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ABSTRACT

Survival analysis plays a crucial role in medical research for understanding the time until

an event of interest occurs, such as disease recurrence or death. An important branch of

survival analysis models is cure models, assuming that a proportion of subjects will never

experience the event of interest. The value of the proportion is called the cured rate and

is usually associated with many covariates with complex effect relationships. Studying cure

models under such non-linear covariate effects remains an active research area. This thesis

aims to investigate advancements in additive cure models, focusing on their ability to cap-

ture additive complex relationships between covariates and survival outcomes with a cured

fraction through non-linear modeling techniques, such as basic splines. Additive cure models

offer a robust framework for analyzing survival data when a subset of individuals is cured

and does not experience the event. The thesis will involve simulation studies to assess the

accuracy of parameter estimation and model fit in various scenarios, and the application of

additive cure models to real-world datasets from medical research studies. The findings will

enhance the understanding and application of additive cure models in analyzing survival

data with non-linear covariate effects, with implications for clinical decision-making and

prognostic modeling. The insights gained from this research have implications for various

fields, including epidemiology, clinical research, and public health, providing valuable tools

for analyzing survival data and enhancing decision-making processes.

INDEX WORDS: Nonparametric estimation, Cure fraction, Survival analysis, Ad-
ditive covariates, Censored Data, Robust estimators, Covariates
Effects.
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CHAPTER 1

Introduction

1.1 Background

In the realm of survival analysis, it is not uncommon to encounter situations in which a por-

tion of the subjects studied never experience an event of interest. This scenario frequently

arises in medical research, particularly when investigating the survival time of patients un-

dergoing a specific treatment for a particular illness. When a patient successfully recovers

from the disease, the time until death from that specific ailment will never be observed,

leading to a phenomenon known as “cure” in the context of survival analysis [1]. Let T

represent a random variable representing the time until a clearly defined event, henceforth

termed “death”, the key characteristic of survival model for describing the cure phenomenon

is that the associated survival probability will go to a nonzero value when t for T = t goes

to infinity; that is,

lim
t→∞

S(t) = lim
t→∞

P (T > t) = p > 0 (1.1)

where S(.) is the population survival function for the event time T. The value p is interpreted

as the cure rates.

During the past two decades, numerous research papers have investigated the extension

of survival models to incorporate the concept of a cure fraction. These specialized models,

aptly named “cure models,” naturally account for scenarios where a portion of the population

does not experience an event of interest, leading to a distinctive focus in the literature. The

existing body of literature encompasses a diverse array of statistical models to extend the
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model (1.2) with covariates to understand the association between cure rates and covariates,

ranging from parametric, semiparametric and fully nonparametric models.

When the cure phenomenon is observed from the dataset, it is also commonly to observe

the right censoring together. That is, for individuals who are not cured may either be

censored or experienced the target event. It can be difficult to distinguish censored data;

therefore, to determine the cure fraction, it becomes evident that certain assumptions must

be imposed on the model to identify and estimate this fraction accurately. An common

method for assessing this assumption in practical terms is to examine whether the Kaplan and

Meier curve demonstrates a sufficiently extended plateau, encompassing numerous censored

observations, and the censored data occur after the last failure time points are treated as

censored data. In this thesis, we will explore a new semiparametric cure model, with a

nonparametric model for assessing the cure rate, under right censoring.

1.2 Literature Review on Cured Models

A cure model in survival analysis addresses scenarios in which a subset of individuals in

a study population is immune or cure of experiencing the event of interest (e.g., disease

recurrence or death). There are two main types of cure models: the mixture cure model and

the promotion time cure model. The mixture cure model assumes a two-component mixture

distribution, where one component represents individuals who are susceptible to the event

(uncured) and the other component represents those who are not susceptible (cured)[1, 11,

12]. Such model enables the cure rate and the survival function to depend on distinct sets
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of covariates. The promotion time cure model, which integrates the cured fraction implicitly

into the survival function, suitable for situations such as long-term vaccine efficacy studies

[14]. This framework allows for the estimation of both the cure fraction and the survival

distribution for the uncured individuals.

Choosing between these models depends on the characteristics of the data and the need to

distinguish between susceptible and cured individuals in the population under study. Since

our focus is on a non-parametric model for the cure rate, we focus on reviewing the literature

on non-parametric cure models in survival analysis. [7] explore nonparametric estimation and

testing within a cure model framework. Their approach focuses on estimating the survival

function using non-parametric methods, such as Kaplan-Meier estimation, to accommodate

censoring in datasets where a subset of individuals may be indefinitely free from the event

of interest. They propose testing procedures to assess the presence of a cured fraction in the

population, providing statistical tools to determine if a proportion of individuals can be con-

sidered cured beyond a specified time point. This research contributes methodologically to

survival analysis by offering robust techniques for identifying and analyzing cured individuals

in medical and epidemiological studies, thereby informing clinical decisions and prognostic

evaluations. [3] introduced a non-parametric estimator for cure rates from right-censored

survival data, aiming to overcome limitations associated with parametric assumptions about

survival distributions. Their method involves two key steps: first, estimating the nonpara-

metric survival function S(t), which describes the probability of surviving beyond time t,

using techniques like Kaplan-Meier estimation to account for censoring. Second, they esti-
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mate the cure fraction p, representing the proportion of patients considered cured beyond

a specified time point where the risk of recurrence is assumed to be negligible. This non-

parametric approach allows for flexible estimation of the cure rate λ, defined as λ = p · λ0,

where λ0 is the baseline hazard rate. [17] presented a versatile nonparametric estimator

for evaluating cure rates, incorporating smoothness assumptions in the underlying hazard

function. Their method utilizes kernel smoothing techniques and bootstrap resampling to

accommodate diverse data distributions and censoring mechanisms effectively. [4] Investi-

gated the nonparametric comparison of survival functions using interval-censored data with

varying censoring rates. Their study addresses the methodological challenge of comparing

survival distributions when event times are only known within intervals and censoring rates

differ across groups or time periods. They proposed a robust methodology that employs

nonparametric techniques to estimate and compare survival functions under these condi-

tions, contributing to statistical methods tailored for interval-censored data analysis. These

studies collectively highlight the importance of nonparametric methods in providing robust

and reliable estimates of cure rates in survival analysis, but these works do not incorporate

covariates additively, which is different from the approach in this paper.

We are interested in using the cure model in the promotion time because it has a nice

biological interpretation [14]. The survival function of the promotion time cure model can

be expressed as
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S(t) = exp(−θ(X)F (t)), (1.2)

where S(.) is the population survival function for the event time T, X is the covariates and

F (.) is an unknown baseline cummulative distribution function. Previous Studies on PT

cure models usually assume a nonparametric form (right-continuous function with jumps)

for F (·) while they estimate θ(·) through a parametric form [15, 9]. These methods cannot

capture nonlinear regression effects for the cure rates. Then, several studies extend the

parametric θ(·) to nonparametric form, including nonparametric splines [2], neural network

[13], and support vector machine [10]. However, more exploration are needed about the

model identifiability and the estimation procedure may be inefficient when there are many

inputs. To fix some of these issues, a method is proposed by [8], which does not suffer the

identifiability problem but the model can be inefficient when there are many inputs. Along

this research direction, solving the non-identifiable and many input issues motives us to

incorporate additive model in the PT cure model, which is the main focus of the literatue.

1.3 Statement of Problem

The central focus of this thesis is to explore how additive models can be incorporated for

the PT cure model to effectively estimate cure fractions. We suggest a non-parametric mod-

eling approach for the cure rate, signifying our assumption that cure rate does not adhere

to the constraints of a specific family of conditional probability functions. As for the sur-
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vival function, we refrain from imposing any specific assumptions. This choice allows for a

versatile and diverse range of models for the survival function, providing flexibility in model

selection. Specifically, the research aims to investigate the impact of additional factors on

the estimation of cure fractions within the framework of nonparametric survival analysis.

Using additive models, this study seeks to assess the separate effects of each covariate on

the survival function while maintaining the flexibility of nonparametric estimation. Through

careful consideration of the potential interactions between covariates, alongside the utiliza-

tion of techniques such as spline functions or smoothing methods to account for non-linear

relationships.

The rest of the thesis is organized as follows; chapter 2 discuses the likelihood under

(1.2) with an additive model and proposes an algorithm for estimation. Some estimation

properties will also be discussed in this Chapter. In Chapter 3, we employ simulated data

to evaluate the practical performance of the proposed estimators and extend our analysis to

real-world datasets.
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CHAPTER 2

Methodology

In this section, we discuss a new non-parametric form of cure model by assuming a non-

parametric form for the cure rate, parametric form for the baseline and additivity for the

covariates. Nonparametric methods provide a flexible framework for analyzing survival data

without making strong distributional assumptions. In this study, our focus lies on estimating

θ(·) within (1.2) using a non-linear additivity approach. We express θ(X) as:

θ(X) = exp(f1(X1) + f2(X2) + f3(X3) + . . .+ fp−1(Xp−1) + fp(Xp)) = exp(m(X)) (2.1)

Here, X represents continuous covariates, and fi(Xi) for each i from 1 to p denotes an

unknown smooth function. We assume a parametric family for exp(λ) within F (·; γ), where

λ is unknown. Nonparametric methods are particularly well-suited for analyzing censored

survival data, offering the flexibility to estimate survival probabilities and hazard rates with-

out imposing stringent assumptions on the underlying data distribution. We’ll focus more on

estimating θ(·) as it’s the key contributor to the cure rate, rather than F (·). By estimating

the coefficients of θ(·) using this method, we can assess the separate contributions of covari-

ates to the survival function while maintaining the flexibility of nonparametric estimation.

To develop the estimation procedure, we first show the proposed model is identifiable.

2.1 Identifiability Properties

In the landscape of cure model, the identifiability of cure models is a significant concern. [5]

explores conditions that can make the two types of cure models (mixture cure models and
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PT cure models) become identifiable or non-identifiable. For PT cure models, one concrete

result from Theorem 6 of their paper is that if F (·) follows a parametric distribution, then

the PT cure model (1.2) are model identifiable. This motivates us to consider a parametric

assumption on F (·) to make θ(·) and F (·) identifiable. To further make each component

function fj(·) in (2.1) identifiable, we follow Tibshirani to assume E(fj(Xj)) = 0 for j =

1, · · · , p. The result is summarized below:

Theorem [Model Identifiability] If E(fj(Xj)) = 0 for j = 1, · · · , p in model (2.1) and

F (·) is assumed to follow a parametric distribution in model (1.2). Then, {fj(Xj)}pj=1 and

the unknown parameter in F (·) are identifiable and hence the cure rate exp(−θ(X)) from

the PT cure model is identifiable [6].

2.2 Estimation Method and the Likelihood Function

For each component function, we consider basis expansion; that is,

fq(Xq) =
∑
j

αqjBqj(X1) for q = 1, · · · , p,

where Bqj(·) is the basis spline (cite?).

Our goal is to develop an iterative algorithm to find estimators of the basis expansions

{αqj} for the nonparametric cured rate, and λ from the parametric baseline function.
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2.2.1 Data Generation

The variable we’re interested in is T , a non-negative random variable representing the time

until a specific event occurs. We assume that we have independent and identically distributed

(i.i.d.) data (Yi,∆i, Xi), i = 1, . . . , n, having the same distribution as (Y,∆, X), where Y =

min(T,C), ∆ = I(T ≤ C),X is a vector of covariates, the event time T follows the cure model

given in 1.2. We assume T is subject to random right censoring. Instead of directly observing

T , we observe Y = min(T,C) and ∆ = I(T ≤ C), where I(·) represents the indicator function

and C is the random censoring time. When there is a cure fraction, the survival function

S(t) = P (T > t) for T ensures that as t approaches infinity, limt→∞ S(t) > 0. This signifies

the proportion of cured subjects, known as the cure rate. Because of right censoring, T is

never observed when it equals infinity. When ∆ = 1 (uncensored observation), we know the

individual is susceptible (uncured). In contrast, when ∆ = 0 (censored observation), the

individual could belong to either sub-population, and we lack certainty about their status.

2.2.2 Likelihood Function

The likelihood function, given (X1, X2, . . . , Xn)
⊤, can be expressed as:

L =
n∏

i=1

{
[fT (Yi; θ(Xi), γ)]

∆i [ST (Yi; θ(Xi), γ)]
1−∆i

}I(Yi<∞)
[ST (∞; θ(Xi), γ)]

I(Yi=∞) (2.2)

For a detailed derivation of L under Equation 1.2, refer to [18] and [16]. The correspond-

ing log-likelihood function is:
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L =
n∑

i=1

{∆i[log(θ(Xi)) + log f(Yi; γ)]− θ(Xi)F (Yi; γ)} (2.3)

The derivation of 2.3 is provided in Appendix A. Please note that F (∞) = 1 for observations

where Yi = ∞, indicating cure. Then, the optimizer of the likelihood function (2.3) are found

by using optimization function in R.
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CHAPTER 3

Simulation Study

3.1 Simulation

To assess the performance of the proposed estimation approach, we conducted two simu-

lation examples. The simulation procedure encompasses several critical steps: generating

covariates, computing true cure rates, simulating survival times, and fitting the model using

nonparametric methods. The sample size for the simulations is set at n = 200, and the

process is iterated 1000 times to ensure robustness and reliability of the results.

The data generation scheme for an improper ST (·|x) is outlined as follows: Two covari-

ates, X1 and X2, are generated independently for each observation. Specifically, X1 is drawn

from a uniform distribution over the interval [1, 3], and X2 is drawn from a normal distribu-

tion with mean 0 and standard deviation 1. These covariates are selected to encapsulate a

variety of distributional characteristics, which can influence the cure rate in different man-

ners. The true cure rate is calculated using the functions f1 and f2 combined linearly to form

m(·). The values are then exponentiated and the true cure probability cure.p = exp(−θ(Xi))

is computed. Subsequently, independent uniform values are generated from U(0, 1) to de-

termine whether an observation is cured. For each individual, we first determine whether

the individual is cured. This is done by comparing the individual’s random uniform number

Ui on (0, 1) with the complement of their cure probability 1 − cure.p. If Ui exceeds this

threshold, i.e., Ui > 1 − cure.p, the individual is classified as cured. For cured individuals,

the observed time Yi is set to infinity (∞), indicating that no event will occur, and the event
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indicator ∆i is set to 2, representing being cured. For individuals who are not cured, we

proceed to simulate their survival and censoring times. The survival time Ti is generated

using an inverse cumulative distribution function (CDF) approach Ti = F−1
T (Ui|Xi) (The

detailed is summarized in Appendix B), which takes the random number Ui, a rate param-

eter λi, and an individual-specific parameter. The censoring time Ci is generated from an

exponential distribution with a rate parameter of 10. We then compare the survival time Ti

to the censoring time Ci to determine which event occurs first. If Ti is less than Ci; (Ti < Ci),

the event occurs before censoring, so the observed time Yi is set to the survival time Ti, and

the event indicator ∆i is set to 1, indicating that the event occurred. If Ti is greater than

or equal to Ci; (Ti ≥ Ci), the individual is censored, so the observed time Yi is set to the

censoring time Ci, and the event indicator ∆i is set to 0, indicating censoring. The fitting

of the model uses basis splines to capture the effects of covariates X1 and X2.

Table 3.1: Simulation Settings and Some Summary

Statistics for the simulation datasets

Example 1 Example 2

Sample size 200 200
Simulation Time 1000 1000

% Cure 1% 10.6%
% Censored 10.6% 21.6%

% Censored but not Cure 8.4% 11%

3.2 Detailed Algorithm

The detailed algorithm for conducting the simulation is summarized in this section. The

major step in our algorithm is to find the estimators of the unknown coefficients by optimizing
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likelihood function (2.3). The algorithm is provided below with using two covariates p = 2

for illustrations:

• Step 1: Generate Covariates

– Generate n samples for covariate X1 from a uniform distribution U(1, 3).

– Generate n samples for covariate X2 from a normal distribution N(0, 1).

• Step 2: Basis Expansion for Covariates

– Define a set of basis functions B1j(X1) for X1 and B2k(X2) for X2 using B-splines.

– Expand f1(X1) and f2(X2) as linear combinations of the basis functions:

f1(X1) =
∑
j

αjB1j(X1)

f2(X2) =
∑
k

βkB2k(X2)

• Step 3: Compute True Cure Rate

– Compute the linear predictor m(Xi) = f1(X1) + f2(X2) for each individual i.

– Compute the true cure rate as cure.p = exp(−θ(Xi)), where θ(Xi) = exp(m(Xi)).

• Step 4: Determine Cure Status and Generate Survival Times

– For each individual i:

∗ Generate a random uniform variable Ui from U(0, 1).

∗ If Ui > 1− cure.p:
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· Set survival time Yi = ∞ (indicating cured).

· Set censoring indicator ∆i = 2.

∗ Otherwise:

· Generate survival time Ti using the inverse cumulative distribution func-

tion Ti = F−1
T (Ui|Xi) (Please refer to APPENDIX B).

· Generate censoring time Ci from an exponential distribution with a rate

parameter of 10.

· Compare Ti and Ci:

· If Ti < Ci:

· Set Yi = Ti and ∆i = 1.

· If Ti ≥ Ci:

· Set Yi = Ci and ∆i = 0.

• Step 5: Fit the Model Using Nonparametric Methods

– Express θ(X) as:

θ(X) = exp(f1(X1) + f2(X2) + . . .+ fp(Xp)) = exp(m(X))

– Model the survival function log(S(t)) as:

log(S(t)) = −θ(X)F (t)
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– Construct the likelihood function:

L =
n∏

i=1

{
[fT (Yi; θ(Xi), γ)]

∆i [ST (Yi; θ(Xi), γ)]
1−∆i

}I(Yi<∞)
[ST (∞; θ(Xi), γ)]

I(Yi=∞)

– Derive the log-likelihood function:

logL =
n∑

i=1

{∆i[log(θ(Xi)) + log f(Yi; γ)]− θ(Xi)F (Yi; γ)}

– Continue until convergence (change in log-likelihood or coefficients is below a

threshold).

• Step 6: Simulation Study

– Set sample size n = 200.

– Iterate the process 1000 times to ensure robustness.

– For each iteration:

∗ Generate covariates X1 and X2.

∗ Compute true cure rates and determine cure status.

∗ Simulate survival and censoring times.

∗ Fit the model using nonparametric methods and optimize the coefficients.

– Analyze the results to assess the performance of the proposed estimation ap-

proach.

We will apply the simulation process to the examples in the following two sections.
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3.3 Example 1: θ(X) = exp
(
1.5 + 0.2 exp(X1)− (1.3X2

2 )

3

)
The baseline F (·; γ) is taken as an exponential distribution with parameter γ = − log(10),

and the censoring time C is approximately distributed as U(0, 1). The resulting overall

censoring and cure rates are 10.6% and 1.0%, respectively, which means that 8.4% are

censored but not cured. This value reflects the subjects who were followed up until a certain

point without experiencing the event but were not deemed cured.

(a) (b)

Figure 3.1 Estimated Curve Example 1

The plots in Figure 3.1 show the estimated relationships between the covariates X1 and

X2 on the x-axes and the mean estimated values of the functions for f1 and f2 on the y-

axes, respectively. In the first plot, the black solid line represents the estimated curve for

the mean estimate of f1, showing a slight initial decline followed by a rise, indicating a

non-linear relationship with covariate X1. The close alignment with the blue dashed line

suggests a strong similarity between the estimated model and the theoretical curve. In the
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second plot, the solid black line for the mean estimate of f2 follows a parabolic trajectory,

peaks around a zero value of X2, and then declines, with the blue dashed line similarly

indicating a comparable trend. The proximity of the two lines in both plots highlights

minor deviations, suggesting slight differences in model predictions but overall similar trends.

These visualizations are effective for assessing the model fits and their capability to capture

the underlying relationships between the predictor variables and the estimated functions,

indicating the robustness and accuracy of the models used.

3.4 Example 2: θ(X) = exp (0.5 + 0.5 cos(2X1)− 1.2X2
2 ))

(a) (b)

Figure 3.2 Estimated Curve Example 2

Taking the same baseline, the overall censoring rate of 21.6% indicates that 21.6% of

the subjects were censored, meaning their follow-up ended before the event of interest (e.g.,

relapse, failure) occurred. Censoring can result from subjects dropping out of the study or

the study ending before the event is observed. The overall cure rate of 10.6% represents
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the proportion of subjects considered cured, implying that they were free from the event

of interest over the study period. This low cure rate suggests that only a small fraction of

subjects reached a state in which they were unlikely to experience the event in the future.

Finally, the percentage of subjects censored but not cured was 11%, reflecting the subjects

who were followed up to a certain point without experiencing the event but were not deemed

cured.

The plots in Figure 3.1 illustrate the estimated relationships between the covariates X1

and X2 and the mean estimated values of the functions f1 and f2, respectively. In the first

plot, the black solid line represents the estimated curve for f1, showing a slight initial decline

followed by a rise, closely aligning with the blue dashed theoretical curve and indicating

a non-linear relationship with X1. In the second plot, the estimated curve for f2 follows

a parabolic trajectory, peaking around a zero value of X2 and then rising sharply, again

closely matching the theoretical curve despite some deviations at the extremes. The strong

alignment between the estimated and theoretical curves in both plots suggests that the

models accurately capture the underlying relationships between the predictor variables and

the estimated functions, demonstrating their robustness and effectiveness.

3.5 Check Robustness of the Proposed Method

In this section, we check the performance of the proposed method under different sample

size settings for Examples 1 and 2. The sample size we choose is 50, 100, and 200 and we

report the root mean square error (RMSE) values versue the 3 sample sizes in the Figures
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3.3: RMSE for both examples consistently decreases as the sample size increases, indicating

(a) (b)

Figure 3.3 RMSE Curve for Examples 1 and 2

that the model predictions become more accurate with larger data sets. The most significant

improvement in RMSE occurs between the smallest sample sizes (50 to 100), suggesting that

a substantial portion of the model’s robustness is achieved with the initial increase in sample

size. Beyond this point, the rate of improvement slows, demonstrating diminishing returns.

Both plots suggest a convergence trend as the sample size approaches 200, where further

increases in sample size result in minimal gains in accuracy. This stabilization indicates that

the model’s performance is robust, as it does not fluctuate unpredictably with increasing

sample sizes. The consistent decline in RMSE across all sample sizes and the absence of

sudden fluctuations confirm the robustness of the model, ensuring reliable generalization and

reducing the likelihood of overfitting. Based on these observations, we identify an optimal

sample size range of 150 to 200, balancing the effort of data collection with the resulting
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improvement in model performance.
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CHAPTER 4

Real Data Analysis

In this chapter, we apply the proposed method to a real dataset about Melanoma.

4.1 Data Illustration

The ”Survival from Malignant Melanoma” dataset is a critical resource for investigating

survival outcomes in patients treated for malignant melanoma at the Department of Plastic

Surgery, University Hospital of Odense, Denmark, from 1962 to 1977. This dataset comprises

205 observations and 7 variables, capturing detailed measurements from patients who un-

derwent surgical tumor removal, including excision of approximately 2.5 cm of surrounding

skin. Key prognostic variables such as tumor thickness and ulceration status are pivotal for

assessing melanoma mortality risk. Patients were monitored until the end of 1977 to doc-

ument their survival status. Summary statistics highlight significant findings: the dataset

shows a median survival time of 2005 days (approximately 5.5 years) and a mean of 2153

days (almost 5.9 years). Patient ages range from 4 to 95 years, with a median of 54 years

and a mean of 52.46 years, while tumor thickness varies widely, with a median of 1.94 mm

and a mean of 2.92 mm, ranging from 0.1 to 17.42 mm.

The variable status indicates patient outcomes: 1 signifies deaths from melanoma, 2 indi-

cates patients who remain alive, and 3 represents deaths from unrelated causes. Categorical

data analysis shows a mean status of 1.79, with a median of 2, highlighting predominantly

surviving patients. Moreover, the variable ulcer, denoting the presence (1) or absence (0)

of ulceration, exhibits a mean prevalence of 0.439, indicating that ulceration was present in
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Figure 4.1 Survival curve

approximately 43.9% of cases. This dataset provides a robust platform for analyzing survival

outcomes based on various clinical and demographic factors.

By analyzing this dataset, we aim to contribute further to the understanding of prognostic

indicators and to refine predictive models for melanoma survival. This analysis will enhance

the ability to tailor treatments and improve patient outcomes. The dataset’s comprehensive

nature allows for detailed exploration of survival outcomes and the factors influencing them,

aiding in the development of more effective clinical strategies and interventions for managing
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(a) (b)

Figure 4.2 Effect of covariate

(a) (b)

Figure 4.3 Marginal cure rate plot

malignant melanoma.

Figure 3.3 shows the survival probability over time, with a clear decrease indicating

the occurrence of events (deaths) throughout the study period. The extended probability

plateau indicates a period during the study in which no deaths events from melanoma are
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observed. The survival probability remains constant during this plateau period, reflecting

an increased number of censors. The step-like pattern and the widening confidence inter-

vals indicate greater uncertainty in the survival estimates as fewer individuals remain in the

study over time. This plot serves as a fundamental representation of the survival experi-

ence within the cohort, highlighting the importance of temporal dynamics in understanding

patient outcomes.

The subsequent plots in Figure 3.4 explore the effects of age and tumor thickness on

survival and cure rates, revealing intricate nonlinear relationships. The effect of age on

melanoma deaths shows a U-shaped curve, with the highest risk in older and younger pa-

tients and a lower risk for average age. Similarly, the effect of thickness shows a complex

pattern, with the less substantial risk around the mean tumor thickness and most influences

as thickness increases or decreases. These non-linearities emphasize the necessity of consid-

ering the full range of covariate values to accurately capture their impact on survival and

cure rates.

Lastly, the cure rate graphs in Figure 3.5 reveal critical insights into how age and tumor

thickness influence treatment success. The highest cure rates are observed for individuals

with average age and slightly below-average tumor thickness. The cure rate declines as age

deviates from the mean in either direction and as tumor thickness increases, indicating that

both younger and older individuals, as well as those with higher thickness values, experience

poorer outcomes. These findings underscore the importance of personalized treatment strate-

gies that account for age and tumor thickness to improve patient prognosis and optimize cure



25

rates.
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CHAPTER 5

Conclusion and Future Works

The present study provides a comprehensive approach to modeling survival data using a

mixture cure model framework. By leveraging sophisticated statistical techniques and non-

parametric methods, our approach demonstrates substantial potential for accurate parameter

estimation and modeling of survival outcomes, particularly in the presence of cure fractions.

Here, we discuss the implications of our findings, methodological strengths, limitations, and

potential future directions for research.

One of the key strengths of our approach is the incorporation of B-splines for basis ex-

pansion of covariates additively, allowing for flexible modeling of covariate effects. This is

particularly advantageous when dealing with complex, non-linear relationships between co-

variates and survival outcomes. The simulation study, which iterated the process 1000 times

with a sample size of 200, robustly validated the model’s performance, ensuring reliability

and generalizability of the results.

Our simulation results underscore the efficacy of the proposed model in accurately esti-

mating the cure rate and survival distribution among uncured individuals.

The application of our model to the ”Survival from Malignant Melanoma” dataset il-

lustrates its practical utility in real-world clinical scenarios. The analysis of the data set

revealed significant information on the prognostic factors influencing melanoma survival,

highlighting the impact of tumor thickness, age, ulceration status, and other covariates on

patient outcomes. These findings align with the existing literature, strengthening the validity
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and relevance of the model in clinical decision making and public health interventions.

In summary, this study presents a robust and flexible framework for survival analysis

using cure models. The integration of B-splines for covariate expansion and optimization for

parameter estimation demonstrates significant promise in accurately modeling survival data.

While limitations exist, the model’s strengths and practical utility in clinical applications

underscore its potential as a valuable tool in survival analysis. Future research endeavors

aimed at addressing the identified limitations and exploring advanced methodologies could

further enhance the model’s efficacy and broaden its applicability in various fields of study.
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Appendices
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A Derivation of the Log-Likelihood Function

The likelihood function is given by:

L =
n∏

i=1

{
[fT (Yi; θ(Xi), γ)]

∆i [ST (Yi; θ(Xi), γ)]
1−∆i

}I(Yi<∞)
[ST (∞; θ(Xi), γ)]

I(Yi=∞) (1)

Taking the logarithm of the likelihood function, we get the log-likelihood:

logL =
n∑

i=1

I(Yi < ∞) [∆i log fT (Yi; θ(Xi), γ) + (1−∆i) logST (Yi; θ(Xi), γ)]+I(Yi = ∞) logST (∞; θ(Xi), γ)

(2)

Assuming no observations are censored beyond a finite time (I(Yi = ∞) = 0), we simplify:

logL =
n∑

i=1

[∆i log fT (Yi; θ(Xi), γ) + (1−∆i) logST (Yi; θ(Xi), γ)] (3)

We express fT and ST in terms of the cumulative distribution function (CDF) FT and

the hazard function λT :

fT (t; θ, γ) =
d

dt
FT (t; θ, γ) (4)

ST (t; θ, γ) = 1− FT (t; θ, γ) (5)

λT (t; θ, γ) =
fT (t; θ, γ)

ST (t; θ, γ)
(6)

Substituting these relationships, the log-likelihood becomes:

logL =
n∑

i=1

[∆i log(λT (Yi; θ(Xi), γ)ST (Yi; θ(Xi), γ)) + (1−∆i) logST (Yi; θ(Xi), γ)] (7)
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Since λT (t)ST (t) = fT (t), we simplify:

logL =
n∑

i=1

[∆i log λT (Yi; θ(Xi), γ) + logST (Yi; θ(Xi), γ)] (8)

Using λT (t; θ, γ) = θ(Xi)f(Yi; γ) and ST (t; θ, γ) = e−θ(Xi)F (Yi;γ):

logL =
n∑

i=1

[∆i log(θ(Xi)f(Yi; γ))− θ(Xi)F (Yi; γ)] (9)

Breaking this down, we obtain:

logL =
n∑

i=1

{∆i[log(θ(Xi)) + log f(Yi; γ)]− θ(Xi)F (Yi; γ)} (10)
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B Generating Survival Time

The survival time Ti is generated using the inverse cumulative distribution function (CDF)

approach:

Ti = F−1
T (Ui|Xi) (11)

where Ui is a uniform random variable in the interval (0, 1), and Xi represents the covariates

for the i-th individual.

C Inverse Transformation Method

We can prove the inverse transform method. Let Y = F (X). Since Y is a random variable,

it has a CDF, which we can denote G(y). By definition:

G(y) = P (Y ≤ y)

Since Y = F (X):

G(y) = P (F (X) ≤ y)

Since X is a continuous random variable, its CDF is continuous. Therefore, we can apply

the inverse, F−1, to both sides of the inequality:

G(y) = P (F−1(F (X)) ≤ F−1(y))

What is F−1(F (X))? Simply, X:

G(y) = P (X ≤ F−1(y))
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Notice that we have an expression of the form P (X ≤ x), where x = F−1(y). We know, by

definition, F (x) = P (X ≤ x), so:

G(y) = F (F−1(y)) = y

In summary, the CDF of Y is G(y) = y. If we take the derivative of the CDF to get the

PDF, we see that g(y) = 1. Let’s remember the PDF for a uniform random variable:

D Exponential Example

Consider the Exp(λ) distribution, which has the following CDF:

F (x) = 1− e−λx, x ≥ 0

Let’s set F (X) = U and solve for X:

U = 1− e−λX

U − 1 = −e−λX

ln(U − 1) = −λX

ln(U − 1)

−λ
= X

Also, we know that the expression U − 1 is itself uniform, so we can simplify:

X =
ln(U)

−λ
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