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ABSTRACT

The deep coverage offered by next-generation sequencing (NGS) technology has facilitated the

reconstruction of intra-host RNA viral populations at an unprecedented level of detail. However,

NGS data requires sophisticated analysis dealing with millions of error-prone short reads. This

dissertation will first review the challenges and methods for viral NGS genomic data analysis in

the NGS era. Second, it presents a software tool CliqueSNV for inferring viral quasispecies based

on extracting pairs of statistically linked mutations from noisy reads, which effectively reduces se-

quencing noise and enables identifying minority haplotypes with a frequency below the sequencing

error rate. Finally, the dissertation describes algorithms VOICE and MinDistB for inference of re-

latedness between viral samples, identification of transmission clusters, and sources of infection.
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CHAPTER 1

INTRODUCTION

1.1 RNA viruses and viral intra-host and inter-host populations

A virus is a submicroscopic entity that intrudes a living cell and exploits the cell’s resources to

replicate itself. The virus, like the cell, uses genetic information to pass data from a generation to

the next generation. The major difference between the virus and the cell is that the virus cannot

replicate itself without a host because the viral genome doesn’t carry all the information required

for the replication. The virus carries only supplementary information that is enough to add to the

cell to force the cell to produce viral clones. Some viruses are pathogens because they disrupt the

cell’s life balance.

The class of viruses that use RNA to carry genetic information are called RNA viruses172. Viral

RNA can be either single-stranded or double-stranded. RNA viruses cause deceases such as the

common cold, influenza, COVID-19, SARS, HIV, hepatitis, Ebola, rabies, polio, and measles.

Due to error-prone replication, RNA viruses mutate at rates estimated to be as high as 10−3 sub-

stitutions per nucleotide per replication cycle51. Since mutations are generally well tolerated, such

viruses exist in infected hosts as “quasispecies” - a term used by virologists to describe popula-

tions of closely related genomic variants45,46,52,115. Genetic heterogeneity of viral quasispecies has

major biological implications, contributing to the efficiency of virus transmission, tissue tropism,

virulence, disease progression, and the emergence of drug/vaccine-resistant variants18,50,65,79,144.
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1.2 Application of next-generation sequencing for viral studies

With the advent of next-generation sequencing (NGS) technologies, molecular epidemiology and

virology are undergoing a fundamental transformation that promises to revolutionize our approach

to epidemiological data analysis, disease prevention, and treatment33,39,71,131. NGS has already

shown its potential to advance epidemiological practices and it is steadily moving into clinical prac-

tices. There are numerous examples of successful applications of NGS for studying viruses such as

coronavirus154, influenza161,116,173,150,168,58, HIV86,38,23,36,76,59, Hepatitis163,176,27,64, Ebola136,77, and

Zika137.

NGS allows sequencing with the unprecedently deep coverage, which is crucial for character-

izing intra-host viral population complexity. However, inferring and analyzing the viral popula-

tion from NGS data is computationally challenging and requires specialized, highly sophisticated

computational tools132. Even for NGS technologies offering very deep coverage, the presence of

sequencing errors makes it difficult to distinguish between rare variants and sequencing errors.

Additionally, low intra-host viral diversity complicates assembling whole-genome sequences that

are necessary for the unique identification of viral haplotypes. Therefore, the analysis of heteroge-

neous virus populations complemented by technological developments.

The viral population reconstructed from NGS data can be further used for the detection of drug

resistance in the patients’ samples as well as the age of infection. The importance of this detection

is constantly growing117, especially for Influenza130, HCV106, and HIV21,177 because of the high

prevalence of these diseases in the population. As for HIV, there is an additional problem. Since

HIV has no cure, its treatment can only slow down its progression, and the development of drug
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resistance creates the risk of losing a drug forever as a treatment option for the patient. This is

further complicated by the increasing longevity of HIV patients and the prevalence of the disease

among the general population. Since viruses exist as a swarm of haplotypes, it is crucial to detect

minority drug-resistant populations.

The haplotypes inferred from NGS data can also be very effective for outbreak investigation.

Millions of viral variants that are carried in the samples of thousands of infected individuals can be

analyzed with the help of NGS. Molecular data collected from densely sampled outbreaks in large

high-risk communities are of particular interest since it allows for the first time to study the evolu-

tion of heterogeneous intra-host viral populations within a single evolutionary space under frequent

transmissions between hosts160,70,118. The growing knowledge about social network structures and

progress in the development of methods for the collection of large volumes of socio-behavioral

and geographic data gives us new information about the conditions of disease spread26,129,101. The

availability of such large-scale datasets provides a new opportunity to implement massive molecu-

lar surveillance and forecasting of viral diseases142,97,105,1,99,24. Deployment of massive molecular

surveillance programs intends to facilitate our understanding of virus evolution, enabling the devel-

opment of more effective public health intervention strategies. To be effective, molecular surveil-

lance and forecasting should analyze unprecedented amounts of heterogeneous biomedical data.

This requires extensive computational methods for processing, integrating and analyzing big data

that is both epidemiological and molecular. In addition, this requires new mathematical models

that allow for describing, understanding and predicting complex multidimensional-linear disease

dynamics.
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The remainder of the review will discuss the pipeline of software tools for primary and sec-

ondary NGS data analysis constituting a sequencing-based molecular surveillance system (see Fig-

ure 1.1). The primary NGS data analysis consists of error correction, consensus assembly/selection,

read alignment, and inference of intra-host viral population including SNV calling and haplotype

reconstruction. The secondary NGS data analysis includes intra-host analysis such as detection

of drug resistance and estimations of the age of infection as well as inter-host analysis such as

outbreak detection and investigation. Finally, we review existing molecular surveillance systems

that integrate all the above analyses.

1.3 Problem formulations

This dissertation addresses the following problems:

• Given NGS reads from DNA/RNA intra-host viral sample, reconstruct intra-host viral pop-

ulation, i.e. all distinct viral variants (haplotypes) and their frequencies.

• Given NGS reads from DNA/RNA intra-host viral sample, reconstruct intra-host viral single

nucleotide variants (SNVs), i.e. all distinct SNVs and their frequencies.

• Given haplotypes from two intra-host viral populations A and B, decide whether

(i) A and B are related

(ii) A infected B or B infected A

• Given haplotypes from a set of intra-host viral populations, find

(i) the source of an outbreak



5

Figure 1.1 A molecular surveillance pipeline for software tools for primary and secondary viral
NGS data analysis.

(ii) the transmission clusters corresponding to individual outbreaks

• Given:

(i) real sequencing benchmark, including reads and ground truth haplotype population

(ii) parameters for simulation such as error rate, coverage, average distance between hap-

lotypes

Design a set of new benchmarks with given parameters mimicking given real sequencing
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benchmark.

1.4 Contributions

The dissertation describes the following contributions:

• Summarized the state-of-the-art tools created for NGS data analysis for viral quasispecies.

Gathered tools for primary data analysis for tasks of NGS error correction, SNV calling, and

haplotype calling. Gathered tools for secondary data analysis for tasks of drug-resistance

detection, estimating recency of infection, and outbreak investigation.

• Designing a novel haplotype assembly algorithm CliqueSNV which is based on represen-

tation of haplotype assembly as a clique enumeration problem. This approach allows effi-

ciently cluster groups of SNVs and assign them to haplotypes. The algorithm also estimates

frequencies of haplotypes by Expectation-Maximization methods, which assign sequencing

reads to SNV clusters. CliqueSNV is more accurate than other methods that was proven on

a series of real sequencing benchmarks.

• Two novel viral outbreak investigation tools VOICE and MinDistB that allow determine the

relatedness between viral samples, source of infections, and the direction of viral spread.

VOICE uses Markov process simulation to reconstruct the process of viral evolution in a

space of observed viral haplotypes. MinDistB is improved version of MinDist30 with im-

proved sensitivity and specificity.

• Developing benchmarks for NGS software. Created a novel approach for modifying a real

sequencing benchmark for modifying benchmark ground truth and error rate. That helped
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test error correction tools on wide range of settings.
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CHAPTER 2

EPIDEMIOLOGICAL DATA ANALYSIS OF VIRAL QUASISPECIES IN THE
NEXT-GENERATION SEQUENCING ERA

2.1 Viral populations analysis problem and challenges

The NGS extracts quantitatively and qualitatively more information from patients’ viral samples

than the Sanger sequencing. But the extraction of this information requires sophisticated algo-

rithms and software tools. In the following, we have reviewed bioinformatics methods and tools

for NGS data analysis in viral epidemiology which can be partitioned into the following three

categories (see Figure 1.1):

• Primary sequencing data analysis that consists of main strain reconstruction, read alignment

and characterization of intra-host viral population structure including SNV and haplotype

calling.

• Secondary sequencing data analysis that employs reconstructed viral populations for pre-

dicting drug resistance, estimating recency of infection, and outbreak investigation, includ-

ing transmission cluster detection and identification of transmission direction and outbreak

sources.

• Molecular surveillance systems that provide a software environment for combined primary

and secondary analysis of viral NGS data in real-time.

NGS-based characterization of intra-host viral population structures is advanced enough and

is getting ready to be used in epidemiological and clinical studies. This claim is supported by the
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number of recently published studies that use quasispecies analysis for outbreak investigation and

transmission inference142,3,140. Inferred intra-host viral population structure can facilitate accurate

answers to essential epidemiological questions about drug-resistance, recency of infection, trans-

mission clusters and outbreak sources. Future NGS-based surveillance systems should employ

big data analytics to combine enormous amounts of sequencing and epidemiological data for the

timely detection of outbreaks and the design of efficient public health intervention strategies.

2.2 The primary analysis of viral next-generation sequencing data

Primary analysis can be partitioned into two major steps: (i) basic primary analysis which starts

with error correction followed by identification of the consensus sequence and read mapping and

(ii) characterization of the intra-host viral population complexity by calling single nucleotide vari-

ants (SNV) and haplotype variants in the viral sample.

2.3 Basic primary analysis

The error correction of viral sequencing reads is a notoriously difficult task. The standard er-

ror correction tools tuned to correct reads from a human genome do not perform well for viral

genomes since viral haplotypes differ only slightly between themselves120. There are several error-

correction tools that have been proposed specifically to handle viral sequencing samples188,156,110.

A Bayesian probabilistic clustering approach188 integrates error correction with SNV and haplo-

type calling, while KEC156 is a k-mer counting-based approach that identifies erroneous k-mers

by analyzing the distributions of k-mer frequencies. A more sophisticated random forest classifier

MultiRes110 can be used to distinguish between erroneous and rare k-mers.
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Identification of the consensus sequence can be either picked from existing reference genomes

or de novo assembled in order to avoid reference biases. The reference-based identification of the

consensus relies on the existence of closely related genomic sequences. NGS reads are aligned

to the reference sequence with a significant number of mismatches. In order to avoid reference

biases, the aligned reads are used for updating each position of the reference genome with the base

most frequent in reads and re-aligning reads to the consensus12,80. The drawback of this approach

is that selecting the reference genome is not a well-formalized procedure.

De novo assemblers are based on De Bruijn graphs such as VICUNA and overlap graphs such

as SAVAGE76,175,185,83,13. SAVAGE constructs an overlap graph with vertices representing reads

and/or contigs and edges connecting two reads/contigs belonging to the same haplotypic sequence.

Statistically, well-calibrated groups of reads/contigs are then efficiently used for reconstruction of

the individual haplotypes from this overlap graph. SAVAGE has an additional advantage over

VICUNA since it builds multiple haplotype contigs rather than a single consensus. De novo as-

semblers require much higher memory and time resources than reference-based identification of

the consensus.

A recent tool, SHIVER183, combines the reference-based and de novo approaches by using both

reads and contigs assembled from those reads for HIV sequencing. Contigs are compared with the

existing references, wherein some are spliced and some are removed as contaminants. After the

closest existing reference is identified it is updated to the consensus by well-mapped reads that do

not match contaminants.
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2.3.1 Single nucleotide variant calling

The natural advantage of NGS vs Sanger sequencing is its ability to identify low-frequency muta-

tions (i.e., below 20%) that are particularly relevant in the context of drug resistance19,8,167. The

main challenge for SNV calling is to distinguish between sequencing errors and low-frequency

true SNVs. All existing methods apply a particular error model to estimate the probability that an

observed mismatch with the consensus is an error and qualify it as an SNV if this probability is

low enough.

Below we briefly describe widely known tools (see132) and recently developed tools. VarScan96

reports SNVs which are deeply covered by the reads with high quality. A similar approach with

improved codon-based filtration is introduced by VirVarSeq170 of SNV. The method LoFreq181

derives sequencing error probability from a Phred-scaled quality value and optimizes estimation

of P-value. V-Phaser108 introduces a basic primary analysis and error model, which takes into ac-

count the simultaneous occurrence of pairs of SNV in the same reads. V-Phaser 2186 specifies this

model for Illumina reads. Pairs of mutations are explored by CoVaMa149 using a linkage disequi-

librium model. An accurate analysis of linked SNV pairs independent of error rate is proposed by

CliqueSNV95 which also contains an efficient implementation of the SNV-pair analysis. ViVan85

and ViVaMBC169 are based on maximum likelihood models. MinVar82 and SiNPle57 utilize the

Poisson–Binomial distribution and Bayesian model respectively. Validation of MinVar on Illumina

Miseq samples and shows that SNVs with the frequency of at least 5% are reliably identified with-

out introducing false-positives. PASeq125 and Hydra Web86 are web-based publicly available tools

that are thoroughly tested for identifying mutations with frequencies 20% and 5%. Interestingly,
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SNV calling for viral data is very similar to somatic mutation calling and the quality of algorithms

for both problems can be compared57.

Table 2.1 describes the list of tools analyzing viral NGS data for SNV calling. For each tool,

we specify the SNV detection method and whether it requires a reference.
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Table 2.1: SNV calling software tools for viral NGS data

SNV calling tools Year System De-novo/
ref-based

Pair-end
reads

SNV detection method Tool availability

VarScan 2009 Java ref + Read coverage http://varscan.sourceforge.net/
LoFreq 2012 Linux ref + Poisson–binomial distribution https://csb5.github.io/lofreq/
Vphaser 2012 Linux ref - Bernoulli phasing model https://www.broadinstitute.org/viral-genomics/v-phaser
Vphaser2 2013 Linux ref + Bernoulli phasing model https://www.broadinstitute.org/viral-genomics/v-phaser-2
ViVan 2015 - ref + Maximum likelihood http://www.vivanbioinfo.org
ViVaMBC 2015 R ref + Maximum likelihood https://sourceforge.net/projects/vivambc/
VirVarSeq 2015 Linux ref + Codon-level quality filtration https://sourceforge.net/projects/virtools/?source=directory
CoVaMa 2015 Python ref + Linkage disequilibrium https://sourceforge.net/projects/covama/
MinVar 2017 Python ref + Poisson–binomial distribution http://git.io/minvar
MultiRes 2017 Linux de-novo + Frame-based model https://github.com/raunaq-m/MultiRes
CliqueSNV 2018 Java ref + Linkage of SNV pairs https://github.com/vtsyvina/CliqueSNV
SiNPle 2019 Linux ref + Bayesian model https://mallorn.pirbright.ac.uk:4443/gitlab/drcyber/SiNPle
PASeq web https://paseq.org/
Hydra Web web https://hydra.canada.ca/pages/home?lang=en-CA
SmartGen web https://www.smartgene.com/mod hiv.html

http://varscan.sourceforge.net/
https://csb5.github.io/lofreq/
https://www.broadinstitute.org/viral-genomics/v-phaser
https://www.broadinstitute.org/viral-genomics/v-phaser-2
http://www.vivanbioinfo.org
https://sourceforge.net/projects/vivambc/
https://sourceforge.net/projects/virtools/?source=directory
https://sourceforge.net/projects/covama/
http://git.io/minvar
https://github.com/raunaq-m/MultiRes
https://github.com/vtsyvina/CliqueSNV
https://mallorn.pirbright.ac.uk:4443/gitlab/drcyber/SiNPle
https://paseq.org/
https://hydra.canada.ca/pages/home?lang=en-CA
https://www.smartgene.com/mod_hiv.html
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2.3.2 Viral haplotype variant calling

Rather than determining variation in a single position, the haplotype calling is required to find the

haplotypes spanning the entire viral genome or amplicons of special interest. The haplotypes and

their frequencies are more informative than SNVs for detecting drug resistance which can non-

linearly depend on accumulated SNVs. Haplotypes are also used for significantly more accurate

detection of transmission clusters and outbreak sources.

Note that haplotype frequency reconstruction is considered to be a simpler problem as soon

as haplotypes are inferred. The expectation-maximization algorithm based on the estimation of

the probability that a given read has been emitted by a given haplotype has been shown to be

sufficiently reliable with accuracy growing with the sequencing depth12,189.

The first haplotype reconstruction tools were read-graph based with vertices corresponding to

reference-mapped reads and edges connecting reads that agree on their overlap55,180. Many tools

followed this idea12,189,112,81,134,157,165,114,87,37 significantly improving the quality of reconstruction

(see132,113). But all these tools usually are not fast enough to handle recently available multi-million

read data sets.

Probabilistic modeling of the sequencing process and/or viral haplotype generation89,164,133,103,109

was shown to be an attractive alternative to the read-graph approach. The most successful tool

among probabilistic tools is PredictHaplo133 that exhibits high specificity and can reconstruct hap-

lotypes with frequency over 10%. Hierarchical-clustering of reads (especially long PacBio reads)

has been suggested in9, and recent methods aBayesQR2 combined probabilistic modeling with

clustering making the Bayesian approach computationally tractable.
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Novel scalable tools handling millions of reads and improving over existing tools are actively

developed in multiple labs. CliqueSNV95 efficiently recognizes groups of linked SNVs and con-

structs an SNV graph, where SNVs are nodes and edges connect linked SNVs It can assemble

close viral haplotypes with frequencies as low as 0.1% from Illumina and PacBio reads.

It is necessary to separately note de novo haplotype callers, i.e., tools that de novo assemble

multiple distinct haplotypes rather than a consensus. Currently, there exist three de novo assem-

blers MLEHaplo109, SAVAGE13 and PEHaplo37. The advantage of these tools is that they do not

introduce reference biases.

Recently, twelve NGS haplotype callers were tested using viral populations simulated under

realistic evolutionary dynamics but without error simulation54. In contrast to other simulations,

the number of haplotypes was very large (216 -1,185) and each frequency was small (< 7%).

Under such stressful conditions, PreditHaplo and CliqueSNV showed certain advantages over other

reference-based methods and PEHaplo among de novo assemblers.

Table 2.2 describes the list of tools analyzing viral NGS data for haplotype calling. For each

tool, we specify (1) whether it is a de novo method or requires a reference, (2) sequencing error

handling, (3) the method for haplotype assembly, (4) and the method for haplotype frequency

estimation.
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Table 2.2: Haplotype calling software tools for viral NGS
data

Haplotyping

tools

Year System De-novo

/ ref-

based

Pair-

end

reads

Sequencing error

handling

Haplotype

assembly

method

Haplotype

frequency

estimation

method

Output

sequences

Tool availability

Shorah 2011 Linux ref + Probabilistic clustering Minimal path

cover

EM Full haplotypes https://github.com/cbg-ethz/shorah

ViSpA 2011 Linux ref - Binomial model Max-bandwidth

path

EM Full haplotypes http://alan.cs.gsu.edu/NGS/?q=content/vispa

QColors 2012 - de-novo - - Overlap graph +

Conflict graph

- Full haplotypes -

QuRe 2012 Java ref + Poison model Multinomial

distribution

matching

Read coverage Full haplotypes https://sourceforge.net/projects/qure/

bioa 2012 Linux ref - k-mer based error correc-

tion

Maximum

Bandwidth Path

Fork balancing Full haplotypes http://alan.cs.gsu.edu/vira/index.html

Vicuna 2012 Linux de-novo + Read count - - consensus +

contigs

https://www.broadinstitute.org/viral-

genomics/vicuna
QuasiRecomb 2013 Linux ref + Hidden Markov model Hidden Markov

model

Hidden Markov

model

Full haplotypes https://github.com/cbg-ethz/QuasiRecomb

Vira (AmpMCF) 2013 Linux ref - - Multicommodity

Flows

Normalized

flow size

Full haplotypes http://alan.cs.gsu.edu/vira/index.html

ShotMCF 2013 JAVA ref - Binomial model Max-bandwidth

path + Mul-

ticommodity

Flows

EM + Normal-

ized flow size

Full haplotypes http://alan.cs.gsu.edu/NGS/?q=content/shotmcf

BAsE-Seq 2014 - ref + Poisson–binomial distri-

bution model

Clustering of

reads by SNVs

Read coverage Full haplotypes -

VGA 2014 Linux ref + Requires high-fidelity se-

quencing protocol

Min-graph col-

oring

EM Full haplotypes http://genetics.cs.ucla.edu/vga/

HaploClique 2014 Linux ref + - Max-clique

enumeration

Normalized

read count

Full haplotypes https://github.com/cbg-ethz/haploclique

PredictHaplo 2014 Linux ref + Dirichlet Process Mixture

Model

Dirichlet

Process Mixture

Model

Dirichlet Pro-

cess Mixture

Model

Full haplotypes https://bmda.dmi.unibas.ch/software.html

continued on next page

https://github.com/cbg-ethz/shorah
http://alan.cs.gsu.edu/NGS/?q=content/vispa
https://sourceforge.net/projects/qure/
http://alan.cs.gsu.edu/vira/index.html
https://www.broadinstitute.org/viral-genomics/vicuna
https://www.broadinstitute.org/viral-genomics/vicuna
https://github.com/cbg-ethz/QuasiRecomb
http://alan.cs.gsu.edu/vira/index.html
http://alan.cs.gsu.edu/NGS/?q=content/shotmcf
http://genetics.cs.ucla.edu/vga/
https://github.com/cbg-ethz/haploclique
https://bmda.dmi.unibas.ch/software.html
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IVA 2015 Linux de-novo - Read count - - contigs https://sanger-pathogens.github.io/iva/
MLEHaplo 2015 Linux de-novo + - Maximum

Likelihood

- Full haplotypes https://github.com/raunaq-m/MLEHaplo

ViQuaS 2015 Linux ref + Chimeric error correction Multinomial

distribution

matching

Read count Full haplotypes https://sourceforge.net/projects/viquas/

SAVAGE 2017 Linux de-novo + Overlap fuzzy matching

error correction

Enumerating

cliques in

overlap graph

EM contigs https://bitbucket.org/jbaaijens/savage/

aBayesQR 2017 Linux ref + Cluster coverage by reads Bayesian infer-

ence

Bayesian infer-

ence

Full haplotypes https://github.com/SoYeonA/aBayesQR

RegressHaplo 2017 R ref + - Penalized

Regression

Penalized

Regression

Full haplotypes https://github.com/SLeviyang/RegressHaplo

2SNV 2017 Java ref - Linkage of SNV pairs Hierarchical

clustering of

reads by SNVs

EM Full haplotypes http://alan.cs.gsu.edu/NGS/?q=content/2snv

PEHaplo 2018 Linux de-novo + Overlap error correction Path finding in

overlap graph

- contigs https://github.com/chjiao/PEHaplo

Shiver 2018 Linux de-novo

+ ref

+ BLAST database match - - consensus https://github.com/ChrisHIV/shiver

CliqueSNV 2018 JAVA ref + Linkage of SNV pairs Clique enumer-

ation and merg-

ing

EM Full haplotypes https://github.com/vtsyvina/CliqueSNV

https://sanger-pathogens.github.io/iva/
https://github.com/raunaq-m/MLEHaplo
https://sourceforge.net/projects/viquas/
https://bitbucket.org/jbaaijens/savage/
https://github.com/SoYeonA/aBayesQR
https://github.com/SLeviyang/RegressHaplo
http://alan.cs.gsu.edu/NGS/?q=content/2snv
https://github.com/chjiao/PEHaplo
https://github.com/ChrisHIV/shiver
https://github.com/vtsyvina/CliqueSNV
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2.4 Secondary analysis of viral next-generation sequencing data

Secondary NGS analysis addresses three tasks: (i) predicting of drug resistance which takes SNV

and haplotypes obtained during primary analysis and determine whether they are drug-resistant

or not; (ii) determining the recency of the infection, that is predicting the moment in the past

when patient was infected; (iii) outbreak investigation, that is determining the borders of outbreak,

finding the source of infection, and reconstruction of infection spread paths.

2.4.1 Predicting drug resistance

Certain haplotypes and mutations that are found during the primary NGS should be analyzed for

drug resistance. This is especially important for viruses such as HIV104, HCV148, influenza130, and

others84. For HIV, the detection of drug resistance is especially relevant since HIV patients have

to adhere to a treatment for the span of their lives. If a patient develops HIV drug resistance they

will be required to switch to a different line of treatment, and these treatments may be less studied

and of a higher risk to the patient’s health. Additionally, the number of drug-resistant mutations in

the patient is constantly growing as well as the number of drug-resistant patients in the outbreak68.

This makes the task of tracking HIV drug resistance a more onerous one10.

Detection of drug resistance is typically associated with matching genome mutations with the

efficiency of drugs84. Usually, different mutations have different resistance power and often muta-

tions work collectively62, so the process of finding correlations between mutations and drug resis-

tance is non-linear56. The comprehensive overview of computational approaches to drug-resistant

HIV mutations can be found in145. Most of the tools are aimed at Sanger sequencing data since
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NGS data has only been accumulating for a short period of time. Sanger sequencing allows the

detection of mutations with frequencies above 25% which has low benefits for the clinical appli-

cation100,49. NGS increases the sensitivity and lowers the frequency threshold up to 1-5%74.

There are two main challenges in the detection of drug resistance that depends on the results of

primary NGS data analysis. They are connected with the accuracy of detecting minority mutations

and haplotypes. The first problem is that if there is a minor drug-resistant mutation, the haplotypes

with this mutation will have an advantage over other haplotypes dealing with drug pressure. As a

result, these drug-resistant haplotypes will begin to dominate over time104,88. The second problem

is that drug resistance is connected with haplotypes rather than with the mutations themselves, but

haplotypes are harder to detect and so the drug resistance analysis can be significantly improved

with more sensitive haplotyping tools128.

Currently, tools for detecting drug resistance are modeled to handle Sanger sequencing data

accumulated in designated databases145. The limitation of Sanger data is that only the major haplo-

type and SNVs with frequency at least 20% can be reconstructed. This hurts the performance of the

most efficient drug resistance prediction tools that are based on machine-learning64,128,126,182,17,153.

Such tools would rather take into account all patient’s haplotypes128,35 to overcome Sanger se-

quencing limitations by generating all possible haplotypes with given SNVs, e.g., 10 SNVs make

210 = 1024 different haplotypes.

The number of HIV patients sequenced with NGS is beginning to grow very fast. Since NGS

can detect rare SNPs and haplotypes, drug resistance can be predicted more accurately62,145. We

expect that the number of NGS samples to train these models will grow much faster after the
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FDA authorizes the first next-generation sequencing test for detecting HIV-1 drug resistance muta-

tions143. Recent clinical studies showed up to 2.7-fold improvement for detecting drug resistance

with utilizing NGS data119,60,4,63,167,43,42 to antiretroviral therapy such as Zidovudine (see Table 2.3).



27
Table 2.3 Detection of drug-resistant mutations in clinical studies: NGS vs Sanger sequencing

Study Patients group Patients
number

Collection date Region DRM detection:
NGS/Sanger (fold)

Metzner et al. 2005 acute patients 49 1999-2003 Germany 2.0
Fisher et al. 2015 infants after PMTCT failure 15 2006-2009 South Africa 2.5
Alidjinou et al. 2017 ART-naive patients 48 2013-2015 France 2.7
Tzou et al. 2018 Undisclosed 177 2001-2016 Undisclosed 1.2
Fokam et al. 2018 Vertically infected children 18 2015 Cameroon 1.7
Derache et al. 2019 ART-naive patients 1148 2012-2016 South Africa 1.4
Derache et al. 2019 Patients failing 1st line ART 1287 2012-2016 South Africa 2.0
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2.4.2 Estimating infection recency

Over 80% of untreated cases of HCV infection becomes chronic. This impedes the timely diagno-

sis of the disease, due to the fact that the infection often does not manifest any clinical symptoms

in its early stages. Currently, there are no diagnostic assays to determine the stage of HCV infec-

tion. Therefore, distinguishing recently infected patients from chronically infected patients using

computational methods would be highly advantageous for both personalized therapeutic purposes

and for epidemiological surveillance; e.g., for detection of incident HCV cases. Similarly, detec-

tion of the age of HIV infection is crucial for HIV-1 surveillance and the understanding of viral

pathogenesis34.

Measuring the time since infection using genomic data has recently been addressed in several

studies34,122,11,16,15. The simpler version of this problem is infection staging, i.e. distinguishing

between recent and chronic infections using viral sequences sampled by NGS. A number of meth-

ods establish an age or stage of HIV or HCV infection using various measures of the population

structure34,122,11,16,15. An underlying assumption of such methods is that intra-host viral evolution

is associated with continuous genetic diversification. This results in the existence of a correlation

between genetic heterogeneity of quasispecies and the age of quasispecies, which allows for the

use of properly calibrated diversity measures as age markers.

Recently, groups of comprehensive features accounting for population diversity, population ge-

netics, topological, information-theoretical and physico-chemical properties of quasispecies pop-

ulations were integrated using sophisticated machine-learning-based techniques16,15. These meth-

ods take into account recent observations in the evolution of viruses, such as HCV, resulting in a
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gradual intra-host adaptation that is accompanied by a decrease in heterogeneity and an increase

in negative selection27,139,69,48.

2.4.3 Outbreak investigation

Detection and investigation of viral outbreaks is the primary epidemiological task. Historically,

epidemiological investigations have been based on in-field surveys of epidemiological settings and

interviews with persons potentially involved in pathogen spread. However, such methods are time-

and labor-consuming and the data obtained is prone to various socio-behavioral biases. Analysis

of viral genomic data provides alternative unbiased machinery for outbreak investigations and

quantification of major factors responsible for disease spread127.

It should be noted that in the recent decade the rich variety of tools for inferring epidemiological

parameters has been developed within the field of viral phylodynamics141,171. In addition, there

are a plethora of methods for outbreak investigations that combine various types of genomic and

epidemiological data171,94,90,40,91,121,123,187. Despite being highly effective in many settings, these

tools are currently not intended for application to NGS data and usually do not support calculations

with extremely large genomic datasets. Therefore in this paper, we concentrate on tools specifically

designed to handle heterogeneous intra-host viral populations using NGS.

The primary task in the outbreak investigation is the detection of transmission clusters. The

main challenge here is the development and implementation of evolutionary distance measures

between intra-host viral populations that reflect the epidemiological relations between the hosts.

These distances can be efficiently calculated and combined with a broad variety of clustering tech-

niques and phylogenetic and network-based methods26,5. Distances between consensus sequences



30

that are still often used for epidemiological investigations provide only very coarse estimates of

evolutionary distances and lose significant signal encoded in quasispecies structure. In particular

outbreak distances between viral variants from certain hosts can be comparable or even higher

than distances between variants from different hosts. For example, for HIV-1, the recommended

inter-host threshold for detecting transmission clusters in pol region is in a range of 0.5 - 1.5%127,

while the nucleotide genetic variability inside hosts can be as high as 5%152.

Analysis of quasispecies populations reconstructed from NGS data drastically improves the

estimation of evolutionary distances. Pioneering NGS-based study for HCV outbreak investiga-

tions30 proposed to measure the distance between samples as the distance between the closest pair

of haplotypes from different samples. Even this simple method has been shown to significantly

outperform the consensus-based approach30. Similar techniques have been applied to HIV97. De-

spite the simplicity of the metric, its calculation is challenging for extremely large NGS datasets,

since its naive implementation requires a pairwise comparison of sequences from all pairs of pa-

tients. To address this challenge, several filtering techniques have been proposed151,166. In con-

secutive studies160,70,15,118 more sophisticated distance measures for quasispecies populations have

been proposed. In particular,118 avoids reconstruction of haplotypes and/or phylogenetic trees by

utilizing k-mer-based approach. Specifically, each viral sample is represented by a corresponding

k-mer distribution, the distance between pairs of k-mers is computed over a single de Bruijn graph

of all k-mers, and the distance between populations is identified with the Earth Mover’s Distance

(EMD) between two k-mer distributions.

The next step of the bioinformatics pipeline for epidemiological analysis is an investigation
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of viral transmissions inside each transmission cluster. It includes a prediction of possible trans-

mission directions, detection of the source or “superspreader” of an outbreak and inference of

transmission networks indicating who infected whom. QUENTIN160 and VOICE70 estimate the

distance between quasispecies populations as the analog of a cover for a Markov-type model of

viral evolution and choose the direction of transmission from a sample A to sample B based on min-

imum evolution principle, i.e. if it requires less evolution time than the time for evolving from A to

B. In147, it is proposed to identify the transmission directions by phylogenetic analysis and detec-

tion of paraphyletic, polyphyletic and monophyletic relations between sampled intra-host variants

from different hosts. This idea has been further developed and implemented in Phyloscanner184.

Both QUENTIN and Phyloscanner also allow reconstructing viral transmission networks. QUENTIN

does it via Bayesian inference and Markov Chain Monte Carlo sampling, with the likelihood of

a transmission network being defined using general properties of social networks relevant to the

infection dissemination. Phyloscanner relies on a maximum-parsimony approach and assigns an-

cestral hosts to internal nodes of a viral phylogeny containing quasispecies populations from dif-

ferent hosts by minimizing the number of transmission events while taking into account possible

contaminations, multiple infections, and presence of unsampled hosts.

Before determining the source of the outbreak it is critical to decide whether the source of

the outbreak is present among sequenced samples118. Finding the source of an outbreak is quite

important for outbreak disruption. The papers160,70,118 validated their approaches on CDC data for

HCV outbreaks with the known sources and showed that the source prediction accuracy is around

90%. But before determining the source of the outbreak it is critical to decide whether the source
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of the outbreak is present among sequenced samples118. This problem is quite difficult and has

been addressed for the first time in118.

Table 2.4 describes the list of tools analyzing viral NGS data for outbreak investigation includ-

ing identification of (1) transmission clusters, (2) transmission direction, (3) source of infection,

(4) presence of source, (5) transmission network. For each tool we indicate which of five tasks are

addressed by which tool.



33
Table 2.4 Outbreak investigation software tools for viral NGS data

Tool Year System Algorithm Trans-
mission
clusters

Trans-
mission

direction

Trans-
mission
network

Source
of

infection

Presence
of source

Tool availability

MinDist 2016 - Distance based + - - + - -
RED 2017 Matlab Clustering + + - + - https://bitbucket.org/osaofgsu/red
VOICE 2017 Linux Simulation based + + - + - https://bitbucket.org/osaofgsu/voicerep
PhyloScanner 2017 Linux Phylogeny + + + + - https://github.com/BDI-pathogens/phyloscanner
Quentin 2017 Matlab Simulation based + + + + - https://github.com/skumsp/QUENTIN
signature-sj 2018 Java k-mers + - - - - https://github.com/vtsyvina/signature-sj
k-mer EMD 2019 Linux k-mer based dis-

tance

+ + - + + https://github.com/amelnyk34/kemd

https://bitbucket.org/osaofgsu/red
https://bitbucket.org/osaofgsu/voicerep
https://github.com/BDI-pathogens/phyloscanner
https://github.com/skumsp/QUENTIN
https://github.com/vtsyvina/signature-sj
https://github.com/amelnyk34/kemd
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2.5 Molecular surveillance systems and databases

The advent of next-generation sequencing technologies makes possible, for the first time, the de-

ployment of molecular epidemiological surveillance systems that are intended to analyze and infer

the dynamics of epidemics and outbreaks in real or almost real-time using computational analysis

of viral genomic data97,105. Such systems are characterized by a broad bioinformatics functionality

including the processing of raw sequencing data, sequence alignment, phylogeny or network con-

struction, transmission history inference and visualization. The number of computational molec-

ular surveillance systems are currently being developed and deployed. One of the widely cited

systems is Nextstrain72 that allows for phylodynamics analysis and interactive visualization of the

evolution of a variety of pathogens. The Nextstrain incorporates several computational tools for

alignment, phylogenetic inference, reconstruction, dating and geographic localization of transmis-

sion events. However, currently, a toolkit of Nextstrain is not intended for the analysis of next-

generation sequencing data and intra-host viral populations, although its open-source architecture

makes possible incorporation of such methods in the future. The library of tools for viral epidemi-

ological data analysis developed and maintained by the R Epidemics Consortium (RECON) also

should be mentioned. It includes R statistical packages for handling, visualizing, and analyzing

outbreak data, but has similar limitations.

Two surveillance systems that support NGS data are specifically tailored for HIV and Viral

Hepatitis and are recommended and/or maintained by the CDC. These systems are HIV-Trace97

and GHOST (Global Hepatitis Outbreak Surveillance Technology)105, and they are based on high-

throughput bioinformatics pipelines for genetic relatedness analysis. They allow estimates of ge-
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netic distances between intra-host populations sampled from HIV-infected individuals, use these

distances to detect possible transmission linkages between the individuals, reconstruct and visual-

ize transmission clusters and genetic relatedness networks. Both systems can work with haplotypes

obtained from NGS data and are scalable for extremely large datasets produced by Illumina MiSeq

and other sequencing platforms. In particular, GHOST employs several efficient k-mer-based filter-

ing techniques for viral sequence similarity queries, that allow for the elimination of an exhaustive

comparison of all pairs of viral haplotypes and allow processing of NGS data from a given HCV

outbreak in minutes166.

Another important issue is the creation of curated databases that contain both genomic and

epidemiological data and can be used for the validation of new computational molecular epidemi-

ology tools. Some previously published papers160,70 provide links to datasets that can be used for

these purposes, but, to the best of our knowledge, large systematically curated collections of such

datasets are yet to be created. In this context, Pangea HIV consortium efforts on curated analy-

sis for HIV outbreaks in the African region1 are very important. At this moment they maintain a

collection of more than 18000 HIV NGS samples that can be used for outbreak investigations and

data-driven design of prevention strategies.
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CHAPTER 3

CLIQUESNV - A METHOD FOR INFERRING VIRAL QUASISPECIES USING NGS

Background

Rapidly evolving RNA viruses such as influenza A virus (IAV), human immunodeficiency virus

(HIV) and hepatitis C virus (HCV) exist in infected hosts as highly heterogeneous populations of

closely related genomic variants called quasispecies92,73,107,53,115,162,47,146.

The composition and structure of intra-host viral populations plays a crucial role in disease

progression and epidemic spread. The presence of low-frequency variants that differ from major

strains by a few mutations may result in immune escape, emergence of drug resistance, and an

increase of virulence and infectivity18,50,65,79,144,29,158. Furthermore, such minor variants are often

responsible for transmissions and establishment of infection in new hosts31,59,6. Therefore, accurate

characterization of viral mutation profiles sampled from infected individuals is essential for viral

research, therapeutics and epidemiological investigations.

Next-generation sequencing (NGS) technologies now provide versatile opportunities to study

viral populations. In particular, the popular Illumina MiSeq/HiSeq platforms produce 25-320 mil-

lion reads, which allow multiple coverage of highly variable viral genomic regions. This high

coverage is essential for capturing rare variants. However, haplotyping of heterogeneous viral

populations (i.e., assembly of full-length genomic variants and estimation of their frequencies)

is extremely complicated due to the vast number of sequencing reads, the need to assemble an

unknown number of closely related viral sequences and to identify and preserve low-frequency

variants. Single-molecule sequencing technologies, such as PacBio, provide an alternative to
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short-read sequencing by allowing full-length viral variants to be sequenced in a single pass. How-

ever, the high level of sequence noise (due to background or platform-specific sequencing errors)

produced by all currently available platforms makes inference of low-frequency genetically close

variants especially challenging, since it is required to distinguish between real and artificial genetic

heterogeneity produced by sequencing errors.

In recent years, a number of computational tools for inference of viral quasispecies popula-

tions from noisy NGS data have been proposed, including Savage13, PredictHaplo133, aBayesQR2,

QuasiRecomb164, HaploClique165, VGA114, VirA157,112, SHORAH189, ViSpA11, QURE134 and

others159,14,180. Even though these algorithms proved useful in many applications, accurate and

scalable viral haplotyping remains a challenge. In particular, inference of low-frequency viral

variants is still problematic, while many computational tools designed for the previous generation

of sequencing platforms have severe scalability problems when applied to datasets produced by

state-of-the-art technologies.

Previously, several tools such as V-phaser108, V-phaser2186 and CoVaMa149 exploit linkage of

mutations for single nucleotide variant (SNV) calling (rather than haplotype assembly), but they do

not take into account sequencing errors when deciding whether two variants are linked. These tools

are unable to detect mutations of frequency above sequencing error rates170. The 2SNV algorithm9

accommodates errors in links and was the first such tool to be able to correctly detect haplotypes

with a frequency below the sequencing error rate.

Other methods (e.g., HaploClique165, Savage13) assembled viral haplotypes using maximal

cliques in a graph, where nodes represent reads. These methods infer haplotypes by iteratively
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merging these read cliques, thus heavily relying on the correct order of merging. In contrast, our

proposed approach finds maximal cliques in a graph with nodes corresponding to SNVs, which

facilitates a significant performance increase, since for viruses the size of the SNV graph is sig-

nificantly smaller than the size of the read graph. Furthermore, the clique merging problem is

formulated and solved as a combinatorial problem on the auxiliary graph of cliques of the SNV

graph, thus allowing an increase of the CliqueSNV algorithm’s accuracy.

Herein, we present CliqueSNV, a novel method that is designed to infer closely related intra-

host viral variants from noisy next-generation and third-generation sequencing technologies22. It

infers haplotypes from patterns from distributions of SNVs inside sequencing reads. CliqueSNV

is suitable for long single-molecule reads (PacBio) as well as for short paired-end reads (Illumina).

Our method recognizes groups of linked SNVs and efficiently distinguishes them from sequencing

errors. CliqueSNV constructs an SNV graph, where SNVs are nodes and edges connect linked

SNVs. Then, by merging cliques in that graph, CliqueSNV identifies true viral variants. Using

optimized combinatorial techniques makes CliqueSNV fast and efficient in comparison with other

tools.

Validation testing shows that CliqueSNV outperforms PredictHaplo133, aBayesQR2 and 2SNV9

in both speed and accuracy using four real and two simulated datasets. Other haplotyping methods

have been shown to perform similarly or worse than these three methods. Our benchmarks consist

of sequencing experiments from samples with known viral mixtures: (i) a real PacBio sequencing

experiment from a sample with ten influenza A (IAV) viral variants9, (ii) two real MiSeq sequenc-

ing experiments from two samples of HIV-1 mixtures with nine and two viral variants, (iii) real
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MiSeq data from a sample with five HIV-1 variants of different subtypes, and (iv) two simulated

MiSeq datasets with IAV and HIV-1 sequences.

Together with standard precision and recall metrics we introduced two additional quality mea-

sures: (i) Matching Error between Populations and (ii) Earth Mover’s Distance between Popula-

tions. These two measures are more adapted for evaluating the quality of inference of viral samples

from sequencing data because they take into account both the distance between true and inferred

haplotypes and the frequencies of true and inferred haplotypes.

3.1 CliqueSNV algorithm

The schematic diagram of the CliqueSNV algorithm is shown in Figure 3.1. The algorithm takes

aligned reads as input and infers haplotype sequences with their frequencies as output. The method

consists of six steps. Step 1 uses aligned reads to build the consensus sequence and identifies all

SNVs. Then all pairs of SNVs are tested for dependency and are then divided into three groups:

linked, forbidden, or unclassified. Each SNV is represented as a pair (p, n) of its position p and

nucleotide value n in the aligned reads. If there are enough reads that have two SNVs (p, n) and

(p′, n′) simultaneously, then they are tested for dependency. If the dependency test is positive and

statistically significant (see Detailed description for details), then the algorithm classifies these two

SNVs as linked. Otherwise, these two SNVs are tested for independency. If the independency test

is positive and statistically significant (see Detailed description for details), then these two SNVs

are classified as a forbidden pair. In Step 2, we build a graph G = (V,E) with a set of nodes V

representing SNVs, and a set of edges E connecting linked SNV pairs. Step 3 finds all maximal
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cliques in graph G. A clique C ⊆ V is a set of nodes such that (u, v) ∈ E for any u, v ∈ C and

for any x /∈ C there is u ∈ C such that (x, u) /∈ E. Each maximal clique in G represents groups

of pairwise-linked SNVs that potentially belong to a single haplotype. Ideally, there is a one-to-

one correspondence between SNV cliques and haplotypes. Unfortunately, sequencing noise and

the shortness of the NGS reads makes it difficult to identify all linked SNV pairs. As a result, a

single clique corresponding to a haplotype will be split into several overlapping cliques. Step 4

merges such overlapping cliques. In order to avoid merging distinct haplotypes, two cliques are

not merged if they contain a forbidden SNV pair. Step 5 assigns each read to a merged clique with

which it shares the largest number of SNVs. Then CliqueSNV builds a consensus haplotype from

all reads assigned to a single merged clique. Finally, haplotype frequencies are estimated via an

expectation-maximization algorithm in Step 6.

Below we describe the six major steps of CliqueSNV that are schematically presented in Fig-

ure 3.1.

Step 1: Finding linked and forbidden SNV pairs. At a given genomic position I , the most

frequent nucleotide is referred to as a major variant and is denoted 1. Let us fix one of the less

frequent nucleotide (referred to as a minor variant) and denote it 2. A pair of variants at two

distinct genomic positions I and J is referred to as a 2-haplotype. Let O22 be the observed count

of the 2-haplotype (22) in the reads covering positions I and J . In this step, CliqueSNV tries to

decide whether the observed O22 reads are sequencing errors or they are produced by an existing

haplotype containing the 2-haplotype (22).

The pairs of minor variants (referred to as SNV pairs) are classified into three categories:
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Figure 3.1 Schematic representation of the CliqueSNV algorithm, where SNV is single nucleotide
variation.
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linked, forbidden, and unclassified. An SNV pair is linked if it is extremely unlikely that there

is no sufficiently frequent haplotype containing both minor variants is very low. On the other side,

an SNV pair is forbidden if it is extremely unlikely that the corresponding minor variants belong

to the same haplotype of sufficient frequency. All other SNV pairs are referred to as unclassified.

Below we estimate the probability of observing at least x ≥ O22 reads given that the true

frequency T22 of the 2-haplotype (22) is at most t (by default t = 0.001). This probability should

be low enough so that false positive linked pairs would be virtually impossible, i.e., we require that

the expected number of false positive linked pairs be less than 0.05. Therefore, this probability

should be less than 0.05/
(
L
2

)
, where L is the haplotype length.

Pr(x ≥ O22|T22 ≤ t) = 1− Pr(x < O22|T22 ≤ t)

≤ 1−
O22−1∑
i=0

(
n

i

)
ti(1− t)n−i (3.1)

≤ 0.05(
L
2

)
Pairs of SNVs passing this linkage test (3.1) are classified as a linked SNV pairs.

For every other pair of SNVs, we check whether they can be classified as a forbidden SNV

pair, i.e., whether the probability of observing at most x ≤ O22 reads is low enough (< 0.05) given

that the 2-haplotype (22) has frequency T22 ≥ t (by default t = 0.001). Similarly, we require that

the expected number of false positive forbidden pairs be less than 0.05.

Pr(x ≤ O22|T22 ≥ t) ≤
O22∑
i=0

(
n

i

)
ti(1− t)n−i
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≤ 0.05(
L
2

) (3.2)

Pairs of SNVs passing this linkage test (3.2) are classified as a forbidden SNV pairs.

Step 2: Constructing the SNV graph. The SNV graph G = (V,E) consists of vertices corre-

sponding to minor variants and edges corresponding to linked pairs of minor variants from differ-

ent positions. If the intra-host population consists of very similar haplotypes, then graph G is very

sparse. Indeed, the PacBio dataset for Influenza A virus encompassing L = 2, 500 positions is split

into 10,000 vertices, while the SNV graph contains only 700 edges, and, similarly, the simulated

Illumina read dataset for the same haplotypes contains only 368 edges.

Note that the isolated minor variants correspond to genotyping errors unless they have a sig-

nificant frequency. This fact allows us to estimate the number of errors per read, assuming that

all isolated SNVs are errors. As expected, the distribution of the PacBio reads has a heavy tail

(see Figure 3.2), which implies that most reads are (almost) error free, while a small number of

heavy-tail reads accumulate most of the errors. Our analysis allows the identification of such reads,

which can then be filtered out. By default, we filter out ≈ 10% of PacBio reads, but we do not

filter out any Illumina reads. The SNV graph is then constructed for the reduced set of reads. Such

filtering allows the reduction of systematic errors and refines the SNV graph significantly.

Step 3: Finding cliques in the SNV graph G. Although the MAX CLIQUE is a well-known NP-

complete problem and there may be an exponential number of maximal cliques in G, a standard

Bron-Kerbosch algorithm requires little computational time since G is very sparse25.

Step 4: Merging cliques in the clique graph CG. The clique graph CG = (C,F, L) consists of
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Figure 3.2 A typical distribution of errors in PacBio reads. The heavy tail indicates that a signifi-
cant portion of errors is accumulated by a relatively small number of reads.

vertices corresponding to cliques in the SNV graphG and two sets of edges F and L. A forbidding

edge (p, q) ∈ F connects two cliques p and q with at least one forbidden pair of minor variants

from p and q respectively. A linking edge (p, q) ∈ L connects two cliques p and q, (p, q) /∈ F , with

at least one linked pair of minor variants from p and q respectively. Any true haplotype corresponds

to a maximal L-connected subgraph H of CG that does not contain any forbidding edge (see Fig.

3.1 (4)).

Unfortunately, even deciding whether there is a L-path between p and q avoiding forbidding

edges is known to be NP-hard98. We find all subgraphs H as follows (see Fig. 3.3): (i) connect

all pairs of vertices except connected with forbidding edges, (ii) find all maximal super-cliques

in the resulted graph C ′G = (C,C(2) − F ) using25, (iii) split each super-clique into L-connected

components, and (iv) filter out the L-connected components which are proper subsets of other

maximal L-connected components.
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q1 q2 q3

q4 q5

Figure 3.3 The clique graph CG with 5 vertice corresponding to cliques in G, 4 edges and two
forbidden pairs (q1, q2) and (q2, q3). There 3 maximal connected subgraphs avoiding forbidden
pairs: {q1, q4} {q4, q2, q5} {q5, q3}

Step 5: Partitioning reads between merged cliques and finding consensus haplotypes. Let S

be the set of all positions containing at least one minor variant in V . Let qS be an major clique

corresponding to a haplotype with all major variants in S. The distance between a read r and a

clique q equals the number of variants in q that are different from the corresponding nucleotides in

r. Each read r is assigned to the closest clique q (which can possibly be qS). In case of a tie, we

assign r to all closest cliques.

Finally, for each clique q, CliqueSNV finds the consensus v(q) of all reads assigned to q. Then

v(q) is extended from S to a full-length haplotype by setting all non-S positions to major SNVs.

Step 6: Estimating haplotype frequencies by expectation-maximization (EM) algorithm.

CliqueSNV estimates the frequencies of the assembled intra-host haplotypes via an expectation-

maximization algorithm similar to the one used in IsoEM124. The algorithm starts by assigning

equal frequencies to each haplotype and iteratively updates the probabilities to see observed data

given the previous estimation of frequencies. Let K be the number of assembled viral variants,

and let α be the probability of sequencing error. EM algorithm works as follows:

1. Initialize frequencies of viral variants f (0)
j ← 1

K
,
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Compute the probability of li-long read ri i = 1, N , being emitted by viral variant j = 1, K,

hji =
∏li

l=1((1− α)Mji,l +
α
3
(1−Mji,l)),

where Mji,l - indicator if i-th read coincides with j-th viral variant in the position l

2. (Expectation) Update the amount of read ri emitted by the jth viral variant pij ←
f
(n−1)
j hji∑k

u=1 f
(n−1)
u hui

3. (Maximization) Update the frequency of the jth viral variant f (n)
j ←

∑N
i=1 pij∑k

u=1

∑N
i=1 piu

4. if ||f (n−1)
j − f (n)

j || > ε, then n← n+ 1 and go to step 2

5. Output estimated frequencies f (n)

3.2 Results

3.2.1 Intra-host viral population sequencing benchmarks

We tested CliqueSNV’s ability to assemble haplotype sequences and estimate their frequencies

from PacBio and MiSeq reads using four real (experimental) and two simulated datasets from HIV

and IAV samples (Table 3.1). Datasets contain two to ten haplotypes with frequencies 0.1 to 50%.

The hamming distances between pairs of variants for each dataset are shown in Figure 3.4.

Name Type Virus #haplotypes Haplotype frequencies Hamming distance
HIV9exp experimental HIV-1 9 0.2-50% 0.22-2.1%
HIV2exp experimental HIV-1 2 50-50% 1.2%
HIV5exp experimental HIV-1 5 20-20% 2-3.5%
IAV10exp experimental IAV 10 0.1-50% 0.1-1.1%
HIV7sim simulated HIV-1 7 14.3-14.3% 0.6-3%
IAV10sim simulated IAV 10 0.1-50% 0.1-1.1%

Table 3.1 Four experimental and two simulated sequencing datasets of human immunodeficiency
virus type 1 (HIV-1) and influenza A virus (IAV). The datasets contain MiSeq and PacBio reads
from intra-host viral populations consisting of two to ten variants each with frequencies in the
range of 0.1-50%, and Hamming distances between variants in the range of 0.1-3.5%.

Experimental datasets:
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Figure 3.4 Pairwise hamming distances between variants in datasets HIV9exp, HIV2exp, HIV5exp,
HIV7sim, IAV10sim, and IAV10exp.

1–2. HIV-1 subtype B plasmid mixtures and MiSeq reads (HIV2exp and HIV9exp). We designed

nine in silico plasmid constructs comprising a 950-bp region of the HIV-1 polymerase (pol)

gene that were then synthesized and cloned into pUCIDT-Amp (Integrated DNA Technolo-

gies, Skokie, IL). Each clone was confirmed by Sanger sequencing. This region at the be-

ginning of pol can contain known protease and reverse transcriptase drug-resistant mutations

and is monitored with sequence analysis for patient care. Each of these plasmids contains a

specific set of point mutations chosen using mutation profiles from a real clinical study190 to

create nine unique synthetic HIV-1 pol haplotypes. Different proportions of these plasmids

were mixed and then sequenced using an Illumina MiSeq protocol to obtain 2x300-bp reads
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(see Supplementary Methods). HIV2exp is a mixture of two variants, and HIV9exp is a

mixture of nine.

3. HIV-1 subtype B mixture and MiSeq reads (HIV5exp). This dataset consists of Illumina

MiSeq 2×250-bp reads with an average read coverage of ˜20,000× obtained from a mixture

of five HIV-1 isolates: 89.6, HXB2, JRCSF, NL43, and YU2 available at67. Isolates have

pairwise Hamming distances in the range from 2-3.5%(27 to 46-bp difference). The original

HIV-1 sequence length was 9.3Kb, but was reduced to the beginning of pol with length of

1.3Kb.

4. Influenza A mixture and PacBio reads (IAV10exp). This benchmark contains ten influenza A

virus clones that were mixed at a frequency of 0.1-50%. The Hamming distances between

clones ranged from 0.1-1.1% (2-22–bp differences)9. The 2kb-amplicon was sequenced

using the PacBio platform yielding a total of 33,558 reads of an average length of 1973

nucleotides.

Simulated datasets:

1. HIV-1 subtype B mixture and MiSeq reads (HIV7sim). This benchmark contains simulated

Illumina MiSeq reads with 10k-coverage of 1-kb pol sequences. The reads were simulated

from seven equally distributed HIV-1 variants chosen from the NCBI database: AY835778,

AY835770, AY835771, AY835777, AY835763, AY835762, and AY835757. The Hamming

distances between clones are in the range from 0.6-3.0%(6 to 30-bp differences). We used

SimSeq20 for generating reads.
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2. Influenza A mixture and MiSeq reads (IAV10sim). This benchmark contains simulated IAV

Illumina MiSeq reads with the same IAV haplotypes and their frequencies as for the IAV10exp

benchmark. The sequencing of a 2kb-amplicon with 40k coverage with paired Illumina

MiSeq reads was simulated by SimSeq20 with the default sequencing error profile in Sim-

Seq.

3.2.2 Validation metrics for viral population inference

3.2.2.1 Precision and recall

The quality of inference is usually measured by precision and recall.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

where TP is a number of true predicted haplotypes, FP is a number of false predicted haplotypes,

and FN a number of undiscovered haplotypes.

Initially we measured precision and recall strictly by treating a predicted haplotype with a

single mismatch as a FP . Additionally, like in133 we introduced an acceptance threshold, which

is a number of mismatches permitted for in a predicted haplotype to count as a TP .

3.2.2.2 Matching errors between populations

Unfortunately, precision and recall do not take into account (i) distances between true and inferred

viral variants as well as (ii) the frequencies of the true and inferred viral variants. Instead, we
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propose to use analogues of precision and recall defined for populations as follows.

Let T = {(t, ft)}, be the true haplotype population, where ft is the frequency of the true

haplotype t,
∑

t∈T ft = 1. Similarly, let P = {(p, fp)}, be the reconstructed haplotype population,

where fp is the frequency of the reconstructed haplotype p,
∑

p∈P fp = 1. Let dpt be the edit

distance between haplotypes p and t. Thus, instead of precision, we propose to use the matching

error ET→P measuring how well each reconstructed haplotype p ∈ P weighted by its frequency is

matched by the closest true haplotype.

ET→P =
∑
p∈P

fpmin
t∈T

dpt

Indeed, precision increases while ET→P decreases and reaches 100% when ET→P = 0. Simi-

larly, instead of recall, we propose to use the matching error ET←P measuring how well each true

haplotype t ∈ T weighted by its frequency is matched by the closest reconstructed haplotype.66

ET←P =
∑
t∈T

ftmin
p∈P

dpt

Note that recall increases while ET←P decreases and reaches 100% when ET←P = 0.

3.2.2.3 Earth mover’s distance (EMD) between populations

The matching errors introduced above match haplotypes of true and reconstructed populations but

do not match their frequencies. In order to simultaneously match haplotype sequences and their

frequencies, we need to allow a fractional matching when portions of a single haplotype p of
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population P are matched to portions of possibly several haplotypes of T and vice versa. Thus,

we should separate fp into fpt’s each denoting portion of p matched to t such that fp =
∑

t∈T fpt,

fpt ≥ 0. Symmetrically, ft’s are also separated into fpt’s, i.e,
∑

p∈P fpt = ft. Finally, we should

choose fpt’s minimizing the total error of matching T to P also known as Wasserstein metric or

EMD between T and P 111,102.

EMD(T, P ) = min
fpt>0

∑
t∈T

∑
p∈P

fptdpt

s.t.
∑
t∈T

fpt = fp, and
∑
p∈P

fpt = ft

EMD is efficiently computed as an instance of the transportation problem using network flows.

It is not surprising that EMD varies a lot over different benchmarks. Different benchmarks may

have different complexity, which depends on the number of true variants, the frequency distribu-

tion, the similarity between haplotypes, sequencing depth, sequencing error rate, and many other

parameters. We propose to measure the complexity of a benchmark as the EMD between the true

population and a population consisting of a single consensus haplotype185.

3.2.3 Performance of haplotyping methods

We compared CliqueSNV to 2SNV, PredictHaplo, and aBayesQR. Since CliqueSNV, PredictHaplo

and aBayesQR can handle Illumina reads, we compared them on HIV9exp, HIV2exp, HIV5exp,

HIV7sim, and IAV10sim datasets. Since CliqueSNV, 2SNV, and PredictHaplo can handle PacBio

reads, we compared them on the IAV10exp dataset. We also used consensus sequences in the
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comparison185 because of its simplicity and to evaluate sequences most similar to those generated

by the Sanger method93.

The precision and recall of haplotype discovery for each method is provided in Table 3.2.

CliqueSNV has the best precision and recall for five of the six datasets. For the HIV5exp dataset,

PredictHaplo is more conservative and predicted less false positive variants (better precision) than

CliqueSNV but the recall is the same for both methods. CliqueSNV has 100% precision and recall

for three datasets, including the HIV2exp and IAV10exp experimental datasets and the HIV7sim

simulated dataset.

Benchmark CliqueSNV aBayesQR PredictHaplo
Precision Recall Precision Recall Precision Recall

HIV9exp 0.50 0.33 0.08 0.11 0.00 0.00
HIV2exp 1.00 1.00 0.08 0.50 0.33 0.50
HIV5exp 0.50 0.60 0.00 0.00 0.75 0.60
HIV7sim 1.00 1.00 0.43 0.43 0.00 0.00
IAV10sim 0.70 0.70 0.13 0.10 0.33 0.10

(a)

Benchmark CliqueSNV 2SNV PredictHaplo
Precision Recall Precision Recall Precision Recall

IAV10exp 1.00 1.00 0.82 0.90 0.70 0.70
(b)

Table 3.2 Prediction statistics of haplotype reconstruction methods using experimental and simu-
lated (a) MiSeq and (b) PacBio data. The precision and recall was evaluated stringently such that if
a predicted haplotype has at least one mismatch to its closest answer, then that haplotype is scored
as a false positive.

Following Prabhakaran’s study133 we introduced an acceptance threshold, which is the number

of mismatches permitted for a predicted haplotype to count as a TP . We report the numbers TP

and FP for acceptance allowing from 0 to 30 mismatches (see Figure 3.5).

Matching distance analysis on Figure 3.6 shows that matching distances ET←P and ET→P

are better for CliqueSNV than for both PredictHaplo and aBayesQR on all MiSeq datasets. Using
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Figure 3.5 The number of true and false predicted haplotypes depending on the number of accepted
mismatches for five benchmarks: (A) HIV9exp; (B) HIV2exp; (C) HIV5exp; (D) HIV7sim; (E)
IAV10sim. Two haplotypes are regarded identical if the Hamming distance between them is at
most the number of accepted mismatches.

HIV2exp, HIV7sim, and IAV10sim datasets, theET←P andET→P for CliqueSNV are very close to

zero indicating that the predictions are almost perfect. Since ET←P and ET→P correlate with pre-

cision and recall, matching distance analysis indicates that CliqueSNV has a better precision, and



54

significantly outperformed both PredictHaplo and aBayesQR. Since aBayesQR has higher ET←P

on MiSeq datasets, it is more likely to make more false predictions. Notably, on the HIV7sim

dataset, aBayesQR outperformed PredictHaplo and was just a little behind CliqueSNV.

Figure 3.6 Matching distances ET←P and ET→P between a true haplotype population and a re-
constructed haplotype population for five benchmark datasets for human immunodeficiency virus
type 1 (HIV-1) and influenza A virus (IAV). Matching distance ET←P is shown on the x-axis and
ET→P is shown on the y-axis for each benchmark. Smaller matching distances indicate better
approximation of a true haplotype population T by a reconstructed haplotype population P . Hap-
lotype populations were reconstructed with CliqueSNV, aBayesQR, PredictHaplo and a population
consisting of a single consensus haplotype.

Figure 3.7 shows the EMD distance between predicted and true haplotype populations for all

five MiSeq datasets. The exact EMD values are provided in Table 3.3. CliqueSNV has a lower (bet-

ter) EMD than other tools on all benchmarks. Using the simulated and PacBio datasets, CliqueSNV

has almost zero EMD indicating almost ideal predictions. PredictHaplo has a lower EMD than
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aBayesQR on four out of five MiSeq datasets. aBayesQR has almost zero-EMD on HIV7sim and

is only slightly behind CliqueSNV, while on HIV5exp, aBayesQR performs significantly worse

than the other methods.

Figure 3.7 Earth Movers’ Distance (EMD) between true and reconstructed haplotype populations.
Four haplotyping methods (CliqueSNV, aBayesQR, PredictHaplo, Consensus) are benchmarked
using three experimental and two simulated datasets for human immunodeficiency virus type 1
(HIV-1) and influenza A virus (IAV). For all benchmarks the CliqueSNV predictions are the closest
to the true populations.

Tables 3.4 and 3.5 describe the true variant IDs and their frequencies datasets, respectively, and

report for each true variant T the quality of its prediction: the edit distance to the closest predicted

variant (Err), and the frequency of the closest predicted variant (PF). The row EMD reports the

EMD distance from the population of the true variants to the consensus (underscored) and to the

population of variants predicted by the corresponding method. Note that the EMD to the consensus

is a measure of the benchmark diversity.

CliqueSNV, 2SNV, and PredictHaplo were compared on the IAV10exp benchmark dataset (see

Table 3.5. CliqueSNV correctly recovered all 10 true variants, including the haplotype with fre-

quencies significantly below the error rate. 2SNV recovered nine true variants but reports one false
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Benchmark Consensus CliqueSNV aBayesQR PredictHaplo
EMD EMD Improvement EMD Improvement EMD Improvement

HIV9exp 4.18 2.47 40.83 % 5.09 -21.85 % 3.58 14.30 %
HIV2exp 5.50 1.71 68.95 % 3.53 35.80 % 2.91 47.08 %
HIV5exp 19.40 4.03 79.20 % 19.22 0.91 % 6.80 64.97 %
HIV7sim 11.00 0.02 99.84 % 0.84 92.34 % 5.87 46.68 %
IAV10sim 4.22 0.09 97.77 % 3.64 13.73 % 3.03 28.15 %

Mean Improvement 77.32 % 24.19 % 40.23 %
(a)

Benchmark Consensus CliqueSNV 2SNV PredictHaplo
EMD EMD Improvement EMD Improvement EMD Improvement

IAV10exp 4.22 0.22 94.69% 0.23 94.46% 0.38 91.02%
(b)

Table 3.3 Earth Movers’ Distance from predicted haplotypes to the true haplotype population and
haplotyping method improvement. Four haplotyping methods(aBayesQR, CliequeSNV, Consen-
sus, PredictHaplo) are benchmarked on five MiSeq datasets (a) and IAV10exp dataset (b). The
improvement shows how much better is prediction of haplotyping method over inferred consen-
sus, and it is calculated as (EMDc−EMDm)×100%

EMDc
, where EMDc is an EMD for consensus, and

EMDm is an EMD for method. CliqueSNV outperformed all other methods in accuracy on all
datasets.

positive. PredictHaplo recovered only seven true variants and falsely predicted three variants. To

further explore the precision of these three methods with the IAV10exp data, we simulated low-

coverage datasets by randomly subsampling n = 16K, 8K, 4K reads from the original data (see

Table 3.6). For each dataset, CliqueSNV found at least one true variant more than both 2SNV and

PredictHaplo.

Finally, Table 3.7 reports the performance of three methods on full-length genomes. We nor-

malize EMD over the genomic length so that the resulted EMD are in the same range and can

be compared for different genomic regions. On average, CliqueSNV for all lower bounds on fre-

quency (2%, 5%, and 10%) outperforms PredictHaplo, but for 2 out of 4 full-length benchmarks

PredictHaplo is more accurate than CliqueSNV.
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HIV9exp CliqueSNV PredictHaplo aBayesQR
TV TF, % PV PF, % Err PV PF, % Err PV PF, % Err
A 50 1 32.2 0 1 45.2 1 1 12.9 4
B 25 2 14.5 1 2 25.9 3 2 13 0
C 13 3 28.9 0 3 28.9 2 3 4.13 3
D 6.3 4 19.1 0 1 3 4 14.5 1
E 3.2 1 3 1 4 1 4
F 1.6 3 7 3 9 3 3
G 0.8 5 2.98 1 3 8 3 3
H 0.4 1 4 1 5 1 4
J 0.2 1 9 3 9 5 12.1 5

EMD 4.18 2.47 3.58 5.09

HIV2exp CliqueSNV PredictHaplo aBayesQR
TV TF, % PV PF, % Err PV PF, % Err PV PF, % Err
H 50 1 34.5 0 1 18.3 5 1 9.75 2
J 50 2 65.5 0 2 56.8 0 2 10.75 0

EMD 5.5 1.71 2.91 3.53

HIV5exp CliqueSNV PredictHaplo aBayesQR
TV TF, % PV PF, % Err PV PF, % Err PV PF, % Err
89.6 20 1 12.5 0 1 21.8 0 1 9.94 18

HXB2 20 2 6.9 5 2 22 2 9.08 15
JRCSF 20 3 7.55 1 3 29 0 3 8.16 14
NL43 20 4 16.9 0 4 26.6 0 4 7.36 16
YU2 20 5 10.8 0 2 22.7 5 4 19
EMD 19.4 6.52 6.8 19.2

HIV7sim CliqueSNV PredictHaplo aBayesQR
TV TF, % PV PF, % Err PV PF, % Err PV PF, % Err

AY835778 14.3 1 14.3 0 1 39 7 1 14.4 1

AY835770 14.3 2 14.3 0 2 5 2 15.1 1
AY835771 14.3 3 14.3 0 2 28.7 1 3 12.1 1
AY835777 14.3 4 14.3 0 1 2 4 15.5 1
AY835763 14.3 5 14.3 0 3 32.3 3 5 14.3 0
AY835762 14.3 6 14.2 0 3 10 6 14.4 0
AY835757 14.3 7 14.3 0 1 12 7 14.2 0

EMD 11 0.018 5.87 0.84

IAV10sim CliqueSNV PredictHaplo aBayesQR
TV TF, % PV PF, % Err PV PF, % Err PV PF, % Err
fv3 50 1 50.1 0 1 76.3 0 1 35.2 1

Clone1 25 2 24.9 0 2 18.5 4 2 14 1
Clone2 13 3 12.4 0 3 5.27 6 3 8.11 6

flu1-Dmut 6.3 4 6.3 1 1 3 1 2
Clone3 3 5 3.1 0 1 8 4 4.24 0

fv2 1.6 6 1.6 0 1 2 1 3
Clone4 0.8 7 0.78 1 1 8 1 9
Clone6 0.4 8 0.41 0 1 8 1 9
Clone7 0.2 9 0.2 1 1 7 1 8
Clone8 0.1 10 0.1 0 1 12 1 13
EMD 4.22 0.0939 3.03 3.64

TV - id of a true variant, TF - frequency of the true variant in a mixture, PV - id of the closest predicted variant to the
true variant, PF - frequency of the closest predicted variant, Err - number of mismatches between the true variant and

the predicted variant. The underscored value is the EMD distance to the population consisting of a single variant
coinciding with the read consensus.

Table 3.4 Comparison of CliqueSNV with PredictHaplo and aBayesQR on simulated and real
Illumina data
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IAV10exp CliqueSNV 2SNV PredictHaplo
TV TF, % PV PF, % Err PV PF, % Err PV PF, % Err
fv3 50 1 52.6 0 1 51.8 0 1 56.7 0

Clone1 25 2 23.7 0 2 23.7 0 2 23.7 0
Clone2 13 3 12.6 0 3 12.5 0 3 13.7 0

flu1-Dmut 6.3 4 6.41 0 4 6.39 0 4 6.01 0
Clone3 3 5 2.32 0 5 2.3 0 5 3.01 0

fv2 1.6 6 1.17 0 6 1.19 0 1 2
Clone4 0.8 7 0.69 0 7 0.7 0 6 2.9 0
Clone6 0.4 8 0.35 0 8 0.34 0 7 1.2 0
Clone7 0.2 9 0.12 0 9 0.12 0 1 7
Clone8 0.1 10 0.05 0 1 12 1 12
EMD 4.22 0.22 0.23 0.38

TV - id of a true variant, TF - frequency of the true variant in a mixture, PV - id of the closest predicted variant to the
true variant, PF - frequency of the closest predicted variant, Err - number of mismatches between the true variant and

the predicted variant. The underscored value is the EMD distance to the population consisting of a single variant
coinciding with the read consensus.

Table 3.5 Comparison of CliqueSNV with PredictHaplo and 2SNV on IAV10exp

Figure 3.8 The number of reads assigned to different number of cliques in HIV Illumina dataset.

3.2.4 Runtime comparison

For comparing of running time of each method, we used the same PC (Intel(R) Xeon(R) CPU

X5550 2.67GHz x2 8 cores per CPU, DIMM DDR3 1,333 MHz RAM 4Gb x12) with the CentOS

6.4 operating system. The runtime of CliqueSNV is sublinear with respect to the number of reads

while the runtime of PredictHaplo and 2SNV exhibit super-linear growth. For the 33k IAV10sim

reads the CliqueSNV analysis took 21 seconds, while PredictHaplo and 2SNV took around 30



59

# of PacBio Reads Method Variant fv
3

C
lo

ne
1

C
lo

ne
2

flu
1-

D
m

ut

C
lo

ne
3

fv
2

C
lo

ne
4

C
lo

ne
5

C
lo

ne
6

C
lo

ne
7

FP
True Freq.,% 50 25 12.5 6.25 3.125 1.56 0.78 0.39 0.19 0.097

33.5K
(all)

CliqueSNV
Match X X X X X X X X X X 0
Freq., % 52.6 23.7 12.6 6.4 2.3 1.17 0.7 0.35 0.12 0.051 0

2SNV
Match X X X X X X X X X × 1
Freq., % 51.8 23.7 12.5 6.4 2.3 1.2 0.7 0.3 0.1 0 1.0

PredictHaplo
Match X X X × X × X X × × 0
Freq.,% 56.7 23.8 13.7 0 3.1 0 1.5 1.2 0 0 0

Subsampling

16K CliqueSNV
Match,% 100 100 100 100 100 90 100 100 100 20 0.1
Freq., % 52.9 23.7 12.5 6.4 2.3 1.19 0.71 0.32 0.12 0.69 1.15

2SNV
Match,% 100 100 100 100 100 100 100 100 0 0 0.2
Freq., % 52.4 23.7 12.5 6.4 2.3 1.1 0.7 0.3 0 0 0.6

PredictHaplo
Match 100 100 100 70 100 0 100 40 0 0 0.3
Freq.,% 54.2 23.5 13.1 6.0 2.9 0 1.4 1.0 0 0 0.5

8K CliqueSNV
Match,% 100 100 100 100 100 90 100 100 30 0 0
Freq., % 52.8 23.6 12.5 6.5 2.3 1.2 0.7 0.35 0.16 0 0

2SNV
Match,% 100 100 100 100 100 100 100 0 0 0 0
Freq., % 53.1 23.7 12.5 6.5 2.3 1.25 0.7 0 0 0 0

PredictHaplo
Match,% 100 100 100 0 100 0 100 20 0 0 0.2
Freq.,% 58.1 24.0 12.7 0 3.1 0 1.6 1.3 0 0 0.5

4K CliqueSNV
Match,% 100 100 100 100 100 80 100 40 0 0 0
Freq., % 53.3 23.7 12.3 6.4 2.4 1.19 0.7 0.39 0 0 0

2SNV
Match,% 100 100 100 100 100 100 20 0 0 0 0
Freq., % 53.7 23.7 12.3 6.5 2.4 1.2 0.9 0 0 0 0

PredictHaplo
Match,% 100 100 100 0 70 0 10 0 0 0 0.3
Freq.,% 60.1 23.9 12.8 0 3.5 0 2.5 0 0 0 0.5

Table 3.6 Comparison of CliqueSNV, 2SNV and PredictHaplo on full and sub-sampled data
(PacBio, experimental). For all 33.5K reads, the sign “X” (respectively, “×”) denotes fully
matched (respectively, unmatched) true variant and the column FP reports the number of incor-
rectly predicted variants (false positives) and their total frequency. For each sub-sample size
(16K,. . . ,4K), the table reports the percent of runs when a variant is completely matched and its
average frequency over runs when the variant was detected. Similarly, the column FP reports the
average number of false positive variants and their average total frequency. Colors indicate the
percent of matched variants: green - high percent, red - low percent.

minutes. The runtime of CliqueSNV is quadratic with respect to the number of SNVs rather than

by the length of the sequencing region. For our next runtime comparison, we generated five HIV-1

variants within 1% Hamming distance from each other, which is the estimated distance between

related HIV variants from the same person178. Then we simulated 1M Illumina reads for sequence

regions of length 566, 1132, 2263 and 9181 nucleotides for which CliqueSNV required 37, 144,

227, and 614 seconds, respectively, for analyzing these datasets. CliqueSNV is significantly faster

than aBayesQR and PredictHaplo. For example, using the HIV2exp benchmark the runtimes of
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Benchmark Length Consensus CliqueSNV PredictHaplo aBayesQR
2% 5% 10%

HCV10sim 1K 13.52 64.12 72.59 65.86 314.87 did not finish
2K 13.85 169.16 133.06 108.46 972.41 did not finish
5K 16.79 3666.76 3117.49 221.70 6472.83 did not finish

full-length 15.27 3703.01 3559.10 483.77 58509.17 did not finish
ZIKV3sim 1K 34.61 81.88 91.21 91.50 88.76 4409.53

2K 31.57 104.71 115.81 106.82 342.31 did not finish
5K 33.62 161.90 156.31 160.64 1775.49 did not finish

full-length 35.20 271.55 281.47 284.54 12114.49 did not finish
ZIKV15sim 1K 13.33 114.42 117.75 139.08 314.87 did not finish

2K 13.16 148.40 153.95 147.76 342.31 did not finish
5K 13.70 337.82 229.16 166.85 1775.49 did not finish

full-length 13.66 10305.01 604.60 286.19 12114.49 did not finish
HIV5full 1K 21.60 247.84 215.70 208.73 155.11 24462.81

2K 20.18 1282.03 460.03 374.76 459.40 28820.99
5K 19.77 5291.37 1787.24 337.52 2982.96 did not finish

full-length 20.26 8084.50 4970.50 1153.09 14404.43 did not finish
Average over all benchmarks 20.63 2127.16 1004.12 271.08 7071.21 21628.58

Table 3.7 Running time of performed experiments (seconds) for full-length benchmarks.

aBayesQR was over ten hours, PhedictHaplo took 24 minutes, while CliqueSNV only required 79

seconds (see Figures 3.9 and 3.10).

Figure 3.9 Runtime of PredictHaplo (PH), 2SNV and CliqueSNV on datasets with different sizes.
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Figure 3.10 CliqueSNV runtime on datasets with different reference length and same coverage
(about 1M reads in total).

3.3 Discussion

Assembly of haplotype populations from noisy NGS data is one of the most challenging problems

of computational genomics. High-throughput sequencing technologies, such as Illumina MiSeq

and HiSeq, provide deep sequence coverage that allows discovery of rare, clinically relevant hap-

lotypes. However, the short reads generated by the Illumina technology require assembly that is

complicated by sequencing errors, an unknown number of haplotypes in the samples, and the ge-

netic similarity of haplotypes within a sample. Furthermore, the frequency of sequencing errors in

Illumina reads is comparable to the frequencies of true minor mutations159. The recent develop-

ment of single-molecule sequencing platforms such as PacBio produce reads that are sufficiently

long to span entire genes or small viral genomes. Nonetheless, the error rate of single-molecule

sequencing is exceptionally high and could reach 13− 14%135, which hampers PacBio sequencing

to detect and assemble rare viral variants.

We developed CliqueSNV, a new reference-based assembly method for reconstruction of rare
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genetically-related viral variants. CliqueSNV allows for accurate haplotyping in the presence of

high sequencing error rates, which is also suitable for both single-molecule and short-read se-

quencing. In contrast to other haplotyping methods, CliqueSNV infers viral haplotypes by de-

tection of clusters of statistically linked SNVs rather than through assembly of overlapping reads

used with methods such as Savage13. Using experimental data, we demonstrate that CliqueSNV

can detect haplotypes with frequencies as low as 0.1%, which is comparable to the precision of

many deep sequencing-based point mutation detection methods61,75. Furthermore, CliqueSNV can

successfully infer and reconstruct viral variants, which differ by only a few mutations, thus demon-

strating the high precision of identifying closely related variants. Another significant advantage of

CliqueSNV is its low computation time, which is achieved by a very fast searching of linked SNV

pairs and the application of the special graph-theoretical approach to SNV clustering.

Although very accurate and fast, CliqueSNV has some limitations. Unlike Savage13, CliqueSNV

is not a de novo assembly tool and requires a reference viral genome. This obstacle could easily be

addressed by using Vicuna185 or other analogous tools to assemble a consensus sequence, which

can then be used as a reference. Another limitation is for variants that differ only by isolated

SNVs separated by long conserved genomic regions longer than the read length which may not be

accurately inferred by CliqueSNV. While such situations usually do not occur for viruses, where

mutations are typically densely concentrated in different genomic regions, we plan to address this

limitation in the next version of CliqueSNV.

The ability to accurately infer the structure of intra-host viral populations makes CliqueSNV

applicable for studying viral evolution, transmission and examining the genomic compositions of
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RNA viruses. However, we envision that the application of our method could be extended to other

highly heterogeneous genomic populations, such as metagenomes, immune repertoires, and cancer

cell genes.
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CHAPTER 4

INTER-HOST VIRAL ANALYSIS USING NGS

4.1 Introduction

Inferring transmission clusters, transmission directions, and sources of outbreaks from viral se-

quencing data are crucial for viral outbreaks investigation. Outbreaks of RNA viruses, such as Hu-

man Immunodeficiency Virus (HIV) and Hepatitis C virus (HCV), are particularly dangerous and

pose a significant problem for public health. It is well known that genomes of RNA viruses mutate

at extremely high rates51. As a result, RNA viruses exist in infected hosts as populations of closely

related variants called quasispecies45,47. However, only recently with the progress of sequencing

technologies, it became possible to identify and sample quasispecies at great depth55,7,78,174,155,29.

Consequently, a contribution of sequencing technologies to molecular surveillance of viral disease

epidemic spread becomes more and more substantial178,179.

Computational methods can be used to infer transmission characteristics from sequencing data.

The first question usually is whether two viral populations belong to the same outbreak. The meth-

ods typically utilize the simple observation that all samples from the same outbreak are genetically

related, so they use some measure of genetic relatedness as a predictor for epidemiological re-

latedness178,179,30. The second question is which samples constitute isolated outbreaks. For this

purposes, we define a transmission cluster as a connected set of genetically related viral popula-

tions. The third questions we address in this chapter is ”Who is the source of infection?”. This

questions is the most difficult to answer, and there were only a few attempts to do it computation-

ally using solely genomic data147 without invoking additional epidemiological information41. To
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the best of our knowledge, there is still no freely available computational tool for this problem.

Computational methods for detection of viral transmissions and inference of transmission

clusters are often consensus-based, i.e. they analyze only a single representative sequence per

intra-host population (for example, consensus sequence). Such methods assign two hosts into one

transmission cluster, if the distances between corresponding sequences do not exceed a predefined

threshold178,179. Although consensus-based methods proved to be useful, they do not take into ac-

count intra-host viral diversity. Inclusion of whole intra-host populations into analysis is important,

because minor viral variants are frequently responsible for transmission of RNA viruses59,6.

Recently published computational approach (further referred to as MinDist)30 uses the minimal

genetic distance between sequences of two viral populations as a measure of genetic relatedness of

intra-host viral populations. Since minimal genetic distances between different pairs of populations

can be achieved on various pairs of sequences, this approach takes into account intra-host diversity.

However, both consensus-based and MinDist approaches have further limitations. First of all,

they do not allow to detect directions of transmissions, which is crucial for detection of outbreak

sources and transmission histories. Secondly, distance thresholds utilized by both approaches

could be derived from analysis of limited or incomplete experimental data and highly data- and

situation-specific, with different viruses or even different genomic regions of the same virus re-

quiring specifically established thresholds.

In this chapter, we address the above limitations by proposing a novel algorithms V OICE and

an improvement of the MinDist algorithm. The new algorithms allow to infer important epidemio-

logical characteristics, including genetic relatedness, directions of transmissions and transmission
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clusters.

• V iral Outbreak InferenCE (V OICE) is a simulation-based method which imitates viral

evolution as a Markov process in the space of observed viral haplotypes

• MinDistB method is a modification of MinDist, which takes into account the sizes of relative

borders of each pair of viral populations.

The proposed methods were validated on the experimental data obtained from HCV outbreaks.

Comparative results suggest that our methods are efficient in epidemiological characteristics infer-

ence.

4.2 Methods

4.2.1 Viral outbreak inference (V OICE) simulation method

V OICE is an approach to predict epidemiological characteristics. It simulates the process of

evolution from one viral population (source) into another (recipient) as a Markov process on a

union of both populations. VOICE starts evolution from a subset of source sequences called the

border set and estimates the number of generations required to acquire a genetic heterogeneity

observed in the recepient.

Formally, given two sets of viral sequences P1 and P2, V OICE simulates viral evolution to

estimate times t12 and t21 needed to cover all sequences from the recipient population under the

assumptions that first and second host were sources of infection. Based on the value min{t12, t21},

the algorithm decides whether the populations are related. The direction of possible transmission

between the related pair is assumed to follow the direction which requires less time.
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The simulation starts from the δ-border set B1, which contains viral variants that are likely

the closest to variants transmitted between P1 and P2. It is defined as the set of vertices of P1

minimizing pairwise Hamming distance D between vertices from P1 and P2 up to a constant δ:

B1 = {u ∈ P1 : ∃v ∈ P2 D(u, v) = min
x∈P1,y∈P2

D(x, y) + δ}

(see Fig. 4.3). The constant δ is a parameter, with the default value 1.

Figure 4.1 Edge subdividing

The simulated evolutionary process is carried out in the evolutionary space represented by the

variant graph G(B1, P2), which is constructed as follows. First, construct a union of all minimal

spanning trees of the complete graph on a vertex set B1 ∪ P2 with the edge weights equal to

Hamming distances between variants (sometimes referred to as a pathfinder network PFNet(n−

1,∞)138,28). Then substitute every edge in graph with two directed edges of the same weight. Next,

subdivide each edge (u1, u2) of weight w ≥ 2 with w − 1 vertices v1, ..., vw−1 and add multiple

directed edges as follows: add w−1 edges between vertices u1 and v1; w−2 edges between v1 and

v2; and so forth as shown on Figure 4.1. This model can be explained as follows: to mutate from

vertex u1 to u2 during simulation, there should occur mutations at w positions that are different

between u1 and u2. During the first step, simulation can mutate any of w positions, then any of
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w − 1 positions on the second step and so forth.

The simulation starts from all border verticesB1 and runs until all the vertices of the population

P2 are reached. At the beginning of the simulation, border vertices get count equal to 1, and the

rest of the vertices get count 0. Each tact simulates variants replication by updating vertex counts

according to one of the three following scenarios happening with the specified probabilities (see

Figure 4.2). First, if during replication there are no mutations, then the vertex v replicates itself

and its count label is incremented. This happens with the probability p1 (4.1). Second, the vertex

can mutate into one of its neighboring vertices with probability p2 (see (4.2)), in which case the

count of the neighbor is incremented. Finally, with probability p3, vertex does not produce any

viable offspring, in which case vertex counts are not changed. If the count of a vertex reaches the

maximum allowed variant population size Cmax, then it is not increased. The probabilities of these

scenarios are calculated as follows:

p1 = (1− 3ε)L (4.1)

p2 = p1
ε

1− 3ε
(4.2)

p3 = 1− p1 − p2 deg−(v) (4.3)

where ε is the mutation rate, L is the genome length and deg−(v) is an outdegree of a vertex v.

Algorithm 1 represents the flow of the method. The time t12 is computed as the average over s

simulations. The same procedure is repeated for the opposite direction of the transmission with its

border set B2 and the time t21 is computed. The value min{t12, t21} determines which direction of



69

Figure 4.2 All possible moves of a vertex v

transmission is more likely.

Algorithm 1 V OICE (Viral Outbreak InferenCE)
Require: Two sets of viral variants P1, P2.
Ensure: Time t1,2 to evolve from P1 to P2.

1: find the δ-border set B1

2: build the variant graph G = G(B1, P2)
3: t← 0
4: Assign the number of copies ctv ← 1 to each variant v ∈ B1 and ctv ← 0 to each variant
v ∈ P2 \B1

5: while there are variants v ∈ P2 with ctv = 0 do
6: ct+1

v ← ctv for every v ∈ V (G)
7: for each variant v ∈ V (G) do
8: for i = 1, ..., ctv do
9: with a probability p1, ct+1

v ← min{ct+1
v + 1, Cmax}

10: with a probability p2, ct+1
u ← min{ct+1

u + 1, Cmax}, where u is a randomly chosen
neighbor of v

11: t← t+ 1

12: t1,2 ← t

4.2.1.1 Data normalization

The sizes of observed intra-host viral populations may significantly vary due to sampling and se-

quencing biases. Since the larger population will require more time to cover, the estimation of

t12 and t21 could be biased. VOICE avoids such biases by normalizing the intra-host population

sizes. The deterministic normalization partitions each viral population into q clusters using hierar-
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chical clustering and each cluster is replaced with the consensus of its members. The subsampling

normalization randomly chooses q sequences from each population. The procedure is repeated r

times, and the final result is an average over all subsamplings.

Figure 4.3 δ-Crossing between two viral populations P1 and P2 l ≤ d(u, v) + δ; (A) |Bδ| = 5; (B)
|Bδ| = 2

Figure 4.4 Intuition behind the MinDistB method. (A) Related samples – crossing is between old survived
variants (B) Unrelated samples –crossing is between many young variants which are close to each other by
chance.
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4.2.1.2 Identification of genetic relatedness, transmission directions, clusters and sources of out-
breaks

V OICE produces a weighted directed genetic relatedness graph G = (V,A,w) with V = P. An

arc PiPj is in A whenever populations Pi and Pj are genetically related, i.e., value min{tij, tji}

is less than a threshold. Weakly connected components of G represent transmission clusters or

outbreaks. To determine the source of each outbreak, we build a Shortest Paths Tree (SPT) for

every vertex in the corresponding component. The source is estimated as the vertex with an SPT

of minimal weight.

4.2.2 MinDistB method

The method extends the MinDist approach proposed in32, which defines the distance between viral

populations as the minimum Hamming distance between their representatives. The new approach

also takes into account sizes of border sets, on which the minimum distance is achieved. Formally,

given an integer δ (by default δ = 1), the δ-crossing between populations P1 and P2 is the set of

pairs of variants (u, v) from different populations, the Hamming distance D(u, v) between which

is within δ from the minimum Hamming distance:

Bδ(P1, P2) = {(u, v) : u ∈ P1, v ∈ P2, D(u, v) ≤ min
x∈P1,y∈P2

D(x, y) + δ}

(see Figure 4.3). Our empirical study shows that in case when the crossing is large (see Figure

4.3(A)), then the populations are less likely to be related than in case when the borders are small

(see Figure 4.3(B)).
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This effect can be intuitively explained. Two related populations likely diverge away from the

common ancestor and from each other, and their borders are formed by few old survived variants

closest to the common ancestor. Two unrelated populations diverging from two different ancestors

may in time reduce minimum distance from each other randomly and closest variants are relatively

young and abundant (see Figure 4.4).

We define a δ-distance between populations P1 and P2 as follows:

Dδ(P1, P2) = D(P1, P2) + c ln(|Bδ(P1, P2)|) (4.4)

where c = 3 is an empirically chosen constant.

4.2.2.1 Identification of genetic relatedness, transmission clusters and sources of outbreaks

For MinDistB methods, genetic relatedness graph G = (V,E,w) is a weighted undirected graph

with the vertex set V = P and an edge of weight wi,j connecting populations Pi, Pj whenever

wi,j = Dδ(P1, P2) does not exceed a threshold. Transmission clusters are estimated as connected

components of the graph G. For each transmission cluster its source could be inferred either as a

vertex with maximum eigenvector centrality or as a vertex with the shortest paths tree of minimal

weight.

4.3 Results

VOICE and MinDistB were validated using experimental outbreak sequencing data, and their pre-

dictions were compared with the ReD70 and the previously published MinDist method32
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4.3.1 Data sets

We used the benchmark data presented in32, which is a collection of HCV intra-host populations

sampled from 335 infected individuals.

• Outbreak collection contains 142 HCV samples from 33 epidemiologically curated out-

breaks reported to Centers for Disease Control and Prevention in 2008-2013. Outbreaks

contain from 2 to 19 samples. Epidemiological histories, including sources of infection, are

known for 10 outbreaks.

• Collection of 193 epidemiologically unrelated HCV samples.

All viral sequences represent a fragment of E1/E2 genomic region of length 264bp.

4.3.2 Prediction of epidemiological characteristics

The proposed methods were used to infer the following epidemiological characteristics:

• genetic relatedness between populations;

• transmission clusters representing outbreaks and isolated samples;

• sources of outbreaks;

• transmission directions between pairs of samples.

Comparison results are collected in Table 4.1.The variants of VOICE with deterministic and sub-

sampling normalizations are referred to as V OICE −D and V OICE − S, and for them we used

the normalization constants q = 10 and q = 4, respectively. For all VOICE runs, five independent
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simulations were performed, and the averages over that simulations are reported. For each simu-

lation, VOICE-S performs 50 subsamplings, and the results of the algorithm are averaged over all

subsamplings. For MinDist, sources of outbreaks were identified as vertices with highest eigen-

vector centralities in the corresponding genetic relatedness graphs, since for MinDist this method

outperform the shortest path tree-based approach.

4.3.2.1 Genetic relatedness between populations

Viral populations from two samples are genetically related if they belong to the same outbreak

and unrelated, otherwise. The genetic relatedness is validated on the union of both collections

containing all outbreaks and unrelated samples. There are 55945 pairs of samples, and 479 of them

are related. For all algorithms we choose the best thresholds, which produce no false positives, i.e.

no unrelated populations are predicted to be related. The values of thresholds T are: ReD : T = 2;

MinDist : T = 11; MinDistB : T = 28.4; V oice−D : T = 1710; V oice− S : T = 4585. For

each method, the sensitivity (i.e. the percentage of detected related pairs) was calculated (Table

4.1). The highest sensitivity is achieved by MinDistB method. Figure 4.5 depict ROC curve for

the tested methods (ReD is not present, since for this method only few viable discrete thresholds

are possible). MinDistB and V OICE −D have highest areas under a curve value followed by

MinDist and V OICE − S.

4.3.2.2 Detection of transmission clusters

The similarities between true and estimated partitions into transmission clusters were measured

using an editing metric44, which is defined as the minimum number of elementary operations re-
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quired to transform one partition into another. An elementary operation is either merging (joining

of two clusters into a single cluster) or division (partition of a cluster into two clusters)44. We

calculate sensitivity by normalizing an editing distance E by dividing it by the number N of ele-

mentary operations required to transform trivial partition (i.e. the partition into singleton sets) into

the true partition. The number N is equal to n − k, where n is the total number of samples and k

is the number of true clusters:

Sensitivity =
E

n− k
× 100%. (4.5)

Table 4.1 shows that MinDistB and MinDist demonstrate the highest sensitivity.

4.3.2.3 Source identification

The accuracy of the source identification is defined as the percentage of correctly predicted sources

for outbreaks, where the correct sources are known. The Source section of Table 4.1 shows that

the best results are achieved by ReD and V OICE − S which were able to detect sources in 90%

of cases. At the same time, MinDist and MinDistB, which are not able to identify transmission

directions, were significantly less accurate.

4.3.2.4 Transmission direction

Among tested algorithms, only ReD and V OICE allows for detection of transmission directions.

For that algorithms, percentages of correctly predicted pairs source-recipient were calculated (Ta-

ble 4.1). Here the highest accuracy of 87.1% was achieved by ReD and V OICE − S.
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Figure 4.5 ROC curve for pairs relatedness detection

Table 4.1 Validation results
Methods MinDist MinDistB ReD VOICE-D VOICE-S
Relatedness
Sensitivity, % 90% 92.9% 55.3% 85.2% 86.8 %
AUROC 0.992 0.996 N/A 0.993 0.990
Clustering
Sensitivity, % 100% 100% 96.3% 98.2% 98.2%
Source
Accuracy, % 50% 40% 90% 80% 90%
Directions
Accuracy, % N/A N/A 87.1% 83.9% 87.1%

4.3.2.5 Running time

All tests were performed on PC with DDR3-1333MHz 4GBx12 RAM and 2 Intel Xeon-X5550

2.67GHz processors. The fastest algorithms were MinDist and MinDistB, with running times 9

ms for a pair of samples in our dataset. ReD requires ∼ 0.1s per pair of samples, While the

running time of V OICE is ∼ 35s per pair.
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4.4 Conclusions

Currently, a molecular viral analysis is one of the major approaches used for investigations of

outbreaks and inference of transmission networks. Although modern sequencing technologies

significantly facilitated molecular analysis, providing unprecedented access to intra-host viral pop-

ulations, they generated novel bioinformatics challenges.

This work proposed two algorithms for the investigation of viral transmissions based on anal-

ysis of the intra-host viral populations, which allow clustering genetically related samples, infer

transmission directions and predict sources of outbreaks. Evaluation of the algorithms on ex-

perimental data from HCV outbreaks demonstrated their ability to accurately reconstruct various

transmission characteristics. However, the advantage of this method over other methods is its

non-parametricity (i.e. independence from virus-specific and genomic region-specific thresholds),

which makes it more universally applicable and extremely useful in situations, when the lack of

training data does not allow to establish reliable relatedness thresholds.



78

CHAPTER 4

REFERENCES

1. L. Abeler-Dörner, M. K. Grabowski, A. Rambaut, D. Pillay, C. Fraser, and PANGEA con-

sortium. PANGEA-HIV 2: Phylogenetics and networks for generalised epidemics in africa.

Curr. Opin. HIV AIDS, 14(3):173–180, May 2019.

2. S. Ahn and H. Vikalo. aBayesQR: A bayesian method for reconstruction of viral populations

characterized by low diversity. J. Comput. Biol., 25(7):637–648, July 2018.

3. M. J. Akiyama, D. Lipsey, L. Ganova-Raeva, L. Punkova, L. Agyemang, A. Sue, S. Ra-

machandran, Y. Khudyakov, and A. H. Litwin. A phylogenetic analysis of HCV transmis-

sion, relapse, and reinfection among people who inject drugs receiving opioid agonist ther-

apy, 2020.

4. E. K. Alidjinou, J. Deldalle, C. Hallaert, O. Robineau, F. Ajana, P. Choisy, D. Hober, and

L. Bocket. RNA and DNA sanger sequencing versus next-generation sequencing for HIV-1

drug resistance testing in treatment-naive patients. J. Antimicrob. Chemother., 72(10):2823–

2830, Oct. 2017.

5. S. Alroy-Preis, E. R. Daly, C. Adamski, J. Dionne-Odom, E. A. Talbot, F. Gao, S. J. Cav-

allo, K. Hansen, J. C. Mahoney, E. Metcalf, C. Loring, C. Bean, J. Drobeniuc, G.-L. Xia,

S. Kamili, J. T. Montero, and New Hampshire and Centers for Disease Control and Preven-

tion Investigation Teams. Large outbreak of hepatitis C virus associated with drug diversion

by a healthcare technician. Clin. Infect. Dis., 67(6):845–853, Aug. 2018.

6. A. Apostolou, M. L. Bartholomew, R. Greeley, S. M. Guilfoyle, M. Gordon, C. Genese, J. P.



79

Davis, B. Montana, and G. Borlaug. Transmission of hepatitis c virus associated with surgical

procedures-new jersey 2010 and wisconsin 2011. MMWR. Morbidity and mortality weekly

report, 64(7):165–170, 2015.

7. J. Archer, M. S. Braverman, B. E. Taillon, B. Desany, I. James, P. R. Harrigan, M. Lewis,

and D. L. Robertson. Detection of low-frequency pretherapy chemokine (cxc motif) receptor

4-using hiv-1 with ultra-deep pyrosequencing. AIDS (London, England), 23(10):1209, 2009.

8. A. Arias, P. López, R. Sánchez, Y. Yamamura, and V. Rivera-Amill. Sanger and next gener-

ation sequencing approaches to evaluate HIV-1 virus in blood compartments. Int. J. Environ.

Res. Public Health, 15(8), Aug. 2018.

9. A. Artyomenko, N. C. Wu, S. Mangul, E. Eskin, R. Sun, and A. Zelikovsky. Long Single-

Molecule reads can resolve the complexity of the influenza virus composed of rare, closely

related mutant variants. J. Comput. Biol., 24(6):558–570, June 2017.

10. Y. Assefa and C. F. Gilks. Second-line antiretroviral therapy: so much to be done. Lancet

HIV, 4(10):e424–e425, Oct. 2017.

11. I. V. Astrakhantseva, D. S. Campo, A. Araujo, C.-G. Teo, Y. Khudyakov, and S. Kamili.

Differences in variability of hypervariable region 1 of hepatitis C virus (HCV) between acute

and chronic stages of HCV infection. In Silico Biol., 11(5-6):163–173, 2011.

12. I. Astrovskaya, B. Tork, S. Mangul, K. Westbrooks, I. Măndoiu, P. Balfe, and A. Zelikovsky.
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49. M. Döring, J. Büch, G. Friedrich, A. Pironti, P. Kalaghatgi, E. Knops, E. Heger, M. Ober-
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123. M. J. Morelli, G. Thébaud, J. Chadœuf, D. P. King, D. T. Haydon, and S. Soubeyrand. A

bayesian inference framework to reconstruct transmission trees using epidemiological and

genetic data. PLoS Comput. Biol., 8(11):e1002768, Nov. 2012.

124. M. Nicolae, S. Mangul, I. Mandoiu, and A. Zelikovsky. Estimation of alternative splicing

isoform frequencies from rna-seq data. Algorithms for Molecular Biology, 6:9, 2011. URL

http://www.almob.org/content/6/1/9.

125. M. Noguera-Julian. HIV drug resistance testing – the quest for Point-of-Care, 2019.

126. M. Obermeier, A. Pironti, T. Berg, P. Braun, M. Däumer, J. Eberle, R. Ehret, R. Kaiser,
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