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ABSTRACT

The topics of this thesis lie in graph Ramsey theory. Given two graphs G and H, by the

Ramsey theorem, there exist infinitely many graphs F such that if we partition the edges of

F into two sets, say Red and Blue, then either the graph induced by the red edges contains

G or the graph induced by the blue edges contains H. The minimum order of F is called the

Ramsey number and the minimum of the size of F is called the size Ramsey number. They

are denoted by r(G,H) and r̂(G,H), respectively. We will investigate size Ramsey numbers

involving double stars and brooms.
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CHAPTER 1

INTRODUCTION

In this chapter, we first introduce the some basic concepts and terminologies, then

introduce the research background and related research progress of size Ramsey number,

and finally introduce the research results of this thesis.

1.1 Basic concepts and terminologies

All the graphs in this paper are undirected, finite and simple. For more concepts and

symbols in graph theory, please refer to textbooks of graph theory [1, 2, 3, 4].

For a graph G, the vertex set, edge set, order and size of G are denoted by V (G), E(G),

v(G) and e(G), respectively. The neighborhood, NG(v) or N(v) for short, of a vertex v of G

is the set of vertices adjacent to it. The degree, degG(v) or deg(v) for short, of a vertex v of

G is the number of edges incident to it. The minimum degree of G, denoted by δ(G), is the

smallest of the degrees of vertices in G and the maximum degree, denoted by ∆(G), of G is

the largest of the degrees of the vertices in G. For any subset X of V (G), let G[X] denote the

subgraph induced by X; similarly, for any subset F of E(G), let G[F ] denote the subgraph

induced by F . We use G − X to denote the subgraph of G obtained by removing all the

vertices of X together with the edges incident with them from G; similarly, we use G \ F to

denote the subgraph of G obtained by removing all the edges of F from G. If X = {v} and

F = {e}, we simply write G− v and G \ e for G− {v} and G \ {e}, respectively.

A graph G is connected if every two distinct vertices of V (G) are the ends of at least one

path in G. A connected graph G with order v(G) and size v(G)− 1 is called a tree, denoted

by T . An acyclic graph is one that contains no cycles, acyclic graphs are also called forests.

The pendent vertices are vertices of degree 1. A double star D(m,n) is a tree containing

exactly two non-pendant vertices x and y with deg(x) = n+ 1 and deg(y) = m+ 1, where x

and y are called the n-center and m-center (or just a center for short), respectively. A broom

B(m,n) is a tree obtained from a path Pm+1 and a star K1,n by identifying an end-vertex of

Pm+1 with the center of K1,n. D(m,n) and B(m,n) are shown in the Figure 1.1.

A red-blue coloring (R,B) of the edges in a graph G is a partition of E(G) into R and

B, where we say an edge e is colored by red if e ∈ R, and colored by blue if e ∈ B. For
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Figure 1.1. D(m,n) and B(m,n)

Table 1.1. The difference between Ramsey number and size Ramsey number

Conception: Ramsey number size Ramsey number

Symbol: r(G,H) r̂(G,H)

Definition: r(G,H) = min{v(F ) : F → (G,H)} r̂(G,H) = min{e(F ) : F → (G,H)}

convenience, we also denote by R and B the induced subgraph by R and B, respectively, and

call them the red subgraph and blue subgraph. Then for a vertex v, the meanings of degR(v),

degB(v), NR(v) and NB(v) are clear.

Given graphs F , G and H, we write F → (G,H) if in any red-blue edge-coloring of F , F

contains a red copy of G or a blue copy of H. Conversely, if there is a red-blue edge-coloring

of F such that F contains neither a red copy of G nor a blue copy of H, then we write

F 6→ (G,H). For graphs G and H, the smallest order of a graph F with F → (G,H) is

called the Ramsey number for G and H, denoted by r(G,H); and the smallest size of a graph

F with F → (G,H) is called the size Ramsey number for G and H, denoted by r̂(G,H).

The difference between Ramsey number and size Ramsey number can be seen in the Table

1.1.

1.2 Research background and related research progress

In 1978, Erdős, Faudree, Rousseau and Schelp introduced the notion of size Ramsey

number and obtained the exact value of r̂(Km, Kn) and r̂(K1,m, K1,n).

Theorem 1.2.1. [5] For positive integers m and n,

r̂(Km, Kn) =

(
r(Km, Kn)

2

)
.
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Theorem 1.2.2. [5] For positive integers m and n,

r̂(K1,m, K1,n) = n+m− 1.

Later Burr, Erdős, Faudree, Rousseau and Schelp generalized the result of r̂(K1,m, K1,n).

Theorem 1.2.3. [6] For positive integers k, l, m and n,

r̂(mK1,k, nK1,l) = (m+ n− 1)(k + l − 1).

Given graphs F , G1, · · · , Gt, we write F → (G1, · · · , Gt) if in any t ≥ 2 edge-coloring

of F , F contains a monochromatic subgraph Gi of i-color(1 ≤ i ≤ t). The smallest size of

a graph F with F → (G1, · · · , Gt) denoted by r̂(G1, · · · , Gt). A more general result was

proved by Zhang, who considered t ≥ 2 kinds of color edge-coloring.

Theorem 1.2.4. [7] For positive integers mi and ni for (1 ≤ i ≤ t) with t ≥ 2,

r̂(m1K1,n1 ,m2K1,n2 , · · · ,mtK1,nt) =
( t∑
i=1

(mi − 1) + 1
)( t∑

i=1

(ni − 1) + 1
)
.

Note that K1,2
∼= P3, Faudree and Sheehan obtained the exact value of r̂(K1,2, Kn).

Theorem 1.2.5. [8] For positive integers n ≥ 2,

r̂(K1,2, Kn) = 2(n− 1)2.

Note that Sk,n is a star-like graph, which is the graph obtained from a star K1,n by

subdividing one of the edge k times. Sk,n is also called a broom. Bielak obtained the exact

value of r̂(S1,n, S1,n).

Theorem 1.2.6. [9] For positive integers n ≥ 3,

r̂(S1,n, S1,n) = 4n− 2.

Faudree, Rousseau and Sheehan obtained the exact value of r̂(K1,n, K2,m) and r̂(K1,n, K2,2).
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Theorem 1.2.7. [10] For positive integers m ≥ 9, if n is sufficiently large, then

r̂(K1,n, K2,m) = 4n+ 2m− 4.

For positive integers n ≥ 3,

r̂(K1,n, K2,2) = 4n.

If G = H, we write r̂(G,H) as r̂(G). Beck obtained the upper bound of r̂(Pn).

Theorem 1.2.8. [11]

r̂(Pn) ≤ 900n.

The upper bound 900n was subsequently improved in [12, 13, 14, 15]. In 2017, Dudek

and Pralat [16] improved the upper bound r̂(Pn) ≤ 74n.

Beck obtained the upper bound of r̂(Tn).

Theorem 1.2.9. [11] For a tree T with n edges, if n is sufficiently large, then

r̂(Tn) ≤ ∆(T )n(log n)12.

Friedman and Pippenger obtained another expression of the upper bound of r̂(Tn).

Theorem 1.2.10. [17] For a tree T of order n,

r̂(Tn) ≤ c(∆(T ))4n,

where c is an absolute constant.

Ke improved the upper bound given by Friedman and Pippenger.

Theorem 1.2.11. [18] For a tree T of order n,

r̂(Tn) ≤ c(∆(T ))2n,

where c is an absolute constant.
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Let T be a tree and have bipartition V (T ) = V1 ∪ V2. For i = 1, 2, let ti = |Vi| and

∆i = max{deg(v) : v ∈ Vi}. Further, let β(T ) = t1∆1 + t2∆2. Beck obtained the lower and

upper bound of r̂(Tn).

Theorem 1.2.12. [19] For any tree T ,

β(T )

4
≤ r̂(Tn) ≤ cβ(T )(log |T |)12,

where c is an absolute constant.

Haxell and Kohayakawa improved the upper bound given by Beck.

Theorem 1.2.13. [20] For any tree T ,

r̂(Tn) ≤ cβ(T )(log ∆(T )),

where c is an absolute constant.

Let Gn be a graph with order n and ∆(G) = 3. Rödl and Szemerédi obtained the lower

bound of r̂(Gn).

Theorem 1.2.14. [21] There exist positive integers c and α, and an infinite sequence of

graphs Gn, where Gn is of order n and ∆(Gn) = 3 such that

r̂(Gn) ≥ cn(log2 n)α.

Erdős, Faudree, Rousseau and Schelp obtained the lower and upper bound of complete

bipartite graph r̂(Km,n).

Theorem 1.2.15. [5] For m ≥ 2 and sufficiently large n.

e−1m2m−1n ≤ r̂(Km,n) ≤ 28

9
m22m−1n.

Also, Erdős and Rousseau [22] obtained the lower and upper bound of balanced complete

bipartite graph r̂(Kn,n) as follows.

1

60
n22n ≤ r̂(Kn,n) ≤ 3

2
n32n.
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For the size Ramsey number of some small graphs such as K2, P3, P4, K3, K1,3, C4,

K1,3 + e, K4 − e, K4 and others, see the survey by Faudree [23].

1.3 Research results

In this thesis, we focus the size Ramsey numbers involving double stars and brooms

together.

In Chapter 2, we consider the size Ramsey numbers involving double stars and get the

following results.

• n+ 2m+ 1 ≤ r̂(P3, D(m,n)) ≤ n+ 2m+ 4 for n ≥ m ≥ 2,

• r̂(P3, D(n, n)) = 3n+ 4 for n ≥ 5,

• r̂(P3, D(1, n)) = n+ 5 for n ≥ 4,

• s(n+ 1) +m ≤ r̂(sP2, D(m,n)) ≤ s(n+m+ 1) for n ≥ m ≥ 2 and s ≥ 2,

• r̂(2P2, D(2, 2)) = 10,

• r̂(2P2, D(1, n)) = 2n+ 4 for n ≥ 3, and

• r̂(sP2, D(1, n)) = s(n+ 2) for s ≥ 2 and n ≥ d(s2 + 3s− 2)/2e.

In Chapter 3, we consider the size Ramsey numbers involving brooms and get the

following results.

• n+ 3
2
m ≤ r̂(P3, B(m,n)) ≤ n+ 2m for m ≥ 3, n ≥ 1,

• r̂(P3, B(3, n)) = n+ 6 for n ≥ 5,

• r̂(P3, B(4, n)) = n+ 8 for n ≥ 7,

• r̂(2P2, B(m,n)) ≤ 2n+ 2m− 2 for m ≥ 4, n ≥ 1,

• r̂(2P2, B(m,n)) ≥ 2n+m+ 2 for m ≥ 3, n ≥ m+ 2,

• r̂(2P2, B(3, n)) = 2n+ 5 for n ≥ 5, and

• r̂(2P2, B(4, n)) = 2n+ 6 for n ≥ 6.
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CHAPTER 2

SIZE RAMSEY NUMBERS INVOLVING DOUBLE STARS

Note that a double star D(m,n) is a tree containing exactly two non-pendant vertices x

and y with deg(x) = n+ 1 and deg(y) = m+ 1. Next, we give some essential parameters of

D(m,n). The order of D(m,n), v(D(m,n)) = n+m+2. The size of D(m,n), e(D(m,n)) =

n+m+ 1. The maximum degree of D(m,n), ∆(D(m,n)) = max{n+ 1,m+ 1}.

2.1 Size Ramsey numbers of P3 versus double stars

In this section, we give some results on the size Ramsey numbers for 3-path versus

double stars. At first, we have an upper and lower bound for r̂(P3, D(m,n)) as the following

theorem. Before giving the following theorems and proofs, we first give a very important

fact.

Fact 2.1.1. To avoid red copy of P3 in graph F , the red edges in F form a matching.

Theorem 2.1.2. For n ≥ m ≥ 2,

n+ 2m+ 1 ≤ r̂(P3, D(m,n)) ≤ n+ 2m+ 4.

Proof. Let uvw be a path of order 3, and G be a graph obtained from uvw and three stars

K1,m+1, K1,n and K1,m+1 by identifying the center of K1,m+1 with u, the center of K1,n with

v and the center of K1,m+1 with w, which shown in the Figure 2.1.

Giving a red-blue edge-coloring of G, let R and B denote the red and blue subgraph,

respectively. Suppose that R does not contain a P3, by Fact 2.1.1, the red edges in F form

a matching. Without loss of generality, assume uv ∈ B. Since the stars at u and w can

only contain at most one red edge, we get a blue D(m,n) contained at u and v, and hence

r̂(P3, D(m,n)) ≤ e(G) = n+ 2m+ 4.

To show r̂(P3, D(m,n)) ≥ n+ 2m+ 1, we let F be a graph with at most n+ 2m edges.

We can assume e(F ) = n+ 2m. It suffices to show that there exists a red-blue edge-coloring

of F such that F contains neither a red copy of P3 nor a blue copy of D(m,n). If F contains

no subgraphs isomorphic to D(m,n), then we choose an edge e in F and color it red, and
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Figure 2.1. Upper Bound of P3 versus D(m,n)

the edges in F \ e are colored blue. One can see that F contains neither a red copy of P3

nor a blue copy of D(m,n) under such a red-blue edge-coloring. From now on, we assume

that there exists a subgraph H of F such that H ∼= D(m,n). Let x, y be the n-center and

m-center of H in F , respectively.

Claim 1. If we color xy red and the other edges blue, then there is neither a red copy of P3

nor a blue copy of D(m,n).

Proof. Clearly, there is no red copy of P3 in F . Assume, to the contrary, that F contains a

blue copy of D(m,n), say H ′. Let x′, y′ be the n-center and m-center of H ′ in F , respectively.

Since x′y′ is colored by blue, it follows that xy 6= x′y′ and H 6= H ′. If x′ 6= x, then

e(H ∩ H ′) ≤ m + 1 ≤ n + 1, and hence e(H ∪ H ′) ≥ 2(n + m + 1) − e(H ∩ H ′) ≥
n+ 2m+ 1 > n+ 2m = e(F ), a contradiction. If x′ = x, then e(H ∩H ′) ≤ n+ 1, and hence

e(H ∪H ′) ≥ 2(n+m+ 1)− e(H ∩H ′) ≥ n+ 2m+ 1 > n+ 2m = e(F ), a contradiction.

From Claim 1, F contains neither a red copy of P3 nor a blue copy of D(m,n) under

such edge-coloring, as desired.

From Theorem 2.1.2, 3n+ 1 ≤ r̂(P3, D(n, n)) ≤ 3n+ 4 if we take m = n. Furthermore,

we will show r̂(P3, D(n, n)) = 3n+ 4 for n ≥ 5. For a maximum matching M of a graph F ,

we denote

V (M) = {v ∈ V (F ) | deg(v) ≥ n+ 1 and v covered by M}.

Then we have the following lemma.

Lemma 2.1.3. Let F be a graph with e(F ) ≤ 3n + 3 and ∆(F ) ≥ n + 1, where n ≥ 5. Let

M be a maximum matching of F such that |V (M)| is maximized. For any two vertices u, v

of degree at least n+ 1, if uv ∈ E(F ), then M covers both u and v.
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Proof. If M covers neither u nor v, then M ∪{uv} is also a matching of F , which contradicts

the maximality of M . Suppose that M covers one of u and v. Without loss of generality,

assume u is covered by M but v is not. Then there exists w ∈ N(u)− v such that uw ∈M .

If deg(w) ≤ n, then a new matching (M \ uw)∪ {uv} covers more vertices of degree at least

n + 1, a contradiction. From now on, we assume deg(w) ≥ n + 1. Since deg(v) ≥ n + 1

and n ≥ 5, it follows that |N(v)− {u,w}| ≥ 4. Choose four vertices x1, x2, x3 and x4 from

N(v) − {u,w}. For each i (1 ≤ i ≤ 4), since xiv 6∈ M and M is a maximum matching, it

follows that there exists x′i ∈ N(xi) such that xix
′
i ∈M .

Let L be the set of edges incident to u or v or w. Noting that v is not covered byM . Then

L∩M = {uw}, and hence xix
′
i 6∈ L for each i (i = 1, 2, 3, 4). Let L′ = L∪{xix′i | i = 1, 2, 3, 4}.

Then |L′| = |L|+ 4 ≥ 3n+ 4 > 3n+ 3 ≥ e(F ), a contradiction.

Theorem 2.1.4. For n ≥ 5,

r̂(P3, D(n, n)) = 3n+ 4.

Proof. By Theorem 2.1.2, we have r̂(P3, D(n, n)) ≤ 3n+ 4. To show r̂(P3, D(n, n)) ≥ 3n+ 4,

we let F be a graph with at most 3n+ 3 edges. Similarly to the proof of Theorem 2.1.2, we

can assume that F contains a copy of D(n, n). We will show that there is a red-blue coloring

of the edges of F such that F contains neither a red copy of P3 nor a blue copy of D(n, n).

Let s denote the number of vertices of degree at least n+ 2 in F .

Claim 2. s ≥ 2.

Proof. Let M be a maximum matching of F such that |V (M)| is maximized. Color all

the edges in M red, and the other edges are colored blue. Then F contains no red copy

of P3 clearly. Suppose F has a blue copy of D(n, n), denoted by H, with centers u and v.

Furthermore, degB(u) ≥ n+1 and degB(v) ≥ n+1. From Lemma 2.1.3, we have degR(u) ≥ 1

and degR(v) ≥ 1, and hence deg(u) ≥ n+ 2 and deg(v) ≥ n+ 2. So s ≥ 2.

Let t denote the number of vertices of degree n + 1. Suppose that F is not connected.

Clearly, F contains a subgraph P3, D(n, n) if and only if there exists a connected component

C of F such that F contains a subgraph P3, D(n, n), respectively. We now assume F is also

connected. By the choice of s and t, we have

2e(F ) ≥ (n+ 1)t+ (n+ 2)s+ (v(F )− s− t) = nt+ (n+ 1)s+ v(F ),

Since e(F ) ≤ 3n + 3, it follows that nt + ns + s ≤ 6n + 6− v(F ). Since F contains a copy

of D(n, n), it follows that v(F ) ≥ v(D(n, n)) = 2n + 2. From Claim 2, we have s ≥ 2, and
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hence ns + nt ≤ 6n + 6 − (2n + 2) − 2 = 4n + 2, and so s + t ≤ 4 + 2
n
. Noting n ≥ 5, we

have s+ t ≤ 4. If s+ t = 2, then the conclusion holds clearly, and thus we assume s+ t ≥ 3.

Furthermore, we have

s+ t = 3 or 4, and s ≥ 2,

and hence (t, s) = (1, 2), (2, 2), (0, 3), (1, 3) or (0, 4).

Denote by W the set of vertices of degree at least n+ 1. Then

e(F ) ≥ e(W, V (F )−W ) + e(W ) =

∑
v∈W

deg(v)

− e(W )

≥ (n+ 1)t+ (n+ 2)s− e(W ).

Since e(F ) ≤ 3n+ 3, it follows that

(n+ 1)t+ (n+ 2)s ≤ 3n+ 3 + e(W ). (2.1)

Claim 3. (t, s) = (1, 2) or (t, s) = (0, 3).

Proof. Assume, to the contrary, that (t, s) = (2, 2), (0, 4) or (1, 3), then |W | = 4 and

e(W ) ≤ 6, thus by (2.1), we have n ≤ 3, which contradicts to the fact n ≥ 5.

From Claim 3, (t, s) = (1, 2) or (t, s) = (0, 3). Then |W | = 3. Let W = {w1, w2, w3}
with deg(w1) ≤ deg(w2) ≤ deg(w3).

Case 1. (t, s) = (1, 2).

In this case, deg(w1) = n+1, deg(w2) ≥ n+2 and deg(w3) ≥ n+2. Since (t, s) = (1, 2),

it follows that e(W ) ≥ 2 by (2.1).

Choose two edges, say e1, e2, from F [W ] and they have a common vertex in W . If w2

is the common vertex, then F [{e1, e2}] is 3-path w1w2w3. Choose w′1 ∈ N(w1) − {w2, w3}
and color w2w3, w1w

′
1 red, and the other edges in F are colored blue. Since deg(w1) = n+ 1,

one can check that there is neither a red copy of P3 nor a blue copy of D(n, n) under this

red-blue edge-coloring. The same is true if w3 is the common vertex of e1, e2. If w1 is the

common vertex, then F [{e1, e2}] is 3-path w2w1w3. If w2w3 ∈ E(F ), then w2 is the common

vertex and we have done on this case. So we assume w2w3 6∈ E(F ). Choose w′′1 ∈ N(w1).

We now color w1w
′′
1 red, and the other edges in F are colored blue. Noting deg(w1) = n+ 1

and w2w3 6∈ E(F ), one can check there is neither a red copy of P3 nor a blue copy of D(n, n)

under this red-blue edge-coloring.
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Case 2. (t, s) = (0, 3).

For each i (i = 1, 2, 3), we have deg(wi) ≥ n+ 2.

Claim 4. For each i (i = 1, 2, 3), deg(wi) = n+ 2 .

Proof. Assume, to the contrary, that one of w1, w2, w3 is of degree at least n + 3. Then

3n+ 3 ≥ e(F ) ≥ 3n+ 7− 3 = 3n+ 4, a contradiction.

Since (t, s) = (0, 3), it follows that e(W ) = 3 by (2.1), and hence F [W ] is a 3-cycle.

Since n ≥ 5, we can choose w′1 ∈ N(w1) − {w2, w3}, w′2 ∈ N(w2) − {w1, w3, w
′
1} and w′3 ∈

N(w3) − {w1, w2, w
′
1, w

′
2}. We color the edges in {wiw′i | 1 ≤ i ≤ 3} red, and the other

edges in F are colored blue. Suppose there is a blue copy of D(n, n), denoted by H. Then

the centers of H belong to W , and assume w1, w2 are the two centers of H. Note that

|NB(w1)−{w2, w3}| = |NB(w2)−{w1, w3}| = n− 1 and w3 is a common neighbor of w1 and

w2, and so H is not a blue copy of D(n, n).

In the end of this section, we give the exact value of r̂(P3, D(1, n)) as the following

theorem.

Theorem 2.1.5. For n ≥ 4,

r̂(P3, D(1, n)) = n+ 5.

Proof. We first give the upper bound r̂(P3, D(1, n)) ≤ n + 5. Let G be a graph obtained

from a star K1,n with center u and a K−4 by identifying u and a vertex of degree 3 in K−4 .

Note that e(F ) = n+ 5; see Figure 2.2.

Figure 2.2. Upper Bound of P3 versus D(1, n)
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Giving a red-blue edge-coloring of G, let R and B denote the red and blue subgraph,

respectively. Suppose that R does not contain a P3, by Fact 2.1.1, the red edges in F form a

matching. Since ∆(G) = n+ 3, let v ∈ V (G) such that deg(v) = n+ 3. If the edges incident

to vertex v are all blue, note that e(G− v) = 2, and in G− v only one edge can be colored

red, so there must be a D(1, n) in B. Similarly, if an edge incident to vertex v is colored red,

it is easy to check that there is a D(1, n) in B, and hence r̂(P3, D(1, n)) ≤ e(G) = n+ 5.

Next, we prove the lower bound r̂(P3, D(1, n)) ≥ n + 5. Let F be a graph of size at

most n + 4. We can assume e(F ) = n + 4. It suffices to show that there exists a red-blue

edge-coloring of F such that F contains neither a red copy of P3 nor a blue copy of D(1, n).

Similarly to the proof of Theorem 2.1.2, we can assume that F contains a copy of D(1, n).

Since P3 and D(1, n) is connected, we can assume F is connected.

Claim 5. There is exactly one vertex of degree at least n+ 1 in F .

Proof. Assume, to the contrary, that there are at least two vertices of degree at least n+ 1.

Then e(F ) ≥ 2n+ 1, and hence n ≤ 3, which contradicts to the fact n ≥ 4.

From Claim 5, there is the unique vertex u such that deg(u) ≥ n+ 1. If deg(u) = n+ 1,

then take one edge incident to u, color it red and color the other edges in F blue, which

coloring is our desired coloring. Since e(F ) = n + 4, it follows that deg(u) ≤ n + 4. If

deg(u) = n + 4, then there is no copy of D(1, n) in F , as desired. If deg(u) = n + 3, then

there is exactly one edge not incident to u. We color the edge not incident to u red, and the

other edges in F are colored blue. Then F contains neither a red copy of P3 nor a blue copy

of D(1, n) under this coloring.

From now on, we assume deg(u) = n + 2. Denote by S the set of edges incident to u,

and let S ′ = E(F ) \ S. Then |S| = n + 2 and |S ′| = 2. Let S ′ = {e1, e2}. If e1 and e2 are

not adjacent, then we color the edges in S blue, and e1, e2 are colored red. Then F contains

neither a red copy of P3 nor a blue copy of D(1, n) under this coloring. Assume that e1 and

e2 have a common vertex w. Let e1 = ww1 and e2 = ww2.

Since F is connected, {w,w1, w2}∩N [u] 6= ∅. Since S∩S ′ = ∅, we have u 6∈ {w,w1, w2}.
Suppose that one of w,w1, w2 belongs to N(u), say w1 ∈ N(u), but w,w2 6∈ N(u). We color

ww1 red and the other edges in F are colored blue. This coloring is our desired coloring.

Suppose that at least two of w,w1, w2 belong to N(u). If w1, w2 ∈ N(u) and w 6∈ N(u),

then we color uw1 and ww2 red, and the other edges in F are colored blue. Such a coloring

is our desired coloring. If w,w1 ∈ N(u) and w2 6∈ N(u), then we take an edge e ∈ S, color e

and ww2 red, and the other edges in F are colored blue. Note that the case of w,w2 ∈ N(u)



13

and w1 6∈ N(u) can be similarly proved. If {w,w1, w2} ⊆ N(u), then we color uw1 and ww2

red and the other edges in F are colored blue, and hence the blue subgraph is a copy of

D(1, n− 1), as desired.

2.2 Size Ramsey numbers of matchings versus double stars

In this section, we focus on size Ramsey numbers for matchings versus double stars. At

first, we give an upper and lower bound for r̂(sP2, D(m,n)) as the following theorem. Before

giving the following theorems and proofs, we first give a very important fact.

Fact 2.2.1. To avoid red copy of 2P2 in graph F , the red edges in F can only be a star or

a triangle.

Theorem 2.2.2. For n ≥ m ≥ 2 and s ≥ 2,

s(n+ 1) +m ≤ r̂(sP2, D(m,n)) ≤ s(n+m+ 1).

Proof. We first prove the upper bound. Let G = sD(m,n). For any red-blue coloring of

E(G) without any red copy of sP2, there is at least one blue copy of D(m,n) clearly. Hence,

r̂(sP2, D(m,n)) ≤ e(sD(m,n))) = s(n+m+ 1).

Next we give the lower bound r̂(sP2, D(m,n)) ≥ s(n+ 1) +m. Let F be a graph of size

at most s(n+ 1) +m− 1 and containing a copy of D(m,n). Next by an induction on s, we

will show that there is a red-blue coloring of E(F ) such that there is neither a red copy of

sP2 nor a blue copy of D(m,n).

Assume s = 2. Then e(F ) ≤ 2n + m + 1. Since F contains a copy of D(m,n), then

∆(F ) ≥ n + 1, Take a vertex u of maximum degree, and color the edges incident to u red

and the other edges in F blue. Then there is no red copy of 2P2 clearly. And the number

of blue edges is at most n + m, thus there is no blue copy of D(m,n) either. Suppose the

conclusion holds for s− 1. Again, take a vertex u of maximum degree. Denote F ′ = F − u.

Then e(F ′) ≤ (s − 1)(n + 1) + m − 1. If F ′ has no copy of D(m,n), then it is sufficient

to color the edges incident to u red and color E(F ′) blue. Assume F ′ contains a copy of

D(m,n). Then by inductive hypothesis, there is a red-blue coloring of E(F ′) such that there

is neither a red copy of (s − 1)P2 nor a blue copy of D(m,n). Now keep this coloring, and

further color the edges red incident to u, then we get the red-blue edge-coloring which we

want.

Next we give some exact value of size Ramsey numbers for matchings versus double
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stars. At first, we show r̂(2P2, D(2, 2)) = 10.

Theorem 2.2.3.

r̂(2P2, D(2, 2)) = 10.

Proof. By Theorem 2.2.2, we have r̂(2P2, D(2, 2)) ≤ 10. Next we show r̂(2P2, D(2, 2)) ≥ 10.

Let F be a graph of size 9 and containing a copy of D(2, 2). Then ∆(F ) ≥ 3. If deg(w) ≥ 5,

then e(F −w) ≤ 4, and it is sufficient to color all edges incident to w red and color E(F −w)

blue. Then in this coloring, there is neither a red copy of 2P2 nor a blue copy ofD(2, 2). Hence

we can assume ∆(F ) = deg(w) = 4 or 3, and then e(F − w) = e(D(2, 2)) or e(D(2, 2)) + 1.

If F −w contains no copy of D(2, 2), then it is sufficient to color all edges incident to w red

and color E(F − w) blue. Thus assume F − w contains a copy of D(2, 2), denoted by H,

with two centers u and v. Since H ⊆ F − w, then w 6= u, v.

Assume ∆(F ) = deg(w) = 4. Then e(F − w) = 5 = e(D(2, 2)). Thus F − w = H.

It follows that the vertices of degree at least three in F exactly are u, v and w. Then it is

sufficient to color E({u, v, w}) red and the other edges in F blue.

Next assume ∆(F ) = deg(w) = 3. Then e(F \ w) = 6 and thus there is the unique

edge e ∈ E(F − w) \ E(H). Since ∆(F ) = 3, then e is incident to none of u, v and w, and

u, v 6∈ N(w). Denote N(w) = {w1, w2, w3}, N(u) = {v, u1, u2} and N(v) = {u, v1, v2}. If

e = u1u2 or v1v2, say e = u1u2, then color u1u2, u1u and u2u red. And noting v 6∈ N(w),

such coloring is what we want. If e = uivj for i, j ∈ {1, 2}, say e = u1v1, then

• when v1 6∈ N(w), it is sufficient to color the edges incident to u red and color the

other edges in F blue;

• when v1 ∈ N(w), it is sufficient to color the edges incident to v red and color the

other edges in F blue.

Thus assume e is incident to at most one vertex in V (H).

If e is not incident to any vertex in V (H), then w, u and v are the unique three vertices

of degree at least 3 in F . Noting u, v 6∈ N(w), it is sufficient to color uv red and the other

edges in F blue. Thus assume e is incident to exact one vertex in V (H). Considering e is

not incident to u or v, we assume that e is incident to u1 and not to any other vertex in

V (H). Then there are at most four vertices of degree 3 in F , which are w, u, v and u1.

It is sufficient to color the edges incident to u red and the other edges in F blue. Noting

u, v 6∈ N(w), such coloring is what we want.
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Next consider r̂(sP2, D(1, n)). By an induction, we will show r̂(sP2, D(1, n)) = s(n+ 2)

for sufficiently large n. And the following theorem will be the inductive basis.

Theorem 2.2.4. For n ≥ 3,

r̂(2P2, D(1, n)) = 2n+ 4.

Proof. By Theorem 2.2.2, we have r̂(2P2, D(1, n)) ≤ 2n+ 4. Next we show r̂(2P2, D(1, n)) ≥
2n+4. Let F be a graph of size 2n+3 and containing a copy of D(1, n). Take w ∈ V (F ) such

that deg(w) = ∆(F ). Denote F ′ by the induced subgraph of the set of edges not incident

to w. Since F contains a copy of D(1, n) , then ∆(F ) ≥ n + 1. If ∆(F ) ≥ n + 2, then

e(F ′) ≤ n + 1 and F ′ has no copy of D(1, n). It is sufficient to color the edges incident

to w red and color the other edges in F blue. Thus assume that ∆(F ) = n + 1. Then

e(F ′) = n + 2 = e(D(1, n)). If F ′ 6∼= D(1, n), then it is sufficient to color the edges incident

to w red and color the other edges in F blue, again. Thus assume F ′ ∼= D(1, n). Let u and

v be the n-center and 1-center, respectively. If N(w) ∩ V (F ′) = ∅, then it is sufficient to

color one edge of F ′ red and the other edges in F blue. Thus assume N(w) ∩ V (F ′) 6= ∅.
If v ∈ N(w) ∩ V (F ′), then it is sufficient to color the edges incident to v red and color

the other edges in F blue. Thus assume v 6∈ N(w) ∩ V (F ′). If u ∈ N(w) ∩ V (F ′), then

deg(u) ≥ n+ 2, which contradicts ∆(F ′) = n+ 1. Thus assume u 6∈ N(w) ∩ V (F ′). If there

exists x ∈ N(w) ∩ V (F ′) such that x ∈ NF ′(u), then It is sufficient to color ux and wx red

and color the other edges in F blue. Thus assume no neighbor of u belong to N(w)∩V (F ′).

Denote by v1 the other neighbor of v than u in F ′. Then N(w) ∩ V (F ′) = {v1}. It

is sufficient to color vv1 and wv1 red and other edges in F blue. And such edge-coloring is

what we want.

Before to get r̂(sP2, D(1, n)) = s(n+ 2), we prove the the following lemma first.

Lemma 2.2.5. Assume F is a graph of size s(n+2)−1 where s ≥ 2 and n ≥ d(s2+3s−2)/2e.
Denote by W the set of vertices of degree at least n+ 1 in F . If |W | ≥ s, then |W | = s.

Proof. Let t = |W |. If t ≥ n+ 3, then s(n+ 2)− 1 = e(F ) ≥ (n+ 1)t/2 ≥ (n+ 1)(n+ 3)/2,

i.e.,

n2 + (4− 2s)n+ (5− 4s) ≤ 0.

Thus

n ≤ (s− 2) +
√
s2 − 1 ≤ 2s− 2 =

1

2
[(s2 + 3s− 2)− (s2 − s+ 2)] <

s2 + 3s− 2

2
,
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which contradicts n ≥ d(s2 + 3s− 2)/2e. Thus t ≤ n+ 2. And further,

e(F ) ≥ [2e(W ) + e(W, V (F )−W )]− e(W ) =

∑
x∈W

deg(x)

− e(W ) ≥ t(n+ 1)− t(t− 1)

2
.

Noting e(F ) = s(n+ 2)− 1, we have

t(t− 1) ≥ 2(t− s)n+ 2(t− 2s+ 1). (2.2)

Because t ≤ n+ 2, we have

t(t− 1) ≥ 2(t− s)(t− 2) + 2(t− 2s+ 1).

That is

t[t− (2s+ 1)] + 2 ≤ 0.

Then t ≤ 2s+ 1.

Suppose t ≥ s+ 1. Then t ∈ [s+ 1, 2s+ 1]. By (2.2), we have

n ≤ t(t− 1)− 2(t− 2s+ 1)

2(t− s)
=

1

2

[
(t− s) +

s2 + s− 2

t− s
+ 2s− 3

]
. (2.3)

Denote

f(t) :=
1

2

[
(t− s) +

s2 + s− 2

t− s
+ 2s− 3

]
.

Since t ∈ [s+ 1, 2s+ 1] and s ≥ 2, we have

max
t∈[s+1, 2s+1]

f(t) = max{f(s+ 1), f(2s+ 1)}

= max

{
s2 + 3s− 4

2
, 2s− 1− 2

s+ 1

}
=
s2 + 3s− 4

2
.

Then by (2.3), we have

n ≤ f(t) ≤ s2 + 3s− 4

2

But that contradicts n ≥ d(s2 + 3s− 2)/2e > (s2 + 3s− 4)/2.

Theorem 2.2.6. For s ≥ 2 and n ≥ d(s2 + 3s− 2)/2e,

r̂(sP2, D(1, n)) = s(n+ 2).
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Proof. We will use induction on s. When s = 2, by Theorem 2.2.4, we have r̂(2P2, D(1, n)) =

2n+4. Suppose r̂((s−1)P2, D(1, n)) = (s−1)(n+2). Next we prove r̂(sP2, D(1, n)) = s(n+2).

By Theorem 2.2.2, we have r̂(sP2, D(1, n)) ≤ s(n+ 2). Next we show r̂(sP2, D(1, n)) ≥
s(n + 2). Let F be a graph of size s(n + 2) − 1 and containing a copy of D(1, n). Then

∆(F ) ≥ n+ 1. Denote by W the set of vertices of degree at least n+ 1 in F . If |W | ≤ s− 1,

then it is sufficient to color the edges incident to w red for each w ∈ W and color the

other edges in F blue. Next assume |W | ≥ s. By Lemma 2.2.5, we have |W | = s and let

W = {w1, w2, . . . , ws}.

Assume ∆(F ) = n + 1. If w1w2 ∈ E(F ) then it is sufficient to color w1w2 and the

edges incident to wi red for each i ∈ [3, s] and color the other edges in F blue. Clearly,

in such edge-coloring, there is neither a red copy of sP2 nor a blue copy of D(1, n) . Thus

assume w1w2 6∈ E(F ), and symmetrically, wiwj 6∈ E(F ) for any i, j ∈ [1, s]. If there exists

u ∈ N(w1) ∩N(w2), then it is sufficient to color w1u, uw2 and the edges incident to wi red

for each i ∈ [3, s] and color the other edges in F blue. Thus assume N [w1]∩N [w2] = ∅, and

symmetrically, N [wi] ∩N [wj] = ∅ for any i, j ∈ [1, s]. Thus e(F −W ) = s − 1. Then color

the edges incident to wi blue for each i ∈ [1, s] and color F −W red. Since e(F −W ) = s−1,

there is no red copy of sP2 . Since N [wi] ∩ N [wj] = ∅ for any i, j ∈ [1, s], there is no blue

copy of D(1, n) .

Assume ∆(F ) ≥ n + 2 and deg(w1) = ∆(F ). Denote F ′ = F − {w1}. Then e(F ′) ≤
(s− 1)(n+ 2)− 1. By induction hypergraphs, there is a red-blue edge-coloring such that in

F ′, there is neither a red copy of (s − 1)P2 nor a blue copy of D(1, n). And further color

the edges incident to w1 red. Then in the new red-blue edge-coloring, there is no red copy

of sP2 , and no blue copy of D(1, n).
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CHAPTER 3

SIZE RAMSEY NUMBERS INVOLVING BROOMS

Note that a broom B(m,n) is a tree obtained from a path Pm+1 and a star K1,n by

identifying an end-vertex of Pm+1 with the center of K1,n. Next, we give some essential

parameters of B(m,n). The order of B(m,n), v(B(m,n)) = n+m+ 1. The size of D(m,n),

e(B(m,n)) = n+m. The maximum degree of B(m,n), ∆(B(m,n)) = n+ 1.

3.1 Size Ramsey numbers of P3 versus brooms

In this section, we give some results on the size Ramsey numbers for 3-path versus

brooms. At first, we have an upper and lower bound for r̂(P3, D(m,n)) as the following

theorem.

Theorem 3.1.1. For m ≥ 3 and n ≥ 1,

n+
3

2
m ≤ r̂(P3, B(m,n)) ≤ n+ 2m.

Proof. To show r̂(P3, B(m,n)) ≤ n + 2m, let G be a graph obtained from a (m + 1)-path

Pm+1 = v1 · · · vm+1 and a star K1,n+1 with center u by identifying v1 and u (that is u = v1),

then incident edges vivi+2 for all i ∈ {1, · · · ,m− 1}, which show in Figure 3.1.

Figure 3.1. Upper Bound of P3 versus B(m,n)

Giving a red-blue edge-coloring of G, let R and B denote the red and blue subgraph,

respectively. Suppose that R does not contain a P3, by Fact 2.1.1, the red edges in F

form a matching. In star K1,n+1, at most one edge is colored red, so there are at least n
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blue edges in K1,n+1. In path Pm+1 with edges vivi+2 for all i ∈ {1, · · · ,m − 1}, if any

matching is deleted, there must be a path Pm+1. Thus, there is a B(m,n) in B, and hence

r̂(P3, B(m,n)) ≤ e(G) = n+ 2m.

Next we show r̂(P3, B(m,n)) ≥ n + 3
2
m. Let F be a graph with at most n + 3

2
m − 1

edges. We can assume that e(F ) = n + 3
2
m− 1 and F containing a copy of B(m,n). Since

B(m,n) contains a (m + 2)-path copy, then we can color at least m
2

matchings in B(m,n)

red and color the other edges in F blue. Note that blue edges in F at most n + m − 1, F

contains no blue copy of B(m,n), as desired.

Next we give the exact value of r̂(P3, B(3, n)) and as r̂(P3, B(3, n)) the following theo-

rems.

Theorem 3.1.2. For n ≥ 5,

r̂(P3, B(3, n)) = n+ 6.

Proof. By Theorem 3.1.1, we have r̂(P3, B(3, n)) ≤ n+6. Next we show r̂(P3, B(3, n)) ≥ n+6.

Let F be a graph with at most n + 5. We can assume that e(F ) = n + 5. Let s be the

number of vertices of degree ≥ n+ 1.

Claim 6. s = 1.

Proof. Assume, to the contrary, that s ≥ 2. Then there exist two vertices, say u1, u2, such

that deg(ui) ≥ n+ 1 for i = 1, 2, and hence there are at least 2(n+ 1)− 1 ≥ n+ 6 > e(F ),

since n ≥ 5, a contradiction.

If ∆(F ) ≤ n, we choose an edge e in F and color it red, and the other edges in F − e
are colored blue. Then there is neither a red copy of P3 nor a blue copy of B(3, n). If

∆(F ) = n+ 1, we choose an edge e incident to v in F and color it red, and the other edges

in F are colored blue. Then there is neither a red copy of P3 nor a blue copy of B(3, n).

Suppose ∆(F ) = n+ 3 + i (i = 0, 1, 2). Then there exists a vertex v such that deg(v) =

∆(F ) = n+ i, and e(F − v) = 2− i. If i = 1, 2, then we color the edges incident to v red. If

i = 0, then there are two edges in F − v and color one of then red. Then we color the other

edges in F blue. One can easily check that there is neither a red copy of P3 nor a blue copy

of B(3, n), as desired.

Suppose ∆(F ) = n+ 2. Then there exists a vertex v such that deg(v) = ∆(F ) = n+ 2,

and e(F − v) = 3. If F − v 6∼= K3 and F − v 6∼= K1,3, then there is a 2P2 in F − v, and we



20

color 2P2 red, and the other edges of F are colored blue. Then there is neither a red copy of

P3 nor a blue copy of B(3, n).

Suppose F − v ∼= K3 or F − v ∼= K1,3. Let N(v) = {vi | 1 ≤ i ≤ n + 2}. The center

vertex of K1,3 is denoted as u, and the other three degree vertices in K1,3 are denoted as u1,

u2 and u3. Since F is connected, |N(v) ∩ V (F − v)| 6= ∅.

If |N(v) ∩ V (F − v)| = 1, let {x} = N(v) ∩ V (F − v), then we color the edge vx red,

the other edges in F blue. One can easily check that there is neither a red copy of P3 nor a

blue copy of B(3, n).

Case 3.

F − v ∼= K3

Subcase 3.1. If |N(v)∩V (F−v)| = 2, then we color the edge vvi (vi ∈ N(v) and deg(vi) = 1)

red, the other edges in F blue. Then v(F − vi) = n + 3 < v(B(3, n)), so there is neither a

red copy of P3 nor a blue copy of B(3, n).

Subcase 3.2. If |N(v) ∩ V (F − v)| = 3, then v(F ) = n+ 3 < v(B(3, n)), so B(3, n) * F .

Case 4.

F − v ∼= K1,3

Subcase 4.1. If N(v)∩V (F − v) = {u, u1}, then we color the edges uu2 and vvi (vi ∈ N(v)

and deg(vi) = 1) red, the other edges in F blue. Then v(F − u2 − vi) = n+ 3 < v(B(3, n)),

so there is neither a red copy of P3 nor a blue copy of B(3, n).

Subcase 4.2. If N(v)∩V (F −v) = {u1, u2}, then we color the edges uu3 and vvi (vi ∈ N(v)

and deg(vi) = 1) red, the other edges in F blue. Then v(F − u3 − vi) = n+ 3 < v(B(3, n)),

so there is neither a red copy of P3 nor a blue copy of B(3, n).

Subcase 4.3. If |N(v)∩V (F−v)| = 3, then we color the edge vvi (vi ∈ N(v) and deg(vi) = 1)

red, the other edges in F blue. Then v(F − vi) = n + 3 < v(B(3, n)), so there is neither a

red copy of P3 nor a blue copy of B(3, n).

Subcase 4.4. If |N(v) ∩ V (F − v)| = 4, then v(F ) = n + 3 < v(B(3, n)), so B(3, n) * F ,

as desired.

Theorem 3.1.3. For n ≥ 7,

r̂(P3, B(4, n)) = n+ 8.
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Proof. By Theorem 3.1.1, we have r̂(P3, B(4, n)) ≤ n+8. Next we show r̂(P3, B(4, n)) ≥ n+8.

Let F be a graph with at most n + 7. We can assume that e(F ) = n + 7. Let s be the

number of vertices of degree ≥ n+ 1.

Claim 7. s = 1.

Proof. Assume, to the contrary, that s ≥ 2. Then there exist two vertices, say u1, u2, such

that deg(ui) ≥ n+ 1 for i = 1, 2, and hence there are at least 2(n+ 1)− 1 ≥ n+ 8 > e(F ),

since n ≥ 7, a contradiction.

Suppose there exists a vertex v such that deg(v) = ∆(F )

If ∆(F ) ≤ n, we choose an edge e in F and color it red, and the other edges in F − e
are colored blue. Then there is neither a red copy of P3 nor a blue copy of B(4, n). If

∆(F ) = n + 1, we choose an edge e incident to v in F and color it red, and the edges in

F − e are colored blue. Then there is neither a red copy of P3 nor a blue copy of B(4, n).

Suppose n+ 3 ≤ ∆(F ) ≤ n+ 7. Then the number of edges that not incident to v is at

most 4. Notice that B(4, n) ⊆ F and has 3 edges that not incident to v. We can color red

2P2 in F − v, and the number of edges left in F − v is at most 2. One can easily check that

there is neither a red copy of P3 nor a blue copy of B(4, n), as desired.

Suppose ∆(F ) = n+ 2. Then there exists a vertex v such that deg(v) = ∆(F ) = n+ 2,

and e(F − v) = 5, denote H = F − v. Clearly, P4 ⊆ H and H has at least 2 matching. If the

number of maximun matching of H is 3, then we can color red 3P2 in H and there is neither

a red copy of P3 nor a blue copy of B(4, n).

In fact, there is only one graph with 5 edges that contains P4 as subgraph and the

number of maximum matching is 2, and delete any matching in H, there is always P4 ⊆ H,

which show in Figure 3.2.

If |{u1, u2, u3, u4}∩N(v)| = 1, let {ui} = {u1, u2, u3, u4}∩N(v), then we color the edge

vui red, the other edges in F blue. One can easily check that there is neither a red copy of

P3 nor a blue copy of B(4, n).

If 2 ≤ |{u1, u2, u3, u4} ∩ N(v)| ≤ 4, we color the edge vvi (vi ∈ N(v) and deg(vi) = 1)

red, the other edges in F blue. Then v(F − vi) ≤ n + 4 < v(B(4, n)), so there is neither a

red copy of P3 nor a blue copy of B(4, n).
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Figure 3.2. The Graph H

3.2 Size Ramsey numbers of matchings versus brooms

In this section, we focus on size Ramsey numbers for matchings versus brooms. At first,

we give an upper and lower bound for r̂(2P2, B(m,n)) as the following theorem.

Theorem 3.2.1. For m ≥ 4, n ≥ 1,

r̂(2P2, B(m,n)) ≤ 2n+ 2m− 2.

For m ≥ 3, n ≥ m+ 2,

r̂(2P2, B(m,n)) ≥ 2n+m+ 2.

Proof. To show r̂(2P2, B(m,n)) ≤ 2n + 2m − 2, let G be a graph obtained from a 2m-

cycle C2m = v1v2 . . . v2mv1 and two stars K1,n−1, K1,n−1 with centers u1, u2, respectively, by

identifying u1, v1 and u2, vm (that is u1 = v1 and u2 = vm), which show in Figure 3.3.

Giving a red-blue edge-coloring of G, let R and B denote the red and blue subgraph,

respectively. Suppose that R does not contain a 2P2, by Fact 2.2.1, the red edges in F form a

star or a triangle. Since G is triangle-free, the red edges in F form a star. If the center of the

red star is on the pendent vertices of G, then it is obvious that B(m,n) is in B. Similarly,

if the center of the red star is on the cycle of G, it is easy to check that there is a B(m,n)

in B, and hence r̂(2P2, B(m,n)) ≤ e(G) = 2n+ 2m− 2.

Next we show r̂(2P2, B(m,n)) ≥ 2n+m+2. Let F be a graph with at most 2n+m+1.

We can assume that e(F ) = 2n + m + 1. If ∆(F ) ≤ n, we choose an edge e in F and color

it red, and the other edges in F − e are colored blue. Then there is neither a red copy of
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Figure 3.3. Upper Bound of 2P2 versus B(m,n)

2P2 nor a blue copy of B(m,n). If ∆(F ) ≥ n + 2, then there exists a vertex v such that

deg(v) = ∆(F ) ≥ n + 2. We color the edges incident to v red, and the other edges are

colored blue. One can easily check that there is neither a red copy of 2P2 nor a blue copy of

B(m,n).

Suppose ∆(F ) = n+ 1. Let s be the number of vertices of degree n+ 1.

Claim 8. s ≤ 2.

Proof. Assume, to the contrary, that s ≥ 3. Then there exist three vertices, say u1, u2, u3,

such that deg(ui) = ∆(F ) = n+ 1 for i = 1, 2, 3, and hence there are at least 3(n+ 1)− 3 ≥
2n+m+ 2 > e(F ), since n ≥ m+ 2, a contradiction.

From Claim 8, we have s ≤ 2. If s = 1, then there exists a vertex v ∈ V (F ) such that

deg(v) = ∆(F ) = n + 1. We color the edges incident to v red, and then color the other

edges blue. One can easily check that there is neither a red copy of 2P2 nor a blue copy of

B(m,n), as desired.

Suppose s = 2. Then there exist two vertices u, v ∈ V (F ) such that deg(u) = deg(v) =

∆(F ) = n + 1. If uv ∈ E(F ), then we color uv red, and then color the other edges in

F blue. Since ∆(F − uv) ≤ n, F − uv contains no blue copy of B(m,n) as its subgraph,

as desired. Suppose that uv 6∈ E(F ) and N(u) ∩ N(v) 6= ∅. Choose w ∈ N(u) ∩ N(v).

We color the edges uw, vw red, and then color the other edges in F blue. It is clear that

∆(F − uw − vw) ≤ n, and hence F − uw − vw contains no blue copy of B(m,n) as its

subgraph, as desired. Suppose that uv 6∈ E(F ) and N(u) ∩N(v) = ∅. If F − u 6∼= B(m,n),

then we color the edges incident to u red, and then color the other edges in F blue. It is our
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desired edge-coloring. Similarly, we can get the desired edge-coloring if F − v 6∼= B(m,n).

Thus, F − u ∼= B(m,n) and F − v ∼= B(m,n). Note that e(F − u− v) = m− 1, then these

m− 1 edges must form a path, which show in Figure 3.4.

Figure 3.4. The Graph F

We color one edge from this path red, and then color the other edges in F blue. One can

easily check that there is neither a red copy of 2P2 nor a blue copy of B(m,n), as desired.

The upper bound of r̂(2P2, B(3, n)) is some different, we need to construct a new graph

to obtain the upper bound.

Corollary 1. For n ≥ 5,

r̂(2P2, B(3, n)) = 2n+ 5.

Proof. To show r̂(2P2, B(3, n)) ≤ 2n + 5, let G be a graph obtained from a 6-cycle

v1v2, · · · , v6v1 and two stars K1,n, K1,n−1 with centers u1, u2, respectively, by identifying

u1, v1 and u2, v3 (that is u1 = v1 and u2 = v3), which show in Figure 3.5.

Giving a red-blue edge-coloring of G, let R and B denote the red and blue subgraph,

respectively. Suppose that R does not contain a 2P2, by Fact 2.2.1, the red edges in F form

a star or a triangle. Since G is triangle-free, the red edges in F form a star. If the center

of the red star is on the pendent vertices of G, then it is obvious that B(3, n) is in B. If

u1 is the center of red star, since G − u1 ∼= B(3, n), there is a B(3, n) in B. If u2 is the

center of red star, there is also a B(3, n) in B. Similarly, if the other vertices on the cycle

of G are centers of the red stars, it is easy to check that there is a B(3, n) in B, and hence

r̂(2P2, B(3, n)) ≤ e(G) = 2n+ 5.

From Theorem 3.2.1, let m = 3 then we get r̂(2P2, B(3, n)) ≥ 2n+ 5 for n ≥ 5.
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Figure 3.5. Upper Bound of 2P2 versus B(3, n)

Let m = 4, the exact value of r̂(2P2, B(4, n)) can get from Theorem 3.2.1 directly.

Corollary 2. For n ≥ 6,

r̂(2P2, B(4, n)) = 2n+ 6.



26

CHAPTER 4

SUMMARY AND DISCUSSION

4.1 Summary

This thesis mainly studies the size Ramsey numbers of P3, matchings versus double

stars and brooms, and get some exact values and upper and lower bounds.

In order to prove the upper bound, we need to construct a graph G such that G contains

a red copy of P3 (or matchings) or a blue copy of double star (or broom) under any red-blue

edge-coloring of G.

It is much more difficult to prove the lower bound. Our aim is to give an edge-coloring

for all graphs with fixed size, so that there is neither a red copy of P3 (or matchings) nor a

blue copy of double star (or broom).

4.2 Future work

In the following research, the following problems can still be considered.

• Improve the lower bound (or get the exact value) of r̂(sP2, D(m,n)),

• Get the exact value of r̂(P3, D(m,n)),

• Get the exact value of of r̂(2P2, B(m,n)), and

• Get the exact value of r̂(P3, B(m,n)).

Conjecture 4.2.1. For m ≥ 5 and n ≥ 2m− 1,

r̂(P3, B(m,n)) = n+ 2m.
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[22] P. Erdős, C. C. Rousseau, The size Ramsey number of a complete bipartite graph,

Discrete Math. 113 (1993), 259-262.

[23] R. J. Faudree, R. H. Schelp, A survey of results on the size Ramsey number, Bolyai

Society Mathematical Studies. 11 (2002), 291-309.


	Size Ramsey Numbers Involving Double Stars and Brooms
	Recommended Citation

	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Basic concepts and terminologies
	Research background and related research progress
	Research results

	SIZE RAMSEY NUMBERS INVOLVING DOUBLE STARS
	Size Ramsey numbers of P3 versus double stars
	Size Ramsey numbers of matchings versus double stars

	SIZE RAMSEY NUMBERS INVOLVING BROOMS
	Size Ramsey numbers of P3 versus brooms
	Size Ramsey numbers of matchings versus brooms

	SUMMARY AND DISCUSSION
	Summary
	Future work

	References

