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ABSTRACT 

Adjuvants have been used for enhancing vaccine-specific immune responses, but the 

mechanisms of adjuvants and the roles of CD4 in adjuvant effects have been poorly understood. 

In a conventional model of vaccine adjuvant action mechanism, CD4+ T helper cells are known to 

play a critical role for adjuvants in improving vaccine efficacy. In this study, both licensed MF59 

and monophosphoryl lipid (MPL)+Alum adjuvants were found to mediate IgG isotype-switched 

antibodies, memory responses, and protection against influenza virus in CD4 knockout (CD4KO) 

mice, which were comparable to those in wild type (WT) mice. Licensed oil-in-water emulsion 

MF59 adjuvanted influenza split vaccination was able to induce protective CD8+ T cells and long-

lived IgG antibody-secreting cells in CD4KO mice. MF59 adjuvant mechanisms in CD4KO mice 

might be associated with uric acid, inflammatory cytokines, and recruitment of multiple immune 



cells at the injection site. Another licensed platform of MPL+ Alum adjuvant was also found to be 

effective in inducing IgG antibodies and protection, which appeared to be mediated by recruiting 

monocytes, neutrophils, dendritic cells in CD4KO mice. Additional studies in CD4-depleted WT 

mice and MHCIIKO mice suggest that MHCII+ antigen presenting cells contribute to providing 

alternative B cell help in CD4 deficient condition in the context of MPL+Alum adjuvanted 

vaccination. These findings suggest a new paradigm of CD4-independent adjuvant mechanisms, 

providing the rationales to improve vaccine efficacy in infants, elderly, and immune-compromised 

patients as well as in healthy adults.  

Respiratory syncytial virus (RSV) is an important human pathogen, but there is no licensed 

RSV vaccine. RSV virus-like particle (VLP) vaccine conferred protection against RSV. RSV F 

and G VLP mixed with F-DNA (FdFG VLP) immunization induced low infiltrating cellularity, T 

helper type-1 immune responses, and no sign of eosinophilia in bronchoalveolar lavages upon RSV 

challenge, whereas alum adjuvanted formalin-inactivated RSV (FI-RSV) vaccination caused 

vaccine-enhanced eosinophilia. This study provides evidence that combination of recombinant 

RSV VLP and plasmid DNA vaccines may have a potential anti-RSV prophylactic vaccine 

inducing balanced innate and adaptive immune responses. 
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1 

1 INTRODUCTION  

1.1 Influenza virus 

Influenza virus is the cause of seasonal and pandemic flu. It causes approximately 200,000 

hospitalizations and approximately 49,000 deaths in US annually1, 2. It belongs to 

Orthomyxoviridae family, and there are 3 genera, A, B, and C, based on the expression of matrix 

protein (M1), membrane protein (M2) and nucleoprotein (NP). Influenza B and C mainly infect 

humans, but influenza A virus shows wide range of host including humans, birds, pigs and other 

mammals. Usually, the virus outbreak is epidemic and seasonal, but sometimes it causes pandemic 

outbreak and shows severe symptoms and relative high mortality3, 4. Most recently, H1N1 swine 

flu was pandemic outbreak in 2009 and caused around 20,000 deaths worldwide. The pandemic 

influenza outbreaks occur when a new influenza strain emerges and gets transmission ability to 

human3.  

Influenza virus is single-stranded RNA virus. It contains 7 (genera C) or 8 (genera A and 

B) segmented negative-sense RNA and each RNA encodes 1 or 2 genes. It is enveloped, spherical 

shape and the approximate diameter of the virus is 80 to 120 nm5.  

The subtypes of influenza A virus are based on the surface expression of major 

glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Currently, 18 subtypes of HA and 9 

subtypes of NA have been found. HA is a lectin and plays a critical roles in binding and entry of 

the virus to host cells. On the other hand, NA activity is critical for release of virus from the 

infected cells6, 7, 8.  

Influenza virus can be transmitted by direct contact and airborne droplet dissemination. 

Generally it takes 1 to 3 days for incubation periods, and headache, runny nose, sore throat, fever, 

cough, and chills are common symptoms. In case of severe flu, joint swelling and vomiting can be 
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followed. In healthy population, the flu symptoms are mild and recovered within 7 to 10 days, but 

children, the elderly and immune-compromised patients show more severe symptoms and higher 

mortality9, 10, 11, 12. This is because of CD4+ T cell-mediated adaptive immune responses are not 

fully developed or reduced in those populations and fail to develop strong innate and adaptive 

immune responses.  

Reassortment of influenza genes from different strains causes genetic shift and make 

completely new influenza strains. The new strain results pandemic influenza outbreaks and causes 

severe symptoms, high hospitalization rates and mortality because the most population does not 

have the pre-existing immune responses. Minor mutations in the HA or NA genes (genetic drift) 

cause virus antigenicity alteration. The genetic drift of influenza virus is responsible for the 

outbreaks of severe seasonal flu. Because of the antigenic diversity of the influenza virus and 

antigenic specificity of HA and NA, world health organization (WHO) predicts seasonal flu strains 

and recommends vaccination annually5, 13.  

Currently, trivalent (2 influenza A and 1 influenza B strains) or quadrivalent (2 influenza 

A and 2 influenza B strains) inactivated whole influenza virus vaccines are approved to wide age 

range of populations. In addition, live attenuated influenza virus vaccines are used in a population 

between 2-49 years old5.  

 

1.2 Vaccines 

Vaccination has been used to induce adaptive immune responses against specific pathogens 

and prepare to protect host from the pathogen invasion14, 15, 16. Since the first attempt of cowpox 

immunization by Edward Jenner, many types of vaccines have been tried and tested experimentally 
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and clinically. Successful vaccinations can elicit antigen-specific isotype-switching antibody 

production and long-term cellular memory responses17. 

Inactivated form of pathogens is the most widely used vaccine platform. Pathogens are 

amplified and inactivated by chemicals, heat or radiation. Whole inactivated pathogen has strong 

immunogenicity and cost-effective compared to other vaccine platforms. However, it sometimes 

has adverse effects such as inflammation at the site of injection18.  

Live attenuated pathogens are used in measles, mumps, and chicken pox vaccines. The 

pathogens are attenuated via passages in foreign hosts or gene modification. Thus, the attenuated 

pathogens are still live, but have reduced virulence in the host. These vaccines can elicit strong 

cellular and antibody responses because of alive characteristics. However, there is a possibility of 

reversion to the virulent form and causing diseases. In addition, this type of vaccine is high-cost 

because refrigeration is required to preserve potency of the living organisms19.  

Recently, many subunit vaccines were developed to reduce the potential adverse effects of 

the whole pathogen-derived vaccines and elicit an appropriate type of immune responses. The 

subunit vaccines include only antigenic epitopes. This type of vaccine is now used in human 

hepatitis B virus vaccine. These subunit vaccines are considered safer than other types of vaccines, 

on the other hand, show lower immunogenicity than that of the whole pathogen-derived vaccines20, 

21, 22.  

 

1.3 Adjuvants 

To increase immune responses and efficacy of the vaccination, vaccine adjuvants have 

been developed and used with the subunit vaccines20, 23. Generally, the adjuvants are known to 

stimulate innate immune cells at the site of injection, induce rapid response to pathogens, amplify 
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the immune responses, modulate T helper cell responses and finally enhance long-lasting B and T 

cell immunity. Moreover, vaccine adjuvants can reduce the number of immunization and vaccine 

dose24. Strong innate immune responses are expected to generate better antigen-specific adaptive 

immune responses.  

 

1.3.1 Alum 

Alum is one of the most popular adjuvants. It has used more than 70 years for veterinary 

and human vaccines. It adsorbs the vaccine antigens and makes antigen depot at the site of 

injection. The antigen depots can release vaccine antigen slowly, so the immune system is 

stimulated by the antigen for a longer time. Also, the alum can stimulate innate immune cells like 

neutrophils and macrophages through NLRP3 inflammasome signaling pathway. The 

inflammasome-activated immune cells secret pro-inflammatory cytokines such as IL-1beta and 

IL-1825, 26, 27. Alum has relatively weak adjuvant effects compared to other adjuvants, but it is the 

only approved adjuvant for human use in the USA because of its high safety record20. 

 

1.3.2 MF59 

MF59 is an oil in water emulsion type of adjuvants. It is used in influenza vaccine (Fluad™) 

and pandemic flu vaccine. It stimulates stronger antibody responses and spares antigen dose. MF59 

makes cells in injection sites express various genes which encode chemokines and cytokines. 

These chemokines and cytokines recruit innate immune cells and antigen-presenting cells. They 

uptake antigen as well as MF59 and migrate to draining lymph nodes and induce stronger immune 

responses28, 29.  
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1.3.3 Toll-like receptor (TLR) agonist 

Toll-like receptor (TLR) signaling pathway induces innate immune cell activation. TLRs 

are expressed on immune cells as well as non-immune cells. Distinct pathogen patterns are 

recognized by specific types of TLRs. For example, peptidoglycan of gram positive bacteria is 

recognized by TLR2 and DNA of virus and bacteria activates TLR9. TLR agonists activate 

downstream TLR signaling molecules and make the cells to produce pro-inflammatory cytokines, 

chemokines and increase the cell surface activation molecules expression30. Thus, the TLR 

agonists have been developed as adjuvants and many adjuvant candidates containing TLR agonists 

are under pre-clinical and clinical trials20. AS04 is composed of monophosphoryl lipid A (MPLA), 

a TLR4 agonist, and alum. It was approved for human vaccine adjuvant in Europe recently, and 

used in human papilloma virus vaccine and hepatitis B virus vaccine20, 24, 31, 32. Flagellin, a TLR5 

agonist, is a component of bacterial motor system. Many researches have tried to make a form of 

flagellin-antigen fusion proteins to increase vaccine and adjuvant efficacy33, 34. The flagellin can 

be recognized by TLR5 and activate TLR signaling, and, at the same time, the antigen can be 

uptaken by immune cells20, 24.  

 

1.4 Possible adjuvant action mechanisms 

Many adjuvants are known to increase the vaccine efficacy by stimulation of the innate 

immune system, especially, antigen presenting cells (APCs). The APCs include DCs and 

macrophages. The adjuvants help the APC activation when the APCs uptake antigens. The 

activated APCs migrate to the secondary lymphoid organs, present the antigenic information to 

the immune cells and initiate antigen-specific immune responses. To increase efficacy of antigen-

specific antibodies, isotype-switching and somatic hypermutation of immunoglobulin genes in B 
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cells are required. These antibody maturation processes are known to be a germinal center (GC) 

reaction, because the reaction is occurred in the GC of the secondary lymphoid organs. GCs are 

formed as a result of cognate interactions of CD4+ T cells and B cells as well as the cytokines 

produced by activated CD4+ T cells. Therefore, CD4+ T cells have been considered to be a critical 

cell type for adjuvants to induce strong antigen-specific immune responses23, 35.  

CD4+ T cells are required for antibody maturation. Nonetheless, few studies have reported 

that isotype-switched antibodies were produced without CD4+ T cell help but at lower levels. For 

example, Sha et al. immunized CD4-deficency mice with inactivated whole viral vaccines. The 

immunized mice showed antigen-specific IgG and IgA production at a low level36. Whole-

pathogen derived vaccines are likely to be a strong innate immune system stimulator. DCs can be 

activated by whole inactivated virus and produce pro-inflammatory cytokines such as IL-6, TNF-

alpha and IL-1237, 38, 39. In addition, the activated DCs interact with B cells directly, stimulate B 

cells and provide survival signals to the B cells40. Thus, it is suggested that strong innate immune 

stimulation by vaccine adjuvants may be able to overcome the CD4+ T cell deficiency and elicit 

antigen-specific immune responses without CD4+ T cell help. 

 

1.5 Aims and hypothesis of influenza vaccine adjuvant study 

Previous studies reported that immunization with inactivated virus36, 41, 42 or virus-like 

particles (VLPs)43 induced antigen-specific antibody production even in the deficiency of CD4+ T 

helper cells. However, the roles of CD4+ T cells in exhibiting adjuvant effects on enhancing 

vaccine immunogenicity, inducing long-lived isotype-switched IgG antibody responses, duration 

of B cells, and protective immunity remain largely unknown. I proposed a hypothesis that certain 

adjuvants would overcome a deficiency of CD4+ T cell help in inducing IgG isotype-switched 
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antibodies and protective immunity. Main goals in my PhD projects of vaccine adjuvants parts are 

as follows: 1) To determine whether the most commonly used current influenza vaccine platform 

of inactivated, detergent split virus would be CD4-dependent, 2) To determine whether the effects 

of licensed vaccine adjuvants (alum, MF59, MPL+Alum) would be dependent on CD4+ T cell 

help, 3) To address whether certain adjuvants would overcome a deficiency of CD4+ T cells in 

inducing IgG isotype-switching and protective immunity, and 4) to determine whether adjuvant 

effects in a condition of CD4 deficiency would be correlated with strength and safety of vaccine 

adjuvants. Finally, additional studies were carried out to better understand the action mechanisms 

of adjuvants in a CD4+ T cell deficient condition by using novel in vivo mice and in vitro cell 

models. 

 

1.6 Respiratory syncytial virus (RSV) 

Respiratory syncytial virus (RSV) is an enveloped virus with a single-stranded negative-

sense RNA genome, belonging to the family of Paramyxoviridae 44. RSV is a major cause of viral 

respiratory disease in infants, young children, elderly, and immune-compromised patients 2, 45, 46. 

The World Health Organization estimates that RSV causes 64 millions of infection and 160,000 

deaths globally 47. 

In the 1960s, a formalin-inactivated RSV vaccine (FI-RSV) induced exacerbated disease 

during the next winter season, resulting in 80% hospitalizations of FI-RSV recipients and two 

deaths 48, 49. Despite the extensive endeavor to develop RSV vaccines, there is no licensed vaccine 

available. RSV fusion (F) or attachment (G) glycoprotein subunit and recombinant vectored RSV 

vaccines are also known to cause enhanced RSV disease (ERD) 50, 51, 52, 53. Live RSV may induce 

short-term immunity 50, 54, 55. Reinfection is common throughout life, indicating that natural RSV 
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infection fails to establish long-lasting sterilizing immunity 56, 57, 58. Therefore, it is a formidable 

challenge to develop an effective and safe RSV vaccine.   

 

1.7 RSV VLP as a vaccine candidate 

Despite the extensive endeavor to develop RSV vaccines, there is no licensed vaccine. RSV 

reinfection is common throughout life, indicating that natural RSV infection fails to establish long-

lasting immunity59, 60. Virus-like nanoparticles (VLP) can be generated through the assembly of 

structural proteins and lipid bilayer membranes, and are morphologically similar to the virus61, 62. 

Recent studies reported that recombinant baculovirus-derived VLP vaccines containing the full-

length of RSV F or G in a membrane-anchored form were shown to induce immune responses 

contributing to clearing lung viral loads63.  

 

1.8 Aims and hypothesis of RSV vaccine study 

FI-RSV induces Th2-biased immune responses after immunization, and then elicits 

severe lung inflammation including eosinophil infiltration when the hosts are infected with RSV 

in next winter season64, 65. RSV glycoprotein (F and G) expressing virus-like particles (VLPs) 

were suggested as new RSV vaccine candidates and proved their immunogenicity and protective 

efficacy in mice model63. RSV VLPs are considered to be able to guide immune system to 

protective immune responses against RSV. However, the cellular action mechanisms of the RSV 

VLPs are not fully understood. In this study, mice were immunized with F and G RSV VLPs to 

investigate the cellular mechanisms of the vaccine. As for comparative groups, FI-RSV was 

included as a failed vaccine causing disease and RSV as live virus infection-induced immunity 

to better understand balanced immune responses contributing to protection. 
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2     EXPERIMENTAL METHODS 

2.1 Animals and reagents 

Female and male 6 to 8-week old Balb/c, C57BL/6, CD4 knock out (CD4KO, B6.129S6-

Cd4tm1Mak/J), and major histocompatibility complex class II (MHCII) KO (I-Aβ-/-) mice were 

purchased and maintained in the animal facility at Georgia State University (GSU). All mouse 

experiments followed the approved GSU IACUC protocol (A14025). Commercial human 

monomeric influenza vaccine (inactivated and detergent split virus), derived from the 2009 

pandemic strain of A/California/07/2009 H1N1 virus, was kindly provided by Green Cross (South 

Korea), a WHO-approved vaccine manufacturing company. Monophosphoryl lipid A (MPL) and 

aluminium hydroxide (Alum) were purchased from Sigma-Aldrich. 3-(4,5-Dimethylthiazol-2-yl)-

2,5-Diphenyltetrazolium Bromide (MTT) was obtained from Sigma for cell death analysis. MF59® 

provided as a gift from Novartis Vaccines and Diagnostics, Inc. (Cambridge, MA). 

 

2.2  Preparation of RSV VLPs, RSV F encoding DNA, and FI-RSV 

Spodoptera frugiperda SF9 insect cells (ATCC, CRL-1711) were maintained in SF900-II 

serum free medium (Invitrogen, Carlsbad, CA) and used for production of Nanoparticle VLP 

consisting of an influenza virus matrix (M1) protein core and RSV glycoproteins F (RSV F VLP) 

or G (RSV G VLP) on the surface. SF9 insect cells were infected with recombinant baculoviruses 

expressing M1 and RSV F or RSV G proteins, and RSV VLP nanoparticles released into cell 

culture media were purified by ultracentrifugation 63. The plasmid DNA encoding RSV F protein 

(RSV F DNA) was previously described 66 and amplified in E. coli cells and purified using 

endotoxin-free kits (Qiagen). HEp-2 cells obtained from the ATCC were maintained in Dulbecco 

modified Eagle medium (DMEM) media (GIBCO-BRL). RSV A2 strain was used for the 
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preparation of FI-RSV, live RSV infection and challenge 63. An expression plasmid encoding 

human codon bias-optimized RSV A2 F was previously described 66. RSV A2 stocks were grown 

and titrated in HEp-2 cells 63. RSV, grown in HEp-2 cells, was harvested from infected cell 

cultures, and inactivated with formalin (1:4000 vol/vol) for 3 days at 37oC, and then purified using 

ultracentrifugation 63, 67. Inactivation was confirmed by an immune-plaque assay 63. The FI-RSV 

vaccine adsorbed to aluminium hydroxide adjuvant (alum, 4 mg/ml) was used for immunization. 

 

2.3 Immunization and virus infection 

To investigate the vaccine adjuvant effects in CD4-deficiency, C57BL/6 wild-type (WT), 

CD4KO, CD4-depleted WT, and MHCIIKO mice were immunized intramuscularly with influenza 

vaccine alone or adjuvanted with MF59 (50% vol/vol as recommended by manufacturer), 5 µg of 

MPL, 50 µg of Alum, or 5 µg of MPL plus 50 µg of Alum (MPL+Alum). For antigen adsorption 

of Alum or MPL+Alum adjuvant, influenza vaccine was incubated with adjuvant in 37°C for 30 

minutes before immunization. The immunizations were performed twice (prime and boost) in WT, 

CD4KO, and MHCII KO mice with an interval of 4 weeks and immune sera collected at 3 weeks 

after each immunization (Fig. 4.1A). For CD4+ T cell acute depletion in WT mice, naïve WT mice 

were injected with anti-mouse CD4 monoclonal antibody (200 μg /mouse, clone GK1.5) 

intraperitoneally 2 days before each prime and boost immunization. To maintain CD4 depletion 

status, the mice were injected CD4-depleting antibodies every 7 days. At 20 weeks after boost, 

naïve and immunized mice were challenged with 17 × lethal dose 50% (LD50) of 

A/California/04/2009 (H1N1) virus. The challenged mice were monitored to determine survival 

rates and body weight changes for 14 days. Kaplan Meier analysis and log rank were applied for 

the survival graphs. Additional sets of challenged mice were sacrificed at day 5 post infection to 
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determine protective efficacy. After sacrifice, bronchoalveolar lavages fluids (BALF), lung, bone 

marrow, and spleens were harvested for further analysis. 

For cellular mechanisms of RSV vaccines, female BALB/c mice aged 6 to 8 weeks 

(Charles River) were immunized intramuscularly with RSV vaccines or infected intranasally with 

live RSV A2. Groups of mice (n=15) were intramuscularly immunized with RSV vaccines at week 

0 and 4. For FI-RSV immunization, 2 μg and 1 μg of FI-RSV were used for prime and boost, 

respectively. A mixed RSV vaccine designated as FdFG VLP contained RSV F DNA, RSV F VLP 

and RSV G VLP. The priming dose of FdFG VLP was composed of 10 μg F VLP/10 μg G VLP/50 

μg F DNA and the boosting dose was half of each component (5 μg F VLP/5 μg G VLP/25 μg F 

DNA). For a control  group, mice (n=15) were intranasally infected with live RSV A2 strain (1×106 

plaque forming units (PFU) for prime, 0.5×106 PFU for boost) at weeks 0 and 4. Serum samples 

were collected at 3 weeks after prime and boost immunization. At 26 weeks after boost 

immunization, naïve, immunized, and infected mice were challenged with RSV (1×106 

PFU/mouse). 

 

2.4 Enzyme linked immunosorbent assay (ELISA) 

Immune sera were collected 3 weeks after each immunization and used to determine IgG 

antibody levels by ELISA. Briefly, serially diluted immune sera were applied to the ELISA plates 

coated with inactivated virus (2 μg/ml), FI-RSV (4 μg/ml), RSV F protein (100 ng/ml, BEI, NIH) 

or RSV G protein (200 ng/ml, Sino biological Inc.) as an antigen. After washing, horseradish 

peroxidase-labeled secondary anti-mouse antibody reagents were used to detect antigen-specific 

IgG, IgG1 and IgG2c antibodies. Tetramethylbenzidine (TMB) was used as a substrate and optical 

density (OD) was measured at 450 nm by an ELISA reader (Bio-Rad). For analysis of long-lived 
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antibody secreting cell responses, bone marrow cells and spleen cells were harvested from mice at 

day 5 post virus infection and incubated in influenza virus-coated cell culture plates for 1 or 5 

days. Antibodies secreted in vitro were measured by ELISA. Cytokines and chemokines in BALF, 

lung extract, peritoneal exudates, sera and cell culture supernatants were measured by using ELISA 

kits from eBiosciences and R&D systems. 

 

2.5 Hemagglutination inhibition (HAI) assay 

Immune sera were incubated with receptor destroying enzymes (Sigma Aldrich) at 37ºC 

for 18 hours and then at 56ºC for 30 minutes for complement inactivation. Inactivated sera were 

serially diluted and incubated with 8 HA units of A/California/4/2009 (H1N1) virus in V-bottom 

microplates. After 30 minutes, 0.5% chicken red blood cells were treated to the wells and the 

hemmagglutination was determined after 40 minutes. The detection limit of HAI titer was 2 of 

Log2. 

 

2.6 In vivo protection assay of immune sera  

Naïve and immune sera were incubated at 56ºC for 30 minutes for inactivation of 

complements and diluted to 4 times with phosphate-buffer saline (PBS). Diluted sera were mixed 

with a lethal dose (7.5×LD50) of A/California/4/2009 (H1N1) virus and incubated for 30 minutes. 

A mixture of sera and virus was used to infect naïve WT mice intranasally. Body weight changes 

of the infected mice were daily monitored for 14 days. 
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2.7 Neutralizing antibody assay 

RSV-specific neutralizing antibody titers in mouse sera were measured using the red 

fluorescent monomeric Katushka 2 protein expressing RSV A2 strain (A2-K-line19F) 68, 69. Heat-

inactivated naïve and immunized mice sera were serially diluted and mixed with 1000 PFU of A2-

K-line19F virus. After 1 hour culture at 37°C, the sera and virus mixtures were added to confluent 

monolayers of HEp-2 cells in a separated 96-well culture plate. After 2 hours infection, the 

remaining virus was removed and the infected HEp-2 cells were incubated at 37°C, 5% CO2 for 

22 hours. The plates were washed and fluorescent intensity as a result of replication of A2-K-

line19F virus was read (588 nm excitation, 635nm emission) by using an Synergy H1 hybrid 

Reader (BioTek Instruments,Inc, Winooski, VT). For lung RSV titers, at 26 weeks after boost 

immunization, the mice were intranasally challenged with RSV (1 x 106 PFU/mouse) and lung 

tissues were collected day 5 post challenge (n=15). RSV titers were measured by using a plaque 

assay and presented as numbers of plaques per gram lung tissues.  

 

2.8 Lung virus titration  

Lung extracts were prepared for viral titers using a mechanical tissue grinder with 1.5 ml 

of PBS per each lung. For influenza virus titer, embryonated chicken eggs were inoculated with 

diluted lung extracts and incubated at 37ºC for 3 days. The allantoic fluids of eggs were collected 

and hemagglutination assay was performed to determine viral titers. Virus titers as 50% egg 

infection dose (EID50)/ml were evaluated according to the Reed and Muench method 70. The 

detection limit of EID50 was 1.7 (Log50). An immunoplaque assay was used to determine RSV 

titer in lung extracts as described. 
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2.9 Histology  

Intact lungs from immunized mice were harvested at day 5 post virus infection and treated 

with formalin for fixation. The fixed lung tissues were processed, sectioned, and stained with 

hematoxylin and eosin as described (21). Photographs were acquired by a microscope (Zeiss 

Axiovert 100) with an attached camera at 100x magnification (Canon 30D). 

 

2.10 CD8+ cell depletion 

The MF59 adjuvanted CD4KO mice at 5 months after boost immunization were treated 

with anti-mouse CD8α monoclonal antibodies (150 μg/mouse, clone 53-6.7) intraperitoneally on 

days –2, +1 relative to the day of challenge. The mice were challenged with a lethal dose of 

A/California/04/2009 (H1N1) virus and sacrificed at day 5 post infection to determine the roles of 

CD8+ T cells in protection against the virus infection. 

 

2.11 Intraperitoneal injection of adjuvants 

WT and CD4KO mice were injected with 200 μl of phosphate buffered saline (PBS), MF59 

(100 μl in 200μl), MPL (5 μg) + Alum (50 μg), MPL (5 μg), or Alum (50 μg) intraperitoneally. 

Sera were collected at 1.5, 6 and 24 hours post injection for detection of cytokines and chemokines. 

Peritoneal exudates were harvested at 24 hours post injection by PBS flushing. Peritoneal cells 

were used to determine phenotypes and cellularity of infiltrating cells by flow cytometry and 

peritoneal exudates were used for detection of cytokines and chemokines.  
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2.12 Flow cytometry 

Cells harvested after IP injection were treated with Fc receptor blocker, anti-CD16/32, and 

then stained with fluorescence-labeled CD11b (clone M1/70), CD11c (clone N418), F4/80 (clone 

BM8), MHC class II (clone M5/114.15.2), Ly6c (clone HK1.4), B220 (clone RA3-6B2), SiglecF 

(clone E50-2440), CD3 (clone 17A2), CD4 (clone GK1.5), CD8 (clone 53-6.7) and pan-natural 

killer (NK) cell marker (clone DX5) antibodies. Macrophages (CD11b+F4/80+), MHCIIhigh 

macrophages (CD11b+F4/80+MHCIIhigh), monocytes (CD11b+Ly6chighF4/80+), neutrophils 

(CD11b+Ly6c+F4/80-), eosinophils (CD11b+SiglecF+), plasmacytoid pDCs 

(CD11c+B220+MHCIIhigh), CD11bhigh DCs (CD11c+CD11bhighMHCIIhigh), CD11blow DCs 

(CD11c+CD11blowMHCIIhigh), CD4+ T cells (CD3+CD4+), CD8+ T cells (CD3+CD8+), NKT cells 

(CD49b+CD3+), NK cells (CD49b+CD3-) were gated by flow cytometry. 

For cell phenotype analysis after RSV infection, the harvested BAL cells from BALF 

samples (n=5, pooled) were stained with fluorophore-labeled surface markers. Anti-mouse 

CD16/32 (clone 93) was used as a Fc receptor blocker and then, an antibody cocktail which 

contained anti-mouse CD45-PerCP (clone 30-F11), CD11b-APC (clone M1/70), CD11c-PE-Cy7 

(clone N418), CD3-Pacific Blue (clone 17A2), CD8-APC eFluor780 (clone 53-6.7) and SiglecF-

PE (clone E50-2440) was used to treat the cells. For intracellular interferon-gamma (IFN- γ) 

staining, Cytofix/Cytoperm™ Fixation/Permeabilization Solution Kit with BD GolgiStop™ was 

used as manufacturer’s protocol.  

Adjuvants-treated BMDCs were harvested and stained with fluorescence-labeled anti-

mouse CD40, CD80, CD86 and MHCII antibodies after blocking Fc receptors (anti-mouse 

CD16/32). 
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The stained cells were acquired by BD Fortessa (BD Biosciences, Mountain View, CA, 

USA) and analyzed by FlowJo (Tree Star Inc., Ashland, OR, USA). 

 

2.13 In vitro cell cultures  

Bone marrow (BM) derived dendritic cells (BMDCs) and BM derived macrophages 

(BMMs) were generated from BM cells. Briefly, bone marrow cells were cultured with mouse 

granulocyte-macrophage colony stimulating factor (10 ng/ml) for 6 days to enrich BMDCs or 

macrophage-colony stimulating factor (25 ng/ml) for 7 days to enrich BMMs.  

Cell viability was determined using the [3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium] bromide (MTT) assay measuring the activity of mitochondrial 

dehydrogenase. DC 2.4 cells kindly provided by Dr. Martin D’Souza were seeded at the 

concentration of 5x105 cells/well in 12-well plates. Alum (50 μg) or MF59 (50%) were treated for 

24 hours and the cells were harvested. The cells were stained with annexin V and propidium iodide 

(PI) kit (BD Pharmigen) followed by manufacturer’s protocol and analyzed by flow cytometry. 

The generated BMDCs were treated with MPL (5 μg) + Alum (50 μg), MPL (5 μg), or 

Alum (50 μg) to determine pro-inflammatory cytokine production, DC activation marker 

expression and cell death by adjuvants. For measuring in vitro IgG production by adjuvant-

stimulated BMDCs, vaccine (Vac, 3 μg) + MPL (5 μg) + Alum (50 μg) combination was used to 

pre-treat BMDCs for 2 days for preparation of mature DCs (mDCs). Spleen cells from naïve 

CD4KO mice were cultured with MPL+ Alum, mDCs, or mDCs + mDC culture supernatant for 7 

days. IgG levels in culture supernatants were determined by ELISA. To determine proliferated 

double negative (DN) T cells, spleen cells were harvested from Vac+MPL+Alum-immunized 

CD4KO mice and stained with carboxyfluorescein succinimidyl ester (CFSE). The CFSE-labeled 
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cells were co-cultured with immature DCs (imDCs), mDCs or mDC plus anti-mouse MHCII 

monoclonal antibodies (1 µg/ml, clone M5/114.15.2) for 5 days. The percentages of DN T cell 

proliferation were measured by flow cytometry.  

To determine the immunostimulatory effects of RSV vaccines, the generated BMDCs were 

seeded at the concentration of 5 × 104 cells/well in 96-well cell culture plates and treated with 10 

µg/ml of FI-RSV, F VLP, G VLP and live RSV. 2 × 105 cells/well of the harvested splenocytes in 

96-well cell culture plates were treated with 10 µg/ml of FI-RSV, F VLP and G VLP. After 2 days 

culture, the cell culture supernatants were harvested and cytokine production were measured. 

BMDC and splenocyte culture supernatants were used to determine cytokine levels. 

 

2.14 Uric acid assay 

Peritoneal exudates were harvested from PBS, MF59, or alum-injected WT or CD4KO 

mice at 24 hours post injection. The uric acid levels in peritoneal exudates were measured by uric 

acid assay kit (Bioassay system) followed by manufacturer’s protocol.  

 

2.15 Statistical analysis 

Experimental data were presented as means ± SEM (standard error of mean). The statistical 

significance was determined by 1-way ANOVA and followed Tukey’s multiple comparison test 

or by 2-way ANOVA and followed Bonferroni post-test. p<0.05 was considered as significance. 

We analyzed all data with statistical Prism Software (GraphPad Software Inc, San Diego, CA). 
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3 CHAPTER 1. MF59 ADJUVANT EFFECTS ON INDUCING ISOTYPE-SWITCHED 

IGG ANTIBODIES AND PROTECTION AFTER IMMUNIZATION WITH T-

DEPENDENT INFLUENZA VIRUS VACCINE IN THE ABSENCE OF CD4+ T 

CELLS 

3.1 Summary 

CD4+ T cells play a central role in orchestrating adaptive immunity. To better understand 

the roles of CD4+ T cells in the adjuvant effects, we investigated the efficacy of T-dependent 

influenza virus split vaccine with MF59® or alum in CD4-knockout (CD4KO) and wild-type (WT) 

mice. CD4+ T cells were required for the induction of IgG antibody responses to split vaccine and 

alum adjuvant effects. In contrast, MF59® was found to be highly effective in raising isotype-

switched IgG antibodies to T-dependent influenza split vaccine in CD4KO mice or CD4-depleted 

WT mice, equivalent to those in intact WT mice, thus overcoming the deficiency of CD4+ T cells 

in helping B cells and inducing immunity against influenza virus. MF59-adjuvanted influenza split 

vaccination was able to induce protective CD8+ T cells and long-lived antibody-secreting cells in 

CD4KO mice. MF59 adjuvant effects in CD4KO mice might be associated with uric acid, 

inflammatory cytokines, and recruitment of multiple immune cells at the injection site, but their 

cellularity and phenotypes were different from those in WT mice. These findings suggest a new 

paradigm of CD4-independent adjuvant mechanisms, providing the rationales to improve vaccine 

efficacy in infants, elderly, and immune-compromised patients as well as in healthy adults. 
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3.2 Results 

3.2.1 MF59 is effective in generating influenza vaccine-specific isotype-switched IgG 

antibodies in CD4-deficient mice.  

To determine the roles of CD4+ T cells in the adjuvant effects on generating vaccine-

specific isotype-switched antibodies, WT and CD4KO mice were intramuscularly immunized with 

influenza split vaccine only, or in combination with MF59 or alum adjuvant. Split vaccine only 

immunization induced IgG1 dominant antibody responses at low levels in WT mice but no 

antibody responses in CD4KO mice (Fig. 3.1), indicating that antibody responses to split vaccine 

require CD4+ T cell help. Similarly, the alum group showed significantly lower levels of IgG and 

IgG1 antibodies in CD4KO mice compared to those in WT mice (Fig. 3.1), suggesting the CD4+ 

T cell dependency of alum adjuvant effects. The MF59 group could generate vaccine-specific IgG, 

IgG1, and IgG2c antibodies at a substantial level after priming of CD4KO mice, which is 

significantly higher than those in WT mice immunized with split alone (Fig. 3.1A). Split alone and 

split plus alum vaccination in WT mice induced IgG1 dominant antibodies indicating T helper 

type 2 (Th2) immune responses. Whereas split plus MF59 vaccination of CD4KO mice induced 

both IgG1 and IgG2c isotypes similar to those in WT mice, eliciting Th1 and Th2 type immune 

responses regardless of CD4+ T cells.  In addition, MF59-adjuvanted CD4KO mice induced IgG 

and IgG1 antibodies specific for vaccine at significantly higher levels than those in WT mice 

immunized with split alone and split plus alum after boost (Fig. 3.1B). In general, CD4+ T cells 

are required for long-lived antibody and memory responses. Surprisingly, the antibody levels of 

split plus MF59 immunized CD4KO mice were maintained 5 months after boost immunization 

(Fig. 3.1C), suggesting the induction of long-lived IgG isotype-switched antibodies in the absence 

of conventional CD4+ T cells. The levels of IgG, IgG1 and IgG2c in split plus MF59 immune 
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CD4KO mice were comparable to those in the WT MF59 group (Fig. 3.1). Hemagglutination 

inhibition (HAI) assays were performed to determine whether protective antibodies would be 

induced in immune sera (Fig. 3.1D). Split vaccine alone or with alum induced low HAI titers in 

WT mice and no HAI titers in CD4KO mice. The MF59 group exhibited high levels of HAI titers 

in CD4KO mice, which are comparable to those in WT mice, indicating that MF59 adjuvant 

vaccination induces protective HAI antibodies in the absence of CD4+ T cells. In addition, CD4-

independent induction of isotype-switched IgG antibodies were similarly observed in CD4-

depleted WT mice with MF59 split vaccination (Fig. 3.2). These results of adjuvant effects in 

CD4KO mice suggest that MF59 can overcome CD4+ T cell deficiency in raising IgG, IgG1, IgG2a 

isotype-switched and functional (HAI) antibodies specific for split vaccine, a T-dependent antigen.  
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Figure 3.1 CD4KO mice with MF59 are more effective in inducing IgG isotype antibodies than WT mice with 

split vaccine alone or plus alum.  

Immune sera were taken 3 weeks after each immunization from WT and CD4KO mice (n=10 per group) 

intramuscularly immunized with split vaccine ± alum or MF59 adjuvant. Inactivated A/California/04/2009 H1N1 

virus (iCal)-specific IgG and isotype-switched IgG antibody levels in immune sera were determined by ELISA. 

Antibody levels after prime (A), boost (B) and 5 months after boost (C) immunizations are presented in mean ± 

standard error (SEM). (D) HAI titers were determined in immune sera from split vaccine ± alum or MF59 adjuvant 

immunized WT and CD4KO mice. WT: C57BL/6 wild type mice (n=10), KO: CD4 knockout mice (n=10). A 

representative of duplicate experiments was shown. Statistical significances were calculated by 1-way ANOVA and 

Tukey’s multiple comparison tests. *; p<0.05, **; p<0.01, and ***; p<0.001 as indicated. 
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Figure 3.2 Induction of protective isotype-switched antibodies by MF59 adjuvanted split vaccination of 

CD4-depleted B6 WT mice.   

(A) C57BL/6 wild-type mice were injected with anti-CD4 monoclonal antibody (200 µg/mouse, clone: GK1.5) 

to deplete CD4+ T cells. Cells were harvested from blood of CD4-depleted mice to determine CD4-depletion. 

CD4 and CD8 marker profiles are shown from CD3+ gated T cells. (B) CD4-depleted WT mice were 

immunized 2 times (prime and boost) with split vaccine plus MF59. The CD4-depletion was maintained by 

additional weekly treatments with CD4-depleting antibodies during the immunization. After 2 weeks from 

each immunization, immune sera were collected to determine virus-specific IgG and isotype-switched IgG 

antibodies by ELISA. (C) Naïve and the immune mice were infected with the lethal dose of virus 4 weeks after 

boost immunization. Body weight changes were monitored for 14 days. 
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3.2.2 MF59 but not alum split vaccination induces equivalent protection in CD4KO and WT 

mice.  

To investigate the adjuvant effects on conferring protection, at 5 months after boost 

vaccination, immunized WT and CD4KO mice were intranasally challenged with a lethal dose of 

A/California/04/2009 H1N1 virus. WT mice with split vaccine alone were severely sick as shown 

by over 18% weight loss and 60% survival rates, indicating low efficacy of protection. CD4KO 

mice with split vaccine were not protected (Fig. 3.3A and B). Alum adjuvant effects were evident 

in WT mice with moderate weight loss of approximately 8% but ineffective in CD4KO mice 

displaying over 18% weight loss and 40% survival rates (Fig. 3.3A and B). MF59 adjuvant effects 

on conferring 100% protection without weight loss in CD4KO mice were similar to those in WT 

mice (Fig. 3.3A and B). Consistent with protective effects of MF59 in CD4KO mice, we observed 

100 % protection without weight loss against lethal infection in CD4-depleted WT B6 mice (Fig. 

3.2C). To better assess the protective efficacy, lung viral titers were determined at day 5 post virus 

infection (Fig. 3.3C). The split vaccine and alum adjuvant groups showed high levels of lung viral 

loads in both CD4KO and WT mice. The MF59 group showed lowest levels of lung viral titers in 

both CD4KO and WT mice. These results suggest that MF59 but not alum adjuvant was effective 

in conferring protection independent of CD4+ T cell help even after 5 months of vaccination in a 

mouse model.  

In addition, we determined the protective roles of immune sera from CD4KO mice that 

were immunized with split vaccine plus MF59 (Fig. 3.3D). Naïve mice were intranasally infected 

with a mixture of lethal dose of A/California/04/2009 H1N1 virus and immune sera or naïve sera, 

and daily monitored (Fig. 3.3D). All mice that were infected with virus and naïve sera died of 

infection by day 7. Whereas mice infected with virus and CD4KO mouse immune sera of split and 
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MF59 vaccination did not show any weight loss and 100% survived (Fig. 3.3D). Therefore, 

antibodies induced by split plus MF59 vaccination of CD4KO mice can confer protection to naïve 

mice.  

 

Figure 3.3 MF59 split vaccination confers equal protection in CD4KO and WT mice.  

(A) Body weight (BW) changes and (B) survival rates after lethal dose of A/California/2009 H1N1 influenza virus 

challenge after 5 months of vaccination. (C) Lung virus titers in embryonated chicken eggs at day 5 post infection by 

an egg infection dose 50 (EID50). The detection limit of EID50 was 1.7 (Log10). (D) In vivo protective effects of 

immune sera. Naïve mice were intranasally infected with a lethal dose (7.5×LD50) of virus (A/California/04/2009 

H1N1) mixed with naïve or split-MF59 immune sera from CD4KO mice. WT: C57BL/6 wild type mice (n=10), KO: 

CD4 knockout mice (n=10). Statistical significances were calculated by 1-way ANOVA and Tukey’s multiple 

comparison test. **; p<0.01, and ***; p<0.001 as indicated among the groups. nd; not detected. 
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3.2.3 MF59 but not alum is effective in generating antibody secreting long-lived cells in both 

CD4KO and WT mice.  

Antibody secretion at the infection site plays a role in blocking virus invasion and 

replication. WT mice with split vaccine with or without adjuvants showed IgG antibodies in 

bronchoalveolar lavage fluids (BALF) (Fig. 3.4A) and lung extracts (Fig. 3.4B) at day 5 after 

infection. However, split vaccine only CD4KO mice did not display IgG antibodies in BALF and 

lungs collected at day 5 after infection (Fig. 3.4A and B). CD4+ T cell-independent antibody 

responses are characterized to be short-lived within 30 days and deficient of long-lived plasma 

cells in the bone marrow (BM) 71, 72. To determine whether MF59 would contribute to the 

generation of long-lived plasma cells and memory type B cells, in vitro antibody production was 

determined using cells of BM and spleens collected from immune mice after 5 months of 

vaccination and then virus infection (Fig. 3.4C and D). The split only and split plus alum immune 

WT mice groups showed low levels of antibodies from 1-day BM or 5-day spleen cell cultures 

(Fig. 3.4C and D). Surprisingly, MF59 CD4KO mice showed significantly high levels of 

antibodies in cultures of BM and spleen cells, which are comparable to those in MF59 WT mice 

(Fig. 3.4C and D). These results suggest that MF59 adjuvant contributes to the generation of long-

lived antibody secreting cell responses even without the help from CD4+ T cells.  

 

3.2.4 MF59 plus split vaccination protects against pulmonary inflammation in immune 

CD4KO and WT mice.  

Pathogenic influenza virus infection inflames lung tissues by inducing excessive pro-

inflammatory cytokines and/or recruiting immune cells. High levels of IL-6 were observed in 

BALF and lungs from the groups of WT naïve and split only, and CD4KO alum mice at day 5 
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after challenge (Fig. 3.4E and F). In contrast, low levels of IL-6 in BALF and lungs were detected 

in the MF59-CD4KO and WT groups (Fig. 3.4E and F).  Histopathological changes in the lung 

were analyzed to better evaluate the protective efficacy of adjuvants after challenge of WT and 

CD4KO mice (Fig. 3.4G). Both WT and CD4KO naïve mice showed severe lung inflammation 

upon influenza virus infection as shown by extensive infiltrates around the airways, blood vessels, 

and interstitial spaces (Fig. 3.4G). Split vaccine only and split plus alum immune WT and CD4KO 

mice showed moderate to high levels of immune cell infiltration, and CD4KO mice displayed a 

tendency of being more severe inflammation compared to corresponding WT mice (Fig. 3.4G). 

Importantly, MF59 adjuvanted WT and CD4KO mice showed lowest or no overt pulmonary 

inflammation, which is consistent with effective protection in the MF59 adjuvanted WT and 

CD4KO groups. These data suggest that MF59 adjuvant vaccination effectively protects against 

lung inflammation due to viral infection even in the absence of CD4+ T cell help. 
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Figure 3.4 MF59 split vaccination of CD4KO mice induces mucosal antibodies, long-lived plasma and memory 

B cell responses, and protects against lung inflammation after virus challenge.  

(A) IgG levels in BALF. (B) IgG levels in lung extracts. (C and D) BM and spleen cells were harvested day 5 post 

infection after 5 months of vaccination. BM cells (C) and spleen cells (D) were cultured in the plates coated with virus 

antigen for 1 day or 5 days, respectively, and IgG levels were detected by ELISA. (E) IL-6 inflammatory cytokine in 

BALF. (F) IL-6 inflammatory cytokine in lung extracts. BALF and lung samples (n=5) were collected at 5 days after 

lethal challenge. (G) Lung histopathology of mice (n=5) after virus challenge. Lung tissues at day 5 post challenge 

were stained with hematoxylin and eosin. Statistical significances were calculated by 1-way ANOVA and Tukey’s 

multiple comparison test. *; p<0.05, and ***; p<0.001 as indicated among the groups. nd; not detected. 
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3.2.5 CD4KO mice with MF59 plus split vaccination induce protective CD8+ T cells.  

Since CD4+ T cells play an essential role in generating functionally effective CD8+ T cells, 

we determined whether MF59 would contribute to the generation of protective CD8+ T cells in 

CD4KO mice. We applied a CD8-depletion approach to the MF59 adjuvanted group prior to virus 

challenge (Fig. 3.5A). The MF59 CD4KO group with CD8-depletion displayed approximately 

20% weight loss compared to the control MF59 CD4KO group with 4-5% weight loss after lethal 

virus infection (Fig. 3.5B). In addition, CD8+ T cell depletion in the split plus MF59 immunized 

CD4KO mice led to 1000-fold higher egg infectious titers compared to those in the CD8-

competent CD4KO group  (Fig. 3.5C). In terms of lung inflammation, CD8-depleted CD4KO mice 

showed more severe pulmonary inflammation as examined for histopathology (Fig. 3.5D) and pro-

inflammatory cytokine production in both BALF and lung extracts (Fig. 3.5E). These results 

suggest that MF59 adjuvant contributes to the generation of protective CD8+ T cells in the absence 

of CD4+ T cells.  
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3.2.6 MF59 induces in vivo inflammatory cytokines and chemokine in CD4KO and WT 

mice.  

Certain adjuvants recruit innate immune cells resulting in immunocompetent 

microenvironment. To investigate underlying CD4+ T cell-independent adjuvant mechanisms of 

MF59, we injected alum and MF59 intraperitoneally to WT and CD4KO mice. Sera at 1.5, 6, and 

24 hours (h), and peritoneal exudates at 24 h were harvested after injection. Cytokines and 

chemokines in peritoneal exudates and sera were detected by ELISA (Fig. 3.6A and B). MF59 

induced high levels of pro-inflammatory cytokines (IL-5, IL-6 and TNF-α) and chemokines (MCP-

1 and RANTES) in peritoneal exudates whereas alum induced low levels of IL-6 and MCP-1 only 

(Fig. 3.6A). Interestingly, MF59-injected CD4KO mice showed higher levels of IL-6, TNF-α and 

Figure 3.5 MF59 adjuvanted CD4KO mice induce protective CD8+ T cell responses. 

(A) Split plus MF59 immunized CD4KO mice were injected with anti-CD8 monoclonal antibody (150 µg/mouse, 

clone: clone 53-6.7) to deplete CD8+ T cells before virus challenge. Cells were harvested from blood of CD8-depleted 

mice 2 days after injection to determine CD8-depletion. CD4 and CD8 marker profiles are shown from CD3+ gated T 

cells. (B) Body weight changes of CD8-depleted CD4KO mice after virus infection. (C) Lung virus titers in 

embryonated chicken eggs at day 5 after infection. (D) Lung histopathology of CD8-depleted CD4KO mice day 5 post 

infection. (E) Inflammatory IL-6 and TNF-α cytokine in BALF and lung extracts day 5 post infection. Statistical 

significances were calculated by 1-way ANOVA and Tukey’s multiple comparison test. *; p<0.05, **; p<0.01, ***; 

p<0.001 between CD8-depleted and CD8-undepleted CD4KO mouse groups (n=5).  
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RANTES and similar levels of IL-5 and MCP-1 compared to WT mice (Fig. 3.6A). These results 

indicate that MF59 injection could induce more inflammatory environment in CD4KO mice than 

that in WT mice. In addition to the local responses, systemic cytokine/chemokine levels were also 

higher in MF59 injected mice than those of PBS or alum injected mice (Fig. 3.6B). IL-6 in sera 

was rapidly increased at the early time point (1.5 h), but IL-5 was induced at high levels at late 

time points in sera from MF59-treated WT mice (6 h) and CD4KO mice (24 h), and maintained at 

high levels for a while. MCP-1, a chemokine to recruit monocytes and DCs, was transiently 

increased in both MF59 injected WT and CD4KO mice.  

Figure 3.6 MF59 induces acute production of cytokines and chemokines at higher levels than alum.  
WT and CD4KO mice (n=5) were intraperitoneally injected with PBS, alum, or MF59. (A) Cytokines and chemokines 

in peritoneal exudates at 24 h after injection. Statistical significances were calculated by 1-way ANOVA and Tukey’s 

multiple comparison test. *; p<0.05, **; p<0.01, and ***; p<0.001 as indicated among the groups. (B) Kinetics of 

cytokines and chemokine levels in sera from adjuvant injected mice (n=5 mice per group). Statistical significances 

were calculated by 2-way ANOVA and Bonferroni post-tests. **; p<0.01 compared to PBS-treated group and #; 

p<0.05, ##; p<0.01, and ###; p<0.001 compared to alum treated group. nd; not detected. 
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3.2.7 MF59 recruits multiple innate immune cells and dendritic cells in CD4KO mice.  

To analyze the cellular phenotypes at the injection site, the peritoneal cells were harvested 

at 24 h after adjuvant injection. Most of macrophages were disappeared (or depleted) in alum and 

MF59 treated WT mice whereas some levels of macrophages were maintained in CD4KO mice 

with MF59 (Fig. 3.7). In contrast, monocytes, neutrophils and natural killer (NK) cells were 

significantly increased to higher levels in MF59 adjuvant treated CD4KO and WT mice than those 

in alum-treated mice. Surprisingly CD4KO mice with MF59 showed higher cellularity of 

macrophages, eosinophils, and natural killer T (NKT) cells as well as DC populations including 

plasmacytoid DCs (pDCs), CD11bhigh DCs, and CD11blow DCs compared to WT mice with MF59 

(Fig. 3.7). These results suggest that differential cellularity and patterns of immune cell recruitment 

after MF59 treatment of WT mice and CD4KO mice may explain CD4-independent and CD4-

dependent MF59 adjuvant effects and superior adjuvanticity of MF59 over alum.  
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3.2.8 MF59 as well as alum adjuvant induces in vitro cell death and uric acid production 

Induction of cell death or tissue damage can be a mechanism for alum adjuvant effects 73, 

74, 75. To investigate whether alum or MF59 adjuvant would induce cell death, BM-derived DCs 

(BMDC) and macrophages (BMM) were in vitro cultured in the presence of adjuvant for 48 h and 

cell viability was determined (Fig. 3.8A and B). BMM showed approximately 20% and 30% cell 

viability in the presence of alum and MF59 adjuvant respectively (Fig. 3.8A). BMDCs treated with 

Figure 3.7 MF59 injection of CD4KO mice acutely recruits multiple innate and dendritic cells.  
Cells in peritoneal exudates were collected at 24 hours after adjuvant injection and their phenotypes and cellularity 

determined using flow cytometry (n=5 mice per group). Macrophages; CD11b+F4/80+, MHCIIhigh macrophages; 

CD11b+F4/80+MHCIIhigh, Monocytes: CD11b+Ly6chighF4/80+, Neutrophils; CD11b+Ly6c+F4/80-, Eosinophils; 

CD11b+SiglecF+, pDCs; CD11c+B220+MHCIIhigh, CD11bhigh DCs; CD11c+CD11bhighMHCIIhigh, CD11blow DCs; 

CD11c+CD11blowMHCIIhigh, CD4+T cells; CD3+CD4+, CD8+ T cells; CD3+CD8+, NKT cells; CD49b+CD3+, NK cells; 

CD49b+CD3-. Statistical significances were calculated by 1-way ANOVA and Tukey’s multiple comparison test. *; 

p<0.05, **; p<0.01, and ***; p<0.001 as indicated among the groups. nd; not detected. 
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alum or MF59 resulted in 50% cell death (Fig. 3.8B). Alum- and MF59-treated DC2.4 cells showed 

approximately 25% and 15% necrotic cell death, respectively (Fig. 3.8C and D). MF59-treated 

cells also displayed substantial cell death via apoptosis. Consistent with in vitro cell death results, 

high levels of uric acid, a danger signal in response to cell death 76, were observed in the peritoneal 

exudates at 24 h after injection of WT and CD4KO mice with MF59 (Fig. 3.8E). These in vitro 

results appear to be consistent with in vivo lower cellularity of macrophages and DC populations 

at the site of alum or MF59 adjuvant injection.   

Figure 3.8 Alum and MF59 adjuvants induce in vitro cell death and uric acid production. 

 (A, B) Cell viability of BMMs (A) and BMDCs (B) after in vitro culture with alum or MF59. Primary BMMs and 

BMDCs from C57BL/6 mice were cultured in the presence of alum (100 µg/ml) or MF59 (20%) for 48 h and cell 

viability was determined by an MTT assay. Statistical significances were calculated by 1-way ANOVA and Tukey’s 

multiple comparison test. ***; p<0.01 compared to mock control group. (C) Flow cytometry profile and (D) apoptotic 

or necrotic cell death percentages of dendritic cell line DC 2.4 cells. DC 2.4 cells were treated with adjuvants for 24 

h, and then stained with annexin V and PI. Necrotic cell death: PI+AnnexinV-, Late apoptosis: PI+AnnexinV+, Early 

apoptosis: PI-AnnexinV+. (E) WT and CD4KO mice were intraperitoneally injected with PBS, alum, or MF59. 

Peritoneal exudates were collected 24 hours post adjuvant injection and uric acid levels were measured.   
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3.3 Discussion  

It is a conventional mechanism that most adjuvants activate components of the innate 

immune system, mediating the effective presentation of antigens via APCs, which subsequently 

determines a pattern of T helper cell immune responses (Th1, Th2, Th17, follicular T cells, 

regulatory T cells). Activation of T helper cells via adjuvants and APCs provide a differential and 

critical role in controlling specific B cells to produce isotype-switched IgG antibodies. As 

expected, CD4+ T cells were found to be critical for inducing isotype-switched IgG antibodies by 

split vaccination and for alum adjuvant effects. Nonetheless, the efficacy of alum was low as 

evidenced by ineffective lung viral clearance, lung inflammation, and weight loss in immune 

competent WT mice after virus challenge.  

Different from a conventional dogma of the critical roles of CD4+ T cells in generating 

adaptive immunity, CD4+ T cells appear to be differentially required for inducing protective 

immunity, depending on the IgG isotypes, and the types of adjuvants. Here, unexpectedly, we 

found that MF59 adjuvant could overcome a deficiency of CD4+ T cells in generating isotype-

switched IgG antibodies and conferring effective protection even after 5 months of vaccination. 

CD4-independent IgG antibody responses induced by sublethal virus infection were shown to be 

short-lived within 30 days, to wane rapidly, and no antibody-secreting plasma cells 71, 72. IgG 

antibody responses in CD4KO mice with MF59 conferred protective immunity, high virus-specific 

serum antibodies, and long-lived antibody secreting plasma cells in BM even after 5 months. Also, 

the induction of protective humoral antibody and cellular CD8+ T cell responses was evident in 

CD4KO mice with MF59 adjuvant split vaccination. Adaptive immune responses and efficacy of 

protection against influenza virus were significantly higher in CD4KO mice with MF59 compared 

to those in WT mice with split vaccine alone or with alum. These results provide convincing clues 
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that MF59 adjuvant may replace the roles of conventional CD4+ T cells in conferring protective 

immunity after T-dependent split vaccine immunization. This study suggests an alternative 

pathway between innate and adaptive immune systems via certain adjuvants such as MF59, which 

can be either CD4-independent or CD4-dependent mechanism.  

CD4KO mice were reported to develop MHC class II-restricted CD8+ T cells and double 

negative T cells which might contribute to providing CD4+ T cell-like help in CD4KO mice 41, 77. 

T cell receptor αβ-deficient mice were shown to have a severe defect in inducing IgG antibodies 

after vaccination 41. Nonetheless, an alternative approach of acute CD4 depletion in this study 

provides further evidence that MF59 can induce IgG isotype-switched antibodies in the absence 

of CD4+ T cells by eliminating the potential contribution of compensatory immune cells that might 

have developed in CD4KO mice. The possible roles of double negative and/or γẟ T cells in 

generating IgG antibodies in CD4KO mice remain to be determined.  

Although it is not clear how MF59 works in a CD4-independent manner, possible 

mechanisms of MF59 adjuvant effects were previously reported. Alum and MF59 did not exhibit 

any in vitro stimulatory effects on DCs 26, 28. Intriguingly adjuvanticity of alum and MF59 required 

MyD88 in vivo, a common signaling adaptor for most Toll-like receptors, using a MyD88 mutant 

mouse model with recombinant bacterial protein vaccines or ovalbumin model antigens 26, 78. 

MF59 was shown to create an immunocompetent micro-environment at the injection site by 

inducing chemokines and cytokines as well as recruiting neutrophils, eosinophils, and later DCs 

and macrophages 79. Previous studies on MF59 suggest that immunocompetent micro-environment 

with activated innate and APCs leads to the induction of effector CD4+ T cells eventually helping 

B cells to differentiate IgG antibody secreting plasma cells 28, 29, 80, 81. Using microarray and 

immunofluorescence analysis, MF59 was a strong inducer of cytokines, cytokine receptors, 
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adhesion molecules, antigen presenting genes, and a rapid influx of CD11b+ blood cells 82. In this 

study, MF59 was more effective in inducing acute production of IL-5 and MCP-1 than alum. 

Compared to alum, MF59 was more effective in attracting innate immune cells (monocytes, 

neutrophils, eosinophils) and APCs (CD11bhi/low DCs), NK, and NKT cells, which is consistent 

with a previous study 79. Interestingly, antibody-mediated neutrophil ablation did not alter MF59 

adjuvanticity 79. MF59 induced more production of IL-6, TNF-α, and RANTES in CD4KO mice 

than those in WT mice. Thus, MF59 may work in a different mechanism in CD4KO from the one 

in WT mice. Higher levels of DC populations including pDC and CD11bhi/low DCs, NKT, and 

CD8+ T cells were recruited in CD4KO mice than those in WT mice after MF59 treatment. 

Therefore, in the absence of CD4+ T cells, CD4KO mice might have differentially responded in 

their innate immune cells and cytokines to MF59 adjuvant, suggesting an alternative immune 

activation pathway in CD4KO mice.  

Cell death sends danger signals such as uric acid and creates local inflammatory 

microenvironment triggering the innate immune system 76, 83. Necrotic sterile cell death or injury 

induces the generation of uric acid as an adjuvant, promoting adaptive immune responses 76, 84, 

and could be a powerful mediator of a Th2-associated adjuvant effects 85. Most interestingly, we 

discovered that alum and MF59 injection resulted in significant depletion of macrophages 

(F4/80+CD11b+MHCIIlow/high) and pDCs in the peritoneal cavity in WT mice, possibly causing cell 

death of these particular cell types. In line with these results, substantial levels of uric acid were 

detected at the injection site of WT and particularly CD4KO mice (Fig. 8E). High levels of uric 

acid might be correlated with inflammatory micro-environment producing IL-6, TNF-α, and 

RANTES in CD4KO-MF59 mice.  
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In vitro cultures of primary BM derived cells (BMMs, BMDCs), and DC2.4 DC cell lines 

with alum or MF59 displayed significant cell death. MF59 induced both apoptotic and necrotic 

cell death of DC2.4 whereas alum displayed mostly necrotic cell death of DC2.4 cell line. 

Compared to WT mice, MF59 IP injection of CD4KO mice maintained substantial levels of 

macrophages and pDCs together with increased cellularity of CD11bhi/low DCs, which might be 

contributing to MF59 adjuvant effects in CD4KO mice. These multiple mechanisms by MF59, 

which are different from alum quantitatively and qualitatively, appear to contribute to inducing 

IgG isotype antibodies in CD4KO mice to comparable levels as observed in WT mice. 

The efficacy of influenza vaccines is low in young children and the elderly who may have 

some defects in CD4+ T helper cells due to the immature immune system or aging. MF59-

adjuvanted influenza vaccine was effective in infants and young children 86. Our present data are 

relevant to these clinical studies and have significant clinical applications in providing rationales 

to improve vaccine efficacy in young infants, elderly, and CD4-deficient immunocompromised 

patients. Emerflu (an alum adjuvanted, inactivated, split H5 hemagglutinin) is a symbolic failure 

of alum-adjuvanted influenza vaccines in adults 87, requiring more effective adjuvants. Another 

implication is that adjuvant studies using CD4KO mice may provide a model to search for effective 

adjuvants such as MF59. WT mice are likely to over-respond to experimental adjuvants and 

vaccines, which may not represent the efficacies expected in humans 88.   
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4 CHAPTER 2. ROLES OF ALUM AND MONOPHOSPHORYL LIPID A 

ADJUVANTS IN OVERCOMING CD4+ T CELL DEFICIENCY TO INDUCE 

ISOTYPE-SWITCHED IGG ANTIBODY RESPONSES AND PROTECTION BY T-

DEPENDENT INFLUENZA VIRUS VACCINE 

4.1 Summary 

Vaccine adjuvant effects in CD4 deficient condition largely remain unknown. We investigated the 

roles of combined monophosphoryl lipid A (MPL) and Alum adjuvant (MPL+Alum) in inducing 

immunity after immunization of CD4-knockout (CD4KO) and wild-type (WT) mice with T-

dependent influenza vaccine. MPL+Alum adjuvant mediated IgG isotype-switched antibodies, 

IgG secreting cell responses, and protection in CD4KO mice, which were comparable to those in 

WT mice. In contrast, Alum adjuvant effects were dependent on CD4+ T cells. MPL+Alum 

adjuvant was effective in recruiting monocytes and neutrophils as well as in protecting 

macrophages from alum-mediated cell loss at the injection site in CD4KO mice. MPL+Alum 

appeared to attenuate MPL-induced inflammatory responses in WT mice, likely improving the 

safety. Additional studies in CD4-depleted WT mice and MHCII KO mice suggest that MHCII 

positive antigen presenting cells contribute to providing alternative B cell help in CD4 deficient 

condition in the context of MPL+Alum adjuvanted vaccination. 

4.2 Results 

4.2.1 MPL+Alum and MPL adjuvanted influenza vaccines induce isotype-switched IgG 

antibodies in CD4KO mice  

To determine whether adjuvanted vaccination would overcome a defect in CD4+ T cells 

for inducing isotype-switched IgG antibodies, WT and CD4KO mice were intramuscularly 

immunized with influenza vaccine or in the presence of MPL+Alum, MPL or Alum adjuvant 
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(n=10). At 3 weeks after prime, the influenza vaccine (WT-Vac) and Alum (WT-Alum) groups of 

WT mice showed low levels of virus-specific IgG antibodies (Fig. 4.1B). CD4KO mice with 

vaccine (KO-Vac) only or alum-adjuvanted (KO-Alum) vaccination did not induce virus-specific 

IgG antibodies after prime (Fig. 4.1B), suggesting that vaccine is a T-dependent antigen and that 

Alum adjuvant effects are dependent on CD4+ T cells. Surprisingly the MPL+Alum and MPL 

adjuvant groups induced IgG antibodies in CD4KO (KO Vac-MPL+Alum, KO Vac -MPL) mice 

at high levels comparable to the corresponding WT groups (WT Vac -MPL+Alum, WT Vac-MPL) 

after prime immunization (Fig. 4.1B).  Therefore, MPL+Alum combination and MPL adjuvants 

can overcome a defect of CD4+ T cells in priming IgG antibodies to T-dependent influenza vaccine 

in CD4KO mice.   

When we determined IgG antibodies in boost vaccinated WT and CD4KO mice (Fig. 

4.1C), the vaccine alone KO group did not induce IgG antibodies whereas the WT-Vac group 

showed substantial levels of IgG with dominant IgG1 (Th2 type) isotype (Fig. 4.1D, E). Also, the 

KO Vac+Alum group showed significantly lower level of IgG and IgG1 antibodies compared to 

those in WT-Alum mice (Fig. 4.1C, D), indicating that CD4+ T cells are required for Alum 

adjuvant effects. The KO-MPL+Alum group exhibited high levels of IgG and IgG1 isotype 

antibodies, which are comparable to those in WT-MPL+Alum mice and higher than the KO-MPL 

group (Fig. 4.1C, D). The KO Vac+MPL group displayed boost IgG antibodies comparable to 

those in WT mice (Fig. 4.1C) but a trend of lower levels of IgG1 antibodies compared to those in 

WT mice (Fig. 4.1D). Induction of low IgG2c (Th1 type) levels was observed in the WT Vac and 

WT Vac+Alum but not the corresponding KO groups (Fig. 4.1E). The KO Vac+MPL+Alum group 

induced IgG2c antibodies at substantial but lower levels compared to those in the corresponding 

WT mice (Fig. 4.1E). The KO Vac+MPL group was effective in inducing IgG2c isotype antibodies 
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to an equivalent level as observed in the corresponding WT mice (Fig. 4.1E). We observed that 

IgG antibody levels in KO-MPL and particularly in KO-MPL+Alum mice kept increasing when 

determined at 3 months after boost vaccination (Table 4.1), which were still maintained for over 9 

months (data not shown). It is important to note that MPL+Alum and MPL adjuvanted vaccination 

of CD4KO mice induced IgG antibodies to comparable levels in the corresponding WT mouse 

vaccination.  

Serum HAI titers are used as a measure of functional antibodies predicting the efficacy of 

protection against influenza virus. The WT-Vac and WT-Alum groups showed a trend of lower 

levels of HAI titers compared to those in the WT-MPL+Alum and WT-MPL groups. Vaccine only 

and vaccine plus Alum immunized CD4KO mice did not induce detectable levels of HAI titers 

(Fig. 4.1F). In contrast, the KO-MPL+Alum and KO-MPL groups showed high levels of HAI titers 

similar to those in WT-MPL+Alum and WT-MPL immune mice, and there were no statistical 

significances in the corresponding WT and KO groups (Fig. 4.1F). Thus, MPL+Alum or MPL 

adjuvant in influenza vaccination can induce protective antibodies in CD4KO mice at comparable 

levels as observed in corresponding WT-adjuvant immune mice.  

To determine adjuvant effects of MPL+Alum in primed mice, we primed wild-type mice 

with vaccine only, and then boosted the mice with vaccine only or vaccine+MPL+Alum. The 

boosted mice with MPL+Alum showed significantly higher levels of IgG antibody responses (Fig. 

4.1G, Vac+MPL+Alum boost; 13.6±2.47 μg/ml) compared to the vaccine only primed and boosted 

mice (Fig. 1G, Vac boost; 3.71±0.48 μg/ml). 
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Figure 4.1 MPL+Alum-adjuvanted vaccination induces isotype-switched IgG antibodies regardless of CD4+ T 

cells. 

 (A) A schematic diagram of vaccination schedule and assessment of protective efficacy.  WT: C57BL/6 wild type 

mice, KO: CD4 knockout mice, Vac; Inactivated influenza virus split vaccine (Vac) only immunized group, 

Vac+Alum; influenza split vaccine + aluminum hydroxide (Alum) immunized group, Vac+MPL; influenza split 

vaccine + MPL immunized group, Vac+MPL+Alum; influenza split vaccine + MPL + Alum immunized group. (B) 

Prime IgG antibody levels of immunized WT and CD4KO mice. (C) Boost IgG antibody levels of immunized WT 

and CD4KO mice. (D) Boost IgG1 isotype antibody levels of immunized WT and CD4KO mice. (E) Boost IgG2c 

isotype antibody levels of WT and CD4KO mice.  Immune sera were collected 3 weeks after prime and boost 

immunization from WT and CD4KO mice (n=10 per group). Inactivated virus specific-IgG antibody levels were 

determined by ELISA and shown as mean ± SEM of optical density (OD). Statistical significances were calculated by 

2-way ANOVA and Bonferroni post-tests. *; p<0.05, **; p<0.01, and ***; p<0.001 compared between each 

corresponding WT and CD4KO groups. (F) Hemagglutination inhibition (HAI) titers were determined from immune 

sera of vaccine ± MPL+Alum, MPL or Alum adjuvant immunized WT and CD4KO mice. The detection limit of HAI 

titer was 2. Statistical significances were calculated by 1-way ANOVA and followed Tukey’s multiple comparison 

tests. **; p<0.01 and ***; p<0.001 as indicated among the groups. (G) IgG antibody levels of WT mice. All mice 

were primed with vaccine only, and then vaccine-primed mice were boosted with vaccine only or 

vaccine+MPL+Alum. Statistical significances were calculated by 2-way ANOVA and Bonferroni post-tests. **; 

p<0.01, and ***; p<0.001 compared to Vac boost group. 

 

 

Table 4.1 Kinetics of IgG levels (μg/ml) in the immunized mice. 

Immune sera were collected and performed ELISA to determine antigen-specific IgG levels. Data were shown in 

mean concentration (μg/ml) ± SEM. Statistical analysis was performed by one-way ANOVA and Tukey’s multiple 

comparison test. n.d.; not detected, **; p<0.01 and ***; p<0.001 compared to the corresponding C57BL/6 wild-type 

IgG levels of each time points. ##; p<0.01 and ###; p<0.001 compared to the corresponding CD4KO mice IgG 

levels of each time points. 

 

 

  3 weeks after prime 3 weeks after boost 3 months after boost 

C57BL/6 

wild-type 

Vac 3.11 ± 1.82 13.10 ± 3.94 12.55 ± 2.46 

Vac+MPL+Alum 12.26 ± 1.16 26.44 ± 0.55 20.46 ± 3.50 

Vac+MPL 10.44 ± 0.86 22.83 ± 1.19 21.61 ± 1.52 

Vac+Alum 4.06 ± 0.69 17.73 ± 1.55 17.89 ± 1.53 

CD4KO 

Vac n.d. n.d. 0.22 ± 0.09** 

Vac+MPL+Alum 8.85 ± 0.86 26.00 ± 1.15 28.88 ± 3.23 

Vac+MPL 8.76 ± 2.26 19.63 ± 3.09 24.70 ± 5.34 

Vac+Alum n.d. 7.13 ± 1.96** 2.45 ± 0.96*** 

CD4-depleted 

C57BL/6 

wild-type 

Vac+MPL+Alum 0.40 ± 0.44***, ### 2.66 ± 1.15***, ### - 

Vac+MPL 2.15 ± 1.31***, ## 6.83 ± 2.29***, ### - 

MHCIIKO 
Vac+MPL+Alum 0.06 ± 0.06***, ### 0.82 ± 0.30***, ### - 

Vac+MPL n.d. 0.61 ± 0.17***, ### - 
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4.2.2 MPL+Alum or MPL-adjuvanted vaccination of CD4KO mice induces protection 

against influenza virus.  

To determine adjuvant effects on improving the efficacy of protection, naïve and 

immunized WT and CD4KO mice were intranasally challenged with a lethal dose of 

A/California/04/2009 (H1N1) virus after 5 months of vaccination (Fig. 4.2).  Both CD4KO and 

WT naïve mice all died by day 8 and 10 post infection, respectively. The WT-Vac group showed 

severe weight loss of approximately 18% resulting in 60% of survival rates whereas the KO-Vac 

group did not show any protection similar to naïve infection mice (Fig. 4.2A, B). The WT-Alum 

group displayed moderate weight loss of 9-10% and 100% survival rates. In contrast, KO-Alum 

immune mice were very sick as indicated by 18% weight loss at a peak point and thus resulted in 

only 40% survival rates.  Both the WT-MPL+Alum and WT-MPL groups showed 100% protection 

without weight loss (Fig. 4.2A). Also, KO-MPL+Alum and KO-MPL mice were similarly well 

protected against the same lethal dose challenge as used in WT mice, although a transient weight 

loss was observed in these KO mice at 6-9 days after challenge probably due to the lack of CD4+ 

T cells (Fig. 4.2A, B).  

At day 5 post challenge, lung viral titers were measured to determine the efficacy of 

clearing lung viral loads (Fig. 4.2C). The naïve, vaccine only and vaccine plus alum groups showed 

high levels of viral loads in WT and particularly in CD4KO mice, which are consistent with low 

or no HAI titers, severe weight loss, and low survival rates in these groups. MPL+Alum and MPL 

adjuvant in the vaccination led to low lung viral titers, and there were no statistical differences in 

between WT and CD4KO mice although the MPL+Alum group showed a trend of increasing viral 

titers in CD4KO mice.  
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To further determine the protective roles of immune sera from CD4KO mice, we infected 

naïve mice with a mixture of lethal dose of A/California/04/2009 (H1N1) virus and immune sera 

or naïve sera. All naïve mice that were infected with virus plus naïve or vaccine only sera died at 

day 8 or 9 post infection (Fig. 4.2D). The naïve mice infected with virus and Alum adjuvanted 

vaccination sera shows 10% of body weight loss, but naïve mice that received MPL+Alum or MPL 

adjuvanted immune sera did not show any weight loss (Fig. 4.2D). Overall, these results provide 

evidence that MPL+Alum or MPL adjuvanted vaccination induces protective immunity against 

lethal infection in CD4KO mice at a comparable level observed in WT mice.  
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Figure 4.2 Protective efficacy of MPL+Alum or MPL-adjuvanted split vaccination against influenza virus in 

WT and CD4KO mice.  

(A) Body weight changes. (B) Survival rates. Immune mice (n=10 per group) were challenged with a lethal dose of 

A/California/04/2009 virus 5 months after boost immunization. Statistical significances were calculated by 2-way 

ANOVA and followed by Bonferroni post-tests. *; p<0.05, **; p<0.01, and ***; p<0.001 compared to corresponding 

KO groups. (C) Lung virus titers. Lung viral titers were determined at day 5 post infection by an egg infection dose 

50% (EID50). Data (n=10) were shown as mean ± SEM. The detection limit of EID50 was 1.7. (D) Protective roles 

of immune sera. Naïve and immune sera were incubated at 56ºC for 30 minutes for complement inactivation and 

mixed with a lethal dose of A/California/04/2009 (H1N1) virus. After 30 minutes, the mixture of sera (25 µl containing 

a range of 0– 24 HAI titers) and virus was used to infect naïve WT mice (n=5) intranasally. Body weight changes of 

the infected mice were daily monitored for 14 days. Statistical significances were calculated by 1-way ANOVA and 

followed Tukey’s multiple comparison tests or by 2-way ANOVA and followed Bonferroni post-tests. *; p<0.05, **; 

p<0.01, and ***; p<0.001 compared to vaccine only group or as indicated among the groups. ns; not significant. 
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4.2.3 MPL+Alum adjuvanted influenza vaccination prevents lung disease due to viral 

infection of CD4KO mice 

Influenza virus can cause severe lung inflammation leading to pneumonia and high 

mortality. To better assess the protective effects of adjuvant vaccination on alleviating disease 

symptoms, blood oxygen saturation (SpO2) levels were measured in live animals at day 4 post 

influenza virus infection by using oximetry (Fig. 4.3A). In both WT and CD4KO mice, the naïve 

infection and vaccine only groups exhibited significantly lower SpO2 levels of approximately 90% 

(Fig. 4.3A) compared to uninfected control mice. Low SpO2 levels would indicate severe breath 

disorder caused by blocking the airways due to respiratory virus infection. In contrast, MPL+Alum 

adjuvanted vaccination resulted in maintaining normal SpO2 levels over 98% in both WT and 

CD4KO mice. 

Upon lethal influenza virus challenge, highest levels of inflammatory IL-6 and TNF-α 

cytokines were observed in WT-naïve mice (Fig. 4.3B, C). Also, substantially high levels of IL-6 

and TNF-α were detected in BALF from WT-naïve, KO-naïve, WT-Vac, KO-Vac, and KO-Alum 

mice at day 5 post challenge. In contrast, IL-6 and TNF-α cytokines were undetected or detected 

at low levels in BALF of WT-MPL+Alum and KO-MPL+Alum mice (Fig. 4.3B, C). KO-MPL 

mice displayed IL-6 and TNF-α cytokines in BALF at moderate levels (Fig. 4.3B, C). Thus, these 

results suggest that MPL+Alum adjuvanted vaccination prevents the induction of pro-

inflammatory cytokines even in CD4KO mice. 

As for further evidence of lung inflammation, examination of lung histology showed that 

severe immune cell infiltration around the airways, alveolar septa, and interstitial spaces as well 

as narrowing or collapsing the airways were observed in WT and CD4KO naïve mice at day 5 

after infection (Fig. 4.3D), which are consistent with low SpO2 levels. Significant lung 
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histopathology was displayed in the WT-Vac, KO-Vac, and KO-Alum groups (Fig. 4.3D). Low to 

moderate histopathology including the thickening in the airway endothelial layers was revealed in 

the WT-Alum, WT-MPL, and KO-MPL groups (Fig. 4.3D). Both WT- MPL+Alum and KO- 

MPL+Alum mice did not exhibit an overt sign of lung histopathology, indicating protection from 

lung inflammation due to influenza viral infection (Fig. 4.3D).    

 

 

Figure 4.3 MPL+Alum-adjuvanted vaccination of CD4KO mice prevents lung inflammation after virus 

challenge.  

Immune mice (n=10 per group) were challenged with a lethal dose of A/California/04/2009 virus. (A) At day 0 and 4 

post virus infection, the SpO2 values were measured by using oximetry. The changes of day 4 compared to those of 

day 0 were shown as percentages. (B and C) BALF samples were collected (n=5 mice per group) at 5 days after lethal 

dose of A/California/04/2009 H1N1 influenza virus infection and used to determine cytokine IL-6 (B) and TNF-α (C) 

levels. (D) Lung histopathology. Lung tissues from the infected mice (n=5 mice per group) at day 5 post challenge 

were stained with hematoxylin and eosin. WT: C57BL/6 wild type mice, KO: CD4 knockout mice. Statistical 

significance were calculated by 1-way ANOVA and Tukey’s multiple comparison test. *; p<0.05, **; p<0.01 and **; 

p<0.001 as indicated among the groups. nd; not detected. 
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4.2.4 MPL+Alum adjuvanted influenza vaccination induces antibody secreting cell 

responses in WT and CD4KO mice.   

A goal of vaccination is to induce long-lived antibody secreting cell (ASC) responses. 

Vaccinated mice were challenged after 5 months of vaccination, and then BM and spleen cells 

harvested at day 5 post challenge for analysis of IgG antibodies secreted from ASCs in in vitro 

culture supernatants using ELISA (Fig. 4.4) as described 89. WT-Vac and WT-Alum mice showed 

only low levels of vaccine-specific IgG antibody production in BM cell cultures (Fig. 4.4A). BM 

cells from WT-MPL mice showed moderate levels of in vitro IgG antibody secretion whereas WT-

MPL+Alum immune mouse BM cells produced significantly higher levels of IgG antibodies after 

1 day in vitro culture (Fig. 4.4A). As a measure of memory B cells, spleen cells were cultured for 

5 days in the presence of inactivated virus (A/California/04/2009 H1N1). Spleen cells from WT-

Alum mice produced low levels of IgG antibodies. In contrast, WT-MPL+Alum groups of mice 

induced high levels of IgG antibody production in spleen cells (Fig. 4.4B).  

CD4+ T cells are required to induce long-lived isotype switched IgG ASCs in BM after 

viral infection 71, 90. We determined whether certain adjuvants could mediate the in vitro production 

of IgG antibodies in BM and spleen cells from CD4KO mice after 5 months of vaccination at day 

5 post challenge (Fig. 4.4). KO-Vac mice did not show in vitro IgG antibody production in BM 

and spleen cells. The KO-MPL+Alum and MPL groups showed high levels of in vitro IgG 

antibody production in BM cells, which are comparable to those in corresponding WT mice after 

1 day in vitro culture (Fig. 4.4). MPL+Alum adjuvant was more effective in in vitro IgG protection 

in 5-day culture of CD4KO spleen cells compared to MPL. Consistent with in vivo IgG responses, 

MPL+Alum adjuvant may effectively mediate the generation of long-lived IgG antibody secreting 

cells in CD4KO mice comparable to those in WT mice.  
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4.2.5 Adjuvant effects on IgG antibodies in CD4 depleted WT and MHC II KO mice support 

a role of MHCII-expressing cells in the alternative B cell help   

CD4KO mice might have developed compensatory immune components contributing to 

the alternative B cell help. To test this possibility, CD4+ T cells in WT mice were acutely depleted 

up to over 99% by CD4-depleting antibody treatment before and during adjuvanted prime and 

boost vaccination (Fig. 4.5A). Approximately 3 fold lower levels of IgG (mostly IgG1 isotype) 

antibody responses were induced in acute CD4-depleted WT mice with MPL-adjuvanted 

vaccination compared to those in CD4KO mice with the same adjuvanted vaccination (Fig. 4.5B, 

Table 4.1). Also, acute CD4-depleted WT mice with MPL adjuvanted vaccination displayed 

weight loss of approximately 8-12 % (Fig. 4.5C), which is lower than those in CD4KO mice (Fig. 

4.2A). CD4-depleted WT mice with MPL+Alum adjuvanted vaccination showed 10 fold lower 

levels of IgG antibodies compared to those in CD4KO mice (Table 4.1).  MHCII KO mice deficient 

Figure 4.4 In vitro antibody secreting cell responses in BM and spleens.  

(A) IgG production from bone marrow (BM) cells of immunized WT and CD4KO mice. (B) IgG production of spleen 

cells of immunized WT and CD4KO mice. BM and spleen cells were harvested day 5 post infection after 5 months of 

vaccination (n=5). BM cells of WT and CD4KO mice were cultured for 1 day, and spleen cells of WT mice and 

CD4KO mice were cultured for 5 days in presence of inactivated virus antigens. IgG levels were detected by ELISA. 

WT: C57BL/6 wild type mice, KO: CD4 knockout mice. Statistical significance were calculated by 1-way ANOVA 

and Tukey’s multiple comparison test. *; p<0.05, **; p<0.01 and ***; p<0.001 as indicated among the groups. 
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in CD4+ T cells in addition to a genetic defect in MHCII expression 91, 92 were used for adjuvanted 

influenza vaccination.  The levels of IgG antibodies in MHCIIKO mice with MPL or MPL+Alum 

adjuvanted influenza vaccination were significantly lower by 32 folds compared to those in 

CD4KO mice (Table 4.1). These experimental data suggest that compensatory immune 

components particularly MHCII-expressing antigen presenting cells developed in CD4KO mice 

contribute to the generation of isotype-switched IgG antibodies, probably by providing an 

alternative form of T cell help. 

 

Figure 4.5 Antibody production and protective efficacy of MPL-adjuvanted vaccination against influenza virus 

in CD4-depleted C57BL/6 WT mice.  

(A) C57BL/6 wild-type mice were injected with anti-CD4 monoclonal antibody (200 µg/mouse, clone: GK1.5) to 

deplete CD4+ T cells. Blood cells from CD4-depleting antibody treated mice were used to determine the efficacy of 

CD4-depletion. CD4 and CD8 marker profiles are shown from CD3+-gated T cells. (B) Virus-specific antibody levels 

of immunized CD4-depleted mice after prime and boost immunization. CD4-depleted WT mice were immunized 

intramuscularly with vaccine plus MPL. To maintain CD4 depletion status, the mice were injected CD4-depleting 

antibodies every 7 days. Immune sera (n=5 per group) were collected 2 weeks after each immunization. Inactivated 

virus-specific antibody levels were determined by ELISA and shown as mean ± SEM of optical density (OD). (C) 

Body weight changes of the CD4-depleted mice after lethal virus infection. Naïve and the immunized CD4-depleted 

mice were challenged with a lethal dose of A/California/07/2009 (H1N1) virus intranasally. Body weight changes of 

the infected mice were daily monitored for 14 days. Statistical significances were calculated by 2-way ANOVA and 

followed Bonferroni post-tests. **; p<0.01, and ***; p<0.001 compared to naïve infection group. 
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4.2.6 MPL+Alum attenuates MPL-induced serum inflammatory cytokines and chemokine in 

WT mice  

To determine adjuvant effects on innate responses in CD4KO mice, we injected adjuvants 

(MPL+Alum, MPL, Alum) intraperitoneally (IP) to WT and CD4KO mice. Sera were taken at 1.5, 

6 and 24 hours (h) after the injection and then the mice were sacrificed to collect peritoneal 

exudates. Cytokines and chemokines in peritoneal exudates and sera were determined by ELISA. 

MPL injection of WT mice acutely induced extreme high levels of pro-inflammatory cytokines 

(IL-6, TNF-α) and MCP-1 chemokine within 1.5 h systemically in blood, which were rapidly 

reduced within 6 h (Fig. 4.6A). In contrast, MPL+Alum did not acutely raise inflammatory 

cytokines and MCP-1 chemokine but induced a low level of TNF-α and MCP-1 at 6 h post-

injection in sera of WT mice (Fig. 4.6A). Alum injection did not induce cytokines or chemokines. 

Therefore, these results suggest that Alum in the combination MPL+Alum adjuvant plays a role 

of attenuating acute inflammation due to MPL injection in WT mice. 

A different pattern was observed after adjuvant injection in CD4KO mice (Fig. 4.6B). 

Serum IL-6 and TNF-α cytokines were induced to a moderate and low level respectively at 1.5 h 

and then lowered to a basal level within 6 h after MPL+Alum or MPL injection of CD4KO mice 

(Fig. 4.6B). MPL or MPL+Alum injection induced a high level of serum MCP-1 in CD4KO mice. 

These results indicate that MPL+Alum may have an effect on acutely inducing cytokines and 

MCP-1 chemokine in CD4KO mice, which is different from WT mice.  

In contrast to acute cytokine levels in bloods, we observed a different profile of cytokines 

and chemokines at the injection site after 24 h (Fig. 4.6C). MPL injection of WT or CD4KO mice 

induced low levels of chemokines (MCP-1, RANTES) in the peritoneal cavity after 24 h (Fig. 

4.6C). Interestingly, MPL+Alum injection of CD4KO mice induced moderate levels of IL-6, TNF-
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α, MCP-1, and RANTES in the peritoneal cavity after 24 h, which are higher than those in 

MPL+Alum IP injection of WT mice (Fig. 4.6C).   

 

 

Figure 4.6 Levels of cytokines and chemokines in bloods and peritoneal exudates after injection of adjuvants.  

WT and CD4KO mice (n=5) were intraperitoneally injected with 200 μl of PBS, MPL+Alum, MPL, or alum. Kinetics 

of cytokines and chemokine levels in sera from adjuvant injected WT (A) and CD4KO (B) mice. Statistical 

significances were calculated by 2-way ANOVA and Bonferroni post-tests. ***; p<0.001 compared to PBS-treated 

group and ###; p<0.001 compared to MPL+Alum-treated group. (C) Cytokines and chemokines in peritoneal exudates 

at 24 hours after peritoneal adjuvant injection. Statistical significances were calculated by 1-way ANOVA and Tukey’s 

multiple comparison test. *; p<0.05, **; p<0.01, and ***; p<0.001 as indicated among the groups. WT: C57BL/6 wild 

type mice, KO: CD4 knockout mice. nd; not detected.  
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4.2.7 MPL+Alum recruits a distinct pattern of innate immune cells at the injection site in 

CD4KO mice  

Immune cell types and cellularity at the injection site might provide insight into 

mechanisms of adjuvant effects in CD4KO mice. We analyzed cell types recruited in the peritoneal 

cavity at 24 h after IP injection of mice with adjuvants. Naïve WT mice maintain high cellularity 

of macrophages in the peritoneal cavity (Fig. 4.7A, B). Interestingly, alum injection of WT mice 

resulted in almost complete depletion of macrophages (Fig. 4.7A, B), and lower cellularity of 

plasmacytoid DCs (pDCs, 17%, Fig. 4.7I) and CD11blow DCs (8%, Fig. 4.7H) in the peritoneal 

cavity whereas CD4KO Alum maintained CD11blow/high DC populations compared to PBS controls 

(Fig. 4.7G, H). In contrast, WT MPL+Alum mice low levels (20-30%) of macrophages 

(CD11b+F4/80+, CD11b+F4/80+MHCIIhi, Fig. 4.7A, B), pDCs (11%, Fig. 4.7I) and CD11blow DCs 

(10%, Fig. 4.7H) in the peritoneal cavity compared to those of PBS mock control mice (Fig. 4.7A, 

B, G-I). Different from a profile in WT mice, MPL+Alum injection of CD4KO mice maintained 

the cellularity of macrophages (100%, Fig. 4.7A, B) and resulted in increasing CD11blow DCs and 

CD11bhigh DCs (Fig. 4.7G, H). In addition, CD4KO MPL+Alum mice displayed significantly 

increased recruitment of neutrophils, monocytes, and NK cells by 76-, 23-, and 5-fold (Fig. 4.7D, 

C, F), respectively, which is a similar profile observed in WT-MPL+Alum mice.  WT MPL and 

CD4KO MPL mice showed a similar pattern of cellular changes in macrophages (reduced to 25%, 

Fig. 4.7A, B), monocytes (4 fold up, Fig. 4.6C), neutrophils (8 fold up, Fig. .7D), NK cells (4 fold 

up, Fig. 4.7F).  Uniquely, CD4KO MPL mice showed 2- to 4-fold increased levels of CD11bhigh 

DCs, CD11blow DCs, and pDCs compared to those in WT-MPL mice (Fig. 4.7G, H, I). KO-Alum 

mice recruited the highest level of eosinophils (4 folds) while reducing the levels of macrophages 

(<10%) and pDCs (<25%) in the peritoneal cavity compared to KO-PBS control mice (Fig. 4.7A, 
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B, I). In addition, CD4KO mice showed higher cellularity of double negative (DN) T cell 

(CD3+CD4-CD8-) population and MPL injection in both WT and CD4KO mice increased the DN 

T cells (2 folds compared to the PBS groups) at the site of injection (Fig. 4.7J).  

Overall, MPL+Alum KO mice maintained approximately 4- to 6-fold higher levels of 

MHCIIhigh macrophages and CD11bhigh/low DC populations compared to those in MPL+Alum WT 

mice. Also, 2- to 4-fold higher levels of CD11bhigh/low DC and DN T cell populations were observed 

in KO MPL mice than WT-MPL mice.  These results suggest that differential cellularity of 

macrophages and DC populations together with DN T cells might be at least partially contributing 

to alternative B cell help in CD4KO mice.  
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Figure 4.7 Recruitment of multiple immune cell phenotypes after adjuvant injection.  

(A-J) Cellularity of different phenotypic cells in peritoneal exudates from WT and CD4KO mice (n=5). Cells in 

peritoneal exudates were collected at 24 h after adjuvant injection and their phenotypes and cellularity determined. 

(A) Macrophages; CD11b+F4/80+ (B) MHCIIhigh macrophages; CD11b+F4/80+MHCIIhigh (C) Monocytes: 

CD11b+Ly6chighF4/80+ (D) Neutrophils; CD11b+Ly6c+F4/80- (E) Eosinophils; CD11b+SiglecF+ (F) CD11bhigh DCs; 

CD11c+CD11bhighMHCIIhigh (G) CD11blow DCs; CD11c+CD11blowMHCIIhigh (H) pDCs; CD11c+B220+MHCIIhigh (I) 

NK cells; CD49b+CD3- (J) Double-negative (DN) T cells; CD3+CD4-CD8-. All data were shown as mean ± SEM. 

Statistical significances were calculated by 1-way ANOVA and Tukey’s multiple comparison test. *; p<0.05, **; 

p<0.01, and ***; p<0.001 as indicated among the groups.  

 



58 

4.2.8 MPL+Alum adjuvant combination attenuates the in vitro dendritic cell stimulatory 

effects by MPL  

DCs are important cells to link between innate and adaptive immune responses. After 2 

days cultures of DCs in the presence of adjuvants, cytokine levels in culture supernatants and 

activation marker expression on BMDCs were measured (Fig. 4.8A, B). MPL+Alum and MPL 

induced pro-inflammatory cytokine production by DCs, but Alum-treated DCs did not produce 

cytokines (Fig. 4.8A). MPL+Alum showed high levels of IL-6 and TNF-α but displayed a lower 

IL-12 cytokine level compared to MPL alone adjuvant. In terms of DC activation markers, MPL 

showed significantly higher levels of CD40, CD80 and CD86 expression than MPL+Alum on DCs 

(Fig. 4.8B). All adjuvants, MPL+Alum, MPL and Alum, increased MHCIIhigh DC populations. 

These data indicate that Alum in MPL+Alum combination appears to attenuate stimulatory effects 

on DCs by MPL, a major player in in vitro activation of DCs.  

To gain better understanding of in vivo adjuvant effects on reducing the cellularity of 

macrophages and DCs, we further tested in vitro cell death. Alum and MPL+Alum adjuvants were 

found to induce significant loss in cell viability after in vitro cultures of BM-derived primary cells 

(Fig. 4.8C).  

To investigate further possible mechanism of MPL+Alum adjuvant combination, in vitro 

IgG production by B cells and proliferation of DN T cells cultured with or without adjuvant pre-

treated BMDCs (Fig. 4.8D, E). MPL+Alum pre-treated BMDCs could support splenic B cells for 

IgG production in vitro, but adjuvant only could not (Fig. 4. 8D). In addition, DN T cell 

proliferation was stimulated by co-culture with MPL+Alum pre-treated BMDCs, and MHCII 

monoclonal antibody treatment could suppress its proliferation effects (Fig. 4.8E). In addition, to 

determine cognate or non-cognate help, we determined proliferation of DN T cells after incubation 
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with MHCII+ BMDCs stimulated with vaccine and non-vaccine antigens (Fig. 4.8F).  Vaccine-

treated BMDCs significantly increased the proliferation of DN T cells, but a different virus 

(A/Philippine H3N2) or ovalbumin-treated BMDCs did not (Fig. 4.8F). These results provide 

evidence that MHCII positive antigen presenting cells contribute to stimulating DN T cells and 

providing alternative B cell help in a genetically CD4 deficient condition. 
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Figure 4.8 In vitro effects of adjuvants on DC activation or cell death. 

 (A) Pro-inflammatory cytokine production of BMDCs after adjuvant treatment. (B) Activation marker expression on 

adjuvant-treated BMDCs. Fold increase of marker expression were determined by mean fluorescence index of each 

groups compared to that of control group.  BMDCs were generated from BM cells of WT mice. BMDCs were cultured 

with media (control), or adjuvants for 48 h. (C) Cell viability of BM derived DCs (BMDCs) treated with MPL+Alum, 

MPL or alum. Cell viability was determined by an MTT assay after 2 days culture with adjuvants. (D) In vitro antibody 

production by adjuvant-treated BMDCs. Spleen cells containing naïve B cells were harvested from naïve CD4KO 

mice and cultured with MPL+Alum, MPL+Alum pre-treated mature DCs (mDC), or mDC plus mDC culture 

supernatants (sup, a source of cytokines). The mDCs were prepared by pre-treating with adjuvants for 2 days. After 7 

days’ culture, total IgG levels in culture supernatants were determined by ELISA. (E) Percentages of proliferated 

double negative (DN, CD4-CD8- in CD3+ T cells) T cells after 5 days co-culture with or without BMDCs. w/o DCs; 

CD4KO mouse splenocytes containing DN T cells were cultured without BMDCs and proliferation of CFSE-labeled 

DN T cells was analyzed by flow cytometry.  imDCs; DN T cells cultured with untreated control BMDCs. mDCs; DN 

T cells cultured with MPL+Alum pre-treated BMDCs. mDCs+MHCII Ab; DN T cells cultured with MPL+Alum and 

anti-mouse MHCII (clone M5/114.15.2) antibody (1 µg/ml) pre-treated BMDCs. (F) Percentages of proliferated 

double negative (DN, CD4-CD8- in CD3+ T cells) T cells after 5 days co-culture with different antigen-treated 

BMDCs. w/o DCs; CD4KO mouse splenocytes containing DN T cells were cultured without BMDCs. OVA DCs; DN 

T cells were cultured with ovalbumin pre-treated BMDCs. iPhil DCs; DN T cells were cultured with inactivated 

A/Philippine H3N2 virus pre-treated BMDCs. iCal DCs; DN T cells were cultured with inactivated A/California H1N1 

virus vaccine strain pre-treated BMDCs. All data were shown as mean ± SEM. Statistical significance were calculated 

by 1-way ANOVA and Tukey’s multiple comparison test. *; p<0.05, **; p<0.01 and ***; p<0.001 as indicated among 

the groups. nd; not detected. 
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4.3 Discussion  

Subunit vaccines provide a safe alternative to live-attenuated virus vaccines but have poor 

immunogenicity, requiring effective adjuvants to enhance the vaccine efficacy. Immune-

competent mouse models are often highly responsive to experimental vaccines and adjuvants; 

however, may not represent the efficacy expected in humans 93, 94. It is also believed that adjuvant 

effects are mediated by specific types of activated CD4+ T cells that would be educated via MHC 

II-expressing APCs through multiple innate immune cellular interactions and the production of 

inflammatory cytokines resulting from adjuvant stimulation 28, 95, 96, 97. That is, vaccine adjuvants 

are important for modulating the types of CD4+ T cells to induce the observed outcomes of 

adaptive immune responses in a conventional model. In contrast, the data in this study provide 

evidence that MPL+Alum adjuvant combination can mediate the induction of isotype-switched 

IgG antibodies conferring protective immunity in CD4KO mice comparable to those in WT mice 

even after 5 months of vaccination. Therefore, this study suggests an alternative pathway and/or 

cells in providing help to the B cells for IgG production in CD4KO mice in the context of 

MPL+Alum and MPL adjuvanted influenza vaccination. 

Alum adjuvants were unable to induce IgG antibodies against split vaccine in CD4KO mice 

after prime. IgG1 antibodies after boost immunization of CD4KO mice with Alum were 

progressively waned to a further lower level after 3 months (Table 4.1). In contrast to Alum, 

MPL+Alum and MPL adjuvant effects were potent in WT and CD4KO mice even with prime only. 

The major difference between Alum and MPL+Alum is the induction of inflammatory cytokines, 

which was evident in vitro and in vivo. As expected, the results revealed that MPL or MPL+Alum 

activated BMDCs secrete IL-6 and TNF-α inflammatory cytokines, whereas Alum by itself did 

not. MPL+Alum did not directly stimulate CD4+ T or B cells in vitro but was shown to directly 
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activate DCs in vitro primarily due to MPL, leading to the induction of antigen-specific T cells in 

vivo 98. Therefore, micro-environment creating inflammatory cytokines by MPL+Alum and MPL 

is likely to play a major role in priming IgG isotype-switched B cell response in CD4KO mice. 

Previous studies demonstrated that mice lacking CD40 or CD4+ T cells during sub-lethal primary 

infection induced only short-lived IgG antibodies waning within 60 days and no antibody-secreting 

plasma cells 71, 90. Therefore, the results of long-lived IgG antibody responses mediated by 

MPL+Alum and MPL adjuvant in CD4KO mice are particularly notable. 

The mechanisms of adjuvant effects on enhancing vaccine efficacy remain poorly 

understood, particularly in a CD4 deficient condition, although CD4-independent activation of 

CD8+ T cells and B cells has been reported. Double negative αβ T cells were shown to play a role 

in generating CD4-independent isotype-switched IgG antibodies using CD4KO and T cell receptor 

β KO mouse models 41. Another study demonstrated that both B7-1 (CD80) and B7-2 (CD86) 

costimulatory molecules on DCs were required for IgG1 and IgG2a responses 99. TNF-α pathway 

was important for activating cytotoxic effector CD8+ T cells in the absence of CD4 T cells 100. This 

study provides evidence that a CD4 genetic defect led to developing other compensatory immune 

components even in a mock (PBS) treatment condition.  PBS treatment of CD4 KO mice showed 

higher levels of MHCII high macrophages, CD11bhigh dendritic cells, DN T cells, and a lower level 

of pDCs compared to those in WT mice. Upon treatment with combination MPL+Alum adjuvant, 

CD4KO mice further increased cellularity of MHCIIhigh macrophages, CD11bhigh and CD11blow 

dendritic cells (DCs) compared to those in WT mice in addition to comparable increases in 

monocytes, neutrophils, NK cells, and eosinophils. These cellular increases at the site of injection 

appeared to be correlated with high levels of cytokines (IL-6, TNF-α) and chemokines (MCP-1, 

RANTES) upon treatment of CD4KO mice with combination MPL+Alum adjuvant. Meanwhile, 
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MPL-treated CD4KO mice showed increased levels in DC populations (CD11bhigh, CD11blow DCs, 

pDCs) and DN T cells compared to those in MPL-treated WT mice. We also observed further 

increased levels of DCs, but not macrophages compared to those in MPL+Alum treated CD4KO 

mice. Thus, it is possible that cellular components contributing to alternative B cell help in CD4KO 

mice are likely to be different between MPL (mostly various DC subsets, DN T cells) and 

combination MPL+Alum (mostly macrophages, minimally CD11blow DCs) adjuvants. 

To gain further insight into possible roles of these compensatory immune components in 

providing alternative B cell help in CD4KO mice, we determined IgG responses in acutely CD4-

depleted WT mice. We observed lower levels of IgG responses in CD4-depleted WT mice with 

MPL and MPL+Alum compared to those in CD4KO mice with the same adjuvanted vaccination. 

Lower protective efficacy was observed in CD4-depleted WT mice compared to that in CD4KO 

mice after MPL or MPL+Alum adjuvanted vaccination. Thus, it is possible that compensatory 

immune components including MHCIIhigh macrophage and DC populations with DN T cells 

developed in CD4KO mice are partially contributing to overcoming defects in CD4 help to B cells 

for the generation of isotype-switched antibodies by MPL and combination MPL+Alum 

vaccination. In line with these results, MHCII KO mice with MPL+Alum adjuvant vaccination 

were found to induce lower levels of IgG responses by 32-fold than those in CD4 KO mice with 

same adjuvant vaccination (Table 4.1). In addition, MPL+Alum-activated BMDCs might have the 

capability to stimulate naïve splenic B cells to secrete IgG antibodies in vitro. Since efficient naïve 

CD4+ T cell priming does not require B cells expressing MHCII 101, MHCII-expressing antigen 

presenting cells such as DCs and macrophages significantly contribute to the generation of isotype-

switched IgG antibodies, probably via an alternative pathway different from conventional CD4+ T 

cell help.  
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Adjuvant roles of Alum and MPL in MPL+Alum combination are yet to be fully 

understood. Differences in serum IgG antibody levels between MPL+Alum and MPL appeared to 

be greater at a later time point of 3 months boost in CD4KO mice (Table 4.1), which are further 

supported by antibody-secreting cell responses in spleens.  Alum in AS04 (MPL+Alum) appeared 

to have a property of attenuating innate immune stimulating activities by MPL in vitro and in vivo. 

MPL was found to highly upregulate the expression of co-stimulatory molecules (CD40, CD80, 

and CD86) on BMDCs, which can provide an alternative B cell help to produce isotype switched 

antibodies 102. Meanwhile, MPL+Alum appeared to moderately suppress the stimulatory effects of 

MPL on upregulating co-stimulatory molecules and IL-12 cytokine production during BMDC in 

vitro cultures. Attenuating acute induction of inflammatory cytokines would improve the safety 

for AS04 adjuvant formulated human vaccination.  

Adjuvant-induced cell death has been known to be a mechanism of adjuvanticity for over 

a decade 103, although cell death is often considered an undesirable side effect. TNF family 

cytokines are classic inducers of programmed necrosis via receptor-interacting protein kinases, 

which promotes inflammation 104. Alum was demonstrated to induce uric acid by causing sterile 

cell death 76. Also, there is a well-known link between TLR-activation and cell death leading to 

pro-apoptotic activities 105. We found that in vitro cultures of BMDCs with Alum or MPL+Alum 

resulted in cell death. In in vivo studies, WT mice with Alum, MPL+Alum, or MPL injection 

resulted in a significant loss of macrophages, CD11blow DCs, and pDCs in the peritoneal cavity. 

CD4KO mice with alum or MPL injection exhibited a significant loss in macrophages in the 

peritoneal cavity whereas MPL+Alum retained up to 80% of macrophages. Thus, MPL+Alum 

adjuvant combination might be contributing to protect macrophages from a severe cellular loss in 
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the in vivo injection site in WT mice compared to Alum, and more prominently in CD4KO mice 

compared to Alum and MPL.  
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5 CHAPTER 3. VIRUS-LIKE NANOPARTICLE AND DNA VACCINATION 

CONFERS PROTECTION AGAINST RESPIRATORY SYNCYTIAL VIRUS BY 

MODULATING INNATE AND ADAPTIVE IMMUNE CELLS 

5.1 Summary 

Respiratory syncytial virus (RSV) is an important human pathogen. Expression of virus 

structural proteins produces self-assembled virus-like nanoparticles (VLP). We investigated 

immune phenotypes after RSV challenge of immunized mice with VLP containing RSV F and G 

glycoproteins mixed with F-DNA (FdFG VLP). In contrast to formalin-inactivated RSV (FI-RSV) 

causing vaccination-associated eosinophilia, FdFG VLP immunization induced low 

bronchoalveolar cellularity, higher ratios of CD11c+ versus CD11b+ phenotypic cells and CD8+ T 

versus CD4+ T cells secreting interferon (IFN)-γ, T helper type-1 immune responses, and no sign 

of eosinophilia upon RSV challenge. Furthermore, RSV neutralizing activity, lung viral clearance, 

and histology results suggest that FdFG VLP can be comparable to live RSV in conferring 

protection against RSV and in preventing RSV disease. This study provides evidence that a 

combination of recombinant RSV VLP and plasmid DNA may have a potential anti-RSV 

prophylactic vaccine inducing balanced innate and adaptive immune responses. 

 

5.2 Results 

5.2.1 A combined VLP and DNA vaccine induces high IgG2a/IgG1 antibody ratios 

Both F VLP and G VLP were shown to raise similar RSV neutralizing titers and control 

lung viral loads 63. In addition, antibody responses specific for RSV G central domains were 

demonstrated to contribute to conferring protection and ameliorating RSV disease 106. We found 

that FdFG VLP was more effective in inducing higher levels of IgG2a antibodies (Th1 type) 



68 

whereas F DNA alone was not highly immunogenic (Fig 5.1). Therefore, to further evaluate the 

protective immune responses and safety of FdFG VLP in comparison with FI-RSV and live RSV, 

mice were intramuscularly immunized with FdFGVLP, FI-RSV, or infected with live RSV (Fig. 

5.2). At 3 weeks after prime and boost immunization, RSV specific serum antibodies were 

determined using FI-RSV as an ELISA coating antigen (Fig. 5.2A). Highest levels of IgG1 

antibody were detected in the group of FI-RSV whereas FdFG VLP immunized mice showed 

lowest levels of IgG1 isotype antibody (Fig. 5.2A). The live RSV group showed a similar level of 

IgG1 and IgG2a antibodies specific for RSV after the 1st infection, which was significantly 

increased after the 2nd dose of infection (Fig. 5.2A, B). A higher level of IgG1 antibodies was 

induced in FI-RSV immunized mice compared to that in FdFG VLP immunized or live RSV 

infected mice (Fig. 5.2A, B). As a result, the FdFG VLP group showed the highest ratios of 

IgG2a/IgG1 in particular after prime immunization (Fig. 5.2B).   

When ELISA was performed using the purified RSV F protein as a coating antigen, IgG1 

antibodies were induced at higher levels by prime vaccination with FI-RSV than those by priming 

with FdFG VLP or infection with live RSV (Fig. 5.2C). In contrast, FdFG VLP immunization or 

live RSV infection induced higher levels of IgG2a antibodies specific for RSV F than those of 

IgG1. Consequently, higher ratios of IgG2a/IgG1 antibodies were induced in the FdFG VLP group, 

followed by live RSV infection (Fig. 5.2D).  

FI-RSV immunization also induced significantly higher levels of RSV G protein specific 

IgG1 and IgG2a antibody responses than live RSV infection or FdFG VLP immunization after 

prime immunization (Fig. 5.2E). Because of low levels of IgG1 isotype antibodies, relatively 

higher ratios of IgG2a/IgG1 were observed in the FdFG group (Fig. 5.2F). The pattern and levels 

of antibody responses were maintained for over 6 months (data not shown). These results indicate 
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that FdFG VLP vaccine induces IgG2a antibodies predominantly recognizing the RSV F protein 

antigen. In line with high levels of IgG2a antibody responses, IFN-γ was secreted at higher levels 

by stimulation of whole splenocytes with live RSV, F or G VLP than the level of IFN-γ with FI-

RSV (Fig. 5.3). 

Figure 5.1 RSV-specific serum IgG isotype antibodies after individual vaccine components immunization.  

Serum samples were collected 3 weeks after prime and boost immunization from mice (n=15) that were immunized 

with F DNA+F VLP+G VLP RSV vaccine cocktail (50, 10, 10 µg for prime, 25, 5, 5 µg for boost, respectively), F 

VLP+G VLP (10, 10 µg for prime and boost, respectively) or F DNA (50 µg for prime and boost) at weeks 0 (prime) 

and 4 (boost). RSV-specific IgG1 and IgG2a levels were measured by ELISA. (A) RSV F protein specific IgG 

isotypes. (B) RSV G protein specific IgG isotypes. The results were representative of three independent experiments 

and presented by concentration (μg/ml) as mean± SEM (standard error of mean). Statistical analysis was by One-way 

ANOVA and Tukey’s multiple comparison test. *** indicates p<0.001, between prime and boost immunized sera. ## 

and ### mean p<0.01 and 0.001, respectively, compared to the F DNA groups. 
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Figure 5.2 RSV-specific serum IgG isotype antibodies.  

(A) RSV specific IgG1 and IgG2a antibodies. (B) Ratios of IgG2a/IgG1 antibodies specific to RSV. (C) IgG1 and 

IgG2a isotype antibodies specific for purified RSV F protein. (D) Ratios of IgG2a/IgG1 isotype antibodies specific 

for RSV F protein. (E) IgG1 and IgG2a isotype antibodies specific for purified RSV G protein. (F) Ratios of 

IgG2a/IgG1 isotype antibodies specific for RSV G protein. * and *** indicates p<0.05 and 0.001, respectively, 

between prime and boost immunized sera. #, ## and ### mean p<0.05, 0.01 and 0.001, respectively, between the FI-RSV 

and FdFG VLP groups. Naïve: unimmunized mice. FI-RSV: FI-RSV vaccine. FdFG-VLP: a combined vaccine of 

RSV F DNA, RSV F and G VLP. Live RSV: live RSV A2 strain. 
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5.2.2 Control of RSV replication by immunization with RSV vaccines 

RSV neutralizing activity is considered an important protective immune correlate of RSV 

vaccines. To determine RSV neutralizing activity of immune sera, we performed neutralizing 

antibody titration by using the RSV A2 strain expressing red fluorescent monomeric Katushka 2 

protein 68, 69. Immune sera from the FI-RSV, FdFG-VLP and live RSV immunized mouse groups 

showed significantly decreased levels of fluorescent intensity compared to naïve mouse sera, 

indicating the inhibition of RSV infection (Fig. 5.4A). Up to 200 dilutions, approximately 50% 

decrease in RSV replication were observed in immune sera and there were no statistical 

significances among different vaccine immune sera (Fig. 5.4A). Thus, sera from FI-RSV, FdFG-

Figure 5.3 Cytokine production from bone marrow-derived dendritic cells and splenocytes after stimulation 

with RSV vaccines.  
Bone marrow-derive dendritic cells (BMDCs) and splenocytes were treated with FI-RSV, F VLP, G VLP, or live 

RSV. After 2 days culture, cell culture supernatants were collected and used to determine IL-6 (A), TNF-alpha (B) 

and IL-12p70 (C) production in BMDC and IFN-γ production in splenocytes (D). The concentration of the cytokines 

were presented as mean ± SEM and the data were representative of three independent experiments. *, ** and *** bars 

with comparing groups indicates p<0.05, 0.01 and 0.001 by one-way ANOVA and Tukey’s multiple comparison test. 
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VLP and live RSV immunized mice exhibited high levels of RSV neutralizing activities compared 

to naïve sera.  

To determine whether immunization with FI-RSV or FdFG VLP could protect mice against 

RSV replication, immunized or previously infected mice were intranasally challenged with RSV 

(1×106 PFU/mouse) at 26 weeks of post boost immunization. RSV titers were analyzed in the lung 

samples collected at day 5 post RSV challenge (Fig. 5.4B). Unimmunized naïve mice that were 

infected with RSV showed the highest levels of lung viral loads. RSV was detected at significantly 

lower levels in the lungs from mice that were previously immunized with FI-RSV or FdFG VLP, 

or previously infected with RSV compared to those of naïve mice (Fig. 5.4B). Thus, mice that 

were immunized with FI-RSV or FdFG VLP controlled RSV replication in lungs after RSV 

challenge infection.  

 

 

Figure 5.4 FdFG VLP immunization induces RSV neutralizing activity and controls lung viral loads.  

(A) RSV neutralizing activity in immunized sera. Data were presented as mean fluorescence percentages ± SEM. *, 

** and *** indicates p<0.05, 0.01 and 0.001, respectively, by student t test. (B) Lung RSV titers from naïve and 

immunized mice after RSV challenge. The results were representative out of 3 independent experiments. *** indicates 

p<0.001 compared to the Naïve+R group. 
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5.2.3 FdFG VLP immunization prevents severe cellular infiltration into airway upon RSV 

infection  

Phenotypes of immune cells contributing to RSV disease or protection are not completely 

defined. We determined whether FdFG VLP immunization would reduce infiltrating cells into 

airway upon RSV infection compared to FI-RSV immunization (Fig. 5.5). Naïve mice without 

infection exhibited low percentages (data not shown) and cellularity of lymphocytes (Fig. 5.5B). 

At day 5 post RSV infection, naïve mice showed a moderate increase in lymphocytes and 

cellularity (Fig. 5.5A, B). As expected, FI-RSV immunized mice showed the highest cellular 

infiltrates with large size cell populations (Region 1 gate, Fig. 5.5) which include granulocytes, 

dendritic cells, and monocytes and macrophages in bronchoalveolar cells (Table 5.1, Fig. 5.5B). 

FdFG VLP immunized mice showed a lower level of cellularity in bronchoalveolar cells compared 

to those in FI-RSV immunized mice (Fig. 5.5B). Live RSV group that was previously infected two 

times with RSV also caused substantial levels of lymphocytes and granular/myeloid cells, which 

is higher than those by FdFG VLP immunization (Fig. 5.5B). The region 1 gated BAL cells of FI-

RSV immunized mice were found to be smaller in size than those in naïve, FdFG VLP, or live 

RSV mice (Fig. 5.5A) and most cells in the region 1 gate from the FI-RSV group are likely to be 

eosinophils (Fig. 5.7). Mice with FdFG VLP immunization showed a similar pattern of region 1 

large cell populations as RSV-reinfected mice in response to RSV challenge (Fig. 5.5B).   
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Table 5.1 Cellularity of BAL cells in the immunized mice after RSV infection. 
The region 1 and 2 gates are indicted in the Fig. 5.5. Each indicated phenotypic BAL cell populations were calculated 

with the percentages of each cell population according to flow cytometry analysis and total cell counts by trypan-blue 

dye staining. The data are expressed as mean ± SEM out of three independent experiments. BAL cells were analyzed 

at day 5 post RSV challenge (1x 106 PFU/mouse) of immunized mice (n=5). Naïve; unimmunized mice. Naïve+R; 

naïve mice infected with RSV. FI-RSV+R; FI- RSV group challenged with RSV. FdFG-VLP+R; FdFG VLP group 

challenged with RSV. Live RSV+R; Live RSV group infected with RSV. *, ** and ***; p<0.05, p<0.01 and p<0.001, 

respectively, compared to the naïve group. # and ##; p<0.05 and p<0.01 compared to the FI-RSV+R group by One-

way ANOVA and Tukey’s multiple comparison test. 

(×103 cells/mouse) 

 
 Naïve Naïve+R FI-RSV+R FdFG-VLP+R Live RSV+R 

Leukocytes (CD45+) 
117.6±49.1 652.4±225.7 1938.6±296.1*** 656.3±94.1

##
 1609.9±256.8** 

 Region 1 gated cells 
95.0±37.3 298.2±73.0 1126.0±283.3** 323.0±76.0

#
 582.7±39.8 

  
CD11b+CD11c+ 0.3±0.1 12.5±10.2 60.0±35.4 32.6±9.3 53.1±24.9 

  
CD11b-CD11c+ 87.7±36.7 180.8±120.6 123.5±15.3 164.2±61.1 212.4±98.9 

  
CD11b+CD11c- 2.1±1.3 29.8±14.4 633.4±219.3** 82.0±11.8

#
 155.8±52.6

#
 

  
Eosinophils  

(CD11b+CD11c-

SiglecF+) 

1.0±0.4 9.1±7.0 590.4±309.0 7.2±3.6 17.1±1.4 

 Region 2 gated cells 
4.8±4.1 259.4±205.8 562.7±112.8 212.5±42.8 698.9±261.4 

  
CD4+ 3.5±2.8 183.1±150.2 447.4±82.4 148.4±45.5 493.1±194.5 

  
CD8+ 1.2±1.2 76.0±55.8 115.0±30.7 63.7±8.2 204.8±68.2* 
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5.2.4 FdFG VLP immunization modulates innate CD11b+ and CD11c+ cells in BALF  

A better understanding of cellular phenotypes in BALF following RSV vaccination would 

be informative for determining immune responses associated with protection or lung inflammatory 

disease. The FI-RSV group showed a higher level of myeloid marker CD11b+ cells compared to 

FdFG VLP or live RSV at day 5 post RSV challenge (Fig. 5.6A). FdFG VLP immunization of 

mice induced a moderate range in levels of CD11b+ cells similar to that in the live RSV group after 

RSV challenge. In contrast, CD11c+ cells were found at higher levels in the FdFG VLP group 

compared to the FI-RSV group. That is, the FdFG VLP group exhibited a trend of increasing 

CD11c+ cells and lowering CD11b+ cells, which is similar to a pattern observed with the group of 

live RSV infection. As a result, the ratios of CD11c+ versus CD11b+ cells were highest in the FdFG 

VLP group whereas FI-RSV showed the lowest level of CD11c+ cells among the groups after RSV 

challenge (Fig. 5.6B, C). CD45+CD11c+ cells appeared to be alveolar macrophages with a F4/80+ 

Figure 5.5 FdFG VLP immunization lowers bronchoalveolar cellularity compared to FI-RSV or live RSV. 

(A) Flow cytometry profiles of BAL cells based on forward (size) and side (granularity) scattering. (B) Cellularity of 

Region 1 and 2 in BAL fluids.  Cellularity was presented from the results of total BAL cell numbers per mouse 

multiplied by percentages of each population. The data are presented as mean ± SEM. * indicates p<0.05.  
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phenotype (data not shown) and the majority of CD45+CD11b+CD11c- cells seemed to be 

eosonophils (Fig. 5.7). These results suggest that an imbalance in CD11c+ versus CD11b+ cells 

and cell types in airway might be an important parameter contributing to FI-RSV vaccination-

induced lung inflammatory disease with severe infiltrates around the airways and interstitial spaces 

(Fig 5.8).  

 

 

 

 

Figure 5.6 Distribution of CD11b and CD11c positive cells in bronchoalveolar lavage fluids.  

(A) Flow cytometry profiles gated on CD11b and CD11c. CD45+ granulocyte/myeloid cells in BAL were gated by 

CD11b and CD11c expression. (B) CD11b-CD11c+ (upper-left in A)/CD11b+CD11c- (lower-right in A) ratios. (C) 

CD11b+CD11c+ (upper-right in A)/CD11b+CD11c- (lower-right in A) ratios. The ratios are presented as mean ± SEM. 

* indicates p<0.05 by student t test.  
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Figure 5.8 Comparison of pulmonary histopathology after RSV challenge.  

(A) Representative pulmonary histopathology of lung tissue sections is shown in each group of mice at day 5 post 

RSV challenge. Representative images of peribronchiolar regions after hematoxylin and eosin (H&E) staining were 

acquired at a magnification of ×100. (B) Inflammation scores of airways. (C) Inflammation scores of interstitial spaces. 

*, ** and *** indicates p<0.05, 0.01 and 0.001 by one-way ANOVA and Tukey’s multiple comparison test. Naïve+R; 

naïve mice challenged with RSV. FI-RSV+R; FI-RSV group challenged with RSV. FdFG-VLP+R; FdFG VLP group 

challenged with RSV. Live RSV+R; Live RSV group challenged with RSV. 

Figure 5.7 FdFG VLP immunization does not induce eosinophilia upon RSV challenge.  

(A) Eosinophils (CD11b+SiglecF+) in CD45+CD11c- large cell gates of BAL cells.  (B) Eosinophils (CD11b+SiglecF+) 

in CD45+CD11c- total BAL cells. The mean percentage data are presented in right panels as mean ± SEM. *, **, and 

*** indicate p<0.05, 0.01, and 0.001, respectively.  
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5.2.5 FdFG VLP immunization does not induce eosinophilia upon RSV infection 

Eosinophils were demonstrated to have the phenotypes of CD45+CD11c-CD11b+SiglecF+ 

and enriched in inflamed lung tissues 107, 108. At day 5 post RSV challenge, the FI-RSV immunized 

group induced prominently a population with CD11b+SiglecF+ cells, which was approximately 

83% out of the CD45+CD11c- large cell gated populations (Fig. 5.7A) and 45% out of total BALF 

cells (Fig. 5.7B). High levels of eosinophils showed a correlation with severe infiltrates around the 

bronchial airways and interstitial spaces from the lung histology of FI-RSV immune mice (Fig 

5.8). A low but distinct population with CD45+CD11c-CD11b+SiglecF+ cells at a level of 

approximately 14% (Fig. 5.7A) was also observed in the live RSV group after RSV challenge. 

Importantly, the group of mice immunized with FdFG VLP vaccine did not show such a distinct 

population of CD11b+SiglecF+ cells. Unimmunized naïve mice also showed CD11b+SiglecF+ 

phenotypic cells even at a low level after RSV infection (Fig. 5.7). Therefore, results in this study 

provide evidence that FdFG VLP immunization would not induce pulmonary eosinophilia whereas 

FI-RSV immunization induces severe eosinophilia and live RSV re-infections may induce a low 

level of eosinophils. 

 

5.2.6 FdFG VLP immunization increases the ratios of adaptive CD8+/CD4+ cells secreting 

IFN-γ in BAL lymphocytes 

Previous studies demonstrated that FI-RSV immunized mice had an increased number of CD4+ T 

cells infiltrating BALF after RSV challenge, which was shown to be involved in vaccine-enhanced 

lung disease 109. Thus, it was assumed that a reverse trend would be beneficial in preventing lung 

disease. CD4+ T cells and CD8+ T cells in BALF were analyzed day 5 post RSV challenge (Fig. 

5.9). FI-RSV immunization induced high CD4+ T cells in BALF after RSV challenge. In contrast, 
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FdFG VLP immunization resulted in approximately 3-fold lower CD4+ cellularity in BALF 

compared to that induced by FI-RSV immunization or by live RSV infection (Table 5.1). Overall, 

the ratios of CD8+/CD4+ T cells were relatively higher in the FdFG VLP and live RSV group than 

those in the FI-RSV group (Fig. 5.9B).  

It was demonstrated that IFN-γ can have both beneficial protective and detrimental systemic 

disease effects 53, indicating that IFN-γ response should be balanced to avoid disease after RSV 

challenge. Intracellular IFN-γ cytokine staining of cells in BALF was presented (Fig. 5.9). FI-RSV 

immunization induced highest levels of IFN-γ producing CD4+ T cells (32.8% of total CD3+ T 

cells, Fig. 5.9A) whereas the FdFG VLP group showed a relatively low level of IFN-γ+ CD4+ T 

cells (16.4%, Fig. 5.9A). Since the CD4+ T cellularity in the FI-RSV group showed 3 fold higher 

than that in the FdFG VLP group (Table 5.1), the total IFN-γ producing CD4+ T cells induced by 

FI-RSV immunization were approximately 5- to 6-fold higher than those by FdFG VLP 

immunization.  Interestingly, live RSV showed an intermediate level of IFN-γ secreting CD4+ T 

cells (22.7%, Fig. 5.9A). In line with high levels of IFN-γ producing CD4+ T cells and eosinophils, 

we found that FI-RSV and live RSV more strongly stimulated in vitro bone marrow derived 

dendritic cells (BMDCs) to secrete proinflammatory cytokines IL-6 and TNF-α than RSV F or G 

VLP (Fig. 5.3).  

CD8+ T cells were reported more likely to contribute to protection against RSV 110.  Contrary to 

IFN-γ+ CD4+ T cells, a reverse pattern of IFN-γ producing CD8+ T cells between FI-RSV and 

FdFG VLP groups was observed in T cells from BALF after RSV challenge. The FdFG VLP group 

showed the highest level of IFN-γ+ CD8+ T cells (26.8% of total CD3+ T cells, Fig. 5.9A, C). FI-

RSV immunization induced a lowest level of IFN-γ+ CD8+ T cells (11.7%, Fig. 5.9A, C). 

Interestingly, FI-RSV was not effective in IL-12 Th1 type cytokine production from in vitro 
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BMDC cultures (Fig. 5.3). An intermediate level of IFN-γ+ CD8+ T cells was observed in the live 

RSV group (19.9%, Fig. 5.9A, C). Accordingly, the ratios of CD8+ and CD4+ T cells producing 

IFN-γ were highest in the FdFG VLP group (Fig. 5.9C), indicating that FdFG VLP immunization 

can modulate IFN-γ secreting CD4+ and CD8+ T cells infiltrating into airway upon RSV challenge.  

To further determine whether FdFG VLP could modulate the expression of cytokines in lung 

microenvironment, we determined IL-4, IL-5, IL-13 Th2 type and IFN-γ Th1 type cytokines in 

BALF as well as in lung extract (Fig. 5.10) after RSV challenge of immunized mice. Lung extracts 

from FI-RSV immunized mice showed a trend of increasing Th2 cytokines (IL-4, IL-5, IL-13) 

whereas FdFG VLP immunization resulted in an increase of IFN- γ production in lung milieu. A 

similar pattern of cytokines was observed in BALF samples (Fig. 5.10). Therefore, a pattern of 

increasing Th2 cytokines in lungs of FI-RSV immune mice might have contributed to 

inflammatory RSV disease. 
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Figure 5.9 IFN-γ producing lymphocytes in bronchoalveolar lavage fluids.  

(A) IFN-γ+ cell percentages in CD4+ and CD8+ lymphocyte (CD3+) populations. The dot plots are representative of 

three independent intracellular cytokine staining experiments. (B) Ratios of CD8+ to CD4+ T cells in total lymphocyte 

population. (C) Ratios of IFN-γ producing CD8+ to CD4+ T cells in BAL lymphocytes. Ratios are presented as mean 

± SEM. # indicates p<0.05 compared to the FI-RSV+R group. 
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Figure 5.10 Cytokine profiles in bronchoalveolar lavage fluid of RSV challenged mice.  

Bronchoalveolar lavage fluid (BALF) was collected from the immunized mice day 5 post RSV challenge and used to 

determine IL-4 (A), IL-5 (B), IL-13 (C), and IFN-γ (D). The concentration of the cytokines were presented as mean ± 

SEM and the data were representative of three independent experiments. * indicates p<0.05 compared to all other 

groups and # indicates p<0.05 compared to FI-RSV+R group by one-way ANOVA and Tukey’s multiple comparison 

test.  
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5.3 Discussion   

Protective immune correlates are not well understood because there is no licensed RSV 

vaccine. In particular, cellular phenotypes contributing to protection and disease remain largely 

unknown after RSV vaccination. Results in this study provide evidence that FdFG VLP could 

confer protection against RSV by preventing pulmonary eosinophilia and modulating cellular 

phenotypes as well as cellularity of infiltrates and IFN-γ secreting cells in addition to inducing Th1 

type antibodies and cytokines. 

FdFG VLP vaccination induced antibodies recognizing RSV, predominantly binding to the 

RSV F protein antigen and little to the RSV G antigen. After prime immunization with FdFG VLP, 

higher levels of IgG2a antibodies for RSV F were observed than those for RSV G (Fig. 5.2C and 

E), indicating that RSV F is more immunogenic than RSV G and this result is consistent with those 

in mice that were immunized with NDV VLPs containing both RSV F and G proteins 111. After 

boost immunization, IgG2a antibodies for RSV G were increased. Meanwhile, IgG1 antibodies 

specific for RSV F were relatively increased after boost immunization. Accordingly, IgG2a/IgG1 

ratios showed an opposite direction between RSV F and RSV G specific antibodies after boost 

immunization (Fig. 5.2D, F). Therefore, antibody isotype profiles and distribution between RSV 

F and G specific antibodies may reflect an intrinsic difference in immunogenicity and protection.   

RSV F is known to be an agonist for Toll-like receptor 4 (TLR4) 112. There seems to be a 

certain correlation between TLR4 polymorphism and RSV disease severity 113. TLR is known to 

regulate host immune responses against RSV 114. High levels of IgG2a antibodies to RSV F than 

those to RSV G might be due to an effective stimulation of dendritic cells via TLR4 by F VLP. 

RSV neutralizing monoclonal antibodies targeting the RSV F protein have been licensed, making 

the F protein an attractive vaccine target 115. Thus, it might be desirable that FdFG VLP 
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immunization induced antibody immune responses that are predominantly specific for RSV F. 

Immune responses to RSV G were shown to be effective in controlling lung viral loads 63,116, and 

also to cause eosinophilia and secrete Th2 cytokines117, 118. Also, purified RSV F protein vaccine 

was shown to induce a Th2-like response119. Higher levels of IgG2a antibodies were induced by 

immunization with FdFG VLP. Therefore, it should be informative to determine the contributions 

of each RSV FdFG VLP vaccine component to RSV protection and disease. Inclusion of F DNA 

in the FG VLP was found to contribute to further increasing IgG2a antibody responses (Fig. 5.1). 

An enhanced Th1-like response induced by FdFG VLP might be due to the endogenous expression 

of genetic RSV F DNA vaccine plus intrinsic property of a nano-particulate nature of VLP. In 

support of this property of VLPs, influenza hemagglutinin proteins presented on VLP induced 

strong IgG2a isotype and IFN-γ producing T cell responses compared to soluble hemagglutinin 

proteins89 .  

There are some controversies regarding the efficacy of lung viral clearance in FI-RSV 

immunized animals. Low RSV neutralizing antibodies were reported to be induced by FI-RSV 

immunization116, 120, 121. Accordingly, low efficacy of lung viral clearance was shown in FI-RSV 

immunized mice116, 121. In contrast, other previous studies demonstrated that FI-RSV immunized 

mice or cotton rats controlled RSV lung viral loads after infection122, 123, 124, 125, 126. It is not clear 

yet why lung viral clearance efficacies and RSV neutralizing titers are various among different 

studies on FI-RSV immunizations in animal models. FI-RSV preparation, doses of FI-RSV 

vaccines, animal models, and assay methods may influence the outcomes of FI-RSV vaccination 

efficacy despite its observed histopathology. 

In this study, the total cell numbers of granulocyte/myeloid large cell populations and 

lymphocytes infiltrating BALF were found to be highest in the FI-RSV group. In contrast, FdFG 
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VLP immunization did not result in significant infiltrates of leukocytes into BALF, and their 

bronchoalveolar cellularity was significantly lower than that by FI-RSV immunization following 

subsequent RSV infection. The group of mice intramuscularly immunized with FdFG VLP showed 

lower levels of granulocyte/myeloid cells and lymphocytes infiltrated into BALF upon RSV 

challenge even compared to those observed in the group of live RSV. Therefore, based on the 

results in this study, FdFG VLP is less likely to induce inflammatory cellular infiltrates into lungs 

upon RSV challenge compared to live RSV infection even at 26 weeks after immunization.   

FI-RSV immunization resulted in granulocyte/myeloid cells (region 1 gated cells in Fig. 

5.5) that were smaller in size as shown by forward light scattering, and the majority (~80%) of this 

region 1 gated granulocyte/myeoloid cell population was found to have eosinophil phenotypic 

markers (CD45+CD11c-CD11b+SiglecF+). The marked increase in pulmonary eosinophilia is a 

hallmark of FI-RSV vaccine-enhanced disease49, 65. Also, the ratios of CD11c+ cell phenotypes and 

CD11b+ myeloid cell phenotypes (CD11c+/CD11b+) were very low in the FI-RSV group. Whereas, 

the FdFG VLP and live RSV groups of mice showed larger in size but low numbers of BALF 

granulocyte/myeloid cells that were composed of high levels of CD11c+ phenotypic cells, and low 

levels of eosinophils. The FdFG VLP group showed even a lower level of eosinophils when 

compared to that in the live RSV group. The majority of CD11c+ phenotypic cells in mice with 

FdFG VLP vaccine appeared to be alveolar macrophages with a F4/80+ phenotype (data not 

shown) but further detailed studies should be carried out to define these cell types. The CD11c+ 

phenotypic cells were shown to play a crucial role in inducing Th1-polarized adaptive immune 

responses 97, 127. CD11b+ phenotypic cells were reported to promote the recruitment of leukocytes 

by pro-inflammatory cytokines following infection 128, 129. The high levels of CD11b+ cells in 

BALF may be correlated with a property of FI-RSV in stimulating BMDCs to secrete IL-6 and 
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TNF-α cytokines but not IL-12 or IFN-γ cytokines (Fig. 5.1). In contrast, F VLP was less effective 

in stimulating BMDCs to secrete IL-6 and TNF-α cytokines. We observed a similar pattern of 

cellular phenotypes in lungs but less prominent compared to those in BALF (data not shown). 

Further characterization of these infiltrating cells in BALF and lungs after vaccination and RSV 

challenge will provide an informative insight into designing a safer vaccine against RSV. The 

results in this study suggest that modulation of innate immune cells in BALF by FdFG VLP 

vaccination plays an important role in conferring protection against RSV eosinophilic 

inflammatory disease. 

T cells are known to contribute to RSV disease as well as protection, indicating that a 

balance between CD4+ T cells and CD8+ T cells is important109, 130. It is highly significant to note 

that, among groups, FdFG VLP immunized mice showed highest levels of BALF CD8+ T cells 

producing IFN-γ, which resulted in the highest ratio of CD8+/CD4+ T cells making IFN-γ. In 

contrast, FI-RSV mice exhibited highest levels of BALF CD4+ T cells producing IFN-γ, giving 

the lowest ratio of CD8+/CD4+ T cells making IFN-γ. Live RSV mice showed over 2 fold less ratio 

of CD8+/CD4+ T cells making IFN-γ compared to those in FdFG VLP immunized mice. We also 

found that the cellularity of BALF CD4+ T cells was highest in FI-RSV mice and then followed 

by live RSV mice whereas FdFG VLP mice showed relatively a low level of CD4+ T cellularity in 

BALF. In addition to total BALF cellularity, high levels of IL-4 secreting lung and spleen cells 

were detected in FI-RSV immunized mice but not in FdFG VLP immunized mice (data not shown). 

In support of results in this study, IFN-γ producing CD8+ T cells were shown to inhibit Th2 

responses and pulmonary RSV disease131. Histopathology results of lung tissue sections suggest 

that FI-RSV immunization induced severe pulmonary inflammation, and moderate lung 

inflammation was observed with live RSV re-infections and unimmunized mice upon RSV 
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infection (Fig. 5.8). In contrast, FdFG VLP immunization did not induce such pulmonary 

inflammatory disease (Fig. 5.8). Therefore, in addition to high cellularity in BALF, high levels of 

eosinophils, IL-4 and IFN-γ producing CD4+ T cells, and Th2 cytokines may be all together 

contributing to RSV lung disease upon infection, resulting in severe pulmonary histopathology.  
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6 CONCLUSIONS 

6.1 Diseases prevented by vaccine with adjuvants 

Humans are immunized with many different kinds of vaccines throughout life to prevent 

infectious diseases. With adjuvants, the antigen-specific immune responses can be increased and 

many infectious diseases can be prevented by effective vaccination with adjuvants14. Young 

children, the elderly and the human immunodeficiency virus infected patients have high risk to be 

infected by pathogens such as influenza virus so that they are required to get vaccinations. 

However, most of commercial vaccines are for healthy population, and vaccine efficacy is low in 

the immune-compromised individuals. More effective new adjuvants need to be developed for 

improving the vaccine efficacy for this population14, 20, 132, 133. Young infants and immune-

compromised populations may have defects in CD4+ T helper cells due to the immature immune 

system, aging or virus infection in CD4+ T cells, respectively14. It is significant to investigate the 

adjuvant effects in the absence of CD4+ T cells. Few vaccine adjuvants have been licensed and 

used for human vaccines. In addition, the detailed action mechanisms of adjuvants have not been 

fully understood. It is highly significant to better understand vaccine adjuvants mechanisms to 

improve the efficacy of adjuvants and develop new adjuvants as well.  

It is the first study to test vaccine and adjuvant effects in CD4-deficient immune-

compromised CD4KO mice. Previous studies demonstrated the CD4+ T cell dependent 

mechanisms using wild-type mouse models. That is, the previous studies of vaccines and adjuvants 

have focused on the antigen-specific immune responses of CD4+ T cells. There has been no study 

to investigate the effects of vaccine adjuvants in the absence of CD4+ T cells. Therefore, the 

adjuvant studies using CD4-knock-out mice and CD4+ T cell-dependent antigen can provide 

further understanding of the action mechanisms of the adjuvants and vaccines. This study will 
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provide a new mechanism of vaccine and adjuvants that can improve the protective immune 

responses against the pathogens.  

 

6.2 Mechanisms of vaccine adjuvants in immune competent condition  

 

Adjuvants are basically innate immune stimulators and form pro-inflammatory 

microenvironments at the site of injection (Fig. 6.1). Conventionally, adjuvants increases 

chemokine and inflammatory cytokine production and recruits various innate immune cells such 

as neutrophils and monocytes at the injection site 79. The activation of T cells depends on antigen 

presenting cells (APCs), such as dendritic cells (DCs) of the innate immune system. It has been 

well established that CD4+ T cells provide critical help for inducing long-lived protective antibody 

production by B cells 134 and for generating effective CD8+ memory T cells 135. Thus, it is believed 

that adjuvant effects on enhancing antibody responses to T cell-dependent vaccine antigens are 

mediated by CD4+ T helper cells through adjuvant-activated innate immune components as 

demonstrated in many studies 136, 137, 138, 139, 140, 141, 142. A conventional concept is that adjuvants 

activate innate immune components, which subsequently determines a specific type of T helper 

cells in orchestrating the quantity and quality of protective antibodies 24, 28, 139. 

Figure 6.1 Conventional vaccine adjuvant mechanism 
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6.3 Immune mechanisms of vaccine adjuvants in CD4-deficient condition  

The roles of CD4+ T cells in the adjuvant effects and underlying mechanisms by which 

adjuvants work largely remain unknown. This study demonstrated protective immunity to T-

dependent vaccine antigen in CD4KO mice, which is mediated by MF59 and MPL+Alum 

adjuvants (Fig. 6.2). Immune parameters investigated include isotype-switched antibodies, long-

lived IgG antibody-producing cells, protective HAI antibodies and cellular mechanisms of the 

adjuvants in a CD4-deficient condition (Fig. 6.2).  

MF59 was more potent in acutely inducing inflammatory cytokines and in recruiting innate 

immune cells compared to alum. Cell death and uric acid appear to be a mechanism for adjuvant 

effects by MF59. Partial retention of macrophages from significant cell depletion and recruitment 

of DC populations in addition to monocytes and neutrophils at the site of injection might be 

contributing to MF59 adjuvant effects particularly in CD4KO mice.  

MPL+Alum showed effective adjuvant effects on inducing IgG isotype-switched 

antibodies and conferring protective immunity in CD4KO mice, which was more effective 

compared to those in WT mice with influenza vaccine only or Alum-adjuvanted vaccination. 

MPL+Alum showed moderate levels of cytokines and chemokines in the peritoneal cavity after 

injection of CD4KO mice. MPL+Alum appears to have differential effects on generating local 

inflammatory micro-environment, maintaining macrophages, and attenuating acute inflammation 

compared to those of MPL and Alum. MHCII-expressing cellular components, DN T cells, and 

soluble cytokines and chemokines at the site of injection are likely to be the major contributing 

factors in providing alternative help to B cells for inducing IgG antibody responses in the context 

of MPL+Alum adjuvanted influenza vaccination of CD4KO mice.  
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6.4 Comparisons of vaccine adjuvants in terms of CD4-dependency 

The adjuvants in this study showed different adjuvant efficacy in CD4KO mice and CD4-

depleted wild-type mice with the same T-cell dependent vaccine antigen. MF59 showed the 

strongest CD4-independent adjuvant effects. MPL and MPL+Alum combination showed a 

moderate level of CD4-dependency, but they induced sufficient protection in CD4-deficient mice. 

Alum was the representative CD4-dependent vaccine adjuvants and it was used as a control of 

vaccine adjuvant in this study.    

Most of vaccine adjuvants were known to play a role as an innate immune stimulator. They 

stimulate the innate immune system at the site of injection and then induce innate and adaptive 

immune cell recruitment and activation. In this study, all adjuvants, MF59, MPL+Alum, MPL, and 

Alum, induced eosinophils, neutrophils, monocytes, and NK cells recruitment at the peritoneal 

cavity. It supported the previous findings that adjuvants caused pro-inflammatory micro-

environments at the site of injection.  

However, macrophages and dendritic cells, which are representative MHCII+ antigen-

presenting cells (APCs), showed different tendency of cell recruitment by adjuvants and CD4-

deficient condition. In wild-type mice, macrophages and DCs in the peritoneal cavity were 

Figure 6.2 Alternative vaccine adjuvant mechanisms in CD4KO mice 
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decreased by adjuvant treatment. This is because of adjuvant-induced cell death and increase of 

other inflammatory cells. In contrast, in CD4KO mice, the numbers of DCs were increased by 

adjuvant treatment and the levels of DC recruitment were consistent with the CD4-independency 

of the vaccine adjuvants (MF59>MPL>MPL+Alum). In case of macrophages, even the actual 

numbers were reduced by adjuvant treatments, but the levels of decrease (15~92%) were lower 

than wild-type (74~99%). Thus, the more dendritic cells and macrophages were retained in the 

CD4-independent vaccine adjuvant-treated CD4KO mice. In addition to APCs, CD8+ T cells and 

DN T cells were increased in MF59, MPL+Alum, MPL-treated CD4KO mice (Fig. 6.3).  

 

In addition to characteristic of each adjuvant, in this study, different CD4-deficient mouse 

models were used to investigate CD4-dependent/independent adjuvant effects. CD4KO mice, 

which is genetically modified to delete CD4 gene expression, can be a model to test CD4-

dependency of adjuvants. However, these CD4KO mice with a genetic defect in the CD4 gene 

expression are known to have developed compensatory cell populations, such as double-negative 

(DN) T cells143 and MHCII-restrictive CD8+ T cells77, 144. These compensatory cells might have 

Figure 6.3 Comparisons of CD4-dependency and mechanisms of vaccine adjuvants.  

The widths of the arrows from each adjuvants mean the strength/effects of the each adjuvants to induce following 

immune responses. MF59 induced more cell recruitment, moderate cell death and weak cytokine production. MPL 

induced high levels of cytokine production at the injection site, but weak cell recruitment and no cell death. Moderate 

levels of cell recruitment, cytokine production and cell death were elicited by MPL+Alum and the effects of alum was 

mostly by cell death.  
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played roles in inducing antibody production and protection instead of CD4+ T cells. To better 

understand the roles of CD4 T cells in inducing immunity using a model of CD4-depleted B6 WT 

mice, CD4+ T cells are acutely depleted after development, therefore the roles of CD4+ T cells can 

be investigated in a more stringent condition compared to those in CD4KO mice. MF59 adjuvant 

plus flu vaccination overcomes the acute CD4-depletion and induce comparable levels of 

antibodies, whereas MPL and MPL+Alum showed partial CD4 dependence in CD4-depleted 

situation compared to untreated WT mice.  

CD4+ T cells are undergone positive/negative selection when they are differentiated in 

thymus by MHCII+ thymus epithelial cells145. The helper function of CD4 T cells in the immune 

system is mediated via the recognition of peptide antigens presented on MHCII+ APCs. Thus, both 

CD4 cells and MHCII expressing cells are deficient in MHCIIKO mice. Using an MHCIIKO 

mouse model, this study was extended to determine whether MHCII+ cells are important to induce 

antibody production and protection against pathogens in comparison with those in CD4KO mice. 

In MHCIIKO mice, antigen-specific antibodies were barely produced by vaccination with 

adjuvants, indicating that MHCII+ cells might have played a critical role in exhibiting CD4-

independent adjuvant effects in CD4KO mice. All these experimental results of roles of DN T cells 

and MHCII+ APCs are contributing to better understanding of immune mechanisms of CD4-

independent vaccine adjuvants to overcome the CD4-deficiency and elicit protective immune 

responses against pathogens. These findings suggest a new paradigm in the adjuvant action 

mechanisms. 
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Table 6.1 Comparison of different CD4-deficient mice models 

 CD4KO CD4-depleted WT MHCIIKO 

Cause of CD4-deficiency Genetically deleted Anti-CD4 mAb Genetically deleted 

Method  

of CD4-deficiency 
Developmental defect Acute depletion Developmental defect 

Additional defect Unknown Unknown No MHCII+ cells 

Compensation  

of CD4 T cells 

MHCII-restricted  

DN T cells/CD8 T cells 
MHCII+ cells - 

IgG Antibody 

production  

by MF59/MPL+Alum 

High 
High (MF59) 

Moderate (MPL+Alum) 

No significant vaccine-

specific IgG antibodies 

Application 

Easily check CD4-

dependency of 

adjuvants/vaccines 

More stringent mice 

model to test CD4-

dependency 

To test roles of both 

MHCII and CD4 positive 

cells 

Limitation 
The cells compensating 

CD4 T cells 

Unknown adverse effects 

by mAbs 

Still remaining CD4 T 

cells in lymphoid organs 

Hard to induce immune 

responses 

 

6.5 Cellular mechanisms of RSV vaccines 

Respiratory syncytial virus (RSV) is a major cause of pneumonia and bronchiolitis in 

infants and in the elderly, but there is no licensed RSV vaccine. A particular obstacle is the safety 

concern of vaccine-enhanced RSV disease. It is of high priority to develop an effective and safe 

RSV vaccine. Therefore, it is significant to investigate the cellular mechanisms of RSV vaccines. 

FdFG VLP nanoparticulate vaccine could provide protection against RSV without causing 

eosinophilia. Phenotypic analysis of BALF cells suggested that FdFG VLP vaccination induced 

apparently balanced immune responses of CD11c+ phenotypic cells and IFN-γ producing CD8+ T 

cells locally. Also, high levels of CD11b+ eosinophils and IFN-γ producing CD4 appeared to 

contribute to FI-RSV vaccination-induced pulmonary RSV disease. These results provide first 

evidence that RSV vaccines based on VLP in combination with F DNA genetic vaccine can be 
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developed as an effective and safe RSV vaccine inducing protective immunity comparable or 

better than live RSV. 

 

  

Figure 6.4 Mechanisms of RSV vaccines 
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