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PRIVACY PRESERVATION & SECURITY SOLUTIONS IN BLOCKCHAIN NETWORK

by

Saide Zhu

Under the Direction of Wei Li, PhD and Zhipeng Cai, PhD

ABSTRACT

Blockchain has seen exponential progress over the past few years, and today its usage

extends well beyond cryptocurrencies. Its features, including openness, transparency, secure

communication, difficult falsification, and multi-consensus, have made it one of the most

valuable technology in the world. In most open blockchain platforms, any node can access

the data on the blockchain, which leads to a potential risk of personal information leakage.

So the issue of blockchain privacy and security is particularly prominent and has become an

important research topic in the field of blockchain.

This dissertation mainly summarizes my research on blockchain privacy and security

protection issues throughout recent years. We first summarize the security and privacy vul-

nerabilities in the mining pools of traditional bitcoin networks and some possible protection

measures. We then propose a new type of attack: coin hopping attack, in the case of multi-



ple blockchains under an IoT environment. This attack is only feasible in blockchain-based

IoT scenarios, and can significantly reduce the operational efficiency of the entire blockchain

network in the long run. We demonstrate the feasibility of this attack by theoretical anal-

ysis of four different attack models and propose two possible solutions. We also propose

an innovative hybrid blockchain crowdsourcing platform solution to settle the performance

bottlenecks and various challenges caused by privacy, scalability, and verification efficiency

problems of current blockchain-based crowdsourcing systems. We offer flexible task-based

permission control and a zero-knowledge proof mechanism in the implementation of smart

contracts to flexibly obtain different levels of privacy protection. By performing several tests

on Ethereum and Hyperledger Fabric, EoS.io blockchains, the performance of the proposed

platform consensus under different transaction volumes is verified.

At last, we also propose further investigation on the topics of the privacy issues when

combining AI with blockchain and propose some defense strategies.

INDEX WORDS: Blockchain, Privacy / Security, Consensus Protocol, Crowdsoursing,
IoT.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Privacy is a hot and heterogeneous concept, usually referring to the protection of information

that an entity does not want to be known to outsiders. In fact, everyone has something to

hide. With the ever-increasing amount of information, people started to focus on information

security and protection of personal data privacy during big data exchange. A number of

privacy-preserving mechanisms have been proposed. Here I listed some works that benefit

this dissertation [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

Starting with privacy in everyday life, Figure.1.1 shows some pop-up windows on our

mobile phones that most of us here must have encountered. Are you willing to accept some

programs to access personal information in your phone, such as your location information,

photo information or your contact info? Of course, if you don’t allow it, you may not be

able to enjoy some of the services that these apps bring to you. And if you agree, you may

worry about whether your personal privacy will be leaked or abused.

Are these companies deserve to be trusted? If you search with the keyword privacy, you

may see a large number of such privacy leaks. For example, users could not access Wikipedia

data from the server due to 8 service outrages in 2018 [19]. In such a centralized system

where a server controls all the transactions, the issue of the controller’s silently misbehave

likely to occur without effective detection. Also, during the procedure of task assignment, the

sensitive information (e.g., location and preference) of users may be revealed by the public.
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Figure 1.1: Mobile apps want to access your personal information

For example, in Nov. 2017, 57 million Uber driver’s information has been hacked [20]. Some

companies even sell users’ personal information to other companies to make a lot of profits.

So, the traditional centralized systems may suffer from the single point of failure.

To solve these issues, a number of countermeasures have been proposed [21, 22, 23, 24,

25, 26, 27, 28, 29].

Zhang et al. formulate the distributed bike trip selection modeling problem. They

consider the total bicycle trip includes three portions, the way from source to the bike station,

the bike trip, and the way from bike station to the destination. This consideration is much

more practical than existing works, which just think about the route between bicycle stations.

They define the Bike Trip Selection (BTS) issue with the goal that the client can choose the

bicycle trip in a deterministic manner rather than a probabilistic one. And they formulate the

BTS problem as a game, mapping it to a symmetric network congestion game and proposing
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the algorithm for the game to find a suitable route for clients distributively [30]. However,

there still a lack systematic management in the coordination of distributed networks. Duan

et al. proposes a novel distributed MCS framework which jointly optimizes pricing and task

allocation [31]. They propose to solve the problem through double decomposition and design

a low-complexity iterative algorithm, which ensures that task initiators and mobile users

maximize their payoffs. Thus, this methodology accomplishes social welfare maximization

and is accordingly drastically different from traditional methodologies. Due to the reason

that the task initiators and mobile users do not need to expose the utility and cost functions

during task allocations, the algorithm can achieve privacy preservation. However, it lacks

the protection of personal information in sub-area.

Besides the above solutions for distributed solutions, in this article, we mainly focus on

the solutions using blockchain technology. In 2008, Satoshi Nakamoto proposed a blockchain-

based digital money(Bitcoin) peer-to-peer trading platform [32]. In the Bitcoin network, the

users that participate in approving and verifying the correctness of Bitcoin transactions

are called miners. All the miners need to participant in transaction validation, and the

validated transactions form a distributed public ledger that can prevent users from making

a double-spending of their Bitcoins. With the generation of blockchain technology, the

distributed network architecture can provide a decentralized solution for the traditional

centralized platform.

However, the exceptionally critical bottleneck of the Bitcoin blockchain is currently how

to improve its scalability. In view of verifiable information, the Transaction Per Second
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(TPS) of BTC is around 4-7. As Visa’s TPS is ordinarily around 4000, Bitcoin is right now

clearly unfit to meet huge scope exchange situations. Also, to guarantee the security and

privacy of the blockchain, the POW-based blockchain is required to have huge computational

power. As the transactions get congested, miners need to wait for multiple confirmations

to ensure the blockchain is secure from double-spending problems. The most instinctive

thought is to expand the size of the block and shorten the interval between blocks. However,

the main drawback of expanding block size is that it requires more extra storage on the

chain. At the same time, it will cost additional time to spread to the whole network, which

will lead to more forks and orphaned blocks in the blockchain network. The recent big

progress of blockchain technology enables the seamless integration of smart contracts and

novel cryptographic tools into blockchain networks, which provides an innovative way to

improve privacy.

So, the goal of our work is to design a blockchain-enabled crowdsourcing platform to

provide users with diverse privacy protection while improving efficiency. So the whole struc-

ture of the dissertation starts from understanding the current blockchain system and the

privacy vulnerability of mining pools, and then further proposes the possible security and

privacy issues. We propose an attack method called Coin Hopping in the IoT environment.

Finally, we adopts both public chain verification and subchain verification, combined with

smart contract and zero-knowledge proof to maximize users’ access control and privacy pro-

tection for submitting data. Compared with existing hybrid blockchain architectures, this

work reduces the reliance on relay bridge and proposes a common election mechanism for the
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DPOS consensus of the public chain and PBFT consensus of the sub chain, so that the val-

idator on the subchain can be dynamically generated and released when there is a demand,

which reduces the waste of resources for useless channel monitoring. We test and compare

the performance of DPOS, PBFT, and Casper consensus protocols in terms of execution,

latency, and throughput in three different blockchain networks, Eos.io, Ethereum, and Hy-

perledger Fabric, respectively. The data shows that DPOS outperforms Ethereum’s existing

consensus by a factor of around 30 for large transaction volumes of 5,000-10,000, and PBFT

outperforms it by a factor of 3 for small transaction volumes of 10-5,000, which verifies the

reasonableness and feasibility of using different consensus in the proposed hybrid blockchain

architecture. To our best knowledge, it has groundbreaking significance in the research of

blockchain-based crowdsourcing. Finally, we focus on the privacy problems when combining

blockchain with AI. On the basis of uploading local parameters in Federated Learning, we

added pairwise masks and individual masks to further protect the end users’ data privacy.

And we use the non-interactive PVSS technology to solve the user’s drop out situation. Our

experiment results show a trade-off between privacy protection level and efficiency.

1.2 Dissertation Organization

The rest of the dissertation is organized as follows: Chapter 2 summarizes the background

and related literature; A new attack strategy in IoT-based Blockchain networks is introduced

in Chapter 3. We analyse the feasibility of that attack and propose some defense directions.

Chapter 4 investigates the problems of blockchain-based crowdsoursing, and propose a hybrid
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blockchain architecture specifically designed for crowdsoursing tasks to provide dynamic data

access controls and diverse privacy protections. Chapter 5 investigates the privacy solutions

when combining blockchain with federated learning. Chapter 6 provides future directions

and Chapter 7 concludes our work.
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CHAPTER 2

BLOCKCHAIN TECHNOLOGY PRELIMINARIES

Blockchain is a term used in the field of information technology. In essence, it is a shared

database in which data or information is stored with characteristics such as ”unforgeable”,

”traceable”, ”traceable”, ”open and transparent” and ”collectively maintained”. ”open and

transparent” and ”collectively maintained”. Based on these features, blockchain technology

has laid a solid foundation of ”trust” and created a reliable ”cooperation” mechanism, which

has a broad application prospect. In this chapter, we introduce some of the terminology in

blockchain and the various basics that will be used in the following research.

2.1 Nacamodo Blockchain

Bitcoin is the first decentralized digital currency in the world. All the nodes in the network

are involved in validation of transactions. The validated transactions form a public ledger,

which does not allow participants to clarify a double spending of one’s Bitcoin. Nakamoto

consensus, considered to be one of Bitcoin core innovations, uses a challenging computational

puzzle to determine the owner of next state block [32]. Nodes that participate in approving

And verifying the correctness of Bitcoin transactions are called miners. The process of

verifying transactions is also the process of mining Bitcoins. Specifically, the miner who

successfully calculates the result will get a 12.5 Bitcoin (BTC) as the block Reward.
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2.2 Pool Mining

Any miner in Bitcoin network who wants to generate a new block in the blockchain must

figure out a computational puzzle. The computational puzzle in Bitcoin performs a double

SHA-256 computation for each block. As the following inequality shows, every miner will be

asked to compute an output value less than a threshold which indicates the difficulty of the

network [32].

sha256(Merkel + sha256(PreBlock) +Nounce) ≤ D (2.1)

Technically, in order to get block reward, each miner has to generate a random nonce

value to satisfy the requirement of the computational puzzle. The randomness feature of

SHA-256 computation in the puzzle makes it nearly impossible for miners to take the inverse

operation. Even a slight change of the input can result in a completely different output.

Hence, the only approach for miners to find the nonce value is exhaustion, which consumes a

lot of computational power. The difficulty of the computational puzzle dynamically changes

in Bitcoin network. In particular, for every 2016 block mined, the network adjusts the

difficulty, thereby regulating the average time per mining out a block is 10 minutes [33].

Mining pool is a necessary infrastructure for Bitcoin and other virtual cryptocurrencies.

The meaning of its existence is to enhance the stability of Bitcoin mining and stabilize miners’

revenues. Over the past three years, there has been a dramatic increase of computational

power in Bitcoin network [34]. The difficulty of the network grows fast correspondingly, which
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causes a great variance of revenues in solo mining. Thus, most miners choose to gather their

computation power together to raise their possibility of finding a new block. Once a block

is successfully mined in the pool, the pool manager fairly distributes the reward to the

participants corresponding to their expended computation effort. Hence, the miners in the

pool can get a much stable revenue than performing solo mining.

For example, the Bitcoin network hash rate on Jun 17, 2017, is 5094526985 GH/s [33].

Suppose someone gets a powerful Antminer S9 mining equipment which has a 13.5 TH/s

hash rate. It still takes him 7.2 years to mine a block (get the 12.5 BTC reward) in average

by solo mining. However, if he uses the Antminer S9 to join in the pool with 15% of the total

network computational power, the revenue would be $13.055 per day without considering

the pool service fee. That is the reason why most miners choose to mine in a pool.

If a miner in the pool finds a solution of the new block, the POW mechanism ensures he

can not reward himself. When someone changes the public key of the coinbase transaction

in Merkle tree, it will cause the nonce value does not match with the Block ID he generated.

Hence, the block will not pass through the verification process of other miners. The feature

ensures all the reward could only be distributed by pool manager.

2.2.1 Share

Share is the minimum workload as defined in the pool. In order to share the reward of

BTC, a miner should at least submits one share to the pool manager, and the amount of

the reward he can earn is determined by the distribution mechanism the pool adopts. As

we discussed above, the computational puzzle asks miners to figure out a value less than the
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network difficulty.

2.2.2 Full Solution

Once a share meets the difficulty of Bitcoin puzzle, this share is considered as a full solution.

With this full solution submitted, pool manager then can get the 12.5 BTC block reward

and distribute it to all the participants. In most cases, the expected reward of submitting a

full solution is the same as submitting a share.

Specifically, the difficulty of Bitcoin mining can be expressed by the number of leading

zeros of the blockhash. For example, for the 500155 block, there are 73 leading zeros, so

the difficulty of this puzzle is 273. However, when a miner is mining in a pool, he will be

given an easier difficulty which generated by pool manager. For instance, he only needs to

find out a solution with 50 leading zeros. Each solution that meets the pool difficulty is

called a share. Thus, in the above example, finding a share is 223 times easier than finding

the original solution. By submitting shares, the pool can verify how much work participants

have done.

2.3 Reward Distribution Mechanism

The reward distribution mechanisms determine how pools assign rewards to their partici-

pants. Right now, ten biggest pools which have largest hashrates possess over 93% of total

computational power [35], and many of these pools adopt different distribution mechanisms,

such as Pay-Per-Share(PPS), Slush Method, Pay-Per-Last-N-Shares, etc. When analyzing

a reward system, the key factor need to be considered is the fairness. It is expected that
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Name Reward Mechanism PPS fee Other fee
Antpool PPLNS & PPS 2.5% 0%
BTC.com FPPS 0% 4%
Slush Pool Score 2%
BTCC Pool PPS 2% 0%
P2Pool PPLNS 0%
BTCDig DGM 0%

Table 2.1: Reward Mechanism Statistics [1]

each submitted share deserves a similiar amount of rewards in one game, and the fluctuation

of the payoff is not affected by the time factor. In 2016, Schrijvers et al. defined that the

incentive-compatibility of a reward distribution system is when reporting full solution at

once is miners best strategy [36]. The incentive-compatibility is considered to be a good

evaluation metrics for analyzing the fairness.

All these Reward Distribution mechanisms are aimed to provide a fair and attractive

distribution of rewards among pool participants. From a miners perspective, he wants to join

a pool which can make his expected payoff to be stable and also as more as possible. From a

pool managers view, he is intended to attract more participant to enlarge his computational

power, at the same time lower the risk of getting bankrupt. Table 1 below shows the reward

distribution mechanisms for some famous mining pools.

The most common mechanism adopted by open pools are PPS and PPLNS. This two

mechanisms can be easily deployed in pools. Also, it is clear for participants in such pools to

calculate their expected payout. Due to the stable revenue of PPS mechanism, it is generally

known that operators in the PPS pool will draw relatively high fees. Thus, PPS pools give

participants a feeling of stable but not superior. In order to change this situation, operators

often introduce some unique elements into their allocation to attract more participants. For
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example, AntPool uses a variety of distribution mechanisms at the same time for miners to

choose; BTC.com uses Full pay per share (FPPS). This mechanism not only share regular

dividends (12.5 BTC for now) but also some of the transaction fees, thus increasing miner’s

expected revenue. In future Bitcoin transactions, and the part of transaction fee will grad-

ually increase. Therefore, FPPS can well adapt to the future development of Bitcoin pool

mining.

For Slush pool and Geometric method, these two mechanisms are not widely implemented

in Bitcoin system due to their obvious shortcomings. Some other mechanisms may combine

several of above methods to let participants themselves decide how they want to get paid.

One big issue in reward distribution system nowadays is security. Existing works have

shown a variety of attack strategies in pool mining, especially in those running PPS and

PPLNS mechanisms.

2.4 Pool Hopping

Pool hopping is considered to be one of the most vulnerable weaknesses of the proportional

block reward distribution method. According to [37], with such a proportional distribution

mechanism, the longer a mining round is, the more shares submitted in a mining pool. In

other words, every share in a longer round is worth less. Thus, rational miners choose to

mine only when the expected reward is high and to leave when it is low. The problem of pool

hopping is that if a rational miner who chooses to adopt hopping strategy can constantly

earn a profit more than the expected reward, i.e., a rational miner can perform pool hopping
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strategy for enhancing the received reward. As a result, in the mining pool, the honest

miners who do not hope lose their deserved profits.

2.5 Merkle Tree

Merkle tree, which is a type of data structure (usually a binary tree and possibly a multi-fork

tree), stores hash values of data contents. In a blockchain (e.g., Bitcoin), Merkle tree is used

to quickly summarize and verify the integrity of block data by hashing transactions. Each

hash node is generated from two adjacent data nodes continuously and recursively, leaving

only one Merkle root stored in the block headers.

The main advantages of using a Merkle tree in a blockchain system is that it greatly

improves the efficiency and scalability of the blockchain, so that the block header only needs

to contain the root hash value without having to encapsulate all the underlying data, which

makes the verification run efficiently. Also, in the blockchain, the Merkle tree supports

the Simplified Payment Verification Protocol (SPV), which allows transaction data to be

executed without running a full node. Thus, the payment confirmation problem can be

solved under light client conditions.

2.6 Smart Contract

The smart contracts were firstly deployed on Ethereum using Solidity language. In the

smart contracts, the codes will be automatically executed when a condition is triggered

by the contract contents, reducing the cost of communication and supervision. Since the

smart contracts are implemented on a blockchain, they possess some critical features in-
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cluding accountability and decentralization. Also, the blockchain can guarantee that the

contents of the smart contracts cannot be changed. When it comes to crowdsourcing, the

blockchain platforms are expected to process data and control access permission for vari-

ous tasks. Therefore, the smart contracts can be employed as a programmable interface for

developers to set up different procedures.

2.7 Zero-Knowledge Proof

Protecting user privacy is an important focus in the blockchain. By using zero-knowledge

proof (ZK-proof), private information can be preserved during the verification process [38,

39]. In our work, Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (ZK-

SNARK) is utilized to construct optimized ZK-proof to help verify transactions in the com-

munications between the public chain and the subchains. Typically, the ZK-SNARK algo-

rithm has three components: (1) a setup algorithm is run to produce a public parameter to

establish the SNARK; (2) an attestation is generated by a prover and sent to the SNARK

verifier on the blockchain; and (3) the correctness of the proof is verified via calling the

verifier module.
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CHAPTER 3

COIN HOPPING ATTACK IN BLOCKCHAIN-BASED IOT

3.1 Introduction

Blockchain (e.g., Bitcoin and Ethereum) has experienced explosive progress in the past

years, and its usage today is far beyond cryptocurrency. Thanks to its unique features,

including openness, transparency, secure communication, difficulty in falsification, and multi-

consensus, blockchain is treated as one of the most promising technologies to promote many

emerging applications, such as Internet of Things (IoT), Big Data, and Smart Cities [40].

The virtue of blockchain is to verify and record transactions by users (i.e., block miners) in

a distributed and secure manner; especially, transaction verification is accomplished through

block mining process. Due to the extremely high mining difficulty, miners are likely to

form mining pools to together computational power and share rewards for improving mining

success rate as well as enhancing expected revenue [37] – such mining pool has become an

indispensable important part of a blockchain network.

Meanwhile, in order to pursue more profits, malicious miners utilize the flaws of reward

distribution mechanisms to manipulate their mining behaviors, leading to revenue reduction

to other honest miners and severe impacts on the involved mining pool(s) – this is so-called

pool mining attack. To prevent miners’ malicious behaviors, researchers have performed

a lot of efforts on the analysis of pool mining attacks, including pool hopping attack [37],

selfish mining attack [41, 42], and block withholding attack [35, 43, 44]. No stopping here,

in the combination of blockchain and IoT, a new and more sly type of pool mining attack
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Figure 3.1: Blockchain-based IoT Framework

(termed coin hopping attack) emerges, which unfortunately, has never been addressed in

literature.

Before explaining coin hopping attack, an overview on the blockchain-based IoT is in-

troduced. Currently, the existing blockchain-based IoT architectures are designed based

on a typical three-layer hierarchical network framework, containing IoT devices, blockchain

network, and cloud storage [45, 46, 47, 48, 49, 50], which is shown in Fig. 3.1. Compared

with the traditional cryptocurrency blockchain network, the blockchain-based IoT has sev-

eral unique characteristics. First of all, besides the specific mining equipments (e.g., ASIC

devices [51]) of the traditional blockchain network, IoT devices can be also employed as

miners for improving device utilization and mining rate. Second, as the blockchain-based

IoT is expected to embrace various networks, mining compatibility should be achieved, which
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requires that (some) IoT miners are able to run different consensus protocols for different

blockchain networks. But, on the other hand, mining compatibility makes it hard or even

impossible for these IoT miners to judge which consensus protocols they are running. These

unique characteristics provide a pool manager with more flexibility and freedom to mali-

ciously transfer the mining power of his pool(s) among different blockchain networks for

extra profit, and this malicious behavior is named coin hopping attack.

Motivated by the above observations, in this chapter, we propose an in-depth study on

coin hopping attack. Since no work has been done for coin hopping attack, our study faces

some challenging problems.

1. The first one is how to analyze coin hopping attack. More specifically, the formal defi-

nition of coin hopping attack, the attack scenarios, and the pool manager’s behaviors

should be studied.

2. To better understand coin hopping attack, we need to solve the problem: when dose

coin hopping attack occur? In other words, the condition of successfully launching coin

hopping attack should be identified.

3. If the blockchain-based IoT suffers coin hopping attack, what are the impacts on miners

and networks?

In order to answer these problems, our study starts from defining the concept of coin

hopping. Then, a rigorous theoretical analysis is carried out to investigate coin hopping

attack under different pool mining scenarios, including one pure pool, two pure pools, one
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mixed pool, and merged mining pool. What’s more, in each scenario, the conditions to launch

a successful coin hopping attack are proved. Finally, the impacts and defense directions are

analyzed. In this Chapter, our multi-fold contributions are summarized below.

• To the best of our knowledge, this is the first work to study coin hopping attack,

thereby filling the blank in literature.

• The feasibility of coin hopping attack is rigorously proved, which indicates the vulner-

ability of blockchain-based IoT to coin hopping attack.

• The conditions in various pool mining scenarios to perform coin hopping attack are

identified, which builds a theoretical foundation for future research of coin hopping.

• The multi-dimensional consequences of coin hopping attack are thoroughly investigated

from the viewpoints of miners and networks.

• To resist coin hopping attack, two defense directions are proposed.

The rest organization of this Chapter is as follows. The framework of the blockchain-

based IoT is described in Section 3.2. The preliminaries of Bitcoin and Ethereum incentive

mechanisms are illustrated in Section 3.3. The theoretical analysis of coin hopping attack in

various scenarios are conducted in Sections 3.4 and 3.5. Finally, this chapter is concluded in

Section 4.6.
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3.2 Analytical Model and Framework

Blockchain can work as a public ledger to record every transaction in a secure manner.

By applying blockchain technology into IoT, a centralized entity is no longer necessary as

devices can communicate securely in a distributed manner without single point of failure.

In such application, there are three key benefits, including building trust, reducing cost, and

accelerating transaction [52].

Recently, the combination of blockchain and IoT has attracted more and more attention

from both industry and academic. For examples, the Autonomous Decentralized Peer-to-

Peer Telemetry (ADEPT) project incorporated blockchain into their distributed IoT archi-

tecture to achieve autonomous device coordinating, peer-to-peer messaging, and distributed

file sharing [45]; Zyskind et al. proposed a blockchain-based IoT architecture consisting of

device & service, blockchain network and DHT(distributed hash table), which can guarantee

secure interaction among distributed IoT devices as well as ensure identity access control

[46]; similarly, Ali Dorri et al. designed an architecture with smart home, overlay-blockchain

network and cloud storage [47] to increase the security and accessibility level of IoT net-

work. To sum up, these blockchain-based IoT architectures are built based on a common

three-layer hierarchical framework as shown in Fig. 3.1, where IoT devices (i.e., IoT miners)

can communicate and interact through blockchain networks and the information is stored in

clouds. The framework is adopted in the analysis of this Chapter.

Since the superiority of IoT mainly lies in the ubiquitous connectivity of various networks,

such as smart homes, smart grids, and smart vehicular networks, the blockchain-based IoT
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Figure 3.2: IoT devices serve for different blockchain networks

should achieve mining compatibility to carry forward this superiority, which can be demon-

strated from the following three aspects. On one hand, various consensus protocols as well

as cryptocurrencies can co-exist in the blockchain-based IoT, because different blockchain

networks may adopt different consensus protocols. On the other hand, to improve resource

utilization and reduce mining cost, (some) smart devices in IoT can serve as miners for

different blockchain networks, because a smart device may belong to different networks.

An illustrative example is presented in Fig. 3.2 where the smart home miners are able to

integrate with the homes Internet gateway or a separate stand-alone devices [47, 51]. Due

to the computational power these devices have, they are also suitable to offer verification

service for smart grid [53].
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3.3 Incentive Mechanisms in Bitcoin and Ethereum

The amount of a pool’s revenue is directly proportional to the amount of computational power

it has. A pool manager usually draws a certain percentage of the reward as a handling fee,

which is the pool manager’s income. Different consensus mechanisms determine different

reward mechanisms [37]. For example, since the Bitcoin network runs the POW consensus

[32] and Ethereum runs the Casper consensus [54], the puzzles in their networks are different.

Therefore, different formulas are used to calculate the expected revenue. Besides, the reward

distribution mechanism of the mining pool can affect the calculation of the pool manager’s

income. Currently, there are various blockchain-based cryptocurrencies, including Bitcoin

[32], Ethereum [55], EOS [56], Litecoin [57], Bitcoin Cash [58], and so on.

As Bitcoin and Ethereum are two of the most popular crypto-currencies, we use them as

the examples in our analysis to illustrate the security vulnerability of the blockchain-based

IoT. In our analysis, the common PPS/PPLNS allocation mechanism is adopted, in which

the expected probability of successfully mining a block by the pool is equal to the ratio of

the mining power of the pool to the entire network power [37]. Indeed, such analysis also has

essentially explanatory power in a more general scenario where other different blockchain-

based cryptocurrencies co-exist.

3.3.1 Bitcoin Incentive Mechanism

Assume that P represents the ratio of the mining power owned by a pool to the total Bitcoin

mining power in the network. Suppose BBTC is the Bitcoin block reward (e.g., 12.5 BTC
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per new block mined in the current network [59]). Accordingly, for each new block mined in

the network, the expected reward of the pool is P · BBTC . Let f denote the pool fee, SBTC

be the frequency of mining a new Bitcoin block, and UBTC represent the expected revenue

of the pool in the Bitcoin network. Thus, UBTC can be computed in Eq. (3.1).

UBTC = P ·BBTC · SBTC · f. (3.1)

3.3.2 Ethereum Incentive Mechanism

The incentive mechanism of Ethereum is different from that of Bitcoin. In Ethereum, a new

block may be either a normal block or an uncle block. The uncle block is an alternative

block at the same height as the parent of a block and should be considered to be orphaned

in the future because it is not on the longest chain [55].

Accordingly, when analyzing the Ethereum block reward, the first consideration is whether

the new block is a normal block or an uncle block, because their revenue calculations are

different in the Ethereum network. Suppose p is the probability that a new block is a normal

block, and then 1 − p is the probability that a new block is an uncle block. Formally, let

UNETH and UUETH denote the expected revenues of a normal block and an uncle block,

respectively. Then the expected revenue for a newly mined Ethereum block UETH can be

calculated as follows:

UETH =p · UNETH + (1− p) · UUETH (3.2)

For a normal Ethereum block, the total block reward contains three parts. (i) The first
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part is a basic block reward BETH with the amount of exact 3 Ethers at present. (ii) The

second part is the gas fee, which could be treated as the transaction fee in Bitcoin block

reward. Since the amount of gas fee of each block varies in network environment and is

relatively a small portion compared with the block reward, the gas fee is not considered in

our revenue analysis. (iii) The third part is an extra block reward per uncle block generated.

If the uncle blocks exist, an extra amount of 1
32

block reward per uncle is provided. For each

normal block, the maximum of 2 uncles are allowed [55].

In the calculation of the total block reward for a normal block, three cases need to be

analyzed, which are presented in Fig. 3.3. For each new normal block, the miner can always

obtain the basic block reward BETH . If the new normal block has an uncle, the miner has a

probability of 1− p to receive an additional 1
32

block reward. Similarly, when there are two

uncles as shown in Fig. 3.3.(c), the miner can get an additional 1
32

block reward with (1−p)2

probability. Thus, the expected revenue of mining a normal block UNETH can be computed

in Eq. (3.3)

UNETH = P ·BETH · [1 +
1− p

32
+

(1− p)2

16
] · SETH · f, (3.3)

where P the mining power of the pool and SETH is the frequency of mining a new block in

the Ethereum network.

If a new block is treated as an uncle block, the miner could receive the uncle block reward

BUETH . Currently, BUETH = 3
4
BETH in average [60], and the expected revenue of mining an
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Figure 3.3: Three situations for mining a new normal block

uncle block can be computed via Eq. (3.4).

UUETH =P ·BUETH

=
3

4
P ·BETH .

(3.4)
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Thus, the expected revenue of mining a new Ethereum block is:

UETH =p · UNETH + (1− p) · UUETH

=P · [p ·BETH · (1 +
1− p

32
+

(1− p)2

16
)

+ (1− p) ·BUETH ] · SETH · f.

(3.5)

3.4 Coin Hopping Analysis

Coin Hopping references to the malicious behavior of a pool manager who uses its miners’

computational power to verify another higher rewarded blockchain without informing the

miners in its mining pool(s).

In the blockchain-based IoT, a pool manager may take charge of one or multiple mining

pools in different blockchain-based networks. Suppose a mining pool consisting of multiple

gateway devices is currently working for the Bitcoin-based smart home network. If the pool

manager finds that the Ethereum-based smart grid network can provide a higher reward for

transaction verification. The manager could transfer all the mining power of the pool in the

smart home network to work for the smart grid network while using the smart home network

standard to reward those gateway devices in his pool. By doing this, the pool manager can

probably earn more benefit. This strategy of maliciously transferring mining power is called

Coin Hopping Attack.

Such coin hopping attack may not occur in the traditional blockchain networks due to

the fact that the miners in most mining pools are ASIC devices [61], which usually can deal

with only one specific kind of blockchain puzzle. Thus, when the pool manager performs
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coin hopping attack, the miners within the pool cannot help verify any blockchain that

adopts another different consensus protocol. For example, the ASIC miner in a Proof of

Work (PoW)-based blockchain network can only solve the puzzle that includes exact two

SHA-256 operations but has nothing to do with a Proof of Stake (PoS)-based blockchain.

Thus, when the pool manager try to conduct the coin hopping attack to another blockchain

running different consensus protocol, ASIC miners could always know it happens. However,

to achieve compatibility throughout the blockchain-based IoT, smart devices, such as smart

phones and smart bulbs, are employed as miners to deal with various blockchain puzzles.

Meanwhile, some issues are brought in: (i) these smart devices typically lack the ability

to sense a pool manager’s behavior due to the limitation of computational power; and (ii)

although the miners can know whether the pool manager has received other blockchain

rewards by checking the public record of blockchain information, they have no way to judge

whether they have contributed verification effort. These issues provide the pool manager

with great freedom to maliciously transfer the miners’ computational power for verifying

transactions from other blockchains without the miner’s permission. In other words, the

blockchain-based IoT is vulnerable to coin hopping attack.

In following analysis, we consider three different scenarios where coin hopping attack

happens between Bitcoin blockchain and Ethereum blockchain. First, a single pool that

currently working for only one blockchain network is studied in Section 3.4.1. Next, we

analyze the case when the attacker has two pools with one working for Bitcoin blockchain

and the other working for Ethereum blockchain in Section 3.4.2. Finally, a more realistic
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Table 3.1: Notation Table

Notation Description

m Mining power of Ethereum network
α Mining power of pool A with α ∈ [0, 1]
β Mining power of pool B with β ∈ [0, 1]
γ Pool mining power rate works for the Bitcoin network
BBTC Reward of mining each Bitcoin block
BETH Reward of mining each Ethereum block
BUETH Reward of mining each Ethereum uncle block
SBTC Frequency of mining a new Bitcoin block
SETH Frequency of mining a new Ethereum block
f Pool fee percentage
p Probability of being an Ethereum normal block
UBTC Expected revenue of Patt in Bitcoin network
UETH Expected revenue of Patt in Ethereum network
k Conversion rate between Bitcoin and Ethereum block rewards

scenario where a single pool working for both different blockchain networks (i.e., a mixed

pool) is investigated in Section 3.4.3. For a better presentation, the main notations are

described in Table 3.1.

3.4.1 Single Pure-Pool

In the first scenario, we consider that a pool manager Patt, who owns a pool A in the Bitcoin

blockchain network, is the attacker that can launch coin hopping attack. At the same time,

there is another network using the Ethereum blcokchain for transaction verification in IoT.

To earn more profits, Patt may choose part of his miners’ computational power to verify the

Ethereum network while using his Bitcoin deposit to award the miners under the standard

of Bitcoin network.

As we consider Patt has enough deposit for different kinds of cryptocurrencies, a more

extreme situation is that Patt privately transfers his total mining power from the Bitcoin

network to the Ethereum network as presented in Fig. 3.4. Assume that the mining power
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Figure 3.4: Coin hopping in a pure pool

of the entire Bitcoin network is 1. Since the probability that a pool mines a new block is

equal to the ratio of the mining power of the pool to that of the entire Bitcoin network, the

probability that Patt’s pool mines a new block is α
1
. By now, Patt has two available mining

strategies: (i) honestly mining in the Bitcoin network and (ii) performing coin hopping attack

to mine in the Ethereum network.

If Patt mines honestly in the Bitcoin network, the expected revenue of mining a new

Bitcoin block can be calculated as follows:

UBTC =
α

1
·BBTC · SBTC · f. (3.6)

If Patt performs coin hopping attack by transferring all his mining power in pool A to

the Ethereum network. He has a probability of α
m+α

to mine a new Ethereum block. Thus,

we can use Eq. (3.7) to calculate the expected revenue of mining a block in the Ethereum
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network.

UETH =
α

m+ α
· [p ·BETH · (1 +

1− p
32

+
(1− p)2

16
)

+ (1− p) ·BUETH ] · SETH · f.
(3.7)

To check whether attacker Patt can get a higher revenue through coin hopping, we subtract

Eq. (3.7) from Eq. (3.6). As a new block is generated every 10 minutes in the Bitcoin

network while a new block is verified every 12 seconds in the Ethereum network [55, 62],

we have SBTC = SETH

50
. Also, the average uncle block reward in the Ethereum network is

currently 3
4

of a normal block reward, which indicates that BUETH = 3
4
· BETH [60]. To

identify the general relationship between Bitcoin block reward and Ethereum block reward,

we assume BBTC = k · BETH with k > 0 where k is the conversion rate between a Bitcoin

block reward and an Ethereum block reward (i.e., the exchange rate between two different

cryptocurrencies). Hence, the revenues of honest mining and coin hopping can be further

represented as follows:

UBTC =
α

1
·BBTC · SBTC · f

=
α · k
50
·BETH · SETH · f.

(3.8)

UETH =
α

m+ α
· [p ·BETH · (1 +

1− p
32

+
(1− p)2

16
)

+ (1− p) ·BUETH ] · SETH · f

=
α

m+ α
· 2p3 − 5p2 + 35p+ 24

32
·BETH · SETH · f.

(3.9)
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Note that p is the probability that a new Ethereum block is a normal block, and then

we let c = 2p3−5p2+35p+24
32

for computation simplicity. Thus, the revenue difference of the two

mining strategies can be computed by Eq. (3.10).

UETH − UBTC =(
α · c
m+ α

− α · k
50

) ·BETH · SETH · f. (3.10)

As BETH > 0, SETH > 0, and f > 0, we have UETH − UBTC > 0 if Eq. (3.11) holds,

which means the attacker Patt is able to earn more revenue through coin hopping attack.

(
α · c
m+ α

− α · k
50

) ≥ 0. (3.11)

Furthermore, because α ∈ [0, 1], we can conclude that Eq. (3.11) holds as long as Eq. (3.12)

can be satisfied. This indicates that the pool manager Patt can enhance his expected revenue

via coin hopping attack if and only if Eq. (3.12) can hold.

α ≤ 50 · c
k
−m. (3.12)

Therefore, as a pool manager with mining power, he can choose to perform coin hop-

ping attack when his mining power is equal or smaller than a certain threshold suggested

in Eq. (3.12). In particular, the threshold is determined by the blockchain network envi-

ronments, including the mining power of the entire blockchain (e.g., Bitcoin and Ethereum)

network, the frequency of generating a new block in the blockchain network, the exchange

rate between two different cryptocurrencies, and the probability of being a normal Ethereum
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block (it also indicates the uncle block rate in the Ethereum network). According to the

real-world statistics of current Bitcoin & Ethereum blockchain information in May 2018, the

uncle block rate of the Ethereum network is around 17%. So, we have p = 0.83 and c = 1.59.

The hash rate of the Ethereum network is 276,441.08 GH/s [60], and the hash rate of the

Bitcoin network is 31,722,970.71 TH/s [33]. Then, the Ethereum network mining power is

m ≈ 1
114755

when the mining power of the Bitcoin network is normalized to 1. The value of a

Bitcoin block is about $8000, and the value of an Ethereum block is about $700 [63]. Thus,

the block reward conversion rate is k ≈ 47.6. By substituting this statistics, the condition of

launching coin hopping attack is α ≤ 1.67, which indicates that this condition can be met by

pool with any size. Thus, in the blockchain-based IoT, it is feasible for a single-pool manager

to transfer mining power from a Bitcoin-based network to an Ethereum-based network for

revenue enhancement.

Notice that in the blockchain-based IoT, coin hopping attack can also happen reversely

from an Ethereum-based network to a Bitcoin-based network when α ≥ 50·c
k
−m.

3.4.2 Double Pure-Pool

The second scenario considers the pool manager Patt owns two pools A and B which possess

α and β computational power, respectively. Suppose that pool A verifies transactions for

the Bitcoin blockchain while pool B works for the Ethereum blockchain. Fig. 3.5 shows the

attacker Patt can privately uses all the mining power of his two pools to verify the Ethereum

network and simultaneously awards the miners in pool A under the Bitcoin standard.

Formally, UA is used to represent the expected revenue of pool A and UB is used to denote
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Figure 3.5: Coin hopping in two pure pools

the expected revenue of pool B, thereby the total expected revenue for the pool manager

UPatt is UA+UB. If Patt mines honestly, the probability for pool A to mine a new block in the

Bitcoin network is α
1
, the probability for pool B to find a new block in the Ethereum network

is β
m

, and the pool manager Patt’s total expected revenue can be computed by Eq. (3.13).

UPatt =UA + UB

=
α

1
·BBTC · SBTC · f

+
β

m
· [p ·BETH · (1 +

1− p
32

+
(1− p)2

16
)

+ (1− p) ·BUETH ] · SETH · f,

(3.13)

in which the mining power of the entire Bitcoin network is 1 and that of the entire Ethereum

is m. For a better comparison, both the computation of UA and Eq. (3.13) are rewritten as
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the explicit expressions of BETH and SETH , which are respectively presented as follows.

UA =
α

1
·BBTC · SBTC · f

=
αk

50
·BETH · SETH · f.

(3.14)

UPatt =UA + UB

=
αk

50
·BETH · SETH · f

+
β

m
· [p ·BETH · (1 +

1− p
32

+
(1− p)2

16
)

+ (1− p) ·BUETH ] · SETH · f

=(
αk

50
+
βc

m
) ·BETH · SETH · f.

(3.15)

When Patt launches coin hopping attack towards pool A, all his mining power α + β

are used for the Ethereum network. Therefore, Patt can mine a new block in the Ethereum

network with a probability of α+β
m+α

and obtain the following expected revenue, defined as

UA→ETH
Patt

.

UA→ETH
Patt

=
α + β

m+ α
· [p ·BETH · (1 +

1− p
32

+
(1− p)2

16
)

+ (1− p) ·BUETH ] · SETH · f

=
(α + β) · c
m+ α

·BETH · SETH · f.

(3.16)

Then, if UA→ETH
Patt

≥ UPatt , the pool manager has sufficient motivation to perform coin

hopping attack in pool A for revenue enhancement; that is, the pool manager Patt can increase

his expected revenue by transferring mining power to the Ethereum network if Eq. (3.17)
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can hold.

UA→ETH
Patt

− UPatt =[
(α + β) · c
m+ α

− αk

50
− βc

m
]

·BETH · SETH · f

≥0.

(3.17)

Since BETH > 0, SETH > 0, and f > 0, Eq. (3.17) can be equivalently simplified to the

following equation.

[
(α + β) · c
m+ α

− αk

50
− βc

m
] ≥ 0,

which can be further simplified as Eq. (3.18).

50m(α + β) · c−m(m+ α)αk − 50(m+ α)βc ≥ 0

⇒−mkα2 + (50mc−m2k − 50βc)α ≥ 0.

(3.18)

Because α is in the range [0, 1], we have

α ≤ 50mc−m2k − 50βc

mk
. (3.19)

Thus, when Eq. (3.19) is satisfied, attacker Patt can earn more profits via performing coin

hopping attack towards pool A. More specifically, the value of 50mc−m2k−50βc
mk

is analyzed in

the following three cases.

• Case 1: if 50mc−m2k−50βc
mk

< 0, attacker Patt would never gain a larger expected revenue

from launching coin hipping attack in pool A.

• Case 2: if 0 ≤ 50mc−m2k−50βc
mk

≤ 1, attacker Patt with α ∈ [0, 50mc−m
2k−50βc

mk
] can get a
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larger expected revenue through coin hopping attack in pool A.

• Case 3: if 50mc−m2k−50βc
mk

> 1, attacker Patt can always increase his expected revenue

by conducting coin hopping attack towards pool A.

By adopting the real blockchain statistics, we obtain β ≤ 0.5m due to the reason

of avoiding 51% attack [62]. Then, it can be figured out when β ≤ 0.4m, the value

50mc−m2k−50βc
mk

≥ 1, which falls into Case 3; when 0.4m ≤ β ≤ 0.5m, attack Patt with hash

power α ≤ 50mc−m2k−50βc
mk

could get more benefit . This indicates that in reality, whether an

attacker can earn more revenue through coin hopping attack from a Bitcoin network to an

Ethereum network is determined by the network condition in blockchain-based IoT.

Similarly, Patt can also perform coin hopping by using the mining power of pool B to

mine Bitcoin blocks and award the miners of B with Ethereum standard. Then, Patt can

mine a new block in the Bitcoin network with a probability of α+β
1+β

and the corresponding

expected revenue, denoted by UB→BTC
Patt

, is calculated as follows.

UB→BTC
Patt

=
α + β

1 + β
·BBTC · SBTC · f. (3.20)

Under this attack, whether Patt can enhance his expected revenue is determined by the

value of mk−mkα−50c
50c

, for which there are three cases for discussion.

• Case 1: if mk−mkα−50c
50c

< 0, attacker Patt never gains more profits from coin hipping

attack towards pool B.
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• Case 2: if 0 ≤ mk−mkα−50c
50c

≤ 1, attacker Patt with β ∈ [0, mk−mkα−50c
50c

] can get an

increase in his expected revenue through attacking pool B.

• Case 3: if mk−mkα−50c
50c

< 1, attacker Patt is always able to earn a bigger expected

revenue by performing coin attack in pool B.

If substituting real Bitcoin & Ethereum information with α ≤ 0.5, we have mk−mkα−50c
50c

≈

−1 < 0, which located in case 1. Thus, attacker Patt’s expected revenue would be reduced

if he launches coin hopping attack toward pool B in the Ethereum network. However, the

network and economic condition may vary time to time, and it is still feasible for an attacker

to perform coin attack towards the Ethereum network. Therefore, in the blockchain-based

IoT, an Ethereum network is still vulnerable to coin hopping attack.

3.4.3 Mixed Pool

Note that in real-world, most open pools nowadays can mine more than one cryptocurrency

at the same time. In this subsection, a more practical scenario is taken into account, in

which Patt is the pool manager of pool A that simultaneously works for both the Bitcoin

and the Ethereum networks. Suppose that the total computational power of pool A is α and

γ ∈ [0, 1] is the percentage of computational power of pool A in the Bitcoin network. From

Fig. 3.6, one can see that Patt can privately utilizes his computational power in the Bitcoin

network to verify the transactions from the Ethereum network.

The expected revenue of honest mining consists of two parts (i.e., UBTC and UETH) and
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Figure 3.6: Coin hopping in a mixed pool

is computed in Eq. (3.21).

UPatt =UBTC + UETH

=
γα

1
·BBTC · SBTC · f

+
(1− γ)α

m
· (p ·BETH · (1 +

1− p
32

+
(1− p)2

16
)

+ (1− p) ·BUETH) · SETH · f

=
γαk

50
·BETH · SETH · f

+
(1− γ)αc

m
·BETH · SETH · f

=(
γαk

50
+

(1− γ)αc

m
) ·BETH · SETH · f.

(3.21)

When Patt performs coin hopping attack, all the computational power α works for the

Ethereum network, and the hash rate of the Ethereum network is increased by γα. Formally,

UBTC→ETH
Patt

is used to represent Patt’s expected revenue yielded by coin hopping attack and
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is calculated as,

UBTC→ETH
Patt

=
α

m+ γα
· [p ·BETH · (1 +

1− p
32

+
(1− p)2

16
)

+ (1− p) ·BUETH ] · SETH · f

=
α

m+ γα
·BETH · SETH · f.

(3.22)

Thus, attacker Patt is likely to launch attack if the revenue difference between honest

mining and attacking is non-negative. The condition for successful coin hopping attack

towards the Bitcoin network is formally expressed in Eq. (3.23)

UBTC→ETH
Patt

− UPatt =(
α

m+ γα
− γαk

50
− (1− γ)αc

m
)

·BETH · SETH · f

≥0,

(3.23)

which can be equivalently simplified to be Eq. (3.24).

α

m+ γα
− γαk

50
− (1− γ)αc

m
≥ 0

⇒50mcα− (m+ γα)γαkm− 50(m+ γα)(1− γ)αc ≥ 0.

(3.24)

Since α, γ are in the range [0, 1], we have

(50αc−mkα)γ + (50mc− 50αc−m2k) ≥ 0, (3.25)

which can be satisfied if the following equation holds.

γ ≥ m2k + 50αc− 50mc

50αc−mkα
. (3.26)
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Thus, when Eq. (3.26) is met, attacker Patt can conduct coin hopping attack towards

the Bitcoin network to earn more revenue. The analysis on the value of m2k+50αc−50mc
50αc−mkα is

addressed below.

• Case 1: if m2k+50αc−50mc
50αc−mkα < 0, attacker Patt can always succeed in increasing his

expected revenue via coin hopping attack.

• Case 2: if 0 ≤ m2k+50αc−50mc
50αc−mkα ≤ 1, attacker Patt with γ ∈ [m

2k+50αc−50mc
50αc−mkα , 1] can get an

increased expected revenue through coin hopping attack.

• Case 3: if m2k+50αc−50mc
50αc−mkα > 1, attacker Patt always fails to receive a higher expected

revenue by performing coin hopping attack towards the Bitcoin network.

With the real Bitcoin & Ethereum information, we have γα < 0.5, (1 − γ)α < 0.5m,

and the value of m2k+50αc−50mc
50αc−mkα is slightly small than 1, but larger than 0, which is always

in Case 2. Thus, Patt can get more benefit through performing coin hopping attack when

γ ∈ [m
2k+50αc−50mc
50αc−mkα , 1]. In other words, whether it is beneficial for an attacker to transfer

mining power from a real Bitcoin network to a real Ethereum network is affected by the

network condition in the blockchain-based IoT.

Besides, Patt can perform coin hopping by transferring mining power from the Ethereum

network to the Bitcoin network, in which the probability of mining a new Bitcoin block is

α
1+(1−γ)α and the corresponding expected revenue is denoted as UETH→BTC

Patt
that is estimated

in Eq. (3.27).

UETH→BTC
Patt

=
α

1 + (1− γ)α
·BBTC · SBTC · f. (3.27)
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To obtain the condition where UETH→BTC
Patt

≥ UPatt , we need to solve Eq. (3.28).

(100γc+mγ2k − 50γ2c−mγk − 50c)α

+mk −mγk + 50c− 50γc ≥ 0.

(3.28)

By equivalently simplifying the above inequality, we have

(100γc+mγ2k − 50γ2c−mγk − 50c)α

+mk −mγk + 50c− 50γc ≥ 0

⇒α ≥ mγk + 50γc−mk − 50c

100γc+mγ2k − 50γ2c−mγk − 50c
.

(3.29)

Thus, when Eq. (3.29) holds, attacker Patt can earn more revenue by conducting coin

hopping attack towards the Ethereum network. The specific cases of mγk+50γc−mk−50c
100γc+mγ2k−50γ2c−mγk−50c

is detailed in the following.

• Case 1: if mγk+50γc−mk−50c
100γc+mγ2k−50γ2c−mγk−50c < 0, attacker Patt can always gain more benefit

from coin hopping attack.

• Case 2: if 0 ≤ mγk+50γc−mk−50c
100γc+mγ2k−50γ2c−mγk−50c ≤ 1, attacker Patt with α ∈ [ mγk+50γc−mk−50c

100γc+mγ2k−50γ2c−mγk−50c , 1]

can enhance his expected revenue through this attack.

• Case 3: if mγk+50γc−mk−50c
100γc+mγ2k−50γ2c−mγk−50c > 1, attacker Patt cannot make a revenue improve-

ment via coin hopping attack.

Therefore, one can see that although coin hopping attack towards an Ethereum network

cannot benefit an attacker in the real Bitcoin & Ethereum network environments currently,
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it still poses a severely potential threat to the blockchain-based IoT as network environments

may vary with time.

From our theoretical analysis, we know that (i) the conditions and reasons for successfully

launching coin hopping attack in the above three scenarios are essentially the same; and (ii) a

pool manager can judge whether it is beneficial to perform coin hopping attack by analyzing

the network environments.

3.4.4 Attack Consequence Analysis

In this subsection, the multi-dimensional serious consequences caused by coin hopping attack

are studied from the viewpoint of economic benefit. Particularly, the most practical scenario

(see Section 3.4.3), in which coin hopping attack is towards the Bitcoin network in a mixed

pool, is used as an example for analysis. We start our analysis from the investigation of the

miners’ expected rewards

3.4.4.1 Inner-Pool Bitcoin Miner

When the pool manager honestly mines, the inner-pool Bitcoin miners have a computational

power of γα. Thus, they could together share the revenue UInBTC :

UInBTC =
γα

1
·BBTC · SBTC · (1− f). (3.30)

When coin hopping attack happens, all the miners’ power is transferred from the Bitcoin

network to the Ethereum network. Thus, they should be awarded based on the Ethereum

standard and together get a total expected revenue, denoted by U
′deserve
InBTC , as computed in
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Eq. (3.31).

U
′deserve
InBTC =

γαc

m+ γα
·BETH · SETH · (1− f). (3.31)

However, to obtain an increased revenue, the malicious pool manager in fact uses the

Bitcoin standard to award them, and thereby they actually receive a revenue U
′
InBTC that is

calculated as,

U
′

InBTC =
γα

1− γα
·BBTC · SBTC · (1− f). (3.32)

Based on our prior analysis, it is obvious to conclude that U
′deserve
InBTC > U

′
InBTC > UInBTC .

Thus, the inner-pool Bitcoin miners could get a total reward slightly higher than that of

honest mining, but they actually lose revenue they deserved.

Remark: In the pool mining process, an individual miner’s received reward is decided

by the amount of shares he submits as well as the total submitted shares in the pool,

which is dynamic and unpredictable. That is, an individual miner’s received reward is not

deterministic. Thus, we analyze the total reward of all the inner-pool Bitcoin miners rather

than an individual Bitcoin miner’s reward. With the same reason, in the following analysis,

we compute and compare the total reward.
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3.4.4.2 Inner-Pool Ethereum Miner

The inner-pool Ethereum miners own a computational power of (1−γ)α and share the total

revenue UInETH .

UInETH =
(1− γ)αc

m
·BETH · SETH · (1− f). (3.33)

When the pool manager performs coin hopping attack, the total mining power used

for the Ethereum network is increased by γα. Therefore, the probability of finding a new

Ethereum block by them drops and their total expected revenue becomes:

U
′

InETH =
(1− γ)αc

m+ γα
·BETH · SETH · (1− f). (3.34)

Since U
′
InETH < UInETH , they suffer from revenue loss caused by coin hopping attack.

3.4.4.3 Outer-Pool Bitcoin Miner

The outer-pool Bitcoin miners have the computational power of 1 − γα, and their mining

power remains the same when the attacker performs coin hopping attack. First, we calculate

their total reward UOutBTC of honest mining:

UOutBTC =
1− γα

1
·BBTC · SBTC · (1− f). (3.35)

With the existence of coin hopping attack, there is no mining power working for the

Bitcoin network in the attacker’s pool. Thus, the expected revenue for the outer-pool Bitcoin
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miners becomes:

U
′

OutBTC = 1 ·BBTC · SBTC · (1− f). (3.36)

Therefore, the outer-pool Bitcoin miners could expect a higher reward because U
′
OutBTC >

UOutBTC .

3.4.4.4 Outer-Pool Ethereum Miner

Without coin hopping attack, the outer-pool Ethereum miners own a mining power of m−

(1− γ)α and share a total reward UOutETH :

UOutETH =
m− (1− γ)α

m
· c ·BETH · SETH · (1− f). (3.37)

If coin hopping attack occurs, the total mining power of the Ethereum network is in-

creased by γα. Therefore, the probability of finding a new Ethereum block by them is

decreased and their corresponding expected revenue U
′
OutETH changes to

U
′

OutETH =
m− (1− γ)α

m+ γα
· c ·BETH · SETH · (1− f). (3.38)

Since U
′
OutETH < UOutETH , they also lose revenue because of coin hopping attack.

The above analysis on the miners’ expected rewards also provides us with more insight

into the impact of coin hopping attack at the network level. Note that the total mining

power in both the Bitcoin and the Ethereum networks do not change when the pool manager

launches coin hopping attack. Thus, as outer-pool Bitcoin miners could earn more when coin
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hopping attack is performed, more miners may be attracted to work for Bitcoin network.

Due to such change in the network environments, the pool manager has more chances to

hop between the Bitcoin and the Ethereum networks for revenue enhancement, e.g., from

the Bitcoin network to the Ethereum network or from the Ethereum network to the Bitcoin

network. Consequently, the stability of the two involved networks cannot be continuously

maintained in a long-term period. What is worse, due to coin hopping attack, the pool

manager can obtain an increase in his long-term expected revenue, but all the miners’ long-

term expected revenue would be lower than the amount they deserve; that is, a part of

the miners’ deserved rewards is plundered by the malicious pool manager. As a result, the

blockchain-based IoT with vulnerability to coin hopping attack gradually lose its attractiveness

and competitiveness and will eventually stagnate.

3.5 Merged Mining Analysis

In the previous section, the Bitcoin and the Ethereum blockchains are used as examples to

analyze the feasibility of coin hopping attack in the blockchain-based IoT. Here, we inves-

tigate a more sly hopping behavior, in which coin hopping attack happens during merged

mining process.

Merged mining is the process of simultaneously mining two or more different cryptocur-

rencies based on the same consensus algorithm [64]. Two of the most classic examples of

merged mining are Litecoin and Dogecoin, as well as Namecoin and Bitcoin [65]. Technically

speaking, merged mining reuses the shares from a parent cryptocurrency as valid POW for
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one or more auxiliary chains, which indicates the difficulty level of the child blockchains is

lower than that of the parent chain [64]. To implement merged mining, a pool manager only

needs to make minor modification to the parent blockchain script, which makes coin hopping

attack easier to be performed but more difficult to be detected. In this situation, the pool

manager can get the equivalent profits from the auxiliary chains as additional bonus instead

of just taking the pool fee.

In the blockchain-based IoT, there exist some cases where a mining pool simultaneously

serves for two or more networks that can run merged mining. For example, we can imagine

two blockchain-based IoT networks, which are smart vehicle and intelligent transportation

system (ITS). As we known, vehicle is a part of the whole transportation system, thereby

the blockchain for smart vehicle can be treated as an auxiliary chain for ITS. Thus, the

difficulty of puzzle in ITS chain is harder than smart vehicle, which means when miners

verifying the transactions in smart vehicle blockchain, they in fact doing partial work for the

ITS blockchain.

3.5.1 Attack Behavior

Without loss of generality, we consider the scenario in Section 3.4.3 and use Bitcoin and

Namecoin as examples to analyze the feasibility of coin hopping attack in merging mining.

Suppose that Patt holds computational power of α, where γ is the percentage of computational

power of pool A that mines in the Bitcoin network. Hence, (1 − γ)α is the computational

power for the Namecoin network. Let BNMC be the block reward for Namecoin, SNMC be

the frequency of mining a new Namecoin block, and n is the hash rate of the entire Namecoin
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network. Thus, the pool manager’s expected revenue contains two parts, including UBTC

and UNMC , and can be computed by Eq. (3.39).

UPatt =UBTC + UNMC

=
γα

1
·BBTC · SBTC · f

+
(1− γ)α

n
·BNMC · SNMC · f.

(3.39)

When the pool manager implements coin hopping attack through conducting merged

mining on the Bitcoin chain, the total computational power of the Namecoin network is

enhanced to n+ γα. Thus, the pool manager’s expected revenue becomes

UBTC
merge−→ NMC

Patt
=
γα

1
·BBTC · SBTC · f

+
γα

n+ γα
·BNMC · SNMC

+
(1− γ)α

n+ γα
·BNMC · SNMC · f.

(3.40)

Correspondingly, the increase of the expected revenue is

UBTC
merge−→ NMC

Patt
− UPatt

=
γα

n+ γα
·BNMC · SNMC+

[
(1− γ)α

n+ γα
− (1− γ)α

n
] ·BNMC · SNMC · f.

(3.41)

Obviously, from Eq. (3.41), it can be seen that UBTC
merge−→ NMC

Patt
− UPatt > 0 always holds,

i.e., coin hopping attack via merged mining can always help the pool manager earn more

benefit in the blockchain-based IoT. This is consistent with the fact that merged mining is
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always a welcome choice for pool managers because of the additional block reward.

3.5.2 Attack Consequence Analysis

In previous subsection, we show that the pool manager can earn extra benefit by performing

coin hopping attack through merged mining. In this part, we discuss the attack consequence

from aspects of the miners and the networks.

3.5.2.1 Inner-Pool Bitcoin Miner

Without any coin hopping attack, the inner-pool Bitcoin miners’ computational power is γα

and their expected reward is UInBTC that is calculated as

UInBTC =
γα

1
·BBTC · SBTC · (1− f). (3.42)

When the attacker performs coin hopping attack during merged mining process, the

inner-pool Bitcoin miners should earn a bonus reward from the Namecoin network. Thus,

their expected reward U
′deserve
InBTC is:

U
′deserve
InBTC =

γα

1
·BBTC · SBTC · (1− f)

+
γα

n+ γα
·BNMC · SNMC · (1− f).

(3.43)

However, since they do not even know merged mining is undergoing in the attacker’s pool,

the inner-pool miners only expect the reward U
′
InBTC from the Bitcoin network; especially,

U
′
InBTC = UInBTC . That is, the inner-pool miners’ received reward is less than the amount

they deserve, and their benefit is plundered by the pool manager.



49

3.5.2.2 Inner-Pool Namecoin Miner

Under the situation where the pool manager mine honestly, the inner-pool Namecoin miners’

expected reward UInNMC is:

UInNMC =
(1− γ)α

n
·BNMC · SNMC · (1− f). (3.44)

If coin hopping happens, the total mining power of the Namecoin network increases

because of the merged mining. Thus, the inner-pool Namecoin miners’ expected reward

changes to U
′
InNMC , which is obtained in Eq. (3.45).

U
′

InNMC =
(1− γ)α

n+ γα
·BNMC · SNMC · (1− f). (3.45)

As U
′
InNMC < UInNMC , the inner-pool Namecoin miners lose their benefits in the presence

of coin hopping attack.

3.5.2.3 Outer-Pool Bitcoin Miner

In fact, there is no change in the Bitcoin network when the pool manager implement coin

hopping attack via merged mining. Thus, the outer-pool Bitcoin miners’ expected reward

remains unchanged, i.e., U
′
OutBTC = UOutBTC where U

′
OutBTC represents the expected reward

when coin hopping attack happens.
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3.5.2.4 Outer-Pool Namecoin Miner

If there is no coin hopping attack, the outer-pool Namecoin miners’ mining power is n− (1−

γ)α and thus share a reward UOutNMC .

UOutNMC =
n− (1− γ)α

n
·BNMC · SNMC · (1− f). (3.46)

If there is coin hopping attack, the total mining power of the Namecoin network increases

and the outer-pool Namecoin miners could receive a reward U
′
OutNMC

U
′

OutNMC =
n− (1− γ)α

n+ γα
·BNMC · SNMC · (1− f). (3.47)

Because U
′
OutNMC < UOutNMC , the outer-pool Namecoin miners receive less when coin

hopping attack happens.

To sum up, when coin hopping attack is launched through merged mining, the miners’

received rewards are either less than the amount they deserve during merged mining process

or reduced due to merged mining. That is, all the miners definitely suffer from benefit loss in

the presence of coin hopping attack in merged mining scenario. Moreover, compared with the

attack scenarios in Section 3.4, launching coin hopping attack during merge mining process

has the following features.

• It is easier for a pool manager to perform, for which the reasons lie in two aspects: (i)

only some minor modifications are needed on the parent chain script; and (ii) no extra

condition is needed for its success.
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• It is harder to be sensed by the miners, because there is no computational power

transformation.

As a result, coin hopping attack in merge mining has more serious impact to hinder the

development of the blockchain-based IoT.

3.6 Chapter Summary

As the development of blockchain-based IoT has been greatly promoted in recent years, the

security issue of blockchain-based IoT is being paid more attention. In this paper, we focus

on the analysis of coin hopping attack, which is easy to launch but hard to be detected. The

novelty of our work lies in the following aspects: (i) the feasibility of coin hopping attack is

proved; (ii) the conditions of implementing coin hopping attack are identified; (iii) the severe

impacts on the blockchain-based IoT are analyzed.
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CHAPTER 4

ZKCROWD: A HYBRID BLOCKCHAIN-BASED CROWDSOURCING
PLATFORM

4.1 Introduction

With the rapid development and wide application of crowdsourcing, the shortcomings of the

traditional crowdsourcing systems are gradually exposed. (1) The traditional centralized

crowdsourcing systems are vulnerable to a single point of failure. For example, users could

not access Wikipedia data from the server due to 8 service outrage in 2018 [19]. (2) In such a

centralized system where a server controls all the transactions, the issue of controller’s silently

misbehave is likely to occur without effective detection. (3) When a conflict of opinions

exists between the task requesters and the workers, the issues of Free-riding (workers receive

rewards without making real efforts) and False-reporting (requesters try to repudiate the

payment) could happen in the system [66]. (4) During the procedure of task assignment, the

sensitive information (e.g., location and preference) of crowdsourcing participants may be

revealed by the public. For example, in Nov. 2017, 57 million Uber driver’s information has

been hacked [20]. To solve these issues, a number of countermeasures have been proposed.

To name some: cryptographic techniques were used to preserve user’s private informa-

tion [67, 68, 69]; and reputation systems were adopted to tackle the issues of free-riding and

false-reporting [70, 71]. However, most of the existing works fail to simultaneously overcome

the aforementioned issues for crowdsourcing.

The recent big progress of blockchain technology enables the seamless integration of
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smart contracts and novel cryptographic tools into blockchain networks, which provides an

innovative way to improve the performance of crowdsourcing. In [2, 49, 72, 73, 74, 75, 76, 77,

78, 79, 80, 81, 82, 83, 84, 85], a variety of solutions have been presented for privacy issues.

In order to offer a security guarantee for the users’ participation, identity authentication

systems were designed in [86, 87]. In [73], the combination of public and private chains

is used to protect user’s private information, in which however, the authority of the agent

entity needs to be further discussed. Nevertheless, all of these works ignore the scalability

and verification efficiency of the blockchain network architecture which are the performance

bottleneck of the crowdsourcing systems.

Motivated by the above observations, in this Chapter, we propose to design a blockchain-

enabled crowdsourcing platform to provide users with diverse privacy protection while im-

proving the efficiency of crowdsourcing. To achieve our goal, we have to tackle the following

challenging problems. (1) Which consensus protocol should be adopted to enhance the trans-

action verification speed as well as to provide security guarantee? For instance, under the

traditional Proof-of-Work (POW) consensus protocol, the blockchain networks suffer from

issues of low verification rate, scalability bottleneck and huge energy consumption [62]. (2)

How to balance the tradeoff between transparency and privacy in crowdsourcing? Note that

transparency is one of the most important advantages of the blockchain to achieve account-

ability. But, on the other hand, transparency could result in privacy leakage. (3) How to

effectively verified the protected transaction information? A crowdsourcing platform is ex-

pected to ensure that the correctness of private information is well verified while the exact
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transaction information is unknown by the public. (4) How to integrate the public and pri-

vate transaction information? As user’s privacy preference varies in person, it is desired to

offer flexible privacy protection. In this situation, some transactions may be public, while

others are private. The integration of transaction information needs to be well arranged to

meet the users’ privacy requirements.

Our research endeavor for dealing with the aforementioned challenges is to design a hybrid

blockchain-enabled crowdsourcing platform, called zkCrowd. The zkCrowd is composed of

a public chain and multiple private subchains, in which public and private tasks are man-

aged on the public chain and subchains, respectively. By exploiting such a hybrid blockchain

architecture, the answers of public and private tasks in crowdsourcing can be separately ver-

ified, so as to provide privacy protection for the answers of private tasks. For the purpose

of enhancing verification speed, Delegated Proof of Stake (DPOS) and Practical Byzantine

Fault Tolerance (PBFT) consensuses are implemented on the public chain and subchains, re-

spectively. Compared with existing hybrid blockchains, such as Smilo [88], AERGO [89], and

Xinfin [90], our zkCrowd has the following major advantages: (1) In zkCrowd, the cross-chain

communication only involves the transmission of answer confirmation from the subchains to

the public chain without the issue of cross-chain communication atomicity. Therefore, there

is no need to build a bridge module for transaction synchronization, improving verification

efficiency for crowdsourcing tasks as well as reducing energy consumption. (2) In crowd-

sourcing systems, due to the dynamic of tasks and mobility of users, the number of tasks is

fluctuating. Inspired by this characteristic, on zkCrowd, a subchain is dynamically created
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and released according to the task requirement. After a private task has been finished, the

subchain is released, and the corresponding subchain validators can turn back to the public

chain. That is, the subchain validators do not need to be always in the monitor state, reduc-

ing resource consumption. (3) Our zkCrowd has a unified election mechanism for the public

chain and subchains. The voting mechanism of the subchain validators in PBFT is com-

bined with the voting witnesses in DPOS. Therefore, the dynamic subchain establishment

does not yield any extra overhead to the blockchain system when selecting validators. The

effectiveness of our zkCrowd is evaluated through comprehensive performance analysis and

experiment comparison. To sum up, the major contributions of this Chapter are addressed

in the following.

• An innovative hybrid blockchain platform, zkCrowd, is elaborately designed for dis-

tributed crowdsourcing, in which transaction privacy and transparency can be effec-

tively balanced.

• With utilizing DPOS and PBFT consensus protocols, the transaction verification ef-

ficiency can be significantly increased, reducing transaction latency and energy con-

sumption in the crowdsourcing system.

• Diverse privacy protection is achieved by accomplishing zero-knowledge proof and

flexible task-based permission control in the smart contracts on the proposed hybrid

blockchain architecture.

• Both the theoretical analysis and experiments can validate the advantages of our
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Figure 4.1: The blockchain architecture of zkCrowd

zkCrowd compared with the state-of-the-art.

The remaining organization of this Chapter is as follows. Our hybrid blockchain platform,

zkCrowd, and the implementation process are detailed in Section 4.2 and Section 4.3, respec-

tively. The theoretical analysis is shown in Section 4.4, and the experiments are analyzed in

Section 4.3.7. Finally, this Chapter is concluded in Section 4.6.

4.2 Framework of zkCrowd

Our zkCrowd platform is established on a hybrid blockchain network being composed of a

public chain and multiple subchains. As shown in Fig. 4.1, on zkCrowd, the public chain

and the subchains are used to publish and record the information of public and private

crowdsourcing tasks, respectively.

The entities on zkCrowd include:

(1) Requester. Requesters post tasks, collect answers from workers, and pay to workers
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and validators for their efforts. Before publishing tasks, they need to deposit an amount of

money into the blockchain through the smart contracts, in which the deposit is used to

reward the workers who make effort in completing tasks as well as the validators who help

verify transactions. Every requester has the right to vote the validators on the public chain

and the subchains. A requester may simultaneously play the role as a worker for a different

task but is not allowed to work as a validator.

(2) Workers. Workers carry out requesters’ tasks and receive payments from the re-

questers via signing the smart contracts. If a worker participates in a private task, his

answers should be submitted to subchain validators. Each worker has the right to vote for

public-chain validators and subchain validators. Any worker can not register as a validator,

but can potentially become a requester.

(3) Validators. There exist three kinds of validators. (i) Public chain validators verify

transactions of the public chain, take turns to perform the accounting right, share a public

chain ledger, and need to be elected in each time cycle. (ii) Alternative validators are the

nodes that are not elected as the public chain validators. They should also share the public

chain ledger but do not have the right to generate blocks. (iii) Subchain validators are elected

among the existing alternative validators to verify transactions on the subchains and record

both the public chain and subchain ledgers. Any validator cannot work as a public chain

validator and a subchain validator at the same time.

All the entities must register as the legitimate participants through a Trustworthy Cer-

tificate Authority (TCA) when joining zkCrowd. Only the entities that have obtained the
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legal certificates can carry out the activities on zkCrowd.

When the public chain has been set up, the requesters can post public and/or private

tasks on zkCrowd, and the workers select their preferred tasks and need the permission from

the corresponding requesters to process the tasks. The type of tasks is checked via the smart

contracts. For the public tasks, the answers are submitted to the public chain for verification,

and the transaction information is kept in the public chain ledger; while for the private tasks,

a task-based subchain is built, the answers are uploaded to the corresponding subchain for

verification, and the transaction information is written into the subchain ledger. On each

subchain, after the subchain ledger gets updated, the leader constructs a new Merkle tree

of which the leaves are the block Merkle roots extracted from all block headers and post a

transaction confirmation that is computed using ZK-SNARK on the public chain.

This confirmation can be used to trace the leader’s behavior because on each subchain,

the subchain ledger is shared by all subchain validators. On the other hand, the information

of private tasks is allowed to be accessed via the permission stated in the smart contracts

and thus can be preserved on the subchains without being revealed by the public. Finally,

the payments are assigned to the workers and the validators according to the distribution

method (that can be determined by the requesters based on their task requests), and the

remaining deposits will be returned to the requesters.
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Figure 4.2: Work flow of zkCrowd implementation process
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Table 4.1: Notation & Definition

Notation Definition
pk∗ Public key of entity *
sk∗ Private key of entity *
ut User type in {r, w, v}
ID∗ Real identity information of entity *
IDc
∗ Certified identity of entity *

IDt Task ID
T Task type in {public, private}
t1 Deadline for workers to reply to tasks
t2 Deadline for workers to submit answers
tr Worker’s response time
ta Answer submission time
tc Latest answer submission time
R Total rewards of a task implementation
Num Maximum number of answers for a task
p Task implementation preference
capw Worker’s capacity
permit Permission to process task
Ans Task answer
AIDc

w
Answer content submitted by worker

πa Attestation of ZK-proof
PP Public parameter of ZK-proof
mt.root Merkle tree root

4.3 Implementation of zkCrowd

This section details the major phases in the implementation of zkCrowd. For a better

presentation, the work flow of the platform implementation is presented in Fig. 5.1, and the

notations are summarized in Table 4.1.

4.3.1 Identity Authentication

In crowdsourcing, the authentication of user identities is an important issue [87], but the

blockchain itself cannot verify this. To solve the issue, a Trustworthy Certificate Authority

(TCA) is brought to take charge of the identity authentication and certificate issuance for

the entities.

Initially, an entity prepares key (pkut, skut) using RSA scheme, in which pkut and skut
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are respectively the entity’s public and private keys, and ut ∈ {r, w, v} is the entity type (r,

w, and v stand for requester, worker, and validator, respectively). The entity registers by

sending E(pkc, pkut, IDut, Sig(skut, IDut)) to TCA, where pkc is TCA’s public key, IDut is

the entity’s true identity, and Sig(·) is the secure digital signature algorithm. Then, TCA

checks if IDut and pkut are in his historic information or not because everyone on zkCrowd

cannot use different public keys to prevent Sybil attack. Once IDut and pkut are verified to

be valid, a unique certified identity IDc
ut and a certification Certut{IDc

ut, ut, pkut} are issued

and sent back to the entity in the form of E(pkut, Certut, Sig(skc, Certut)) with skc being

TCA’s private key. After a successful registration, the entity can participate in the activities

on zkCrowd.

4.3.2 Public Chain Establishment

On zkCrowd, by running the DPOS consensus, the public chain is established by all validators

who are issued certificates by TCA [91]. After that, the public chain validators are elected

by the registered requesters and workers periodically using the election mechanism of DPOS.

In particular, a validator re-election process should be launched if the malicious behaviors of

any public chain validator are found. In every election process, the 21 validators who receive

the most votes serve as the public chain validators to perform the accounting right in turns

as well as the transaction verification in the current period. The rest of the validators are

the alternative validators that share the public chain ledger and are available for the election

of subchain validators.
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4.3.3 Task Announcement & Worker Selection

Each task is published on zkCrowd with the information Task{T, IDt, t1, t2, R,Num, p, pkr, Certr,

Sig(skc, Certr)}, where T ∈ {public, private} represents the task type, IDt is the task ID,

t1 and t2 are respectively the deadlines for the workers to reply to the task information and

submit the task answers, R is the total amount of payment for the task implementation,

Num is the maximum number of expected answers for the task, p is the task requirements

(such as location, duration, and data quality) needed by the task requester to choose workers,

pkr is the task requester’s public key, Certr is the task requester’s certification. Meanwhile,

each task requester must make a deposit to the smart contracts. On zkCrowd, the smart

contracts are also executed to check if or not the task is announced by a registered requester

and the deposit is enough to pay to the workers and validators. The certificates of all re-

questers and workers can be checked using TCA’s digital signatures (i.e., Sig(skc, Certr)

and Sig(skc, Certw)). Once a task successfully passes such a checking process, the task

information is delivered to the online workers of zkCrowd.

A worker should return a reply before the response deadline if he prefers to process a task.

The reply message is as follows: Res{IDt, ID
c
w, tr, E(capw), pkw, Certw, Sig(skc, Certw)},

where IDc
w is the worker’s registered ID, tr is the response timestamp, capw indicates the

worker’s capacity (such as location, available time, quality of offered data, and others), and

pkw and Certw are respectively the worker’s public key and certificate. Since capw may

contain the worker’s private information, it should not be publicly available when submitted

to the blockchain. To prevent privacy leakage, the worker encrypts capw with the requester’s
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public key pkr, i.e., E(capw) = E(pkr, capw, Sig(skw, capw)). When the reply is delivered

to the requester, he examines the response time to make sure tr ≤ t1, uses skr to recover

capw, and verifies the worker’s certificate as well. By considering the task requirements

p and the worker’s capacity capw, the requester can select his preferred workers, issue a

permission permit(IDt, ID
c
w, Certw) to each selected worker, and send out the notification

message E(pkw, permit, Sig(skr, permit)). Each selected worker should upload the answer

to zkCrowd before t2 in the form of Ans(T, IDt, AIDc
w
, IDc

w, ta, permit) with AIDc
w

recording

the answer content and ta being the submission timestamp.

4.3.4 Subchain Establishment

Whenever a private task needs to be processed on zkCrowd, a subchain is built to collect an-

swers and verify transactions. In other words, the establishment of subchains is dynamically

determined by the demand of private tasks.

On each subchain, the PBFT consensus [92, 93] is adopted, and the validators are elected

among the current highest voted alternative validators. To defend Byzantine failure attack

under the PBFT consensus, the total number of nodes must be larger than 3 times of the

number of the Byzantine failure nodes in the blockchain network. Formally, assume the

number of subchain validators is nv and the number of Byzantine nodes is nb. To achieve

the Byzantine Fault Tolerance on zkCrowd, we have nv = 3nb+1 where nb ≥ 1; that is, there

must exist at least 4 subchain validators on each subchain. The determination of nv should

consider the following facts: (1) If the maximum number of answers Num for a private task is

small, a few validators (e.g., 4 validators) are enough to deal with the transaction volume of
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the subchain; while if Num is large, more validators are necessary to handle the transaction

verification. (2) A larger value of nv indicates a stronger ability to resist Byzantine failure

attack. (3) As more validators enter a subchain, the communication overhead may increase

dramatically, and the verification fee is also increased, leading to a higher cost to run the

subchain. Note that on the public chain, 21 validators are sufficient to verify all transactions

for the whole system. Since the value of Num may not be too large, a small number of

validators (e.g., 4 or 7) is enough. Besides, in the PBFT consensus, a leader node is elected

periodically in the round robin manner to update the subchain ledger and communicate with

the public chain.

After the private task is completed, the subchain is released and its subchain validators

become the alternative validators on zkCrowd. In other words, any subchain validator can

re-participate in the election of the public chain validators only after his subchain is released.

4.3.5 Answer Collection on Public Chain

During the procedure of answer collection, the smart contracts should ensure that inAns(T, IDt,

AIDc
w
, IDc

w, ta, permit): (1) the answer is submitted by a permitted worker by checking

permit; (2) the answer AIDc
w

has not yet been recorded in the answer pool Poola; and (3)

the answer is submitted on time, i.e., ta ≤ t2. If the above three conditions can be simulta-

neously satisfied, the answer is valid and is recorded into the answer pool. If the number of

valid answers exceeds the value of Num, only the first Num valid answers are recorded into

blocks; otherwise, all the valid answers are recorded.
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4.3.6 Answer Collection on Subchain

For each private task, the procedure of answer collection is similar to that on the public chain.

The subchain validators only copy the transaction records from the public-chain ledger and

record private task information in the subchain ledgers. The leader of each subchain can

utilize zero-knowledge proof to generate a commitment on all subchain blocks of a task and

sends it to the public chain, and on the public chain, the smart contracts run ZK-SNARK

verifier to check the task completion and records it into the public chain ledger which will be

described in Section 4.3.7. Therefore, all private tasks can not be revealed but can be verified

on the public chain. In zkCrowd, the type of task determines whether the answers will be

handled by the public chain or subchain. Particularly, for one task, different workers may

require different privacy protection level of their answers. Thus for a better access control

feature, an access list model can be added into the subchain smart contracts, which will be

studied in our future work.

4.3.7 Zero-Knowledge Proof

The transaction information of the subchains is sent to the public chain using ZK-SNARK [94]

attestation to verify that all the answers are submitted correctly by the subchain leaders for

the workers. Within each block, every transaction can be tracked using Merkle root. When

a task is completed, one or multiple blocks may be generated on the subchain. In order to

enhance the verification efficiency, the leader extracts the Merkle roots from all the block

headers to construct a new Merkle tree and computes the new Merkle root. Such a new root,
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denoted by MT.Root(mt.rootIDt), means that all the answers are submitted for the private

task with identity IDt. Notice that every 2n−1 blocks can form a full binary Merkle tree, in

which n could be any positive integer. To make the frequency of answer submission on the

subchains flexible, each leader can perform the above operation whenever receiving 2n − 1

blocks before the answer submission deadline t2, where the value of n is determined by the

platform. Furthermore, the overhead of computing a new Merkle root can be adjusted by

setting the value of n.

Then, the leader counts the total number of answers |A|, finds the latest time tc of all the

answers, computes key (epk, esk) and a public ZK-SNARK parameter PP , and generates

an attestation πa. All these keys and public parameters can be computed off the blockchain

(such as using an intel SGX) to reduce the on-chain overhead. The attestation together

with esk are used as ZK-proof’s witness uploaded to the public chain. The smart contracts

on the public chain directly call libsnark to verify the validity of attestation [95]. Since the

validators on the same subchain share the subchain ledger, these validators are able to verify

the correctness of the attestation through PP , avoiding the leader’s misbehavior.

4.3.8 Reward Distribution

Once a task is finished, the ledgers on the public chain and subchains are updated corre-

spondingly, the reward of each answer and the verification fee of each validator/subchain

leader are distributed via the execution of smart contracts. In this Chapter, besides the re-

ward of answers, the requesters are supposed to pay the verification fee. In reality, different

task requesters may adopt the same or different reward distribution policies, and various
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ways could be utilized by the crowdsourcing platforms to charge validation fee. For exam-

ples, each worker’s received reward may depend on the number of submitted answers or the

quality of submitted data; each validator’s received verification fee may be determined by

the number of verified transactions; and each subchain leader also obtains an amount of

verification fee for his effort to help complete transaction verification and communicate with

the public chain. After paying the rewards and validation fee, the rest of the deposits will

be returned back to the requesters’ accounts. But, if a requester is identified as malicious,

his deposit will be distributed to the corresponding selected workers. The design of reward

distribution mechanism is out of the scope of this Chapter and will be further investigated

in our future work, here is an work that may inspire our design of the incentive algorithm

[96].

4.4 Performance Analysis

In this section, we first analyze the advantages of zkCrowd from the aspects of the platform

architecture, consensus mechanism and cryptographic methodology. Then, we discuss the

performance of zkCrowd to resist possible attacks and compare it with the state-of-the-art.

4.4.1 Platform Architecture

Our zkCrowd has a hierarchical architecture of hybrid blockchains, in which diverse tasks

(including public and private tasks) can be effectively processed with different levels of

privacy protection and permission control. At the same time, zkCrowd well integrates the

characteristics of consensuses on the public chain and subchains. The subchain validators
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are directly selected from alternative validators with the highest number of votes, avoiding

an extra voting process. That is, such a unified election mechanism does not add additional

overhead to the blockchain system when selecting validators. Therefore, the subchain setup

process can only use the idle computation resources of the public chain. Moreover, when

a private task is completed, the subchain validators will be released back to the public

chain. The flexibility of subchain establishment in zkCrowd can further reduce the network

overhead and enhance the resource utilization.

4.4.2 Consensus Mechanism

4.4.2.1 DPOS Consensus

Compared with the POW blockchain (whose verification speed is 3.3-7 seconds per trans-

action [97]) and the POS blockchain (whose verification speed is 1
12

seconds per transac-

tion [98]), the verification speed of DPOS can reach tens of thousands of transactions per

second, which can be applied to enterprise-class crowdsourcing systems [91]. Thus, by adopt-

ing the DPOS consensus, the verification speed on the public chain can satisfy the needs of

crowdsourcing.

The centralization problem of blockchain networks should be addressed. For examples,

in the POW-based Bitcoin network, the total mining power of the top 6 mining pools has

exceeded 80% of the entire mining power [99]; in POS systems, a voter with more stakes has

a higher influence and rich people will become richer [100]. Although the DPOS consensus

is controlled by 21 public validators, their accounting rights rotate every 3 seconds, and for
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each time cycle, the public validators must be re-voted. This could avoid the DPOS-based

systems becoming centralized.

4.4.2.2 PBFT Consensus

In the PBFT consensus on the subchains, the transactions are verified in a distributed

manner. Compared with the existing hybrid blockchain [73] where the private chain is

hosted by a single agent on public chain, PBFT consensus in zkCrowd elects the leaders in

a round robin manner, which can prevent the silent misbehave and single point of failure

problems caused by the private chain leaders. Also, our experiments in Section 4.5 show that

the PBFT consensus achieves a good performance in execution time, latency and throughput

especially for small transaction volume compared with Casper consensus in Ethereum. The

results indicate that the PBFT consensus is very suitable for the subchain of zkCrowd.

4.4.3 Cryptographic Methodology

4.4.3.1 Certificate Authority

Before users join zkCrowd, TCA is employed to check the user’s true personal identity and

his public key and issue a digital certification. This can guarantee that the identity of each

participant in the TCA’s record must be unique. Thus, the adoption of TCA can prevent

Sybil attack while ensuring anonymity.
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4.4.3.2 Zero-Knowledge Proof

For the answers of private tasks on the subchain, a zero-knowledge proof is utilized to ensure

the answers are unrevealed on the public chain. Meanwhile, the public chain validators

can verify the submission process of the task answers by verifying the commitment of ZK-

SNARK. On any subchain, since all subchain validator shares the same ledger, they can verify

whether the commitment is created correctly by their leaders using the PP of ZK-SNARK.

The on-blockchain computation of ZK-SNARK is actually very light because the verifi-

cation process is executed by only calling existing library libsnark, while the heavy compu-

tation of zero-knowledge Prover is done off-blockchain. Therefore, ZK-SNARK can protect

the private answers without introducing much computation overhead.

4.4.4 Attack Resistance

4.4.4.1 51% Attack

In the traditional POW or POS-based blockchain networks, if a malicious attacker controls

over half of the network computing power/stake, he can use it as a feature of competitive

conditions to cancel the payment transactions that have already occurred. In zkCrowd, it

adopts the DPOS consensus, the accounting right is divided into 21 public chain validators,

thus preventing the 51% attack.

4.4.4.2 Sybil Attack

An attacker may create multiple identities in order to manipulate the reputation system and

gain more benefit in the network. To solve this issue, the TCA in zkCrowd performs identity
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authentication and detects the misbehavior. That is, if an attacker owns multiple identities,

it cannot get a valid certificate to join zkCrowd.

4.4.4.3 Privacy Leakage

Workers’ private information may leak to the public when submitting their answers. In

zkCrowd, the subchains with zero-knowledge proof ensure the secure submission of answers

without revealing private information on the public chain.

4.4.4.4 Free-riding & False-reporting

Free-riding means that workers receive rewards without making real efforts and false-reporting

refers to that dishonest requesters try to repudiate the payments. These types of attacks

cannot happen in zkCrowd due to the reason that a detailed smart contract with reward

policy can ensure the correct process for a task.

4.4.4.5 Byzantine Failure

Some members in the system may make mistakes or send wrong information, which may lead

to information corruption and different decisions made by the consensus, thereby destroying

system consistency. In zkCrowd, both the public chain (DPOS) and subchain (PBFT) utilize

the Byzantine fault tolerance consensus mechanisms, thus guaranteeing different levels of

Byzantine Fault Tolerance.

A comparison between zkCrowd and some existing crowdsourcing platforms is summa-

rized in Table 4.2.
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Table 4.2: Comparison of Attack Resistance

Attack zkCrowd MTurk
[101]

Dynamo
[102]

CrowdBC
[67]

ZebraLancer
[86]

51% Attack X X X × ×
Sybil At-
tack

X × X X X

Privacy
Leakage

X × × × X

Free-riding X X X X X
False-
reporting

X × × X X

Byzantine
Failure

X × × × ×

X: realized attack resistance; and ×: vulnerability to attack.

4.5 Performance Evaluation

In this section, extensive experiments are set up to assess the efficiency of DPOS and PBFT

by comparing with Casper consensuses on Ethereum (based on POW and POS [103]).

4.5.1 Experiment Environment

Three private blockchains are built with the following experiment configurations. (i) DPOS-

based EOS.io. The first private blockchain is on the EOS.io platform running DPOS

consensus. The desktop with Intel i7-7700k, 32GB RAM, 512 SSD hard drive is used.

The private blockchain is built on EOS DAWN-v3.0.0, tested with txn test gen plugin on

binaryen. One producer and one generator are connected to each other. (i) PBFT-based

Hyperledger Fabric. The second one is on the Hyperledger Fabric platform using PBFT

consensus. The desktop with the Ubuntu 16.04 operating system in VMWare is used, in

which Hyperledger Fabric V1.4 is installed and Hyperledger composer is used to interact

with the built-in private blockchain. (ii) Casper-based Ethereum. The third one is on
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the Ethereum platform using Casper consensus. The desktop with Intel i7-7700k, 32GB

RAM, 512 SSD hard drive is used. The Eth Geth 1.8.22-stable application is installed to

build connections to Ethereum main network, and the solidity compiler is deployed locally

to compile the smart contracts and create a private chain.

For each blockchain, we create two accounts to send and receive transactions, respectively.

On the three chains, the Go language is exploited to deploy the smart contracts and a

chaincode to accomplish multiple answer submission transactions in a row between different

accounts. The performance metrics include: (i) Execution time, which is the total time

interval when all transactions are completed on the platform. (ii) Throughput, which refers

to the number of successful transactions per second, indicating the verification capability of

a blockchain network. (iii) Latency, which is an average difference between a transaction

completion time and its deployment time.

4.5.2 Result and Analysis

For the same transaction volume, each experiment is run 20 times, and the averaged results

are presented in the following figures.

First, the comparison results in Fig. 4.3 and 4.4 reveal the performance of DPOS and

Casper, where the transaction volume increases from 5000 to 10000. Since the transaction

volume on the public chain could be relatively large, we mainly focus on performance under

the scenario with high transaction volume.

From Fig. 4.3, we can easily conclude that the execution time of both EOS.io and

Ethereum is getting longer as the transaction volume increases. Particularly, when the
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Figure 4.3: Semi-log Plot on Execution Time with 5000-10000 Transactions

Figure 4.4: Semi-log Plot on Throughput with 5000-10000 Transactions

transaction volume reaches 10000, the execution time of Ethereum is about 30 times of the

execution time of EOS.io. The throughput is reported in Fig. 4.4. When the transaction

volume reaches 10000, EOS.io can still verify more than 400 transactions per second, while

Ethereum only has over 10 transactions per second.

Therefore, the above results validate the advanteges of the DPOS consensus on the public

chain.
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Then, the performance comparison between PBFT and Casper are presented in Fig. 4.5 to

Fig. 4.10 . On the subchains, the transaction volume is usually small, so in the experiments,

the number of transactions is changed from 10 to 5000.

Fig. 4.5 shows the execution time of answer submission transactions when transaction

volume varies. From the results, we can observe that the execution time of both Hyperledger

and Ethereum platforms is getting longer as the transaction volume increases. With the

same transaction volume, the execution time of the Hyperledger is much shorter than that

of Ethereum.

Figure 4.5: Semi-log Plot on Execution Time with Maximum 5000 Transactions
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Figure 4.6: Semi-log Plot on Throughput with Maximum 5000 Transactions

Figure 4.7: Semi-log Plot on Latency with Maximum 5000 Transactions

Since the subchain on zkCrowd is dynamically established based on task demand, usually

the transaction volume is not very large on the subchains. Thus, the performance with small

transaction volume should be paid more attention. As shown in Fig. 4.8, the results with the

transaction volume less than 50 are reported. With the increase of the transaction volume,

the execution time of the private chain on Hyperledger grows slowly, while the execution

time of the private chain on Ethereum has slight fluctuations. The main reason lies in the
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randomness of the block producing rate in POW consensus mechanism. More specifically,

from the results of Fig. 4.8, one can find that with small transaction volume, the execution

time of Hyperledger is 3-5 seconds shorter than that of Ethereum.

From Fig. 4.6, we can conclude that Hyperledger outperforms Ethereum in terms of

throughput. The throughput of both Hyperledger and Ethereum platforms is enhanced first

when the transaction volume grows up and then is reduced when the transaction volume

becomes larger than a certain value. Such a certain value to obtain the maximum throughput

indicates the platform capacity, and performance bottleneck will appear when the transaction

volume is larger than this certain value. In Fig. 4.6, Hyperledger achieves its maximum

throughput when the transaction volume is around 1500, and Ethereum reaches its maximum

throughput when the transaction volume is 1000, which implies that Hyperledger has a larger

capacity.

Next, the throughput with the transaction volume smaller than 50 is analyzed. In Fig. 4.9,

the results show that (i) the throughput of both Hyperledger and Ethereum increases steadily

with the increase of the transaction volume; and (ii) the throughput of Hyperledger is about

three times of the throughput of Ethereum.

Finally, Fig. 4.7 presents the latency of Hyperledger and Ethereum by verifying different

numbers of transactions. As can be seen from the figure, when the transaction volume is

increased, the latency of both platforms grows, and the latency of the Hyperledger is shorter

than that of the Ethereum. To obtain more insights, we also compare 5 sets of transactions

in Fig. 4.10 and find that the latency of the Hyperledger is about half of the Ethereum.
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Figure 4.8: Execution Time with Maximum 50 Transactions

Figure 4.9: Throughput with Maximum 50 Transactions
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Figure 4.10: Latency with Maximum 50 Transactions

4.6 Chapter Summary

In this Chapter, a hybrid blockchain platform, named zkCrowd, is proposed for crowdsourc-

ing. By integrating a public chain running the DPOS consensus and subchains running the

PBFT consensus, our zkCrow can achieve nice features: (i) higher transaction throughput

and less execution time compared with traditional POW/POS-based blockchain; (ii) diverse

privacy protection and access control for different crowdsourcing tasks with employing smart

contracts and zero-knowledge proof; and (iii) resistance to severe attacks outperforming the

state-of-the-art. Finally, intensive experiments are performed to validate the effectiveness of

zkCrowd via showing the superiority of DPOS and PBFT over Casper.

As our pilot work, the experiments in this Chapter mainly focuses on the efficiency of

consensuses used on zkCrowd. In our future work, the fundamental functions of zkCrowd

and cross-chain communications will be realized, and the performance of the whole platform

will be further improved.
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CHAPTER 5

SECURE VERIFIABLE AGGREGATION FOR BLOCKCHAIN-BASED
FEDERATED AVERAGING

5.1 Introduction

With the massive growth of network data volume in the big data area, more and more

people started to pay attention to information security, particularly personal data privacy

[4, 6, 21, 104, 105, 106, 107, 108, 109]. The European Union introduced the ”General Data

Protection Regulation (GDPR) with strong policies to protect users’ privacy and data se-

curity in 2016 [110]. The free flow of data under the premise of security and compliance

has become the general trend. In 2016, Google first proposed a type of distributed machine

learning framework named Federated Learning (FL)[111]. The goal of FL is to ac,. hieve

cooperative modeling among nodes on the based on data privacy and security, thereby im-

proving the effectiveness of AI models [112]. Subsequently, increasing systematic concepts

and optimization schemes on FL were proposed in recent years[113, 114, 115].

There are two challenging problems in federal learning. The first problem is the removal

of the centralization of the aggregator. Typically, in order to calculate the global update

in federal learning, there is a node or server that plays the role of an aggregator to collect

the local gradient updates of all users and calculate the global gradient to share with all

users [116]. The centralized aggregator brings the uplink and downlink delay and congestion

problems, as well as the single point of failure problem. Blockchain technology has similar

distributed characteristics with Federal Learning and becomes a potential tool to achieve
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decentralization in FL [116, 117, 118, 119]. Besides decentralization, blockchain also makes

the historical records of global updates transparent and immutable. Also, the blockchain’s

incentive mechanism can track the contribution of each data provider towards the globally

optimized model, so that participants can be treated fairly, thereby attracting more data

sharers. Although blockchain has these advantages and potentially can improve the trans-

parency and trust in the machine learning process, there are still some issues and challenges

that need to be addressed when combining blockchain and federated learning, such as scal-

ability, smart contract vulnerabilities, etc. If we use the blockchain network to replace the

aggregator, it is not easy to guarantee confidentiality in the gradient sharing process due to

the openness feature of the ledger. Furthermore, the security and privacy protection of the

Blockchain often focuses on the consensus protocol level, not the privacy of the data itself

[120, 121]. In this chapter, we focus on the secure aggregation of FL parameter uploads and

how to better integrate FL with blockchain systems [122].

The second challenge in applying FL is the protection of data privacy [123]. In federated

learning, users do not need to upload data to the server. Instead, they upload local gradient

updates that are trained locally. However, the existing research has shown that gradients

and model parameters can still leak users’ private data [23, 124, 125, 126]. In addition, Hitaj

et al., Melis et al., Fredrikson et al. pointed that even if only the local gradients are sent,

training data still can be reversely inferred from the model. Therefore, different techniques

were introduced to solve the privacy issues in FL [127, 128, 129]. The work of [130] introduces

Secure Multi-party Computation (MPC) to guarantee complete zero-knowledge under a well-
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simulated framework. Differential Privacy & k-anonymity were also used to add noise to the

data, thus masking some sensitive attributes [127]. Moreover, Homomorphic Encryption was

adopted in [131] to protect users’ data privacy during parameters and gradients sharing in FL.

However, all of these above solutions bring some new problems. The existing research shows

that when the number of servers increases, MPC will yield dramatically high communication

costs [132]; differential privacy has a disparate impact on model accuracy, especially under FL

scenario [133]; and Homomorphic Encryption is not practically applicable to cloud computing

because the server cannot decide the carries by the encrypted data [134]. Thus, among

those different techniques, the secret-sharing mechanism proposed in [123, 135] is a practical

and most commonly used mechanism at the moment if we well control the number of the

participants.

In this chapter, we aim to solve the data privacy problem via using Verifiable Secret

Sharing in the framework of federal averaging combined with blockchain architecture, for

which there are three major challenges:

• One of the characteristics of FL is that the connections between the end-user devices

and the server are usually wireless, so the communication cost is relatively high, and

thus the number of communications between the blockchain and end-users needs to be

reduced.

• Since all blockchain nodes synchronize the same ledger information, the secret shares

of the parameter data cannot be stored directly on the chain. Thus the challenge lies in

the management of the interaction among the on-chain information, end-user devices,
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and the external storage.

• The devices involved in FL are mostly mobile devices that may frequently be switched

on and off. Therefore, our solution needs to be robust in dealing with the drop-out

problem.

We address the above challenges in this paper and proposed the following novel mecha-

nisms. The proposed architecture uses a combination of blockchain and DHT structure to

completely replace the processing and storage functions of the centralized server. We use

smart contracts to control user access, add masks and utilize cryptographic tools to users’

uploaded data to ensure that users’ personal information cannot be easily inferred. Our

contribution is three-folded:

• We adopt a federated averaging algorithm to reduce the communication time between

users and blockchain.

• We use a double-masking-then-encrypt approach to ensure that the local update is

not directly stored on the blockchain, while the smart contract can still calculate the

correct weighted average.

• We propose a PVSS algorithm to solve the update drop-out problem and secure the

communication between blockchain and DHT.

The organization of this chapter is as follows: The framework of the proposed architecture

is described in Section. 5.2. Section. 5.3 and Section. 5.4. We summarize our designs and
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give theoretical security analysis in Section. 5.5 and conduct the experiments and evaluations

in Section. 5.6. Finally, the conclusion and future work are given in Section. 5.7.

5.2 System Architecture

Figure 5.1: System Architecture

Our system is mainly divided into three levels. The bottom layer is the end-user layer.

We assume that all end users have certain computing capabilities and can collect data and
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perform local gradient update calculations, and they share a pairwise mask between each

other and calculate an individual mask to secure the local update parameters. The middle

layer is the blockchain network, which mainly serves as the role of an aggregator. Through

smart contract, the network can automatically coordinate all local updates and periodically

update the global update to end-users. For some blockchain networks (such as Hyperledger

Fabric), different federated learning tasks can be run in parallel on various channels. By

adding an access control mechanism and incentive mechanism to the blockchain, users can be

rewarded by sharing data. The top layer is DHT, which is mainly responsible for the storage

of secret data for the pairwise mask. Through interaction with the blockchain network, the

purpose of protecting data privacy is achieved.

Next, we will go through how the three layers work cooperatively from the following two

aspects: masking approach on local updates and public verifiable secret sharing for privacy

protection.

5.3 Mask-then-Encrypt

According to federated averaging, the multiple iterations of wi(t) calculation on the end-

user side can greatly reduce the number of communications between blockchain and users

compared with traditional stochastic gradient descent federated learning.

In the following section, we aim to solve the privacy problem when the blockchain is

combined with federated learning. Though original data is not uploaded, a large number of

existing studies have shown that the uploaded gradient or local parameters transformations
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of the original data and can leak the privacy of original data. Therefore, we adopted a

mask-then-encrypt security aggregation idea. In this part, we mainly introduce the idea of

masking. That is, in the process of uploading the local parameter wi(t), we let any two

clients share a random number in pairs to mask the real value. Therefore, the blockchain

nodes cannot know every real wi(t) but can still perform federated learning.

Let us take a look at a simple example. Assuming that there are only two users who

want to upload local updates respectively, and we will modify the data as follows:

w′1(t) = w1(t) + r, (5.1)

w′2(t) = w2(t)− r. (5.2)

In this way, we have the aggregation performed on the blockchain side as:

w′1(t) + w′2(t) = w1(t) + r + w2(t)− r = w1(t) + w2(t). (5.3)

In a more general case, each pairwise mask is represented as Si,j, Sj,i, then:

w′i(t) = wi(t) +
∑
i<j

Si,j −
∑
i>j

Sj,i. (5.4)

In this way, the correctness of aggregation on the server side can also be verified as
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follows:

w(t) =
∑

w′i(t)

=
∑
{wi(t) +

∑
i<j

Si,j −
∑
i>j

Sj,i}

=
∑

wi(t).

(5.5)

However, the above model only works with the following two assumptions:

• All paired users should have the same upload frequency.

• All users must remain online at all times to ensure no drop-out situation occurs.

Therefore, we propose the following two improvements to this protocol.

5.3.1 Double Masking

To solve the uploading frequency issue, the most straight forward idea is to require users

unwilling to upload local updates to upload only a copy of the mask information. However,

this approach will cause the blockchain to directly obtain mask information, which means

that wi(t) can be directly inferred based on mask information.

Therefore, a double masking idea is put forward here. On the basis of the above pairwise

masking, each user also needs to use a random seed bi to generate an individual mask,

denoted as Mi = PRG(bi). The individual mask does not cancel anything, but we ensure

that the blockchain can not get the individual mask and the pairwise mask at the same

time. In the following encryption process, the blockchain will request the user’s individual
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key when the user is online to eliminate the individual mask; and when the user is not online,

it will request the Diffie-Hellman key and compute the pairwise mask, noted that an honest

node will not reveal information of two masks at the same time.

In this way, the information uploaded by the user is equivalent to:

w′i(t) = wi(t) + PRG(bi) +
∑
i<j

Si,j −
∑
i>j

Sj,i. (5.6)

5.3.2 Secret Sharing

Next, we discuss how to solve the drop-out problem. It is a critical issue because once the user

is offline, the pairwise mask paired with the user cannot be eliminated when aggregation is

performed. Therefore, we need to certain mechanism to recover the mask information when

the user offline or when there is no reply from the user.

In the next section, we mainly introduce the PVSS technology when dealing with the

drop-out problem. We disperse the secret of bi and Si,j, then store the information into DHT

participants in the form of secret shares. The secret-sharing and reconstruction phases are

moved into the DHT storage to reduce the cost of direct communication between users and

blockchain.

5.4 The Publicly Verifiable Secret Sharing(PVSS)

Our scheme is distributed into two basic sub-protocols. The first is the distribution protocol.

The mobile user authorizes the smart contract in blockchain to divide the secret S (the secret
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is bi or Si,j) into n shares of s1, s2, ..., sn, and distributes them to each DHT participant. The

second is the reconstruction protocol, which needs at least t authorized DHT participants in

the subset to cooperate to recover the secret S.

The original secret sharing scheme is defined as only resisting passive attacks, which

means that its security if all participants honestly follow the protocol. If there are dishonest

entities, for example, when the smart contract distributes incorrect shares to one or more

DHT participants, or when DHT participants provide incorrect shares, the original scheme

cannot work.

We can use the verifiable secret sharing scheme (VSS) to resist those active attacks.

For example, the smart contract can encrypt the share of each participant and attach a

commitment, then transmit it on the public channel. In this way, the shares can be publicly

verified without any leakage. This type of VSS solution has both the attributes of hiding and

binding, where hiding means that for a polynomial of degree t−1 , any t shares are sufficient

to reconstruct the secret via interpolation, but less than t shares reveal no information about

it, and binding means that every participant receives, in addition to its private share, a global

commitment PROOF to the polynomial is added as a verifiable valid share.

It is worth noting that although it is possible to publicly verify the correctness of the

shares distributed to each participant, it is not guaranteed that each participant submits the

correct share. At the same time, when the blockchain interacts with the DHT, one cannot

guarantee that there is a secure private channel between the blockchain and each participant.

Therefore, all information should be encrypted and transmitted on the open channel. This
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is why we need a publicly verifiable secret sharing scheme(PVSS) to protect secrets. So, the

difference between PVSS and VSS is that any party, not just the participants of the protocol,

can verify the validity of the shares distributed by the dealer.

5.4.1 Algorithm Analysis

5.4.1.1 General Idea

In the system initialization phase, the owner of the secret D and all DHT participants Pi

need to register with the prover in the smart contract and select a pair of public and private

keys (xi, yi).

In the distribution phase, D first generates a share si for each participant Pi, and publicly

encrypts Ei(si) with the public key of the DHT participant. In order to ensure that Ei(si)

encrypts the correct share si, an corresponding proof PROOFD is added. In addition,

PROOFD also serves as a commitment of D to the secret S, ensuring that the same secret

is obtained in the reconstruction protocol, and uploaded to the blockchain. Users who know

the encryption algorithm Ei and its corresponding public key can verify the correctness of

the encrypted share. The user runs a non-interactive verification algorithm of PROOFD

through the smart contract to verify the correctness of si in Ei(si). When one or more

shared authentication fails, the execution of the protocol is suspended. Thus, anyone can

verify the correctness of sharing based on public information.

During the reconstruction of the secret, the DHT participants in the authorized subset

decrypt the shared si from Ei(si) and save it in DHT. These participants can add another



91

proof PROOFPi
to prove the correctness of si. Finally, the smart contract in the blockchain

calculates and reconstructs the secret S based on the shares of all authorized participants.

5.4.1.2 Implementation

Next, we introduce the specific protocol of the PVSS:

The basic tool for constructing our publicly verifiable encryption scheme is the high-power

discrete logarithm proof protocol. In [136], they call the sub-protocol as DLEQ() protocol.

In this chapter, we use Gq to denote a group of prime order q; g1,g2 denote the generators

of Gq using appropriate public procedures. Therefore, we assume that finding the discrete

logarithm of any two elements in the group is difficult. DLEQ() protocol is based on the

Diffie-Hellman algorithm and zero-knowledge proof to ensure the correct operation of secret

shares in the protocol process. Suppose the prover knows that h1 = (g1)
l and h2 = (g2)

l, and

wants to prove to the participants that he knows such l that makes the relationship logg1h1

and logg2h2 stands up.

1. The secret owner allows smart contact to randomly choose an integer u ∈ Z∗q , and send

a1 = (gen1)
u and a2 = (gen2)

u to the DHT participant.

2. The DHT participant returns a random number r ∈ Z∗q and send back to the smart

contract.

3. The smart contract calculates k = u− rl(mod q) and sends k to the DHT participant.

4. The DHT participant check the equation that a1 = genk1h
r
1 and a2 = genk2h

r
1. If it is

true, he believes that the prover knows l; otherwise, do not believe it.
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If the random number r in 2) is replaced by a hash value, we can use the Sign(gen1, h1, gen2, h2)

method constructed by Fiat and Shamir in [137] to achieve a non-interactive zero Knowledge

proof verification, thereby reducing the back and forth communication between blockchain

and the DHT.

1. the smart contract randomly selects an integer u1 ∈ Z∗q , and calculates a1 = (gen1)
u1 ,

a2 = (gen2)
u1 and r = H(m||gen1||gen2||h1||h2||a1||a2), c = rl + k(mod q), and then

sends a1, a2 and c to the DHT participant.

2. The DHT participant computes the r = H(m||gen1||gen2||h1||h2||a1||a2) and checks

genc1 = hr1a1 and genc2 = hr2a2.

Using the aforementioned non-interactive subprotocol to be specific to PVSS. In the

initialization phase, Participant Pi generates a private key xi ∈ Z∗q , and calculate yi = Gxi

as its corresponding public key, where G denotes a selected generator of Gq.

In the distribution phase, the dealer firstly distributes one secret among selected DHT

participants P1, P2, ..., Pn. The dealer then picks a random polynomial p(x) with the largest

degree of t− 1 with coefficients α0, α1, ..., αt−1:

p(x) =
t−1∑
j=0

αjx
j. (5.7)

The dealer keeps the above polynomial secret, and publishes a corresponding commit-

ments Cj = gαj . The dealer also uses the participant’s public keys to encrypt and publish

the related shares Yi = y
p(i)
i . The dealer then produces a proof of knowledge of p(i) to show
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the consistency of the encrypted shares which satisfies: Xi = gp(i) and Yi = y
p(i)
i . Through

Sign(g1, h1, g2, h2) method, the generated proof is composed of hash of the random challenge

r and n responses ki.

In the verification phase, The verifier in DHT calculates:

Xi =
t−1∏
j=0

Cij

j , (5.8)

and then obtains:

a1i = gkiXr
i , a2i = yki1 Y

r
i . (5.9)

During the Reconstruction phase, each participant uses his/her own private key xj to

calculate its share si = Y
1
xi
i , and then publish a zero-knowledge proof that Si is the correct

decryption of Yi to the smart contract and other participants. Assuming that all participants

in a certain authorized subset can get the correct shared sj(j = i0, i1, ..., it−1). In other

words, when the smart contract collects at least t shares, the secret S can be calculated by

the Lagrange interpolation formula:

S =
t−1∑
i=0

si

t−1∏
j=0

sj
sj − si

. (5.10)

Therefore, in the above algorithm, all participants do not know l and the polynomial

p(x), but can verify correctness of the scheme. The smart contract only needs to obtain t

related shares to complete the secret reconstruction of a single transaction. Since the private
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key of participants will not be disclosed during the process, it can be reused in PVSS many

times in the future. The secret corresponding to each PVSS scheme is the local updates

uploaded by a user/dealer. In this way, we can use the federated averaging mechanism in

Section.3.3 for modeling.

5.5 Design Idea and Security Analysis

5.5.1 Public Trusted Communication Channel

Our solution well integrates secret sharing into federated learning and blockchain deployment.

At the initiate stage, the smart contract and all DHT participants need to create a pair of

keys to register through the smart contract for further interaction. This step creates a public

and trusted secure communication channel for all filtered users . In this way, PVSS can be

publicly verified without the need to separately establish private communication channels.

5.5.2 Encryption Security and Public verifiability

All secret shares are encrypted with the public keys of participants during the communica-

tion process, so only the corresponding DHT participant can unlock the share. Also, the

zero-knowledge proof commitment in PVSS ensures that the smart contract and verifier

can publicly verify the correctness of the transmitted content without revealing sensitive

information.

Specifically, assuming G = gα, Xi = gβ, then cracking the encrption of the shares means

calculating gαβ. According to The Diffie-Hellman assumption that it is impossible to crack

the encryption of the share in a linear time. In summary, this guarantees that all participants
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in the authorized subset can cooperate to restore the correct secret; and participants in any

unauthorized subset cannot obtain any (partial) secret information through cooperation.

5.5.3 On chain Storage

Taking into account the storage space problem on the chain, we combine DHT to store

encrypted shares, so only the pointer and hash value corresponding to the DHT storage are

stored on the chain. When there are multiple federated learning tasks, we can add a serial

number to each task in the smart contract to ensure the orderliness of storage, and to handle

the access control and priority of different tasks more conveniently.

5.5.4 No dropout issue in share reconstruction

We know that the communication between blockchains and users is mostly transmitted

wirelessly, thereby stability cannot be guaranteed, while the connection between DHT and

blockchain is much stable. So, our solution can greatly reduce the number of communications

between the blockchain and the end user device as long as we have sufficient trust in the

DHT participants. When the end user has a dropout problem, the blockchain will request

the recovery process of secret sharing with DHT. Therefore, in the process of share recovery,

we do not have to worry about the dropout problem of DHT participants, which greatly

improves the efficiency of secret recovery.
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5.6 Evaluation

To evaluate the performance of the PVSS scheme. We implement and configure the PTO-

TECT project from IMB research [138] and build a local platform for threshold secure

cryptography. The experiments were conducted on a laptop VMware with Ubuntu 16.04 OS

with Intel i7-7660U CPU@2.50GHz with 16 GB RAM.

We use Pseudorandom Functions as a KDF and PRNGs from IBM crypto util library.

The distributed RSA prime generation was written in Java using java.security library. And

for the Elliptic Curve Diffie Hellman Key Agreement (ECDH), we used the NIST P-256

curve from OpenSSL.

Unlike traditional secret sharing, we construct a public sharing of a secret. This sharing

can be validated by anyone who holds the public keys of the shareholding participants.

Specifically, the verifyShare() verifies that a particular encrypted share is valid using the

zero-knowledge and getSecretCommitment() returns the Pedersen commitment to the

secret that is shared.

The degree of the secret-sharing polynomial is chosen to be the same as the max secret

reconstruction threshold of participant t out of n, where our t is set to be dn
3
e.

Our server listens for the client connections on port (8080 + INDEX-OF-SERVER). As

we knew that DHT participants need to be trusted in our setting, so we have 10 defined

permissions to each secret share at the client’s side for access control, including store, info,

delete, etc.

On the premise that the security level is 112 bits and the RSA public key length is 3072



97

bits, we measured the time for computing secret shared polynomials for all clients and also

the execution time on the clients end.

Figure 5.2: Polynomial computation time and client process time

From Fig.5.2, we can see that as the number of users increases, the amount of polynomial

calculations on the server-side for shares also increases; when the number of participants is

less than 400, the increase in time cost basically appears a linear trend. Therefore, the scheme

of sharing shares with all participating users is currently only applicable to small-scale user

groups. An improved solution could be to set a fixed number of users n participating in

secret sharing, and randomly select a subset of users from DHT nodes to participate in each

time, so as to ensure that the running time is within a controllable range.

At the same time, we can see that the running time of the PVSS clients is relatively

stable, which also includes the process of importing HTTPS CA certificates. So, that means

there is no need to provide a lot of computing power for DHT participants.
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Figure 5.3: Total Executing Time

We also implemented traditional Shamir’s threshold secret sharing with the same param-

eters, and compared the overall execution time (including communication time and secret

reconstruction time) of the PVSS and Shamir’s schemes on the server side. As shown in

Fig.5.3, when the number of users is less than 400, the execution time of PVSS is approxi-

mately twice that of Shamir’s, which demonstrates the trade-off between privacy protection

and communication/computation costs.

5.7 Chapter Summary

In this chapter, we design a blockchain with DHT structure to replace the centralized ag-

gregator in FL, and propose a double-masking-then-encrypt approach to ensure that the

local updates cannot be inferred from a classifier model. Finally, a PVSS algorithm is in-

troduced to solve the drop-out problem and secure the communications. Our experiment

results show a trade-off between privacy protection level and efficiency. We plan to adopt
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the non-interactive PVSS algorithm to further reduce the overall running time.

From the perspective of blockchain smart contract design, apart from some access control,

the smart contract in the blockchain will complete at least two main calculations. The first

is the reconstruction protocol for the secret shares, and the second is the calculation of

federated averaging. Considering the on-chain communication is costly, the following two

research directions are proposed:

1. Put on-chain communication into a trusted and safe operating environment, such as

intel SGX;

2. Use VSSR technology proposed in [139] to solve the efficiency problems caused by

Lagrange interpolation.
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CHAPTER 6

FUTURE WORK

The most instinctive thought of achieving high scalability of blockchain is to expand the

size of the block and shorten the interval between blocks. However, the main drawback of

expanding block size is that it requires more extra storage on the chain. At the same time,

it will cost additional time to spread to the whole network, which will lead to more forks

and orphaned blocks in the blockchain network.

So, my future research is to enhance the scalability of current blockchain network and

achieve the privacy protection feature on chain. I would like to conduct this research from the

perspective of the verification algorithms and combining blockchain with federated learning.

Here are the objectives and design of approaches to achieves those goals.

Objective 1: Improved TPS through distributed parallel computing

Here are four aspects to improve TPS I would research on: (1) Transaction Verifica-

tion Approach: The sharding tech. It splits the transactions on the network into different

fragments, so that each node only needs to process a small part of the transactions. Then

through parallel processing with other nodes on the network, it can increase the efficiency in

verification work. (2) Transaction Format: We could adopt the idea of Segregated Witness

to rearrange the transaction format. Since the digital signature in the transaction data pack-

aged into the block is only needed during the verification phase, the witness can be separated

from other transaction data and the layout of each transaction content can be rearranged.

Take the script signature out of the structure of the transaction content and put it at the
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bottom. This can improve the verification efficiency during parallel verification. (3) Block

Format: Referring to the practice of Bitcoin-NG, blocks can be classified according to the

function in the blockchain. For example, the two tasks of leader election and transaction

recording are allocated to two types of blocks to realize the parallel execution of mining and

transaction recording. This approach can be directly applied to existing blockchains without

causing a hard fork and increasing the throughput of the blockchain.

Objective 2: Development of efficient ZK-SNARK proof for transaction verification

We will work on implementing an effective loop recursive snark based on elliptic curve

encryption in Ethereum for smart contract calls.
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CHAPTER 7

CONCLUSION

This dissertation focuses on solving the problem of privacy protection in blockchain systems.

First we investigate the existing problems of traditional blockchain network and propose

a novel coin hopping attack in multiple blockchain systems under IoT environment. We

demonstrate the feasibility and prove the harm to the miners of this attack.

Second, we combine various cryptographic techniques and access control mechanisms to

design a task-based blockchain platform for crowdsoursing, which solves the centralization

problem and various privacy issues of traditional crowdsourcing systems. Our system out-

performs existing similar designs in terms of security, and experimentally verifies that the

consensus protocol used in the platform performs well in different blockchain transactions

volume.

Thirdly, we solve the privacy problem in combining blockchain platform with federated

learning by adopting double-masking and pvss technology, but there is still room for further

improvement in efficiency.

In the future, we will focus more on solving the scalability problem of blockchain, and we

believe this dissertation will also inspire subsequent research towards the privacy protection

in blockchain area.
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“Nrgcoin: Virtual currency for trading of renewable energy in smart grids,” in European

Energy Market (EEM), 2014 11th International Conference on the. IEEE, 2014, pp.

1–6.

[54] V. Buterin and V. Griffith, “Casper the friendly finality gadget,” CoRR, vol.

abs/1710.09437, 2017. [Online]. Available: http://arxiv.org/abs/1710.09437

[55] V. Buterin et al., “A next-generation smart contract and decentralized application

platform,” white paper, 2014.

[56] Eos.io: The most powerful infrastructure for decentralized applications. [Online].

Available: https://eos.io/

[57] Litecoin: The cryptocurrency for payments. [Online]. Available: https://litecoin.org/

[58] Bitcoin cash: Peer-to-peer electronic cash. [Online]. Available: https://www.

bitcoincash.org/

[59] Bitcoin block reward halving countdown. [Online]. Available: https://www.

bitcoinblockhalf.com/

[60] The ethereum block explore. [Online]. Available: https://etherscan.io/blocks

[61] K. J. O’Dwyer and D. Malone, “Bitcoin mining and its energy footprint,” in 25th IET

Irish Signals Systems Conference 2014 and 2014 China-Ireland International Con-

ference on Information and Communications Technologies (ISSC 2014/CIICT 2014),

June 2014, pp. 280–285.

[62] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten, “Sok:

http://arxiv.org/abs/1710.09437
https://eos.io/
https://litecoin.org/
https://www.bitcoincash.org/
https://www.bitcoincash.org/
https://www.bitcoinblockhalf.com/
https://www.bitcoinblockhalf.com/
https://etherscan.io/blocks


111

Research perspectives and challenges for bitcoin and cryptocurrencies,” in Security and

Privacy (SP), 2015 IEEE Symposium on. IEEE, 2015, pp. 104–121.

[63] Ethereum and bitcoin price. [Online]. Available: https://www.tradingview.com/

symbols/ETHBTC/

[64] A. Judmayer, A. Zamyatin, N. Stifter, A. G. Voyiatzis, and E. Weippl, “Merged

mining: Curse or cure?” in Data Privacy Management, Cryptocurrencies and

Blockchain Technology - ESORICS 2017 International Workshops, DPM 2017 and

CBT 2017, Oslo, Norway, September 14-15, 2017, Proceedings. Springer, 2017, pp.

316–333. [Online]. Available: https://doi.org/10.1007/978-3-319-67816-0 18

[65] A. Madeira. (2017) What is merged mining bitcoin and namecoin litecoin and

dogecoin? [Online]. Available: http://https://www.cryptocompare.com/mining/

guides/what-is-merged-mining-bitcoin-namecoin-litecoin-dogecoin/

[66] X. Zhang, G. Xue, R. Yu, D. Yang, and J. Tang, “Keep your promise: Mechanism de-

sign against free-riding and false-reporting in crowdsourcing,” IEEE Internet of Things

Journal, vol. 2, no. 6, pp. 562–572, 2015.

[67] M. Li, J. Weng, A. Yang, and W. Lu, “Crowdbc: A blockchain-based decentralized

framework for crowdsourcing,” IACR Cryptology ePrint Archive, vol. 2017, p. 444,

2017.

[68] Y. Wang, Z. Cai, Z. Chi, X. Tong, and L. Li, “A differentially k-anonymity-based

location privacy-preserving for mobile crowdsourcing systems,” in 2017 International

Conference on Identification, Information and Knowledge in the Internet of Things,

https://www.tradingview.com/symbols/ETHBTC/
https://www.tradingview.com/symbols/ETHBTC/
https://doi.org/10.1007/978-3-319-67816-0_18
http://https://www.cryptocompare.com/mining/guides/what-is-merged-mining-bitcoin-namecoin-litecoin-dogecoin/
http://https://www.cryptocompare.com/mining/guides/what-is-merged-mining-bitcoin-namecoin-litecoin-dogecoin/


112

IIKI 2017, Shandong, China, October 19-21, 2017, 2017, pp. 28–34.

[69] T. Zhu, G. Li, W. Zhou, and P. S. Yu, “Differentially private data publishing and

analysis: A survey,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 8, pp. 1619–1638,

2017.

[70] Y. Zhang and M. van der Schaar, “Reputation-based incentive protocols in crowdsourc-

ing applications,” in Proceedings of the IEEE INFOCOM 2012, Orlando, FL, USA,

March 25-30, 2012, 2012, pp. 2140–2148.

[71] C. Tanas, S. Delgado-Segura, and J. Herrera-Joancomart́ı, “An integrated reward and

reputation mechanism for MCS preserving users’ privacy,” in Data Privacy Manage-

ment, and Security Assurance - 10th International Workshop, DPM 2015, and 4th

International Workshop, QASA 2015, Vienna, Austria, September 21-22, 2015. Re-

vised Selected Papers, 2015, pp. 83–99.

[72] Z. Chi, Y. Wang, Y. Huang, and X. Tong, “The novel location privacy-preserving CKD

for mobile crowdsourcing systems,” IEEE Access, vol. 6, pp. 5678–5687, 2018.

[73] B. Jia, T. Zhou, W. Li, Z. Liu, and J. Zhang, “A blockchain-based location privacy

protection incentive mechanism in crowd sensing networks,” Sensors, vol. 18, no. 11,

p. 3894, 2018.

[74] Z. He, Z. Cai, J. Yu, X. Wang, Y. Sun, and Y. Li, “Cost-efficient strategies for restrain-

ing rumor spreading in mobile social networks,” IEEE Trans. Veh. Technol., vol. 66,

no. 3, pp. 2789–2800, 2017.

[75] Y. Liang, Z. Cai, Q. Han, and Y. Li, “Location privacy leakage through sensory data,”



113

Secur. Commun. Networks, vol. 2017, pp. 7 576 307:1–7 576 307:12, 2017.

[76] L. Zhang, Z. Cai, and X. Wang, “Fakemask: A novel privacy preserving approach for

smartphones,” IEEE Trans. Netw. Serv. Manag., vol. 13, no. 2, pp. 335–348, 2016.

[77] M. Siddula, Y. Li, X. Cheng, Z. Tian, and Z. Cai, “Anonymization in online social net-

works based on enhanced equi-cardinal clustering,” IEEE Trans. Comput. Soc. Syst.,

vol. 6, no. 4, pp. 809–820, 2019.

[78] S. Zhu, Z. Cai, H. Hu, Y. Li, and W. Li, “zkcrowd: A hybrid blockchain-based crowd-

sourcing platform,” IEEE Trans. Ind. Informatics, vol. 16, no. 6, pp. 4196–4205, 2020.

[79] S. Zhu, W. Li, H. Li, L. Tian, G. Luo, and Z. Cai, “Coin hopping attack in blockchain-

based iot,” IEEE Internet Things J., vol. 6, no. 3, pp. 4614–4626, 2019.

[80] S. Cheng, Z. Cai, J. Li, and H. Gao, “Extracting kernel dataset from big sensory

data in wireless sensor networks,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 4, pp.

813–827, 2017.

[81] S. Cheng, Z. Cai, and J. Li, “Curve query processing in wireless sensor networks,”

IEEE Trans. Veh. Technol., vol. 64, no. 11, pp. 5198–5209, 2015.

[82] Z. Cai, R. Goebel, and G. Lin, “Size-constrained tree partitioning: Approximating the

multicast k-tree routing problem,” Theor. Comput. Sci., vol. 412, no. 3, pp. 240–245,

2011.

[83] Z. Cai, G. Lin, and G. Xue, “Improved approximation algorithms for the capacitated

multicast routing problem,” in Computing and Combinatorics, 11th Annual Interna-

tional Conference, COCOON 2005, Kunming, China, August 16-29, 2005, Proceedings,



114

ser. Lecture Notes in Computer Science, L. Wang, Ed., vol. 3595. Springer, 2005, pp.

136–145.

[84] Z. Duan, W. Li, and Z. Cai, “Distributed auctions for task assignment and scheduling in

mobile crowdsensing systems,” in 37th IEEE International Conference on Distributed

Computing Systems, ICDCS 2017, Atlanta, GA, USA, June 5-8, 2017, K. Lee and

L. Liu, Eds. IEEE Computer Society, 2017, pp. 635–644.

[85] M. Xu, S. Liu, D. Yu, X. Cheng, S. Guo, and J. Yu. Cloudchain: A

cloud blockchain using shared memeory consensus and rdma. [Online]. Available:

https://arxiv.org/abs/2106.04122

[86] Y. Lu, Q. Tang, and G. Wang, “Zebralancer: Private and anonymous crowdsourcing

system atop open blockchain,” in 38th IEEE International Conference on Distributed

Computing Systems, ICDCS 2018, Vienna, Austria, July 2-6, 2018, 2018, pp. 853–865.

[87] S. Matsumoto and R. M. Reischuk, “IKP: turning a PKI around with decentralized

automated incentives,” in 2017 IEEE Symposium on Security and Privacy, SP 2017,

San Jose, CA, USA, May 22-26, 2017, 2017, pp. 410–426.

[88] Smilo: The hybrid blockchain platform with a conscience. Accessed 2019-07-28.

[Online]. Available: https://smilo.io/

[89] Aergo: It’s not a blockchain. it’s the blockchain for business. Accessed 2019-07-28.

[Online]. Available: https://www.aergo.io/

[90] Xinfin: Enterprise ready hybrid blockchain for global trade and finance. Accessed

2019-07-28. [Online]. Available: https://www.aergo.io/

https://arxiv.org/abs/2106.04122
https://smilo.io/
https://www.aergo.io/
https://www.aergo.io/


115

[91] K. Samani. (2018) Delegated proof of stake: Features and trade-

offs. [Online]. Available: https://multicoin.capital/wp-content/uploads/2018/03/

DPoS-Features-and-Tradeoffs.pdf

[92] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in Proceedings of the

Third USENIX Symposium on Operating Systems Design and Implementation (OSDI),

New Orleans, Louisiana, USA, February 22-25, 1999, 1999, pp. 173–186.

[93] H. Sukhwani, J. M. Mart́ınez, X. Chang, K. S. Trivedi, and A. Rindos, “Performance

modeling of PBFT consensus process for permissioned blockchain network (hyperledger

fabric),” in 36th IEEE Symposium on Reliable Distributed Systems, SRDS 2017, Hong

Kong, Hong Kong, September 26-29, 2017, 2017, pp. 253–255.

[94] A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The blockchain

model of cryptography and privacy-preserving smart contracts,” in IEEE Symposium

on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016, 2016, pp.

839–858.

[95] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza, “Snarks for C: verifying

program executions succinctly and in zero knowledge,” in Advances in Cryptology

- CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,

August 18-22, 2013. Proceedings, Part II, 2013, pp. 90–108.

[96] Y. Lin, Z. Cai, X. Wang, F. Hao, L. Wang, and A. M. V. V. Sai, “Multi-round incentive

mechanism for cold start-enabled mobile crowdsensing,” IEEE Trans. Veh. Technol.,

vol. 70, no. 1, pp. 993–1007, 2021.

https://multicoin.capital/wp-content/uploads/2018/03/DPoS-Features-and-Tradeoffs.pdf
https://multicoin.capital/wp-content/uploads/2018/03/DPoS-Features-and-Tradeoffs.pdf


116

[97] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. E. Kosba, A. Miller, P. Sax-

ena, E. Shi, E. G. Sirer, D. Song, and R. Wattenhofer, “On scaling decentralized

blockchains - (A position paper),” in Financial Cryptography and Data Security -

FC 2016 International Workshops, BITCOIN, VOTING, and WAHC, Christ Church,

Barbados, February 26, 2016, Revised Selected Papers, 2016, pp. 106–125.

[98] A. Hertig. How will ethereum scale? Accessed 2019-02-04. [Online]. Available:

https://www.coindesk.com/information/will-ethereum-scale

[99] A. Miller, A. E. Kosba, J. Katz, and E. Shi, “Nonoutsourceable scratch-off puzzles

to discourage bitcoin mining coalitions,” in Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security, Denver, CO, USA, October

12-16, 2015, 2015, pp. 680–691.

[100] G. C. Fanti, L. Kogan, S. Oh, K. Ruan, P. Viswanath, and G. Wang, “Compounding

of wealth in proof-of-stake cryptocurrencies,” CoRR, vol. abs/1809.07468, 2018.

[101] Amazon mechanical turk: Access a global, on-demand, 24x7 workforce. Accessed

2019-08-04. [Online]. Available: https://www.mturk.com/

[102] N. Salehi, L. Irani, M. S. Bernstein, A. Alkhatib, E. Ogbe, K. Milland, and Clickhap-

pier, “We are dynamo: Overcoming stalling and friction in collective action for crowd

workers,” in Proceedings of the 33rd Annual ACM Conference on Human Factors in

Computing Systems, CHI 2015, Seoul, Republic of Korea, April 18-23, 2015, 2015, pp.

1621–1630.

[103] V. Buterin and V. Griffith, “Casper the friendly finality gadget,” CoRR, vol.

https://www.coindesk.com/information/will-ethereum-scale
https://www.mturk.com/


117

abs/1710.09437, 2017.

[104] L. Yu, L. Chen, Z. Cai, H. Shen, Y. Liang, and Y. Pan, “Stochastic load balancing

for virtual resource management in datacenters,” IEEE Trans. Cloud Comput., vol. 8,

no. 2, pp. 459–472, 2020.

[105] X. Zheng, L. Tian, G. Luo, and Z. Cai, “A collaborative mechanism for private data

publication in smart cities,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 7883–

7891, 2020.

[106] S. Zhu, Z. Cai, H. Hu, Y. Li, and W. Li, “zkcrowd: a hybrid blockchain-based crowd-

sourcing platform,” IEEE Transactions on Industrial Informatics, vol. 16, no. 6, pp.

4196–4205, 2019.

[107] Z. Cai, Z. Duan, and W. Li, “Exploiting multi-dimensional task diversity in distributed

auctions for mobile crowdsensing,” IEEE Transactions on Mobile Computing, 2020.

[108] Z. Cai, Z. Xiong, H. Xu, P. Wang, W. Li, and Y. Pan, “Generative adversarial

networks: A survey towards private and secure applications,” CoRR, vol.

abs/2106.03785, 2021. [Online]. Available: https://arxiv.org/abs/2106.03785

[109] Z. Xiong, Z. Cai, D. Takabi, and W. Li, “Privacy threat and defense for federated

learning with non-i.i.d. data in aiot,” IEEE Transactions on Industrial Informatics,

pp. 1–1, 2021.

[110] J. Scherer and G. Kiparski, “Buchbesprechungen. feiler, lukas / forgó, nikolaus / weigl,
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