6.16), (6.19) and (6.22). The rest equations

in the lemma can be proved similarly.

Lemma 6.3. Under the conditions C.1-C.3, for t1 ∈ {t1 : |t1 − t1p| ≤ δ}, as n → ∞, we

have

W 1(ξ, t1) = O
(
δ + hr1 + n−1/2(log n1/2)

)
= O(δ) a.s.,

(6.23)

W 2(ξ, t1) = O
(
δ + hr2 + n−1/2(log n1/2)

)
= O(δ) a.s.,

(6.24)

S2
1(ξ, t1) = p(1− p) +O

(
δ + h1 + n−1/2(log n1/2)

)
= p(1− p) +O(h1) a.s.,

(6.25)

S2
2(ξ, t1) = p(1− p) +O

(
δ + h2 + n−1/2(log n1/2

)
= p(1− p) +O(h2) a.s.,

(6.26)
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S12(ξ, t1) = γ − p2 +O
(
δ + h1 + n−1/2(log n1/2)

)
= γ − p2 +O(h1) a.s.

(6.27)

Proof. Let Y1, ..., Yn be i.i.d. random variables satisfying P (|Yi−EYi| ≤ m) = 1, i = 1, ..., n,

where m is any fixed number and 0 < m <∞. Following the Bernstein inequality (Serfling

(1980), p.95), for t > 0,

P (|Y − µ| ≥ t) ≤ 2 exp
(
− nt2

2V ar(Y1) + 2/3mt

)
.

Let Yi = W1i(ξ, t1),m = 1, t = dn−1/2(log n)1/2 for d > 0. Noting equation (6.3), we obtain

∞∑
n=1

P
(
|W 1(ξ, t1)− EW 1(ξ, t1)| ≥ dn−1/2(log n)1/2

)
≤ 2

∞∑
n=1

exp
(
− d2 log n

2C + 2/3dn−1/2(log n)1/2
)

≤ 2
∞∑
n=1

exp (−2 log n)

= 2
∞∑
n=1

1

n2
<∞,

for d sufficiently large. According to the Borel–Cantelli Lemma, it follows that

|W 1(ξ, t1)− EW 1(ξ, t1)| < dn−
1
2 (log n)

1
2 a.s. (6.28)

By Taylor expansions, we get

F1(t1)− F1(t1p) = (t1 − t1p)f1(ti) = O(δ), (6.29)

where ti is between t1 and t1p. Combining equations (6.1), (6.28) and (6.29), we prove

equation (6.23). Other equations can be proved in the similar way.

Lemma 6.4. Given t1, denote the solution of equation (2.4) as λT (t1) =
(
λ1(t1), λ2(t1)

)
.

Under the conditions C.1-C.3, for t1 ∈ {t1 : |t1 − t1p| ≤ δ}, we have

λ1(t1) = Op(δ), λ2(t1) = Op(δ), (6.30)
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λ1(t1p ± δ) = O
(
δ + hr1 + n−

1
2 (log n)

1
2

)
a.s., (6.31)

λ2(t1p ± δ) = O
(
δ + hr2 + n−

1
2 (log n)

1
2

)
a.s. (6.32)

Proof. Let ρ =
√
λ21(t1) + λ22(t1), Zn = max

1≤i≤n
||Wi(ξ, t1)|| and S =

S2
1(ξ, t1), S12(ξ, t1)

S12(ξ, t1), S
2
2(ξ, t1)

.

Define θ = λ(t1)/ρ. Denote g(λ) = 1/n
∑n

i=1
Wi(ξ,t1)

1+λTWi(ξ,t1)
. From equation (2.4), we have

∣∣θTg(ρθ)
∣∣ =

1

n

∣∣∣∣θT n∑
i=1

Wi(ξ, t1)

1 + ρθTWi(ξ, t1)

∣∣∣∣
=

1

n

∣∣∣∣θT n∑
i=1

Wi(ξ, t1)[1 + ρθTWi(ξ, t1)]− ρWi(ξ, t1)θ
TWi(ξ, t1)

1 + ρθTWi(ξ, t1)

∣∣∣∣
=

1

n

∣∣∣∣θT n∑
i=1

Wi(ξ, t1)− ρθT
n∑
i=1

Wi(ξ, t1)θ
TWi(ξ, t1)

1 + ρθTWi(ξ, t1)

∣∣∣∣
=

1

n

∣∣∣∣θT n∑
i=1

Wi(ξ, t1)− ρθT
n∑
i=1

Wi(ξ, t1)W
T
i (ξ, t1)

1 + ρθTWi(ξ, t1)
θ

∣∣∣∣
≥ ρ

n
θT

n∑
i=1

Wi(ξ, t1)W
T
i (ξ, t1)

1 + ρθTWi(ξ, t1)
θ − 1

n
θT

n∑
i=1

Wi(ξ, t1)

≥ ρθTSθ

1 + ρZn
− 1

n

[∣∣ n∑
i=1

W1i(ξ, t1)
∣∣+
∣∣ n∑
i=1

W2i(ξ, t1)
∣∣].

(6.33)

From equation (2.4), we have |θTg(ρθ)| ≤ ||g(ρθ)|| = 0. With equation (6.33), it follows that

ρθTSθ

1 + ρZn
≤ |W 1(ξ, t1)|+ |W 2(ξ, t1)|. (6.34)

By Lemma 6.2, we have

S =

p(1− p), γ − p2
γ − p2, p(1− p)

+Op(δ + h1)

=: S0 +Op(δ + h1).

(6.35)
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Let σp be the minimal eigenvalue of S0. Then

θTS0θ ≥ σp. (6.36)

With Lemma 6.2, combining equations (6.34), (6.35), and (6.36), we have

ρ

1 + ρZn
= Op(δ).

Noting Zn < C, it follows that ρ = Op(δ), which proves equation (6.26).

From Lemma 6.3, we have

S = S0 +O
(
δ + h1 + n−

1
2 (log n

1
2 )
)

a.s., (6.37)

W i(ξ, t1p ± δ) = O
(
δ + hr1 + n−

1
2 (log n

1
2 )
)

a.s., i = 1, 2. (6.38)

Combining equations (6.34), (6.36), (6.37) and (6.38), we obtain ρ = O(δ) a.s. This proves

equations (6.31) and (6.32).

Lemma 6.5. Assume conditions C.1-C.3 hold. Then with probability one, as n → ∞,

l(ξ, t1, λ
T ) attains its minimum value at t1 = t̃1 and λT = λ̃T , where t̃1, λ̃

T is a solution to

equations (2.4) and (2.5).

Proof. Let t′1 = t1p + δ. By Lemma 6.3, we have

S(t′1) =

S2
1(ξ, t′1), S12(ξ, t

′
1)

S12(ξ, t
′
1), S

2
2(ξ, t′1)


= S0 +Op(δ + h1 + n−

1
2 (log n)

1
2 ) a.s.

With equation (2.4), similar to the proof in Owen (1990), we get

λT (t′1) = S−1(t′1)(W 1(ξ, t
′
1),W 2(ξ, t

′
1))

T +O(δ2) a.s. (6.39)
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By Taylor expansion, we have

−2 log r(ξ, t′1) = 2
n∑
i=1

log(1 + λT (t′1)Wi(ξ, t
′
1))

= 2
n∑
i=1

λT (t′1)Wi(ξ, t
′
1)−

n∑
i=1

[λT (t′1)Wi(ξ, t
′
1)]

2 +O(nδ3) a.s.

= 2nλT (t′1)
(
W 1(ξ, t

′
1),W 2(ξ, t

′
1)
)
− nλT (t′1)S(t′1)λ(t′1) +O(nδ3) a.s.

= n
(
W 1(ξ, t

′
1),W 2(ξ, t

′
1)
)
S−1(t′1)

(
W 1(ξ, t

′
1),W 2(ξ, t

′
1)
)T

+O(nδ3)

= n

(
W 1(ξ, t1p) +

1

nh1

n∑
i=1

K ′
(
t∗1i −X1i

h1

)
δ,W 2(ξ, t1p) +

1

nh2

n∑
i=1

K ′
(
t∗∗1i −X2i

h2

)
δ

)
S−1(t′1)

(
W 1(ξ, t1p) +

1

nh1

n∑
i=1

K ′
(
t∗1i −X1i

h1

)
δ,W 2(ξ, t1p) +

1

nh2

n∑
i=1

K ′
(
t∗∗1i −X2i

h2

)
δ

)T
+O(nδ3) a.s.

≥ nσΓTΓ +O(nδ3) a.s.,

where t∗1i is between t1p and t1p + δ, t∗∗1i is between t1p − ξ and t1p − ξ + δ,

ΓT =
(
W 1(ξ, t1p) +

1

nh1

n∑
i=1

K ′
(t∗1i −X1i

h1

)
δ,W 2(ξ, t1p) +

1

nh2

n∑
i=1

K ′
(t∗∗1i −X2i

h2

)
δ
)
,

and σ is the minimal eigenvalue of S−1(t′1). Note that t∗1i’s are independent and X1i’s are

independent. Following Bernstein inequality, we have

∞∑
i=1

P

(∣∣∣∣ 1

nh1

n∑
i=1

[
K ′
(
t∗1i −X1i

h1

)
− EK ′

(
t∗1i −X1i

h1

)]∣∣∣∣ ≥ dh2
)
≤ 2

∞∑
i=1

exp
−nd2h4

2C + 2/3dh2

≤
∞∑
i=1

exp(−2 log n)

=
∞∑
i=1

1

n2
<∞,
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for d sufficiently large. By the Borel–Cantelli Lemma, we have

1

nh1

n∑
i=1

[
K ′
(
t∗1i −X1i

h1

)
− EK ′

(
t∗1i −X1i

h1

)]
→ 0 a.s. (6.40)

On the other hand,

1

h1
EK ′

(
t∗1i −X1i

h1

)
=

1

h1

∫ +∞

−∞
K ′
(
t∗1i − x
h1

)
f1(x)dx

=
1

h1

∫ +∞

−∞
K ′
(
t∗1i − t1p
h1

+
t1p − x
h1

)
f1(x)dx

=
1

h1

∫ +∞

−∞
K ′
(
t∗1i − t1p
h1

+ x

)
f1(t1p − h1x)dx

=
1

h1

∫ +∞

−∞
K ′
(
t∗1i − t1p
h1

+ x

)
f1(t1p)dx+O(h1)

= f1(t1p) +O(h1).

Hence,
1

nh1

n∑
i=1

K ′
(
t∗1i −X1i

h1

)
=

1

nh1

n∑
i=1

k

(
t∗1i −X1i

h1

)
→ f1(tp) a.s.

(6.41)

Similarly,
1

nh2

n∑
i=1

K ′
(
t∗∗1i −X2i

h2

)
=

1

nh2

n∑
i=1

k

(
t∗∗1i −X2i

h2

)
→ f2(t1p − ξ) a.s.

(6.42)

From Lemma 6.3, W j(ξ, tp) = O(δ) a.s., j = 1, 2. Therefore by equations (6.41) and (6.42),

it follows that ΓTΓ = f 2
1 (t1p)δ

2 + f 2
2 (t1p − ξ)δ2 +O(δ2). Thus, −2 log r(ξ, t′1) ≥ (C − εn)nδ2,

where εn → 0 a.s. At t1p, by the law of the iterated logarithm, we have

−2 log r(ξ, t1p) = n
(
W 1(ξ, t1p),W 2(ξ, t1p)

)
S−1(t1p)

(
W 1(ξ, t1p),W 2(ξ, t1p)

)T
+O(nδ3)

= o(nδ2).

Hence, −2 log r(ξ, t1p+δ) > −2 log r(ξ, t1p) a.s. Similarly, −2 log r(ξ, t1p−δ) > −2 log r(ξ, t1p) a.s.
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Because −2 log r(ξ, t1) is differentiable in the neighborhood of t1 ∈ [t1p−δ, t1p+δ], there

exists t̃1 ∈ [t1p− δ, t1p + δ] such that −2 log r(ξ, t1) attains its minimum and t̃1, λ̃
T (t̃1) satisfy

equations (2.4) and (2.5).

Lemma 6.6. Under the conditions C.1-C.3, for t̃1, λ̃1 = λ1(t̃1) and λ̃1 = λ2(t̃1) satisfying

equations (2.4) and (2.5), we have

√
n(t̃1 − t1p)

D−→ N
(

0,
(p− p2)2 − (γ − p2)2

c0

)
, (6.43)

λ̃1 = −f2(t1p − ξ)
f1(t1p)

λ2(t̃1) + op(n
− 1

2 ), (6.44)

√
nλ̃2

D−→ N
(

0,
f 2
1 (t1p)

c0

)
, (6.45)

where c0 = (p− p2)
[
f 2
1 (t1p) + f 2

2 (t1p − ξ)
]
− 2(γ − p2)f1(t1)f2(t1 − ξ).

Proof. Define

Q1(t1, λ1, λ2) =
1

n

n∑
i=1

W1i(ξ, t1)

1 + λ1W1i(ξ, t1) + λ2W2i(ξ, t1)
,

Q2(t1, λ1, λ2) =
1

n

n∑
i=1

W2i(ξ, t1)

1 + λ1W1i(ξ, t1) + λ2W2i(ξ, t1)
,

Q3(t1, λ1, λ2) =
1

n

n∑
i=1

λ1
h1
K ′
(
t1−X1i

h1

)
+ λ2

h2
K ′
(
t1−ξ−X2i

h1

)
1 + λ1W1i(ξ, t1) + λ2W2i(ξ, t1)

.
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By Lemma 6.2, we obtain

∂Q1(t1p, 0, 0)

∂t1
=

1

nh1

n∑
i=1

K ′
(
t1p −X1i

h1

)
→ f1(t1p) a.s.,

∂Q1(t1p, 0, 0)

∂λ1
= − 1

n

n∑
i=1

W 2
1i(ξ, t1p)

→ −p(1− p) a.s.,

∂Q1(t1p, 0, 0)

∂λ2
= − 1

n

n∑
i=1

W1i(ξ, t1p)W2i(ξ, t1p)

→ −(γ − p2) a.s.,

∂Q2(tp, 0, 0)

∂t1
=

1

nh2

n∑
i=1

K ′
(
t1p − ξ −X2i

h2

)
→ f2(t1p − ξ) a.s.,

∂Q2(t1p, 0, 0)

∂λ1
= − 1

n

n∑
i=1

W1i(ξ, t1p)W2i(ξ, t1p)

→ −(γ − p2) a.s.,

∂Q2(t1p, 0, 0)

∂λ2
= − 1

n

n∑
i=1

W 2
2i(ξ, t1p)

→ −p(1− p) a.s.,
∂Q3(t1p, 0, 0)

∂t1
= 0,

∂Q3(t1p, 0, 0)

∂λ1
=

1

nh1

n∑
i=1

K ′
(
t1p −X1i

h1

)
→ f1(t1p) a.s.,

∂Q3(t1p, 0, 0)

∂λ2
=

1

nh2

n∑
i=1

K ′
(
t1p − ξ −X2i

h2

)
→ f2(t1p − ξ) a.s.
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Denote

Ŝn =


∂Q1(t1p,0,0)

∂t1

∂Q1(t1p,0,0)

∂λ1

∂Q1(t1p,0,0)

∂λ2

∂Q2(t1p,0,0)

∂t1

∂Q2(t1p,0,0)

∂λ1

∂Q2(t1p,0,0)

∂λ2

∂Q3(t1p,0,0)

∂t1

∂Q3(t1p,0,0)

∂λ1

∂Q3(t1p,0,0)

∂λ2

→


f1(t1p) −p(1− p) −(γ − p2)

f2(t1p − ξ) −(γ − p2) −p(1− p)

0 f1(t1p) f2(t1p − ξ)


=: Sn.

(6.46)

Expanding Qi(t1, λ1, λ2) at (t̃1, 0, 0), i = 1, 2, 3, we have

Qi(t̃1, λ̃1, λ̃2) = Qi(t1p, 0, 0) + (t̃1 − t1p)
∂Qi(t1p, 0, 0)

∂t1
+ λ̃1

∂Qi(t1p, 0, 0)

∂λ1
+ λ̃2

∂Qi(t1p, 0, 0)

∂λ2
+Op(δ

2).

(6.47)

From equations (2.4) and (2.5), we have Qi(t̃1, λ̃1, λ̃2) = 0, i = 1, 2, 3. Combining equations

(6.46) and (6.47), we obtain


0

0

0

 =


Q1(t1p, 0, 0)

Q2(t1p, 0, 0)

Q3(t1p, 0, 0)

+ Sn


t̃1 − t1p

λ̃1

λ̃2

+Op(δ
2).

Noting that

δ2 = h2r1 + 2hr1n
−s + n−2s = op(n

− 1
2 ), (6.48)

we have 
t̃1 − t1p

λ̃1

λ̃2

 = S−1n


Q1(t1p, 0, 0)

Q2(t1p, 0, 0)

Q3(t1p, 0, 0)

+ op(n
− 1

2 ),

where

S−1n =


(p−p2)f1(t1p)−(γ−p2)f2(t1p−ξ)

c0

(p−p2)f2(t1p−ξ)−(γ−p2)f1(t1p)
c0

(p−γ)(p+γ−2p2)
c0

−f22 (t1p−ξ)
c0

f1(t1p)f2(t1p−ξ)
c0

(p−p2)f1(t1p)−(γ−p2)f2(t1p−ξ)
c0

f1(t1p)f2(t1p−ξ)
c0

−f21 (t1p)

c0

(p−p2)f2(t1p−ξ)−(γ−p2)f1(t1p)
c0

 .
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Noting Q3(t1p, 0, 0) = 0, we obtain

t̃1 − t1p =
(p− p2)f1(t1p)− (γ − p2)f2(t1p − ξ)

c0
Q1(t1p, 0, 0)

+
(p− p2)f2(t1p − ξ)− (γ − p2)f1(t1p)

c0
Q2(t1p, 0, 0)] + op(n

− 1
2 ),

λ̃1 = −f
2
2 (t1p − ξ)

c0
Q1(t1p, 0, 0) +

f1(t1p)f2(t1p − ξ)
c0

Q2(t1p, 0, 0) + op(n
− 1

2 ),

λ̃2 =
f1(t1p)f2(t1p − ξ)

c0
Q1(t1p, 0, 0)− f 2

1 (t1p)

c0
Q2(t1p, 0, 0) + op(n

− 1
2 ).

Combining the fact that

√
n

Q1(t1p, 0, 0)

Q2(t1p, 0, 0)

 D−→ N

0

0

 ,

p(1− p) γ − p2

γ − p2 p(1− p)

 ,

we complete the proof.

Proof of Theorem 2.1. From equations (6.39) and (6.48), we have

W 1(t̃1) = λ̃1S
2
1(ξ, t̃1) + λ̃2S12(ξ, t̃1) + op(n

− 1
2 ),

W 2(t̃1) = λ̃1S12(ξ, t̃1) + λ̃2S
2
2(ξ, t̃1) + op(n

− 1
2 ).

Therefore, by Taylor expansions, we have

−2 log r(ξ, t̃1) = 2
n∑
i=1

log(1 + λ̃TWi(ξ, t̃1))

= 2
n∑
i=1

λ̃TWi(ξ, t̃1)−
n∑
i=1

[λ̃TWi(ξ, t̃1)]
2 + op(1)

= nλ̃21S
2
1(ξ, t̃1) + nλ̃22S

2
2(ξ, t̃1)) + 2nλ̃21λ̃

2
2S12(ξ, t̃1) + op(1)

= nλ22(t̃1)

[
f 2
2 (t1p − ξ)
f 2
1 (t1p)

S2
1(ξ, t̃1)− 2

f2(t1p − ξ)
f1(tp)

S12(ξ, t̃1) + S2
2(ξ, t̃1)

]
+ op(1).
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From Lemma 6.3, with some simple calculations, we get

f 2
2 (t1p − ξ)
f 2
1 (t1p)

S2
1(ξ, t̃1)− 2

f2(t1p − ξ)
f1(t1p)

S12(ξ, t̃1) + S2
2(ξ, t̃1)→

f 2
2 (t1p − ξ)
f 2
1 (t1p)

(p− p2)

− 2
f2(t1p − ξ)
f1(t1p)

(γ − p2) + (p− p2) a.s.

=
c0

f 2
1 (t1p)

a.s.

From equation (6.45), the proof is completed.

Proof of Theorem 2.2. By the arguments in Chen, Variyath and Abraham (2008), Theo-

rem 2.2 can be proved.
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Algorithms

Denote the true difference of quantiles as ξ0 and the upper α-quantile of χ2
1 as χ2

1(α).

Algorithm 1: Coverage probability calculation

1. Generate the paired data.

2. Use Algorithm 3 to calculate l(ξ0, t̃1, λ̃
T ).

3. Compare l(ξ0, t̃1, λ̃
T ) and χ2

1(α).

Algorithm 2: Confidence interval calculation

1. Generate the paired data.

2. Propose an estimator ξ̂ of ξ.

3. Use Algorithm 3 to calculate l(ξ̂, t̃1, λ̃
T ).

4. Repeat steps 2 and 3 until l(ξ̂, t̃1, λ̃
T ) < χ2

1(α).

5. Solve the equation l(ξ̂, t̃1, λ̃
T )− χ2

1(α) = 0 using the bisection method.

6. Keep the two solutions ξl and ξu as the lower and upper bounds of ξ.

Algorithm 3: Compute l(ξ, t̃1, λ̃
T )

1. Given ξ, solve the equations (2.4) and (2.5) and t̃1, λ̃
T are obtained.

2. Plug ξ, t̃1 and λ̃T into the equation (2.3), and l(ξ, t̃1, λ̃
T ) is calculated.
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