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ABSTRACT

Next-generation sequencing (NGS) technologies experienced giant leaps in recent years. Short

read samples reach millions of reads, and the number of samples has been growing enormously in

the wake of the COVID-19 pandemic. This data can expose essential aspects of disease transmis-

sion and development and reveal the key to its treatment. At the same time, single-cell sequencing

saw the progress of getting from dozens to tens of thousands of cells per sample. These tech-

nological advances bring new challenges for computational biology and require the development

of scalable, robust methods to deal with a wide range of problems varying from epidemiology to

cancer studies.



The first part of this work is focused on processing virus NGS data. It proposes algorithms that

can facilitate the initial data analysis steps by filtering genetically related sequencing and the tool

investigating intra-host virus diversity vital for biomedical research and epidemiology.

The second part addresses single-cell data in cancer studies. It develops evolutionary cancer

models involving new quantitative parameters of cancer subclones to understand the underlying

processes of cancer development better.

INDEX WORDS: quasispecies, next-generation sequencing, haplotype calling, single-cell
sequencing, cancer subclones, intra-tumor heterogeneity, phylodynamics
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CHAPTER 1

INTRODUCTION

1.1 Next-generation sequencing (NGS) in viral research

The class of viruses that use RNA to carry genetic information is called RNA viruses170. RNA

viruses cause diseases such as the common cold, influenza, HIV, COVID-19, hepatitis, Ebola,

hepatitis, polio, and measles.

RNA viruses are famous for high mutation rates as high as 10−3 substitutions per nucleotide per

replication cycle due to error-prone replication. Generally, such mutations are well tolerated, and

viruses start to form quasispecies - a viral population represented by a cloud of diverse variants that

are genetically linked. The genetic heterogeneity of RNA viruses plays a crucial role in biological

implications such as the efficiency of viral transmission, disease progression, evolving resistance

to vaccines and antiviral drugs.

With the advent of next-generation sequencing (NGS) technologies, molecular epidemiology

and virology are undergoing a fundamental transformation that is already changing our approach to

epidemiological data analysis, disease prevention, and treatment27,32,62,127. We see that for SARS-

CoV-2, the databases contain data for more than a million patients and many countries rapidly

scaled up the sequencing of samples115,110. This data allows identifying viral populations at great

depth and provides new opportunities for dealing with problems like the inference of related-

ness between viral samples, identification of quasispecies composition, and outbreak investiga-

tion. Most tools, however, deal only with the consensus sequences, ignoring minor haplotypes that
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can shed light on the development of the disease, its severity, and even enhance the transmission

network reconstruction.

In this work, I address two important problems in viral data analysis:

• The search of genetically similar sequences across samples or within a sample. This problem

appears in the initial stage of the biological study of viral transmissions. It identifies the set

of related sequences from sampled datasets from infected individuals and can help to build

the network of intra-host viral variants or antibody clonotypes.

• Reconstruction of quasispecies composition within the sample by building the links between

SNPs supported by a statistically significant number of reads and the estimation of haplo-

types abundance.

1.2 Next-generation sequencing (NGS) in cancer research

Cancer is a major public health threat responsible for more than 600 000 deaths in the USA an-

nually. It is a disease driven by an uncontrollable growth of cancer cells caused by an extremely

complex set of genome mutations and rearrangements varying from a single nucleotide polymor-

phism to chromothipsis163. Clonal heterogeneity plays a vital role in tumor progression and has

important implications for diagnostics and therapy, since rare drug-resistant variants could become

dominant and lead to relapse in the patient.

Historically most cancer data comes from bulk sequencing. Recently, the most promising tech-

nological breakthrough was the advent of single-cell sequencing(scSeq), which allows access to

cancer clone populations at the finest possible resolution. This technology provides an opportu-
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nity to make significant steps in understanding the evolutionary mechanisms of cancer. It brings

single-cell data to the scale of bulk data but keeps more information of cell haplotypes instead of

giving a mixture of them.

There were many methods to tackle the problem of evolutionary history reconstruction that

gave birth to tools like SCITE69, infSCITE83, or SiFit187. Most of the tools rely on infinite site

assumption and have difficulty with non-perfect phylogeny on two levels:

• Navigate through enormous space of possible topologies with various lost and repeated mu-

tations

• Develop an objective function that can prefer one topology over another because most mod-

els try to maximize only the correlation of inferred mutation profiles with observed data and,

usually, many alternative topologies give the same likelihood

But besides just topology reconstruction, there is an interest in estimating quantitative features

of cancer subclones. It is a pretty recent direction of studies, and there is still no consensus on the

rules guiding cancer evolution34,162,177,119. The open questions include the laws of evolution (neu-

tral, linear, branching, or punctuated), ways of interaction between clonal variants (competition or

cooperation) and the role of epistasis (non-linear interaction of SNVs or genes). In this work, the

two evolutionary parameters that try to explore those questions are described: fitness landscape

and mutation rate landscape.

As a result, two tools, SCIFIL and MULAN, were developed. Furthermore, they can help to

choose alternative topology in conjunction with infSCITE, and MULAN confirms the previous

finding that the SESN2 gene may lead to genetic instability68.
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1.3 Contributions

The dissertation describes the following contributions:

• Introduces the tool SignatureSJ for fast search of similar genetic sequences in massive

databases using Hamming and Edit distances and analyses the possible future improvements.

It can be beneficial for the study of HIV and HCV because the amount of collected data in-

creased drastically in recent years.

• Designing a novel haplotype assembly algorithm CliqueSNV79 based on the representa-

tion of haplotype assembly as a clique enumeration problem. The algorithm also estimates

frequencies of haplotypes by Expectation-Maximization methods. CliqueSNV is more ac-

curate than other methods that were proven on a series of real and simulated sequencing

benchmarks for different viruses.

• Developed evolutionary models for cancer to address highly high intra-tumor heterogene-

ity. These models introduce two new quantitative features as fitness landscape and mutation

rate landscape. As a result, we developed two tools - SCIFIL and MULAN - to calculate

those landscapes given cancer mutation tree topology. One of the main advantages of the ap-

proach is that these two models agree on the most probable alternative mutation tree topolo-

gies allowing us two choose between different evolutionary paths with lost and back-wards

mutations.
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1.4 Roadmap

The rest of the dissertation is organized as follows. Chapter 2 presents the SignatureSJ algorithm

for fast search in genetic databases. Chapter 3 describes CliqueSNV – a tool for viral quasispecies

reconstruction and its comparison with state-of-the-art tools. Chapter 4 and Chapter 5 are concen-

trated on inference of cancer quantitative features for fitness landscape and mutation rate landscape

and include two developed tools SCIFIL and MULAN.

1.5 Products

1.5.1 Peer reviewed journals

1. Tsyvina, V., Campo, D. S., Sims, S., Zelikovsky, A., Khudyakov, Y., & Skums, P. (2018).

Fast estimation of genetic relatedness between members of heterogeneous populations of

closely related genomic variants. BMC bioinformatics, 19(11), 1-10.

2. S. Knyazev∗, V. Tsyvina∗, A. Shankar, A. Melnyk, A. Artyomenko, T. Malygina, Y. Porozov,

E. Campbell, S. Mangul, W. Switzer, P. Skums, and A. Zelikovsky (under revision) Accurate

Assembly of Minority Viral Haplotypes from Next-Generation Sequencing through Efficient

Noise Reduction. Nucleic Acids Research ∗-equal contribution

3. Skums, P., Tsyvina, V., & Zelikovsky, A. (2019). Inference of clonal selection in cancer

populations using single-cell sequencing data. Bioinformatics, 35(14), i398-i407.

4. Tsyvina, V., Zelikovsky, A., Snir, S., & Skums, P. (2020). Inference of mutability land-

scapes of tumors from single cell sequencing data. PLOS Computational Biology, 16(11),
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e1008454.

5. Rogovskyy, A. S., Caoili, S. E. C., Ionov, Y., Piontkivska, H., Skums, P., Tsyvina, V., ... &

Waghela, S. D. (2019). Delineating surface epitopes of Lyme disease pathogen targeted by

highly protective antibodies of New Zealand White rabbits. Infection and immunity, 87(8).

1.5.2 Abstracts and Presentations

1. Tsyvina, V., Zelikovsky, A., Skums, P. Inference of intra-host SARS-CoV-2 heterogeneity

from noisy NGS data(ICCABS 2020)

2. Tsyvina, V., Zelikovsky, A., Snir, S., Skums, P. Inference of mutability landscapes of tumors

from single cell sequencing data (RECOMB-CCB 2020)

3. Skums, P.,Tsyvina, V., Zelikovsky, A. Inference of clonal selection in cancer populations

using single-cell sequencing data at ISMB 2019

4. Skums, P.,Tsyvina, V., Zelikovsky, A. Joint inference of evolutionary inference and fitness

landscape of a tumor from bulk and single-cell sequencing data” at ICCABS 2019

5. Sergey Knyazev, Viachaslau Tsyvina, Andrew Melnyk, Alexander Artyomenko, Tatiana

Malygina, Yuri B Porozov, Ellsworth Campbell, William M Switzer, Pavel Skums, and

Alex Zelikovsky (2018) CliqueSNV: Scalable Reconstruction of Intra-Host Viral Popula-

tions from NGS Reads. The 8th RECOMB Satellite Workshop on Massively Parallel Se-

quencing (RECOMB-Seq)
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1.5.3 Software Packages

1. SignatureSJ. Tool for retrieving related sequenced grom large genomic databases. https:

//github.com/vtsyvina/signature-sj

2. CliqueSNV. Tool for restoring virus variants from NGS sequencing data, SNPs variant call-

ing. https://github.com/vtsyvina/CliqueSNV

3. SCIFIL. Estimation of mutations fitness landscape. https://github.com/compbel/

SCIFIL

4. MULAN. The tool to infer mutation rated from single-cell DNA data. https://github.

com/compbel/MULAN

https://github.com/vtsyvina/signature-sj
https://github.com/vtsyvina/signature-sj
https://github.com/vtsyvina/CliqueSNV
https://github.com/compbel/SCIFIL
https://github.com/compbel/SCIFIL
https://github.com/compbel/MULAN
https://github.com/compbel/MULAN
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CHAPTER 2

FAST ESTIMATION OF GENETIC RELATEDNESS BETWEEN MEMBERS OF
HETEROGENEOUS POPULATIONS OF CLOSELY RELATED GENOMIC VARIANTS

List of abbreviations

• NGS: Next-generation Sequencing

• HVR1: Hypervariable Region 1

• HCV: Hepatitis C Virus

2.1 Background

We Consider two sets T1 and T2 each containing N DNA or RNA sequences of length L. The

similarity join problem consists in locating the set P of all pairs of sequences, with one sequence

from T1 and the other from T2, within an edit distance or Hamming distance defined by the spec-

ified threshold t. In molecular epidemiology, this computational problem needs to be solved for

detection of viral transmissions from sequences of intra-host viral variants sampled from infected

individuals25,140. Viral populations, for which the minimal inter-sample distance does not exceed

the threshold, are considered to be potentially linked by transmission25, while the number of pairs

in P may suggest the time since a transmission event56. The related genetic network construc-

tion problem aims to build a graph with vertices corresponding to sequences from a given dataset

T and edges corresponding to all pairs of sequences with an edit or Hamming distance less than

the threshold t. This problem arises in studying and analysis of viral populations156 or antibody
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repertoires149. Similar problems also emerged under different names in various areas of computer

science131,55,88,108,118.

The edit distance between a pair of sequences can be calculated in time O(L2) using dynamic

programming171. If only distances below a desired threshold t which is small relative to L are

desired. The distance calculation can be carried out with a small subset of diagonals neighboring

the main diagonal of the dynamic programming matrix, leading to O(tL) time algorithm61. In

this case a naı̈ve algorithm for the similarity join problem requiring pairwise comparison of all se-

quences has an asymptotic running time O(tLN2), which is still impractical for more than several

thousand sequences.

Several filtering-based approaches have been put forward to improve the efficiency of the sim-

ilarity join-type problems by reducing the number of pairs to be compared. Note that while fast

heuristic and approximate methods exist such as Shingling21, LSH55, or BLAST4, this paper fo-

cuses on the problem of exact distance calculation.

The common filtering approach is based on on the fundamental idea that related sequences

should share long k-mers (substrings of length k)93. Several existing methods rely on signature

schemes to quickly locate feasibly linked pairs131 by assuming that pairs with an edit or Hamming

distance which does not exceed a threshold t will share at least a certain number of k-mer-based

signature keys. However, straightforward application of this technique to viral sequencing data is

not sufficiently efficient, since mutations are not distributed uniformly along viral genomes, but

tend to concentrate in short hypervariable regions33. As a result, many viral sequences share k-

mers, thus significantly reducing the efficiency of filtering. The same effect has been observed for
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immunosequencing data149, where all antibodies originating from the same V gene often share a

k-mer from that gene.

In this paper, we describe a tool which uses k-mer-based signature filtering scheme optimized

for viral data to solve the following problems:

• Sample pair filtering: given two NGS sequence samples T1 and T2, quickly determine

whether the distances between all inter-sample pairs of sequences are greater than the thresh-

old t.

• Inter-sample sequence retrieval (similarity join): given two NGS sequence samples T1 and

T2, find all inter-sample pairs of sequences at edit distance or hamming distance below the

threshold t.

• Intra-sample sequence retrieval (or genetic network construction): given an NGS sequence

sample T1, find all pairs of sequences at edit distance or hamming distance below the thresh-

old t.

The tool was validated using Hepatitis C Virus (HCV) data in the settings used for detection of

viral transmissions and outbreaks25,140.

2.2 Methods

2.2.1 Notation

In the methods description, we assume that input sequence samples T1 and T2 both contain N

sequences of length L, which cover the same genomic region. From here onwards we will use k
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as a fixed predefined parameter.

Further we will use the following notation:

• S = s1s2 . . . sL - sequence over the alphabet {A,C, T,G}.

• S[i : j] = sisi+1 . . . sj - subsequence of S starting at position i and ending at position j.

• k-mer - any subsequence of length k

• k-segment - k-mer that starts at a position 1 + ik, i = 0, 1, 2, ...(i.e. first k-segment starts at

first position in sequence, second starts right after first).

• K(S) - the set of all k-mers of the sequence S.

• R(S) - the list of all k-segments of the sequence S (possibly with repetitions).

• h(S,Q) - Hamming distance between two sequences S and Q

• l(S,Q) - edit distance (Levenshtein distance) between two sequences S and Q

• led(S,Q) =


l(S,Q), if l(S,Q) ≤ t

−1, otherwise

- limited edit distance, as mentioned above, could

be calculated using dynamic programming61

2.2.2 Main Data Structure

Our signature-based filtering scheme is based on the following simple observation:

Proposition 1. 131 If l(S,Q) ≤ t, then |K(Q) ∩R(S)| ≥ m− t, where m =
⌊
L
k

⌋
.
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Proof. If S and Q differ by an edit distance of t, then by the pigeon hole principal at most t

k-segments differ between the sequences S and Q. So at least m − t k-segments must be the

same.

Thus we need a fast way to calculate the number of common k-segments and k-mers for a

given pair of sequences. To do it we introduce a hash function:

hash(S[i : j]) =

j∑
l=i

f j−l(sl), (2.1)

where f : {A,C,G, T} → {0, 1, 2, 3} is an arbitrary bijection. For k-mers with k < 32, this

hash function allows us to store them as 64-bit integers and can be quickly recursively calculated

as follows:

hash(S[i+ 1 : j + 1]) = hash(S[i : j])− 4n−1f(si) + f(sj+1) (2.2)

In addition, the hash can be inverted and so only the hash values of k −mers need to be stored.

In the proposed framework, each sample T is stored using a data structure further referred to

as a T -dictionary and denoted by dict(T ), which consists of the following fields:

• dict(T ).HM - an inverted index of T 191, i.e. a hash table, where each key is a k-mer hash

and its value is a set of all sequences from T that contain this k-mer.

• dict(T ).KM - A set of all possible k-mer hashes in T

• dict(T ).KS - hash table, where keys are sequences and values are lists of their k-segments

(represented by their hash values) from 1 to m
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• dict(T ).SC - A list of L sets SC1, ..., SCm, where SCi is a set of all k-segments in a position

1 + ik (represented by their hash values).

2.1.3 Algorithm Description

We will first describe the approach for the sample pair filtering problem. Building a simple and

fast filter for unrelated samples T1 and T2 is easy by applying Proposition 1 to whole samples as

follows. Recall that T1 and T2 are considered to be genetically related, if the minimal edit distance

between their sequences does not exceed the threshold t. Given two dictionaries dict(T1) and

dict(T2), the necessary condition for their genetic relatedness is an existence of at least m − t

positions {i1, i2, . . . , im−t} such that dict(T1).SCij ∩dict(T2).KM 6= ∅ for every j = 1, ...,m− t.

The sample pair filter pseudocode is presented at Algorithm 1.

Algorithm 1 Simple filter for unrelated samples
1: function CALCULATECOINCIDENCES(dictT1,dictT2,m,t)
2: coincidences = 0
3: for lSegmentHashes ∈ dict1.SC do
4: for hash ∈ lSegmentHashes do
5: if hash ∈ dict2.KM then
6: coincidences← coincidences + 1
7: break
8: end if
9: end for

10: end for
11: return coincidences ≥ m− t
12: end function
13:

Assuming that membership verification for a hash set dict(T ).KM can be performed in time

O(1), the worst-case running time of the filter is O(NL). In real settings, samples with genetically

related sequences produce significantly smaller maps dict(T ).SC, thus leading to a lower average

running time than in the worst case.
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The algorithms for inter-sample sequence retrieval and intra-sample sequence retrieval prob-

lems are very similar, so we will describe the approach for the former problem. As before, let T1

and T2 be two samples. The algorithm first constructs the set of candidate neighbors CNS ⊆ T2

for every sequence S ∈ T1. This procedure (the filtering), is followed by the verification proce-

dure, which calculates actual neighbors of all sequences S ∈ T1 by calculating distances between

S and all sequences S ′ ∈ CNS . The pseudocode for inter-sample sequence retrieval algorithm is

presented in Algorithm 2.

The basic filtering strategy utilizes Proposition 1, with the following features aiming at im-

provement of the running time. For each S ∈ T1, the set CNS can be implemented as a hash

table, with keys being sequences S ′ ∈ T2 and values CNS(S ′) being numbers of matches between

k-segments in S and k-mers of S ′. Let LS be the number of k-segments of S that occur as k-mers

in T2, and I = (i1, i2, . . . .iLS) be the list of starting positions of these k-segments. To calculate the

number of matches between k-segments in S and k-mers of S ′ we may iterate over the list I and

increment the current value of CNS(S ′), when necessary. If after j iterations the inequality

m− t ≤ LS − j + CNS(S ′) (2.3)

does not hold, then S ′ cannot accumulate the required number of matches with the remaining

iterations, and therefore the sequence S ′ can be filtered out right away. These considerations imply

that the order in which starting positions of k-segments are examined is important in determining

the algorithm’s running time.

The order of k-segment starting positions is determined heuristically as follows. For each

position i let kS(i) = |dict(T2).HM(S[i : i + k − 1])| be the number of sequences from T2 that
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contain the i-th k-segment from S. If we sort positions by ascending order of the numbers kS(i) it

usually leads to faster pruning of sequence pairs as this order minimizes the size of the candidate

set that must be examined at each iteration.

Another simple adjustment could be implemented using the fact that the hamming distance

is an upper bound for an edit distance, while the calculation of the former is significantly faster.

Therefore if h(S,Q) ≤ t, thenQ can be added to the list of neighbors of S without the edit distance

calculation.

2.2 Hamming distance adjustment

The filtering strategy described above can be further improved, if the input sequences are aligned

to a reference. In this case the samples can be compared using Hamming distance instead of an edit

distance. For Hamming distance, Proposition 1 can be applied to k-segments of both comparable

sequences thus simplifying the filling and filtering steps.

Furthermore, genomic heterogeneity is distributed highly irregularly along the genomes of

species of interest. For example, Fig. 2.1 illustrates the distribution of nucleotide entropy for

a particular intra-host population along the 264bp-long genomic HCV region at the junction of

envelope glycoproteins E1 and E2, which is often used in epidemiological and immunological

studies124,10,25. It should be noticed that k-segments from conserved regions are significantly

less useful for the filtering as we want to maximize detectable differences between tested se-

quences. The non-uniformity in genomic heterogeneity can be taken into account by switching

to the framework with k-segments of unequal size. By selecting k-segment boundaries that con-
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Algorithm 2 Signature-based filter to find sequence pairs closer than threshold
1: function SIGNATUREFILTER(T1,T2,dictT1,dictT2,t)
2: for s ∈ T1 do . lines 4 through 12 calculate candidates list CNs for each sequence s
3: CNs ←hash map (sequence→hit count)
4: order← indexes of segments sorted in ascending order by their frequencies in T2

5: Ls ← number of k-segments from s that appear in T2
6: for i = 0→ Ls do
7: if i ≤ Ls − (m− t) then
8: FILL(CNs,s,dictT1,dictT2,order,i) . Fill candidates list
9: else

10: CNs ← FILTER(CNs,s,dictT1,dictT2,order,i) . Filter sequences
from candidates list that do not share m− k k-mers

11: end if
12: end for
13: for s’ ∈ keys of CNs do
14: if h(s,s’) ≤ t or led(s,s’) 6= −1 then
15: s and s’ are related
16: end if
17: end for
18: end for
19: end function
20: . function FILL adds all sequences from T2 that share the same k-mer with s
21: function FILL(CNs,s,dictT1,dictT2,order,i)
22: segmentHash← dictT1.KS[s][order[i]]
23: for s’ ∈ dict2.HM[segmentHash] do
24: add {s’,1} to CNs or increment current value for key s’
25: end for
26: end function
27: . function filters candidate sequences if they do not share enough k-mers with s
28: function FILTER(CNs,s,dictT1,dictT2,order,i)
29: segmentHash← dictT1.KS[s][order[i]]
30: filteredCandidates← hash map (sequence→hit count)
31: for s’ ∈ CNs do
32: isInDict← s’ ∈ dictT2.HM[segmentHash]
33: if isInDict or m− t ≤ Ls − i + candidates[s’] then
34: addVar← 1 if isInDict is true, 0 otherwise
35: add {s’, CNs[s’] + addVar} to filteredCandidates
36: end if
37: end for
38: return filteredCandidates
39: end function
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tain roughly equal amounts of average information entropy over the dataset, the filtering speed

and quality could be significantly improved. Figure 2.2 provides an example, when entropy-based

k-segments length allows more accurate filtering than uniform k-segments length. Formally, let

Hi = −
∑4

j=1 P (xij)log2(P (xij)) be the sample nucleotide entropy at position i, where P (xij) is a

frequency of nucleotide xij on i-th position of the alignment. The segments are selected in such a

way that for every segment [i, j] we have
∑j

l=iHl ≈
H

m
, whereH =

∑L
i=1Hi andm is the number

of segments. Different numbers of segments were examined empirically and the best performance

was obtained with m = t+ 7.

Figure 2.1 Distribution of nucleotide entropy along the E1/E2 region of HCV for a population of
469 unrelated genotype 1a sequences obtained from NCBI.
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Figure 2.2 Example of two exact pairs of strings, but with equal (k = 4) (a) and entropy-based (b)
segments size and t = 1. In case (a) the pair passes the filter, in case (b) it doesn’t pass the filter.

2.3 Results

2.3.1 Validation Data

The developed tool was validated using NGS datasets of intra-host HCV populations sampled

from infected individuals. Each dataset contains the E1/E2 junction of the HCV genome of length

264nt, which contains the Hyper Variable Region 1 (HVR1) region. Each sample was processed

by error correction and haplotyping tools, and as a result we receive as an input datasets consisting

of unique HCV haplotypes.

We used a set of 413 samples from140 with 501.5 haplotypes per sample in average produced by

NGS; 8 datatsets d1, ..., d8 with 1000, 2000, . . . , 128 000 sequences produced by random sampling

from NGS dataset with sequences sampled from chronically infected individuals and one additional

NGS dataset m1 consisting of 10 467 sequences. The data are available in tool’s repository.

In all tests, the threshold t = 3.77% ≡ 10nt was used. This value is derived in25 as empirically

validated recommended threshold for separation between epidemiologically related and unrelated

intra-host HCV HVR1 populations.
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All tests were run on server with 128 Intel Xenon E7-4850 2.1GHz cores and 1.4Tb RAM. For

Inter-sample sequence retrieval desktop PC was used with 4 Intel(R) Core(TM) i7-5500 2.4GHz

cores and 8Gb RAM. All code is written on Java to provide a threaded, platform independent

solution.

2.3.2 Sample pair filtering and Inter-Sample Sequence Retrieval validation

For Sample pair filtering and Inter-Sample Sequence Retrieval problems, we validated the tool us-

ing HCV datasets from140. The proposed approach has been compared with the Filter Composition

pipeline proposed in140. Both methods were run on a desktop computer, as in the original paper140.

The results are reported in Table 2.1. Here we show the result of comparison of all pairs of samples

and all inter-sample pairs of sequences.

Table 2.1 Results of Filter Composition pipeline and k-mer based signature scheme filtering for
Sample pair filtering and Inter-Sample Sequence Retrieval problems

Method Filter Composition Signature Scheme
Percent of filtered sample pairs 85.1% 92%

Percent of filtered sequence pairs 91.5% 99.996%
Total Time ∼ 5 min ∼ 15 sec

The proposed sample pair filtration algorithm removed 92% of all possible samples pair com-

parisons, and sequence pair filtering algorithm managed to filter out 99.996% of all possible se-

quence pairs. The latter means that only 888,914 out of 22,037,502,011 sequence pairs passed

from filtering to verification stage of the algorithm. As a result, the proposed approach signifi-

cantly outperforms the Filter Composition Pipeline in filtering quality and in running time.

We studied how the filtering quality is affected by different optimization subroutines (Table

2.2). Disabling sample pair filtering increases the running time for comparison of all samples by
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42%, while the impact of sorting of k-segment starting positions is even higher, with disabling of

this step slowing down the comparison by 254%.

Table 2.2 Algorithm run time without optimization subroutines
Feature Time

No sample pair filter ∼ 21.3s
No sorting of k-segment starting positions ∼ 38.1s

Preprocessing and dictionary building can take up a significant portion of the total running time

of a signature-based filtering algorithm, when samples are distant and few distance calculations are

required. For the given collection of 413 samples, preprocessing of all samples takes ∼ 4840ms,

which constitutes approximately 1/3 of the total running time of the algorithm. Note that in the

case when significant number of closely related sequence pairs is present, the situation is different

(see the next section).

The algorithm performance depends on the size of the k-mers and k-segments. Small k leads to

larger number of matches between k-segments and k-mers of distant sequences, which can cause

extra sequences to be added to the candidate lists thus leading to decrease in filtering quality. Larger

k leads to fewer false matches but unfortunately also a larger k-mer dictionaries. We examined

different k-mer sizes to determine the optimal size for our datasets and found that k = 11 gives the

best performance.

2.3.3 Intra-sample Sequence Retrieval Validation

For Intra-sample Sequence Retrieval Problem, we validated the proposed approach using datasets

d1,...,d8,m1. First, it was compared with a single-thread, brute force method with the worst-case

complexityO(N2Lt), which performs pairwise comparison of all sequences and calculates limited
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edit distance using dynamic programming as described in61. The results are presented in Table 2.3.

Table 2.3 Intra-sample Sequence Retrieval Running Time
Dataset Pairs in output Brute force time, s Signature method time, s

d1 60 421 6.6 0.2
d2 370 262 25.9 0.3
d3 1 800 945 102 1.8
d4 5 848 556 413 2.8
d5 18 570 536 1 624 4
d6 38 835 302 6 499 7.8
d7 155 373 208 26 400 23
d8 621 556 832 105 555 83
m1 51 453 578 883 17

The running time of the proposed tool was also compared with the running time of a re-

cently published method from149, which was originally designed for the analogous problem for

immunosequencing data. Fig. 2.3 illustrates that signature-based filtering approach demonstrates

the significant advantage.

Fig. 2.4 demonstrates that for aligned sequences in most cases the adjustment utilizing entropy-

based variable-size k-segments allows to achieve a significant speedup with respect to a constant-

size k-segment.

The speedup described above is achieved by the combination of the several features. The first

feature is the quality of filtering, which is analyzed in Table 2.4 and Table 2.5. On average, only

∼ 10% of sequence pairs that pass filtering step (”false positives”) are not genetically related. As

expected, most of the false positive pairs were very close to the threshold (Figure 2.5). With the

threshold set at t = 10, pairs with an edit distance of l(S,Q) = 11, 12, 13 represent up to 75% of

all false positives. Pairs that are so close to the threshold are difficult to filter out.

Another important feature is the fact that as the input increases in size the runtime of the al-
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Figure 2.3 Running times of method from149 (blue) and the proposed method (red) on datasets
d1-d8

Figure 2.4 Comparison of running times of equal segment size and entropy-based approaches for
single sample problem
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Figure 2.5 False positive sequence pairs(l(S,Q) > t) at different edit distances l

gorithm is dominated by the edit distance calculations (Figure 2.6). However, the filtering and

the Hamming distance shortcut reduces the number of edit distance calculations that must be per-

formed. As a result, the actual edit distance is only calculated on small portion of the total pairs

from the dataset (Table 2.4).

Figure 2.6 Contribution of algorithm subroutines to its total running time, unaligned sequences

We attempted to improve the filtering performance using other methods such as k-mer simi-

larity125, true matches131, Hamming radius filter140. However, the overhead of these methods was

greater than any runtime savings.
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Table 2.4 Filtering quality (unaligned sequences)
Test Pairs in output Pairs that passed filter Filtering PPV # led(S,Q) calculations led(S,Q)

allpairs

d1 60 421 65 937 0.9163 5 517 1.1%
d2 370 262 397 987 0.9303 18 754 0.93%
d3 1 800 945 1 873 268 0.9614 72 820 0.91%
d4 5 848 556 6 256 934 0.9347 411 660 1.28%
d5 18 570 536 21 028 890 0.8831 2 477 531 1.94%
d6 38 835 302 46 744 915 0.8308 7 952 495 1.55%
d7 155 373 208 187 011 650 0.8308 31 809 970 1.55%
d8 621 556 832 748 119 580 0.8308 127 239 860 1.55%
m1 51 453 578 54 640 978 0.9417 7 303 118 14.2%

Table 2.5 Filtering quality (aligned sequences)
Test Pairs in output Pairs that passed filter Filtering PPV
d1 60 420 64 573 0.9357
d2 379 233 385 646 0.9834
d3 1 800 448 1 862 914 0.9665
d4 5 845 274 6 204 049 0.9422
d5 18 551 359 20 706 813 0.8959
d6 38 792 420 44 939 957 0.8632
d7 155 201 680 179 791 828 0.8632
d8 620 870 720 719 231 312 0.8632
m1 47 101 270 48 888 011 0.9635

2.4 Discussion

In this paper we presented an efficient signature-based tool to solve problems of edit or Hamming

distance sequence retrieval for NGS data obtained from heterogeneous viral populations. It out-

performs other approaches to this problem by including several data-specific steps and filters. The

proposed approach was designed having problems of computational molecular epidemiology in

mind. Until recent years, genomic analyses of viral transmissions and epidemic spread used a sin-

gle viral sequence per infected individual. The advent of sequencing technologies now allows to

analyze thousands of viral haplotypes per patient. Furthermore, just in the United States, from 2.7
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million to 3.9 million people are infected with HCV172, while ∼ 1.1 million people are infected

with HIV48. These numbers put an immense computational burden on real-time advanced molecu-

lar surveillance systems, such as Global Hepatitis Outbreak Surveillance Technology (GHOST)89,

which is currently being deployed by Centers for Disease Control and Prevention. When deployed,

such system should have computational capacity to identify, whether a query set of viral samples

is genetically related with any sample from a database consisting of hundreds of thousands of sam-

ples each consisting of thousands of sequences. The proposed approach aim to allow to process

such queries efficiently. It builds on the general idea proposed in131, which is heavily optimized by

utilization of efficient data structures, such as inverted indexes and hash maps, and introduction of

running time-improving procedures, such as efficient hash values calculation and determination of

optimal order of k-mers processing. The proposed optimization steps allows for more than 2.5-fold

running time decrease in comparison with the non-optimized filtering (Table 2.2). Furthermore,

the proposed method takes into account uneven distribution of heterogeneous position along viral

genomes by using variable entropy-based k-mers. It allows to improve both filtering quality (Fig.

2.2) and speed (Fig. 2.4). In general, for viral samples comparison the proposed filtering approach

allows to eliminate the overwhelming majority of sequence comparisons and achieve a substantial

running time decrease (Tables 2.1- 2.5).

2.5 Conclusion

The proposed tool allows for efficient detection of genetic relatedness between genomic samples

produced by deep sequencing of heterogeneous populations. The tool is freely available for down-
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load at https://github.com/vyacheslav-tsivina/signature-sj. It should be

especially useful for analysis of relatedness of genomes of viruses with unevenly distributed vari-

able genomic regions, such as HIV and HCV. For the future we envision, that besides applications

in molecular epidemiology the tool can also be adapted to immunosequencing and metagenomics

data.

https://github.com/vyacheslav-tsivina/signature-sj
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CHAPTER 3

CLIQUESNV: SCALABLE RECONSTRUCTION OF INTRA-HOST VIRAL
POPULATIONS FROM NGS READS

3.1 Introduction

Rapidly evolving RNA viruses such as human immunodeficiency virus (HIV), hepatitis C virus

(HCV), influenza A virus (IAV), SARS, and SARS-CoV-2 form populations of closely related

genomic variants inside infected hosts74,63,90,42,105,161,37,135,182,148. The intra-host viral populations

include minority viral variants that are frequently responsible for drug resistance, immune es-

cape, and disease transmission13,39,49,66,134,24,153,25,56,155,181,109,17. Therefore, accurately predicting

minority viral populations from extremely large and noisy viral genomic data is important for

biomedical research, epidemiology, and clinical applications. Although this problem has recently

attracted significant interest from the biomedical research community38,9,53, numerous obstacles

still delay NGS integration into the viral studies. The last decade witnessed numerous attempts

to employ NGS and bioinformatics methods for reconstructing intra-host viral populations. These

methods are not accurate enough for clinical and epidemiological applications since they cannot

reliably identify haplotypes accounting for a substantial portion of the population. Existing meth-

ods are ill-equipped to assemble closely related haplotypes and have elevated false-positive rates.

Additionally, there is only one in vitro viral sequencing benchmark for validation of haplotyping

tools53, and to convincingly demonstrate that such tools are ready for clinical and epidemiological

applications, new comprehensive sequencing benchmarks are urgently required78.

Next-generation sequencing (NGS) technologies now provide versatile opportunities to study
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viral populations. In particular, the popular Illumina MiSeq/HiSeq platforms produce 25-320 mil-

lion reads, which allow multiple coverage of highly variable viral genomic regions. This high

coverage is essential for capturing rare variants. Ability of NGS technologies to efficiently iden-

tify minority variants have recently gained FDA approval122. However, haplotyping of hetero-

geneous viral populations (i.e., assembly of full-length genomic variants and estimation of their

frequencies) is extremely complicated due to the vast number of sequencing reads, the need to

assemble an unknown number of closely related viral sequences and to identify and preserve low-

frequency variants. Single-molecule sequencing technologies, such as PacBio, provide an alter-

native to short-read sequencing by allowing full-length viral variants to be sequenced in a single

pass. However, the high level of sequence noise due to background or platform-specific sequencing

errors produced by all currently available platforms makes inference of low-frequency genetically

close variants especially challenging, since it is required to distinguish between real and artificial

genetic heterogeneity produced by sequencing errors.

Recently, a number of computational tools for inference of viral quasispecies populations from

NGS reads have been proposed78, including Savage9, PredictHaplo128, aBayesQR2, QuasiRe-

comb166, HaploClique167, VGA103, VirA152,102, SHORAH188, ViSpA7, QURE129 and others189,151,154,11,174.

Even though these algorithms proved useful in many applications, accurate and scalable viral

haplotyping remains a challenge. In particular, inference of low-frequency viral variants is still

problematic, while many computational tools designed for the previous generation of sequencing

platforms have severe scalability problems when applied to datasets produced by state-of-the-art

technologies.



29

Previously, several tools such as V-phaser95, V-phaser2184 and CoVaMa139 exploited linkage of

mutations for single nucleotide variant (SNV) calling rather than haplotype assembly, but they do

not accommodate sequencing errors when deciding whether two variants are linked. These tools

are also unable to detect the frequency of mutations above sequencing error rates169. The 2SNV

algorithm5 accommodates errors in links and was the first such tool to be able to correctly detect

haplotypes with a frequency below the sequencing error rate.

We propose a novel method that can accurately identify minority haplotypes from NGS reads

consisting of three steps. First, we extract pairs of statistically linked mutations. Second, we find

maximal sets of pairwise linked mutations (cliques) where each clique corresponds to a set of

mutations in a minority haplotype. Finally, we assign each read to the closest clique, and for each

clique, we form a haplotype as a consensus of reads assigned to it.

All haplotyping tools require solid and convincing validation benchmarks104,112. The true viral

variants and their distribution are only known for simulated data46, but sequencing errors, variation

of coverage depth, PCR bias, and systematic noise are difficult to simulate (see e.g.,60). Therefore

experimental sequencing benchmarks that provide an adequate evaluation of haplotyping tools are

necessary.

By now, there are only two experimental sequencing benchmarks – (i) Illumina sequencing

reads consisting of a mixture of five HIV-1 strains (HIV5exp, see Table 1)54 and (ii) PacBio se-

quencing reads from a sample consisting of ten IAV viral variants (IAV10exp, see Table 1)5. In

the HIV5exp, five different HIV-1 strains each having 20% frequency were prepared to mimic

an intra-host viral population. Unfortunately, this benchmark is not realistic enough since the
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observed intra-host viral populations consist of variants that are much closer to each other than

different strains and contain both frequent and rare variants190. The IAV10exp benchmark signifi-

cantly better mimics the intra-host viral population since its variants are very similar to each other

and the variant frequencies are realistically non-uniform. Thus, similar to the IAV10exp bench-

mark, it would be beneficial to develop Illumina benchmarks which adequately imitate intra-host

viral populations containing closely related minority variants.

To validate our method’s performance, we have introduced two novel in vitro sequencing HIV-

1 benchmarks, which consist of Illumina MiSeq experiments on haplotype mixtures based on the

mutation profile from an existing patient.

Finally, there is a essential gap in existing quality measures of intra-host viral population as-

sembly. Up-to-date, instead of populations (i.e. haplotypes with their frequencies), only sets of

reconstructed and the ground truth haplotypes are compared128. Here we propose to measure dif-

ferences between haplotype populations using Matching Error and the Earth Mover’s Distance

which account for both the distances between haplotypes and their frequencies.

3.2 Materials and Methods

3.2.1 CliqueSNV algorithm idea

A schematic diagram of the CliqueSNV algorithm is shown in Figure 3.1. The algorithm takes

aligned reads as input and infers haplotype sequences with their frequencies as output. The method

consists of six steps:

• Step 1 uses aligned reads to build the consensus sequence and identifies all SNVs. Then
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Figure 3.1 Schematic representation of the CliqueSNV algorithm. Where SNV is single nucleotide
variation.
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all pairs of SNVs are tested for dependency and are then divided into three groups: linked,

forbidden, or unclassified. Each SNV is represented as a pair (p, n) of its position p and

nucleotide value n in the aligned reads. If there are enough reads that have two SNVs (p, n)

and (p′, n′) simultaneously, then they are tested for dependency. If the dependency test is

positive and statistically significant (see CliqueSNV algorithm details for more information),

then the algorithm classifies these two SNVs as linked. Otherwise, these two SNVs are

tested for independency. If the independency test is positive and statistically significant (see

Detailed description for details), then these two SNVs are classified as a forbidden pair.

• In Step 2, we build a graph G = (V,E) with a set of nodes V representing SNVs, and a set

of edges E connecting linked SNV pairs.

• Ideally, SNVs of each true minority haplotype form a clique in G. A maximal clique C ⊆ V

is a set of nodes such that (u, v) ∈ E for any u, v ∈ C and for any x /∈ C there is u ∈ C

such that (x, u) /∈ E. Step 3 finds all maximal cliques in G.

• For real sequencing data, the linkage between some SNV pairs may be undetected due to

sequencing noise, uneven coverage, or the shortness of the NGS reads. As a result, a single

clique corresponding to a haplotype will be split into several overlapping cliques. Step 4

merges such overlapping cliques. In order to avoid merging distinct haplotypes, two cliques

are not merged if they contain a forbidden SNV pair.

• Step 5 assigns each read to a merged clique with which it shares the largest number of SNVs.

Then CliqueSNV builds a consensus haplotype from all reads assigned to a single merged
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clique.

• Finally, haplotype frequencies are estimated via an expectation-maximization algorithm in

Step 6.

3.2.2 Intra-host viral population sequencing benchmarks

Name Type Virus #haplotypes
Haplotype Hamming
frequencies distance

HIV9exp experimental HIV-1 9 0.2-50% 0.22-2.1%
HIV2exp experimental HIV-1 2 50-50% 1.2%
HIV5exp experimental HIV-1 5 20-20% 2-3.5%
IAV10exp experimental IAV 10 0.1-50% 0.1-1.1%
HIV7sim simulated HIV-1 7 14.3-14.3% 0.6-3%
IAV10sim simulated IAV 10 0.1-50% 0.1-1.1%

Table 3.1 Four experimental and two simulated sequencing datasets of human immunodeficiency
virus type 1 (HIV-1) and influenza A virus (IAV). The datasets contain MiSeq and PacBio reads
from intra-host viral populations consisting of two to ten variants each with frequencies in the
range of 0.1-50%, and Hamming distances between variants in the range of 0.1-3.5%.

We tested the ability of CliqueSNV to assemble haplotype sequences and estimate their fre-

quencies from PacBio and MiSeq reads using four real (experimental) and two simulated datasets

from HIV and IAV samples (Table 3.1). Each dataset contains between two to ten haplotypes with

frequencies of 0.1 to 50%. The Hamming distances between pairs of variants for each dataset are

shown in Appendix A Figure 7.

Experimental datasets:

1–2. HIV-1 subtype B plasmid mixtures and MiSeq reads (HIV2exp and HIV9exp). We designed

nine in silico plasmid constructs comprising a 950-bp region of the HIV-1 subtype B poly-

merase (pol) gene that were then synthesized and cloned into pUCIDT-Amp (Integrated
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DNA Technologies, Skokie, IL). Each clone was confirmed by Sanger sequencing. This

950-bp region at the beginning of pol contains known protease and reverse transcriptase

genes that are monitored for drug-resistant mutations and is monitored with sequence analy-

sis for patient care. Each of these plasmids contains a specific set of point mutations chosen

using mutation profiles of patient p7 from a real clinical study190 to create nine unique syn-

thetic HIV-1 pol haplotypes. Different proportions of these plasmids were mixed and then

sequenced using an Illumina MiSeq protocol to obtain 2x300-bp reads (see Supplementary

Methods). HIV2exp and HIV9exp are mixtures of two and nine variants, respectively.

3. HIV-1 subtype B mixture and MiSeq reads (HIV5exp). This dataset consists of Illumina

MiSeq 2×250-bp reads with an average read coverage of ˜20,000× obtained from a mixture

of five HIV-1 isolates: 89.6, HXB2, JRCSF, NL43, and YU2 available at54. Isolates have

pairwise Hamming distances in the range from 2-3.5%(27 to 46-bp differences). The original

HIV-1 sequence length was 9.3kb, but was reduced to the beginning of pol with a length of

1.3kb.

4. Influenza A mixture and PacBio reads (IAV10exp). This benchmark contains ten IAV virus

clones that were mixed at a frequency of 0.1-50%. The Hamming distances between clones

ranged from 0.1-1.1% (2-22–bp differences)5. The 2kb-amplicon was sequenced using the

PacBio platform yielding a total of 33,558 reads with an average length of 1973 nucleotides.

Simulated datasets:

1. HIV-1 subtype B mixture and MiSeq reads (HIV7sim). This benchmark contains simulated
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Illumina MiSeq reads with a 10k-coverage of 1-kb pol sequences. The reads were simulated

from seven equally distributed HIV-1 variants chosen from the NCBI database: AY835778,

AY835770, AY835771, AY835777, AY835763, AY835762, and AY835757. The Hamming

distances between clones are in the range from 0.6-3.0% (6 to 30-bp differences). We used

SimSeq15 for generating reads.

2. Influenza A mixture and MiSeq reads (IAV10sim). This benchmark contains simulated IAV

Illumina MiSeq reads with the same IAV haplotypes and their frequencies as for the IAV10exp

benchmark. The sequencing of a 2kb-amplicon with 40k coverage with paired Illumina

MiSeq reads was simulated by SimSeq15 with the default sequencing error profile in Sim-

Seq.

3.2.3 Validation metrics for viral population inference

3.2.3.1 Precision and recall

Inference quality is typically measured by precision and recall.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

where TP is the number of true predicted haplotypes, FP is the number of false predicted haplo-

types, and FN is the number of undiscovered haplotypes.

Initially we measured precision and recall strictly by treating a predicted haplotype with a
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single mismatch as an FP . Additionally, like in128 we introduced an acceptance threshold, which

is the number of mismatches permitted for a predicted haplotype to count as a TP .

3.2.3.2 Matching errors between populations

However, precision and recall do not take into account (i) distances between true and inferred viral

variants as well as (ii) the frequencies of the true and inferred viral variants. Instead, we chose to

use analogues of precision and recall defined for populations as follows.

Let T = {(t, ft)}, be the true haplotype population, where ft is the frequency of the true

haplotype t,
∑

t∈T ft = 1. Similarly, let P = {(p, fp)}, be the reconstructed haplotype population,

where fp is the frequency of the reconstructed haplotype p,
∑

p∈P fp = 1. Let dpt be the distance

between haplotypes p and t. Thus, instead of precision, we used the matching error ET→P which

measures how well each reconstructed haplotype p ∈ P weighted by its frequency is matched by

the closest true haplotype.

ET→P =
∑
p∈P

fp min
t∈T

dpt

Indeed, precision increases while ET→P decreases and reaches 100% when ET→P = 0. Similarly,

instead of recall, we propose to use the matching error ET←P which measures how well each true

haplotype t ∈ T weighted by its frequency is matched by the closest reconstructed haplotype.52

ET←P =
∑
t∈T

ft min
p∈P

dpt

Note that recall increases while ET←P decreases and reaches 100% when ET←P = 0.
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3.2.3.3 Earth mover’s distance (EMD) between populations

The matching errors described above match haplotypes of true and reconstructed populations but

do not match their frequencies. In order to simultaneously match haplotype sequences and their

frequencies, we allowed for a fractional matching when portions of a single haplotype p of pop-

ulation P are matched to portions of possibly several haplotypes of T and vice versa. Thus, we

separated fp into fpt’s each denoting portion of p matched to t such that fp =
∑

t∈T fpt, fpt ≥ 0.

Symmetrically, ft’s are also separated into fpt’s, i.e,
∑

p∈P fpt = ft. Finally, we chose fpt’s mini-

mizing the total error of matching T to P which is also known as Wasserstein metric or the EMD

between T and P 87,101.

EMD(T, P ) = min
fpt>0

∑
t∈T

∑
p∈P

fptdpt

s.t.
∑
t∈T

fpt = fp, and
∑
p∈P

fpt = ft

EMD is efficiently computed as an instance of the transportation problem using network flows.

EMDs can vary a lot over different benchmarks since they may have different complexities,

which depends on the number of true variants, the frequency distribution, the similarity between

haplotypes, sequencing depth, sequencing error rate, and many other parameters. Hence, we mea-

sured the complexity of a benchmark as the EMD between the true population and a population

consisting of a single consensus haplotype183.
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3.2.4 CliqueSNV algorithm details

Data input for CliqueSNV consists of PacBio or Illumina reads from an intra-host viral population

aligned to a reference genome. Output is the set of inferred viral variant RNA sequences with their

frequencies. The formal high-level pseudocode of the CliqueSNV algorithm is described in the

supplementary materials. Below we describe in detail the six major steps of CliqueSNV that are

schematically presented in Figure 3.1.

Step 1: Finding linked and forbidden SNV pairs. At a given genomic position I , the most

frequent nucleotide is referred to as a major variant and is denoted 1. Let us fix one of the less

frequent nucleotide (referred to as a minor variant) and denote it 2. A pair of variants at two

distinct genomic positions I and J is referred to as a 2-haplotype. There are four 2-haplotypes

with major and minor variants at I and J : (11),(12),(21), and (22). Let O11, O12, O21, O22 be the

observed counts of 2-haplotypes in the reads covering I and J . In this step, CliqueSNV tries to

decide whether the O22 reads are sequencing errors or they are produced by an existing haplotype

containing the 2-haplotype (22).

The pairs of minor variants (referred to as SNV pairs) are classified into three categories:

linked, forbidden, and unclassified. An SNV pair is linked if it is highly probable that there exists

a haplotype containing both minor variants. On the contrary, an SNV pair is forbidden if it is

extremely unlikely that the corresponding minor variants belong to the same haplotype. All other

SNV pairs are referred to as unclassified.

Assuming that errors are random, it has been proven in5 that if the 2-haplotype (22) does not
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exist, then the expected number of reads E22 containing the 2-haplotype (22) should not exceed

E22 ≤
E21 · E12

E11

(3.1)

where E21, E12, and E11 are the expected numbers of reads containing the 2-haplotypes (21),

(12) and (11), respectively. To determine if a pair of SNVs (the minor variants in positions I

and J) are linked, we need to estimate the probability that the observed counts of 2-haplotypes

O11, O12, O21, O22 are produced by 2-haplotype counts satisfying equation 3.1.

Let n be the total number of reads covering both positions I and J . Then

p =
O21 ·O12

O11 · n
(3.2)

is the probability of observing O22 reads with the both minor variants given that the variant (22)

does not exist.

The 2-haplotype (22) exists with high probability 1−P and the corresponding pair of SNVs is

linked if the value of p satisfies the following inequality5

1−
O22−1∑
i=0

(
n

i

)
pi(1− p)n−i ≤ P(

L
2

) (3.3)

where P is the user-defined P -value (by default P = 0.01) and dividing by
(
L
2

)
is the Bonferroni

correction for multiple testing.

Pairs of SNVs passing this linkage test are classified as a linked SNV pairs. For every other

pair of SNVs, we check whether they can be classified as a forbidden SNV pair, i.e., whether the

probability of observing at most 022 reads is low enough (< 0.05) given that the variant (22) has
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frequency T22 ≥ t (by default t = 0.001).

P (x ≤ O22|T22 ≥ t) ≤
O22∑
i=0

(
n

i

)
ti(1− t)n−i (3.4)

Step 2: Constructing the SNV graph. The SNV graph G = (V,E) consists of vertices corre-

sponding to minor variants and edges corresponding to linked pairs of minor variants from different

positions. If the intra-host population consists of very similar haplotypes, then in the graph G, the

number of non-isolated vertices is very small which makes the number of edges very small as

well. Indeed, the PacBio dataset for IAV encompassing 2, 500 positions is split into 10,000 ver-

tices, while the SNV graph contains only 700 edges, and, similarly, the simulated Illumina read

dataset for the same haplotypes contains only 368 edges.

Note that the isolated minor variants correspond to genotyping errors unless they have a sig-

nificant frequency. This fact allows us to estimate the number of errors per read, assuming that

all isolated SNVs are errors. As expected, the distribution of the PacBio reads has a heavy tail

(see Appendix A Figure 10), which implies that most reads are (almost) error free, while a small

number of heavy-tail reads accumulate most of the errors. Our analysis allows the identification

of such reads, which can then be filtered out. By default, we filter out ≈ 10% of PacBio reads,

but we do not filter out any Illumina reads. The SNV graph is then constructed for the reduced

set of reads. Such filtering allows the reduction of systematic errors and refines the SNV graph

significantly.

Step 3: Finding cliques in the SNV graph G. Although the MAX CLIQUE is a well-known NP-

complete problem and there may be an exponential number of maximal cliques in G, a standard
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Bron-Kerbosch algorithm requires little computational time since G is very sparse23.

Step 4: Merging cliques in the clique graph CG. The clique graph CG = (C,F, L) consists of

vertices corresponding to cliques in the SNV graphG and two sets of edges F and L. A forbidding

edge (p, q) ∈ F connects two cliques p and q with at least one forbidden pair of minor variants

from p and q respectively. A linking edge (p, q) ∈ L connects two cliques p and q, (p, q) /∈ F , with

at least one linked pair of minor variants from p and q respectively. Any true haplotype corresponds

to a maximal (L \ F )-connected subgraph H of CG which is connected with edges from L and

does not contain any edge from F (see Fig. 3.1 (4)).

Unfortunately, even deciding whether there is a L-path between p and q avoiding forbidding

edges is known to be NP-hard81. We find all subgraphs H as follows (see Appendix A Figure 11):

(i) connect all pairs of vertices except connected with forbidding edges, (ii) find all maximal super-

cliques in the resulted graph C ′G = (C,C(2) − F ) using23, (iii) split each super-clique into L-

connected components, and (iv) output maximal L-connected components.

Step 5: Partitioning reads between merged cliques and finding consensus haplotypes. Let S

be the set of all positions containing at least one minor variant in V . Let qS be an major clique

corresponding to a haplotype with all major variants in S. The distance between a read r and a

clique q equals the number of variants in q that are different from the corresponding nucleotides

in r. Each read r is assigned to the closest clique q (which can possibly be qS). In case of a

tie, we assign r to all closest cliques. In that case the read r will contribute only 1/n frequency

in consensus calculation, where n is the number of closets cliques. In most cases the number of

assigned cliques is 1, although in a case of of IAV, when most clique share the same position a
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significant portion of reads go to many cliques (see Appendix A Figures 12-14).

Finally, for each clique q, CliqueSNV finds the consensus v(q) of all reads assigned to q. Then

v(q) is extended from S to a full-length haplotype by setting all non-S positions to major SNVs.

Step 6: Estimating haplotype frequencies by using the expectation-maximization (EM) al-

gorithm. CliqueSNV estimates the frequencies of the assembled intra-host haplotypes via an

expectation-maximization algorithm similar to the one used in IsoEM116. Let K be the number of

assembled viral variants, and let α be the probability of sequencing error. EM algorithm works as

follows:

1. Initialize frequencies of viral variants f (0)
j ← 1

K
,

Compute the probability of li-long read ri i = 1, N , being emitted by viral variant j = 1, K,

hji =
∏li

l=1((1− α)Mji,l + α
3
(1−Mji,l)),

where Mji,l - indicator if i-th read coincides with j-th viral variant in the position l

2. (Expectation) Update the amount of read ri emitted by the jth viral variant pij ←
f
(n−1)
j hji∑k

u=1 f
(n−1)
u hui

3. (Maximization) Update the frequency of the jth viral variant f (n)
j ←

∑N
i=1 pij∑k

u=1

∑N
i=1 piu

4. if ||f (n−1)
j − f (n)

j || > ε, then n← n+ 1 and go to step 2

5. Output estimated frequencies f (n)
j

3.3 Results

3.3.1 Performance of haplotyping methods

We compared CliqueSNV to the 2SNV, PredictHaplo, and aBayesQR haplotyping methods. Since

CliqueSNV, PredictHaplo and aBayesQR use Illumina reads, we compared them using the HIV9exp,
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HIV2exp, HIV5exp, HIV7sim, and IAV10sim datasets. Since CliqueSNV, 2SNV, and Predic-

tHaplo can also use PacBio reads, we compared them using the IAV10exp dataset. We also used

consensus sequences in the comparisons183 because of its simplicity and to evaluate sequences

most similar to those generated by the Sanger sequencing method77.

Benchmark
CliqueSNV aBayesQR PredictHaplo

Precision Recall Precision Recall Precision Recall
HIV9exp 0.60 0.33 0.00 0.00 0.00 0.00
HIV2exp 0.66 1.00 0.11 0.50 0.50 0.50
HIV5exp 0.18 0.40 0.00 0.00 0.33 0.20
HIV7sim 1.00 0.71 1.00 0.42 0.45 0.71
IAV10sim 0.75 0.30 0.11 0.10 0.33 0.10

(a)

Benchmark
CliqueSNV 2SNV PredictHaplo

Precision Recall Precision Recall Precision Recall
IAV10exp 1.00 1.00 0.82 0.90 0.70 0.70

(b)

Table 3.2 Prediction statistics of haplotype reconstruction methods using experimental and simu-
lated (a) MiSeq and (b) PacBio datasets. The precision and recall was evaluated stringently such
that if a predicted haplotype has at least one mismatch to its closest answer, then that haplotype is
scored as a false positive.

The precision and recall of haplotype discovery for each method is provided in Table 3.2.

CliqueSNV had the best precision and recall for five of the six datasets. For the HIV5exp dataset,

PredictHaplo was more conservative and predicted less false positive variants (better precision)

than CliqueSNV.

Following study128, we also showed how precision and recall grew with the reduction of re-

striction on mismatches (Fig. 3.2). The number of true predicted haplotypes for CliqueSNV was

always greater than that of the other methods on real experimental sequencing benchmarks in-

dicating that CliqueSNV more accurately identified the true haplotypes. The number of falsely
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Figure 3.2 The number of true and false predicted haplotypes depending on the number of accepted
mismatches for five benchmarks: (A) HIV9exp; (B) HIV2exp; (C) HIV5exp; (D) HIV7sim; (E)
IAV10sim. Two haplotypes are regarded identical if the Hamming distance between them is at
most the number of accepted mismatches.
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predicted haplotypes for CliqueSNV was always lower than those for aBayesQR, but similar to

those predicted by PredictHaplo on four out of five datasets indicating that both CliqueSNV and

PredictHaplo had the best precision with MiSeq datasets.

Figure 3.3 Matching distances ET←P and ET→P between the true haplotype population T and the
reconstructed haplotype population P for five benchmarks.

Matching distance analysis showed that matching distances ET←P and ET→P are better for

CliqueSNV than for both PredictHaplo and aBayesQR on four out of five MiSeq datasets (Fig. 3.3).

For HIV7sim, ET←P for aBayesQR was slightly better than for CliqueSNV. Using HIV9exp,

HIV2exp, HIV7sim, and IAV10sim datasets, the ET←P and ET→P for CliqueSNV were very

close to zero indicating that the predictions were almost perfect. Since ET←P and ET→P cor-

relate with precision and recall, matching distance analysis indicates that CliqueSNV had a better

precision, and significantly outperformed both PredictHaplo and aBayesQR. Since aBayesQR had
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a higher ET→P on MiSeq datasets, it is more likely to make more false predictions. Notably, on

the HIV7sim dataset, aBayesQR outperformed both CliqueSNV and PredictHaplo by ET←P .

Figure 3.4 Earth Movers’ Distance (EMD) between true and reconstructed haplotype populations
for five benchmarks.

Benchmark
Consensus CliqueSNV aBayesQR PredictHaplo

EMD EMD Impr. EMD Impr. EMD Impr.
HIV9exp 4.18 2.35 1.78 5.02 0.83 6.90 0.61
HIV2exp 5.50 1.87 2.94 3.02 1.82 3.65 1.51
HIV5exp 14.80 7.37 2.01 14.05 1.05 9.43 1.57
HIV7sim 9.63 0.76 12.72 0.67 14.4 2.00 4.80
IAV10sim 4.22 0.59 7.2 3.57 1.18 2.97 1.42

(a)

Benchmark
Consensus CliqueSNV 2SNV PredictHaplo

EMD EMD Impr. EMD Impr. EMD Impr.
IAV10exp 4.22 0.22 19.18 0.23 18.35 0.38 11.12

(b)

Table 3.3 Earth Movers’ Distance from predicted haplotypes to the true haplotype population and
haplotyping method improvement. Four haplotyping methods(aBayesQR, CliqueSNV, Consensus,
PredictHaplo) are benchmarked using five MiSeq (a) and one PacBio datasets (b). The column
Impr. (improvement) shows how much better is prediction of haplotyping method over inferred
consensus, and it is calculated as EMDm

EMDc
, where EMDc is an EMD for consensus, and EMDm is

an EMD for method.

The EMD between the predicted and true haplotype populations for all five MiSeq datasets are
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shown in Figure 3.4. The exact EMD values are provided in Table 3.3. CliqueSNV provided the

lowest (the best) EMD across all tools on four out of five MiSeq benchmarks. For the simulated

and PacBio datasets, CliqueSNV had almost a zero EMD indicating a low error in predictions.

PredictHaplo had a lower EMD than aBayesQR on four out of five MiSeq datasets. aBayesQR

has almost a zero EMD with the HIV7sim dataset and outperformed CliqueSNV, while using the

HIV5exp dataset, aBayesQR performed poorer than other methods.

Next, CliqueSNV, 2SNV, and PredictHaplo were compared using the IAV10exp benchmark

dataset (see Appendix A Table 2). CliqueSNV correctly recovered all ten true variants, including

the haplotype with frequencies significantly below the sequencing error rate. 2SNV recovered nine

true variants but found one false positive. PredictHaplo recovered only seven true variants and

falsely predicted three variants. To further explore the precision of these three methods with the

IAV10exp data, we simulated low-coverage datasets by randomly subsampling n = 16K, 8K, 4K

reads from the original data. For each dataset, CliqueSNV found at least one true variant more

than both 2SNV and PredictHaplo.

3.3.2 Runtime comparison

To compare the computational run time of each method, we used the same PC (Intel(R) Xeon(R)

CPU X5550 2.67GHz x2 8 cores per CPU, DIMM DDR3 1,333 MHz RAM 4Gb x12) with the

CentOS 6.4 operating system. The runtime of CliqueSNV is sublinear with respect to the number

of reads while the runtime of PredictHaplo and 2SNV exhibit super-linear growth. For the 33k

IAV10sim reads the CliqueSNV analysis took 21 seconds, while PredictHaplo and 2SNV took

around 30 minutes. The runtime of CliqueSNV is quadratic with respect to the number of SNVs
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rather than by the length of the sequencing region (Appendix A Fig. 8).

We also generated five HIV-1 variants within 1% Hamming distance from each other, which

is the estimated genetic distance between related HIV variants from the same person173. Then

we simulated 1M Illumina reads for sequence regions of length 566, 1132, 2263 and 9181 nu-

cleotides for which CliqueSNV required 37, 144, 227, and 614 seconds, respectively, for analyzing

these datasets (Appendix A Fig. 9). For the HIV2exp benchmark, aBayesQR, PredictHaplo, and

CliqueSNV required over ten hours, 24 minutes, and only 79 seconds, respectively.

3.4 Discussion

Assembly of haplotype populations from noisy NGS data is one of the most challenging problems

of computational genomics. High-throughput sequencing technologies, such as Illumina MiSeq

and HiSeq, provide deep sequence coverage that allows discovery of rare, clinically relevant hap-

lotypes. However, the short reads generated by the Illumina technology require assembly that is

complicated by sequencing errors, an unknown number of haplotypes in a sample, and the genetic

similarity of haplotypes within a sample. Furthermore, the frequency of sequencing errors in Illu-

mina reads is comparable to the frequencies of true minor mutations154. The recent development

of single-molecule sequencing platforms such as PacBio produce reads that are sufficiently long to

span entire genes or small viral genomes. Nonetheless, the error rate of single-molecule sequenc-

ing is exceptionally high reaching 13 − 14%132, which hampers PacBio sequencing to detect and

assemble rare viral variants.

We developed CliqueSNV, a new reference-based assembly method for reconstruction of rare
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genetically-related viral variants such as those observed during infection with rapidly evolving

RNA viruses like HIV, HCV and IAV. We demonstrated that CliqueSNV infers accurate haplotyp-

ing in the presence of high sequencing error rates and is also suitable for both single-molecule

and short-read sequencing. In contrast to other haplotyping methods, CliqueSNV infers viral

haplotypes by detection of clusters of statistically linked SNVs rather than through assembly of

overlapping reads used with methods such as Savage9.

Applied to the novel in vitro sequencing HIV-1 benchmark, CliqueSNV correctly reconstructed

87% of the intra-host haplotype population. At the same time, other state-of-the-art tools were

not able to recover even a single haplotype without errors. Additionally, we have used the only

previously known and commonly used in vitro benchmark53 and simulated datasets to evaluate the

accuracy of existing haplotyping methods. In contrast to the existing methods, CliqueSNV was

able to detect minority haplotypes at a low 0.1% frequency and distinguish minority haplotypes

differently in only two base pairs.

Although very accurate and fast, CliqueSNV has some limitations. Unlike Savage9, CliqueSNV

is not a de novo assembly tool and requires a reference viral genome. This obstacle could easily be

addressed by using Vicuna183 or other analogous tools to first assemble a consensus sequence from

the NGS reads, which can then be used as a reference. Another limitation is for variants that differ

only by isolated SNVs separated by long conserved genomic regions longer than the read length

which may not be accurately inferred by CliqueSNV. While such situations usually do not occur

for viruses, where mutations are typically densely concentrated in different genomic regions, we

plan to address this limitation in the next version of CliqueSNV.
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The ability to accurately infer the structure of intra-host viral populations makes CliqueSNV

applicable for studying viral evolution, transmission and examining the genomic compositions of

RNA viruses. In addition, we envision that the application of our method could be extended to

other highly heterogeneous genomic populations, such as metagenomes, immune repertoires, and

cancer cell genes.
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CHAPTER 4

INFERENCE OF CLONAL SELECTION IN CANCER POPULATIONS USING
SINGLE-CELL SEQUENCING DATA

4.1 Introduction

Cancer is responsible for more than 600, 000 deaths in the USA annually150. It is a disease driven

by the uncontrolled growth of cancer cells having series of somatic mutations acquired during the

tumor evolution. Cancer clones form heterogeneous populations, which include multiple subpop-

ulations constantly evolving to compete for resources, metastasize, escape immune system and

therapy40,82,59,186. Clonal heterogeneity plays key role in tumor progression111, and has important

implications for diagnostics and therapy, since rare drug resistant variants could become dominant

and lead to relapse in the patient40,85. Therefore cancer is now viewed as a dynamic evolutionary

process defined by complex interactions between clonal variants, which include both competition

and cooperation59,186,16.

Recent advances in sequencing technologies promise to have a profound effect on oncological

research. Study of genomic data for different tumors produced by next-generation sequencing

(NGS) led to progress in understanding evolutionary mechanisms of cancer186,59,82. Most of cancer

data have been obtained using bulk sequencing, which produces admixed populations of cells.

Recently, the most promising technological breakthrough was the advent of single cell sequencing

(scSeq), which allows to access cancer clone populations at the finest possible resolution. scSeq

protocols combined with NGS allow to analyze genomes of individual cells, thus providing deeper

insight into biological mechanisms of tumor progression.
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The cornerstone of such analysis is an estimation of parameters defining the evolution of het-

erogeneous clonal populations. Currently there is no scientific consensus about the rules guiding

the evolution of cancer cells34,162,177,119, with multiple competing theories being advanced by dif-

ferent researchers. The open questions include the rules of evolution (neutral, linear, branching

or punctuated), ways of interaction between clonal variants (competition or cooperation) and the

role of epistasis (non-linear interaction of SNVs or genes). These questions could be addressed by

estimation of evolutionary parameters for cancer lineages from NGS data177,162.

One of the most important evolutionary parameters is the collection of replicative fitnesses of

individual genomic variants, commonly termed fitness landscape in evolutionary biology50. Sev-

eral computational tools have been proposed for in vitro estimation of fitness landscapes145,94,65,47.

However, in vitro studies are cost- and labor-intensive, consider organisms removed from their

natural environments and does not allow to capture all population genetic diversity146. One of the

possible ways to infer fitness landscape in vivo is to analyze follow-up samples taken from a pa-

tient at multiple time points and compute fitnesses directly by measuring changes of frequencies of

genomic variants over time. However, follow-up samples are very scarce, and the overwhelming

majority of data represent individual samples.

Quantification of clonal selection from individual samples is computationally challenging, but

extremely important for understanding mechanisms of cancer progression177,162. In particular, re-

cent findings on structures of fitness landscapes of cancer from bulk sequencing data176 initiated

a lively scientific discussion published in several papers162,119,177. It can be anticipated that single

cell sequencing data will be able to shed light into this important problem. It is known that relative
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abundances of genomic variants alone are not indicative of variant fitnesses146. Existing methods

for inference of fitnesses from single samples utilize more sophisticated approaches, but have var-

ious limitations including reliance on the assumption that the population is in equilibrium state,

or disregard of population heterogeneity and variability of fitness landscapes, or customization to

bulk sequencing data146,35,177.

Contributions. We propose a computational method SCIFIL (Single Cell Inference of FItness

Landscape) for in vivo inference of clonal selection and estimate of fitness landscapes of hetero-

geneous cancer clone populations from single cell sequencing data. SCIFIL estimates fitnesses

of clonal variants rather than alleles, and does not assume allele independence which allows to

take into account the effects of epistasis. Instead of assuming that sampled populations are in the

equilibrium state, our method estimates fitnesses of individual clone types using a maximum like-

lihood approach. We demonstrate that the proposed method allows for accurate inference of fitness

landscapes and quantification of clonal selection. We conclude by applying SCIFIL to real tumor

data.

4.2 Methods

We propose a maximum likelihood approach, which estimates fitnesses of individual clonal vari-

ants by fitting into the tumor phylogeny an evolutionary model with the parameters explaining the

observed data with the highest probability. We first establish the ordinary differential equations

(ODE) model for the tumor evolutionary dynamics, and define the likelihood of the observed data

given the model parameters. We conclude with finding fitnesses maximizing the likelihood by
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Figure 4.1 Mutation tree

reducing the problem to finding the most likely mutation order and applying branch-and-bound

search to solve that problem.

Traditionally, evolutionary histories are represented using binary phylogenetic trees. Follow-

ing69, we use an alternative representation of an evolutionary history of a tumor using a mutation

tree. The internal nodes of a mutation tree represent mutations, leafs represent single cells, internal

nodes are connected according to their order of appearance during the tumor evolution and the mu-

tation profile of each cell equals the set of mutations on its path to the root (Fig. 4.1). In addition

we accumulate all leafs attached to the same internal node into a single leaf with an abundance rep-

resenting a particular clone. For simplicity we assume that there is a leaf attached to every internal

node, with some leafs having an abundance 0 (or rather a small number δ << 1). Generally we do
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not need to employ the infinite site assumption, i.e. repeats of mutations are allowed provided that

mutation profiles of all clones in a tree are unique. It agrees with recent findings83. A mutation

tree can be constructed using currently available tools, such as SCITE69, infSCITE83 or SiFit187.

Formally, we consider the following algorithmic problem. Given are:

• mutation tree T with n + 1 leafs corresponding to clonal variants. We assume that internal

nodes of T are labeled 0, 1, ..., n and the ith clone is attached to the node i. The root of

T correspond to the mutation 0, which represent absence of somatic mutations or healthy

tissue.

• observed relative abundances A = (a0, ..., an) of clones.

• Mean cancer cells mutation rate θ. This is a well-studied parameter with estimations pro-

vided by prior studies64.

The goal is to find fitnesses F = (f0, ..., fn) maximizing the likelihood

p(A|T,F, θ) (4.1)

This section is organized as follows. First we introduce our evolutionary model of choice

and the definition of the probability (4.1). Next, we describe how the likelihood is modified to

transform the maximum likelihood problem (4.1) into a discrete optimization problem. Finally, we

describe the method of estimation of fitnesses F maximizing (4.1).

Evolutionary model. We consider tumor evolution as a branching process described by the muta-

tion tree T . Let V (T ), VI(T ) and E(T ) be the node set, the internal node set and an the arc set of
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T , respectively. Let also pi denote the parent of a node i ∈ VI(T ). We assume that nodes VI(T )

represent mutation events, with jth event occurring at rate θj . The mutation event corresponding to

a node i happens at time ti; at the event the clonal variant corresponding to the parent node pi gives

birth to a variant i. The dynamics of the cancer clone population is described by the piecewise

continuous function x = (x0, ..., xn), where xi = xi(t) is the relative abundance of the ith clonal

variant. The discontinuity points of x correspond to mutation events. Let r, i, j be 3 consecutive

mutation events with times tr < ti < tj , and x(i)
k be the restriction of xi to the interval [ti, tj].

Between mutation events i and j clonal frequencies x(i)
k follow the system of ODEs121:

d

dt
x

(i)
k = fkx

(i)
k − x

(i)
k

n∑
l=0

flx
(i)
l , k = 0, ..., n (4.2)

with initial conditions

x
(i)
k (ti) =


εx

(r)
pi (ti), if k = i

(1− ε)x(r)
k (ti), if k = pi

x
(r)
k (ti), otherwise.

(4.3)

Subtraction of the term x
(i)
k

∑n
l=1 flx

(i)
l ensures that relative abundances of variants sum up to 1.

Initial conditions (4.3) link clone abundances before and after the mutation event i and indicate that

at time ti the clone i is generated by the clone pi. The parameter ε << 1 is a small number. At time

0, the root clonal variant (healty tissue) gives birth to the first mutation, with the corresponding

clones having relative abundances 1 − ε and ε. The model (4.2) is a branching-type variant of

the quasispecies model, which is applicable to cancer evolution178 and agrees or extends several
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Figure 4.2 Depiction of the evolutionary model. Tree nodes represent mutation events whose times are
marked on the time axis. Leafs represent the sampling event. For each node the distribution of clone
abundances after the corresponding event is shown.

classical population genetics concepts175, including those describing genetic systems governed by

mutation and selection76,113. It does not include specific assumptions about clonal competition or

cooperation.

Likelihood definition. In addition to nmutation events, we consider the (n+1)th event represent-

ing cell sampling. Suppose that times of mutation events Ω = (ti)
n+1
i=1 and mutation rates between

events Θ = (θi)
n
i=1 are given. Let σ = (σ1, ..., σn+1) be the permutation of events in order of their

appearance, i.e. 0 = tσ1 < tσ2 < ... < tσn < tσn+1 . The probability of observing abundances A

given T ,F, Ω, Θ and θ is defined as the product of probabilities of mutation events and probabilities

of observed clone abundances.

The mutation event in the vertex σj occurs if 2 conditions are met:
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(a) no mutation events have been observed over the time interval (tσj−1
, tσj);

(b) at time tσj the mutation happened in the clone pσj rather than in other clones which exist at

that time.

Appearance of mutation is a classical rare event, and therefore we assume that the time inter-

vals between consecutive mutation events i and j follow a Poisson distribution with the mean 1
θi

.

Mutation rates are distributed normally with the mean θ and the standard deviation ν. Assuming

that mutations are random, the probability of (b) is equal to the frequency xpσj (tσj) of the clone

pσj at time tσj according to the system (4.2). Finally, we assume that the probability of seeing

observed frequencies given model-based frequencies at the sampling time follows a multinomial

distribution M(a0, ..., an|x0(tn+1), ..., xn(tn+1)). After putting all probabilities together, we have

p(A|T,F,Ω, θ) =
n+1∏
j=2

Pois(tσj − tσj−1
,

1

θj−1

) ·
n∏
j=1

N(θj, θ, ν)·

·
n∏
j=1

xpj(tj) ·M(a0, ..., an|x0(tn+1), ..., xn(tn+1)) (4.4)

Our goal is to find best fitting fitnesses FML, rates ΘML and times ΩML by solving the following

maximum likelihood problem:

(FML,ΘML,ΩML) = arg max
F,Θ,Ω

p(A|T,F,Ω, θ) (4.5)

The probabilities
∏n+1

j=2 Pois(tσj − tσj−1
, 1
θj−1

),
∏n

j=1 N(θj, θ, ν),
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∏n
j=1 xpσj (tσj) and M(a0, ..., an|x0(tn+1), ..., xn(tn+1)) are further referred as time likelihood, rate

likelihood, mutation likelihood and abundance likelihood, respectively. For the tree shown on Fig.

4.2 it is equally feasible that the mutation 2 appeared before the mutation 3 or vise versa. However,

clone 2 later produces mutations 4 and 5, and therefore the mutation likelihood suggests that at that

mutation events it had high abundance. This situation is probable if either 2nd mutation appeared

earlier or it appeared later but has a high fitness. Time, rate and abundance likelihoods allow to

choose between these two alternatives.

Reduction to discrete optimization. The standard way to solve the maximum likelihood problem

(4.5) is to optimize F, Θ and Ω jointly using Markov Chain Monte Carlo (MCMC) sampling. How-

ever, our experiments have shown that the function (4.1) has too many local optima which makes

MCMC search over the continuous space of possible solutions inefficient. Therefore we suggest

an alternative heuristic approach, which transforms the problem (4.5) into a discrete optimization

problem akin to a scheduling problem. This problem is then solved using a specifically designed

combinatorial heuristic search.

Firstly, we assume that all fitnesses are relative with respect to a fitness of a clone 0 which is set

to be f0 = 1. By default, this clone corresponds to the normal tissue. For the problem of inference

of clonal selection such assumption does not restrict the predictive power. Next, we observe that

any assignment of event times Ω defines the order of appearance µi for each node i ∈ V (T ) (e.g.

on Figure 4.2 µi = i for i = 1, ..., 5). This order agrees with the natural vertex order induced by T ,

i.e. µi < µj whenever i is an ancestor of j. It turned out that conversely any order µ defines times

Ωµ, rates Θµ and fitnesses Fµ which maximize the partial likelihood
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n+1∏
j=2

Pois(tσj − tσj−1
,

1

θj−1

) ·
n∏
j=1

N(θj, θ, ν)·

·M(a0, ..., an|x0(tn+1), ..., xn(tn+1)) (4.6)

More precisely, the following proposition holds.

Proposition 2. For a given order vector µ, times Ωµ, rates Θµ and fitnesses Fµ maximizing (4.6)

can be estimated as follows:

θi = θ, ti =
µi − 1

θ
, i = 1, ..., n, tn+1 =

n

θ
(4.7)

fi = 1− θ
∑

j∈Ai\{0}

1

n− µj + 1
log(

ε

1− ε
apj
aj

), i = 1, ..., n. (4.8)

Here Ai is the set of ancestors of a node i (including itself).

Proof. Poisson and Gaussian probabilities achieve maximums at their means, i.e. the rate and time

likelihoods are maximal, when for consecutive events i, j we have θi = θ, tj − ti = 1
θ
. This yields

the solution (4.7). The multinomial probability M(a0, ..., an|x0(tn+1), ..., xn(tn+1)) is maximal

when xi(tn+1) = ai for all i ∈ [n]. This can be rewritten as

xi(tn+1)

xi(tn+1) + xpi(tn+1)
=

ai
ai + api

for all i = 1, ..., n. (4.9)
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Our goal is to find fitnesses F such that (4.9) holds. We find an approximate solution to this

problem by disregarding the discontinuity of the abundances x = (xi(t))
n+1
i=0 . We use the obser-

vation that the system (4.2) is invariant with respect to the transition to relative abundances of any

pair of clones. Namely, for each clone pair i, j = 0, ..., n dynamics of their relative abundances

with respect to each other yi = xi
xi+xj

and yj =
xj

xi+xj
is described by the system of ODEs of the

same form as (4.2):

ẏi = fiyi − yi(fiyi + fjyj),

ẏj = fjyj − yj(fiyi + fjyj),

(4.10)

On the interval [ti, tn+1] relative abundance yi = xi
xi+xpi

satisfy the system (4.10) with the initial

condition yi(ti) = ε. After shifting time interval to [0, tn+1 − ti] this system can be linearized and

solved in closed form, producing a solution

yi(t) =
εefit

(1− ε)efpi t + εefit
(4.11)

After putting the expressions (4.11) into the equations (4.9) with t = tn+1 − ti we get the

following system of equations to find fitnesses F:

fpi − fi =
1

tn+1 − ti
log(

ε

1− ε
api
ai

), i = 1, ..., n; f0 = 1. (4.12)

Solving it with ti described by (4.7) yields the solution (4.8).



62

Using Proposition 2, we replace the maximum likelihood problem (4.5) with the following

discrete problem: find the ordering µ maximizing the mutation log-likelihood

Lµ = log(p(µ)) =
n∑
j=1

log(xpj(tj)) (4.13)

with times Ωµ and fitnesses Fµ described by (4.7),(4.8) subject to the constraint that µ agrees with

with the ancestral-descendant order of T .

Finding optimal ordering. The problem (4.13) could be considered as a variant of scheduling

problem with precedent constraints and with non-linear cumulative cost function36. Here mutations

play roles of jobs, ordering of mutations corresponds to scheduling of jobs on a single processor,

mutation tree represent job precedence constraints, and the objective (4.13) indicates that the cost

of job processing depends on the previously processed jobs. Such problems are usually NP-hard36.

For small number of mutations, it can be solved by a branch-and-bound search in the space of

feasible orderings via backtracking over the mutation tree. In general, we solve it by a heuristic

approach combined with the search in the space of feasible sub-orderings of nodes of the mutation

tree T . The proposed scheme is described by Algorithm 3. The algorithm starts with the initial

tree T ′ = T and iteratively transforms it into a total order as follows. We call two simple paths

of T ′ sibling paths, if they share the starting vertex. We traverse the nodes of T ′ in a bottom-up

direction and merge sibling paths into one path representing optimal sub-order of their nodes with

respect to the objective (4.13). The algorithm stops when all nodes form a single path.

Merging of sibling paths P1 and P2 is performed by Algorithm 4. We note that feasible orders

of paths’ nodes bijectively correspond to k-subsets of the set [k + l]: for a given k-subset X , a
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Algorithm 3 Algorithm for node ordering
1: Let U be the list of nodes of T sorted in inverse order of their discovery by Breadth First

Search from the root; T ′ = T ;
2: for u ∈ U do
3: while u has more than 1 child do
4: Choose sibling paths P1 and P2 with the start node u
5: Join P1 and P2 into a single path P using Algorithm 4
6: Modify T ′ by replacing P1 and P2 by P
7: end while
8: end for

Algorithm 4 Algorithm for path joining
Require: Sibling paths P1 and P2

Ensure: is calculated by calling MergePaths(∅,1)
MergePaths(Y ,i)

. Y is the current k-subset, i is the next element to be added to it
. µopt and opt are the current optimal order and its likelihood

1: if |Y | = k or i > k + l then
2: return
3: end if
4: Ynew = Y ∪ {i}, µ′ = µYnew
5: while µ′ is not a total order do
6: w1 = P Y

1 (1), w2 = P Y
2 (1),j = |µ′|+ 1

7: t = j−1
θ

, fw1 = fpw1
+ 1

tn+1−t log( ε
1−ε

apw1

aw1
),

8: fw2 = fpw2
+ 1

tn+1−t log( ε
1−ε

apw2

aw2
)

9: if fw1 ≤ fw2 then
10: µ′ = µ′ ∪ {w1}, P Y

1 = P Y
1 \ {w1}

11: else
12: µ′ = µ′ ∪ {w2}, P Y

2 = P Y
2 \ {w2}

13: end if
14: end while
15: MergePaths(Y ,i+ 1)
16: if LµY > opt then
17: opt = Lµ′ , µopt = µ′

18: MergePaths(Ynew,i+ 1)
19: end if
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feasible order µX is obtained by placing nodes from P1 \ {u} (resp., P2 \ {u}) at positions from X

(resp., [k + l] \X) in order of their appearance in P1 (resp., P2); inverse is also true. Algorithm 4

recursively generates k-subsets via branching and prune branches, if the corresponding orders are

likely to be sub-optimal.

The k-subsets are generated recursively117 using the property that every k-subset X of [k + l]

is either k-subset of the set [2 : k + l] or has the form X = {1} ∪ Y , where Y is a k − 1-subset of

[2 : k + l]. Suppose that at a given iteration a partial k′-subset Y , k′ ≤ k, and the corresponding

pre-order µY has been constructed. For all nodes v covered by µY we calculate their appearance

times tv and fitnesses fv using (4.7),(4.8), and abundance distributions xv = (x0(tv), ..., xn(tv))

from the system (4.2)-(4.3) (in fact, it is not necessary to recalculate all values since some of them

has been already calculated at previous iterations). Next, we heuristically extend µY to a total order

as described below. If the likelihood of the constructed solution is below the current optimum, then

the recursion tree branch of the partial solution Y is pruned. Otherwise, the current optimum is

updated and the recursion continues.

Finally, we describe how an order µY is extended (lines 5-14 of Algorithm 4). We consider the

subpaths P Y
1 and P Y

2 formed by the nodes of P 1 and P 2 that are not covered by µY . For the first

nodes of these subpaths, we calculate their provisional fitnesses under the assumption that each

node is added to µY as the next element. The node with the smaller provisional fitness is added to

µY . This procedure is repeated until µY covers all nodes. The logic behind this approach is based

on the observation that according to (4.2) the frequency of a clone grows while its fitness is larger

than the average fitness of the population, and declines otherwise. For a given iteration, adding
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Figure 4.3 Example of simulated mutation tree

clone with a smaller fitness slows down the average fitness growth. As a result, for preceding

clones probabilities of appearances of their children in the future may become higher.

4.3 Results

4.3.1 Simulated data

We simulated 100 test examples with the numbers of mutations ranging from m = 30 to m = 120,

which correspond to numbers of mutations for real single cell sequencing data analyzed in previous

studies69,82,86. For each test example, clonal evolution was simulated as follows. (a) Mutations

1, ...,m are generated randomly. For the time interval between mutation events i and i + 1 the

current mutation rate θi is sampled from the normal distribution with the mean θ = 0.01 and

standard deviation σ ∈ {0.1 · θ, 0.5 · θ, 0.9 · θ}. At each moment of time of that interval a mutation
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event happens with the probability θi; at the event a random clone p selected with the probability

equal to its current relative abundance gives birth to a new clone j with the random fitness fj by

acquiring a random mutation i+1. In our primary fitness sampling scheme, new fitness is sampled

uniformly from the interval [φ, fmax], where φ is an average fitness of the population at the time

of mutation event. This scheme accounts for the fact that according to the evolutionary model

(4.2) the clone with the fitness below φ is not viable and will not be observed at sampling time.

In additional set of experiments, the secondary sampling scheme has been employed, when new

fitness is sampled uniformly from the interval [fmin, fmax] (by default fmin = 1, fmax = 1.2).

When there is no mutation event, abundances of existing clones are updated according to (4.2).

After the end of the simulation, final abundances were randomly perturbed by 10% to incorporate

the possible noise in their estimation. The simulated mutation tree and clone abundances were

used as an input for SCIFIL.

It should be noted that the construction of the proposed algorithm implies that its performance

would be higher on mutation trees with monoclonal structure, both in terms of speed and accuracy.

However, our simulation scheme predominantly produces trees with polyclonal structures (see Fig.

4.3), thus providing no a priori advantage to SCIFIL.

We quantified the performance of SCIFIL using two measures:

1) Mean relative accuracy MRA = 1 − 1
n

∑n
i=1

|f∗i −fi|
f∗i

, where f ∗i and fi are true and inferred

fitnesses, respectively.

2) Spearman correlation SC between true and inferred fitnesses.
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MRA and SC highlight different aspects of the problem. MRA measure the accuracy of fitness

value estimation, while SC measures how well we are able to qualitatively detect selective advan-

tage of particular clones over other clones. Fitness ranking can be used in evolutionary studies

even when actual fitness values are missing or inaccurate31.

The results of SCIFIL evaluation on simulated data are shown on Figs. 4.4-4.5. The algorithm

demonstrated high accuracy as measured by both parameters. The number of mutations (Fig.

4.4) does not have a great impact on the Spearman correlation, which averages 97.35% (standard

deviation 1.2%) over all analyzed test cases. MRA decreases when the number of mutations grows,

but remains above 88% for all datasets. Increase in variation of mutation rate (Fig. 4.5) does

not significantly affect SC, and results in slight decrease of average MRA. Relative robustness

of SCIFIL to the variation of mutation rates (which also introduce variation in mutation times)

indirectly suggests, that the proposed algorithm is able to well approximate the original maximum

likelihood problem (4.4). In the case of near-neutral selection (fmax = 1.01), MRA does not

significantly change and SC declines to 87.54%.

Additionally, we have compared SCIFIL output with the topology of input mutation trees to

evaluate the contribution of the tree-based prior information to the algorithm’s accuracy. Specif-

ically, the clones have been ranked by their estimated fitnesses and by their tree heights, and

Spearman correlation SCT between fitnesses and tree ranks have been calculated (combined with

the permutation test to account for the presense of clones of the same rank). The experiment

has been repeated two times using the primary and secondary fitness sampling schemes, with

the latter being a completely random uniform sampling from the constant interval. For the first
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Figure 4.4 Performance of SCIFIL on simulated data with m mutations and fixed standard deviation of
mutation rate. Left: mean relative accuracy of fitness estimation. Right: Spearman correlation between true
and inferred fitness vectors

sampling scheme, the average correlation between fitness and tree ranks was SCT
1 = 0.698

(with SC = SC1 = 0.969). For the second sampling scheme, SCT drops to SCT
2 = 0.314,

while the correlation between real and estimated fitnesses decreases to SC2 = 0.871. The value

τ = 100 · SC1−SC2

SCT1 −SCT2
(decrease in accuracy per one percent decrease in tree/fitness correlation) may

serve as a measure of contribution of a tree topology to the SCIFIL quality. In our case, this value

is equal to 25.7%. Transition to near-neutral selection (fmax = 1.01) has the similar effect, with

the correlations being SC = 0.875 and SCT = 0.379.

ScSeq data are prone to errors. To evaluate SCIFIL’s robustness to trees inferred from noisy

data, random errors were introduced to clone mutation profiles at false negative rates α ∈ {0.1, 0.2}

and the false positive rate β = 10−5, and mutation trees were reconstructed from these profiles

using the state-of-the-art tool SCITE69. The simulated/reconstructed mutation trees were used

as an input for SCIFIL. It turned out that in ∼ 8% of cases SCIFIL was not able to produce a

feasible solution. This issue could be resolved by performing several additional steps of the local
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Figure 4.5 Performance of SCIFIL on simulated data with m = 50 mutations and different standard devi-
ations of mutations rates. Left: mean relative accuracy of fitness estimation. Right: Spearman correlation
between true and inferred fitness vectors

search with the same tree modification operations as SCITE and with the objective (4.4). With

this modification, SCIFIL reconstructs fitnesses accurately, although, as expected, the accuracy

decreases with the error rate’s growth (Fig. 4.6). To check the influence of undersampling, we

assumed that γ = 10% of clones with lowest frequencies were not observed at the sampling time.

For such clones, the auxiliary frequency δ << ε has been assigned before running SCITE. For

m = 50, the average MRA decreased from 0.99 to 0.96 in comparison to the complete data, but

SC remained stable (0.972 and 0.968, respectively).

Finally, we compared our approach with the previously published tool QuasiFit146. Although

originally designed for viruses, QuasiFit is based on quasispecies model, which is applicable to

both intra-host viral populations and cancer clone populations178 and is essentially a fully con-

tinuous version of the model used by SCIFIL. Both QuasiFit and SCIFIL reconstruct replicative

fitnesses of individual clones (rather than alleles). In addition to genomic data, both algorithms

utilize other information: SCIFIL uses a mutation tree, while QuasiFit assumes that the population
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Figure 4.6 Performance of SCIFIL on simulated data with different false negative error rates α and with
mutation trees reconstructed by SCITE69. Left: mean relative accuracy of fitness estimation. Right: Spear-
man correlation between true and inferred fitness vectors

is in equilibrium state of the quasispecies model. Thus, SCIFIL has access to information about

partial clones order encoded by the mutation tree, while equilibrium site assumption allows Quasi-

Fit to eliminate from consideration the temporal component. Furthermore, SCIFIL is a discrete

optimization approach, while QuasiFit implements Markov Chain Monte Carlo sampling.

QuasiFit was run with the per-cell mutation rate µ = εθ (which is a fully continuous analogue

of the parameters used by SCIFIL) and fitnesses were estimated after a burn-in of 105 iterations.

As QuasiFit uses a different fitness vector normalization, following146 we used only the parameter

SC for the comparison. The results are shown on Fig. 4.7 (left). On our simulated data, SCIFIL

outperforms QuasiFit indicating that in certain settings the proposed model could be more accurate

for the inference of clonal selection than the equilibrium state assumption.

Computational experiments suggest that the algorithm’s running time scales quadratically with

the number of mutations (Fig. 4.7, correlation = 0.981). It allows SCIFIL to finish in a few seconds

for all analyzed data sets when run on a simple desktop computer.
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Figure 4.7 Left: Spearman correlation between true and inferred fitness vectors for QuasiFit and SCIFIL.
Right: running time of SCIFIL

4.3.2 Experimental data

Fitness landscapes. We used SCIFIL to infer fitness landscapes for 2 recently published exper-

imental cancer datasets. The first dataset is single-cell sequencing data from a JAK2-negative

myeloproliferative neoplasm (essential thrombocythemia)68, the second one represents metastatic

colon cancer86. The latter dataset includes SNVs sampled from the main tumor and two metas-

tases. We confined our analysis only to the primary tumor, since it is biologically meaningful to

compare fitnesses of clones sampled from the same environment. For both datasets, their mutation

trees were reconstructed using SCITE69, and fitnesses and mutation appearance times were in-

ferred by SCIFIL with the cell-wise mutation rate 10−6. It is important to note that varying SCIFIL

parameters may change absolute values of inferred fitnesses, but preserve relations between them.

The relations are the most informative factors for evolutionary analysis.

We visualized inferred fitness landscapes as follows. We calculated pairwise distances between

clones defined as the sum of their hamming distance and the absolute difference of their orders of
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appearance. The distances were used to map clones to the plain R2 using multidimensional scaling.

Fitness values of the points corresponding to clones were interpolated using biharmonic splines,

and the resulting surface was visualized as a contour plot (Fig. 4.8), where colors represent fitness

values, and distance from each tree node to the root reflects its appearance time.

For myeloproliferative neoplasm (Fig. 4.8, left) we observe linear accumulation of mutations

with slight selective advantages at the beginning of tumor evolution, followed by the subclone

expansion of two lineages with significantly faster fitness growth. The rate of fitness growth after

the branching event is∼ 3 times higher than before it. Thus, answering the question posed in69, we

may predict that recent subclones will replace ancestral clones. However, based on the available

information it is hard to decide whether one of the subclone lineages will out-compete the other

one, or they will continue to coexist.

Evolution of the colon tumor (Fig. 4.8, right) follows different scenario, with 3 independent

lineages co-existing at the beginning without a clear selective advantage enjoyed by any of them.

This stage is followed by the fast expansion of one of the lineages, which climbs a fitness peak and

acquires selective advantage over other lineages. Exactly at this stage the advantageous lineage

seeded the metastatic tumor at two seeding events (highlighted in black on Fig. 4.8).

Experimental data also allow to emphasize how SCIFIL estimations extend predictions implied

by the underlying evolutionary model. Although the model suggests positive selection with fitness

growth along each path of the mutation tree as the most probable scenario, it does not imply any

restrictions on the comparative fitnesses of different lineages. In particular, fitness advantages of

clones are not defined only by their distances from the root, as emphasized by the fitness landscape
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Figure 4.8 Fitness landscape and mutation tree for JAK2-negative myeloproliferative neoplasm68 (left) and
colorectal cancer (right)86 inferred by SCIFIL. Colors represent fitness values, and distance from each tree
node to the root is approximately proportional to its time of appearance.

of the colon tumor, where, for instance, the node highlighted in purple has higher fitness than the

node highlighted in red. The reason is that clone abundances contribute to the estimation of fitness

values as much as the evolutionary model and the topology of mutation tree.

Recurrent mutations. Until recently, most studies of tumor evolution utilized infinite sites assump-

tion, which states that every genomic position mutates at most once over the evolutionary history.

However, recently it has been demonstrated using ScSeq data, that the infinite site assumption

could be violated, with the same genomic positions mutationally affected multiple times over the

tumor evolution83. Without infinite site assumption, the number of possible alternative evolution-

ary histories accurately explaining the observed ScSeq data increases, and it becomes challenging

to choose the most appropriate one.

We utilized SCIFIL for the analysis possible evolutionary histories with recurrent mutations

for a JAK2-negative myeloproliferative neoplasm68. We used infSCITE83 to generate the perfect

phylogeny and 18 mutation trees Tmi under the assumption that one of 18 mutationsmi has a recur-
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Figure 4.9 Log-likelihoods of trees with and without recurrent mutations. Left: log-likelihoods produced
by infSCITE. Right: evolutionary likelihoods produced by SCIFIL. Likelihoods of perfect phylogeny are
shown in green. Purple and red: trees with the evolutionary likelihoods higher than for the perfect phylogeny.

rence (recurrence trees). Just as reported in83, the results strongly support recurrent mutations: the

average log-likelihood for recurrence trees produced by infSCITE in our experiments was−313.45

(standard deviation 1.065), while the log-likelihood of the perfect phylogeny was equal to−319.08

(Fig. 4.9). However, differences between log-likelihoods of recurrence trees were small in compar-

ison to their difference with the one of the perfect phylogeny, thus impeding the reliable selection

of the single most likely recurrence tree. To choose such tree, we utilized evolutionary likelihood

estimated by SCIFIL. Among 18 trees, only 2 have evolutionary likelihoods higher than for the

perfect phylogeny (Fig. 4.9). Notably, the log-likelihood of the tree TASNS is significantly higher

than for other recurrence trees (−518.62 vs −674.696 in average (standard deviation 25.62)), thus

providing the strong support for that particular evolutionary history with respect to other possible

histories. These results indicate that SCIFIL’s can be efficiently used in conjunction with infSCITE

or other similar tool for detection of the most probable evolutionary scenarios.
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4.4 Discussion

Intra-tumor heterogeneity is one of the major factors influencing cancer progression and treatment

outcome. Cancer clones form complex populations of genomic variants constantly evolving to

compete for resources, proliferate, metastasize and escape immune system and therapy. Quantifi-

cation of clonal selection for tumors may provide valuable information for understanding mech-

anisms of disease progression and for design of personalized treatment. Single cell sequencing

provides an unprecedented insight into intra-tumor heterogeneity allowing to study fitness land-

scapes at finest possible resolution and quantify selective advantages on the level of individual

clones.

In this paper, we presented SCIFIL, a likelihood-based method for inference of fitnesses of

clonal variants. Unlike other available methods for related problems, SCIFIL takes full advantage

of the information about structure and evolutionary history of clonal population provided by single

cell sequencing. It uses individual cells as evolutionary units, in contrast to the tools based on bulk

sequencing which perform their analysis on the level of subpopulations or lineages. Furthermore,

SCIFIL can also handle bulk sequencing data as long as clones are reconstructed and mutation tree

is constructed using available tools such as AncesTree44, PhyloSub70, CITUP97.

In contrast to previous approaches, SCIFIL employs dynamic evolutionary model rather than

assumption that the population achieved the equilibrium state. We have demonstrated that our

approach allows for accurate inference of fitness landscapes and can be used for analysis of evo-

lutionary history and clonal selection for real tumors. We envision that SCIFIL can be also used

to infer epistasic interactions and to identify combinations of mutations driving the tumor growth.
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In addition, it can be applied to other highly mutable heterogeneous populations, such as viral

quasispecies or bacterial communities.

The proposed approach has limitations which should be addressed in the future work. Fitness

is not defined by the genetic composition alone, and depends on the environment. Thus SCIFIL

quantitative predictions are more reliable when the analyzed clones are sampled from the same

tumor. Fitness inference relies on the observed clone abundances, and therefore significant inaccu-

racies in abundance estimation may affect accuracy of fitness reconstruction. For single cell data it

is particularly important owing to its susceptibility to allelic dropouts and PCR bias. However, this

problem can be addressed by using a combination of bulk and single cell sequencing data. There

exist a plethora of tools which can estimate clone abundances from composite bulk and single cell

sequencing data (see, e.g.12,114). In addition, such composite data can be employed to increase an

accuracy of mutation trees reconstruction98. We expect SCIFIL reliability to increase when it will

be combined with these tools.

Another set of limitations arise from the selected evolutionary model (4.2). It was selected

due to its generality178 and suitability for fitness landscape inference120. However, it has certain

underlying assumptions: the mutation rates are supposed to be normally distributed, while the

dynamical system (4.2) implies positive selection with the gradual growth of average population

fitness. It should be noted that in many cases such assumptions are sufficiently realistic, and have

been used in several studies to obtain valuable insights into the dynamics of tumor evolution20,71.

In particular, other studies demonstrated that even a normal mutation rate is sufficient to produce

significant intra-tumor heterogeneity and emphasized the relative importance of selection over
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both the size of the cell population and the mutation rate14. Although equations (4.12) suggest

that in most cases fitness growths along each path of the mutation tree, the model does not imply

any restrictions on the comparative fitnesses of different lineages. Furthermore, observed relative

abundances of clones are independent of the model, and their contribution to the estimated fitness

values is paramount. Nevertheless, we expect that our approach can be extended by incorporating

other models capturing different evolutionary scenarios, such as gradual mutation rate growth over

the course of tumor evolution, and clonal clonal competition/cooperation, as well as spatial tumor

heterogeneity. It should be noted, though, that currently there is no universal evolutionary model

for tumor progression. Alternative models will inevitably introduce other limitations and can be

less practical for fitness estimation.

On algorithmic side, the optimization problem behind our approach can be viewed as the type

of scheduling problem with precedent constraints and with non-linear objective36. Such problems

are generally NP-hard, although the complexity of our problem is unknown. It is known that for

certain simple objectives and well-structured precedence constraints (e.g. defined by series-parallel

graphs) the corresponding scheduling problems are polynomially solvable36. For our problem

precedence constraints have the form of a tree. It gives a certain hope of existence of exact poly-

nomial or a good approximation algorithm, although the complex objective function may keep our

problem NP-hard. This question requires additional study.
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CHAPTER 5

INFERENCE OF MUTABILITY LANDSCAPES OF TUMORS FROM SINGLE CELL
SEQUENCING DATA

5.1 Introduction

Cancer is a dynamical evolutionary process in the heterogeneous population of subclones59,186,16,

with clonal heterogeneity playing the paramount role in disease progression and therapy out-

come111,40,85. Intra-tumor genomic heterogeneity originated from a variety of somatic events (e.g.

SNVs, gains/losses of chromosomes) provides an evolutionary environment that facilitates the

emergence of phenotypic heterogeneity that manifests itself in the extremely high diversity of phe-

notypic features within the tumor cell population40,82,59,186. The genotype-phenotype mapping is

often highly non-linear. It means that the effect of a combination of genes or SNVs is different

from the joint effect of these genes or SNVs taken separately96,91,6.In cancer genomics, examples

of such non-linear behaviour include synthetic lethality96,123, epistasis106,168 or genetic interac-

tions18,180. When phenotypic effects are associated with the reproductive success, they are often

summarized within the concept of fitness landscape50,67,157,160. Within this concept, each genotype

is assigned a quantitative measure of its replicative success (fitness or height of the landscape).

One of the hallmarks of cancer is the extremely high mutability and genetic instability of tu-

mor cells, with intra-tumor rates of mutation, gain/loss/translocation of chromosomal regions and

aneusomy (changes in numbers of chromosomes) often being several orders of magnitude higher

than the normal rate165,58,57,29. Instability rates of subclones are just as heterogeneous as other phe-

notypic features. They are also subject to epistatic effects or genetic interactions136. As a result, it
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is reasonable to argue that the mutation or instability rates of a clonal population form a mutability

landscape, whose structure is shaped by selection and genetic interactions.

Recent advances in sequencing technologies profoundly impacted cancer studies. Until re-

cent years the most prevalent sequencing technology has been bulk sequencing, which produces

admixed populations of cells. However, the most promising recent technological breakthrough

was the advent of single-cell sequencing (scSeq). In the context of the current study, one of the

most important advantages of scSeq is its ability to reliably and accurately distinguish exact cancer

clones rather than just SNVs. It allows to study composition and evolution of intra-tumor clone

populations at the finest possible resolution and take into account complex topological properties

of tumor fitness and mutability landscapes, including those associated with non-linear effects.

A rich arsenal of available phylogenetic models and tools has been applied to scSeq data for

solving the first important goal of reconstructing the phylogeny of cancer subclones assuming first

infinite site model and then exploring more realistic but challenging models allowing recurrent or

backward mutations69,82,30,43,1. These advances give an opportunity to address the next important

challenge: use reconstructed phylogenies to infer quantitative evolutionary parameters for cancer

lineages, which can give cancer researchers a statistically and computationally sound evaluation

of the effects of particular mutations or their combinations84,160,80. This problem is of paramount

importance, especially for the design of efficient treatment strategies in the context of personal-

ized medicine96,133,141,107,92,84. However, in contrast to the phylogenetic inference, very few com-

putational tools for assessment of cancer evolutionary parameters are currently available84,160,80.

In particular, several studies recently addressed the problem of inference of cancer fitness land-



80

scapes157,177. In this paper, we expand the cancer evolutionary analysis toolkit by proposing a

computational method for inference of mutability landscapes and quantification of genetic insta-

bility within clonal cancer populations.

Standard strict molecular clock-based models22, that assume constant mutation rates, do not

accurately reflect the inherent heterogeneity of cancer clone populations. Relaxation of rate con-

stancy in the form of so-called relaxed molecular clock130,41 or genomic universal pacemaker158,179

was already introduced in other evolutionary settings such as evolution of species158,41 or epige-

netic aging159. However, intrinsic heterogeneity of tumor clonal populations pose additional chal-

lenges for rate inference that should be addressed by the methods specifically tailored to cancer

settings. The major challenges could be summarized as follows.

First, many currently available methods assume that closely related organisms have similar

evolutionary rates130,142,164 (autocorrelation property) or that rates of different genes are synchro-

nized (genomic universal pacemaker model). In contrast, the genomic stability of individual cells

is controlled by multiple molecular mechanisms for DNA damage surveillance, detection, and re-

pair. Disruption or dysregulation of any of these mechanisms could result in different degrees

of genomic instability185. Thus, it could be expected that mutability landscapes of intra-tumor

populations are significantly more rugged than those of species or individual organisms.

Second, reconstruction of mutation rate heterogeneity via phylogenetic inference is more chal-

lenging for cancer populations than for species or organisms. Indeed, the estimation of mutation

rates requires estimation of times of mutation events. The standard model for such timing is a

binary phylogenetic tree, whose internal nodes represent these events and leafs correspond to sam-
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pled subclones. The timing is complicated by polytomies (ambiguities in order of bifurcations)

that should be resolved for the inference. In cases when the expected number of mutations be-

tween a parent and its offspring is comparatively large, polytomies are relatively rare, and evolu-

tionary distances between species provide prior information about the order of bifurcations. For

the cancer subclonal populations, multiple subclones are usually at the same distance from their

common parent (Fig 5.1), thus making polytomies extremely wide-spread. In addition, most ex-

isting approaches for single-cell cancer phylogenetics69,82,30,43,1,99,44,70,97,137,100 use character-based

mutation trees rather than binary phylogenetic trees (Fig 5.1). The internal nodes of a mutation

tree represent mutations, leafs represent subclones, and each subclone have mutations on its path

to the root. For such trees, resolution of polytomies is equivalent to finding the orders of sibling

nodes, and it is crucial for the mutation rate estimation.

Finally, in established models, changes in genetic instability rates are usually associated with

individual mutations. In contrast, a more accurate model would associate them with subclones,

which allow capturing the effects of epistasis, including pairwise synthetic lethality, which explains

cancer driver genes’ tissue specificity96. In general, a combined effect of several mutations cannot

be explained by a linear regression model, so it is necessary to take into account the entire subclone

for estimation of the mutation rate.

Here we propose MULAN (MUtability LANdscape inference) - a likelihood-based method for

inference of mutability landscapes of cancer subclonal populations from single-cell sequencing

data. It utilizes the partial information about the orders of mutation events provided by cancer

mutation trees reconstructed from scSeq data and extends it by inferring full evolutionary history
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Figure 5.1 Algorithm for the Maximum Likelihood inference of mutability landscape. (a) Mutation tree T . (b)
Two binary phylogenies B1(T ) and B2(T ) corresponding to two different orders of events t0 < t1 < t3 < t2 < t4 <

t5 < H and t0 < t2 < t1 < t4 < t3 < t5 < H . Each internal vertex is labeled with its time stamp, thus resulting in
the same mutation tree T . Each branch (ti, tj) is labeled by the leaf-subclone on the vertical line through its endpoint
tj . All leaves have the sampling time stamp t = H . (c) Maximum Likelihood phylogeny and mutability landscape.
Mutation rates along the branches corresponding to different subclones are highlighted in different colors.

and mutability landscape of a tumor. To the best of our knowledge, it is one of the first methods

specifically tailored to the cancer clone populations and scSeq data and aimed at addressing the

aforementioned challenges. In particular, previously published tool SiFit187 performs a phyloge-

netic inference, which includes an estimation of deletion and loss of heterogeneity rates, but these

rates are assumed to be the same for all subclones. It should be noted that our method infers mu-

tation rates of subclones rather than individual genes, thus making it possible to use the obtained

results to detect and quantify genomic interactions and epistasis.

5.2 Materials and methods

5.2.1 Model

Time-aware phylogenetic model. scSeq data are usually represented as a 0-1 matrix in which

rows correspond to sequenced cells, and columns correspond to cancer mutations. The set of
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ones of each row represents a mutation profile of a cell. Following most existing approaches for

cancer phylogenetics69,82,30,43,1,99,44,70,97,137,100, our basic cancer cell evolutionary model will be a

mutation tree T = (VT , ET ) with the vertex 0 ∈ VT being the root, the internal nodes of a mutation

tree representing mutations connected according to their order of appearance during the tumor

evolution, the leaves correspond to the sampled subclones and the mutation profile of each cell

being defined by the set of mutations on its path to the root (Fig 5.1A). In what follows, we assume

that the ith subclone is attached to the internal node i and does not consider the leaves explicitly.

The mutation tree T reconstructed using one of the existing methods from scSeq data constitutes

and input of our algorithm. Note that T does not have to be a perfect phylogeny, and can contain

both repeated mutations and mutation losses.

Next, we extend the phylogenetic model by accounting for times of mutation events. The

mutation tree T provides a partial information about these times, as it establishes the order of

mutation appearances along each path, but does not do it for sibling mutations. Therefore we need

to consider a binary phylogenetic tree B(T ) corresponding to the mutation tree T . The tree B(T )

is defined as follows (see Fig 5.1):

(a) The root represents a subclone at the beginning of cancer lineage evolution.

(b) Each internal node is labeled by timestamp t = ti representing the birth event of the offspring

subclone i,

(c) Each leaf i = 0, . . . , n represents the sampling event of the subclone i. The tree B(T )

is usually assumed to be ultrametric, i.e., all leaves are sampled simultaneously (although

the model is generalizable to the non-ultrametric case, as discussed below). H will further
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denote the sampling time. Note that this value is relative, as the birth time of the root is

assumed to be 0.

(d) Each edge (ti, tj) is labeled by the parent subclone of the corresponding mutation event (on

Fig 5.1 it is the leaf k on the vertical through the endpoint tj).

(e) The orders of birth events in B(T ) and mutation events in T agree with each other

The topology of a binary phylogeny B(T ) is uniquely determined by the orderings σi =

(σi,0, σi,1, ...σi,di) of the offsprings of each node i = 0, 1, . . . , n in the mutation tree T , where

di is the degree of the i-th node in T . As a result, for a given mutation tree there are usually several

corresponding binary phylogenies. An example of a mutation tree T and the corresponding binary

phylogenies B1(T ) and B2(T ) is shown in Fig 5.1. The trees B1(T ) and B2(T ) correspond to two

different plausible orders of mutation events.

Mutability landscape likelihood model. Next, we bring in variable mutation rates and introduce

the likelihood function. We consider the mutability landscape evolutionary model describing

subclone evolution with the underlying time-aware model similar to the model described in138. In

this model, the appearance of mutations in each subclone is a Poisson process and time intervals

between consecutive events follow the Erlang distribution. Specifically,

(a) each subclone k has a mutation rate θk,

(b) the probability of each edge between internal nodes e = (ti, tj) labeled by k in the binary

evolutionary tree is calculated as p(e) = θ2
k(tj − ti)e−θk(tj−ti),
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(c) the probability of each edge between an internal node and a leaf e = (ti, tj) labeled by k in

the binary evolutionary tree is exponential and is calculated as p(e) = θke
−θk(H−ti).

The total probability of the tree B(T ) equals p(B(T )|θ, t) =
∏

e∈E(B(T )) p(e).

The described model is used to find mutability landscapes jointly with the most likely binary

phylogeny B(T ). We first consider the following optimization problem:

Given: A mutation tree T = (VT , ET ) with mutations {0, ..., n} ∈ VT and vertex outdegrees

d0, ..., dn.

Find: Mutation rates θ = (θi)
n
i=1, times of occurrence t = (ti)

n
i=1 of each mutation i = 1, . . . , n

and the sampling time H that maximize the probability p(T |θ, t,H, σ) of the tree T given the

model parameters.

As noted above, setting the phylogeny B(T ) is equivalent to setting the family of offspring

orderings σ = (σ1, ..., σn). For a given ordering family σ we have

p(T |θ, t,H, σ) =
n∏
i=0

(

di∏
j=1

θ2
i (tσi,j − tσi,j−1

)e−θi(tσi,j−tσi,j−1 ))θie
−θi(H−tσi,di ) (5.1)

After the straightforward simplifications, the log-likelihood L(T |θ, t,H, σ) can be written as

follows:

L(T |θ, t,H, σ) =
n∑
i=0

θiti +
n∑
i=0

di∑
j=1

log(tσi,j − tσi,j−1
)− (

n∑
i=0

θi)H +
n∑
i=0

(2di + 1) log(θi), (5.2)

where t0 = 0, 0 ≤ ti ≤ H , i = 1, ..., n.



86

Our goal is to find an optimal ordering σ∗, times t∗, sampling time H∗, and mutation rates θ∗

by solving the following maximum likelihood problem:

(θ∗, t∗, H∗, σ∗) = argmax(θ,t,h,σ)L(T |θ, t,H, σ) (5.3)

Note that we usually assume that the rate θ0 is fixed (for example, to the value corresponding to

the normal tissue).

The likelihood function (5.2) is non-linear and all nodes effectively contribute to it. This makes

straightforward utilization of standard methods based on dynamic programming to solve the prob-

lem (5.3) is challenging. Indeed, the model implies that there exists a certain dependency between

birth times of sibling subclones since they belong to the same time interval. Suppose that a sub-

clone i mutated twice during the time between its birth and sampling. Although the two acquired

mutations are independent and distributed uniformly at random between t = ti and t = H , the

expected birth times of two corresponding offsprings are ti + (H − ti)/3 and ti + 2(H − ti)/3

rather than ti + (H − ti)/2. The effect of such non-linear properties of the model could be illus-

trated using an example on Fig 5.1. Intuitively, clone 1 produced two offsprings, while clone 2

produces zero offsprings. This imbalance can be explained in two ways: either (i) the clone 2 has

a higher mutation rate, or (ii) clone 1 was born early and had time to accumulate mutations while

clone 2 was born late and didn’t have time to accumulate mutations. When assessing these two

alternatives, other clones also come into play. For example, the alternative (ii) means (a) the longer

interval between the birth of clone 1 and birth of clone 2 – the likelihood of such interval depends

on the mutation rate of the parent clone 0; (b) the longer interval between the birth of clone 1 and
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the sampling – the likelihood of such interval depends on the mutation rates of the descendants of

1. Maximum likelihood inference allows us to choose between these alternatives.

In many real settings the realistic mutation rates are subject to constraints. We account for

these considerations by adding to the model a prior probability p(θ). In this case, we utilize lasso

regression-type approach, i.e. we solve the problem (5.3) under the constraint l(θ) = log(p(θ)) ≥

l0. The simplest prior assumes that the rates are distributed uniformly on the segment [θmin, θmax].

Assuming that genetic instability increase events are not frequent, we are also particularly inter-

ested in the models with the limited number of such events. In s-model, we assume that the rate

changes in at most s vertices of the mutation tree. When s > 0, we assume that one of these rates

is the normal rate and, therefore, is fixed.

Finally, we note that it is straightforward to generalize the model to the case when the tumor cells

are sampled at different time points. It can be done by allowing different model-based sampling

timesHi and setting the differences between them equal to the differences between actual sampling

times.

5.2.2 Algorithms

To describe the algorithms and derive the associated mathematical claims, we will use the fol-

lowing notations: T k is the subtree of T with the root k; dk is the degree of the node k in T ;

nk = |V (T k)|; θk is the collection of mutation rates of the vertices in T k and Θk =
∑

j∈V (Tk) θj .

A. The case without a prior p(θ). In this case, we propose to solve the problem using an

expectation-maximization approach described by Algorithm 1. This algorithm takes as an in-

put the mutation tree T , feasible rates segment [θmin, θmax] and initial mutation rates θ = θ0, and
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produce as an output the mutation rates θ∗, times t∗, sampling time H∗ and orderings σ∗ that are

supposed to maximize L(T |θ, t,H, σ). The algorithm is described as follows:

Algorithm 1. EM algorithm for mutability landscape inference

Repeat the following steps until convergence:

M step: for given θ, find t, H and σ maximizing LT,θ = L(T |θ, t,H, σ) using Algorithm

2.

E step: for times t and H , find the expected rates:

θi =
di

H − ti
(5.4)

Next, we describe how M step is carried out. In what follows, we formulate several claims

forming the foundation of our approach, and provide their proofs in the Subsection 5.2.3. For

the fixed orderings σ and rates θ, (5.3) is a convex optimization problem with linear constraints,

and thus it can be efficiently solved using standard techniques19. However, orderings σ introduce

discontinuity to the objective and discretize the problem, thus making it computationally hard. The

number of possible orderings σ is equal to
∏n

i=0 di!, which makes an exhaustive search over the

space of all orderings infeasible. Therefore our goal is to optimize the search. Specifically, we

employ the following dynamic programming approach:

Algorithm 2. Algorithm to find optimal orderings and times, when rates θ are fixed

Input: mutation tree T with the root 0 and its children 1, ..., d, mutation rates θ

Output: times t∗, sampling time H∗ and orderings σ∗ maximizing LT,θ

1. Recursively find optimal orderings σ∗k for the subtrees T k, k = 1, ..., d.
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2. Perform an exhaustive search over the set of permutations of (1, ..., d). For each generated

permutation σ0, we solve the problem (5.2) with the orderings σ = {σ0}
⋃d
k=1 σ

∗
k subject to the

constraints di
θmax
≤ H − ti ≤ di

θmin
as a convex optimization problem, and update the current best

solution, if necessary. The constraints ensure that the rates calculated at each iteration of EM

belong to the feasible interval.

The worst-case running time of Algorithm 2 is O(
∑n

i=0 T (ni) · di!), where T (ni) is the run-

ning time of a numerical convex optimization algorithm with ni variables. It makes the algorithm

scalable for the majority of real cases when vertex degrees are not high. However, the optimality

of solutions produced by Algorithm 2 is not immediately clear, and its analysis requires deeper

understanding of the properties of the optimization problem (5.3). Such properties are established

by Lemma 1 and Theorem 1. Consider the restricted version of the problem (5.3) with the fixed

rates θ and the sampling time H:

LT,θ(H) = max
σ,t

L(T |θ, t,H, σ). (5.5)

Suppose that 1, ..., d are the children of the root 0 of T . Then the following recurrent relation

holds:

Lemma 1.

LT,θ(H) ≈ max
σ0

max
t1,...,td

(
H

d∑
k=1

Θktk +
d∑

k=1

log(tk − tk−1) +
d∑

k=1

nk log(1− tk)+

+
d∑

k=1

LTk,θk((1− tk)H)

)
−Θ0H + n log(H) +

n∑
i=0

(2di + 1) log(θi), (5.6)

where the maximum is taken over permutations σ0 of 1, ..., d and over t1, ..., td ∈ R such that
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0 ≤ ti ≤ 1.

The relation (5.6) can serve as a basis for dynamic programming algorithm. However, it is

not guaranteed yet that such algorithm will be efficient. Indeed, it is theoretically possible that

the values of the functions LTk,θk are achieved on different orderings for different arguments,

thus forcing the algorithm to store an exponential number of subproblem solutions. However, the

following Theorem 1 guarantees that Algorithm 2 is exact, when H is large enough.

Theorem 1. For all large enough H , the optimal ordering σ∗ that maximizes (5.5) is the same.

It has the form σ∗ = {σ∗0}
⋃d
k=1 σ

∗
k, where σ∗k are optimal orderings of subtrees T k and σ∗0 is the

permutation of 1, ..., d that maximizes (5.6).

B. The case with a prior p(θ). The simplest prior assumes that the rates are distributed uniformly

on the segment [θmin, θmax]. For this model, initial numerical experiments suggest that the selection

of the initial solution in the feasible segment ensures convergence of the EM algorithm to the

feasible solution. For more complex priors, we utilize specially enhanced Markov Chain Monte

Carlo (MCMC) sampling from the rates distribution that will allow for more efficient traversing

of the solution space than the default approach. In particular, for s-model, each feasible solution

could be represented by the subset X ⊆ V (T ) of s internal vertices corresponding to rate change

events together with the collection of s + 1 rates corresponding to the connected components of

T \ X . Then MCMC draws the new rate from the normal distribution centered on the current

rate, while new subset X ′ is drawn from the 1-flip neighborhood of the current subset X 73 (i.e.

X ′ = (X \ {u}) ∪ {v} for some u ∈ X , v ∈ V (T ) \X).
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5.2.3 Mathematical foundations of the algorithms

In this subsection we prove Lemma 1 and Theorem 1. Due to the space limit, we present the

general outline of the proofs and omit some particularly technical details. Let D[k] = V (T k) and

D(k) = V (T k) \ {k} be the closed set of descendants and set of descendants of k, respectively.

Proof of Lemma 1. After variable substitution ti := ti/H , maximization of (5.2) is equivalent to

the maximization of

L′(T |θ, t,H, σ) = H
n∑
i=0

θiti+
n∑
i=0

di∑
j=1

log(tσi,j−tσi,j−1
)−Θ0H+n log(H)+

n∑
i=0

(2di+1) log(θi),

(5.7)

subject to the constraints t1 = 0, 0 ≤ ti ≤ 1, i = 2, ...,m.

Suppose that the rates θ, the sampling time H and the family of orderings σ = (σ0, σ
1, ..., σd)

are fixed. Consider the partial likelihood M(T |θ, t,H, σ) = H
∑n

i=0 θiti +
∑n

i=0

∑di
j=1 log(tσi,j −

tσi,j−1
), which constitutes the part of the total likelihood (5.7) that depends on t and σ. Using

simple arithmetic transformations, we get

M(T |θ, t,H, σ) = H

d∑
k=1

Θktk +
d∑

k=1

log(tk − tk−1) +
d∑

k=1

nk log(1− tk)+

+
d∑

k=1

(1− tk)H
∑
i∈D(k)

θi
ti − tk
1− tk

+
∑
i∈D[k]

di∑
j=1

log

(
tσi,j − tk
1− tk

−
tσi,j−1

− tk
1− tk

) (5.8)

Change of variables ti := ti−tk
1−tk

, i ∈ D[k] yields
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MT,σ(H) ≈ max
t1,...,td

(
H

d∑
k=1

Θktk +
d∑

k=1

log(tk − tk−1) +
d∑

k=1

nk log(1− tk)+

+
d∑

k=1

MTk,σk((1− tk)H)

)
(5.9)

Thus, the relation (5.6) follows.

Now, let MT,σ(H) = maxtM(T |θ, t,H, σ) and MT (H) = maxσMT,σ(H). Theorem 1 di-

rectly follows from the following lemma:

Lemma 2. MT,σ(H) ≈ aTH − bT log(H) + cT,σ, where aT and bT are constants depending only

on T , and cT,σ is a constant depending on both T and σ.

Proof. We will prove the lemma by induction. Suppose without loss of generality that d is the out-

degree of the root 0 of T , 1, ..., d are its children and the ordering σ0 has the form σ0 = (0, 1, ..., d)).

a) Suppose that T is a star (i.e. it has 1 internal node and d leafs). Then we have σ = (σ0),

nk = aTk = 0 and Θk = θk for all k = 1, ..., d. For the objective we have M(T |θ, t,H, σ) =

H
∑d

k=1 θktk +
∑d

k=1 log(tk − tk−1), where t0 = 0. Karush-Kuhn-Tucker (KKT) optimality con-

ditions for t have the following form:

Hθk +
1

tk − tk−1

− 1

tk+1 − tk
= 0, k = 1, .., d− 1,

Hθd +
1

td − td−1

− µd = 0, td = 1,

(5.10)

where µd is the dual variable corresponding to the constraint td ≤ 1. After multiplying the kth

equation by tk and summing the obtained equations we get H
∑d

k=1 θiti = µd − d. Furthermore,
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(5.10) yield that tk − tk−1 = 1/(µd − H
∑d

i=k θi). These identities imply the following formula

for MT,σ(H):

MT,σ(H) = µd − d−
d∑

k=1

log(µd −H
d∑
i=k

θi), (5.11)

where µd ≥ H
∑d

i=1 θi and µd satisfies the equation
∑d

k=1
1

µd−H
∑d
i=k θi

= 1. We will seek for the

approximation of µd of the form µd = H
∑d

i=1 θi + ε, where ε > 0. Then from the equation for

µd we have 1
ε

+
∑d

k=2
1

H
∑k−1
i=1 θi+ε

= 1. For large H , we have 1
ε

+ o(1) = 1, thus implying that the

good approximation is achieved when ε = 1. By substitution the expression for µd to (5.11) we

get

MT,σ(H) = H
d∑
i=1

θi + 1− d− d log(H)−
d∑

k=1

log(
k−1∑
i=1

θi + o(1)) ≈ aTH − bT log(H) + cT ,

(5.12)

where aT =
∑d

i=1 θi, bT = d and cT = −
∑d

k=1 log(
∑k−1

i=1 θi) − d + 1. The only term depend-

ing on the order σ here is the term
∑d

k=1 log(
∑k−1

i=1 θi), which achieves the minimal value (thus

maximizing MT (H)), when θ1 ≤ θ2 ≤ ... ≤ θd. Thus, the base case for the induction is proved.

b) Now suppose that T is not a star. By the induction hypothesis, for every subtree Ti the same

ordering σk maximizes MTk(H) for all H . These ordering also define the corresponding optimal

binary phylogenies Bk. We claim that it is possible to approximately estimate the optimal times

t1, ..., td and ordering σ0 recursively, if the solutions for the subtrees Tk are known. The following

arguments slightly differ technically for the cases when d is a leaf or an internal vertex. We will
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demonstrate the scheme of the proof for the former case (the latter case could be handled similarly).

Consider the relation (5.6). After applying the induction hypothesis to MTk,σk we get the

expression

MT,σ(H) ≈ max
t1,...,td

(
H

d∑
k=1

Θktk +
d∑

k=1

log(tk − tk−1) +
d∑

k=1

nk log(1− tk)+

+
d∑

k=1

(akH(1− tk)− bk log(H(1− tk)) + ck)

)
, (5.13)

where ak = aTk , bk = bTk and ck = cTk,σk . Using the approximation log(1− tk) ≈ −tk, we rewrite

it as

MT,σ(H) ≈ max
t1,...,td

(
d∑

k=1

(H(Θk − ak) + bk − nk)tk +
d∑

k=1

log(tk − tk−1)

)
+

+H

(
d∑

k=1

ak

)
− log(H)

(
d∑

k=1

bk

)
+

k∑
i=1

ck, (5.14)

Let λk = H(Θk − ak) + bk − nk = H(Θk − ak) + o(H), k = 1, ..., d. As in a), we will use

KKT optimality conditions for t1, ..., td, which in this case have the following form:

λk +
1

tk − tk−1

− 1

tk+1 − tk
= 0, k = 1, .., d− 1,

λd +
1

td − td−1

− µd = 0, td = 1

(5.15)

where µd is the dual variable corresponding to the constraint td ≤ 1. Similarly to a), after multi-

plying the kth equation by tk and summing the obtained equations we get
∑d

k=1 λiti = µdtd − d
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and tk − tk−1 = 1/(µd −
∑d

i=k λi). These identities imply that

MT,σ(H) ≈ µd − d−
d∑

k=1

log(µd −
d∑
i=k

λi) +H

(
d∑

k=1

ak

)
− log(H)

(
d∑

k=1

bk

)
+

k∑
i=1

ck. (5.16)

As above, we can use the approximation µd ≈
∑d

k=1 λk + 1. It implies that

MT,σ(H) ≈ H

(
d∑

k=1

Θk

)
−log(H)

(
d+

d∑
k=1

bk

)
−

d∑
k=2

log(
k−1∑
i=1

(Θi−ai))+
k∑
i=1

(ck+bk−nk)−d+1.

(5.17)

In this formula, only the constant term depends on the order of vertices. Theorem is proved.

5.2.4 Quantification of rate estimation uncertainty.

MULAN implements a maximum likelihood approach that uses the combination of discrete opti-

mization and continuous optimization techniques to infer the solution that explains the observed

data in the best possible way. In this, it follows the same paradigm as other recently published

scSeq analysis tools45,100,143. However, given the uncertainty of the mutation tree estimation, it

could be beneficial to provide errors or confidence intervals for the inferred rates. One possible

way to do it is to combine MULAN with any tree topology sampling scheme by calculating muta-

tion rates for the trees sampled from the particular posterior distribution given the scSec data (after

burn-in). This procedure generates the posterior distribution of inferred mutation rates that can be

used to calculate standard errors and/or confidence intervals. Here, we implemented this approach

by combining MULAN with the tree sampling procedure utilized by SCITE69.
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5.3 Results

5.3.1 Simulated data

In this subsection, we report the results of validation of the proposed algorithm using simulated

datasets. We simulated test examples with the numbers of mutations ranging from m = 70 to

m = 150, which correspond to numbers of mutations for real single-cell sequencing data analyzed

in previous studies69,82,86. For each test example, the simulation starts with the single clone without

mutations and with the random mutation rate θ0. At subsequent iterations, existing clones i produce

offspring at rates θi; at each such event an existing clone i gives birth to a new clone j with

the mutation rate θj uniformly sampled from the interval [θmin, θmax] (by default θmin = 0.005,

θmax = 0.01) by acquiring a random mutation from the set {1, ...,m}. The simulation ends when

the desired number of clones is produced.

We validated the ability of MULAN to infer all three families of parameters of the model

(5.3), i.e., the transmission rates, the times of mutation events, and the binary tree topology (or,

equivalently, orderings of offspring of the mutation tree nodes). For the primary experiments,

Algorithm 1 was executed with the initial mutation rates θ0
i = 1

2
(θmin + θmax), i = 1, ...,m. The

following accuracy measures were used:

• Rate and time inferences were quantified by the mean absolute percentage accuracyMAPA =

1−MAPE, where MAPE is the mean absolute percentage error.

• Ordering inference was quantified by the mean Kendall tau distance between true and in-

ferred offspring orders for the nodes with outdegrees di ≥ 2.
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The mutation rates of leafs were not considered, since they do not have offsprings required for

reliable rate estimation.

The results of MULAN evaluation on simulated trees are shown in Fig 5.2. The mean ac-

curacies of rate, time and order inference were 0.86 (std = 0.02), 0.92 (std = 0.11) and 0.98

(std = 0.01), respectively. The ability of MULAN to accurately reconstruct tree topologies is

particularly important, as it validates the application of MULAN to the analysis of evolutionary

histories described in Subsection 5.3.2. The number of mutations does not have a great impact on

the algorithm accuracy, possibly because the algorithm is likely to produce the optimal solution

with respect to the objective (5.2) owing to the optimized search over the space of possible mu-

tation orderings and the accuracy of the estimations suggested by Theorem 1. Indeed, the crucial

assumption of our approach is based on Theorem 1, which establishes the hierarchy of mutation

orderings that is valid for all sampling times. Although Theorem 1 operates with approximations,

the experimental validation suggests that this hierarchy is always valid (Fig 5.3, right). Changing

initial conditions to the random values uniformly sampled from the interval [θmin, θmax] does not

significantly affect the results, with the mean rate, time and order inference accuracy changing to

0.83, 0.92 and 0.96, respectively.

In another evaluation experiment, we compared MULAN with an MCMC-based method, which

samples from the space of tree edge lengths using the method proposed in187, calculates birth times

and orderings from these lengths and estimates mutation rates using (5.4). The mean accuracies

of rate, time and order inference of this method were 0.72 (std = 0.03), 0.40 (std = 0.11) and

0.18 (std = 0.16), respectively (Fig 5.3, left). We also verified MULAN’s robustness to the se-
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quencing noise and to the choice of the tumor phylogeny inference method. In that case, random

errors were introduced to clone mutation profiles with n = 70 mutations and with 3 copies of each

clone at false-negative rates α = 0.1 and the false positive rate β = 10−5, the mutation trees were

reconstructed from these profiles using the state-of-the-art tool SCITE69 and the recently released

tool PhISCS-BnB100,8. The accuracy of rate inference was affected insignificantly (Fig 5.3) indi-

cating the robustness of MULAN results to the sequencing noise provided the properly selected

phylogeny inference algorithm.

Figure 5.2 Performance of MULAN on simulated data with n = 70, ..., 150 mutations. Left: accuracy of rate
estimation. Center: accuracy of times estimation. Right: accuracy of orderings estimation.

Figure 5.3 Left: accuracies of rate, time and order estimation for MULAN (blue) and MCMC algorithm (red).
Center: accuracy of rate estimation (n = 70) for the clean data and the trees inferred by SCITE and PhISCS-BnB
from noisy data. Right: likelihoods LT,σ(H) for different orderings σ. The graph demonstrates the hierarchy of
orderings based on the corresponding likelihoods that remain the same for all sampling times H .
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The algorithm scales polynomially with the problem size and produces the results within min-

utes (Fig 5.4, left). In the overwhelming majority of cases, EM converges within 10 iterations.

Finally, Fig 5.4, center and right, demonstrates the posterior distributions and relative standard

errors (i.e. the standard error divided by the mean) of inferred mutation rates for several test

datasets, as estimated using the method described in Subsection 5.2.4.

Figure 5.4 Left: algorithms’ running time. Center: the posterior distributions of inferred mutation rates for
9 selected subclones in one of the test datasets. Each small plot shows the rate distribution for the particular
subclone together with the mean valuem and the standard error σm. Right: distributions of relative standard
errors of rate distributions for five test datasets.

5.3.2 Experimental data

In this subsection, we used MULAN to analyze scSeq data from JAK2-negative myeloprolifera-

tive neoplasm68 and from lymphoblastic leukemia51. The datasets contain 18, 20, 16, 10 mutations

and 58, 111, 115 and 146 cells, respectively, and were analyzed as is without any modifications.

Analysis of evolutionary histories. Here we used the MULAN model to assess the likelihoods

of alternative tumor evolutionary histories. The datasets under consideration were used in83 to

demonstrate the violation of the infinite site assumption. For a dataset with m mutations, the
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authors of83 used the tool infSCITE to infer the perfect phylogeny andmmutation trees Ti with one

of m mutations i having a recurrence (recurrence trees). According to the error-based likelihood

model used in83, the recurrent trees have much higher likelihoods than the perfect phylogeny (Fig

5.5), thus strongly pointing to the presence of recurrent mutations. However, differences between

the likelihoods of recurrence trees are of much smaller magnitude than their difference with the

perfect phylogeny. It suggests that without the infinite site assumption, the number of possible

alternative evolutionary histories accurately explaining the observed ScSeq data increases, and it

becomes challenging to choose between by taking into account only sequencing errors. In what

follows we demonstrate that evolutionary-based likelihood estimated using MULAN allows to

significantly reduce the set of plausible evolutionary histories.

For each tree constructed by infSCITE, we estimated the following:

(a) the evolutionary likelihood of the most probable fitness landscape, as calculated by our re-

cently published tool SCIFIL157. Roughly speaking, this likelihood measures the probability

to observe given subclone frequencies when the clonal population evolutionary trajectory

over the most likely inferred fitness landscape is described by the tree T .

(b) the likelihoods of mutation instability landscapes with three mutation rates, one of which

correspond to the normal rate.

It turned out that for the analyzed dataset, mutability likelihoods and evolutionary likelihood

provided an additional strong signal that allows to resolve the ambiguities present in the error-

based model. It is especially visible for the JAK2-negative myeloproliferative neoplasm (Fig

5.5). There, both likelihoods point to the same two mutations FRG1 and ASNS as most probable
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recurrent mutations and trees TFRG and TASNS as most probable trees. Only these two trees had

higher likelihoods than the perfect phylogeny (even despite the fact that they define more trans-

mission events), and their mean mutability log-likelihoods were higher than for other recurrence

trees: −70.46 (std = 1.53) vs −78.75 (std = 7.79).

Independent acquisitions of mutations with confirmed cancer effects in parallel lineages poten-

tially indicate the convergent evolution and may be suggestive of their evolutionary advantage. In

this context, it should be noted that both FRG1 and ASNS have been identified in68 as belonging

to the shorter list of selected mutations having the highest likelihood of being involved in essen-

tial thrombocythemia initiation and/or progression. Furthermore, 5 out of 7 most likely repeated

mutations identified by MULAN belong to that list.

For the lymphoblastic leukemia datasets, the signal was not so strong, possibly because in-

troductions of repeated mutations did not significantly alter the topologies of the recurrence trees

(see83), thus resulting in many of them having close mutability likelihoods. Nevertheless, even

then, the correlations between evolutionary and mutability likelihoods of the trees of the 5 ana-

lyzed datasets were 0.85, 0.31, 0.96, 0.91, and 0.69, respectively, with both models agreeing on

the most probable recurrence trees. The fact that the same signal was produced by two indepen-

dent models can be considered as an indicator of their validity. It also suggests that the reliable

inference of tumor phylogenies under the finite site assumption requires the utilization of advanced

likelihood models that take into account the dynamics of cancer evolution in addition to the simpler

models regulating the number and type of mutation events.

Analysis of mutability models. In this set of experiments, our purpose was to test the assumption
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Figure 5.5 Log-likelihoods of trees with and without recurrent mutations for JAK2-negative myeloproliferative
neoplasm. Upper left: log-likelihoods produced by infSCITE. Upper right: log-likelihoods produced by SCIFIL.
Lower middle: log-likelihoods produced by MULAN.

that mutation rates change over the course of tumor evolution. For this purpose, we compared

the single-rate model with the simplest model non-flat mutability landscape model that assumes

two mutation rates. Following83 and158, the moldels were compared using Bayes factor BF 72,

Akaike Information Criterion difference ∆AIC 3 and Bayesian Information Criterion difference

∆BIC 144. In our case, these parameters are estimated as

BF = exp(L2−L1), ∆AIC = 2(k1−k2)+2(L2−L1), ∆BIC = (k1−k2) log(n)+2(L2−L1),

(5.18)

where n is the number of vertices of the tree T , L1 and L2 are maximum log-likelihoods of one-

mutation and two-mutation models, and k1 = 1 and k2 = 3 are the numbers of parameters esti-

mated by these models (the mutation rate in the former case and the two mutation rates and one
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rate change event in the latter case). Larger positive values of parameters indicate the preference of

the two-rate model over the one-rate model. The models were compared for the perfect phylogeny

TPF and the two most probable recurrence trees TFRG and TASNS for the JAK2-negative myelo-

proliferative neoplasm68, as well as for the trees produced by SCITE69 for lymphoblastic leukemia

datasets51. For 3 out of 6 trees, the evidence for the variable mutation rate is considered as very

strong (according to72), for 2 trees - as strong, and for one tree (TFRG) the evidence for any of the

models was not conclusive (Table 5.1).

Tree TPF
68 TFRG

68 TASNS
68 T1

51 T2
51 T3

51

BF 5.010 · 105 1.448 · 101 2.587 · 105 5.037 · 103 3.882 · 102 9.199 · 101

∆AIC 26.249 5.3456 24.925 13.049 7.923 5.043
∆BIC 20.358 −0.543 19.036 11.058 6.378 4.438

Table 5.1 Comparison of one-rate and two-rate models for experimental data

Mutability landscape of JAK2-negative myeloproliferative neoplasm. For two most likely

recurrent trees TFRG and TASNS identified above, more detailed analysis of their mutability land-

scapes using the general MULAN model demonstrated that in both cases the increase in the in-

ferred mutation rates is likely associated with the emergence of mutation in the gene SESN2 (Fig

5.6). SESN2 is an antioxidant activated by p53, and it is indeed known that mutations in this

gene may lead to genetic instability68. The structures of inferred mutability landscapes for these

two trees also suggests that under the maximum parsimony criterion the first tree could be consid-

ered as more plausible than the second tree, where clones revert from higher to lower rates in one

of its branches.
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Figure 5.6 Two alternative mutation trees with the repeated mutations in ASNS gene (top) and FRG1
gene (bottom), respectively. The different mutation rates are color-coded from green (low rate) to orange
(high rate). The node corresponding to the mutation in SESN2 gene is highlighted. Leafs (not taken into
account) are highlighted in white.

5.4 Discussion

Genomic instability is a typical characteristic of cancer cells, which may significantly contribute to

tumor progression. Another paramount feature of cancer is an extremely high intra-tumor hetero-

geneity, with the genomic instability being one of the traits that may significantly differ between

subclones. Thus, quantification of differential mutability and genomic instability for tumors may

provide valuable information for understanding mechanisms of cancer progression and the de-

sign of personalized treatment strategies. The phenomenon of heterogeneous genomic instability

could be geometrically represented by a concept of mutability landscape, which is the analog of

the classical concept of the fitness landscape. Single-cell sequencing provides an unprecedented

insight into intra-tumor heterogeneity and allows us to assess and study mutability landscapes of

tumors on the finest possible level of individual subclones. In this paper, we presented likelihood-

based methods for the inference of mutability landscapes of cancer subclonal populations from

single-cell sequencing data. Most available methods for inference of differential mutation rates
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are tailored to the populations consisting of relatively distant genomes. In contrast, our method is

specifically tailored to the specifics of cancer clone populations that consist of highly similar but

distinct genomes and takes full advantage of the information about the structure and evolutionary

history of the clonal population provided by single-cell sequencing. It infers mutation rates of

subclones rather than individual genes, thus making it possible to use the obtained results to de-

tect and quantify genomic interactions and epistasis. Instead, then considering all possible cancer

phylogenies, MULAN uses as a starting point, a character-based mutation tree produced by other

tools. This tree represents partial information about the order of the appearance of the clones.

MULAN enriches this information by reconstructing orders of the appearance of sibling clones in

the tree and uses it to infer mutation rates and clone appearance times. Thus, our methods can

be used jointly with available tools for cancer tree inference from scSec data, such as SCITE69,

SiFit187, SPhyR43 and SCARLET143, as well as from a combination of bulk and scSec data such as

B-SCITE99 and PhISCS100. The latter approach could be especially useful in the context of muta-

tion clusters resolution. Indeed, MULAN assumes by default that every mutation results in a new

subclone. However, scSec-based methods sometimes infer branches of mutations whose linear or-

dering cannot be resolved and group them into mutation clusters. Bulk data provides information

about variant allele frequencies that allows inferring the temporal order of such mutations99. If

such data is unavailable, ambiguities in clusters could be resolved arbitrarily, but the set of inferred

mutation rates of clustered nodes should be interpreted as representing the whole subpopulation

rather than individual subclones.

Our experiments demonstrated that the proposed approach allows for accurate inference of
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mutability landscapes and can be used for the analysis of the evolutionary history for real tu-

mors. In particular, MULAN was able to detect a mutability increase event during the evolution

of JAK2-Negative Myeloproliferative Neoplasm, that could be linked to the mutation in the gene

with known associations with genetic instability. In addition, for several analyzed tumors the evo-

lutionary signal produced by our mutability landscape model agreed with the signal produced by

an independent fitness landscape model. This fact could be considered as an indication of the

validity of both models.

There are several directions for the possible expansion of the proposed computational frame-

work. Since mutation rates are the most important parameters for the inference, it could be ben-

eficial to marginalize the likelihood over the remaining parameters. It may require the derivation

of analytical expressions and/or accurate approximations for the marginalized likelihood that al-

lows reducing its maximization to convex programming. Another direction is the development of

the joint model for the inference of mutation and replication rates of cancer subclones. In this

paper, we follow the common assumption of the standard molecular clock-based methods that do

not consider population sizes. This assumption is usually justified, for example, using the neutral

theory of molecular evolution75,28, which is also applicable to cancer26,176. To take into account a

wider range of evolutionary scenarios, a comprehensive framework incorporating replication rate

and mutation rate diversity should be developed. One of advantages of such approach is its ability

to utilize the observed frequencies of sequenced clones for the inference (for example, of mutation

orders). Such utilization is not straightforward157,147: high frequency of a particular clone can be

indicative of its earlier birth time or of its higher replication rate. To distinguish between these
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alternatives, an incorporation of a separate maximum likelihood framework is necessary. It po-

tentially could be achieved, for example, by integrating MULAN with our previously published

framework SCIFIL for the inference of cancer fitness landscapes157. Finally, MULAN was de-

veloped with targeted single-cell sequencing experiments in mind and it scales well for datasets

typical for such settings. It is still scalable for whole-genome sequencing, if the mutation tree has

not too many branching events. However, for more branching trees with thousands of vertices the

scalability could become an issue. In that case, faster strategy for search in the space of mutation

orderings should be considered.
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eev, and K. A. Crandall. Evaluation of haplotype callers for next-generation sequencing of

viruses. Infection, Genetics and Evolution, 82:104277, Aug. 2020. doi: 10.1016/j.meegid.

2020.104277. URL https://doi.org/10.1016/j.meegid.2020.104277.

47. A. L. Ferguson, J. K. Mann, S. Omarjee, T. Ndung’u, B. D. Walker, and A. K. Chakraborty.

https://doi.org/10.1016/j.meegid.2020.104277


114

Translating hiv sequences into quantitative fitness landscapes predicts viral vulnerabilities for

rational immunogen design. Immunity, 38(3):606–617, 2013.

48. C. for Disease Control, Prevention, et al. Diagnoses of hiv infection in the united states and

dependent areas, 2015. HIV Surveillance Report, 27:1–114, 2016.

49. B. Gaschen, J. Taylor, K. Yusim, B. Foley, and F. Gao. Diversity considerations in HIV-1

vaccine selection. Science, 296:2354–2360, 2002.

50. S. Gavrilets. Fitness landscapes and the origin of species (MPB-41), volume 41. Princeton

University Press, 2004.

51. C. Gawad, W. Koh, and S. R. Quake. Dissecting the clonal origins of childhood acute lym-

phoblastic leukemia by single-cell genomics. Proceedings of the National Academy of Sci-

ences, 111(50):17947–17952, 2014.

52. E. Gerasimov. Analysis of NGS Data from Immune Response and Viral Samples. PhD thesis,

Georgia State University, 2017.
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A CliqueSNV materials

Here additional materials and figures for Chapter 3 are present.

Figure 7 Pairwise Hamming distances between variants in the experimental (exp) and simulated
(sim) datasets HIV9exp, HIV2exp, HIV5exp, HIV7sim, IAV10sim, and IAV10exp.
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FP
True Freq.,% 50 25 12.5 6.25 3.125 1.56 0.78 0.39 0.19 0.097

33.5K
(all)

CliqueSNV
Match X X X X X X X X X X 0
Freq., % 52.6 23.7 12.6 6.4 2.3 1.17 0.7 0.35 0.12 0.051 0

2SNV
Match X X X X X X X X X × 1
Freq., % 51.8 23.7 12.5 6.4 2.3 1.2 0.7 0.3 0.1 0 1.0

PredictHaplo
Match X X X × X × X X × × 0
Freq.,% 56.7 23.8 13.7 0 3.1 0 1.5 1.2 0 0 0

Subsampling

16K CliqueSNV
Match,% 100 100 100 100 100 90 100 100 100 20 0.1
Freq., % 52.9 23.7 12.5 6.4 2.3 1.19 0.71 0.32 0.12 0.69 1.15

2SNV
Match,% 100 100 100 100 100 100 100 100 0 0 0.2
Freq., % 52.4 23.7 12.5 6.4 2.3 1.1 0.7 0.3 0 0 0.6

PredictHaplo
Match 100 100 100 70 100 0 100 40 0 0 0.3
Freq.,% 54.2 23.5 13.1 6.0 2.9 0 1.4 1.0 0 0 0.5

8K CliqueSNV
Match,% 100 100 100 100 100 90 100 100 30 0 0
Freq., % 52.8 23.6 12.5 6.5 2.3 1.2 0.7 0.35 0.16 0 0

2SNV
Match,% 100 100 100 100 100 100 100 0 0 0 0
Freq., % 53.1 23.7 12.5 6.5 2.3 1.25 0.7 0 0 0 0

PredictHaplo
Match,% 100 100 100 0 100 0 100 20 0 0 0.2
Freq.,% 58.1 24.0 12.7 0 3.1 0 1.6 1.3 0 0 0.5

4K CliqueSNV
Match,% 100 100 100 100 100 80 100 40 0 0 0
Freq., % 53.3 23.7 12.3 6.4 2.4 1.19 0.7 0.39 0 0 0

2SNV
Match,% 100 100 100 100 100 100 20 0 0 0 0
Freq., % 53.7 23.7 12.3 6.5 2.4 1.2 0.9 0 0 0 0

PredictHaplo
Match,% 100 100 100 0 70 0 10 0 0 0 0.3
Freq.,% 60.1 23.9 12.8 0 3.5 0 2.5 0 0 0 0.5

Table 2 Comparison of CliqueSNV, 2SNV and PredictHaplo on full and sub-sampled data
(PacBio, experimental). For all 33.5K reads, the sign “X” (respectively, “×”) denotes fully
matched (respectively, unmatched) true variant and the column FP reports the number of incor-
rectly predicted variants (false positives) and their total frequency. For each sub-sample size
(16K,. . . ,4K), the table reports the percent of runs when a variant is completely matched and its
average frequency over runs when the variant was detected. Similarly, the column FP reports the
average number of false positive variants and their average total frequency. Colors indicate the
percent of matched variants: green - high percent, red - low percent.

Benchmark preparation

We used 50,000 total copies of plasmid DNA from these nine constructs as input for a nested

PCR reaction to amplify the polymerase region using the following primary and nested primers
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Figure 8 Runtimes of PredictHaplo (PH), 2SNV and CliqueSNV on datasets with different read
sizes.

Figure 9 CliqueSNV runtime on datasets with different reference length and same coverage (about
1M reads in total).
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respectively: HIV-B PRO-OUT.3F, 5’ CCT CAG ATC ACT CTT TGG CAA CG 3’ and HIV-RT

215/219.3R, 5’ CTT CTG TAT GTC ATT GAC AGT CC 3’ Nested PCR: HIV-B PR/RT.2F, 5’

CTT TGG CAA CGA CCC CTY GTC CA 3’ and HIV-RT 181-190.1.4R, 5’ ATC AGG ATG

GAG TTC ATA ACC CA 3’.

The primary and nested PCRs were done using 94°C for four minutes, followed by 40 cycles

of 94°C for one minute, 50°C for 30 seconds, and 72°C for two minutes and a final extension at

72°C for five minutes126.

We created two plasmid mixtures to generate artificial mixtures simulating clinical specimens

containing many variants at different virus levels. The mixtures comprised nine and two plasmids

with varying copy numbers of each plasmid.

PCR reactions were generated and purified using the QIAquick PCR purification kit. (Qiagen,

Valencia CA) The purified amplicons (10 ng) were subsequently used for NGS library construction

using the Nextera XT DNA Library Prep kit (Illumina Inc., San Diego, CA). Libraries were pooled,

and enriched for 900-1,000-bp fragments using magnetic bead based size selection (AMPure XP,

Beckman Coulter, Brea, CA) and sequenced on a MiSeq v3 (600-cycle) flow cell on the Miseq

system ( Illumina Inc., San Diego CA).

Pseudocode of the CliqueSNV algorithm
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Figure 10 A typical distribution of errors in PacBio reads. The heavy tail indicates that a significant
portion of errors is accumulated by a relatively small number of reads.

q1 q2 q3

q4 q5

Figure 11 The clique graph CG with 5 vertice corresponding to cliques in G, 4 edges and two
forbidden pairs (q1, q2) and (q2, q3). There 3 maximal connected subgraphs avoiding forbidden
pairs: {q1, q4} {q4, q2, q5} {q5, q3}
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Algorithm 5 CliqueSNV Algorithm
Step 1: finding linked and forbidden SNV pairs

Split the read alignment ML×N into binary matrix 4M
Construct a compact representation of the binary matrix 4M
For each I, J ∈ {1, . . . , 4L} find OIJ and OIJ

22 , where
OIJ = # of reads covering both I and J
OIJ

22 = # of reads with both minor SNVs
If OIJ

22 > εOIJ compute p-value (default ε = 0.0003)
Find all linked SNV pairs with the adjusted p-value < 1%

end Step
Step 2: constructing the SNV graph

Filter out 10% of the most erroneous PacBio reads
Construct the SNV graph G = (V,E), where
V = {1, . . . , 4L}, and E are links between minor SNVs

end Step
Step 3: finding maximal cliques in the SNV graph using Bron-Kerbosch algorithm23

end Step
Step 4: merging cliques in the clique graph with forbidden pairs

Find the clique graph CG with pairs.
Find all maximal connected subgraphs in CG.
Merge all cliques inside each maximal connected subgraph.

end Step
Step 5: partitioning reads between merged cliques and finding consensus haplotypes

Find the set S of all positions that belong to at least one clique.
Make an empty clique on S.
Assign each read to the closest clique.
Find the consensus v(q) of all assigned reads for each q.

end Step
Step 6: estimating haplotype frequencies by expectation-maximization algorithm
end Step



140

Figure 12 The number of reads assigned to different number of cliques in HIV Illumina dataset.

Figure 13 The number of reads assigned to different number of cliques in IAV Illumina dataset.



141

Figure 14 The number of reads assigned to different number of cliques in IAV PacBio dataset.
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