
Georgia State University Georgia State University 

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University 

Mathematics Theses Department of Mathematics and Statistics 

12-14-2021 

A Mathematical Model for Co-Evolution of Pandemic and A Mathematical Model for Co-Evolution of Pandemic and 

Infodemic with Vaccine Infodemic with Vaccine 

Anthony Morciglio 

Follow this and additional works at: https://scholarworks.gsu.edu/math_theses 

Recommended Citation Recommended Citation 
Morciglio, Anthony, "A Mathematical Model for Co-Evolution of Pandemic and Infodemic with Vaccine." 
Thesis, Georgia State University, 2021. 
doi: https://doi.org/10.57709/26659402 

This Thesis is brought to you for free and open access by the Department of Mathematics and Statistics at 
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Mathematics Theses by an 
authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact 
scholarworks@gsu.edu. 

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/math_theses
https://scholarworks.gsu.edu/math
https://scholarworks.gsu.edu/math_theses?utm_source=scholarworks.gsu.edu%2Fmath_theses%2F171&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/26659402
mailto:scholarworks@gsu.edu


A Mathematical Model for Co-Evolution of Pandemic and Infodemic with Vaccine 

 

 

 

 

by 

 

 

 

Anthony J Morciglio 

 

 

 

 

Under the Direction of Yi Jiang, PhD 

 

 

 

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of 

Master of Science 

in the College of Arts and Sciences 

Georgia State University 

2021 



ABSTRACT 

Vaccine hesitancy, resulting from bad information, threatens the possibility of ending the 

COVID-19 pandemic through mass vaccination. The COVID-19 pandemic coincides with an 

overabundance of controversial information regarding disease transmission and public health 

mitigation approaches. We investigate a phenomenological co-evolution of pandemic and 

infodemic in the context of COVID-19 with an emphasis on evolutionary game theory. Using 

bifurcation analysis, we determine the limit cycle boundaries and the separation of attraction 

between stable foci of infection and periodic outbreaks of infection. Our results suggest that low 

risk perception of vaccination relative to infection is not sufficient to eradicate the disease; 

promotion of quarantine methods or targeted mitigation of the spread of corona-misinformation 

is necessary to drive the system to disease free equilibrium. 
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1 INTRODUCTION  

The COVID-19 pandemic, caused by SARS-CoV-2, presents an unprecedented challenge to 

human health, the economy, and nearly all aspects of our society. COVID-19 vaccination and 

practicing of CDC guidelines is the only sustainable mitigation to prevent widespread morbidity 

and mortality from the infection. Vaccine hesitancy, a strong unwillingness to adopt the 

vaccination independent of morbidity and perceived risk [24, 29], remains a barrier to the 

achievement of herd immunity. It is difficult to comprehend that some of the greatest triumphs of 

medical science are being eroded by the promotion corona-misinformation and corona-distrust 

[26]. In February 2020, the World Health Organization (WHO) started using the term infodemic 

for the overabundance and spread of good and bad information about disease transmission and 

public health mitigation approaches. The spread of corona-misinformation makes it difficult for 

people to ascertain trustworthy sources and reliable guidance when they need it [37]. The WHO, 

the United Nations (UN) UNICEF, and other major world health organizations issued a joint 

statement in September 2020 calling for member states to “manage the COVID-19 infodemic, to 

promote healthy behaviors and mitigate the harm from corona-misinformation and corona-

disinformation [40]. To address vaccine hesitancy and the role of infodemic in driving the 

COVID-19 pandemic, we consider a novel model to understanding the dynamics of the co-

evolution of epidemics and infodemics with vaccination considered. An infodemic requires an 

overabundance of information, communication between news outlets and readers and spreads 

like an epidemic among humans through digital and physical outlets. We choose to model the 

spread of information like the spread of infection, using simple non-linear reaction 

approximations for the rate of information exchange. We incorporate an evolutionary game 

theoretical framework to evaluate the role of risk of infection to an extended COVID-19 
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infodemic model to help understand how the spread of good and bad information impact disease 

transmission. Vaccine hesitancy remains a barrier to population inoculation against highly 

infectious diseases such as SARS-CoV-2. As mass COVID-19 vaccination efforts underway 

around the world, significant vaccine hesitancy, and resistance observed by healthcare workers 

[15, 22] and ethnic minority groups continues to rise [28, 31]. Concerns about the safety of the 

vaccine contribute to vaccine hesitancy. Distrust in the scientific expertise and health and 

government authorities drives consumers away from traditional sources (newspapers, television, 

radio, government agencies) to social media outlets [28], who are then more likely recipients of 

bad information. Recent new studies have begun to classify and quantify the spread of bad 

information about COVID-19 [32, 33]. A study, based on a national survey of US adults in 

March and July of 2020, found that about 15% believed the pharmaceutical industry created the 

coronavirus and more than 28% thought it was a bioweapon made by the Chinese government. 

Those beliefs predicated a subsequent decrease in willingness to wear a mask or take a vaccine 

[32]. An analysis of bad information from five countries (the United States, the UK, Ireland, 

Spain, and Mexico showed that substantial portions of each population - anywhere from 15% to 

37% - believed bad information about COVID-19 in April and May 2020, representing what the 

authors call a “major threat to public health.” People who are more gullible to corona-

misinformation are less likely to comply with public health recommendations and less likely to 

become vaccinated [33]. Most studies on the spread of information focus on the contribution of 

social media platforms such as Facebook, Twitter, and WhatsApp act as functional conduits in 

the surge of bad information [2, 12, 27, 42]. These models suggest that the transmission of 

corona-misinformation, is a palpable risk to society; facilitating public distrust and impeding the 

CDC advised practices including mask wearing, social distancing, and quarantining following 
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infection. Preceding the COVID-19 pandemic, one study used an agent-based model of a 

norovirus outbreak to show that reducing bad information by 30% or making at least 30% of the 

population fully resistant to sharing bad information, was effective in counteracting the negative 

impacts of bad advice on the outbreak [7]. Another study, using a susceptible-infectious-

susceptible (SIS) epidemic model on a scale free network incorporated media mitigated 

reduction in infection and showed that the spread of good information can impede infection by 

decreasing the basic reproductive number [39]. Additionally, both models considered the spread 

of infection as influenced by the spread of information yet lacked the feedback of infection on 

the spread of information. One more study used a susceptible-exposed-infectious-recovered 

(SEIR) model on a bipartite network (a physical social network for epidemics and a separate 

information spread network for social influence) coupled with risk perception of infection to 

information in the onset of epidemic [41]. Their results suggest that although heavy non-

pharmaceutical intervention greatly reduces the epidemic spread, high socioeconomic cost 

associated with these interventions will prevent their implementation [41]. None of these 

previous network models included vaccination [7, 39, 41]. We propose a mathematical model 

that couples epidemiology with evolutionary game theory to help understand the co-evolution of 

epidemic and infodemic in the presence of vaccination. We use a stratified SIS model for viral 

infection, accounting for the possibility of reinfection through the emergence of different viral 

variants. We stratify the population to those with ’good’ and ’bad’ information. People with 

’good’ information follow science-based advice, practice precautionary measures issued by CDC 

including following guidelines on wearing mask, keeping social distance, and becoming 

vaccinated when possible. People with ’bad’ information behave contrarily and propagate the 

spread of disease. We model the spread of information using a similar framework as models for 
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the spread of infections, people with ’good’ information are misinformed by the ’bad’ and 

change their behavior accordingly. Furthermore, we consider the probability of ’good’ becoming 

vaccinated, which depends upon the perception of risk of vaccination relative to infection and is 

derived using an evolutionary game theoretical framework. Our co-evolution model of pandemic 

and infodemic exhibits complex dynamics stable foci of high infection at high rates of bad 

information spread (Figures: 2.6.1, 2.6.2, 2.6.3), stable periodic oscillations of infection at low 

rates of good information spread (Figures: 2.9.1, 2.9.2), and mixed oscillations at high values of 

risk perception (Figure 2.7.1). We find that the spread of bad information feeds the infectious 

disease spread, allowing periodic outbreaks even for 90% vaccination efficacy in reducing the 

infection. Although reducing the perception of risk of vaccination increases the vaccination 

uptake, promotion of good information or reduction of bad information drives the system to 

disease free state. Our results suggest that increasing the trust of the public, e.g., reducing the 

risk perception of the vaccination, is not sufficient in the achievement of herd immunity; 

additional mitigation methods that focus on the spread of information are needed to promote the 

health of the population. 

1.1 Background 

Previous models have considered the reduction of infection that depends on media 

coverage [39], the mitigation of disease in contrast to socioeconomic cost [41], and the 

incorporation of relative vaccination morbidity relative to infection mortality [7]. One model 

considered a degree distribution of infection and performed static analysis on the basic 

reproductive number. Suppose there are S = {N1, N2, …, Nn} distinct nodes of degree Nj. The 

degree distribution, Pj, can be expressed as the relative fraction of each degree node divided by 

the cumulative sum: 
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𝑁𝑗

𝑁1 + 𝑁2 + ⋯ + 𝑁𝑛
                                                                                                                                   (1.1) 

The first moment of the degree distribution, or commonly referred to as the mean degree, is 

expressed as: 

⟨𝑘⟩ = 𝑘𝑗𝑃𝑗                                                                                                                                                    (1.2) 

In the classical SIS model, one considers the following set of two equations: 

𝑑𝑆

𝑑𝑡
=  −𝛽∗𝑆𝐼 + 𝜇𝐼                                                                                                                                     (1.3) 

𝑑𝐼

𝑑𝑡
= 𝛽∗𝑆𝐼 − 𝜇𝐼                                                                                                                                          (1.4) 

Where β* is the effective transmissibility of infection and µ is the disease recovery rate. In a 

heterogeneous model, the probability of running into the susceptible depends on the degree 

distribution, the density function, Ꝋ, which is proportional to the fraction of infected with degree 

k, Ik: 

Θ =
∑(𝑘𝑃𝑘)

⟨𝑘⟩

𝐼𝑘

𝑁𝑘
                                                                                                                                         (1.5) 

Where <k> is the mean degree (1.2), Nk = Sk + Ik, and Pk is the degree distribution (1.1). 

Substitution of density function (1.5) into equations (1.1, 1.2), gives the following: 

𝑑𝑆

𝑑𝑡
=  −𝛽Θ 𝑆𝑘 + 𝜇𝐼𝑘                                                                                                                                 (1.6) 

𝑑𝐼

𝑑𝑡
=  𝛽𝛩 𝑆𝑘 − 𝜇𝐼𝑘                                                                                                                                    (1.7) 

Yi Wang considers the infectious dynamics of binge drinking: taking Sk as the susceptible 

fraction with no or moderate drinking habits, Xk as the aware fraction that avoids encountering 

the binge drinking fraction of population Ik. Substituting the effective probability of infection, β* 

= βꝊ, one has the following: 
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𝑑𝑆𝑘

𝑑𝑡
= −𝛽Θ𝑆𝑘 + 𝜇𝐼𝑘 − 𝛼𝑆𝑘𝑀 − 𝜎𝑋𝑘                                                                                                   (1.8) 

𝑑𝑋𝑘

𝑑𝑡
= 𝛼𝑆𝑘𝑀 − 𝜎𝑋𝑘                                                                                                                                 (1.9) 

𝑑𝐼𝑘

𝑑𝑡
= 𝛽𝑆𝑘Θ − 𝜇𝐼𝑘                                                                                                                                  (1.10) 

𝑑𝑀

𝑑𝑡
= 𝜔Σ(𝐼𝑘) − 𝛾𝑀                                                                                                                               (1.11) 

Where M is the media of awareness of infection and serves as the good information that reduces 

the severity of the epidemic, µ is the recovery rate of the binge drinkers, α is the dissemination 

rate of awareness among non/moderate drinkers, ω is the growth rate of media coverage, γ is the 

depletion of media coverage due to ineffective measures, and σ is the transmission rate from 

aware individuals to non/moderate drinkers [37]. In this manuscript, we consider the good 

information to promote quarantine methods following infection. 

Another model considers a bipartite network G = (V, Ei, Ec(t)) that incorporates information 

exchange and disease spread concomitantly where V = {V1, V2, …, Vn} is the collection of n 

individuals and Ei and Ec(t) correspond to the influence and contact layer respectively. In Ye’s 

analysis, the influence layer is static and does not evolve in time. In the disease domain, each 

element, i, takes on a health status of healthy at xi or infected at yi. Taking Ak = {Sk, Ik} to 

consist of all individuals of with degree k, Ye chooses to model the infectious dynamics using an 

SIR approach. Let R = N – S - I be the removed fraction of the population  Under the assumption 

of no vital dynamics, the transmission of infection can be described as: 

𝑑𝑆𝑘

𝑑𝑡
= −𝜆Θ𝑆𝑘                                                                                                                                          (1.12) 

𝑑𝐼𝑘

𝑑𝑡
= 𝜆Θ𝑆𝑘 − 𝜇𝐼𝑘                                                                                                                                   (1.13) 
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𝑑𝑅

𝑑𝑡
= 𝜇Σ𝐼𝑘                                                                                                                                                (1.14) 

Ye takes a unique modelling approach and considers non-linear modelling of policy decision 

making, risk perception function, and associated cost of self-protective behavior. Their paper 

considers the payoff function to depend on policy decision and risk perception and is formulated 

using network coordination type games [41]. In this manuscript, we consider the homogeneous 

model that focuses on the risk payoff which does not depend on policy decision nor degree 

distribution, but on the relative risk of vaccination to infection (Section 2.3, [7]).  
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2 RESULTS 

2.1 A Mathematical Model for the Coevolution of Epidemic and Infodemic 

We consider a stratified SIS model for both virus and information spread to model the co-

evolution of epidemic and infodemic. In the disease domain, the population is divided into 

susceptible (S), infectious (I), and vaccinated (V). In the information domain, the population 

consists of two mutually exclusive compartments: those with good information practice behavior 

restrictive public health measures to reduce spread of disease; including mask wearing, social 

distancing, and a likelihood of receiving vaccination. Likewise, those with bad information 

contribute to the spread of infection and bad information. We model the spread of information 

analogous to an infectious process requiring physical contact between good and bad fractions in 

the information domain. Additionally, we make a strong assumption that those infected with 

good information (IG) follow CDC guidelines and practice self-quarantine. Therefore, only the 

infected people with bad information (IB) transmit the virus and drive the epidemic spread. 

Throughout this manuscript, we evaluate the phenomenological role of perception of risk of 

vaccination, rates of spread of good and bad information that drive the complex dynamics 

between pandemic and infodemic. We find that decreasing the perception of risk of vaccination, 

promoting the spread of good information, and reducing the spread of bad information promotes 

the achievement of herd immunity. As illustrated in the schematic diagram (Figure 2.1.1), a 

susceptible person with good information (SG) is exposed to the force of infection by IB to 

become infected with good behavior (IG) or are recipients of bad information and become (SB). A 

bad behaving infected person (IB) can recover from the disease and become a susceptible person 

with bad behaviors SB at rate γ or be ’educated’ at rate ϵ to become IG. We assume that the 

transmission of good information of those infected with bad information is proportional to the 
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contact to good information. The susceptible with good information SG become vaccinated with 

probability φ. Vaccinated people are temporarily immune with efficacy δ. The vaccination 

compartment serves as a vaccination leakage for δ < 1. 

 

Figure 2.1.1 Schematic representation of co-evolution of infodemic and pandemic. The 

susceptible population with good information, SG, is infected with corona-misinformation and 

virus at transmission probabilities: µ and χ respectively. The susceptible with bad information SB 

have an increased force of infection χ < 𝜒̂.  Once a susceptible becomes infected, they recover at 

rate γ. Additionally, the misinformed infectious IB become educated at rate ϵ. The probability 

that a susceptible person with good information, SG, becomes vaccinated with probability φ. The 

vaccination compartment acts as a leakage and become re-infected.  

 

In the absence of vital dynamics, conservation implies: SG + SB + IG + IB + V = 1. Throughout 

this manuscript, we use the following composite quantities: Bad (B = IB + SB), Good (G = IG + 

SG), Infected (I = IG + IB), and Healthy (H = SG + SB + V). In the disease domain (the horizontal 

directions of Figure 2.1.1), we assume that both infected populations: IG and IB, recover at rate γ, 

but bad-behaving susceptible, SB, are infected at a higher rate than that for good-behaving 

susceptible (χ < 𝜒̂). In the information domain (the vertical direction of Figure 2.1.1), we assume 

SG is misinformed by those with the bad information, B, at transmission probability µ; those 
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infected with bad information, IB, are educated through exposure to those with good information, 

G, at transmission probability ϵ. We further assume that the probability of vaccination uptake 

depends on the relative perception risk of vaccination relative to infection, r. We use game 

theoretical framework to model the human decision-making on vaccination [6]. In a traditional 

vaccination game, the payoff of an individual taking a vaccine is greater when the morbidity risk 

is lower. In the context of COVID-19, the vaccination hesitancy is not due to vaccination 

morbidity but may depend on risk perception of vaccination relative to infection [28, 31]. We use 

rv and ri to denote the perceived risks of vaccination and infection, respectively, and define the 

relative risk perception as r = rv/ri. The probability of vaccination φ depends on the strength of 

initiative parameter, m, and payoff gained for adopting the vaccination strategy compared with 

individuals who do not take the vaccination [6, 21]. The strength of initiative is a proportionality 

constant that determines the speed of convergence at which those with the susceptible population 

with the good information become vaccinated, which we assume to be constant (Section 2.3). 

The co-evolution of pandemic and infodemic with the incorporation of vaccination are described 

as: 

𝑑𝑆𝐺

𝑑𝑡
= 𝛾𝐼𝐺 − 𝜙𝑆𝐺 − 𝜒𝑆𝐺𝐼𝐵 − 𝜇𝑆𝐺(𝐼𝐵 + 𝑆𝐵)                                                                                   (2.1.1) 

𝑑𝑆𝐵

𝑑𝑡
= 𝛾𝐼𝐵 + 𝜇𝑆𝐺(𝑆𝐵 + 𝐼𝐵) −  𝜒̂𝑆𝐵𝐼𝐵                                                                                                (2.1.2) 

𝑑𝐼𝐺

𝑑𝑡
= −𝛾𝐼𝐺 + 𝜖(𝑆𝐺 + 𝐼𝐺)𝐼𝐵 + 𝜒𝑆𝐺𝐼𝐵                                                                                               (2.1.3) 

𝑑𝐼𝐵

𝑑𝑡
= −𝛾𝐼𝐵 +  𝜒̂𝑆𝐵𝐼𝐵 − 𝜖(𝑆𝐺 + 𝐼𝐺)𝐼𝐵 + (1 − 𝛿)𝜒𝑉 𝐼𝐵                                                                (2.1.4) 

𝑑𝑉

𝑑𝑡
= 𝜙𝑆𝐺 − (1 − 𝛿)𝜒𝑉𝐼𝐵                                                                                                                   (2.1.5) 
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𝑑𝜙

𝑑𝑡
= 𝑚𝜙(1 − 𝜙)(𝐼𝐺 + 𝐼𝐵 − 𝑟𝑉)                                                                                                      (2.1.6) 

In these equations, the transmission rates of “bad” information spread, and “good” information 

spread are µ and ϵ, respectively, which we refer to as corona-misinformation and education. 

Although information spreads faster than virus transmission in the digital landscape [41], the rate 

for a person to change their opinion upon receiving information varies greatly. Hence, in our 

mean-field model, without the separation of information and physical networks, the rate of 

information transmission (for µ and ϵ) can be greater or less than those for viral infection. 

Without loss of generality, we assume the spread of corona-misinformation is less than infection 

(µ < 𝜒̂), and the rate for education exceeds the intrinsic disease recovery rate (ϵ > γ) (Table 

2.1.1). 

Table 2.1.1 Model parameters and their baseline values. All parameters are unitless, 

except for γ with unit 1/ day. Note that: γ, χ, χ ̂ and m are kept constant in the simulations 

reported below. 

 

In this set of baseline parameters, we choose γ = 0.07 to reflect the 14-day incubation period, and 

𝜒̂ = 0.37 such that R0 = 2.5, consistent with the epidemiology of SARS-CoV-2.  
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To measure the prevalence of infection, we derive the effective reproductive number using the 

next generation matrix technique [14, 15]. When no vaccine is available, φ = 0 = V. Solving for 

the non-trivial fixed point in equation (2.1.4) leads to:  

𝜒̂𝑆𝐵 − 𝛾 − 𝜖𝐺 = ( 
𝜒̂𝑆𝐵

𝛾 + 𝜖𝐺
− 1) = 0                                                                                                 (2.1.7) 

where G = SG + IG is the fraction of the population with good information. For IB ≠ 0, IG = IB 

(𝜒̂SB + ϵG) / γ. Adding equations (2.1.3) and (2.1.4) together, we have: 

𝐼𝐵 (
𝜒̂𝑆𝐵

𝛾 + 𝜖𝐺
− 1) = 𝐼𝐵(𝑅0 − 1) = 0                                                                                                  (2.1.8) 

Thus, the effective reproductive number only depends on the infection force generated with the 

bad information IB. With non-trivial probability of vaccination uptake, φ ∈ (0, 1), we have: 

𝐼𝐵 (
𝜒̂𝑆𝐵 + (1 − 𝛿)𝜒𝑉

𝛾 + 𝜖𝐺
− 1)                                                                                                                (2.1.9) 

When the term within the parenthesis in equation (2.1.9) is negative for all time t ≥ 0, IB will 

converge to 0 and the system reaches a disease-free equilibrium (DFE). Thus, we have the 

effective reproductive number:  

𝑅𝑒 =  
𝜒̂𝑆𝐵 + (1 − 𝛿)𝜒𝑉

𝛾 + 𝜖𝐺
                                                                                                                    (2.1.10) 

Note that when V = 0 or δ = 1, Re reduces to R0 in equation (2.1.8). We observe that the 

effective reproductive number inversely depends on the recovery rate: γ and the spread of good 

information: ϵG. Re decreases with increasing vaccination efficacy: δ and increases with 

probability of disease transmissibility between the bad at rate: 𝜒̂. We note that the appearance of 

the V term in the numerator of the effective reproductive number, Re, is a consequence of the 

assumption of vaccination leakage where the vaccinated are re-infected by those with the bad 

information. Unique to our model, the inclusion of high infection on SB by IB at transmission 
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probability 𝜒̂ is two orders of magnitude higher than the infection generated on V by IB at rate (1 

− δ) χ. For appropriate choices of the parameters, we obtain mixed oscillations and is reflected in 

the separation of time scales in the numerator of Re (Figure 2.5.1). 

2.2 Model Formulation  

2.2.1 Model 

We consider a stratified SIS framework partitioned into binary: good (SG, IG) vs. bad (SB, 

IB) respectively. Furthermore, we assume that the susceptible individuals with good information, 

SG, take the vaccine, V, which depends on the risk function φ. 

𝑑𝑆𝐺

𝑑𝑡
= 𝛾𝐼𝐺 − (𝜆𝑏̃ + 𝜆𝑏 + 𝜙)𝑆𝐺                                                                                                          (2.2.1) 

𝑑𝑆𝐵

𝑑𝑡
= 𝛾𝐼𝐵 + 𝜆𝑏̃𝑆𝐺 − 𝜆𝑔𝑆𝐵                                                                                                                 (2.2.2) 

𝑑𝐼𝐺

𝑑𝑡
= −𝛾𝐼𝐺 + 𝛼𝑔𝐼𝐵 + 𝑣𝑏̃𝐺                                                                                                                  (2.2.3) 

𝑑𝐼𝐵

𝑑𝑡
=  −𝛾𝐼𝐺 + 𝛼̂𝑏𝐼𝐵 −  𝑣𝑏̃𝐺 + (1 − 𝛿)𝛼𝑣𝐼𝐵                                                                                   (2.2.4) 

𝑑𝑉

𝑑𝑡
= 𝜙𝑆𝐺 − (1 − 𝛿)𝛼𝑣𝐼𝐵                                                                                                                    (2.2.5) 

𝑑𝜙

𝑑𝑡
= 𝑚𝜙(1 − 𝜙)(𝐼 − 𝑟𝑉)                                                                                                                  (2.2.6) 

In these equations: 

𝐼 = 𝐼𝐺 + 𝐼𝐵                                                                                                                                               (2.2.7) 

𝐵 = 𝑆𝐵 + 𝐼𝐵                                                                                                                                            (2.2.8) 

𝐺 = 𝑆𝐺 + 𝐼𝐺                                                                                                                                              (2.2.9) 

𝛼𝑔 = 𝑐𝑏𝑔𝛽𝑏𝑔𝑆𝐺 = 𝜒𝑆𝐺                                                                                                                       (2.2.10) 

𝛼𝑣 = 𝑐𝑏𝑔𝛽𝑏𝑔𝑉 = 𝜒𝑉                                                                                                                           (2.2.11) 
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𝛼̂𝑏 = 𝑐𝑏𝑔𝛽𝑏𝑔𝑆𝐵 =  𝜒̂𝑆𝐵                                                                                                                      (2.2.12) 

𝑣𝑔̃ = 𝑐𝑏𝑔𝛽𝑔̃ 𝑆𝐺 = 𝜇𝑆𝐺                                                                                                                         (2.2.13) 

𝑣𝑏̃ = 𝑐𝑔𝛽𝑔̃𝐼𝐵 = 𝜖𝐼𝐵                                                                                                                              (2.2.14) 

2.2.2 Nullclines 

Consider the state variable vector, x = [x1, x2, x3, x4, x5], and the vector function fj(x) for 

each j = 1, 2, . . ., 5, then equations (2.1.1, 2.1.2, 2.1.4, 2.1.5, 2.1.6) can be expressed as:  

𝑑𝑥1

𝑑𝑡
= 𝑓1(𝑥)                                                                                                                                          (2.2.16) 

𝑑𝑥2

𝑑𝑡
= 𝑓2(𝑥)                                                                                                                                          (2.2.17) 

𝑑𝑥3

𝑑𝑡
= 𝑓3(𝑥)                                                                                                                                          (2.2.18) 

𝑑𝑥4

𝑑𝑡
= 𝑓4(𝑥)                                                                                                                                          (2.2.19) 

𝑑𝑥5

𝑑𝑡
= 𝑓5(𝑥)                                                                                                                                          (2.2.20) 

The nullclines and phase portraits for two distinct of the state variables are obtained by setting all 

equations to the right-hand side of equations (2.1.1, 2.1.2, 2.1.4, 2.1.5, 2.1.6) equal to zero. 

Without loss of generality, let Nxi and Nxj represent the nullclines in xi and xj respectively. The 

xi nullcline, Nxi, is obtained by setting dxi / dt equal to zero and solving for xj. The xj nullcline, 

Nxj, is obtained by setting dxj / dt equal to zero and solving for xi. In our model, the SB vs. SG 

nullclines are expressed as:  

𝑁𝑆𝐵
=

𝐼𝐵(𝜒̂𝑆𝐵 − 𝛾)

𝜇(𝑆𝐵 + 𝐼𝐵)
                                                                                                                            (2.2.21) 

𝑁𝑆𝐺
=

𝛾𝐼𝐺 − 𝑆𝐺(𝜙∗ + (𝜒 + 𝜇)𝐼𝐵
∗ )

𝜇𝑆𝐺
                                                                                                  (2.2.22) 
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Substituting φ∗SG*/IB = (1 − δ) χV*, then the IB vs. SB nullclines are expressed as: 

𝑁𝐼𝐵
=

𝛾+𝜖(𝑆𝐺
∗ +𝐼𝐺

∗ )−
𝜙∗𝑆𝐺

∗

𝐼𝐵

𝜒̂
                                                                                                           (2.2.23)  

𝑁𝑆𝐵
=  

𝜇𝑆𝐺
∗ 𝑆𝐵

𝜒̂𝑆𝐵−𝛾−𝜇𝑆𝐺
∗                                                                                                                   (2.2.24) 

The V vs. IB nullclines are expressed as:  

𝑁𝑉 =
𝜙∗𝑆𝐺

∗

(1−𝛿)𝜒𝑉
                                                                                                                         (2.2.25) 

𝑁𝐼𝐵
=

𝛾+𝜖(𝑆𝐺
∗ +𝐼𝐺

∗ )− 𝜒̂𝑆𝐵
∗

(1− 𝛿)𝜒
                                                                                                            (2.2.26) 

The IB vs. IG nullclines are expressed as:  

𝑁𝐼𝐵
=

𝜇𝑆𝐺
∗ (𝑆𝐵

∗ + 𝐼𝐵) +  𝐼𝐵[(1 − 𝛿)𝜒𝑉∗ − 𝜖𝑆𝐺
∗ ]

𝜖𝐼𝐵
                                                                           (2.2.27) 

𝑁𝐼𝐺
=

𝛾𝐼𝐺

𝜖(𝑆𝐺
∗ + 𝐼𝐺 + 𝜒𝑆𝐺

∗ )
                                                                                                                   (2.2.28) 

Where SG*, SB*, IB*, V*, φ*, and IG* = 1 – (SG* + SB* + IB* + V*) represent the fixed points 

obtained numerically using PyDSTool [11].  

2.2.3 Perturbation about Steady States 

After obtaining the steady state values by setting equations (2.1.1 – 2.1.6) equal to zero 

and solving numerically for the steady state vector x∗ using PyDSTool [11]. We obtain a 

perturbed time series plot for the fixed points; we apply the following algorithm to determine the 

perturbation about the time series data: 

1. Obtain a steady state vector, x∗, using PyDSTool [11].  

2. Generate a uniformly distributed random variable: u = [u1, u2, . . ., u5].  

3. Loop through each component of the steady state vector: xj* in each j = 1, 2, . . ., 5. 
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 4. Set: zj = (1 + ϵ0 × σj × uj) × xj*, where zj is the jth component of perturbed steady state 

vector z, σj = sgn(uj − 1/2) takes value of 1 or −1, and ϵ0 is the weight of the noise. 

Throughout the simulation ϵ0 ∈ (0, 0.1).  

5. Exit the loop and use z∗ for the new initial conditions. 

2.2.4 Calculation of the Jacobian  

The Jacobian of the system is computed by taking the first partials of equations (2.1.1 - 

2.1.6). Without loss of generality, not considering equation (2.1.3), since conservation implies: 

SG + SB + IG + IB +V = 1, gives rise to linear dependency. The (i, j)th element of the Jacobian is 

the partial derivative of the ith equation with respect to the jth state variable of the state vector: 

x* = [SG*, SB*, IB*, V*, φ*]. One obtains: 

J11 = −γ − [φ∗ + (χ + µ)IB* + µSB*], J12 = −γ − µSG*, J13 = −γ − (χ + µ)SG*, J14 = −γ, J15 = −SG*, 

J21 = µ(SB* + IB*), J22 = µSG* − 𝜒̂IB*, J23 = µSG* + γ − 𝜒̂SB*, J24 = 0, J25 = 0, J31 = 0, J32 = (𝜒̂ + 

ϵ)IB*, J33 = 𝜒̂SB* + (1 − δ)χV* − γ + ϵ(SB* + 2IB* + V∗ − 1), J34 = [(1 − δ)χ + ϵ]IB*, J35 = 0 J41 = 

φ∗ , J42 = 0, J43 = −(1 − δ)χV∗ , J44 = −(1 − δ)χIB*, J45 = SG*, J51 = −mφ∗ (1 − φ∗), J52 = −mφ∗ (1 

− φ∗), J53 = 0, J54 = −φ∗ (1 − φ∗)(1 + r), J55 = (1 − 2φ∗)[1 − (SG* + SB* + (1 + r)V∗)]  

Where: Jij = ∂xi / ∂xj and: SG*, SB*, IB*, V∗, and φ∗ represent the fixed points obtained 

numerically using PyDSTool [11]. A close observation of the 5th column shows that the 

branching point bifurcation in Figure 2.7.1 is obtained for SG = 0, φ = 1, ∆E = 0 giving rise to an 

identical zero eigenvalue, which corresponds to the unstable mixed Nash Equilibrium in the 

coordination game (Section 2.3 and [20]). 
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2.3 Game Theoretical Formulation of Vaccination  

2.3.1 Deriving the Risk Function 

The simplest formation of a vaccination game consists of two players: The vaccinated 

(V) and defector (D), whom each have a finite set of choices πV and πD respectively. For 

simplicity, we consider the defector (D), to take a chance to become infected (I). We consider the 

following payoff matrix: π is 2 x 2 matrix whose (v, w)th entry is the payoff of the vth player in 

response to the wth player. In the vaccination game, one obtains:  πvv = 0, πvi = -ri I, πiv = -rv V, 

and πii = 0 [6]. Where rv and ri are the risk perception associated to vaccination and infection 

respectively. For simplicity, we consider payoffs with the vaccinated and infected interact with 

each other (leaving the diagonal entries 0). Consider xv and xi the frequency of strategy selection 

of vaccination and defection, i.e., infection, respectively. Since our game only considers the 

selection of two strategies, then xv + xi = 1, thus the replicator equations for each species follows 

as:  

𝑑𝑥𝑖

𝑑𝑡
= 𝑥𝑗(𝜋𝑥)𝑗 − 𝑥′𝜋𝑥                                                                                                                       (2.3.1) 

For each j = v, i. Since xv + xi = 1, then we can simplify the coupled replicator equations into:  

𝑑𝑥

𝑑𝑡
= 𝑥𝑣 × (1 − 𝑥𝑣) × [(𝜋𝑥)𝑣 − (𝜋𝑥)𝑖]                                                                                       (2.3.2) 

Where (πx)v − (πx)i = ∆E is the marginal expectation difference between the strategies [20]. 

According to the Bishop-Canning’s Theorem, one can compute the marginal expectation 

difference provided there exists a non-trivial Nash equilibrium. Since our payoff matrix π in 

equation 2.3.2 follows a coordination game where the greatest payoffs are located along the main 

diagonal, then we can compute the pure Nash equilibrium, which are determined by the relative 
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difference in the diagonal elements [18, 20, 38]. Applying the Bishop-Cannings theorem in [20, 

38] to solve for the frequency of selection, observe that: 

𝑥 =
𝜋𝑣𝑖

𝜋𝑣𝑖 + 𝜋𝑖𝑣
                                                                                                                                     (2.3.3) 

Where πvi and πiv are the expected payoffs in payoff matrix π. The marginal expectation 

difference follows is:  

Δ𝐸 = 𝑥𝐸[𝑣] − (1 − 𝑥)𝐸[𝑖] =  −𝑟𝑣𝑉 + 𝑟𝑖𝐼                                                                           (2.3.4) 

Since scaling the payoff matrix in 2.1 does not change the behavior of the game [6, 18], then the 

marginal expectation difference can be expressed as: ∆E = I − r × V = 1 + (1 + r) V − SG − SB, 

where r = rv / ri is the dimensionless relative risk perception of vaccination to infection. Thus, the 

replicator equation that describes the adoption of becoming vaccinated is simply:  

𝑑𝑥

𝑑𝑡
= 𝑥(1 − 𝑥)Δ𝐸                                                                                                                               (2.3.5) 

And simplifies to equation 2.1.6 when substituting x = φ and multiplying by the strength of 

initiative parameter m. 

2.3.2 Computing the Nash Equilibrium 

Since the payoff matrix in has diagonal elements identically equal to zero, then we can 

compute the Nash equilibrium. Consider φv ∈ (0, 1) the non-trivial probability of vaccination 

uptake. Observe that the replicator equation in equations (2.1.6, 2.3.5) exhibits the following 

dynamics: 

Table 2.3.1 Marginal expectation difference ∆E in equation 2.1.6 with respect to risk 

perception of vaccination relative to infection, r, fraction of vaccinated V, and fraction of 
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infected I. The parameter range for the incentive to vaccinate is greater at higher levels of 

infection as compared to vaccination. 

 

For any given time, t, when the vaccinated, V, is smaller than or equal to the fraction infected, I, 

the sensitivity about the perception of risk has a larger range for positive incentive to vaccinate 

∆E ≥ 0 when r ∈ (0, r∗) and r∗ > 1 (Table 2.3.1: column 2). This suggests that in the early stages 

of the epidemic, the perception of risk is less sensitive to increasing the fraction of the population 

to become infected. The value of risk, r, that drives the risk function to an unstable equilibrium in 

equation 2.1.6 corresponds to the emergence of stable oscillations in the branching point 

bifurcation (Figure 2.7.1). The oscillations in φ are also a reflection of the mixed unstable Nash 

equilibrium in the coordination game [20]. During the later stages of the pandemic, the fraction 

of infected begin to decrease as the population begins to take the vaccine. For any given time, t, 

when the vaccinated exceeds the cumulative infected and the incentive to vaccinate only exists 

for r ∈ (0, r∗) where r∗ < 1 (Table 2.3.1: column 3). The value of r∗ that corresponds to the 

incentive to vaccinate identically equal to zero, ∆E = 0, corresponding to the emergence of limit 

cycles along the branching point bifurcation (Figures: 2.6.1, 2.7.1). 

2.4 Local Sensitivity Analyses 

We perform local sensitivity analysis (LSA) about the baseline parameters in Table 2.1.1. 

The goal of local sensitivity analysis is to evaluate the outputs of the model (QOI’s) with respect 

to key parameters of interest (POI’s). The most sensitive parameters have the most potent effects 

with respect to small deviations from an initial value [4]. If 𝑝̂ and 𝑞̂ are estimated parameter and 
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quantities of interest respectively, and 𝑞̂ = Q (𝑝̂). Then, we can perturb the parameter of interest 

slightly to evaluate the local sensitivity. One defines the sensitivity indices:  

𝑆(𝑝, 𝑞) =
𝑝

𝑞
×

𝜕𝑞

𝜕𝑝
=

𝜃𝑞

𝜃𝑝
                                                                                                                        (2.4.1) 

Where θp is the x% perturbation about the parameter of interest, p, and θq is the response to the 

perturbation. Hence, θq = x% × S (p, q) will determine the percentage change of quantity of 

interest when parameter of interest p changes by x%. 

Table 2.4.1 Local Sensitivity Indices S (p, q) with respect to key parameters of interest 

(each column). Each row are the quantities of interest observed in Figure 2.4.1. Each entry 

represents a x% change of the QOI with respect to a 10% change in the POI. For instance, a 

10% increase in leads to a 1.1% decrease in V* yet increases I∗ and G∗ by 0.93% and 0.89% 

respectively. 

 

2.5 Rich Dynamical Patterns for Coevolution of Pandemic and Infodemic 

We observe three predominant patterns for the Co-evolution of Pandemic and Infodemic 

model. One, at intermediate rate of µ = 0.10 and low values of r = 0.34, the system undergoes 

displays low frequency high amplitude of vaccination stable oscillations (Figure 2.5.1 A, D, G). 

Two, at exceptional low values of r = 0.09 and intermediate µ = 0.10, the system transitions to 

stable focus of high infection and vaccination corresponding to co-existence in epidemic and 

vaccination (Figure 2.5.1 B, E, H). Three, at low values of r = 0.374, and high values of µ = 

0.24, the system displays high frequency stable oscillations of low infection (Figure 2.5.2 C, F, 

I). 
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Figure 2.5.1: Three simple dynamics emerge from the co-evolution model. The three 

columns represent the time evolution of state variables, effective reproductive number, and phase 

portraits respectively. A, D, G: The system undergoes mixed oscillations of low amplitude low 

frequency of infection. B, E, H: The system exhibits stable focus of high infection and infection. 

C, F, I: The system undergoes a stable periodic oscillation of low infection (here µ = 0.24). 

Initial conditions about the steady states in Figures 2.7.1, 2.7.2 using the algorithm in section 

2.2.3. 

 

2.6 Infodemic Drives Pandemic: Stopping Infodemic is necessary to stop Epidemic 

To evaluate the spread of bad information in COVID-19, we start along the unstable 

Hopf with r = 1.635 and vary µ as a bifurcation parameter. We observe that increasing the spread 

of bad information increases the infection and, not surprisingly, reduces the good information in 

the population (Figure 2.6.1). We observe the system transitions into stable oscillations of low 
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infection at lower values of µ, while intermediate values of µ lead to unstable mixed oscillations, 

and high values of µ drive the system to stable focus of high infection (Figures: 2.6.1, 2.6.2). 

Notably, at high levels of good information and intermediate values of bad information, the 

system transitions into high frequency oscillations with low peaks of infection (Figure 2.6.3). 

Hence, increasing the spread of good information is a sufficient method of public health 

mitigation policy for reducing the severity of pandemic. It should be noted that our model fails to 

account for the existence of super spreaders of bad information, which may have strong 

contribution of infection spread (Section 3, [41]). 

 

 

Figure 2.6.1: A – B: Time series evolution of the state variables and effective 

reproductive number respectively. C – D: Phase portraits for the respective time series in 

column 1. E – F: Fixed points with respect to µ. blue and red lines represent stable and unstable 

fixed points respectively. BP’s represent branching point bifurcations where the fixed point has 

an identical zero eigenvalue. NS’s represent neutral saddle equilibrium; a saddle node with an 

identical zero normal form coefficient. H’s represent Andronov-Hopf bifurcations with a pair of 

purely imaginary eigenvalues. Initial conditions are set about a perturbation of the branching 

point bifurcation using algorithm 2.2.3. At high r the system displays mixed oscillations and 

decreasing µ drives the system to DFE. 
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Figure 2.6.2: A – B: Time series evolution of the state variables and effective reproductive 

number respectively. C – D: Phase portraits for the respective time series in column 1. E – F: 

Fixed points with respect to µ. blue and red lines represent stable and unstable fixed points 

respectively. NS’s represent neutral saddle equilibrium; a saddle node with an identical zero 

normal form coefficient. H’s represent Andronov-Hopf bifurcations with a pair of purely 

imaginary eigenvalues. Initial conditions are set about a perturbation of the Hopf bifurcation 

using algorithm 2.2.3. At low r the system is unstable for low values of µ. 

 

 

Figure 2.6.3: A – B: Time series evolution of the state variables and effective 

reproductive number respectively. C – D: Phase portraits for the respective time series in 

column 1. E – F: Fixed points with respect to µ, ϵ. Solid and dotted lines represent stable and 

unstable periodic orbits respectively. BPC’s correspond to branching point of cycles 
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corresponding to the intersection between stable focus and unstable periodic orbit. NS’s 

represent neutral saddle equilibrium; a saddle node with an identical zero normal form 

coefficient. NSr’s represent Neimark-Sacker giving birth to a closed invariant curve from a fixed 

point. H’s represent Andronov-Hopf bifurcations with a pair of purely imaginary eigenvalues. 

Initial conditions are set about a perturbation of the Neimark-Sacker bifurcation using algorithm 

2.2.3. The system displays unstable periodic orbits at high values of r and low values of µ. 

 

2.7 High Risk Perception of Infection Promotes Vaccination 

One example of high risk is the disproportional perception of vaccine risk and vaccine 

hesitancy [28]. To determine the effect of vaccine hesitancy and resistance to long term epidemic 

mitigation, we consider the uptake of vaccination: φ to depend on the relative risk of vaccination 

to infection. In the context of COVID-19, r corresponds to the risk perception of infection 

relative to vaccination, although previous models have considered the relative morbidity risk of 

vaccination relative to infection [6]. Our interpretation of risk perception is due to the 

controversy regarding rumors associated to the vaccine throughout its development [15, 30]. 

Mathematically, r corresponds to the dimensionless parameter that determines the probability of 

vaccination uptake, which is determined using game theory (Sections: 2.2 - 2.4). Asymptotically, 

the probability of vaccination, φ, converges to zero provided the incentive to vaccinate ∆E = I − 

rV is positive leading to the transition into stable focus (Figures: 2.7.1, 2.7.2). When the risk, r, 

is identically 0, there is always an incentive to vaccinate for any non-zero φ and non-negative I 

value. Since our theoretical formulation of vaccination follows a coordination game, there exists 

an unstable mixed Nash Equilibria for non-trivial φ [20] for a critical r∗ (Sections: 2.2 - 2.4). The 

critical r∗ corresponds to the emergence of periodic oscillations and the constant changing of 

epidemic selection strategy [20]. Furthermore, the branching point bifurcation with and identical 

zero eigenvalue corresponds to value of φ = 1 concomitant with the identity: ∆E = 0 (Figure 

2.7.1, Section 2.3). We identify at intermediate values of risk; stable periodic oscillations begin 
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to emerge along the branching point and Hopf bifurcations (Figure 2.7.1). The branching point 

indicates a point in the domain where no local neighborhood will converge to a point in the local 

region drifts away towards a region corresponding to the limit cycles [16]. Our results are 

consistent with survey data that suggest that intermediate values of risk perception of vaccination 

may hinder the achievement of herd immunity as indicated by the emergence of stable limit 

cycles and oscillations about Re = 1 (Figures: 2.5.1, 2.5.2) [9, 23, 30]. We observe that 

decreasing the risk perception of vaccination relative to infection decreases infection and 

increases vaccination (Figure 2.7.1). Notably, concomitant decrease in the spread of corona-

misinformation along with reduction of risk perception of vaccination is sufficient to drive the 

system to DFE. At low risk and high spread of bad information, the system transitions to stable 

focus of high infection (Figure 2.7.2). These results may be understood from a game theoretical 

perspective by analyzing the risk function (equation 2.1.6, Section 2.3). The intersection of the 

stable focus boundary (in red) and limit cycle continuation (in blue) corresponds to the 

emergence of the branching point bifurcation (BP), which phenomenologically separates the 

stable focus of infection from the persistent low frequency stable oscillations (Figures: 2.7.1, 

2.7.2). One observes that risk, r = rv/ri, is the risk perception of vaccination relative to infection, 

it follows that decreasing the relative risk is equivalent to increasing the risk of infection relative 

to vaccination. Thus, this implies that high risk perception of infection leads to an increase in 

vaccination. In other words, when the population takes the virus seriously, there is decreased 

epidemiological severity. Additionally, intermediate risk leads to high frequency infection and 

supports the notion that vaccination hesitancy promotes the propagation of disease [15, 31]. 
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Figure 2.7.1: A – B: Time series evolution of the state variables and effective reproductive 

number respectively. C – D: Phase portraits for the respective time series in column 1. E – F: 

Fixed points with respect to r. blue and red lines represent stable and unstable fixed points 

respectively. BP’s represent branching point bifurcations where the fixed point has an identical 

zero eigenvalue. NS’s represent neutral saddle equilibrium; a saddle node with an identical zero 

normal form coefficient. H’s represent Andronov-Hopf bifurcations with a pair of purely 

imaginary eigenvalues. Initial conditions are set about a perturbation of the neutral saddle 

bifurcation using algorithm 2.2.3. 

 

 

 

Figure 2.7.2: A – B: Time series evolution of the state variables and effective reproductive 

number respectively. C – D: Phase portraits for the respective time series in column 1. E – F: 
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Fixed points with respect to r, µ. Solid and dotted lines represent stable and unstable periodic 

orbits respectively. Blue and red curves correspond to periodic orbit and stable focus boundaries 

respectively. CP’s represent cusp bifurcations corresponding to a saddle node bifurcation with 

zero normal form coefficient. NS’s represent neutral saddle equilibrium; a saddle node with an 

identical zero normal form coefficient. BT’s represent Bogdanov-Takens correspond to a fixed 

point with zero eigenvalue with multiplicity two. GH’s represent generalized Hopf bifurcations 

corresponding to the intersection between stable and unstable periodic orbit. Initial conditions 

are set about a perturbation of the Bogdanov-Takens bifurcation using algorithm 2.2.3. The 

system displays unstable periodic orbits at high values of r and low values of µ. 

 

2.8 High Vaccination Efficacy Impedes Infection 

Previous studies have suggested that willingness to vaccinate is highly coordinated with 

public perception of risk associated to vaccination [9, 19, 35, 36]. That is, high risk perception of 

vaccination decreases the likelihood of the population taking the vaccine and impedes the 

achievement of herd immunity. Since intermediate values of risk play a significant barrier to the 

achievement of herd immunity [30], we choose to evaluate the role of vaccination efficacy along 

the unstable branch at the emergence of the sub-critical Andronov-Hopf bifurcation at r = 1.6353 

in Figure 2.7.1. We observe that larger vaccine efficacies only reduce the severity (amplitude of 

infection) and is limited in reducing the endemic state of the endemic (Figure 2.8.1). This is a 

limitation of the model, which considers the emergence of breakthrough infection, i.e., 

vaccination leakage, phenomenologically corresponding to the emergence of new strands of 

COVID-19 in the long run (Section 3). 
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Figure 2.8.1: A – B: Time series evolution of the state variables and effective reproductive 

number respectively. C – D: Phase portraits for the respective time series in column 1. E – F: 

Fixed points with respect to r, µ. Blue and red curves correspond to periodic orbit and stable 

focus boundaries respectively. NS’s represent neutral saddle equilibrium; a saddle node with an 

identical zero normal form coefficient. BT’s represent Bogdanov-Takens correspond to a fixed 

point with zero eigenvalue with multiplicity two.  BP6’s represents branching point bifurcations. 

Initial conditions are set about a perturbation of the Bogdanov-Takens bifurcation using 

algorithm 2.2.3. The system displays unstable periodic orbits at high values of r and low values 

of µ. 

 

2.9 Education Reduces Infection 

Some studies suggest that the spread of misinformation precedes the infection [17], we 

consider the case where people change their behavior in response to infection. For µ ∈ (0.06, 

0.1), we observe mixed oscillations along the unstable branch (Figures: 2.6.1, 2.6.2, 2.6.3). To 

observe how the promotion of good information, which corresponds to the increase in the rate at 

which people change behavior in response to infection, we start from the sub-critical Andronov-

Hopf bifurcation at µ = 0.10 and vary the rate of education ϵ. We observe that increasing the 

good information decreases the amplitude of infection yet, increases the mean frequency of 

infection suggesting that reducing the spread of coronoa-misinformation is necessary to reduce 
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the onset of limit cycles and stop the infection (Figure 2.6.3). We observe that promoting the 

education promotes the vaccination and decreases infection, which is obtained for high risk and 

low risk respectively (Figures: 2.9.1, 2.9.2). Depending on the risk, intermediate education leads 

to high frequency stable oscillations (Figure 2.9.1) or complex oscillations emerging from an 

unstable branching point (Figure 2.9.2). The effects of the transmission of good information can 

be understood by observing Figure 2.9.3; where high risk corresponds to unstable oscillations 

and low risk corresponds to stable periodic oscillation. From a public health perspective, 

decreasing the risk perception of the vaccination while promoting education drives the system to 

disease free equilibrium (Figure 2.9.3: A, C).  

 

Figure 2.9.1: Time series evolution of the state variables and effective reproductive 

number respectively. C – D: Phase portraits for the respective time series in column 1. E – F: 

Fixed points with respect to ϵ. The blue and red lines represent stable and unstable fixed points 

respectively. BP’s represent branching point bifurcations where the fixed point has an identical 

zero eigenvalue. NS’s represent neutral saddle equilibrium; a saddle node with an identical zero 

normal form coefficient. H’s represent Andronov-Hopf bifurcations with a pair of purely 

imaginary eigenvalues.  LP’s represents limit point bifurcations where the fixed point has an 

identical zero eigenvalue. Initial conditions are set about a perturbation of the Andronov-Hopf 

bifurcation using algorithm 2.2.3.  
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Figure 2.9.2: A – B: Time series evolution of the state variables and effective reproductive 

number respectively. C – D: Phase portraits for the respective time series in column 1. E – F: 

Fixed points with respect to ϵ. blue and red lines represent stable and unstable fixed points 

respectively. BP’s represent branching point bifurcations where the fixed point has an identical 

zero eigenvalue. NS’s represent neutral saddle equilibrium; a saddle node with an identical zero 

normal form coefficient. H’s represent Andronov-Hopf bifurcations with a pair of purely 

imaginary eigenvalues. Initial conditions are set about a perturbation of the Andronov-Hopf 

bifurcation using algorithm 2.2.3. 

 

 

Figure 2.9.3: A – B: Time series evolution of the state variables and effective reproductive 

number respectively. C – D: Phase portraits for the respective time series in column 1. E – F: 

Fixed points with respect to r, ϵ. Blue and red curves correspond to periodic orbit and stable 

focus boundaries respectively. DH’s represent Double Hopf bifurcations corresponding to two 
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distinct pairs of purely imaginary eigenvalues. GH’s represent Generalized Hopf bifurcations 

corresponding to the transition between stable and unstable periodic orbit. BT’s represent 

Bogdanov-Takens correspond to a fixed point with zero eigenvalue with multiplicity two.  Initial 

conditions are set about a perturbation of the Double Hopf bifurcation using algorithm 2.2.3. 

The system displays unstable periodic orbits for a narrow region of high r. 

 

3 CONCLUSIONS 

The COVID-19 pandemic has placed an unprecedented tax on the public economy and 

health on nations worldwide. This global pandemic is unique as it is the first pandemic to occur 

in the digital age. The overabundance of bad information related to the coronavirus and vaccine 

has been recognized as a major hurdle in the combat against the pandemic, acting as a brake on 

intervention strategies in reducing the spread of infection [3, 41, 42]. An increasing amount of 

evidence have shown that Covid-19 vaccines not only protect against severe symptoms and 

deaths due to infection, but are effective in reducing overall infection [8, 10, 34], even against 

the more infectious Delta variant. One major barrier to the increase in vaccine uptake proponents 

of public health mitigation is vaccine hesitancy [28, 31]. As a new wave of COVID-19 caused by 

the Delta variant races across the world, mentions of some phrases prone to vaccine 

misinformation in July jumped as much as five times the June rate, according to Zignal Labs, 

which tracks mentions on social media, on cable television and in print and online outlets. Some 

of the most prevalent falsehoods are that vaccines don’t work (up 437 percent), that they contain 

microchips (up 156 percent), that people should rely on their “natural immunity” instead of 

getting vaccinated (up 111 percent) and that the vaccines cause miscarriages (up 75 percent).” 

New York Times reported on August 10, 2021 [1]. To combat the controversial issues regarding 

COVID-19 vaccination and achievement of herd immunity, we evaluate the concomitant spread 

of infection and information in the context of emergence of new strands by including a 

vaccination leakage compartment. At the beginning stages of a pandemic, the infection begins to 
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take off and people do not take the appropriate precautionary measures to reduce the infection. 

Since the spread of corona-misinformation precedes the onset of infection, we model the disease 

infection driven by those carrying bad information [17]. We choose to evaluate the role of 

vaccination in reducing the spread of infection driven by those with bad information. Since 

public trust and perception of vaccination significantly contribute to the likelihood of vaccination 

uptake, we consider modeling the adoption of vaccination, which depends on risk perception of 

vaccination relative to infection [19, 35]. Using an evolutionary game theoretical framework to 

model the probability of vaccination uptake, we observe that high perception of risk leads to the 

emergence of stable limit cycles corresponding to a persistent state of infection (Figures: 2.7.1, 

2.7.2). Lastly, we observe that although good information reduces the severity of infection, 

reduction in the spread of bad information is sufficient to inhibit the recurrence and severity of 

infection (Figures: 2.6.1, 2.6.2, 2.6.3). Since our model considers the spread of corona-

misinformation to require physical interaction between good and bad information domains, 

reducing the spread of bad information delays the recurrence of infection is obtained by limiting 

the interaction between good and bad information domains and not by reducing the abundance of 

information. Additionally, our model fails to discriminate between disinformation and 

misinformation, the key difference focusing on the malicious intent of the latter. 

Furthermore, we note that our model considers the spread of information which requires physical 

contact between good and bad domain carriers and is independent of the quantity of information 

exchange [41]. We consider the probability of vaccination uptake, which is derived using 

classical evolutionary game theory replicator equations [20]. Lastly, we consider an SIS model 

with temporary immunity of vaccination due to the potential for the emergence of new COVID-

19 variants, which act as a brake on the achievement of herd immunity and supports the 
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recurrence of future infection [5]. We note that other frameworks that model the impact of 

information on infection consider SEIR type disease domain models [39, 41]. Since the 

vaccination compartment has a leakage and the vaccinated become re-infected, then the 

achievement of herd immunity cannot be obtained by increasing the fraction of the population to 

become vaccinated. Hence, vaccination only acts as a temporal delay on the infection spread 

rather than decrease on long term epidemiological severity. This differs from mathematical 

models that considers vaccinated individuals to return to the susceptible compartment [6].  

3.1 Future Directions 

 Alternative approaches to our model may consider using a SEIR with a vaccination 

compartment focused on a specific strand or an SIR model in the disease domain. Our model is 

catered to the potential emergence of new strands of COVID-19 in the long run. We may also 

alter the risk function to include information in the payoff calculation Our results suggest that 

even at vaccination efficacy as high as 90%, reducing the spread of bad information is necessary 

to stop the spread of infection; supporting public health mitigation strategies that focus on 

information exchange. Additionally, our model is limited in a compartmental framework, which 

assumes equal probability of transmission throughout the population. The compartmental model 

is not the most representative spread of information, since most digital and social networks admit 

super spreaders with higher levels of spread. Our model may be extrapolated onto a bipartite 

network in which the information domain takes the form of a social network, and the disease 

domain takes the form of scale free network. Alternatively, one may consider modeling the 

transmission between stratified aged populations in the disease domain. It would be interesting to 

see how the results depend on the connectivity of the hubs. Like Ye’s framework, one may 

consider the bipartite network in lieu of the stratified SIS model [41]. Although the results of the 
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co-evolution of pandemic and infodemic are limited to the context of emerging strands of 

COVID-19, the modelling of information exchange may be extrapolated to the exchanging of 

ideas. The exchanging of ideas requires close communication between sender and receiver and 

this interaction may be assumed to be non-linear since the absence of sender or receiver may lead 

to a lack of idea exchange. As thoughts, which are often driven by information received and 

interpreted, and actions are driven by initiative. The stable oscillations in the co-evolution model 

may be interpreted as robust interplay between thoughts and actions. 
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