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ABSTRACT

In the thesis, we consider the Cox regression model. We develop the jackknife empirical

likelihood (JEL), adjusted jackknife empirical likelihood (AJEL), mean jackknife empirical

likelihood (MJEL), transformed jackknife empirical likelihood (TJEL) and (TAJEL) trans-

formed adjusted jackknife empirical likelihood for the inference about the regression pa-

rameters. Additionally, the adjusted empirical likelihood (AEL), mean empirical likelihood

(MEL), transformed empirical likelihood (TEL) and transformed adjusted empirical likeli-



hood (TAEL) methods are developed. We compare methods under different distributions in

terms of the coverage probability and average length of confidence interval for the regression

parameter with simulation studies and three real data sets. The simulation analyses indicate

that the MJEL, AJEL, and TAJEL methods are the best performing JEL methods while the

MEL method was the best performing EL method. The real data analyses yielded results

consistent with the simulation studies.
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CHAPTER 1

INTRODUCTION

1.1 General introduction

The field of survival analysis is a vastly utilized in Biostatistics. Survival analysis is

often used to monitor survival times in clinical trials. These clinical trials often consist of

participants that are subject to random censoring and failure times. The Cox regression

model is widely used model survival analysis. The Cox’s regression model enables us to

quantify the relationship between failure times and a set of explanatory variables. Cox

(1972) introduced the partial likelihood to make an inference for the true value β0. The Cox

proportional hazard model by Cox (1972) is given as follows:

λ0(t|Z) = λ0(t)exp(βτ0Z),

where λ0(t), denotes an unknown baseline hazard function, β0 is a vector of regression

coefficients and Z is a p-dimensional covariate vector.

1.2 The review of normal approximation

We want to review the Cox’s regression model and the basic results from large sample

theory. This will be useful to understand the EL method, our proposed JEL method and

thus our proposed variations of the JEL method. We will establish the normal approximation

(NA) method.

1.3 The review of empirical likelihood

The empirical likelihood (EL) was originally introduced by Owen (1988, 1990) for the

mean vector. Owen (1990) showed that the Wilk’s theorem (Wilks 1938) holds under mild
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conditions. The EL method is a nonparametric method that outperforms the parametric

approach Jayasinghe and Zeephongsekul (2012) introduced. The EL method allows us to

use likelihood methods to construct confidence regions without assuming a parametric family

for the data. The regions are invariant under transformations and tend to show improved

performance over the confidence regions obtained from the NA method when the sample size

is small (Chen and Keilegom (2009)). Qin and Jing (2001) attempted to apply empirical

likelihood on Cox regression model with incorrectly assuming that the baseline hazard func-

tion λ0(t) is known. To remedy this issue, a plug-in EL method for the Cox regression model

was proposed in Zhao and Jinnah (2012) by estimating the cumulative hazard function Λ0(t)

instead of assuming that the baseline hazard function λ0(t) is known.

The empirical likelihood confidence regions generally suffer from under-coverage. Under-

coverage issue occurs when the coverage probability is noticeably lower than the nominal level

(e.g., Owen (2001)). This problem of under-coverage for the EL method occurs considerably

in small sample sizes. The problem can be traced to the rate at which the original empirical

log-likelihood ratio statistic converges to the limiting chi-square random variable, and the

convex hull restraint that confines the confidence region to a bounded region in a parameter

space (Tsao, 2013). The EL method can be studied in many fields, Wang and Jing (2001)

used EL methods to study a class of functionals of survival functions, Zhou (2005) employed

the EL method on the accelerated failure time model and Yu et al. (2009) studied it on a

censored median model.

1.4 The review of jackknife empirical likelihood

The jackknife empirical likelihood (JEL) method was first introduced by Thomas and

Grunkemeier (1975) in a paper utilizing variations of empirical likelihood-based confidence

interval construction for survival data analysis. JEL method was proposed and proved to be

effective when dealing with complicated statistics (Jing et al., 2009) and proven to be simple

to implement, making the JEL method the often-preferred method over the EL method.

The JEL method involves implementing jackknife pseudo-values into EL methods. The JEL
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method has been used in many settings such as in comparing two correlated Gini indices with

the goal of reducing computational cost according to Alemdjrodo and Zhao (2019). Gong et

al. (2010) proposed a smoothed JEL for the receiver operating characteristic curve, which

is used to enhance computational efficiency. We propose a jackknife empirical likelihood to

make an inference on the confidence region of β for the Cox model.

1.5 The review of adjusted jackknife empirical likelihood

Chen et al. (2008) proposed the adjusted empirical likelihood (AEL) to solve problems

created by the non-existence of solutions when computing the empirical likelihood. Notably,

the adjusted empirical likelihood contains the desired asymptotic properties that the em-

pirical likelihood holds. Notably, the EL method is affected by the low precision of the

chi-square distribution for small sample sizes. The EL method suffers from being effected if

the dimension of the accompanying estimating function is high, but the AEL method im-

proves upon the defect according to Liu and Chen (2010). Utilizing the AEL methods of

Zhao, Meng, and Yang (2016) proposed an adjusted JEL. This method results in a reduction

of error rates of the proposed jackknife empirical likelihood ratio. Zhao et al. (2015) and

Chen and Ning (2016) developed an adjusted jackknife empirical likelihood (AJEL) method.

The AJEL method combines the AEL and JEL methods. The AJEL method decreases the

error rates of the jackknife empirical likelihood ratio. This thesis will employ the adjusted

jackknife empirical likelihood (AJEL) to get a confidence region for β.

1.6 The review of mean jackknife empirical likelihood

To overcome low levels of accuracy of the EL method for small sample sizes and mul-

tidimensional situations, Liang et al. (2019) presented the approach known as the mean

empirical likelihood (MEL) method. The MEL method employs pairwise-mean data. The

MJEL method will combine the MEL and JEL methods. We will explore the mean jackknife

empirical likelihood (MJEL) to get a confidence region for β for the Cox regression model.
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1.7 The review of transformed jackknife empirical likelihood

The EL method suffers an under-coverage problem that can be very apparent in small

sample sizes (Owen 2001). Jing et al. (2017) propose the Transformed Empirical Likeli-

hood (TEL) to improve upon the under-coverage issues. The TEL improves the coverage

probability for the EL method for applications. In this thesis, we propose applying the TEL

and JEL to form a transformed jackknife empirical likelihood (TJEL) method of obtaining

a confidence region for β.

1.8 The review of transformed adjusted jackknife empirical likelihood

We propose the new method of transformed adjusted jackknife empirical likelihood

(TAJEL) which is a combination of the TJEL and AJEL methods. Incorporating the two

methods into one, we strive to get the benefits of the two methods, i.e., the improvements

from the TJEL vs. JEL and AJEL vs. JEL. We will employ TAJEL to get an estimate of

the confidence intervals of β, the regression parameter in the Cox regression model.

1.9 Purpose of the study

In this thesis, we review the normal approximation (NA), empirical likelihood (EL) in-

ference procedure for β in the Cox regression model. Then we propose jackknife empirical

likelihood (JEL), adjusted jackknife empirical likelihood (AJEL), and propose mean jack-

knife empirical likelihood (MJEL), transformed jackknife empirical likelihood (TJEL) and

transformed adjusted jackknife empirical likelihood (TAJEL) for the inference of regression

parameter β. In addition, we develop AEL, MEL, TEL, and TAEL based on EL. Then, we

construct the confidence interval and calculate the length of the confidence intervals. We

will evaluate these methods in terms of the coverage probability and the average length of

the confidence interval for β.

The thesis is organized as follows. In Chapter 2, we first review NA and EL methods

and then study alternative EL methods and construct confidence intervals for β using AEL,
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MEL, TEL, and TAEL in the Cox regression model. In Chapter 3, we combine jackknife

and EL together, to form the jackknife empirical likelihood method (JEL). Then we propose

confidence intervals for β in the Cox regression model using JEL, AJEL, MJEL, TJEL,

TAJEL methods. In Chapter 4, we conduct an extensive simulation study. In Chapter 5,

we apply the proposed methods to three real data sets. In Chapter 6, we make a conclusion

for the proposed methodology.
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CHAPTER 2

EL METHODOLOGY

In this chapter, we propose adjusted empirical likelihood, mean empirical likelihood,

transformed empirical likelihood, and transformed adjusted empirical likelihood, for the

interval estimate of confidence regions of β.

2.1 Normal approximation confidence region for β

In this section, we review the Cox regression model and the normal approximation

method for the inference of regression parameter β. We adopt the same notations as in Zhao

and Jinnah (2012). We denote ti’s as the failure times and ci’s as the censoring variables.

Also, we denote xi = min(ti, ci) and δi = I(xi = ti) where I(·) denotes the indicator function.

As previously stated, Z is a p-dimensional covariate vector. Next, we assume (ti, ci, Z
τ
i )’s are

i.i.d for i = 1, ..., n. Also, given Zi we assume the ti and ci, the failure times and censoring

variables respectively, are conditionally independent. To make an inference for β0, Cox

(1975) suggested the partial likelihood function, denoted L(β), given as follows,

L(β) =
∏

i=1,...,n;xi≤T

[
exp(βτZi)∑n

j exp(β
τZj)I(xj ≥ xi)

]δi

where T satisfies P (xi ≥ T ) > 0. Denote U(β) as the partial likelihood score function. U(β)

is generated by calculating the first derivatives of logL(β). We denote β̂ as the maximum

partial likelihood estimator that is obtained by solving U(β) = 0. It is known that the

partial likelihood score function is as follows:

U(β) =
n∑
i=1

∫ T

0

(
Zi −

α̂1(t,β)

α̂0(t,β)

)
dNi(t)
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where α̂0(t,β) = n−1
∑

i exp(β
τZi)I(xi ≥ t) , α̂1(t,β) = n−1

∑
i Ziexp(β

τZi)I(xi ≥ t) and

Ni(t) = I(xi ≤ t, δi = 1). It is shown that (cf., Anderson and Gill, 1982), n1/2(β̂ − β0)
L−→

N(0, I(β0)−1), where I(β0) = limn→∞Î(β0) and

Î(β) = n−1

n∑
i=1

δi

(
α̂2(xi,β)

α̂0(xi,β)
−
(
α̂2(xi,β)

α̂0(xi,β)

)⊗2
)

is the information matrix with a⊗2 = aaτ and α̂2(t,β) = n−1
∑

i Z
⊗2
i exp(βτZi)I(xi ≥ t).

The asymptotic 100(1−α)% confidence region for β based on the normal approximation

method (cf. Zhao and Jinnah (2012)) is

R1 = {β : n(β̂ − β)τ Î(β̂)(β̂ − β) ≤ X2
p (α)},

where χ2
p(α) is the (1−α)-th quantile of the chi-square distribution with p degrees of freedom.

2.2 Empirical likelihood confidence region for β

In this section, we review EL inference method for the Cox model the same as in Zhao

and Jinnah (2012). For completeness, we provide details as follows. We must propose a new

Wn,i that does not involve the unknown λ0(s) and enables us to implement the plug-in EL

method proposed. It is known that U(β) can be re-expressed as

U(β) =
n∑
i=1

∫ T

0

(
Zi −

α̂1(t,β0)

α̂0(t,β0)

)
dMi(t),

with EU(β0) = 0 for the true β0, when Mi(t) = Ni(t) −
∫ t

0
exp(βt0Zi)I(xi ≥ s)λ0(s)ds,

i = 1, ..., n are martingales. The baseline hazard function λ0(s) is unspecified in the Cox’s

regression model and thus estimation is required. Therefore, we replace λ0(s)ds with the

estimated equivalent d∧̂0(s,β0) in the above equation, where

∧̂0(t,β0) =
n∑
i=1

∫ t

0

dNi(s)∑n
j=1 I(xj ≥ s)exp(βτ0Zj)

.
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The score function satisfies

U(β0) =
n∑
i=1

∫ T

0

(
Zi −

α̂1(t,β0)

α̂0(t,β0)

)
dM̂i(t)

where M̂i(t) = Ni(t)−
∫ t

0
exp(βτ0ZiI(xi ≥ s)d∧̂0(s,β0). Then, as Hjort et al. (2009) set the

precedence, we adopt the plug-in EL method. Let p = (p1, ..., pn) be a probability vector

such that
∑n

i=1 pi = 1 and pi ≥ 0 for all i. Then, for 1 ≤ i ≤ n, let

Wn,i(β0) =

∫ T

0

(
Zi −

α̂1(t,β0)

α̂0(t,β0)

)
dM̂i(t).

We note that
∏n

i=1 pi, subject to
∑n

i=1 pi = 1, achieves its maximum, denoted n−n, at

pi = n−1. Therefore, the EL ratio with plug-in estimate, when evaluated at true parameter

β0, is the following:

R(β0) = sup{
n∏
i=1

npi :
n∑
i=1

pi = 1,
n∑
i=1

piWn,i(β0) = 0, pi ≥ 0}.

Employing Lagrange multipliers, we find that the L(β0) is maximized. Thus, we conclude

R(β0) =
n∏
i=1

(1 + λτWn,i(β0))−1 ,

where λ = (λ1, ..., λp)
τ is the solution to the equation

1

n

n∑
i=1

Wn,i(β0)

1 + λτWn,i(β0)
= 0.

We put l̂(β) = −2logR(β). It is known that Wn,i involves the estimate of λ0(t). The

Wn,i(β0)’s are asymptotically i.i.d. and the limiting distribution of the EL ratio l̂(β) is a

standard χ2
p distribution. We establish the Wilk’s theorem.

Theorem 2.1 (Zhao and Jinnah, 2012) Assume λ0(t) is continuous and that the covariate

vector Zi is bounded. Then, the statistic l̂(β0)
D−→ χ2

p, as n→∞.
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Thus, an asymptotic 100(1 − α)% empirical likelihood confidence regions for β is as

follows:

R2 = {β : l̂(β) ≤ χ2
p(α)},

where χ2
p(α) is the (1−α)-th quantile of the chi-square distribution with p degrees of freedom.

We can use profile empirical likelihood by profiling out nuisance parameters from the

full EL. Define β0 = ((β
(1)
0 )′, (β

(2)
0 )′)′. Suppose that we want to construct EL confidence

regions for a q-dimensional (q < p) subvector β
(1)
0 . This can be done by profiling out β(2)

from the full EL. Then the profile EL ratio for β(1) is

lprofile(β
(1)) = minβ(2)l((β(1))′, (β(2))′).

We established Wilk’s theorem for lprofile(β
(1)) as follows:

Theorem 2.2 Under the regular conditions, as n→∞,

lprofile(β
(1)
0 )

D−→ χ2
q,

where χ2
q is a standard chi-square distribution with q degrees of freedom.

Based on Theorem 2.2, we construct the asymptotic 100(1 − α)% empirical likelihood

confidence regions for β
(1)
0 is as follows:

REL
profile(α) = {β(1) : lprofile(β

(1)) ≤ χ2
q(α)},

where χ2
q(α) is the (1−α)-th quantile of the chi-square distribution with q degrees of freedom.

2.3 Adjusted empirical likelihood confidence region for β

The EL method suffers from the convex hull problem which refers to zero not being

guaranteed to be in the convex hull. To improve the coverage probability of the empirical

likelihood methods, Chen et al. (2008) proposed the adjusted empirical likelihood (AEL)
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method. The AEL method involves adding one artificial data point into the data set and

then applying the EL method on the new data set. The AEL function for β is as follows:

hadi (β) = Ŵn,i(β), i = 1, ..., n,

where hadn+1(β) = −anh̄ad(β) = −an
∑n

i=1 Ŵn,i(β)/n and an is a constant number,

an = max (1, log(n)/2) .

Thus, with the (n+ 1) data points we have the adjusted empirical likelihood ratio function,

evaluated at β as

Rad(β) = sup

{ n+1∏
i=1

(n+ 1)pi :
n+1∑
i=1

piW
ad
n,i(β) = 0,

n+1∑
i=1

pi = 1, pi ≥ 0, i = 1, 2, . . . , n+ 1

}
.

Therefore, the adjusted empirical log-likelihood ratio at β is

lad(β) = −2logRad(β)

= 2
n+1∑
i=1

log{1 + λW ad
n,i(β)},

where λ satisfies the following equation:

f(λ) =
n+1∑
i=1

W ad
n,i(β)

1 + λW ad
n,i(β)

= 0.

We establish the following Wilk’s Theorem for lad(β0). Theorem 2.3 Assume that the

regularity conditions hold. As n→∞,

lad(β0)
D→ χ2

p,

where χ2
p is a standard chi-square distribution with p degrees of freedom.

Based on Theorem 2.3, we can construct the asymptotic 100(1−α)% adjusted empirical
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likelihood confidence region for β0 as

R3(α) = {β : lad(β) ≤ χ2
p(α)},

where χ2
p(α) is the upper α-quantile of χ2

p.

Similar to before, we derive the Wilks’ Theorem for the profile AEL ratio in Theorem

2.4.

Theorem 2.4 Under the regularity conditions given in the Appendix, as n→∞,

ladprofile(β
(1)
0 )

D→ χ2
q.

Based on Theorem 2.4, we can construct the asymptotic 100(1−α)% adjusted empirical

likelihood confidence region for β
(1)
0 as

RAEL

profile(α) =
{
β(1) : ladprofile(β(1)) ≤ χ2

q(α)
}
,

where χ2
q(α) is the (1− α) quantile of χ2

q.

2.4 Mean empirical likelihood confidence region for β

To improve upon the EL confidence regions for small sample sizes, Liang et al. (2019) in-

troduced the mean empirical likelihood (MEL). For this thesis, we define the mean empirical

likelihood (MEL) pseudo values as,

SELi (β) =
Wn,j(β) +Wn,k(β)

2
, i = 1, ..., N, 1 ≤ j ≤ k ≤ n,

where N = n(n+ 1)/2.

Thus, the mean empirical likelihood ratio at β is,

RMEL(β) = max
{ N∏
i=1

Npi :
N∑
i=1

pi = 1,
N∑
i=1

piS
EL
i (β) = 0, pi ≥ 0

}
.
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Now we have the mean empirical log-likelihood ratio as follows,

−2logRMEL(β)

n+ 1
=

2

n+ 1

N∑
i=1

log{1 + λSELi (β)},

where λ satisfies the equation

f(λ) =
N∑
i=1

SELi (β)

1 + λSELi (β)
= 0.

Denote β0 as the true value of β. Employing the method by Liang et al. (2019), we establish

the following theorem.

Theorem 2.5 Assume the regularity conditions. Denote β0 as the true parameter value of

β. When n→∞, −2logRMEL(β0)
n+1

converges in distribution to χ2
p.

The 100(1− α)% MEL confidence region for β is constructed as follows:

R4 =
{
β :
−2logRMEL(β)

n+ 1
≤ χ2

p(α)
}
.

We establish the Wilk’s Theorem for the profile MEL ratio.

Theorem 2.6 Under the regular conditions as n→∞,

lMEL
profile(β

(1)
0 )

D−→ χ2
q.

Based on Theorem 2.6, we construct the asymptotic 100(1− α)% mean empirical like-

lihood confidence regions for β
(1)
0 as follows:

RMEL
profile(β

(1)) =
{−2logRMEL

profile(β
(1))

n+ 1
≤ χ2

q(α)
}
.

2.5 Transformed empirical likelihood confidence region for β

We will use a simple transformation of the EL to improve upon the original EL method.

Recall that the original empirical log-likelihood ratio is denoted as R(β). For a constant
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γε[0, 1], we define

gt(R(β); γ) = R(β)×max{1−R(β)/n, 1− γ}.

We will refer to gt(R(θ); γ) as the truncated quadratic transformation of R(β). Jing et al.

(2017) set γ = 1/2. Then, we have the transformed empirical log-likelihood ratio, RTEL(β)

as

RTEL(β) = gt(R(β); γ = 1/2)

= R(β) ∗max{1−R(β)/n, 1/2}.

We have,

RTEL(β) =

 R(β)[1−R(β)/n] R(β) ≤ n/2

R(β)/2 R(β) > n/2.

The TEL shares the same asymptotic properties with the EL. See Jing et al. (2017) for

further explanation.

Theorem 2.7 Assume that the regularity conditions hold. When n→∞, −2logRTEL(β0)
D−→

χ2
p.

The asymptotic 100(1− α)% TEL confidence region is as follows,

R5 : {β : −2logRTEL(β) ≤ χ2
p(α)}.

Similar to before, we derive the Wilk’s Theorem for the profile TEL ratio in Theorem

2.8.

Theorem 2.8 Under the regular conditions as n→∞,

lTELprofile(β
(1)
0 )

D−→ χ2
q.

Based on Theorem 2.8, we construct the asymptotic 100(1−α)% transformed empirical
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likelihood confidence regions for β
(1)
0 as follows:

RTEL
profile(β

(1)) = {β(1) : lTELprofile(β
(1)) ≤ χ2

q(α)}.

2.6 Transformed adjusted empirical likelihood confidence region for β

In this section, we propose transformed adjusted empirical likelihood (TAEL) as a new

method. TAEL is a combination of the AEL and TEL methods. We set gi = gi(yi;β)

for i = 1, ..., n. For any β and for some positive an. By default, Chen et al. (2008) set

an =log(n)/2. We define

gn+1 =
−an
n

gn,

where gn = n−1
∑n

i=1 gi. Thus, R(β) can be re-defined as

R∗TEL(β) = max
n+1∑
i=1

log{(n+ 1)pi},

subject to the constraints

n+1∑
i=1

pi = 1,
n+1∑
i=1

pig(Yi,β) = 0, pi ≥ 0, i = 1, ..., n+ 1.

For a constant γε[0, 1], we define

g∗t (R
∗(β); γ) = R∗(β) ∗max{1−R∗(β)/(n+ 1), 1− γ}.

Thus, g∗t (R
∗(β); γ) is a truncated quadratic transformation of R∗(β) and as Jing et al. (2017)

set the precedent, we will set the default value of γ = 1/2. Thus, we define the transformed

adjusted empirical log-likelihood ratio, R∗TEL(β) as follows,

R∗TEL(β) = g∗t (R(β); γ = 1/2)

= R∗(β) ∗max{1−R∗(β)/(n+ 1), 1/2}.
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We have,

R∗TEL(β) =

 R∗(β)[1−R∗(β)/(n+ 1)] R∗(β) ≤ (n+ 1)/2

R∗(β)/2 R∗(β) > (n+ 1)/2.

Theorem 2.9 Assume the regularity conditions hold. Denote β0 as the true parameter

value. When n→∞, −2logR∗t (β0) converges in distribution with χ2
p.

The 100(1− α)% TAEL confidence region for β is constructed as follows:

R6 : {β : −2logR∗TEL(β) ≤ χ2
p(α)}.

We derive the Wilk’s Theorem for the profile TAEL ratio in Theorem 2.10.

Theorem 2.10 Under the regular conditions, as n→∞, we have

lTAELprofile(β
(1)
0 )

D−→ χ2
q.

Based on Theorem 2.10, we construct the asymptotic 100(1−α)% transformed adjusted

empirical likelihood confidence regions for β
(1)
0 as follows:

RTAEL
profile(β

(1)) =
{
lTAELprofile(β

(1)) ≤ χ2
q(α)

}
.
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CHAPTER 3

JEL METHODOLOGY

In this chapter, we apply the jackknife empirical likelihood method (cf. Jing et al., 2009)

to the Cox regression model. The jackknife empirical likelihood, adjusted jackknife empirical

likelihood, mean jackknife empirical likelihood, transformed jackknife empirical likelihood,

transformed adjusted jackknife empirical likelihood are proposed for the interval estimate of

β.

3.1 Jackknife empirical likelihood confidence region for β

In this section, we propose a jackknife empirical likelihood method to make an inference

on β. The JEL method’s foundation is the process of creating a sample mean from the

statistic of interest based on jackknife pseudo-values (Jing et al. (2009)). Note Zi, i = 1, ..., n

is bounded in the Cox regression model. Recall that U(β) is the score function of β.

U(β) =
1

n

n∑
i=1

∫ T

0

(
Zi −

α̂1(t,β0)

α̂0(t,β0)

)
dNi(t)

= T (Z1, ..., Zn,β).

Ŵjel,i(β) = n ∗ U(β)− (n− 1) ∗ U−in−1(β), i = 1, ..., n,

where U−in−1(β) := T (Z1, ..., Zi−1, Zi+1, ..., Zn,β) is computed on the n − 1 samples formed

from the original data set by deleting the ith observation. The jackknife estimator T̂nj(β) is

the average of all of the pseudo-values,

T̂nj(β) =
1

n

n∑
i=1

Ŵjel,i(β).
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The jackknife empirical likelihood ratio at β is defined as

R(β) = max
{ n∏
i=1

npi :
n∑
i=1

piŴjel,i(β) = 0,
n∑
i=1

pi = 1, pi ≥ 0
}
.

Using Lagrange multipliers we can solve for the jackknife empirical log-likelihood ratio,

−2logR(β) = 2
n∑
i=1

log{1 + λŴjel,i(β)},

where λ satisfies the following equation

f(λ) =
1

n

n∑
i=1

Ŵjel,i(β)

1 + λŴjel,i(β)
= 0.

Then, we establish the Wilk’s Theorem and use it to construct a confidence region for β.

Theorem 3.1 Assume the regularity conditions hold. When n→∞, −2logR(β0)
D−→ χ2

p.

The 100(1− α)% JEL confidence region for β is constructed as follows:

R7 = {β : −2logR(β) ≤ χ2
p(α)}.

If we are interested in only one component of the regression parameter, we can tackle the

nuisance parameter by profiling the empirical likelihood. Define β = (β(1)′ ,β(2)′)T , where

β(1) ∈ Rq and β(2) ∈ Rp−q. This is similar to Yang and Zhao (2012), where we define the

profile JEL ratio and log-likelihood ratio as follows:

R∗(β(1)) = maxβ(2)R(β)

and

l∗(β(1)) = −2logR∗(β(1)).

We derive the Wilk’s theorem for the profile JEL ratio.
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Theorem 3.2 Under the regular conditions, as n→∞,

lprofile(β
(1)
0 )

D−→ χ2
q.

Based on Theorem 3.2, we construct the asymptotic 100(1 − α)% jackknife empirical

likelihood confidence regions for β
(1)
0 as follows:

RJEL
profile(α) = {β(1) : −2logR∗(β1) ≤ χ2

q(α)}.

3.2 Adjusted jackknife empirical likelihood confidence region for β

The adjusted empirical likelihood (AJEL) was proposed by Chen et al. (2008). The

AJEL is an improvement on the original method according to Zhen and Yu (2013). The

AJEL method can avoid the convex hull restrictions that coincide with the JEL method.

The AJEL function for β is as follows:

hadi (β) = Ŵjel,i(β), i = 1, ..., n,

where hadn+1(β) = −anh̄ad(β) = −an
∑n

i=1 Ŵjel,i(β)/n and an is a constant number,

an = max (1, log(n)/2) .

Thus, with the (n+ 1) data points, the adjusted jackknife empirical likelihood ratio at β is

Radj(β) = max
{ n+1∏

i=1

(n+ 1) pi,
n+1∑
i=1

pi = 1,
n+1∑
i=1

pih
ad
i (β) = 0, pi ≥ 0

}
.

Employing Lagrange multipliers method, we obtain the adjusted jackknife empirical log-

likelihood ratio,

−2logRadj(β) = 2
n+1∑
i=1

log{1 + λhadi (β)},
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where λ satisfies the following equation,

f(λ) =
1

n+ 1

n+1∑
i=1

hadi (β)

1 + λhadi (β)
= 0.

Incorporating the approaches of Chen at el. (2008) and Jing et al. (2009), we have that as

n→∞ the Wilk’s theorem holds.

Theorem 3.3 Assume the regularity conditions. Denote β0 as the true parameter value.

When n→∞, −2logRadj(β0)
D−→ χ2

q .

The 100(1− α)% AJEL confidence region for β is constructed as follows:

R8 = {β : −2logRadj(β) ≤ χ2
p(α)}.

Similar to before, we derive the Wilk’s Theorem for the profile AJEL ratio.

Theorem 3.4 Under the regular conditions, as n→∞,

ladjprofile(β
(1)
0 )

D−→ χ2
q.

Based on Theorem 3.4, we construct the asymptotic 100(1 − α)% adjusted jackknife

empirical likelihood confidence regions for β
(1)
0 as follows:

Radj
profile(α) = {β(1) : ladprofile(β

(1)) ≤ χ2
q(α)}.

3.3 Mean jackknife empirical likelihood confidence region for β

For this thesis, we define the mean jackknife empirical likelihood (MJEL) pseudo value

as,

Si(β) =
Ŵjel;j(β) + Ŵjel;k(β)

2
, i = 1, ..., N, 1 ≤ j ≤ k ≤ n,
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where N = n(n+ 1)/2.

Thus, the mean jackknife empirical likelihood ratio at β is,

Rmjel = max
{ N∏
i=1

Npi :
N∑
i=1

pi = 1,
N∑
i=1

piSi(β) = 0, pi ≥ 0
}
.

Now we have the mean jackknife empirical log-likelihood ratio as follows,

−2logRmjel(β)

n+ 1
=

2

n+ 1

N∑
i=1

log{1 + λSi(β)},

where λ satisfies the equation

f(λ) =
N∑
i=1

Si(β)

1 + λSi(β)
= 0.

Denote β0 as the true value of β. Employing the method by Liang et al. (2019), we establish

the following theorem.

Theorem 3.5 Assume the regularity conditions. When n → ∞, −2logRmjel(β0)/(n + 1)

converges in distribution to χ2
p.

The 100(1− α)% MJEL confidence region for β is constructed as follows:

R9 =
{
β :
−2logRmjel(β)

n+ 1
≤ χ2

p(α)
}
.

We derive the Wilk’s Theorem for the profile MJEL ratio in Theorem 3.6.

Theorem 3.6 Under the regular conditions as n→∞,

lmjelprofile(β
(1)
0 )

D−→ χ2
q.

Based on Theorem 3.6, we construct the asymptotic 100(1 − α)% mean jackknife em-
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pirical likelihood confidence regions for β
(1)
0 as follows:

Rmjel
profile(β

(1)) =
{−2logRmjel

profile(β
(1))

n+ 1
≤ χ2

q(α)
}
.

3.4 Transformed jackknife empirical likelihood confidence region for β

Jing et al. (2017) proposed a simple transformed EL to improve the coverage probability

of the original EL method. Recall that the original empirical log-likelihood ratio is denoted

as R(β). For a constant γε[0, 1], we define

gt(R(β); γ) = R(β)×max{1−R(β)/n, 1− γ}.

We will refer to gt(R(θ); γ) as the truncated quadratic transformation of R(β). Jing et al.

(2017) set γ = 1/2. Then, we have the transformed empirical log-likelihood ratio, Rt(β) as

Rt(β) = gt(R(β); γ = 1/2)

= R(β) ∗max{1−R(β)/n, 1/2}.

We have,

Rt(β) =

 R(β)[1−R(β)/n] R(β) ≤ n/2

R(β)/2 R(β) > n/2.

The TEL shares the same asymptotic properties with the EL. See Jing et al. (2017) for

further explanation.

Theorem 3.7 Assume that the regularity conditions hold. When n→∞, −2logRt(β0)
D−→

χ2
p.

The asymptotic 100(1− α)% TJEL confidence region is as follows,

R10 : {β : −2logRt(β) ≤ χ2
p(α)}.

Similarly, we derive the Wilk’s Theorem for the profile TJEL ratio in Theorem 3.8.
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Theorem 3.8 Under the regular conditions as n→∞,

lTJELprofile(β
(1)
0 )

D−→ χ2
q.

Based on Theorem 3.8, we construct the asymptotic 100(1 − α)% transformed jackknife

empirical likelihood confidence regions for β
(1)
0 as follows:

RTJEL
profile(β

(1)) = {β(1) : lTJELprofile(β
(1)) ≤ χ2

q(α)}.

3.5 Transformed adjusted jackknife empirical likelihood confidence region for

β

In this section, we propose transformed adjusted jackknife empirical likelihood (TAJEL)

as a new method. TAJEL is a combination of the AJEL and TJEL methods. We set

gi = gi(yi;β) for i = 1, ..., n. For any β and for some positive an. By default, Chen et al.

(2008) set an =log(n)/2. We define

gn+1 =
−an
n

gn,

where gn = n−1
∑n

i=1 gi. Thus, R(β) can be re-defined as

R∗t (β) = max
n+1∑
i=1

log{(n+ 1)pi},

subject to the constraints

n+1∑
i=1

pi = 1,
n+1∑
i=1

pig(Yi,β) = 0, pi ≥ 0, i = 1, ..., n+ 1.

For a constant γε[0, 1], we define

g∗t (R
∗(β); γ) = R∗(β) ∗max{1−R∗(β)/(n+ 1), 1− γ}.
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Thus, g∗t (R
∗(β); γ) is a truncated quadratic transformation of R∗(β). Jing et al. (2017) sets

the default value of γ = 1/2. Thus, we define the transformed adjusted jackknife empirical

log-likelihood ratio, R∗t (β) as follows,

R∗t (β) = g∗t (R(β); γ = 1/2)

= R∗(β) ∗max{1−R∗(β)/(n+ 1), 1/2}.

We have,

R∗t (β) =

 R∗(β)[1−R∗(β)/(n+ 1)] R∗(β) ≤ (n+ 1)/2

R∗(β)/2 R∗(β) > (n+ 1)/2.

Theorem 3.9 Assume the regularity conditions hold. When n→∞, −2logR∗t (β0) converges

in distribution with χ2
p.

The 100(1− α)% TAJEL confidence region for β is constructed as follows:

R11 : {β : −2logR∗t (β) ≤ χ2
p(α)}.

We derive the Wilk’s Theorem for the profile TAJEL ratio.

Theorem 3.10 Under the regular conditions, as n→∞, we have

lTAJELprofile (β
(1)
0 )

D−→ χ2
q.

We construct the asymptotic 100(1−α)% transformed adjusted jackknife empirical likelihood

confidence regions for β
(1)
0 as follows:

RTAJEL
profile (β(1)) =

{
lTAJELprofile (β(1)) ≤ χ2

q(α)
}
.
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CHAPTER 4

SIMULATION STUDY

In this chapter, we report the proposed NA, EL, JEL, AJEL, MJEL, TJEL and TAJEL

confidence regions by performing simulation studies. We want to compare the performance

of the JEL, AJEL, MJEL, TJEL, TAJEL, AEL, MEL, TEL and TAEL methods in relation

to the NA and EL methods.

4.1 Coverage probabilities

For the simulation studies, we will work with two-dimensional covariates. The model

will be the Cox regression model:

λ(t|Z) = λ0(t)exp(β0Z),

with β0 = (1, 1)t, λ0(t) = 1 corresponds to the hazard function of the standard exponential

distribution, λ0(t) = (1/t)φ(lnt)
Φ(−lnt)

corresponds to the hazard function of the log-normal distri-

bution where mean µ = 0 and variance σ2 = 1, and λ0(t) = 2
√
t corresponds to the hazard

function of the Weibull distribution with scale parameter 4
3

and shape parameter 3
2
, respec-

tively. Censoring rate (CR) is chosen to be 10%, 40%, and 70%. The proportion of simulated

censored data is in the range of ±0.05 of the CR. Sample size n is chosen to be 50, 100, 150,

200. This simulated data is generated with 1, 000 repetitions.

The estimated coverage probabilities for the NA, EL, JEL, AJEL, MJEL, TJEL, TAJEL,

AEL, MEL, TEL and TAEL methods are the proportions of the data set that satisfy the

inequalities R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, and R11 respectively. To calculate

the confidence region for the various methods the same simulated data is used. Confidence

regions are created with the upper time limit T = 5, where all the observed failure times or

censored times are less than or equal to T . The nominal confidence level 1− α is 0.95.
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We profile the nuisance parameter β2 to get CI for β1. The coverage probabilities with

the different combinations for sample size, censoring rate, and confidence levels are reported

in Tables 4.1 and 4.4 for the Weibull distribution, respectively. Tables 4.2 and 4.5 report

the results for the Exponential distribution and Tables 4.3 and 4.6 report the results for the

Log-normal distribution, respectively.

4.2 Comparison of coverage accuracy and average interval lengths

Analyzing the tables we can compare the coverage probabilities under the various distri-

butions. We expect the coverage probability to be better for EL and JEL methods than for

the NA method. We can compare the average interval length under the various distributions.

It is known that the lower average interval length is better. The general expectation is that

an increase in censoring rate results in the worse coverage. We expect the interval length

will decrease as the sample size increases for each censoring rate.

In Table 4.1 we can analyze the EL methods for the Weibull distribution and see that

the MEL, TEL, and TAEL methods have over coverage. Table 4.2 shows that the NA, EL,

and TAEL methods have the most instances of over coverage for the Exponential distribution

The TAEL method has the longest lengths in this table. Notably, all methods, other than the

EL method, have over coverage for a censoring rate of 70 %. The MEL method appears to

be the closest to the nominal level making it the best performing method for the Exponential

distribution. The Log-normal distribution EL results are reported in Table 4.3. Here we see

the the TEL method has the shortest lengths and lowest coverage probabilities. The TAEL

method appears to perform best for small sample sizes. MEL appears to perform the best.

In Table 4.4 we can see that all of the JEL methods have instances of over coverage.

MJEL and AJEL methods appear to have the least over coverage and thus seem the best

performing methods of the Weibull distribution. In Tables 4.5 and 4.6 we can see the results

for the Exponential distribution and Log-normal distribution JEL methods, respectively.

Overall, the results for the Exponential distribution appear more nominal than the Log-

normal distribution. For the Exponential distribution, MJEL and TAJEL methods have the
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Table (4.1) Coverage probabilities and average interval lengths for EL methods with weibull
distribution

CL =95%

n CR NA EL AEL MEL TEL TAEL

50 10 β1 .936 (2.207) .922 (2.076) .936 (2.174) .937 (2.208) .937 (2.184) .947 (2.285)

β2 .939 (2.198) .905 (2.096) .901 (2.354) .917 (2.355) .914 (2.327) .924 (2.438)

100 10 β1 .945 (1.517) .944 (1.472) .947 (1.510) .947 (1.526) .947 (1.504) .949 (1.542)

β2 .949 (1.516) .935 (1.475) .913 (1.555) .925 (1.551) .923 (1.527) .929 (1.566)

150 10 β1 .950 (1.223) .946 (1.205) .951 (1.227) .953 (1.236) .950 (1.221) .920 (1.249)

β2 .939 (1.224) .939 (1.206) .917 (1.244) .921 (1.242) .918 (1.227) .920 (1.249)

200 10 β1 .939 (1.055) .936 (1.046) .937 (1.061) .938 (1.067) .937 (1.056) .938 (1.071)

β2 .944 (1.055) .928 (1.044) .920 (1.070) .920 (1.068) .920 (1.057) .923 (1.072)

50 40 β1 .941 (2.441) .933 (2.340) .945 (2.452) .947 (2.487) .945 (2.463) .951 (2.579)

β2 .930 (2.445) .910 (2.332) .943 (2.375) .951 (1.913) .950 (2.742) .959 (2.883)

100 40 β1 .945 (1.654) .946 (1.631) .956 (1.673) .958 (1.690) .955 (1.666) .957 (1.709)

β2 .939 (1.641) .923 (1.619) .941 (1.368) .949 (1.698) .956 (1.715) .961 (1.761)

150 40 β1 .957 (1.332) .956 (1.326) .959 (1.350) .962 (1.359) .959 (1.344) .964 (1.369)

β2 .955 (1.329) .941 (1.306) .939 (1.359) .952 (1.303) .960 (1.439) .965 (1.374)

200 40 β1 .954 (1.149) .953 (1.142) .956 (1.158) .958 (1.162) .956 (1.153) .959 (1.170)

β2 .939 (1.144) .935 (1.122) .944 (1.128) .957 (1.161) .948 (1.148) .941 (1.165)

50 70 β1 .959 (3.140) .958 (3.268) .965 (3.432) .964 (3.485) .965 (3.451) .972 (3.627)

β2 .956 (3.187) .927 (3.186) .944 (3.013) .944 (3.060) .951 (2.954) .961 (3.430)

100 70 β1 .963 (2.121) .966 (2.179) .969 (2.235) .969 (2.240) .968 (2.226) .970 (2.284)

β2 .951 (2.110) .930 (2.105) .943 (2.251) .949 (2.103) .952 (2.083) .946 (2.198)

150 70 β1 .959 (1.695) .961 (1.732) .963 (1.764) .962 (1.764) .961 (1.756) .967 (1.788)

β2 .943 (1.691) .931 (1.670) .952 (1.793) .963 (1.771) .948 (1.248) .951 (1.504)

200 70 β1 .955 (1.459) .957 (1.483) .959 (1.504) .960 (1.501) .958 (1.498) .959 (1.519)

β2 .940 (1.453) .949 (1.421) .961 (1.544) .961 (1.508) .954 (1.394) .944 (1.589)
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Table (4.2) Coverage probabilities and average interval lengths for EL methods with expo-
nential distribution

CL =95%

n CR NA EL AEL MEL TEL TAEL

50 10 β1 .948 (2.194) .937 (2.105) .944 (2.205) .945 (2.241) .946 (2.214) .952 (2.317)

β2 .946 (2.200) .918 (2.114) .904 (2.295) .928 (2.296) .928 (2.272) .940 (2.379)

100 10 β1 .952 (1.496) .948 (1.468) .954 (1.506) .956 (1.522) .953 (1.500) .961 (1.538)

β2 .956 (1.502) .933 (1.480) .920 (1.493) .936 (1.500) .933 (1.476) .939 (1.514)

150 10 β1 .948 (1.218) .942 (1.207) .945 (1.228) .946 (1.238) .915 (1.217) .946 (1.245)

β2 .947 (1.212) .939 (1.210) .905 (1.215) .915 (1.217) .916 (1.204) .921 (1.225)

200 10 β1 .943 (1.046) .943 (1.041) .946 (1.055) .950 (1.061) .946 (1.051) .947 (1.066)

β2 .943 (1.046) .939 (1.041) .921 (1.039) .923 (1.042) .921 (1.031) .927 (1.046)

50 40 β1 .929 (2.432) .917 (2.408) .934 (2.524) .936 (2.555) .934 (2.534) .944 (2.655)

β2 .956 (2.411) .906 (2.414) .935 (2.766) .934 (2.705) .934 (2.692) .937 (2.838)

100 40 β1 .953 (1.633) .945 (1.640) .955 (1.682) .956 (1.694) .951 (1.676) .961 (1.718)

β2 .947 (1.625) .940 (1.636) .952 (1.666) .948 (1.650) .941 (1.636) .953 (1.679)

150 40 β1 .952 (1.322) .941 (1.334) .946 (1.358) .948 (1.363) .946 (1.352) .953 (1.376)

β2 .951 (1.312) .936 (1.328) .940 (1.300) .940 (1.299) .939 (1.290) .943 (1.314)

200 40 β1 .952 (1.133) .945 (1.151) .952 (1.167) .950 (1.170) .947 (1.162) .953 (1.179)

β2 .947 (1.134) .938 (1.141) .947 (1.103) .946 (1.090) .945 (1.087) .947 (1.103)

50 70 β1 .951 (2.852) .942 (2.982) .952 (3.128) .957 (3.155) .953 (3.143) .964 (3.298)

β2 .951 (2.852) .933 (2.949) .949 (3.010) .960 (3.973) .952 (3.025) .965 (3.594)

100 70 β1 .952 (1.943) .948 (2.006) .955 (2.057) .955 (2.057) .952 (2.049) .956 (2.102)

β2 .949 (1.943) .938 (1.978) .957 (2.544) .958 (2.466) .954 (2.472) .959 (2.545)

150 70 β1 .946 (1.569) .947 (1.610) .951 (1.639) .949 (1.636) .949 (1.631) .955 (1.661)

β2 .951 (1.564) .935 (1.587) .953 (1.841) .950 (1.801) .951 (1.803) .957 (1.838)

200 70 β1 .947 (1.356) .943 (1.391) .945 (1.411) .945 (1.406) .944 (1.404) .946 (1.425)

β2 .953 (1.351) .934 (1.369) .949 (1.530) .947 (1.497) .947 (1.499) .948 (1.521)
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Table (4.3) Coverage probabilities and average interval lengths for EL methods with log-
normal distribution

CL =95%

n CR NA EL AEL MEL TEL TAEL

50 10 β1 .938 (2.150) .919 (2.051) .930 (2.149) .935 (2.180) .933 (2.157) .943 (2.257)

β2 .942 (2.148) .905 (2.073) .905 (2.214) .934 (2.229) .932 (2.200) .941 (2.304)

100 10 β1 .934 (1.469) .937 (1.441) .943 (1.478) .947 (1.496) .943 (1.472) .947 (1.510)

β2 .927 (1.468) .924 (1.457) .913 (1.471) .926 (1.480) .921 (1.456) .928 (1.493)

150 10 β1 .953 (1.176) .946 (1.168) .949 (1.189) .948 (1.199) .948 (1.184) .951 (1.205)

β2 .945 (1.176) .944 (1.172) .934 (1.178) .945 (1.183) .940 (1.167) .949 (1.188)

200 10 β1 .951 (1.018) .947 (1.011) .950 (1.025) .950 (1.031) .949 (1.021) .952 (1.036)

β2 .944 (1.017) .941 (1.014) .921 (1.012) .931 (1.015) .928 (1.005) .934 (1.019)

50 40 β1 .950 (2.145) .934 (2.080) .946 (2.179) .950 (2.212) .947 (2.188) .954 (2.289)

β2 .941 (2.145) .924 (2.101) .933 (2.144) .939 (2.241) .938 (2.212 ) .940 (2.317)

100 40 β1 .943 (1.479) .937 (1.460) .943 ( 1.498) .945 (1.513) .943 (1.492) .951 (1.530)

β2 .934 (1.482) .931 (1.469) .932 (1.477) .933 (1.481) .930 (1.459) .936 (1.496)

150 40 β1 .944 (1.198) .943 (1.192) .946 (1.214) .949 (1.223) .944 (1.208) .950 (1.230)

β2 .959 (1.199) .937 (1.198) .934 (1.167) .936 (1.171) .935 (1.158) .938 (1.178)

200 40 β1 .947 (1.034) .941 (1.034) .946 (1.048) .946 (1.053) .945 (1.044) .947 (1.059)

β2 .935 (1.032) .936 (1.035) .934 (1.011) .934 (1.012) .932 (1.003) .934 (1.017)

50 70 β1 .930 (2.225) .924 (2.218) .932 (2.325) .935 (2.358) .932 (2.334) .939 (2.443)

β2 .943 (2.222) .905 (2.233) .931 (2.323) .930 (2.312) .929 (2.291) .933 (2.402)

100 70 β1 .960 (1.527) .954 (1.543) .960 (1.583) .963 (1.595) .958 (1.576) .962 (1.616)

β2 .955 (1.527) .944 (1.551) .943 (1.467) .942 (1.460) .940 (1.448) .948 (1.485)

150 70 β1 .942 (1.235) .945 (1.259) .948 (1.282) .948 (1.288) .947 (1.276) .950 (1.299)

β2 .941 (1.623) .938 (1.258) .935 (1.157) .935 (1.155) .934 (1.145) .937 (1.166)

200 70 β1 .951 (1.066) .950 (1.083) .955 (1.099) .954 (1.102) .954 (1.094) .957 (1.109)

β2 .943 (1.064) .947 (1.082) .942 (0.993) .942 (0.991) .941 (0.984) .943 (0.998)
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Table (4.4) Coverage probabilities and average interval lengths for JEL methods with weibull
distribution

CL =95%

n CR NA EL JEL AJEL MJEL TJEL TAJEL

50 10 β1 .935 (2.214) .926 (2.095) .923 (2.205) .934 (2.310) .932 (2.355) .934 (2.321) .942 (2.420)

β2 .949 (2.202) .903 (2.104) .931 (2.234) .939 (2.453) .941 (2.511) .939 (2.467) .949 (2.587)

100 10 β1 .936 (1.522) .937 (1.483) .926 ( 1.522) .934 (1.561) .935 (1.584) .933 (1.555) .940 (1.595)

β2 .930 (1.516) .917 (1.485) .921 (1.513) .923 (1.595) .927 (1.622) .923 (1.589) .927 (1.629)

150 10 β1 .950 (1.229) .945 (1.207) .951 (1.227) .956 (1.249) .957 (1.264) .955 (1.244) .956 (1.266)

β2 .940 (1.227) .937 (1.204) .932(1.224) .938 (1.270) .937 (1.286) .935 (1.265) .940 (1.288)

200 10 β1 .955 (1.057) .953 (1.044) .949 (1.056) .951 (1.070) .953 (1.079) .950 (1.066) .953 (1.081)

β2 .948 (1.055) .946 (1.040) .941 (1.030) .943 (1.082) .942 (1.092) .942 (1.078) .953 (1.081)

50 40 β1 .941 (2.447) .916 (2.364) .914 (2.505) .924 (2.626) .924 (2.672) .924 (2.638) .933 (2.764)

β2 .941 (2.447) .900 (2.349) .929 (2.508) .939 (2.820) .942 (2.887) .941 (2.837) .952 (2.979)

100 40 β1 .952 (1.652) .944 (1.626) .938 (1.692) .942 (1.736) .943 (1.757) .941 (1.729) .945 (1.774)

β2 .952 (1.648) .930 (1.620) .943 (1.710) .950 (1.785) .951 (1.813) .950 (1.779) .954 (1.825)

150 40 β1 .959 (1.336) .955 (1.324) .945 (1.364) .948 (1.388) .950 (1.403) .947 (1.382) .954 (1.407)

β2 .953 (1.330) .931 (1.301) .953 (1.334) .960 (1.414) .957 (1.430) .958 (1.408) .961 (1.433)

200 40 β1 .943 (1.150) .948 (1.145) .945 (1.171) .948 (1.188) .950 (1.196) .948 (1.183) .948 (1.200)

β2 .937 (1.144) .926 (1.121) .931 (1.135) .936 (1.203) .950 (1.1960) .935 (1.198) .937 (1.215)

50 70 β1 .949 (3.230) .945 (3.355) .934 (3.717) .944 (3.913) .946 (3.970) .944 (3.932) .954 (4.139)

β2 .940 (3.214) .916 (3.245) .921 (3.792) .928 (5.891) .93.2 (5.906) .929 (6.319) .941 (6.720)

100 70 β1 .967 (2.114) .969 (2.171) .954 (2.357) .966 (2.420) .963 (2.432) .964 (2.409) .970 (2.472)

β2 .944 (2.101) .943 (2.107) .935 (2.340) .941 (2.542) .943 (2.560) .941 (2.531) .946 (2.598)

150 70 β1 .968 (1.697) .967 (1.736) .953 (1.868) .956 (1.903) .955 (1.908) .954 (1.894) .958 (1.928)

β2 .945 (1.688) .933 (1.665) .935 (1.843) .939 (1.959) .939 (1.966) .938 (1.950) .943 (1.986)

200 70 β1 .963 (1.460) .963 (1.483) .944 (1.594) .944 (1.616) .945 (1.619) .944 (1.609) .945 (1.632)

β2 .946 (1.457) .931 (1.426) .940 (1.573) .946 (1.654) .944 (1.658) .942 (1.646) .951 (1.670)
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Table (4.5) Coverage probabilities and average interval lengths for JEL methods with expo-
nential distribution

CL =95%

n CR NA EL JEL AJEL MJEL TJEL TAJEL

50 10 β1 .944 (2.194) .926 (2.099) .911 (2.290) .921 (2.399) .927 (2.450) .922 (2.411) .935 (2.525)

β2 .944 (2.190) .909 (2.109) .922 (2.316) .931 (2.535) .932 (2.599) .931 (2.550) .941 (2.674)

100 10 β1 .944 (1.504) .927 (1.479) .927 (1.577) .934 (1.618) .936 (1.644) .933 (1.612) .939 (1.653)

β2 .936 (1.504) .919 (1.485) .926 (1.559) .929 (1.656) .933 (1.687) .929 (1.650) .939 (1.691)

150 10 β1 .953 (1.216) .950 (1.202) .943 (1.263) .946 (1.286) .948 (1.301) .944 (1.281) .951 (1.304)

β2 .951 (1.212) .947 (1.208) .946 (1.233) .950 (1.304) .951 (1.321) .948 (1.298) .953 (1.322)

200 10 β1 .938 (1.049) .940 (1.043) .937 (1.092) .939 (1.107) .938 (1.117) .938 (1.103) .940 (1.118)

β2 .941 (1.045) .933 (1.043) .948 (1.089) .950 (1.127) .952 (1.139) .949 (1.122) .951 (1.138)

50 40 β1 .946 (2.430) .932 (2.412) .906 (2.751) .926 (2.885) .924 (2.945) .927 (2.899) .940 (3.039)

β2 .934 (2.433) .913 (2.401) .906 (2.751) .918 (3.131) .923 (3.366) .918 (3.153) .928 (3.328)

100 40 β1 .944 (1.627) .945 (1.648) .935 (1.839) .942 (1.887) .943 (1.917) .941 (1.880) .947 (1.929)

β2 .955 (1.627) .933 (1.649) .939 (1.889) .946 (1.917) .945 (1.947) .944 (1.910) .952 (1.959)

150 40 β1 .953 (1.316) .956 (1.328) .939 (1.473) .945 (1.500) .944 (1.518) .942 (1.494) .951 (1.521)

β2 .933 (1.311) .945 (1.320) .932 (1.461) .933 (1.522) .936 (1.538) .933 (1.515) .939 (1.543)

200 40 β1 .938 (1.136) .933 (1.154) .937 (1.272) .940 (1.290) .944 (1.300) .939 (1.285) .943 (1.303)

β2 .949 (1.135) .933 (1.145) .937 (1.260) .943 (1.303) .944 (1.315) .942 (1.298) .945 (1.316)

50 70 β1 .947 (2.865) .938 (3.000) .917 (2.946) .934 (3.726) .935 (3.785) .936 (3.743) .945 (3.937)

β2 .944 (2.867) .917 (2.946) .925 (3.612) .935 (4.616) .936 (4.716) .937 (4.643) .944 (4.938)

100 70 β1 .956 (1.943) .958 (2.013) .939 (2.324) .943 (2.386) .943 (2.404) .942 (2.376) .952 (2.438)

β2 .934 (1.932) .944 (1.983) .929 (2.341) .937 (2.513) .937 (2.537) .936 (2.503) .942 (2.570)

150 70 β1 .944 (1.571) .946 (1.614) .925 (1.855) .931 (1.889) .932 (1.899) .931 (1.880) .932 (1.915)

β2 .948 (1.566) .937 (1.588) .946 (1.827) .948 (1.940) .951 (1.949) .948 (1.931) .952 (1.966)

200 70 β1 .942 (1.353) .945 (1.385) .927 (1.589) .931 (1.612) .931 (1.617) .930 (1.605) .936 (1.628)

β2 .947 (1.350) .936 (1.366) .945 (1.592) .948 (1.639) .946 (1.641) .947 (1.629) .948 (1.653)
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Table (4.6) Coverage probabilities and average interval lengths for JEL methods with log-
normal distribution

CL =95%

n CR NA EL JEL AJEL MJEL TJEL TAJEL

50 10 β1 .940 (2.145) .925 (2.037) .904 (2.255) .912 (2.362) .917 (2.412) .913 (2.374) .927 (2.485)

β2 .931 (2.145) .903 (2.042) .901 (2.207) .915 (2.488) .917 (2.550) .916 (2.504) .928 ( 2.626)

100 10 β1 .946 (1.466) .946 (1.434) .937 (1.544) .944 (1.584) .946 (1.613) .944 (1.579) .948 (1.619)

β2 .939 (1.465) .939 (1.448) .921 (1.558) .927 (1.618) .934 (1.647) .926 (1.612) .936 (1.653)

150 10 β1 .952 (1.178) .951 (1.165) .939 (1.232) .943 (1.254) .946 (1.271) .943 (1.249) .948 (1.271)

β2 .947 (1.184) .943 (1.171) .948 (1.219) .952 (1.264) .954 ( 1.282) .952 (1.259) .954 (1.281)

200 10 β1 .949 (1.018) .944 (1.011) .937 (1.062) .945 (1.077) .946 (1.087) .943 (1.073) .946 (1.088)

β2 .946 (1.017) .938 (1.014) .927 (1.065) .932 (1.081) .930 (1.092) .929 (1.077) .933 (1.092)

50 40 β1 .919 (2.135) .913 (2.080) .891 (2.333) .905 (2.444) .909 (2.501) .907 (2.458) .917 (2.574)

β2 .931 (2.142) .900 (2.099) .898 (2.347) .909 (2.582) .908 (2.664) .909 (2.598) .917 (2.725)

100 40 β1 .941 (1.478) .936 (1.471) .922 (1.622) .924 (1.664) .928 (1.696) .924 (1.658) .929 (1.700)

β2 .948 (1.476) .928 (1.483) .926 (1.648) .930 (1.712) .932 (1.749) .930 (1.706) .935 (1.750)

150 40 β1 .939 (1.197) .927 (1.198) .917 (1.311) .921 (1.335) .941 (1.377) .920 (1.330) .926 (1.354)

β2 .950 (1.195) .921 (1.203) .939 (1.274) .941 (1.377) .943 (1.399) .941 (1.371) .946 (1.396)

200 40 β1 .943 (1.030) .941 (1.038) .937 (1.137) .938 (1.153) .938 (1.166) .937 (1.148) .940 (1.164)

β2 .950 (1.030) .934 (1.039) .931 (1.141) .933 (1.156) .937 (1.168) .933 (1.152) .935 (1.168)

50 70 β1 .941 (2.225) .934 (2.215) .911 (2.590) .917 (2.714) .918 (2.775) .917 (2.729) .924 (2.860)

β2 .941 (2.206) .919 (2.236) .904 (2.585) .917 (2.978) .920 (3.078) .918 (2.998) .928 (3.152)

100 70 β1 .947 (1.528) .939 (1.546) .918 (1.800) .925 (1.846) .926 (1.882) .925 (1.840) .929 (1.887)

β2 .950 (1.526) .932 (1.550) .917 (1.803) .922 (1.873) .924 (1.906) .921 (1.867) .928 (1.915)

150 70 β1 .956 (1.236) .951 (1.255) .914 (1.449) .925 (1.476) .928 (1.496) .924 (1.469) .930 (1.496)

β2 .936 (1.232) .949 (1.257) .908 (1.458) .912 (1.490) .914 (1.510) .911 (1.483) .917 (1.510)

200 70 β1 .940 (1.067) .943 (1.085) .918 (1.246) .921 (1.263) .921 (1.275) .918 (1.258) .926 (1.276)

β2 .946 (1.066) .938 (1.081) .911 (1.267) .918 (1.287) .917 (1.301) .915 (1.281) .919 (1.300)
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longest, and very similar average lengths. MJEL and TAJEL methods outperform the AJEL

method, which outperforms the JEL method. However, MJEL and TAJEL have some over

coverage. The TJEL method has no over coverage and performs nicely for the Exponential

distribution. For small sample sizes for the Log-normal distribution the JEL method has

under coverage issue. Overall for the Log-normal distribution the EL method has the shortest

average lengths.
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CHAPTER 5

REAL DATA ANALYSIS

In the real data analysis, we utilized data sets with small sample sizes to illustrate the

proposed methods.

The NA, EL, JEL, AJEL, MJEL, TJEL, TAJEL, AEL, MEL, TEL and TAEL methods

were separately applied to analyze the data sets. Then, we calculated the confidence interval

length and the confidence interval bounds of the point estimate of β at confidence level 95%.

5.1 Larynx data set

The tables show the length of 95% confidence intervals. The data set that is used in

the real data analysis will be the larynx data set where Kardaun (1983) reports on 90 male

patients with laryngeal cancer were studied. The study tracked survival times, patient’s

age, year of diagnosis, and disease stage was noted. We will analyze the real data set at

the multiple times points. The covariates β1, β2 and β3 are stage 2, stage 3, and stage 4,

respectively. The covariate β4 is patient age and β5 is an interaction between patient age

and β1. The length of 95% confidence intervals will be taken at three values of the time

variable, 4, 6, and 10, respectively.

5.2 Myeloma data set

The data set that is used in the second real data analysis will be the Myeloma data set

that studies factors involving 65 patients that are treated with alkylating agents reported

by Krall et al. (1975). 48 of the patients died during the study and 17 survived. The death

variable indicates whether the patient was alive or dead at the of end the study. The variables

thought to be related to survival are logarithm of blood urea nitrogen at diagnosis (logBUN)

and hemoglobin at diagnosis (HGB), as the covariate variables β1 and β2, respectively.
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Table (5.1) The confidence interval (length) for the EL methods with the larynx data set

CL =95%

method time = 4 time = 6 time = 10

NA β1 (0.261, 1.374) 1.113 (-1.193, -0.171) 1.022 (-1.186, -0.176) 1.010

β2 (-1.218, -0.038) 1.180 (0.0850, 1.208) 1.123 (0.047, 1.173) 1.126

β3 (1.186, 2.532) 1.346 (1.025, 2.397) 1.372 (1.060, 2.426) 1.366

β4 (5.645, 10.351) 4.706 (5.455, 10.052) 4.597 (5.046, 9.366) 4.320

β5 (-2.157, 1.418) 3.575 (-1.588, 2.004) 3.592 (-1.427, 2.172) 3.599

EL β1 (-1.116, -0.524) 0.592 (-1.228, -0.645) 0.583 (-0.950, -0.525) 0.425

β2 (0.570, 1.797) 1.227 (0.588, 1.707) 1.119 (0.731, 1.653) 0.922

β3 (2.810, 4.462) 1.652 (2.658, 4.150) 1.492 (2.408, 3.71) 1.302

β4 (-1.072, 4.487) 5.559 (-0.124, 5.033) 5.157 (0.545, 4.916) 4.371

β5 (-1.418, -0.157) 1.261 (-1.532, -0.289) 1.243 (-1.115, -0.224) 0.891

AEL β1 (-1.126, -0.518) 0.608 (-1.237, -0.639) 0.598 (-0.957, -0.520) 0.437

β2 (0.549, 1.812) 1.263 (0.569, 1.721) 1.152 (0.716, 1.665 ) 0.949

β3 (2.656, 4.864) 2.208 (2.511, 4.474) 1.963 (2.271, 3.958) 1.687

β4 (2.656, 4.573) 1.917 (-0.188, 5.114) 5.302 (0.491, 4.983) 4.492

β5 (-0.997, -0.402) 0.595 (-1.115, -0.529) 0.586 (-0.846, -0.414) 0.432

MEL β1 (-1.339, -0.423) 0.916 (-1.449, -0.546) 0.903 (-1.094, -0.447) 0.647

β2 (0.414, 1.804) 1.390 (0.449, 1.713) 1.264 (0.623, 1.658) 1.035

β3 (2.454, 4.844) 2.39 (2.316, 4.458) 2.142 (2.087, 3.947) 1.860

β4 (-1.666, 4.562) 6.228 (-0.659, 5.104) 5.763 (0.093, 4.975) 4.882

β5 (-1.159, -0.301) 0.858 (-1.275, -0.429) 0.846 (-0.954, -0.336) 0.618

TEL β1 (-1.125, -0.518) 0.607 (-1.236, -0.639) 0.597 (-0.956, -0.520) 0.436

β2 (0.554, 1.810) 1.256 (0.574, 1.719) 1.145 (0.719, 1.663) 0.944

β3 (2.663, 4.859) 2.196 (2.517, 4.470) 1.953 (2.276, 3.955) 1.679

β4 (-1.128, 4.564) 5.692 (-0.175, 5.105) 5.280 (0.502, 4.976) 4.474

β5 (-0.996, -0.403) 0.593 (-1.114, -0.530) 0.584 (-0.846, -0.415) 0.431

TAEL β1 (-1.135, -0.511) 0.624 (-1.246, -0.632) 0.614 (-0.962, -0.515) 0.447

β2 (0.533, 1.825) 1.292 (0.555, 1.732) 1.177 (0.705, 1.675) 0.970

β3 (2.632, 4.897) 2.265 (2.488, 4.500) 2.012 (2.249, 3.978) 1.729

β4 (-1.197, 4.654) 5.851 (-0.238, 5.190) 5.428 (0.449, 5.047) 4.598

β5 (-1.007, -0.397) 0.610 (-1.124, -0.524) 0.600 (-0.852, -0.410) 0.442
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Table (5.2) The confidence interval (length) for the JEL methods with the larynx data set

CL =95%

method time = 4 time = 6 time = 10

NA β1 (0.261, 1.374) 1.113 (-1.193, -0.171) 1.022 (-1.186, -0.176) 1.010

β2 (-1.218, -0.038) 1.18 (0.0850, 1.208) 1.123 (0.047, 1.173) 1.126

β3 (1.186, 2.532) 1.346 (1.025, 2.397) 1.372 (1.060, 2.426) 1.366

β4 (5.645, 10.351) 4.706 (5.455, 10.052) 4.597 (5.046, 9.366) 4.320

β5 (-2.157, 1.418) 3.575 (-1.588, 2.004) 3.592 (-1.427, 2.172) 3.599

EL β1 (-1.116, -0.524) 0.592 (-1.228, -0.645) 0.583 (-0.950, -0.525) 0.425

β2 (0.570, 1.797) 1.227 (0.588, 1.707) 1.119 (0.731, 1.653) 0.922

β3 (2.810, 4.462) 1.652 (2.658, 4.150) 1.492 (2.408, 3.710) 1.302

β4 (-1.072, 4.487) 5.559 (-0.124, 5.033) 5.157 (0.545, 4.916) 4.371

β5 (-1.418, -0.157) 1.261 (-1.532, -0.289) 1.243 (-1.115, -0.224) 0.891

JEL β1 (-1.284, -0.374) 0.910 (-1.462, -0.459) 1.003 (-1.308, -0.348) 0.960

β2 (0.323, 1.525) 1.202 (0.511, 1.609) 1.098 (0.915, 1.941) 1.026

β3 (2.548, 4.178) 1.630 (2.651, 4.123) 1.472 (1.631, 3.204) 1.573

β4 (-1.454, 4.739) 6.193 (-0.768, 5.578) 6.346 (-0.039, 4.871) 4.910

β5 (-1.093, -0.384) 0.709 (-1.218, -0.504) 0.714 (-0.958, -0.314) 0.644

AJEL β1 (-1.300, -0.364) 0.936 (-1.481, -0.449) 1.032 (-1.184, -0.341) 0.843

β2 (0.302, 1.538) 1.236 (0.492, 1.622) 1.130 (0.695, 1.683) 0.988

β3 (2.287, 4.264) 1.977 (2.386, 4.271) 1.885 (2.229, 3.992) 1.763

β4 (-0.655, 5.405) 6.060 (-0.497, 5.186) 5.683 (-0.147, 5.645) 5.792

β5 (-1.107, -0.377) 0.730 (-1.232, -0.497) 0.735 (-0.916, -0.375) 0.541

MJEL β1 (-1.300, -0.364) 0.936 (-1.471, -0.432) 1.039 (-1.179, -0.319) 0.860

β2 0.027 , 1.531 ) 1.504 (0.251 , 1.614) 1.363 (0.538, 1.675) 1.137

β3 (1.857, 4.250) 2.393 (1.985, 4.255) 2.270 (1.910, 3.977) 2.067

β4 (-1.582, 4.794) 6.376 (-0.977, 5.604) 6.581 (-0.285, 5.596) 5.881

β5 (-1.280, -0.213) 1.067 (-1.416, -0.322) 1.094 (-1.022, -0.268) 0.754

TJEL β1 (-1.478, -0.436) 1.042 (-1.476, -0.45) 1.026 (-1.324, -0.340) 0.984

β2 (0.701, 1.883) 1.182 (0.497, 1.619) 1.122 (0.902, 1.952) 1.050

β3 (2.882, 5.052) 2.170 (2.394, 4.266) 1.872 (2.615, 4.537) 1.922

β4 (-0.574, 5.311) 5.885 (-0.831, 5.662) 6.490 (-0.099, 4.942) 5.041

β5 (-1.097, -0.386) 0.711 (-1.230, -0.499) 0.731 (-0.970, -0.307) 0.663

TAJEL β1 (-1.504, -0.425) 1.079 (-1.673, -0.447) 1.226 (-1.345, -0.330) 1.015

β2 (0.683, 1.899) 1.216 (0.796, 1.959) 1.163 (0.886, 1.966) 1.080

β3 (2.855, 5.093) 2.238 (2.869, 5.043) 2.174 (2.586, 4.567) 1.981

β4 (-1.537, 4.831) 6.368 (-0.845, 5.678) 6.523 (-0.171, 5.032) 5.203

β5 (-1.114, -0.381) 0.733 (-1.266, -0.680) 0.586 (-0.983, -0.506) 0.477
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Table (5.3) The confidence interval (length) for the EL methods with the Myeloma data set

CL =95%

method time = 45 time = 55 time = 65 time = 90

NA β1 (-0.965, 4.750) 5.715 (-0.951, 5.860) 6.811 (-0.955, 5.839) 6.794 (-0.772, 5.686) 6.458

β2 (-0.314, 0.115) 0.429 (-0.438, -0.023) 0.415 (-0.379, -0.034) 0.344 (-0.329, 0.140) 0.343

EL β1 (0.816, 6.077) 5.261 (-0.931, 5.815) 6.746 (-0.989, 5.745 ) 6.734 (-0.588, 5.661) 6.249

β2 (-0.450, -0.081) 0.369 (-0.379, -0.047) 0.332 (-0.356, -0.036) 0.320 (-0.282, 0.008) 0.290

AEL β1 (0.679, 6.156) 5.477 (-1.143, 5.902) 7.045 (-1.200, 5.831) 7.031 (-0.772, 5.744) 6.516

β2 (-0.453, -0.081) 0.372 (-0.383, -0.047) 0.336 (-0.359, -0.036) 0.323 (-0.286, 0.008) 0.294

MEL β1 (0.650, 6.117) 5.467 (-1.271, 5.860) 7.131 (-1.380, 5.789) 7.169 (-1.019, 5.697) 6.716

β2 (-0.457, -0.076) 0.381 (-0.386, -0.042) 0.344 (-0.363, -0.031) 0.332 (-0.289, 0.013) 0.302

TEL β1 (0.681, 6.150) 5.469 (-1.147, 5.894) 7.041 (-1.206, 5.824) 7.030 (-0.778, 5.741) 6.519

β2 (-0.456, -0.075) 0.381 (-0.384, -0.041) 0.343 (-0.361, -0.030) 0.331 (-0.287, 0.014) 0.301

TAEL β1 (0.536, 6.230) 5.694 (-1.368, 5.983) 7.351 (-1.428, 5.913) 7.341 (-0.971, 5.826) 6.797

β2 (-0.464, -0.068) 0.396 (-0.391, -0.035) 0.356 (-0.367, -0.024) 0.343 (-0.292, 0.020) 0.312

The time variable measures survival time in months from diagnosis. We will analyze

the real data set at the multiple time points. The tables show the length of 95% confidence

intervals. The length of 95% confidence intervals is taken at four values of the time variable,

45, 55, 65, and 90, respectively.

5.3 BMT data set

The tables show the length of 95% confidence intervals. The data set that will be

used in the real data analysis will be the Bone Marrow Transplant (BMT) data set that

studies factors involving bone marrow transplant patients. The data set is from Klein and

Moeschberger (1997) and has 137 observations. The data set is from a treatments for acute

myelocytic leukemia article Copeland et al. (1991). The data is gathered from a multi-

center trial of patients that were followed after transplantation until relapse, death, or end

of study. The variable death represents whether the death of the patient was observed or was

the observation censored. The covariate β1 is patient age measured in years and β2 is donor

sex. Covariates β3 and β4 are patient CMV status and Donor CMV status, respectively. The

fifth covariate, β5, is an indicator for FAB Grade 4 or 5 and AML or not. The time variable
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Table (5.4) The confidence interval (length) for the JEL methods with the Myeloma data
set

CL =95%

method time = 45 time = 55 time = 65 time = 90

NA β1 (-0.965, 4.750) 5.715 (-0.951, 5.860) 6.811 (-0.955, 5.839) 6.794 (-0.772, 5.686) 6.458

β2 (-0.314, 0.115) 0.429 (-0.438, -0.023) 0.415 (-0.379, -0.034) 0.344 (-0.329, 0.140) 0.343

EL β1 (0.816, 6.077) 5.261 (-0.931, 5.815) 6.746 (-0.989, 5.745) 6.734 (-0.588, 5.661) 6.249

β2 (-0.450, -0.081) 0.369 (-0.379, -0.047) 0.332 (-0.356, -0.036) 0.320 (-0.282, 0.008) 0.290

JEL β1 (-0.427, 7.133) 7.560 (-0.378, 6.680) 7.058 (-0.426, 6.513) 6.939 (-0.233, 6.123) 6.356

β2 (-0.301, 0.060) 0.361 (-0.299, 0.034) 0.333 (-0.287, 0.039) 0.326 (-0.258, 0.040) 0.298

AJEL β1 (-0.647, 7.258) 7.905 (-0.581, 6.789) 7.370 (-0.626, 6.619) 7.245 (-0.409, 6.217) 6.626

β2 (-0.308, 0.068) 0.376 (-0.305, 0.041) 0.346 (-0.289, 0.039) 0.328 (-0.259, 0.040) 0.290

MJEL β1 (-0.691, 7.353) 8.044 (-0.691, 7.353) 8.044 (-0.622, 6.873) 7.495 (-0.727, 6.603) 7.330

β2 (-0.307, 0.066) 0.373 (-0.307, 0.066) 0.373 (-0.303, 0.039) 0.342 (-0.292, 0.044) 0.336

TJEL β1 (-0.646, 7.259) 7.905 (-0.580, 6.790) 7.370 (-0.624, 6.620) 7.244 (-0.408, 6.218) 6.626

β2 (-0.307, 0.067) 0.374 (-0.304, 0.040) 0.344 (-0.292, 0.045) 0.337 (-0.262, 0.046) 0.308

TAJEL β1 (-0.877, 7.388) 8.265 (-0.792, 6.904) 7.696 (-0.833, 6.728) 7.561 (-0.593, 6.314) 6.907

β2 (-0.314, 0.075) 0.389 (-0.310, 0.047) 0.357 (-0.298, 0.052) 0.350 (-0.267, 0.052) 0.319

measures the time to death or on the study time in days. We will analyze the real data set

at the multiple times points. The length of 95% confidence intervals will be taken at three

values of the time variable, 1000, 1500, and 2000, respectively.

5.4 Discussion of data set results

In Table 5.1 we can compare the confidence interval length for the EL methods. The

MEL method appears to have the longest lengths. The AEL, EL, and TEL methods appear

to produce very similar results with EL producing slightly shorter lengths than the AEL

and TEL methods. Table 5.2 reports the confidence interval length for the JEL method for

the comparison. JEL produces notably longer lengths for β4 in comparison to EL and NA

methods.

In Table 5.3 TAEL has the longest lengths while TEL and AEL are very comparable.

Comparing Tables 5.3 and 5.4 for the myeloma data set we can clearly see the JEL methods

in Table 5.4 tend to have longer lengths than the EL methods in Table 5.3. In Table 5.4 we
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Table (5.5) The confidence interval (length) for the EL methods with the BMT data set

CL =95%

method time = 1000 time = 1500 time = 2000

NA β1 (-0.119, 13.942) 14.061 (-0.111, 0.079) 0.190 (-0.894, 0.131) 1.025

β2 (-2.442, 7.359) 9.801 (-3.482, 7.886) 11.368 (-1.927, 5.016) 6.943

β3 (-3.999, -1.724) 2.275 (-1.189, 2.691) 3.881 (-1.111, 2.143) 3.254

β4 (-3.001, 18.520) 21.521 (-6.074, 8.398) 14.472 (-0.928, 4.857) 5.786

β5 (1.831, 9.897) 8.066 (1.608, 9.421) 7.813 (1.591, 9.019) 7.428

EL β1 (-0.076, 12.029) 12.105 (-0.052, 0.058) 0.110 (-0.049, 0.059) 0.108

β2 (-1.388, 6.443 7.831 (-1.608, 6.946) 8.554 (-0.854, 3.359) 4.213

β3 (-3.541, -1.610) 1.931 (-3.654, -1.551) 2.103 (-3.713, -1.649) 2.064

β4 (-0.429, 16.978) 17.407 (-4.628, 7.772) 12.400 (-1.094, 3.445) 4.539

β5 (1.729, 9.233) 7.504 (1.591, 8.050) 6.459 (1.575, 7.656) 6.081

AEL β1 (-0.131, 12.399) 12.530 (-0.042, 0.052) 0.094 (-0.039, 0.052) 0.091

β2 (-1.408, 6.517) 7.925 (-2.292, 7.777) 10.069 (-0.877, 3.509) 4.386

β3 (2.077, 3.343) 1.266 (-3.678, -1.527) 2.151 (-3.737, -1.628) 2.109

β4 (-7.240, 10.666) 17.906 (1.582, 14.070) 12.488 (-1.162, 3.51) 4.672

β5 (1.029, 9.688) 8.659 (-1.562, 5.117) 6.679 (2.403, 7.709) 5.306

MEL β1 (-0.394, 13.022) 13.416 (-0.031, 1.179) 1.210 (-0.659, 0.262) 0.921

β2 (-1.990, 6.724) 8.714 (3.787, 14.492) 10.705 (-4.524, 0.517) 5.041

β3 (2.075, 3.346) 1.271 (-1.685 , 1.006) 2.691 (-5.046, -1.130) 3.916

β4 (7.757, 26.136) 18.379 (-31.434, -17.509) 13.924 (-1.170, 3.602) 4.772

β5 (1.015, 10.989) 9.974 (0.706, 7.757) 7.051 (-2.403, 3.519) 5.922

TEL β1 (-0.233, 12.429) 12.662 (-0.042, 0.052) 0.094 (-0.039, 0.052) 0.091

β2 (-1.811, 6.519) 8.330 (1.506, 12.042) 10.536 (-0.872, 3.462) 4.334

β3 (-3.172, -1.938) 1.234 (-0.824, 2.174) 2.998 (-0.046, 3.629) 3.675

β4 (-2.995, 15.161) 18.156 (-31.143, -17.419) 13.724 (-1.137, 3.49) 4.627

β5 (-4.778, 4.340) 9.118 (-1.526, 5.115) 6.641 (2.411, 7.591) 5.180

TAEL β1 (-0.458, 13.437) 13.895 (-0.033, 1.181) 1.214 (-0.666, 0.268) 0.934

β2 (-2.051, 6.831) 8.882 (3.719, 14.492) 10.773 (-1.034, 4.331) 5.365

β3 (-1.124, 0.217) 1.341 (1.423, 4.138) 2.715 (-5.057, -1.118) 3.939

β4 (7.724, 26.136) 18.412 (-31.748, -17.157) 14.591 (-1.189, 3.743) 4.932

β5 (3.719, 14.492) 10.773 (-1.292, 5.995) 7.287 (-2.512, 3.623) 6.135
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Table (5.6) The confidence interval (length) for the JEL methods with the BMT data set

CL =95%

method time = 1000 time = 1500 time = 2000

NA β1 (-0.119, 13.942) 14.061 (-0.111, 0.079) 0.190 (-0.894, 0.131) 1.025

β2 (-2.442, 7.359) 9.801 (-3.482, 7.886) 11.368 (-1.927, 5.016) 6.943

β3 (-3.999, -1.724) 2.275 (-1.189, 2.691) 3.881 (-1.111, 2.143) 3.254

β4 (-3.001, 18.520) 21.521 (-6.074, 8.398) 14.472 (-0.928, 4.857) 5.786

β5 (1.831, 9.897) 8.066 (1.608, 9.421) 7.813 (1.591, 9.019) 7.428

EL β1 (-0.076, 12.029) 12.105 (-0.052, 0.058) 0.110 (-0.049, 0.059) 0.108

β2 (-1.388, 6.443) 7.831 (-1.608, 6.946) 8.554 (-0.854, 3.359) 4.213

β3 (-3.541, -1.610) 1.931 (-3.654, -1.551) 2.103 (-3.713, -1.649) 2.064

β4 (-0.429, 16.978) 17.407 (-4.628, 7.772) 12.400 (-1.094, 3.445) 4.539

β5 (1.729, 9.233) 7.504 (1.591, 8.050) 6.459 ( 1.575, 7.656) 6.081

JEL β1 (-29.357, -17.800) 11.557 (1.355, 2.282) 0.927 (-0.076, 0.041) 0.117

β2 (0.893, 9.593) 8.700 (1.212, 10.365) 9.153 (-0.796, 3.572) 4.368

β3 (-3.934, -1.441) 2.493 (-3.768, -1.469) 2.299 (-4.228, -2.053) 2.175

β4 (-2.319, 15.928) 18.247 (-30.846, -17.621) 13.224 (-0.587, 4.363 ) 4.950

β5 (-4.765, 4.343) 9.109 (-1.509, 5.008) 6.517 (-0.449, 5.692) 6.141

AJEL β1 (-30.830, -18.521) 12.309 (0.964, 1.992) 1.028 (-0.579 , 0.330) 0.909

β2 (-0.054, 9.233) 9.287 (0.456, 11.462) 11.006 (-0.629, 3.853) 4.482

β3 (-3.570, -1.331) 2.239 (-1.203, 2.236) 3.439 (-3.837, -1.561) 2.276

β4 (-20.767, -2.262) 18.505 (0.992, 15.796) 14.804 (-0.591, 4.403) 4.994

β5 (-3.942, 5.397) 9.341 (-1.369, 6.076) 7.445 (-0.517, 5.780) 6.297

MJEL β1 (-31.117, -18.448) 12.669 (-0.092, 1.113) 1.205 (-3.231 , -1.862 ) 1.369

β2 (0.656, 11.463) 10.807 (0.448, 11.462) 11.014 (-4.900, 0.523) 5.423

β3 (-3.171, -0.425) 2.746 (-0.061, 3.381) 3.442 (-0.046, 3.629) 3.675

β4 (6.619, 25.621) 19.002 (-8.837, 6.972) 15.809 (-0.833, 4.970) 5.803

β5 (9.482, 20.211) 10.729 (-1.301, 7.124) 8.425 (-1.022, 5.891) 6.913

TJEL β1 (-30.952, -18.585) 12.366 (-0.104, 1.120) 1.224 (-0.090, 1.036) 1.126

β2 (-3.943, 5.397) 9.341 (0.455, 11.462) 11.007 (-0.711, 3.862) 4.573

β3 (-3.024, -0.340) 2.684 (-0.121, 3.392) 3.513 (-2.272, 1.302) 3.574

β4 (-24.962, -6.310) 18.652 (-0.053, 15.277) 15.33 (-0.662, 4.417) 5.079

β5 (0.471, 11.464) 10.993 (-1.411, 6.340) 7.751 (-0.575, 5.814 ) 6.389

TAJEL β1 (-4.481, 9.464) 13.945 (-0.119, 1.130) 1.249 (-1.111, 0.292) 1.403

β2 (0.649, 11.463) 10.814 (-7.735, 4.124) 11.859 (-1.299, 4.873) 6.172

β3 (-3.189, -0.491) 2.698 (-4.316, -0.377) 3.939 (-0.055, 3.642) 3.697

β4 (-1.122, 18.836) 19.958 (-8.854, 6.971) 15.825 (-0.928, 4.857) 5.786

β5 (0.453, 11.462) 11.009 (-1.980, 7.010) 8.990 (-1.473, 5.008) 6.481
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see TAJEL produce similar results for β2 as the NA method, but longer lengths for β1 than

the NA method.

Tables 5.5 and 5.6 indicate that the NA method tends to have longer lengths in com-

parison to the other methods for the BMT data set. In Table 5.5 we see that NA and TAEL

methods produce similar lengths and the longest lengths in comparison to other methods.

MJEL tends to consistently produce longer lengths than AJEL and TJEL, but shorter lengths

than TAJEL thus outperforming TAJEL. In Table 5.6 the TAJEL method produces longer

lengths in comparison to the other JEL methods.
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CHAPTER 6

CONCLUSIONS

In this thesis, we showed the AEL, MEL, TEL, TAEL, JEL, AJEL, MJEL, TJEL, and

TAJEL methods could be used in addition to the NA method. The efficiency of the JEL,

AJEL, MJEL, TJEL, TAJEL, AEL, MEL, TEL, and TAEL methods were illustrated using

the simulated data sets to construct confidence intervals and was compared with the NA-

based method in terms of confidence intervals and average lengths. To construct the best

possible interval, the coverage probability should be as close as possible to the nominal confi-

dence level while the average length needs to be the shortest. When coverage probabilities of

two methods are comparable, we recommend the method that produces shorter C.I. interval

lengths.

The simulation studies showed that the MJEL and AJEL methods appear to have the

least overcoverage, and thus seem the best performing methods of the other methods for

the Weibull distribution. However, for the Exponential distribution the MJEL and TAJEL

methods outperform the AJEL method, but have some over coverage. The TJEL method

has no over coverage and performs nicely for the Exponential distribution. Among the EL

methods the MEL method appears to be the closest to the nominal level making it the

best performing method for the various distributions. The real data analysis indicated that

the CI lengths observed in real data analysis for different methods is consistent with the

observations in simulation studies
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APPENDICES

We assume the following regularity conditions.

Assume that λ0(t) is continuous.

Assume the covariate vector Zi is bounded, i.e., P (|Z| < C) = 1 for some constant C.

Proof of Theorem 2.2 This proof follows similar arguments in Yu et al. (2011) and Yu

and Zhao (2019). Let β0 = ((β
(1)
0 )

′
, (β

(2)
0 )

′
), corresponding to Z = ((Z

(1)
0 )

′
, (Z

(2)
0 )

′
). Define

Â(β0) =

∫ τ

0

E[{Z − µZ(β0, t)}(Z(2))
′
λ{H0(t) + β

′

0Z}]Y (t)dH0(t).

As A(β0) is assumed to positive definite, the rank of Â(β0) is p − q. Let β̂1(β
(1)′

0 ) =

arg inf
β(2)

l((β
(1)
0 )′, (β(2))′)′. Using the arguments in Yu et al. (2011)

√
n(β̂11, β̂

(2)′

0 ) = −[Ψ(β0)]−1[Ã(β0)]′[Σ(β0)]−1 1√
n

n∑
i=1

Uni(β0) + op(1),

√
nθ2 = 1− [Σ(β0)]−1Â(β0)[ψ(β0)]−1[Â(β0]′[Σ(β0)]−1 − 1

1√
n

n∑
i=1

Un,i(β0) + op(1);

where θp is the corresponding Lagrange multiplier, and

ψ(β0) = [Â(β0)]
′
[
∑

(β0)]−1Â(β0).

By Taylor expansion, we have

lprofile(β
(1)
0 ) =

(
1√
n

n∑
i=1

Uni(β0)

)′ (
[Σ(β0)]−1 − [Σ(β0)]−1Ã(β0)[Ψ(β0)]−1[Ã(β0)]′[Σ(β0)]−1

)
(

1√
n

n∑
i=1

Uni(β0)

)
+ op(1)

=

(
[Σ(β0)]−1/2 1√

n

n∑
i=1

Uni(β0)

)′
S

(
[Σ(β0)]−1/2 1√

n

n∑
i=1

Uni(β0)

)
+ op(1),
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where

S = I − [Σ(β0)]−1/2Ã(β0)[Ψ(β0)]−1[Ã(β0)]′[Σ(β0)]−1/2

is a symmetric idempotent matrix with trace q. Then with under the regularity conditions,

if β0 is the true values of β,

1√
n

n∑
i=1

Uni(β0)
D→ N(0,Σ(β0)).

We have that,

[Σ(β0)]−1/2 1√
n

n∑
i=1

Uni(β0)
D→ N(0, Ip×p).

Hence, we prove Theorem 2.6.

Proof of Theorem 2.9 We want to establish that the results hold for R∗(β), so that we

can then show that R∗(β0) composes a true transformation of R∗(β0). It is significant to

note that R∗(β0) is similar to the AJEL section. Therefore, the results of Chen et al. (2008)

hold for R∗(β). To begin, we look at the criteria that make a true transformation.

(T1) 0 ≤ R∗t (β0) ≤ R∗(β0);

(T2) R∗t (β0) must be a monotonically increasing function of R∗(β0);

(T3) R∗t (β0) = R∗(β0) + op(1);

(T4) The level τ1 contour of R∗t (β0), β0 : R∗t (β0) = τ1 must be the same in shape as some

level τ2 contour of R∗t (β0), β0 : R∗t (β0) = τ2 and R∗t (β̃0) < R∗t (β0), for β̃0 6= β0 for any

τ1ε[0,∞).

We will show that R∗t (β0) comprises a true transformation that preserves the asymptotic

properties of R∗t (β0). We look at the four criteria of a true transformation. We choose

γ = 1/2.

(T1) We note that R∗(β0) ≥ 0. Therefore, 0 < max{1 − (R∗(β0)/n, γ = 1/2} ≤ 1/2

and thus 0 ≤ R∗t (β0) ≤ R∗(β).
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(T2) ObserveR∗t (β) = R∗(β0)[1−R∗(β0)/n] whenR∗(β0)ε[0, n/2]. Then, this is a strictly

monotonically increasing function of R∗(β0). We note that R∗t (β0) = (R∗(β0)/2) when

R∗(β0) > 1/2. Then, this is a strictly monotonically increasing function of R∗(β0).

Over the entire interval of [0,∞], R∗t (β0) is continuous. Therefore, R∗t (β0) continuous

strictly monotonically increasing, and non-negative throughout R∗(β0)ε[0,∞).

(T3) We note that R∗(β0) = Op(1) with the limiting distribution of R∗(β0) being a χ2
p

distribution. Thus, R∗(β0) ≤ n/2, with the probability tending to unity. Then, for all

asymptotic discussion we employ the assumption of R∗t (β0) = R∗(β0)[1 − R∗(β0)/n].

R∗(β0) = Op(1) coupled with this assumption gives us gives us (T3).

(T4) For a level τ1 contour of the R∗t (β0), β : R∗t (β0) = τ1, let τ2 = R∗t
(−1)(τ1), then

β : R∗t (β0) = τ1 = β0 : R∗(β0) = τ2. The second part of (T4) stems from the mono-

tonicity of R∗t (β0) and noting that R∗(β0) is likely to have a unique minimum at some

β̂.

Therefore, R∗t (β0) fulfills the necessary requirements of a true transformation and we can

say R∗t (β0) constitutes a true transformation preserving the asymptotic properties of R∗t (β0).

Thus, as n→∞, −2R∗t (β0)
D−→ χ2

p.
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