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ABSTRACT 

Biofilms are communities of microorganisms associated with surfaces encased in a 

protective extracellular matrix.  These communities often pose clinical and industrial challenges 

due to their ability to tolerate biocidal treatments and removal strategies.  Understanding the 

ecological interactions that take place during biofilm establishment is a key element for designing 

future treatment strategies.  In this work, I utilized unique methods for studying factors 

contributing to cooperative antibiotic detoxification in a polymicrobial biofilm model.  

Subsequently, I tested a novel compound mixture that exhibited promising antibiofilm properties.  

Escapin is an L-amino acid oxidase that acts on lysine to produce hydrogen peroxide (H2O2), 



ammonia, and equilibrium mixtures of several organic acids collectively called Escapin 

intermediate products (EIP).  Previous work showed that the combination of synthetic EIP and 

H2O2 functions synergistically as an antimicrobial toward diverse planktonic bacteria.  To test the 

combination of EIP and H2O2 on bacterial biofilms, Pseudomonas aeruginosa was selected as a 

model, due to its role as an important opportunistic pathogen.  Specifically, I examined 

concentrations of EIP and H2O2 that inhibited biofilm formation or fostered disruption of 

established biofilms.  High-throughput assays of biofilm formation using microtiter plates and 

crystal violet staining showed a significant effect from pairing EIP and H2O2, resulting in inhibition 

of biofilm formation relative to untreated controls or to EIP or H2O2 alone.  Similarly, flow cell 

analysis and confocal laser scanning microscopy revealed that the EIP and H2O2 combination 

reduced the biomass of established biofilms relative to controls.  Area layer analysis of biofilms 

post-treatment indicated that disruption of biomass occurs down to the substratum.  Only 

nanomolar to micromolar concentrations of EIP and H2O2 were required to impact biofilm 

formation or disruption, which are significantly lower concentrations than those causing 

bactericidal effects on planktonic bacteria. Micromolar concentrations of EIP and H2O2 combined 

enhanced P. aeruginosa swimming motility compared to either EIP or H2O2 alone. Collectively, 

these results suggest that the combination of EIP and H2O2 may affect biofilms by interfering with 

bacterial attachment and destabilizing the biofilm matrix.  
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1 INTRODUCTION  

 

1.1 Biofilms: diverse and complex communities of microorganisms 

The complexity of the microbial world is often oversimplified or misunderstood.  This 

often leads to the common misconception that microorganisms exist as pure cultures of planktonic 

cells.  Microorganisms, however, are more likely to exist in surface-attached, complex 

multispecies communities encased in a protective extracellular matrix (2).  The composition of 

this matrix varies from species to species; however, it is generally composed of lipids, 

polysaccharides, nucleic acids, and proteins.  The interplay between these components provides a 

three-dimensional structure that holds cells together (3), maintains key enzymes in their immediate 

environment (4), while providing protection from environmental threats (5).   

In addition to the complexity of the biofilm structure and composition, the diversity of 

environments in which biofilms exists are well documented (6).  From growth in hydrothermal 

vents to implanted medical devices, biofilms are able to establish and thrive in many environments.  

In many cases, however, their presence leads to economic loss (7, 8) as well as increased morbidity 

and mortality (9).                 

1.2 Antibiotic resistance: an evolutionary arms race  

The discovery and development of antibiotics has undoubtedly changed the way humanity 

has dealt with bacterial infections for nearly three-quarters of a century. Unfortunately, widespread 

and indiscreet use of these drugs over the last 50-60 years has led to the emergence of antibiotic 

resistance among previously susceptible pathogenic strains (10, 11). The emergence of multi-drug 

resistant strains has led to a push for the development of alternative methods of chemotherapeutic 

treatments with the goal of reducing the incidence of resistance (12, 13). While research for 
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alternatives is both promising and ongoing, at present, the reliance on conventional antibiotics in 

clinical settings is still high.  Chronic exposure to various types of antibiotics has provided a spark 

in an evolutionary “arms race” in which bacteria have developed mechanisms for the spread of 

resistance genes as well as stabilization of resistant phenotypes (11).  

1.3 Natural products and the emergence of anti-virulence strategies 

The increase in prevalence of bacterial strains that are resistant to current antibiotic 

treatments has led to the emergence of anti-virulence strategies that can overcome many of the 

evolutionary-driven resistance mechanisms that currently exist (14).  These strategies include 

screening small molecule libraries for antimicrobial effects (15), matrix degrading enzymes (16), 

antimicrobial surface coatings (17, 18), among others.  In general, anti-virulence strategies aim to 

disrupt mechanisms or pathways that contribute to infection and disease while minimizing the 

evolutionary triggers that lead to drug-resistance (19). 

Many of these biologically active compounds are naturally derived from vastly diverse 

sources.  For example, plant-derived compounds such as cinnamaldehyde (essential oil) have been 

shown to disrupt biofilm formation in Escherichia coli and methicillin-resistant Staphylococcus 

aureus (20, 21) and reduce virulence in Vibrio spp. by interfering with quorum-sensing 

mechanisms (22).  L-Amino acid oxidases and their enzymatic by-products, found in snake venom 

(23), the epidermal mucus of marine fish (24), and defensive secretions of marine invertebrates 

(25), have well-documented antimicrobial effects against both Gram-positive and Gram-negative 

pathogens through various mechanisms.  The identification of these biologically active compounds 

and their prospective applications as chemotherapeutic agents will provide a major boost to the 

armament of drugs currently available.   
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1.4 Objectives and hypotheses  

1.4.1 Factors affecting polymicrobial biofilm establishment 

The objective of this work is to further our collective understanding of the factors affecting 

the establishment of polymicrobial biofilms.  In many cases, the polymicrobial nature of these 

communities complicates treatment strategies and prolongs periods of disease (26).  To this end, 

we have incorporated methods for studying initial polymicrobial formation in order to test the 

following hypotheses.  1) Colonization of a surface is key during initial biofilm formation.  

Therefore it is hypothesized that polymicrobial biofilm formation by antibiotic resistant strains 

could be enhanced by increasing the areal density, or the number of attached cells per microscopic 

field.  The areal density of a constructed biofilm can be influenced by adjusting the inoculum 

density of the strains used during initial biofilm formation and thus can be used to model its overall 

impact.  2) Nutrient availability during biofilm formation could promote rapid growth of bacteria 

and ultimately influence biomass accumulation during biofilm formation.  It is hypothesized that 

this increase in biomass accumulation would result in improved antibiotic tolerance in biofilms 

grown under antibiotic challenge.  3) Antibiotic exposure during early biofilm formation has been 

known to trigger biofilm formation (27).  Thus, it was hypothesized that antibiotic exposure during 

early biofilm formation would enhance the antibiotic tolerance of strains forming biofilms under 

antibiotic challenge. 

1.4.2 The use of natural products as potential therapeutic agents 

The use of bioactive natural products with antimicrobial properties has opened new 

avenues of treatment strategies for combating antibiotic resistance.  One of these natural products 

known as escapin, is an L-amino acid oxidase that reacts with L-lysine to produce an equilibrium 

mixture of organic acids, hydrogen peroxide, and ammonium (1).  These components were found 
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to exhibit antimicrobial properties against planktonic cultures of relevant bacterial pathogens (28) 

and as a result, it was hypothesized that the same components would exhibit inhibitory or 

dispersive effects towards bacterial biofilms.  The work associated in this investigation used the 

opportunistic human pathogen Pseudomonas aeruginosa as a model.     

                

  



5 

2     Factors affecting early stage polymicrobial biofilm formation in the presence of 

multiple antibiotics 

2.1 Introduction 

Microorganisms are often perceived as free-floating cells that exist as single entities in 

their environment; however, they are more commonly found in structured, multispecies 

communities known as biofilms (29).  Biofilms are typically characterized by their attachment to 

surfaces (biotic and abiotic) as well as their production of an extracellular polymeric matrix in 

which the microbial community is encapsulated. This protective matrix allows microorganisms to 

withstand adverse environmental conditions including biocidal treatments (30).  Biofilms are 

ubiquitous in nature, and their presence extends to medical, environmental, and industrial settings.   

The negative impact of biofilms is of particular importance in clinical settings.  Biofilm 

communities, as well as their inherent resistance to antimicrobial agents, are at the root of many 

persistent and chronic bacterial infections (29).  For example, biofilms of the human pathogen 

Pseudomonas aeruginosa are frequently responsible for chronic infections in cystic fibrosis 

patients (31).  Another biofilm-based issue encountered in clinical settings is device-related 

infections; for example, catheter-associated infections, which are major causes of nosocomial 

bloodstream infections (32).  Additionally, multi-drug resistance often occurs once biofilms 

mature; this problem may be compounded in polymicrobial biofilms, complicating treatment (33, 

34). 

An approach to managing biofilm infections is to control early stage surface colonization. 

Factors that affect surface colonization by microorganisms include electrical charge (35), 

hydrophobicity (36) and fimbriae (37). To date, limited work has been carried out on parameters 

affecting surface colonization by more than one strain of bacterium, especially in the presence of 
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multiple antibiotics as are used in combination therapies (38).  In this work, we investigated factors 

affecting bacterial surface colonization in the presence of multiple antibiotics. These factors 

include 1) areal density, or the number of surface-attached cells during early stages of biofilm 

formation; 2) availability of nutrients during early attachment and its ultimate impact on biomass 

accumulation in the presence of antibiotics; and 3) how antibiotic exposure during initial biofilm 

formation impacts overall biofilm development in the presence of antibiotics.    The work expands 

on a previously established method of constructing multi-species biofilms (39) and research on the 

role of antibiotic resistance mechanisms and biofilm structure on biofilm formation by antibiotic-

sensitive and -resistant strains (40).      

2.2 Materials and Methods 

2.2.1 Strains and culture conditions 

Strains were graciously provided by H.A. O’Connell and were handled as previously 

described (41).  An antibiotic resistant strain of Escherichia coli ATCC 33456 harboring ampicillin 

resistance (Amp R) on a pUC19-based vector, pEGFP (Invitrogen, Carlsbad, CA) was used in this 

study. The pEGFP plasmid carries a gene for the green fluorescent protein (GFP) and a second 

gene coding for beta-lactamase (bla) which provides resistance to the antibiotic ampicillin. A 

second strain of E. coli, ATCC 33456 harboring spectinomycin resistance (SpecR) on a pUC18-

based vector, pUCSpec, was also used.  The pUCSpec plasmid provides resistance to the antibiotic 

spectinomycin.  Both plasmids are from the same incompatibility group which reduces the chance 

of a single cell holding both plasmids.  All inocula were prepared from stock cultures stored at -

80°C. The E. coli AmpR strain was maintained on Luria-Bertani (LB) agar containing 400 ppm 

ampicillin, and the E. coli SpecR strain was maintained on LB agar containing 100 ppm 
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spectinomycin. Both strains were cultured overnight (18-19 h) at 37ºC prior to use. Ampicillin and 

spectinomycin stocks were obtained from Sigma-Aldrich, Inc. (St. Louis, MO)  

To prepare an inoculum, several loopfuls of each E. coli strain were aseptically transferred 

from each plate to their own 1 ml of sterile 50 mM phosphate buffer (pH 7.2).  Cells were 

resuspended by vortexing and pipetting.  The optical density at 600 nm (OD600) of each overnight 

suspension was measured by spectrophotometer (Pharmacia Biotech, New York, NY) and diluted 

to achieve a 5:1 ratio of E. coli SpecR to E. coli AmpR as previously described (39).   After obtaining 

the desired optical density for the experiment, the combined inoculum was transferred into 100 ml 

of phosphate buffer or LB broth.   

2.2.2 Cultivation of biofilms 

Flow-cell cultivation of biofilms was performed according to previously described 

methods (42).  Each strain was recirculated (attachment phase) through flow cells (46 × 4 × 2 mm) 

alone or as co-cultures for 2 h in 50 mM phosphate buffer (pH 7.2)  or LB broth at a flow rate of 

0.84 ml min−1.  A 5:1 ratio of various areal densities was used for these experiments based on 

previously described methods (39).  For experiments involving antibiotic challenge during 

recirculation, 80 ppm spectinomycin + 100 ppm ampicillin were supplemented in the recirculation 

media.  Following each recirculation period, flow cells were rinsed with 50 mM phosphate buffer 

(pH 7.2) for 10 min.  For microscopic analysis at 2 h, attached cells were stained with a 50 µM 

solution of the red nucleic acid stain Syto 59 (Invitrogen, USA) for 10 min. followed by an 

additional 5 min rinse using 50 mM phosphate buffer (pH 7.2).  For 24 h biofilms, flow cells were 

re-attached and switched to a continuous phase, supplemented with LB with or without antibiotics 

(80 ppm spectinomycin + 100 ppm ampicillin) at a flow rate of 0.35 mL min−1 for the duration of 

the experiment.  Preparation for microscopic analysis after 24 h was the same as 2 h.        
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2.2.3 Microscopy and image analysis 

Colonized flow cells were imaged using a Zeiss LSM 510 confocal laser scanning 

microscope (CLSM) (Carl Zeiss, Thornwood, NY) equipped with a Fluor 40× oil immersion lens. 

Fluorescent excitation occurred simultaneously at wavelengths of 488 and 523 nm.   A minimum 

of four image stacks from each channel were taken at different locations throughout the flow cell, 

using a 1-μm z-step increment. All data points for every experiment were measured in duplicate 

or triplicate.  Quantitative analysis of image stacks was performed using the statistical package 

COMSTAT (43).  Biovolume is quantified as biomass volume divided by substratum area 

(µm3/µm2).  It provides an estimate of the biomass in the biofilm and thus it is generally referred 

to as biomass (43).   

2.2.4 Statistical analysis 

Initial mutualistic interactions were analyzed using and independent-samples Kruskal-

Wallis test (α=0.05).  Experiments of effects of areal density and antibiotic exposure were analyzed 

using a two-way analysis of variance (ANOVA) (α=0.05).   
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2.3 Results   

2.3.1 Community-dependent antibiotic tolerance and biofilm establishment 

In establishing our model for evaluating interactions leading to biofilm establishment under 

challenging conditions, we initially screened concentrations of antibiotics that were inhibitory and 

suitable for our experiments.  Concentrations of 80 ppm spectinomycin and 100 ppm ampicillin 

were selected based on these preliminary experiments.  To demonstrate these interactions, each E. 

coli strain was recirculated independently of the other as well as in combination for 2 h in 

phosphate buffer, allowing colonization of the flow cell.  A ratio of 5:1 E. coli SpecR to E. coli 

AmpR  was used, with an approximate areal density of 600 cells (combined) and 500 (SpecR) and 

100 (AmpR) cells  separately.  Subsequently, the cells were grown in LB + antibiotics for 24 h and 

analyzed for biomass accumulation.  CLSM and image analysis from 24 h biofilms indicated that 

combined cultures of each E. coli strains resulted in significantly greater biomass accumulation 

than each strain alone, in the presence of both antibiotics relative to untreated controls (Fig. 2.1A 

and B).   These observations suggested that a favorable interaction between both strains in co-

culture allowed for biofilm formation to occur in the presence of a dual antibiotic challenge.  
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Figure 2.1: Community-dependent biofilm establishment under antibiotic 

challenge. (A) Top panel shows representative CLSM images of E. coli SpecR and E. 

coli AmpR alone and in co-cultures, recirculated in phosphate buffer for 2 h. E. coli 

SpecR appears red due to nucleic acid stain Syto 59, E. coli AmpR appears green due 

to ampicillin-induced expression of green fluorescent protein (GFP).    Bottom panel 

represents growth condition in LB (± antibiotics) after 24 h. (B) The image analysis 

software package COMSTAT was used for biomass determination and all conditions 

were normalized to untreated controls.  Values for each condition are means ± 

standard error of the means for 2-3 replicates of each condition. An independent-

samples Kruskal-Wallis test indicated a significant effect of culture condition (χ2(2) = 

9.293, p<0.05) at 24 h. Asterisks indicate that mean rank values of E .coli SpecR and 

E .coli AmpR are significantly different from the combined culture and untreated 

controls. 
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2.3.2 Effects of areal density and antibiotic exposure on biofilm formation under antibiotic 

challenge: phosphate-recirculated cells  

We hypothesized that three factors during recirculation (attachment) contributed to biofilm 

growth by both E. coli strains in the presence of two inhibitory antibiotic concentrations, as seen 

in Figure 2.1. These factors were areal density, the presence or absence of antibiotics, and the 

presence or absence of nutrients.  To determine the effect of areal density on biofilm growth, co-

cultured inocula of E. coli SpecR and E. coli AmpR were recirculated for 2 h in phosphate buffer 

in the presence or absence of 80 ppm spectinomycin and 100 ppm ampicillin.  The areal cell 

densities selected for these experiments were 600, 900, and 1200 cells per microscopic field, 

corresponding to x, y, and z cells mm-2 respectively.   Additionally, based on optimal conditions 

in previous findings (39) a 5:1 ratio of E. coli SpecR to E. coli AmpR was maintained with all 

experiments.   After the 2 h recirculation phase, attached cells were irrigated for 24 h with either 

LB or LB supplemented with antibiotics (80 ppm spectinomycin + 100 ppm ampicillin).  CLSM 

and image analysis indicated no significant main effects of areal density or antibiotic exposure 

(during recirculation) on biofilm biomass accumulation after 24 h, relative to controls (p > 0.05; 

Fig. 2.2 A and B).  This suggests that regardless of the areal density tested, using a 5:1 ratio at each 

one was sufficient in overcoming any adverse effects of antibiotic exposure during attachment and 

the 24 h period of biofilm development under antibiotic challenge.  This may further suggest that 

the importance of the community-dependent interactions that occur under challenging conditions 

lies in the composition of the members of the biofilm community and their proximity to one 

another.   
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Figure 2.2: Effects of areal density and antibiotic exposure on phosphate-

recirculated cells in 24 h biofilm formation.  (A) Top panel shows representative 

CLSM images of E. coli SpecR and E. coli AmpR co-cultures at a 5:1 ratio (~1200 

cells), recirculated in phosphate buffer (+ antibiotics) for 2 h and grown in LB (± 

antibiotics) for 24 h.  Bottom panel is the same, except cells were recirculated in 

phosphate buffer (-antibiotics).  E. coli SpecR appears red due to nucleic acid stain 

Syto 59, E. coli AmpR appears green due to ampicillin-induced expression of 

green fluorescent protein (GFP). (B) The image analysis software package 

COMSTAT was used for biomass determination and all conditions were 

normalized to untreated controls.  Values for each condition are means ± standard 

error of the means for 3 replicates of each condition. Two-way ANOVA indicated 

no significant main effects of either areal density or recirculation conditions. In 

addition, no significant interaction between areal density and recirculation 

conditions was determined.          
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2.3.3  Effects of areal density and antibiotic exposure on biofilm formation under 

antibiotic challenge: LB-recirculated cells  

To determine whether the presence of nutrients during attachment impacted biofilm 

formation, co-cultures of E. coli SpecR and E. coli AmpR were grown as described in Section 2.3.2 

except that LB broth was provided during the 2 h recirculation. CLSM and image analysis 

indicated a significant main effect of recirculation conditions (p < 0.05), but no significant effect 

of areal density (p > 0.05).  These data indicated that there was a significant difference in untreated 

controls (no antibiotics at 2 and 24 h) and those that were recirculated in the presence or absence 

of antibiotics, followed by a 24 h antibiotic challenge (Fig. 2.3 A and B). Nutrient availability 

during the attachment phase, coupled with antibiotic exposure, did not appear to enhance antibiotic 

tolerance during the following 24 h growth, relative to co-cultures recirculated in the absence of 

antibiotics.  Although nutrient availability during the attachment phase generally results in greater 

overall biomass, it does not necessarily result in a significant advantage during biofilm 

development under antibiotic challenge.    
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Figure 2.3: Effects of areal density and antibiotic exposure on LB-

recirculated cells in 24 h biofilm formation.  (A) Top panel shows 

representative CLSM images of E. coli SpecR and E. coli AmpR co-cultures at a 

5:1 ratio (~1200 cells), recirculated in LB (+ antibiotics) for 2 h and grown in LB 

(± antibiotics) for 24 h.  Bottom panel is the same, except cells were recirculated 

in LB (-antibiotics).  E. coli SpecR appears red due to nucleic acid stain Syto 59, 

E. coli AmpR appears green due to ampicillin-induced expression of green 

fluorescent protein (GFP). (B) The image analysis software package COMSTAT 

was used for biomass determination and all conditions were normalized to 

untreated controls.  Values for each condition are means ± standard error of the 

means for 3 replicates of each condition. Two-way ANOVA indicated no 

significant effect of the areal density factor (F [2, 96] = 0.190, p>0.05), but a 

significant main effect of recirculation condition (F [2, 96] = 13.99, p<0.05); post 

hoc tests show that untreated controls (no antibiotics at 2 and 24 h) were 

significantly different from cells recirculated with our without antibiotics at 2 h 

but challenged with antibiotics for 24 h (p<0.05). No significant interaction 

between areal density and recirculation conditions was determined (F [4, 96] = 

0.295, p>0.05).            
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2.4 Discussion 

The conditions present during substratum colonization are important factors in biofilm 

formation, particularly in the presence of multiple antibiotics.  The biofilm structure is inherently 

resistant to biocidal treatments (5) and creates treatment hurdles that are further compounded by 

the presence of antibiotic resistant populations within the biofilm community.  Community-

dependent antibiotic resistance allows for multiple members of a microbial community, each 

harboring a unique antibiotic resistance gene, to coexist in close proximity in the presence of 

inhibitory concentrations of antibiotics.  In evaluating these ecological interactions, it was 

determined that the ability of antibiotic resistant co-cultures to establish biofilms under antibiotic 

challenge occurred independently of areal density (i.e. number of attached cells during 

recirculation).  We suspect that the alleviation of the effects of antibiotic exposure is related to two 

factors. This first is the proximity of each resistant cell type to one another, which facilitates the 

likelihood of a mutual antibiotic detoxification event to take place.  These types of interactions 

were similarly observed by O’Connell and colleagues (40).  The second factor is initiation of a 

stringent response simulated by recirculation in phosphate buffer.  The stringent response is a low-

nutrient stress response, which among others things, has been shown to regulate biofilm formation 

in E. coli (44, 45).  Phosphate-recirculated cells experience a period of starvation during the 

attachment phase that may serve as an environmental trigger towards biofilm formation.  This 

occurs regardless of antibiotic exposure during the same period.  Once cells were switched over to 

a growth medium, biomass accumulation remains similar among all conditions after 24 h, perhaps 

due to a slower growth rate of the cells in the biofilm as well as residual effects of the antibiotics.  

It should also be noted that phosphate-recirculated cells grown in LB + antibiotics for longer 

periods (~ 48 h) resulted in greater biomass accumulation (39), suggesting that even in the presence 



16 

of an antibiotic challenge, given enough time, cooperative antibiotic detoxification will occur 

resulted in greater biomass.  

  In contrast to the nutrient-poor conditions modeled during phosphate recirculation, 

nutrient-rich conditions (LB) during the attachment phase generally resulted in increased biomass 

accumulation after 24 h.  This was not totally unexpected since nutrient availability during the 

attachment phase would lead to rapid cell division and ultimately greater biomass accumulation 

after 24 h, when compared to phosphate-recirculated cells.  However, the presence or absence of 

antibiotics during recirculation did not significantly help or hinder biofilm formation (24 h) under 

antibiotic challenge.  Initially it was hypothesized that antibiotic exposure during the attachment 

phase might enhance biofilm formation by acting as an environmental cue, triggering cells to enter 

into the more protective biofilm phenotype.  This type of reaction to inhibitory concentrations of 

antibiotics has been previously documented in both E. coli and P. aeruginosa and is linked to 

secondary messenger systems like cyclic-di-GMP (27).  However, these findings seem to indicate 

that under nutrient-rich conditions the cells exposed to antibiotics do not fare any better than their 

counterparts which go unchallenged during attachment.  Nutrient availability, in fact, may actually 

serve as a disadvantage to cells that experience antibiotic challenge.  As it turns out, one of the key 

characteristics that allows members of a biofilm to resist antimicrobial treatments is reduced 

metabolic activity (46).  Interestingly, Barraud et al. (47) similarly described how exposure to 

mannitol enhanced the metabolic activity of P. aeruginosa biofilm cells and subsequently 

enhanced their susceptibility to antibiotic treatment.       

Although certain patterns were observed in our analysis of parameters like areal density 

and antibiotic exposure, these patterns did not reveal any discernable significance within the scope 

of our model.  However, modifications to future experiments may help shed further light on the 
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interplay between these factors.  Additionally, nutrient availability, antibiotic exposure, and areal 

density are certainly factors of clinical relevance when considering the ecological interactions that 

occur in chronic infections caused by biofilms; however, one should also consider these parameters 

when considering the use of biofilms as industrial catalyst.  Conditions that initiate or promote 

biofilm formation could be essential in biofilm reactor design and ultimately yield of final products 

or removal of wastes (48).   

The highlight of this method lies in its simplicity and reproducibility.  The ability to 

construct in vitro models of microbial biofilms of both clinical and industrial relevance can help 

bridge the gap between bench-scale investigations and the ultimate application of therapeutic 

strategies and full-scale industrial applications.          
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3 Inhibition and dispersal of Pseudomonas aeruginosa biofilms by combination 

treated of Escapin intermediate products and hydrogen peroxide. 

3.1 Introduction 

In their natural environments, microorganisms most frequently exist as biofilms, or 

communities of microorganisms attached to surfaces and encased in a self-produced extracellular 

matrix (29).  The properties of this matrix afford these microorganisms protection from 

environmental challenges including nutritional starvation and chemical treatments such as 

antibiotics.  Biofilms have a well-documented impact in both industrial and clinical settings.  In 

microbial infections, the protective and recalcitrant nature of the biofilm state leads to problems 

with treatment and clearance.  Biofilms on medical devices such as catheters or implants can result 

in chronic infections that are resistant to therapeutic drugs (49, 50).  Nosocomial infections, often 

associated with biofilm formation on medical devices or wound sites, contribute to higher 

morbidity and mortality rates as well as increased healthcare costs (50, 51).  Industries such as 

wastewater treatment as well as food and agriculture are heavily impacted by the adverse effects 

of biofilms as well (52, 53).  Consequently, the search for effective anti-biofilm strategies is an 

ongoing quest that looks to both natural and synthetic agents that are capable of preventing, 

disrupting, or eradicating biofilms, while reducing selective pressures that contribute to resistance.      
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An effective antimicrobial agent against planktonic microbes has been found in the ink of 

the marine gastropod mollusc Aplysia californica (sea hare) (54).  The ink is the product of two 

simultaneously released glandular secretions; upon attack by predators, the sea hare releases both 

products into the mantle cavity where they are mixed before being ejected from the animal (55, 

56).  One of the bioactive ingredients in the secretion is Escapin, an L-amino acid oxidase (25).  

Escapin and its major natural substrate, L-lysine, are secreted at nearly 2 mg/ml and 150 mM 

respectively (57-59).  A series of Escapin-catalyzed and non-enzymatic chemical reactions yields 

an equilibrium mixture of a diverse set of molecules referred to as Escapin intermediate products 

(EIP), which can be synthesized and are effective as naturally produced products (Fig. 3.1) (1, 60).  

Hydrogen peroxide (H2O2) and ammonium are also produced.  The equilibrium among the 

components of EIP is dependent on pH, with the cyclic form, compound 3, dominating at any pH.   

The combination of EIP and H2O2, annotated as “EIP + H2O2” throughout this work, is 

bactericidal against a wide range of planktonic microbes including Gram-negative and Gram-

positive bacteria, yeast, and fungi (1, 25).  At low millimolar concentrations, EIP + H2O2 produces 

rapid, powerful, and long lasting bactericidal activity against planktonic cells, probably through 

condensation of DNA (1, 28).  EIP + H2O2 is an especially effective agent against planktonic 

cultures of P. aeruginosa (1).  Given the bactericidal effects of EIP + H2O2 against planktonic 

bacteria, and in particular P. aeruginosa, we focused on the effectiveness of EIP + H2O2 against 

bacterial biofilms.  P. aeruginosa is a well-known opportunistic pathogen whose biofilms cause 

chronic infections, morbidity, and mortality (61-63).  Taking into account the effectiveness of EIP 

+ H2O2 against this bacterium (1) and its clinical relevance as a formidable pathogen, the objective 

of this study was to determine the effectiveness of EIP + H2O2 in preventing the formation of and 

disrupting existing biofilms of P. aeruginosa.   
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3.2 Materials and Methods 

3.2.1 Culture preparation 

Pseudomonas aeruginosa PAO1 was grown in Pseudomonas Basal Mineral Medium, 

supplemented with glucose (80 mM final concentration) (PBM-glucose) (64) at 37 °C with shaking 

at 200 rpm for 16-18 h.  Frozen stocks (10% glycerol/-80 °C) were thawed and 35 μl were added 

Figure 3.1: Summary of the chemistry of the reaction of Escapin with L-lysine, 

including the effects of pH on the relative composition of the molecular species in 

the equilibrium mixture.  Figure reprinted with permission from Ko et.al. 2008 (1). 

Compounds are: L-lysine (compound 1), α-keto-ε-aminocaproic acid (compound 2), Δ1-

piperideine-2-carboxylic acid (compound 3), Δ2-piperideine-2-carboxylic acid 

(compound (4), γ-aminovaleric acid (compound 5), γ-valerolactam (compound 6), 6-

amino-2-hydroxy-hex-2-enoic acid (compound 7), 6-amino-2,2-dihydroxy-hexanoic 

acid (compound 8), and 2-hydroxy-piperidine-2-carboxylic acid (compound 9).  
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to 30 ml of PBM-glucose in a 50 ml flask.  Overnight cultures were diluted with fresh PBM-

glucose to obtain initial inoculum densities of OD600 = 0.01 or 0.10 for biofilm formation and 

dispersal assays, respectively.  

3.2.2 Chemicals 

Escapin intermediate products (EIP) was synthesized as described in Kamio et al. (60) 

based on Lu and Lewin (65) using a non-enzymatic synthesis starting with pipecolinic acid ethyl 

ester.  Δ1-Piperidine-2-carboxylic acid (compound 3) is the major product and Δ2-piperidine-2-

carboxylic acid (compound 4) is the minor product of this synthesis, though in solution, 

compounds 3 and 4 form an equilibrium mixture with other compounds, as shown in Figure 3-1.  

The preparation of EIP used in each treatment is derived from the synthetic preparation of 𝜟1-

piperidine-2-carboxylic acid and used as the initial molecule to generate the EIP equilibrium 

mixture. This synthesis allows for the independently controlled presentation of these two major 

components of Escapin’s products, EIP and H2O2.  Freeze-dried EIP was stored at -80 °C and 

dissolved in sterile deionized (DI) water as a 1 M stock and diluted at the time of experiment.  

Hydrogen peroxide (H2O2, 30%) was purchased from Fisher Scientific (Cat. No. H325-100).  For 

experiments, treatment concentrations of EIP and H2O2 were prepared in Pseudomonas Basal 

Mineral Medium without glucose (PBM-no glucose) in order to prevent further growth during 

treatment periods. 

Live/Dead® BacLight™ Bacterial Viability Kit (L-7012) was purchased from Life 

Technologies (CA, USA).  This kit includes two different nucleic acid stains: SYTO 9® and 

propidium iodide (PI).  SYTO 9® is a green-fluorescent dye that labels bacteria with either intact 

or damaged membranes.  PI is a red-fluorescent dye that can only penetrate bacteria with damaged 

membranes and that reduces SYTO 9® fluorescence when both dyes are present. 
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3.2.3 Assay of biofilm formation 

Biofilms were cultured in 96-well polystyrene microtiter plates (20, 66, 67) using PBM-

glucose as the growth medium.  Briefly, biofilms were grown for 5 h (attachment phase) in the 

presence of EIP + H2O2, EIP alone, H2O2 alone, and PBM-glucose alone as the control.  After 

incubation and treatment periods, biofilms were rinsed with sterile, deionized (DI) water by 

consecutively submerging microtiter plates in three separate tubs for 10 sec each, followed by 

shaking out extra water.  The biofilms were stained with 125 μl of 0.02% crystal violet (125 μl 

0.3% crystal violet (Becton Dickinson, NJ) in 2 ml DI water) for 15 min at room temperature with 

shaking at 200 rpm.  After staining, 96-well plates were rinsed with DI water three times.  Plates 

were allowed to air dry for a minimum of 1 h or overnight.  For quantification, bound crystal violet 

was dissolved with 125 μl of 95% ethanol for 30 min at room temperature with shaking at 200 

rpm.  Absorbance of dissolved crystal violet was measured by spectrophotometer at 570 nm using 

95% ethanol as the blank.  Treatment conditions were normalized to untreated controls and biofilm 

inhibition, as determined by biomass accumulation, is expressed as biomass (% control).   

3.2.4 Assay of biofilm dispersal 

Biofilms were grown in flow cells as described previously (20, 42, 68) using PBM-glucose 

as the growth medium.  Frozen stocks of strain PAO1 were inoculated (35 μl added to 30 ml 

medium) into PBM-glucose in a 50 ml flask and incubated at 37 °C with shaking at 200 rpm for 

16-18 h. The overnight culture was diluted with fresh PBM-glucose to obtain an OD600 of 0.10.  

Biofilms were grown in flow cells for 20 h in recirculation mode and were rinsed for 20 min with 

PBM-no glucose (rinse buffer).  Biofilms were then treated with EIP + H2O2, EIP alone, H2O2 

alone, or a PBM-no glucose control for 30 min followed by a 10 min rinse with PBM-no glucose 

prior to staining.  One ml of a staining solution consisting of LIVE/DEAD® BacLight™ Bacterial 
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Viability Kit (3.34 µM SYTO 9 and 20 µM propidium iodide) was used to stain the biofilm for 15 

min, followed by a 5 min rinse with PBM-no glucose.  Microscopic imaging of each flow cell was 

performed using a Zeiss LSM 510 confocal laser-scanning microscope (Carl Zeiss, Thornwood, 

NY).  A minimum of 10 image stacks with a 1 μm z-step were taken for each channel of the flow 

cell using a 40× oil immersion lens.  The excitation/emission wavelengths of 480/500 nm and 

490/635 nm were used for SYTO 9 and propidium iodide, respectively, using argon and helium-

neon (HeNe) lasers.  Quantitative analysis of image stacks was performed using the statistical 

package COMSTAT (43).  Biovolume is quantified as biomass volume divided by substratum area 

(µm3/µm2).  It provides an estimate of the biomass in the biofilm and thus it is generally referred 

to as biomass (43).  Area layer is the fraction of the area occupied by biomass (%) in each image 

of a stack (i.e. distance from the substratum (µm)) (43).  Image stacks are 1 µm slice images that 

are stacked by the CLSM program to generate a three dimensional image of the biofilm.  Area 

layer analysis determines what fraction of each 1-µm slice is occupied by biomass from the 

substratum to the apex of the biofilm.  

3.2.5 Motility assays 

Motility assays were performed as described previously (69, 70) with some modification.  

Media used for the assay was Luria-Bertani (LB) broth, Miller (Difco) (tryptone 10 g/l, yeast 

extract 5 g/l, sodium chloride 10 g/l) (Fisher Scientific Cat. No. DF0446-07-5) containing 0.3% 

(wt/vol) Bacto agar (Fisher Scientific Cat. No. DF0140-15-4) for swimming, 0.5% (wt/vol) Bacto 

agar for swarming, and 1% (wt/vol) for twitching plates.  For initial screens of effects of EIP on 

motility, 10 µl of either PBM-no glucose (control) or various concentrations of EIP (50, 100, 200, 

400, 800, 1000 µM) (treatment) were spotted at the center of each corresponding motility plate 

and allowed to dry for approximately 5-10 min prior to inoculating bacteria.  In subsequent 
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swimming motility experiments, EIP (50 µM or 100 µM), H2O2 (3 µM or 6 µM), or EIP + H2O2 

(3 µM H2O2 + 50 µM EIP or 6 µM H2O2 +100 µM EIP) were applied to each plate in the same 

manner.  To account for the single 10 µl application of EIP and H2O2, as compared to the constant 

flow presented in flow cell treatments, higher concentrations of each compound were tested, also 

taking into account diffusion of the compound through the agar matrix as well as the possibility of 

chemical instability.  Swimming and swarming plates were gently inoculated at the agar surface 

at the center of each plate with bacteria from an overnight culture streaked on LB agar plates (1.5% 

wt/vol) using sterile toothpicks.  Twitching plates were inoculated by stabbing the toothpick 

through the agar at the center of each plate, making sure to make contact with the bottom surface 

of the plate.   Plates were sealed with Parafilm to prevent dehydration and incubated at 37°C for 

24 h.  The diameter (measured in mm) of the motility zone was measured at intervals of 2, 4, and 

24 h and used to determine the area (mm2) of the zone.  Treatments were normalized to the mean 

values for each replicate of the untreated controls and motility zones are expressed as area (% 

control).  

3.2.6 Statistical analysis 

Prevention of biofilm formation was analyzed using two-way analysis of variance 

(ANOVA) (α=0.05).  Analysis of biofilm dispersal and undamaged/damaged ratios were done 

using one-way ANOVA (α=0.05).  A repeated measures ANOVA (α=0.05) was used in 

analyzing area layer data.  Motility experiments were analyzed using an independent-samples t 

test (α=0.05) and independent-samples Kruskal-Wallis test (α=0.05). 
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3.3 Results 

3.3.1 EIP + H2O2 in combination inhibit P. aeruginosa biofilm formation at micromolar 

concentrations 

Preliminary data collected to determine effective concentrations of EIP and H2O2 for 

biofilm prevention studies indicated that micromolar concentrations of both EIP and H2O2 were of 

particular interest.  To examine these conditions further, P. aeruginosa was grown in microtiter 

plates for 5 h, simulating the attachment phase of the biofilm life cycle, in the presence of varying 

concentrations of H2O2 alone, EIP alone, or EIP + H2O2 (Fig. 3.2).  H2O2 alone resulted in reduced 

biofilm formation, particularly at the concentrations of 48 µM and 96 µM which resulted in an 

approximate 44% and 30% reduction in biomass, respectively, relative to untreated controls.  EIP 

alone, at either 3 µM or 30 µM, resulted in 25% and 17% less biofilm formation respectively, 

compared to untreated controls.  EIP + H2O2, at H2O2 concentrations ≥ 24 µM, resulted in up to 

47% less biofilm formation relative to untreated controls.  The greatest effect on biofilm formation 

was observed when EIP was paired with 96 µM H2O2, resulting in more than 65% less biofilm 

formation, relative to untreated controls.  Two-way ANOVA indicated a significant treatment 

effect (H2O2, 3 μM EIP + H2O2, 30 μM EIP + H2O2) and a significant concentration effect (H2O2 

at 0 to 96 μM) but a non-significant treatment-concentration interaction.  Post hoc analysis of the 

treatment effect indicated that combination treatment of EIP (3 µM or 30 µM) + H2O2 resulted in 

significantly less biofilm formation than single treatments.  Post hoc analysis of the H2O2 

concentration effect showed that higher concentrations resulted in significantly less biofilm 

formation than lower concentrations.  Thus, while EIP and H2O2 alone only resulted in 20 to 30% 

less biofilm formation than the untreated controls, EIP (3 µM or 30 µM) + H2O2 (96 µM) resulted 

in nearly 70% less biofilm formation than the control.  The effects of EIP and H2O2 were assessed 
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after 12 h to determine if inhibition of biofilm formation was maintained (data not shown).  

However, the inhibitory effects diminished over this period, most likely due to a reduction in the 

chemical stability of the EIP.  

 

 

 

 
Figure 3.2: Effects of EIP and H2O2 on P. aeruginosa biofilm formation.   

P. aeruginosa biofilms were grown for 5 h in the presence of varying concentrations 

of: H2O2 alone (black bars); 3 µM EIP alone or in combination with H2O2 alone 

(gray bars); or 30 µM EIP alone or in combination with H2O2 (white bars).  Negative 

control (untreated) was PBM-glucose.  Prevention of biofilm formation was 

determined by 96-well microtiter plate crystal violet assay.  The values for each 

treatment including control (PBM-glucose) are means ± standard errors of the means 

for three replicates for each experimental condition.  Total number of measurements 

for each treatment ranged from 23-48.  Two-way ANOVA indicated a significant 

effect for the treatment factor (F [2,473] = 18.57, p<0.05); post hoc tests show that the 

H2O2 alone treatment is significantly different from H2O2 + 3 µM EIP and H2O2 + 

30 µM EIP (p<0.05).  Additionally, a significant effect was determined for the H2O2 

concentration factor (F [6,473] = 11.43, p<0.05; post hoc tests show that the values for 

0 µM =3 µM = 6 µM (a) > 12 µM = 24 µM (b) > 48 µM = 96 µM (c).  The interaction 

between the treatment factor and the H2O2 concentration factor was not significant 

(F [12,473] = 0.91, p>0.05).    
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3.3.2 EIP and H2O2 work synergistically to disperse P. aeruginosa biofilms  

To examine the dispersal effects of EIP + H2O2 on established biofilms, a range of 

concentrations of H2O2 plus one concentration of EIP (50 µM) were tested using biofilms 

cultivated in flow cells for 20 h.  Preliminary experiments (data not shown) indicated various EIP 

concentrations (above and below our treatment condition) that resulted in biofilm disruption; a 

concentration of 50 µM resulted in more pronounced disruption when paired with H2O2 and thus 

was selected as the treatment concentration.  Representative CLSM images of 20 h old biofilms 

treated with 3 µM H2O2 alone, 3 µM H2O2 + 50 µM EIP, and 50 µM EIP alone show the disruptive 

effects of the combined treatment versus H2O2 or EIP alone (Fig. 3.3A).  The combined treatment 

resulted in greater biomass clearance (indicated by black color (no cells)) and less stained biomass 

(yellow) compared to the control and other treatments (Fig. 3.3A).  One-way ANOVA showed 

that combination treatments, including the combinations of 50 µM EIP plus either 0.03 µM H2O2 

or 3 µM H2O2, but not the respective single treatments, significantly reduced biofilm biomass, by 

42% and 37% respectively, relative to control levels (Fig. 3.3B).  Treatments with 30 µM and 300 

µM H2O2 alone, were not significantly different than their corresponding combined treatments 

with 50 µM EIP, suggesting a small window of concentrations ranges in which synergistic effects 

take place.        
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3.3.3 Treatment with EIP or EIP + H2O2 disperses but does not increase membrane 

damage within P. aeruginosa biofilm. 

The ability of EIP + H2O2 to cause membrane damage and impact viability of biofilm cells 

was assessed by measuring the ratio of green to red stained cells in biofilm images collected by 

CLSM.  One-way ANOVA indicated that treatment with 3 µM H2O2 + 50 µM EIP or 50 µM EIP 

alone significantly reduced biofilm biomass compared to untreated controls and treatments with 3 

Figure 3.3: Effects of EIP on P. aeruginosa and biofilm cell viability and biomass.   

Representative confocal microscopy images of 20 h P. aeruginosa biofilms following treatment with 3 

µM H2O2 alone, 50 µM EIP alone, 3 µM H2O2 + 50 µM EIP, and control (PBM-no glucose). Shown is 

cell viability labeling using LIVE/DEAD® BacLight™ nucleic acid stain where green labeling 

represents live and undamaged cells, red labeling represents cells that are dead or with damaged 

membranes, yellow represents areas where green and red labeling are co-localized in the biofilm and 

black labeling represents area without cells.  Bottom panel shows representative 3-dimensional 

projections of the representative confocal images. Scale bar, 50 µm. (B) Effects of EIP + H2O2 against 

P. aeruginosa biofilm (i.e. biofilm disruption).  Flow-cell cultivated P. aeruginosa biofilms (20 h) were 

analyzed post-treatment by CLSM.  The image analysis software package COMSTAT was used for 

biomass determination and all treatments were normalized to untreated controls.  Open diamond is 

untreated control; open square is 50 µM EIP alone; open circles are H2O2 alone; closed circles are EIP + 

H2O2. Values are means ± standard errors of the means for three replicates for each experimental 

condition. A range of 5 to 10 image stacks were taken for each biofilm; the total number of measurements 

for each treatment ranged from 4-172. ANOVA showed that the 7 treatments significantly differ in their 

effect on biofilm biomass (F [12,472] = 8.21, p<0.05), and post hoc tests show that EIP + H2O2 but not EIP 

or H2O2 is significantly different from the control (p<0.01).  Asterisks indicate that the value of the EIP 

+ H2O2 at concentrations of 0.03 µM or greater and H2O2 alone at 30 µM and 300 µM is significantly 

lower than that of untreated control and EIP + H2O2 at concentrations ≤ 0.003 µM.     
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µM H2O2 alone (Fig. 3.4A).  Measurements of green and red biomass from these treatments were 

used to determine a ratio of undamaged to damaged cells to determine the impact of treatment on 

membrane integrity (Fig. 3.4B). An undamaged/damaged ratio less than one is indicative of a 

greater presence of damaged cells.  The undamaged/damaged ratios for all treatments, including 

the untreated control, were all greater than two, suggesting that the effects of the treatments did 

not result in increased membrane damage to the biofilm cells.  The undamaged/damaged ratios for 

3 µM H2O2 + 50 µM EIP and 3 µM H2O2 were not significantly different from the untreated 

control, and the undamaged/damaged ratio for 50 µM EIP was significantly greater than all other 

treatments.  Taken together with our other results, these experiments support the idea that EIP and 

H2O2 are dispersive, but not through a mechanism of membrane damage. 
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Figure 3.4:  Effects of EIP and H2O2 on P. aeruginosa biofilm disruption. (A) Flow-cell cultivated biofilms were 

analyzed post-treatment by CLSM.  The image analysis software package COMSTAT was used for biomass 

determination and all treatments were normalized to untreated controls. Values are means ± standard errors of the 

means for three replicates. Ten image stacks were taken for each biofilm; the total number of measurements for each 

treatment ranged from 30-109.  ANOVA showed that two treatments significantly differ in their effect on biofilm 

biomass (F [3,205] = 10.24, p<0.05); post hoc tests show that 3 µM H2O2 + 50 µM EIP and 50 µM EIP but not 3 µM 

H2O2 are significantly different from the control (p<0.05).  Asterisks indicate that the values for 3 µM H2O2 + 50 µM 

EIP and 50 µM EIP are significantly lower than the values for the untreated controls and 3 µM H2O2. (B) 

Undamaged/damaged ratios were derived by dividing green biomass measurements by red biomass measurements.  

Treatments evaluated were 3 µM H2O2, 50 µM EIP, 3 µM H2O2 + 50 µM EIP, and untreated controls. ANOVA 

showed that the undamaged/damaged ratio significantly differs across the treatments (F [3,233] = 2951.10, p<0.05); 

post hoc tests show that the undamaged/damaged ratio for 50 µM EIP was significantly different from all other 

treatments (p<0.05). (C) Area layer was determined by COMSTAT analysis and is a measurement of the fraction of 

the area occupied by biomass (%) in each image of a stack (i.e. distance from the substratum (µM)).  The differences 

in the mean area layer of biofilms in each treatment group relative to biofilms of untreated controls were used to 

determine how the biofilm structure (from substratum to apex) was affected by our treatments.  A repeated measures 

ANOVA showed a significant effect on area layer by treatment condition; post hoc tests showed that treatments of 3 

µM H2O2 + 50 µM EIP and 50 µM EIP were significantly different than treatment with 3 µM H2O2 alone. 
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3.3.4 EIP and EIP + H2O2 disrupt the biofilm structure from substratum to apex 

Comparison of biofilm biomass after treatment with H2O2, EIP, and EIP + H2O2 revealed 

that the combination treatment of these compounds resulted in significant dispersal of P. 

aeruginosa biofilms, relative to untreated controls (Fig. 3.4A).  To determine if EIP + H2O2 affects 

the biomass distribution within the biofilm, the area layer function of COMSTAT was used to 

analyze CLSM-derived image stacks.  Area layer measures the fraction of the area occupied by 

biomass (%) in each image of a stack as a function of distance from the substratum.  By calculating 

the differences in the mean area layer of biofilms in each treatment group relative to biofilms of 

untreated controls, we determined how the biomass distribution within the biofilm was affected by 

the treatments (Fig. 3.4C).  Treatment with 3 µM H2O2 + 50 µM EIP or with 50 µM EIP led to a 

significant decrease in biomass from substratum to apex relative to the untreated controls.  On the 

other hand, 3 µM H2O2 alone caused biomass accumulation near the substratum relative to 

untreated controls.   

3.3.5 EIP and EIP + H2O2 enhances P. aeruginosa swimming motility 

To determine if biofilm dispersal, in the absence of increased membrane damage, was 

mediated through a motility mechanism, a series of agar plate-based motility assays were 

performed to test the effects of EIP on swimming, swarming, and twitching motility.  Initially, a 

concentration of 1 mM EIP was tested in order to account for the diffusion of the compounds 

through the agar matrix as well as compound stability over the duration of the assay.  These 

preliminary experiments showed that exposure to 1 mM EIP did not enhance or inhibit swarming 

or twitching motility; however, swimming motility was significantly enhanced relative to 

untreated controls (data not shown).  Subsequently, a series of EIP concentrations below 1 mM 

was tested (50, 100, 200, 400, 800 µM) to identify the range of effective treatment concentrations.  
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Motility was monitored over a period of 2 and 4 h to determine the duration of any effects.  

Exposure to 50 µM EIP did not result in a significant increase in swimming motility relative to 

untreated controls (Fig. 3.5).  However, only a 2-fold increase in concentration (100 µM EIP) was 

required to significantly enhance swimming motility relative to untreated controls.  This effect was 

observed over the course of 4 h (Fig. 3.5B).  To determine the combined effects of EIP + H2O2 on 

motility, concentrations used in biofilm dispersal assays (3 µM H2O2 and 50 µM EIP) were tested 

either alone or in combination, but they did not result in any enhancement in swimming motility 

over the course of 4 h (data not shown).  However, by increasing the H2O2 concentration 2-fold (6 

µM), its combined effect with 100 µM EIP enhanced P. aeruginosa swimming motility 

significantly (~80% after 2 h; ~40 % after 4 h), compared to each treatment alone and untreated 

controls (Fig. 3.6).   
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Figure 3.5: Effects of EIP on motility at 2 and 4 h. (A) Effects of 50, 100, 200, 400, and 

800 µM EIP on P. aeruginosa swimming motility after 2 h at 37°C.  Swimming motility 

for each treatment was quantified by measuring the diameter (mm) of each motility zone 

and calculating the area (mm2) of each zone after incubation.  Treatments are as follows: 

untreated control (PBM-no glucose) (black bar), 50 µM EIP (checkered bar), 100 µM EIP 

(dark gray bar), 200 µM EIP (light gray bar), 400 µM EIP (white bar), and 800 µM EIP 

(diagonal bar).  Values are means ± standard errors of the means for three replicates for 

each experimental condition. Treatments were normalized to untreated controls after taking 

the mean of the values for each of the control replicates.  An independent-samples Kruskal-

Wallis test indicated a significant effect of treatment on swimming motility (χ2(5) = 40.118, 

p<0.05) at 2 h.  Asterisk indicates that the mean rank values for treatments ≥ 100 µM EIP 

were significantly different than the mean rank values for the untreated control and 50 µM 

EIP (p<0.05).  (B) Same as panel A, except for 4 h incubation time rather than 2 h.  The 

Kruskal-Wallis test indicated a significant effect of treatment on swimming motility (χ2(5) 

= 40.399, p<0.05).  Asterisk indicates that the mean rank values for treatments ≥ 100 µM 

EIP were significantly different than the mean rank values for the untreated control and 50 

µM EIP (p<0.05).  
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Figure 3.6: Effects of EIP + H2O2 on motility at 2 and 4 h.  (A) Effects of 6 µM H2O2 + 

100 µM EIP on P. aeruginosa swimming motility at 2 h at 37°C. Swimming motility for each 

treatment was quantified by measuring the diameter (mm) of each motility zone and 

calculating the area (mm2) of each zone after incubation.  Treatments are as follows: untreated 

control (PBM-no glucose) (black bar). 100 µM EIP (dark gray bar), 6 µM H2O2 + 100 µM 

EIP (light gray bar), and 6 µM H2O2 (white bar). Values are means ± standard errors of the 

means for two replicates for each experimental condition. Treatments were normalized to 

untreated controls after taking the mean of the values for each of the control replicates.  An 

independent-samples Kruskal-Wallis test indicated a significant effect of treatment on 

swimming motility (χ2(3) = 30.251, p<0.05) at 2 h.  Asterisk indicates that the mean rank 

value for the 6 µM H2O2 + 100 µM EIP treatment was significantly different than the mean 

rank values for each compound alone and the untreated control (p<0.05).  (B) Same as panel 

A, except for 4 h incubation time rather than 2 h.  The Kruskal-Wallis test indicated a 

significant effect of treatment on swimming motility (χ2(3) = 14.530, p<0.05) at 4 h.  Asterisk 

indicates that the mean rank value for the 6 µM H2O + 100 µM EIP treatment was 

significantly different than the mean rank values for each compound alone and the untreated 

control (p<0.05).   
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3.4 Discussion 

Our results show that EIP + H2O2 acts in combination against P. aeruginosa biofilms at 

micromolar concentrations in two ways: prevention of biofilm formation and disruption of 

established biofilms.  Preventing biofilm formation is an important anti-biofilm strategy, and it 

encompasses the use of compounds that modulate gene expression linked to virulence factors, cell-

to-surface adhesion, and interference with exopolysaccharide production (71). However, in many 

cases, the specific mechanisms of agents that prevent biofilm formation have yet to be elucidated.  

The extent of biofilm inhibition caused by EIP + H2O2 is similar to the biofilm inhibiting effect 

caused by the Bacillus subtilis S8-18-derived α-amylase, a type of hydrolase that prevented biofilm 

formation in P. aeruginosa and other pathogens (72).  As is the case with α-amylases, EIP + H2O2 

could play a direct role in inhibiting biofilm formation by interference with bacterial adhesion, 

which is a critical step in initial biofilm formation and has been shown to occur within the first 

several hours in P. aeruginosa (73).  There is an ecological interpretation for the biofilm prevention 

activity of EIP + H2O2: Escapin, the L-amino acid oxidase from which EIP is derived, is a paralog 

of aplysianin A, an L-amino acid oxidase used by the sea hare A. californica to prevent microbial 

biofouling of its egg capsules (28, 58, 74).   

A notable finding of this work is the ability of H2O2 to inhibit P. aeruginosa biofilm 

formation at micromolar concentrations.  This is of particular interest due to the fact that millimolar 

concentrations are commonly used to trigger sublethal effects of oxidative stress in P. aeruginosa 

(75).  P. aeruginosa is adapted to detect and overcome oxidative stress, particularly at these low 

millimolar concentrations (76, 77).  Low millimolar concentrations of  H2O2 have been shown to 

actually enhance biofilm formation, most likely through a quorum sensing mechanism (78).  

Transcriptomic analyses have shown that exposure to H2O2 results in an increase in mRNA levels 
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of genes necessary to deal with oxidative stress as well as virulence factors (75).  These adaptive 

capabilities are not unique to P. aeruginosa.  Salmonella enterica Typhimurium becomes resistant 

to H2O2 treatments as high as 10 mM after exposure to sub-lethal concentrations of H2O2 (60 µM) 

(79).  Similar observations have also been reported in Escherichia coli (80).  However, here we 

have identified concentrations of H2O2 that when paired with EIP, inhibit biofilm formation at 

levels far below those commonly tested against P. aeruginosa.     

Oxidizing agents such as H2O2 have well-documented antimicrobial effects through DNA 

damage and oxygen radical toxicity (81, 82).  The antimicrobial effects are often more pronounced 

in planktonic cells as they are genotypically and phenotypically different from their biofilm 

counterparts and are generally more susceptible to treatments (77, 83).  In fact, this same pattern 

of susceptibility was observed in our antimicrobial treatment in that EIP + H2O2 was more effective 

against planktonic cultures of P. aeruginosa (1, 84).  In addition to inhibiting biofilm formation, 

the combination of EIP and H2O2 is effective against established P. aeruginosa biofilms at 

micromolar concentrations, which is at or below concentrations often used in published treatment 

assessments.  For example, Stewart et al. (77) showed that a steady treatment of 50 mM H2O2 for 

1 h had little effect on wild-type P. aeruginosa biofilms, a result linked to the combined effects of 

reduced penetration of the compound through the biofilm matrix and the protective role of catalase 

production in the biofilm.  Similarly, Bjarnsholt et al. (85) treated established P. aeruginosa 

biofilms with 100 mM H2O2 and demonstrated a decrease in susceptibility, most likely due to a 

quorum sensing mechanism.  Although microbial biofilms are generally less susceptible to the 

effects of H2O2, specifically at concentrations in the low millimolar range, our results suggest a 

treatment strategy in which H2O2 is effective at micromolar concentrations.       
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Disrupting established biofilms is a critical anti-biofilm strategy in applied contexts.  

Several factors promote detachment of P. aeruginosa, including enzymatic disruption of the 

surrounding extracellular polymeric substance (EPS) matrix, oxygen radical-dependent killing of 

bacteria (86), prophage-mediated bacterial death that enhances dispersal of cells from the biofilm 

(62), or the release of amyloid fibers linking cells in the biofilm together, a process regulated by 

D-amino acids (87).  Area layer analysis indicated that introduction of EIP, either alone or in 

combination with H2O2, significantly affected biofilm structure down to the substratum.  The fact 

that treatment with H2O2 alone appeared to have no significant structural effect on the biofilm was 

not completely unexpected.  In fact, H2O2-mediated cell lysis has been shown to contribute to 

extracellular DNA (eDNA) release in P. aeruginosa biofilms (88).  This eDNA release, coupled 

with poor penetration of the H2O2 through the biofilm matrix or its inactivation by catalases, could 

account for the largely unchanged biofilm structure, particularly at the substratum.  The 

introduction of EIP, on the other hand, either alone or in combination with H2O2, significantly 

affects biofilm structure, specifically down to the substratum.  EIP may not be susceptible to the 

same inactivation mechanisms seen with H2O2, which would allow it to penetrate and disrupt the 

biofilm matrix more effectively.  Since previous work with EIP in planktonic cultures suggested 

DNA condensation as a mechanism underlying its bactericidal properties (28), we initially 

hypothesized that EIP may be affecting the structural stability of the biofilm matrix by targeting 

the eDNA.  This is of particular importance because eDNA is an important structural component 

to P. aeruginosa biofilms and has been viewed as a viable target for biofilm disruption using 

enzymes such as DNase (89).  However, the possibility of EIP initiating biofilm dispersal through 

a motility-dependent mechanism was also considered.  Bacterial motility such as swimming, 

swarming (flagella-mediated) and twitching (type IV pili-mediated) are essential in P. aeruginosa 
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biofilm formation and maturation (90).  In fact, the enhancement of P. aeruginosa motilities, such 

as swimming, and its subsequent role in biofilm dispersal by compounds such as nitric oxide (91) 

and ginseng extracts (69) are well documented.  Interestingly, we determined that exposure to 1 

mM EIP significantly enhances swimming motility in P. aeruginosa when compared to untreated 

controls.  Follow-up experiments showed that concentrations as low as 100 µM EIP resulted in 

enhanced swimming motility relative to untreated controls, while pairing of 6 µM H2O2 + 100 µM 

EIP enhanced swimming motility to a greater degree than either compound alone.  This effect was 

observed over a period of 4 h and provides further support to the effectiveness of these compounds.  

Altogether, the coupling of EIP with hydroxyl radicals generated by H2O2, which have also been 

shown to trigger DNA damage (81, 92), results in a significant dispersal effect to established P. 

aeruginosa biofilms.    

There is additional significance in that the presence of endogenous H2O2 in the biofilm 

environment has been documented.  Liu et al. (93) measured H2O2 concentrations in the range of 

0.7–1.6 mM in Streptococcus gordonii biofilms and suggested that H2O2 concentrations can vary 

by species composition.  Likewise, many oral streptococci produce H2O2 as a means of competitive 

advantage (94).  The production of oxygen radicals, including H2O2 by polymorphonuclear 

leukocytes (PMNs) as means of eradicating microbial infections, is yet another potential source of 

endogenous H2O2 that could be encountered within a biofilm environment (85).  Thus, introduction 

of EIP alone could potentially enhance the inherent disruptive effects of H2O2 in these 

environments. 

EIP + H2O2 is a potentially valuable therapeutic for anti-virulence strategies, because it 

negatively impacts biofilm development and promotes dispersal at sub-lethal concentrations.  

Anti-virulence strategies are currently being pursued to overcome widespread microbial multi-
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drug resistance (14).  In general, these strategies aim to control microbial pathogenesis by targeting 

virulence mechanisms (e.g. cell adhesion, quorum sensing, biofilm formation, toxin production) 

while minimizing the selective pressure on the microorganisms that often leads to resistance (14, 

95).  Further investigation into the potential application of these compounds in combination with 

existing treatment strategies is both warranted and the focus of future work.  
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4 CONCLUSIONS 

Over the past twenty years, microbial biofilms have been investigated for their significant 

impact in both clinical and industrial settings (2).  The biofilm lifestyle allows microorganisms to 

colonize and establish complex communities in diverse environments.  It is important, therefore, 

to understand the factors that promote biofilm formation and maturation.  During the course of our 

investigations, we relied on methods for constructing polymicrobial biofilms with defined 

compositions in order to test various hypotheses regarding factors that influence biofilm 

establishment under antibiotic challenge.  Surface colonization is an important step in the biofilm 

formation process.  The amount of cells that colonize a given surface can ultimately affect the 

development of the biofilm as it matures, particularly under antibiotic pressure.  Nutrient 

availability also plays an important role in the biofilm lifestyle.  The presence or absence of 

nutrients can serve as an environmental cue, triggering phenotypic changes in cells that make them 

more or less resistant to antimicrobial treatments.  Future directions taking advantage of our 

described methods would be ideal for studying interactions between biofilms comprised of 

multiple pathogens.  For example, the sputum of cystic fibrosis patients has been characterized to 

contain pathogens such a P. aeruginosa and Staphylococcus aureus (96).  Indwelling devices, such 

as catheters, have also been shown to be colonized by various pathogens. Thus, modeling biofilm 

interactions is of extreme value, taking into consideration the mounting negative impact that 

biofilms and antibiotic resistance have on global health.  

Strategies to combat rising levels of antibiotic resistance are driven by the increases in 

multi-drug resistance in pathogenic bacteria.  Another major part of our investigation was to 

determine the efficacy of the novel antimicrobial treatment combination, EIP + H2O2, towards 

bacterial biofilms.  The combination of these compounds was previously determined to be 
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effective against planktonic cultures of bacteria.  Using P. aeruginosa as a model organism, we 

found that combination treatments of EIP + H2O2 were effective at inhibiting early biofilm 

formation as well as dispersal of pre-formed biofilms.  A key distinction of our findings was that 

treatment concentrations of our compounds were effective at the micromolar range, far below the 

millimolar ranges previously observed on planktonic cultures. For both biofilm inhibition and 

biofilm dispersal, combining EIP + H2O2 was more effective than each compound alone, 

suggesting a synergistic interaction between the compounds.  Inhibition was observed during early 

biofilm formation (< 4 h) at nearly 70% of untreated controls.  Biofilm dispersal of 24 h biofilms 

was observed at nearly 40% of untreated controls after only a 30 min treatment.  The role of EIP 

as a potential novel treatment strategy is particularly attractive due to its synergistic activity with 

H2O2, especially at low concentrations.  Hydrogen peroxide is readily encountered in microbial 

environments, particularly at wound sites, and therefore it may be possible to deliver EIP to wound 

sites and allow it to work with endogenous concentrations of H2O2.   

Based on calculated ratios of membrane damage (live/dead staining), we were able to 

determine that dispersal was not due to a bactericidal effect of the compounds.  In the absence of 

a bactericidal effect to account for dispersal, we hypothesized that a motility mechanism may be 

responsible for the dispersal activity.  This enhancement in motility was observed while 

performing motility assays, where combined treatments of EIP + H2O2, both at micromolar 

concentrations, resulted in increased swimming motility.  Future work should take these 

observations into account when establishing a clearer mechanism of action of our treatments, 

particularly against other well-known pathogens.  Additionally, future work should focus on the 

use of these compounds as possible adjuvants in combination with current antibiotic treatments.  

Potentiating antibiotics, potentially reducing the effective doses of current treatments, would add 
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yet another tool in the toolbox for combatting the impact of antibiotic resistance.  Overall, the 

application of EIP + H2O2 as an antibiofilm agent is quite promising.  
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