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ABSTRACT 

Larvae of the marine bryozoan, Bugula neritina, are defended from predation by the 

bryostatins, polyketides synthesized by its uncultured endosymbiont, “Candidatus Endobugula 

sertula.”  Bryostatins are potent modulators of the eukaryotic signaling protein, protein kinase C 

(PKC) that is involved in many eukaryotic cellular processes.  The close association of the host 

and symbiont raises the possibility of an interaction between the symbiont-produced bryostatins 

and host PKCs.  Such interaction could impact PKC regulated host cellular processes, which 

could result in altered host physiology.  In this study, I investigated the response of the bryozoan 

host in the absence of the symbiont and symbiont-produced bryostatins.  Western blot analysis of 

protein extracts from symbiotic and symbiont-reduced B. neritina colonies revealed a difference 



in bryostatin-activated conventional PKCs, but none for bryostatin-independent PKCs.  Similar 

results were observed for PKCs in the model invertebrate, Caenorhabditis elegans, exposed to 

bryostatin, suggesting that the symbiont-produced bryostatins potentially modulate PKC activity 

and therefore PKC-mediated cellular processes in symbiotic B. neritina and bryostatin-exposed 

C. elegans.  The number of ovicell-bearing female zooids in symbiont-reduced colonies was 

significantly decreased, suggesting a role of symbiont in the host reproduction.  Interestingly, the 

female zooids in both the colony types were healthy and no anatomical or molecular differences 

were found except that fewer female zooids occur in symbiont-depleted colonies.  The lack of 

difference in female zooids indicate that the symbiont does not affect the female structures and 

functions in the zooid, but potentially influences the early stage differentiation of the female 

zooid in the colony.  I hypothesize that symbiont-produced bryostatins via PKC activation signal 

early stage differentiation of the female zooids in the colony.  Additionally, microscopic 

investigation revealed the presence of previously undescribed ‘funicular bodies’ containing 

bacteria in the symbiotic colonies.  However, the bacteria associated with the ‘funicular bodies’ 

and funicular strands in the symbiotic colonies were morphologically different and are 

potentially an adaptation for successful mutualistic association with the bryozoan host. 

 

INDEX WORDS: Symbiosis, Bryostatins, Protein kinase C, Host reproduction, Differential gene 

expression 
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1 BACKGROUND 

1.1 Host-symbiont interactions 

Mutualism is a symbiotic interaction between at least two species in which both partners 

benefit.  Many of these relationships involve eukaryotic multicellular organisms and 

microorganisms (Moran 2006).  Microbial symbionts play an essential role in the survival and 

evolution of their eukaryotic hosts by either satisfying nutritional requirements or contributing to 

defense (Moran 2006; McFall-Ngai et al. 2013).  Host-symbiont interactions resulting in the 

establishment and maintenance of these partnerships can be complex (Ruby 2008; Schmidt 2008; 

Chaston and Goodrich-Blair 2010; McFall-Ngai et al. 2013).  Mutualisms can be established 

through vertical transmission of the symbiont from parent to offspring during host reproduction, 

or by horizontal acquisition of the symbiont from the environment after host reproduction 

(Moran 2006). 

The defensive symbiotic association between the Hawaiian bobtail squid Euprymna 

scolopes and the bioluminescent bacterium Vibrio fischeri is a well-studied model for 

understanding the role of host-symbiont interactions in the establishment of a horizontally 

transmitted symbiosis, identification of the host and symbiont, molecular signaling between the 

partners, symbiont induction of host morphological changes, and maintenance of the association 

(Rader and Nyholm 2012; McFall-Ngai 2014).  Immediately upon hatching, bacterial cells 

including V. fischeri in the surrounding sea water aggregate in mucus secreted by ciliated surface 

epithelium of the nascent light organ of the squid (Nyholm et al. 2000).  However, V. fischeri 

cells outcompete to become dominant population by attachment to the host cilia (Altura et al. 

2013) and aggregation in symbiont-produced exopolysaccharide (Visick 2009).  The aggregated 

V. fischeri cells alter a variety of host cellular features to increase hemocyte trafficking in the 
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host blood sinus (Koropatnick et al. 2002) and degradation of chitin present in the hemocytes to 

enter the light organ by chemotaxis (Mandel et al. 2012).  During their journey through the ducts 

and crypt spaces of the light organ, the symbiont cells also overcome various biochemical and 

biophysical challenges, which include maneuvering through dense cilia lining the ducts and 

resistance to host-derived oxidative stress of nitric oxide and halide peroxidase [reviewed in 

(Nyholm and McFall-Ngai 2004)].  Furthermore, light production by the symbiont cells by 

bioluminescence, which provides the presumed protection to the squid from predation, is also 

important to maintain the symbiotic association.  Mutant V. fischeri cells incapable of light 

production are unable to persist in the light organ (Visick et al. 2000).  Following colonization, 

the V. fischeri cells induce development of the light organ to become functional and also mediate 

morphological changes in the ducts and ciliated epithelium to prevent subsequent colonization by 

environmental symbionts [reviewed in (Nyholm and McFall-Ngai 2004)]. 

Similarly, the obligate nutritional symbiotic association between the plant sap-feeding 

aphid Acyrthosiphon pisum and its primary symbiont, Buchnera aphidicola, demonstrates host-

symbiont interactions characteristic of vertically transmitted mutualisms.  Buchnera cells are 

located within specialized aphid cells called bacteriocytes (Braendle et al. 2003; Baumann 2005).  

The symbiont transmission occurs at the bacteriocyte-blastula interface, where Buchnera-specific 

exocytosis transiently releases Buchnera cells from the host bacteriocyte into the extracellular 

space, which are subsequently endocytosed by cytoplasm of syncytial blastula at the posterior 

pole (Koga et al. 2012).  Metabolic complementation of nutritional requirements of both the 

partners makes this symbiotic association essential for survival of both partners and ensures 

maintenance of the relationship.  Genomic and physiological analysis revealed that Buchnera 

synthesizes essential amino acids for the host and encodes genes for most of the enzymes 
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required for biosynthesis of essential amino acids.  However, it lacks genes for production of 

non-essential amino acids.  Interestingly, the genome of the aphid contains the missing genes of 

enzymes involved in essential amino acid pathway and provides non-essential amino acids for 

the symbiont (Shigenobu et al. 2000; Wilson et al. 2010; Hansen and Moran 2011).  Another 

characteristic feature of obligate heritable symbionts such as Buchnera is genome reduction 

[reviewed in (Moran et al. 2008; McCutcheon and Moran 2012)].  The genome of Buchnera 

lacks the full complement of genes for cell envelope formation, transporter systems, regulatory 

systems, and DNA repair and recombination (Shigenobu et al. 2000).  Many of these missing 

functions in the symbiont have been reported to be compensated by the host (Hansen and Moran 

2011), making mutualism essential for Buchnera’s survival.  These studies illustrate the 

complexity of host-symbiont interactions in mutualistic relationships. 

1.2 Symbiosis and natural products 

Many ecologically relevant metabolites isolated from plants and animals have been 

shown to be synthesized by mutualistic microorganisms living in association with the host 

[reviewed in (Piel 2009; Crawford and Clardy 2011)].  These symbiont-produced natural 

products play an important role in the survival of the host by defending the host against 

pathogens, parasites, and predators (Haine 2008; Lopanik 2014; Florez et al. 2015).  For 

instance, the anti-fouling compound ubiquinone-8 produced by a strain of Alteromonas sp. 

associated with marine sponge, Halichondria okadai inhibits settlement of barnacle cyprids 

(Konya et al. 1995).  The symbiont-derived compound, pederin, confers protection to rove beetle 

larvae from predatory wolf spiders (Piel 2002).  Similarly, cyanobacterial symbionts of the genus 

Synechocystis associate with the tunicate Trididemnun solidum, and are the source of the 

secondary metabolite, didemnin B (Rinehart et al. 1981), a feeding deterrent to coral reef fishes 
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(Lindquist et al. 1992).  Rhizoxin isolated from the phytopathogenic fungus Rhizopus sp. was 

identified as the virulence factor for rice seedling blight disease (Iwasaki et al. 1984).  Rhizoxin 

was later revealed to be biosynthesized by a bacterial symbiont, Burkholderia rhizoxinica, 

associated with the fungus (Partida-Martinez and Hertweck 2005).  These studies demonstrate 

the importance of symbiont-produced metabolites to host fitness. 

1.3 Bugula neritina 

Bugula neritina (Linnaeus 1758) is a marine bryozoan (Class Gymnolamata; Order 

Cheilostomata; Suborder Flustrina; Family Bugulidae).  It is a sessile colonial invertebrate 

consisting of dichotomously dividing branches of biserially arranged individuals called zooids 

(Fig. 1.1A).  The zooids within a bryozoan colony have diverse morphology and functions, 

including feeding, reproduction, or anchorage to the substrate [reviewed in (Silén 1977)].  

Feeding zooids are called autozooids and have a feeding polypide structure surrounded by a 

lighly calcified box-like cystid (Fig. 1.1B).  The polypide consists of a retractable crown of 

ciliated tentacles around the mouth called the lophophore, a loop-shaped digestive tract, and 

associated muscles (Ryland 1970).  Non-feeding zooids in the colony are called heterozooids, 

such as rhizoids for anchorage, kenozooids to strength and support the colony, vibracula for 

cleaning, etc.  All the zooids within a colony are interconnected via a network of funicular 

strands, which are involved in transport of nutrients within the colony and hypothesized as 

homologue of blood vessels (Woollacott and Zimmer 1975; Carle and Ruppert 1983).  

Bryozoans reproduce both asexually and sexually.  Colony growth initially occurs by budding of 

the first zooid, the ancestrula, which is formed by metamorphosis of a sexually produced larva, 

being further continued by subsequent generations of zooids produced by asexual budding. 
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Colonies of B. neritina are zooidal hermaphrodites with both the male and female gonads 

developing within the same zooids (Mawatari 1951).  The zooids at the base of the colony are 

sterile, continued by simultaneous hermaphrodite fertile zooids.  In the fertile zooids, 

spermatogenic tissue stops its activity and sperm is released early in the life cycle, while ovaries 

continue the oocytic production.  Thus, hermaphroditic zooids eventually become females.  

Autozooids with a functioning ovary in a colony can be identified by the presence of specialized 

calcified structure called an ovicell that brood embryos (Woollacott and Zimmer 1972).  

Formation and development of gonads and gametes in fertile zooids depend on various factors 

including: cycles of polypide degeneration and regeneration (Dyrynda and Ryland 1982; 

Dyrynda and King 1983), age and size of the colony, and environmental conditions such as sea 

temperature, day-length, density and composition of neighboring communities, and water flow 

rates [reviewed in (Reed 1991)].  Based on structural organization of the ovary, patterns of 

oogenesis, site and time of fertilization and brooding of embryo, Bugula spp. belong to 

reproductive pattern III [reviewed in (Reed 1991; Ostrovsky 2013a)].  This reproductive pattern 

is characterized by successive maturation of few small oligolecithal oocytes in the ovary.  The 

ovary generally forms associated with the funicular strands and the developing polypide.  It is 

comprised of oogonia and oocytes surrounded partially by follicle cells.  An incomplete 

cytokinesis during the division of oogonium gives rise to a primary oocyte that is connected by a 

cytoplasmic bridge to its nurse cell (Dyrynda and Ryland 1982; Dyrynda and King 1983; Temkin 

1996; Ostrovsky 2013a).  The primary oocyte accumulates yolk reserves from the maternal zooid 

during vitellogenesis and develops into a mature egg.  Although the colonies are hermaphrodites, 

self-fertilization rarely occurs (Silén 1966; Johnson 2010).  Sperm released by the donor colony 

is thought to enter the body cavity of an egg-producing zooid in a recipient colony via genital 
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pores, intertentacular organ (ITO) or supraneural coelomopore (SNP) (Ostrovsky and Porter 

2011).  Fertilization is intraovarian and precocious, occurring at the early stage of the oocyte 

development before the start of the vitellogenic period (Temkin 1996).  However, karyogamy 

(fusion of male and female pronuclei) is delayed until the mature egg is ovulated into the ovicell 

and results in formation of an embryo (Temkin 1996).  The embryo is brooded one at a time 

within the ovicell and receives extraembryonic nutrition from the maternal zooid via a placental 

analogue and the associated funicular system to develop into a lecithotrophic larva (Woollacott 

and Zimmer 1975; Ostrovsky 2013a).  The mature larvae are released into the water column 

(Woollacott and Zimmer 1972).  The larvae are free-swimming and settle on a substrate within 2 

to 12 hours after release (Keough 1989a).  Following the settlement, the larva undergoes rapid 

metamorphosis to form the first feeding zooid, ancestrula (Woollacott and Zimmer 1971), from 

which the subsequent generations of zooids asexually reproduce by budding to form the colony. 

1.4 Bugula neritina, symbiosis, and bryostatins 

The marine bryozoan, Bugula neritina (Linnaeus 1758), forms a symbiotic association 

with an uncultured γ-proteobacterium, “Candidatus Endobugula sertula” (Haygood and 

Davidson 1997).  Several lines of evidence indicate that the symbiont is transmitted vertically 

from maternal zooid to larva, and not acquired from the surrounding seawater.  First, symbiont 

cells are located in the maternal funicular cords connected with the placental analogue of the 

ovicell containing the growing embryo (Woollacott and Zimmer 1975; Sharp et al. 2007).  In 

addition, attempts to identify symbiont cells in seawater surrounding B. neritina colonies have 

failed (Haygood et al. 1999), indicating that the symbiont is not likely acquired environmentally.  

In the adult colony, the symbiont cells are found within channels of funicular cords (Woollacott 

and Zimmer 1975; Sharp et al. 2007), involved in the transport of nutrients and waste within the 
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colony and to the embryo in the brood chamber, termed the ovicell (Woollacott and Zimmer 

1975; Carle and Ruppert 1983).  In the larvae, symbiotic bacteria reside within a circular surface 

invagination called the pallial sinus located on the aboral side (Woollacott 1981; Haygood and 

Davidson 1997).  Evidence suggests that “Ca. Endobugula sertula” produces the bryostatins 

(Pettit 1996), distasteful, polyketide metabolites (Fig. 1.2) that defend vulnerable B. neritina 

larvae from predators (Lindquist 1996; Lindquist and Hay 1996; Tamburri and Zimmer-Faust 

1996; Lopanik et al. 2004b).  First, reduction in the titers of the symbiont cells in antibiotic 

treated colonies resulted in reduced levels of bryostatins (Davidson et al. 2001; Lopanik et al. 

2004b).  Moreover, next generation larvae from the antibiotic cured adults have a significantly 

lower concentration of bryostatins and are more palatable to a predator than control larvae 

(Lopanik et al. 2004b), illustrating the role of symbiont-produced bryostatins as predator 

deterrents and their contribution to host survival. 

Interestingly, the association with the symbiont and presence of bryostatins in B. neritina 

is complex.  Based on the B. neritina mitochondrial cytochrome C oxidase I (COI) sequences 

and “Ca. Endobugula sertula” 16S rRNA gene sequences, B. neritina populations form a 

complex of three sibling species (Davidson and Haygood 1999; McGovern and Hellberg 2003; 

Fehlauer-Ale et al. 2014).  In the United States, two of the sibling species are found in southern 

California (CA): Type S, occurring above the depth of 9 m, and Type D collected at a depth 

below 9 m.  Both the sibling species display an 8.1% difference in a region of the COI gene and 

0.4% difference in symbiont 16S rRNA genes (Davidson and Haygood 1999).  A sample from 

Beaufort, North Carolina (NC), was identified as Type S in genotype (Davidson and Haygood 

1999).  Further genetic characterization of populations from the Atlantic coast south of Cape 

Hatteras and the Gulf of Mexico revealed that they were part of the Type S genotype (McGovern 
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and Hellberg 2003).  The third sibling species, Type N, was identified from populations found 

north of Cape Hatteras in Delaware and Connecticut and diverged 11.5% from the Type S COI 

sequences (McGovern and Hellberg 2003).  Remarkably, the Type N sibling species lack any 

endosymbiont (McGovern and Hellberg 2003; Lopanik et al. 2004b), and no bryostatins were 

detected in larval extracts based on HPLC analysis (Lopanik, unpub. data).  It has been 

hypothesized that this pattern is due to general biogeographic patterns of predation (i.e., lower 

predation rates at higher latitudes) (Vermeij 1978; Bertness et al. 1981; Menge and Lubchenco 

1981) allowing for the selection of non-defended aposymbiotic colonies.  However, recent 

discovery of defended (symbiotic with bryostatins) and undefended (aposymbiotic without 

bryostatins) Type S and N sibling species co-occurring at some sites along the East coast of the 

US (Linneman et al. 2014), indicate that the bryostatins may not be as important for defense of 

the host as previously thought. 

1.5 Bryostatins and protein kinase C 

The symbiont-produced bryostatins isolated from B. neritina have long been a target of 

pharmaceutical research and drug development.  In 1970, crude extracts from B. neritina were 

first reported to have potent anticancer activity (Pettit et al. 1970), but the structure of bryostatin 

1 was not published until 1982 (Pettit et al. 1982), due to very low concentrations within the 

bryozoan.  To date, 20 bryostatins have been characterized from different populations of B. 

neritina (Pettit 1996; Davidson and Haygood 1999; Lopanik et al. 2004a) and are being tested as 

potential pharmaceuticals for the treatment of cancer, Alzheimer’s disease, and HIV [reviewed in 

(Trindade-Silva et al. 2010)].  Bryostatin 1 binds with high affinity to the C1b region of the 

diacyl glycerol (DAG) binding regulatory region of human, rat, and mouse protein kinase C 

(PKC), a serine-threonine kinase (Kraft et al. 1986; De Vries et al. 1988; Kraft et al. 1988; 
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Wender et al. 1988) that is involved in the signaling cascades of many regulatory processes in 

eukaryotic cells (Newton 2001; Battaini and Mochly-Rosen 2007; Newton 2010).  Of the ten 

different isozymes of PKC, bryostatin binds to the conventional (cPKC, α, βI, βII, γ) and the 

novel (nPKC, δ, ε, η, θ) isoforms, but not to the atypical forms (aPKC, ξ, λ/ι), as they lack the 

C1b binding domain (Mutter and Wills 2000).  Inactive PKC is found in the cytosol with the 

pseudosubstrate blocking the active site (Newton 2001).  Differences in the regulatory domains 

of the three isoforms dictate the essential cofactors necessary for activation.  For c- and nPKCs, 

DAG released by phospholipases binds to PKC, which is allosterically activated.  Its affinity for 

phosphatidyl serine increases and the affinity for Ca
2+

 shifts to the physiological range, resulting 

in release of the pseudosubstrate by a conformational change and migration to the cell 

membrane, the location of its substrates and regulators.  After binding to bryostatin, c- and nPKC 

is activated briefly, autophosphorylated, translocated to the cell membrane where it 

phosphorylates its protein substrates, such as myristoylated alanine-rich C-kinase substrate 

(MARCKS) (Graff et al. 1989; Hartwig et al. 1992), rapidly accelerated fibrisarcoma (RAF) 

kinase (Kolch et al. 1993; Carroll and May 1994), and is then downregulated by ubiquitination 

and subsequently degraded by proteasomes (Clamp and Jayson 2002).  Bryostatins with slight 

structural variations display a dramatic difference in activating PKC isoenzymes (Wender et al. 

2011).  For instance, bryostatin 1 induces rapid translocation of PKCβ conjugated to green 

fluorescent protein (GFP) to the membrane of Chinese hamster ovary (CHO) cells, whereas 

bryostatin 2, which only differs from bryostatin 1 by an acetate group on C7, has no effect on 

PKCβ.  Further, there is a significant difference in the amount of PKCα, PKCδ, and PKCε 

remaining in the cytosol after 24-h exposure to bryostatin 1, indicating that the isoforms are 
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activated at variable levels by the same bryostatin.  This selectivity of the bryostatins for 

different PKC isoforms suggests that these compounds could be used as regulators of PKC. 

In a previous study to identify B. neritina genes differentially expressed in the symbiotic 

and symbiont-reduced (antibiotic-treated) Type S colonies (Mathew and Lopanik 2014), I 

observed very few ovicell-bearing (reproductive) zooids in the symbiont-reduced colonies.  

Furthermore, recent discovery of symbiotic and aposymbiotic colonies of B. neritina co-

occurring at some sites along the East coast of the US (Linneman et al. 2014), indicate that the 

symbiotic association does not just have defensive role.  These findings suggest an additional 

role of the symbiont, which is symbiont-dependent host reproduction.  The goal of this study is 

to investigate the hypothesized role of the symbiont in host fecundity and to identify host-

symbiont interactions that lead to symbiont-regulated host reproduction. 
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Figure 1.1  Bugula neritina colony morphology and zooid anatomy.   

(A) Schematic representation of morphology of a branch of B. neritina colony with zooids and 

ovicells.  (B) Zooid structure in Cheilostomata.  The ooecial communication pore is arrowed.  

Abbreviations: a anus, ann annulus of mural pore chamber, bw basal wall, cg cerebral ganglion, 

cp communication pore, div depressor muscle of inner (ooecial) vesicle, dz distal zooid, e 

embryo, eco ectooecium, eno entooecium, f funiculus, fm frontal membranous wall, fw frontal 

wall, gyc gymnocyst, iv inner vesicle, msc mesocoel (ring coelom), mtc metacoel (visceral 

coelom), oc ovicell, oco opercular muscle, oe , ooecium, op operculum, ov ovary, ph pharynx, 

pm parietal muscles, re rectum, riv retractor muscle of inner (ooecial) vesicle, rm retractor 

muscle of polypide, snp supraneural pore, spl pore plate (septulum) in lateral wall, st stomach, t 

tentacle, te testis, tw transverse wall [From (Ryland 1970), with modifications by (Ostrovsky 

2013a)] 

 

 

 

 

 

 

 

 

Figure 1.2  General structure of bryostatins. 
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2 INFLUENCE OF SYMBIONT-PRODUCED BIOACTIVE NATURAL PRODUCTS 

ON HOLOBIONT FITNESS IN THE MARINE BRYOZOAN, BUGULA NERITINA 

VIA PROTEIN KINASE C (PKC) 

2.1 Introduction 

Microbial symbionts of eukaryotic hosts are a major source of complex natural 

metabolites that have potent activity against pathogens, parasites, competitors, and predators of 

their host (Haine 2008; Piel 2009; Crawford and Clardy 2011; Lopanik 2014).  These symbiont-

produced compounds can have potent activity in eukaryotic cells and have therefore been 

investigated for a variety of therapeutic applications (Newman and Cragg 2007; Piel 2009; 

Gerwick and Moore 2012; Cragg and Newman 2013).  For instance, the symbiont-derived anti-

predatory compound, pederin, isolated from the rove beetle (Piel 2002), and pederin-like 

compounds, onnamides and theopederins, from a marine sponge (Piel et al. 2004), have been 

reported to inhibit protein biosynthesis and cell division (Narquizian and Kocienski 2000; 

Witczak et al. 2012).  The bacterial symbiont of the fungus Rhizopus sp. produces rhizoxin 

(Partida-Martinez and Hertweck 2005), which exhibits antimitotic activity by binding to tubulin 

(Tsuruo et al. 1986; McLeod et al. 1996; Scherlach et al. 2006).  Ecteinascidin 743, produced by 

a microbial symbiont of the marine tunicate Ecteinascidia turbinata (Rath et al. 2011), impedes 

DNA repair processes by several mechanisms including interfering with DNA transcription 

factors and binding proteins (van Kesteren et al. 2003), and is clinically approved in the 

European Union for treatment of soft tissue sarcomas.  Despite the abundance of microbial 

symbiont-produced compounds and their activity in eukaryotic cellular processes, very few 

studies have investigated host adaptation or response to these compounds.  For instance, the anti-

mitotic activity of rhizoxin is tolerated by Rhizopus microsporus due to an amino acid 
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substitution in its β-tubulin gene that reduces its affinity for rhizoxins (Schmitt et al. 2008).  In 

the mutualistic association between the insect pathogen Photorhabdus luminescens and 

entomopathogenic nematodes, the presence of the symbiont was reported to induce the growth 

and development of nematode juveniles into adults (Strauch and Ehlers 1998), via 

hydroxystilbene, an antimicrobial compound produced by the bacterial symbiont (Joyce et al. 

2008).  These studies illustrate the importance of symbiont-produced metabolites to host fitness, 

as well as host adaptation to the presence of these bioactive compounds. 

The symbiont-produced bryostatins bind with high affinity to molecular regulator 

molecules PKCs that are essential in signaling cascades and implicated in a variety of processes 

including calcium signaling, lipid signaling, protein secretion, cell cycle regulation, cell 

reproduction, cell growth, and modification of the cytoskeleton [reviewed in (Battaini and 

Mochly-Rosen 2007; Akita 2008; Newton 2010; Lipp and Reither 2011; Black and Black 2013; 

Long and Freeley 2014; Poli et al. 2014)].  As discussed above, bryostatins have been reported to 

be modulators of PKC activity.  Such modulation of PKCs by the bryostatins could impact the 

PKC mediated signaling pathways for the regulation of various cellular processes, but the 

potential interaction of bryostatins with the host bryozoan cells and their impact on host 

physiology is unknown.  Host and symbiont co-evolution has been well established in many 

systems (Ashen and Goff 2000; Thacker and Starnes 2003; Kaltenpoth et al. 2014), especially 

those with vertically inherited symbionts (Moran 2006).  I hypothesize that B. neritina hosts have 

adapted specifically to the presence of bryostatins produced by their microbial symbiont, most 

likely by a PKC-based mechanism.  To investigate this, I determined host fitness in the presence 

and absence of the bryostatin-producing symbiont, and found that absence of the symbiont 

significantly affects host fecundity.  In addition, some, but not all, of the host PKCs are altered in 
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the presence of the symbiont and symbiont-produced bryostatins.  Further, the PKC-bryostatin 

interaction was investigated in the model organism, Caenorhabditis elegans to better understand 

their ability to affect reproduction in invertebrates, and found that while bryostatins also alter 

expression of some PKCs, they reduce the fecundity in the naïve, non-adapted host.  Taken 

together, I propose that host-symbiont coevolution has resulted in the utilization of symbiont-

produced natural products as cues for host reproduction in the B. neritina-“Ca. Endobugula 

sertula” system, which results in greater fitness of both partners. 

2.2 Methods 

2.2.1 Collection of Bugula neritina, and assessment of host genotype and symbiotic status 

Adult colonies of B. neritina were collected by hand from floating docks either in 

Beaufort, NC, USA (34°42'N, 76°39'W), or in Morehead City, NC, USA (34°43'N, 76°42'W), 

and transported to the seawater laboratory facilities at UNC-Chapel Hill’s Institute of Marine 

Sciences in Morehead City.  The colonies were rinsed in 0.45µm filtered seawater and a few 

zooids were excised from individual colonies for genomic DNA extraction to determine the 

genotype and symbiont status of the colonies.  The genomic DNA was extracted from the 

excised zooids using ZR Fungal/Bacterial DNA MiniPrep (Zymo Research, Orange, CA, USA).  

The genomic DNA was used as template for PCR to amplify the B. neritina mitochondrial COI 

gene (Bn COIf and BnCOIr; Table 2.1) and the PCR amplicon was digested with restriction 

enzymes DdeI and HhaI to differentiate Type S and Type N colonies, respectively (Linneman et 

al. 2014).  For symbiont-screening of the colonies, the genomic DNA was subjected to PCR 

amplification using symbiont-specific 16S rRNA primers (EBn16S_254f and EBn16S_643r), as 

well as primers that amplify a portion of the bryostatin biosynthetic gene cluster, bryS (Sudek et 

al. 2007) for confirmation (Table 2.1). 
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2.2.2 Fecundity assessment in antibiotic treated Bugula neritina 

Type S B. neritina colonies were collected from Beaufort, NC, in November, 2010 and 

maintained overnight in the dark in flowing seawater tables.  In the morning, the colonies were 

placed into large glass jars filled with seawater and exposed to sunlight to stimulate larval 

release.  Pooled larvae (~100) were pipetted into six-well polystyrene plates (n = 6 replicate 

plates per treatment) containing filter-sterilized seawater with either the antibiotic, gentamicin 

(100 µg/mL; MP Biomedicals, LLC., Solon, Ohio, USA) (treatment) or seawater with a small 

volume of distilled water (control).  The larvae in the plates were allowed to settle and 

metamorphose.  The antibiotic-treated newly metamorphosed juveniles were exposed to 

gentamicin (100 µg/mL) for 10 h over 3 consecutive days, similar to previous studies (Davidson 

et al. 2001; Lopanik et al. 2004b; Mathew and Lopanik 2014).  Each day after the 10 h 

gentamicin treatment, the developing juveniles were fed by placing them in an indoor artificial 

environment supplied with unfiltered seawater from Bogue Sound, Morehead City, NC, USA.  

After the 3-day treatment, the gentamicin-treated and control (symbiotic) group of juveniles were 

permanently placed in the indoor artificial environment with unfiltered flowing seawater for 5 

months for outgrowth.  For fitness assessments, thirteen mature control and gentamicin-treated 

colonies from each experimental group were randomly collected.  Size of the colonies was 

measured by counting the number of branch bifurcations (Keough 1989b; Lopanik et al. 2004b), 

and the fecundity of the colonies was determined by counting the number of ovicells. 

Small portions of randomly selected treated and control colonies (n = 6) from each 

replicate plate (n = 6) were dissected to determine the relative symbiont levels and assess PKC 

expression in the two types of colonies.  The relative symbiont levels the gentamicin-treated and 

control B. neritina colonies was determined by quantitative real-time PCR (qPCR) using 
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symbiont-specific 16S rRNA primers (EBn16S_254f and EBn16S_643r) and B. neritina COI 

qPCR primers (BnCOIQf and BnCOIQr) (Table 2.1).  The qPCR reactions were performed using 

a hot start version of modified Thermus brockianus (Tbr) DNA polymerase along with SYBR 

Green I fluorescent dye, and ROX passive reference dye (DyNAmo HS SYBR Green qPCR kit, 

Finnzymes, Espoo, Finland) under the following parameters: initial denaturation at 95°C for 15 

min, 40 cycles of denaturation at 94°C for 10 s, annealing at 60°C for 30 s, extension at 72°C for 

30 s, and a final extension of the amplified products at 72°C for 5 min.  Each qPCR reaction was 

performed with three technical replicates and the experiment was repeated three times in a 7500 

Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, USA).  Efficiency of the 

PCR reactions with each set of primers was performed with known concentrations of purified 

PCR amplicon standards, and was found to be within the recommended range (BnCOI: 104.9%, 

EBn16S: 94.6%).  Melt curve analysis of the reaction products was performed after the 

amplification to assess the synthesis of any non-specific products.  An optimum threshold cycle 

(CT) value within the early exponential phase of the amplification curve was determined for each 

reaction using 7500 software version 2.0.1 (Applied Biosystems, Foster City, CA, USA).  

Relative symbiont levels in pooled colonies from each replicate plate were determined by 

calculating the ratio of the mean CT value for symbiont 16S rRNA gene to the mean CT value for 

the B. neritina COI gene as in (Mathew and Lopanik 2014).  Colonies from plates that displayed 

the greatest level of symbiont reduction, as well as random control colonies, were selected for 

further protein analysis. 

2.2.3 PKC expression in antibiotic treated Bugula neritina 

For B. neritina PKC expression analysis, total protein was extracted from the dissected 

zooids using the Qproteome Mammalian Protein Prep Kit (Qiagen, Hilden, Germany).  The 
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zooids were lysed in Qproteome mammalian lysis buffer containing protease inhibitor and 

benzonase nuclease using a sterile 1.5 mL homogenization pestle and battery-operated hand-held 

pestle grinder system, and stored at -80°C.  The total protein was precipitated with acetone 

according to the manufacturer’s instructions.  The precipitated protein pellet was dissolved in 

urea (8M) and the quantity of crude protein was assessed with the Pierce BCA protein assay kit 

(Pierce Biotechnology, Rockford, IL, USA) against a serially diluted standard of bovine serum 

albumin.  The crude total protein extract was stored in a -80°C freezer and subjected to Western 

blot analysis of PKCs (see below). 

2.2.4 PKC expression in naturally symbiont-reduced Bugula neritina 

The host PKC expression analysis was also carried out in naturally symbiont-reduced 

colonies.  Adult colonies were collected from several different locations: from Radio Island 

Marina (34°43'N, 76°41'W) and Yacht Basin Marina (34°43'N, 76°42'W), Morehead City, NC, 

USA in March 2012, as well as from Oyster public docks, Oyster, Virginia (VA), USA (37°17'N, 

75°55'W), and Indian River Marina, Delaware (DE), USA (38°36'N, 75°4'W) in June 2012.  The 

individual colonies were genotyped and their symbiotic status determined as described 

previously.  The dissected zooids from individual colonies were lysed as described above, and 

stored at -80°C until processed further for extraction of total protein.  Total protein was extracted 

and quantified as described above.  The analysis of the host PKCs in the naturally symbiont-

reduced colonies was performed by Western blot assay (see below). 

2.2.5 Treatment of Caenorhabditis elegans with PKC activator molecules 

Wild-type adult C. elegans (N2) worms were grown on Nematode Growth Medium 

(NGM) agar plates seeded with Escherichia coli strain OP50 for two days at 20°C.  The washed 

eggs were transferred to previously prepared E. coli OP50 seeded NGM agar (10 mL) plates 
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containing different concentrations of the PKC activator molecules, phorbol 12-myristate 13-

acetate (PMA; 0.2 and 0.1 µg/mL) and bryostatin 1 (0.2, 0.1, 0.08, 0.05, and 0.01 µg/mL) (EMD 

Chemicals, Inc. San Diego, CA, USA), and control experiment plates containing 0.1% DMSO 

(diluent used for PKC activators).  PMA was used because, like bryostatins, it is also a PKC 

activator that binds to C1b domain of PKC.  Moreover, studies on exposure of C. elegans to 

PMA have been previously reported (Lew et al. 1982; Miwa et al. 1982; Tabuse and Miwa 1983; 

Tabuse et al. 1995).  The eggs were incubated at 20°C and grew to the L4 larval stage.  A single 

L4 stage nematode from each of the chemical containing NGM agar (10 mL) plates was 

transferred to a fresh E. coli OP50 seeded NGM agar (3 mL) plate containing the respective 

chemical in triplicate experiments, and allowed to develop into the adult stage and lay eggs.  

Every day the newly developed single egg-laying adult worm was transferred onto a fresh plate 

containing the chemicals leaving the eggs laid by the adult nematode in the old plate.  The young 

larvae hatched from the eggs in each plate were counted and the progeny of the single nematode 

was recorded in triplicate experiments for each concentration of PKC activator molecules and the 

control experiment.  This routine was continued until the adult worm stopped laying eggs. 

2.2.6 Total protein extraction from adult Caenorhabditis elegans 

Synchronized nematode cultures were started in E. coli OP50 seeded NGM agar (10 mL) 

plates containing PMA (0.1 µg/mL), bryostatin 1 (0.1 µg/mL), and DMSO (0.1%) in triplicate.  

The cultures were incubated at 20°C for 3 days to allow transformation of eggs to adult stage 

worms.  The adult C. elegans cultures grown in the treated NGM agar plates were harvested for 

total protein extraction.  The worm cultures were washed three times with ice-cold M9 buffer 

and harvested by centrifugation at 2,000 RPM for 1 min at 4°C.  Viable adult worms were 

separated from denser eggs and debris by the sucrose float technique, in which the pellet was 
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suspended in 4 mL of sterile ice-cold sucrose solution (35%) and immediately centrifuged at 

1,000 RPM for 5 min at 4°C.  Live adult worms floating at the top of sucrose solution (~1 mL) 

were transferred to a new centrifuge tube, rinsed with ice-cold M9 buffer, and then stored in a -

80°C freezer at least overnight.  The frozen worm pellet was homogenized in Qproteome 

mammalian lysis buffer containing protease inhibitor and benzonase nuclease (Qproteome 

Mammalian Protein Prep Kit, Qiagen, Hilden, Germany).  The worm tissue was further lysed by 

repeated (3X) freezing and thawing with liquid nitrogen and passing the lysate through a 26-

gauge syringe needle.  The lysate was processed to extract total protein as previously described.  

The total protein extract was quantified, and stored in a -80°C freezer until used for Western blot 

analysis of PKCs described below. 

2.2.7 Western blot analysis of PKC proteins 

Total protein extracts (from control, antibiotic-treated and naturally symbiont-reduced B. 

neritina and C. elegans) were subjected to Western blot analysis with polyclonal antibody for 

bryostatin-activated cPKC isoforms that will bind to any α, β, γ cPKC isozyme (Upstate Cell 

Signaling Solutions, Lake Placid, NY, USA) and antibody for the aPKC ζ (Santa Cruz 

Biotechnology, Inc., Santa Cruz, CA, USA).  As bryostatins do not activate the atypical PKCs, 

the aPKC ζ Western blot served as a negative control.  Equal quantities of denatured total protein 

from the samples were electrophoresed on a 4-15% Mini-PROTEAN TGX precast 

polyacrylamide gel (Bio-Rad Laboratories, Inc., Hercules, CA, USA).  The proteins separated on 

the gel were transferred onto a PVDF membrane (Immun-Blot PVDF Membrane For Protein 

Blotting, Bio-Rad Laboratories, Inc., Hercules, CA, USA) using either an Owl HEP-1 Semi Dry 

Electroblotting System (Thermo Fisher Scientific, Marietta, OH, USA) or a Mini Trans-Blot Cell 

(Bio-Rad Laboratories, Inc., Hercules, CA, USA) in Towbin buffer (25 mM Tris, 192 mM 
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glycine, and 20% methanol).  The membrane was washed twice for 10 min in Tris-buffered 

saline (TBS; 20 mM Tris, 0.5 M NaCl, pH 7.5) prior to blocking in TBS with 5% non-fat dry 

milk for 1 h at room temperature with agitation.  The membrane was then incubated overnight 

with 1 µg/mL of either PKC polyclonal antibody diluted in Antibody buffer (TBS, 0.1% Tween-

20, and 0.2% non-fat dry milk) at 4°C with gentle agitation.  The membrane was washed twice 

with TBS containing 0.1% Tween-20 (TTBS) for 10 min, and then incubated with goat anti-

rabbit secondary antibody conjugated to alkaline phosphatase (diluted 1:3000, Immun-Star 

(GAR)-AP Intro Kit, Bio-Rad Laboratories, Hercules, CA, USA) in Antibody buffer for 2 h at 

room temperature with gentle shaking.  The membrane was rinsed three times for 10 min in 

TTBS, and then incubated with Immune-Star chemiluminescent substrate for 10 min at room 

temperature in the dark.  The chemiluminescent emission on the treated membrane was 

visualized in an ImageQuant LAS 4000 Mini imager (GE Healthcare Bio-Sciences AB, Uppsala, 

Sweden).  The intensity of the protein bands detected by the Western blot analysis among the 

different samples was compared by densitometric analysis (ImageQuant TL 7.0). 

2.2.8 Statistical analysis 

The data for growth and fecundity of B. neritina, and progeny of C. elegans upon 

treatment with PKC activator molecules are reported as means ± SE (standard error of mean), 

while the data for qPCR based symbiont quantification using ratio of CT (16S) to CT (COI) is 

presented as means ± SD (standard deviation from the mean).  The data for growth and fecundity 

of control and gentamicin-treated colonies did not have a normal distribution and the 

significance of the results was determined by the non-parametric tests, Mann-Whitney U test and 

Welch ANOVA.  An independent samples Student’s t-test was used to compare differences in 

growth and fecundity of the symbiotic and naturally symbiont-reduced colonies.  Significance of 
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differences in the data for progeny of C. elegans exposed to PKC activators, density of PKC 

bands in C. elegans proteins, and the ratio of CT (16S) to CT (COI) for the symbiont 

quantification in symbiotic (control) and symbiont-reduced (gentamicin-treated) B. neritina 

colonies were determined by one-way Analysis of Variance (ANOVA), followed by Tukey’s 

HSD post hoc test when possible.  In all the analyses, statistical significance was accepted at P < 

0.05. 

2.3 Results 

2.3.1 Bugula neritina fecundity after symbiont reduction by antibiotic treatment 

Symbiont-reduced Type S B. neritina juveniles were prepared by treating larvae with 

gentamicin during the progression of larval metamorphosis into juveniles for 3 days.  After the 

antibiotic treatment, the juveniles matured into adult reproductive colonies over a period of 5 

months.  Similar to findings in a previous study (Lopanik et al. 2004b), both control and 

gentamicin-treated adult B. neritina colonies appeared to be healthy and growth of the colonies, 

as measured by the number of bifurcations in the arborescent colony, was statistically similar (n 

= 13 control and treated colonies; Mann-Whitney U test, P = 1.000; Welch ANOVA, P = 0.351 

Fig. 2.1a).  However, both the number of ovicells per colony and the number of ovicells per 

bifurcation in gentamicin-treated colonies was significantly lower compared to control colonies 

(Mann-Whitney U test, P = 0.001; Welch ANOVA, P = 0.001 Fig. 2.1b and c). 

The symbiont titer in sexually mature control and gentamicin-treated colonies was 

determined by qPCR.  The amount of symbiont DNA normalized to host DNA was calculated 

using CT values for the 16S rRNA gene and COI primed reactions in each replicate as a proxy.  

The gentamicin-treated B. neritina colonies possessing a high ratio of symbiont 16S rRNA to 

host COI CT values (indicating less symbiont DNA per unit of host DNA as CT value is inverse 
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to amount of DNA) were determined (Table 2.2).  The mean ratio of 16S rRNA to COI CT 

values was significantly higher in gentamicin-treated colonies from plates T1, T2, and T3 (one-

way ANOVA, P < 0.05; Table 2.2), while the ratios calculated from B. neritina colonies in all 

the control plates were not significantly different (one-way ANOVA, P > 0.05; Table 2.2).  In 

addition, the ratio of 16S rRNA to COI CT values among the treated colonies (from plates T1, 

T2, and T3) and the control colonies (from plates C3, C5, and C6) used for protein extraction and 

Western blot analysis were significantly different (independent samples Student’s t-test, 

assuming equal variance, t(16) = 11.14, P < 0.001). 

2.3.2 Western blot analysis of PKC proteins in antibiotic-treated Bugula neritina 

Bryostatins have been shown to activate some, but not all, PKC isozymes.  Therefore, 

changes to the host PKCs in presence and absence of the bryostatin-producing symbionts were 

investigated by Western blot analysis using antibodies for bryostatin-activated cPKC isozymes 

and a bryostatin-independent aPKC (negative control).  The presence of cPKCs (α, β, or γ) and 

aPKC ζ in symbiotic (control) and symbiont-reduced (gentamicin-treated) B. neritina colonies 

was determined.  A lower molecular weight cPKC (α, β, or γ) protein fragment (~25 kDa) was 

detected in the total protein extracts from symbiotic colonies but not in extracts from symbiont-

depleted colonies (Fig. 2.2a).  In contrast, there was no difference in the aPKC ζ isozyme 

fragment sizes in either type of colony, likely due to the absence of the bryostatin binding C1b 

site on aPKCs (Fig. 2.2b).   

2.3.3 Western blot analysis of PKC proteins in naturally symbiont-reduced Bugula neritina 

Adult colonies of B. neritina collected from different sites along the East coast in March 

and June 2012 were genotyped and their symbiont status determined (Fig. 2.3a-c).  PKC 

isoforms in the total protein extracts of individual Type S and N symbiotic and naturally 
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symbiont-reduced colonies were investigated by Western blot analysis against cPKCs (α, β, or γ) 

and aPKC ζ antibodies.  Similar to the Western blot results with control and gentamicin-treated 

colonies, a small molecular weight cPKC isozyme (~25 kDa) was detected in the total protein 

extracts from symbiotic Type S and N colonies but absent in symbiont-reduced samples (Fig. 

2.3d).  The analysis of bryostatin-independent aPKC ζ showed same number of proteins in all the 

samples (Fig. 2.3e). 

2.3.4 Effect of PKC activators on Caenorhabditis elegans 

The effect of the PKC modulators PMA and bryostatin 1 on the fecundity of C. elegans 

was performed by exposing them to variable concentrations of the molecules.  PMA was used as 

a positive control as it also has a high affinity for PKC and binds to the C1b domain.  Worms 

exposed to PMA laid significantly fewer eggs than those exposed to bryostatin 1 or 0.1% 

dimethyl sulfoxide (DMSO, diluent control) (one-way ANOVA, F(7, 15) = 75.29, Tukey’s HSD, 

P < 0.001; Fig. 2.4).  The number of eggs laid upon exposure to 0.2 to 0.05 µg/mL bryostatin 1 

was significantly less than observed in 0.1% DMSO control experiments, while the number of 

progeny in the 0.01 µg/mL bryostatin 1 treatment was similar to that of the DMSO control. 

2.3.5 Western blot analysis of PKC proteins in Caenorhabditis elegans 

Investigation of conventional and atypical isoforms of PKC in C. elegans exposed to 

PMA and bryostatin 1 (0.1 µg/mL) was performed by Western blot analysis in duplicate 

experiments.  The analysis of bryostatin-activated cPKC (α, β, γ) in protein extracts of the treated 

C. elegans detected same number of proteins in all the samples, though the intensity of a lowest 

molecular weight protein (~20 kDa) was different among the samples (Fig. 2.5a).  The lowest 

molecular weight protein band in bryostatin 1 exposed nematodes was significantly more dense 

than the same band detected in the PMA and DMSO exposed worms (one-way ANOVA, F(2, 4) 
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= 15.73, P = 0.01; Tukey’s HSD: bryostatin1 > PMA = DMSO, Fig. 2.5b).  Analysis of 

bryostatin-independent aPKC ζ also detected same number of proteins in all the samples without 

any significant difference in the band density of proteins detected among the samples (higher 

molecular weight band, one-way ANOVA, F(2, 3) = 7.94, P = 0.063; lower molecular weight 

band, one-way ANOVA, F(2, 3) = 3.66, P = 0.156; Fig. 2.5c).  The intensity of bands for one of 

the replicates of the bryostatin 1 exposed samples was lower because only 7.25 µg of total 

protein was electrophoresed compared to 10 µg for the others samples due to low protein yields. 

2.4 Discussion 

Microbial symbionts are a source of diverse metabolites that have been reported to target 

a variety of molecular and cellular processes in eukaryotic cells, and therefore, are prime 

candidates for drug discovery and development (Piel 2009; Cragg and Newman 2013).  The 

association of these metabolite-synthesizing microbial symbionts with their eukaryotic hosts 

raises the question of interaction between host and the symbiont-produced metabolite.  Very few 

studies have reported the response of the host to these bioactive compounds (Joyce et al. 2008; 

Schmitt et al. 2008).  In this study, I investigated the interaction between the marine bryozoan 

host, B. neritina with its symbiont-produced bryostatins.  As discussed above, bryostatins are 

potent modulators of c- and nPKC activity.  The close association of the host and symbiont raises 

the possibility of an interaction between the symbiont-produced bryostatins and host PKCs.  

Such interaction could impact PKC mediated signaling pathways for the regulation of various 

host cellular processes, which could result in altered host physiology.  To test this hypothesis, 

various aspects of the physiology of symbiotic and artificially symbiont-reduced B. neritina 

colonies were compared.  In the antibiotic curing experiment, relative quantification of symbiont 

titers remaining in gentamicin-treated adult colonies using molecular techniques indicate that the 
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symbiont cells were significantly reduced compared to control colonies, but not completely 

eliminated.  Similar results were observed in a previous study that indicated 95% elimination of 

symbiont in gentamicin-treated colonies (Davidson et al. 2001).  Consistent with previous 

research, growth and development of both the control and the gentamicin-treated adult B. 

neritina colonies was not affected due to antibiotic treatment or reduction of symbiont (Davidson 

et al. 2001; Lopanik et al. 2004b).  Interestingly, the number of reproductive ovicell-bearing 

zooids per bifurcation in gentamicin-treated colonies was less than the control colonies (Fig. 2.1) 

suggesting that the depletion of symbiont may lead to a decrease in B. neritina sexual 

reproduction.  The decreased fecundity of the symbiont-depleted (gentamicin-treated) colonies, 

as indicated by a reduction in the number of ovicells, is likely due to an effect on female 

reproductive processes.  Formation of ovicells in confamiliar bryozoan species such as 

Bicellariella ciliata, has been reported to occur in concert with the development of the ovary 

(Reed 1991; Moosbrugger et al. 2012).  It is possible that the absence of the symbiont or 

symbiont-produced bryostatins affects the formation and development of the ovary or the 

formation and maturation of oocytes in the ovary in B. neritina, resulting in the observed reduced 

fecundity phenotype.  Microscopic investigation of anatomical differences during formation and 

development of the ovary or ovicell, or formation and maturation of oocytes during oogenesis in 

symbiotic and symbiont-reduced B. neritina could answer this question. 

PKCs have been reported to be important for initiation of maturation of the primary 

oocytes during oogenesis in various organisms (Eckberg 1988; Colas and Dube 1998; Kalive et 

al. 2010).  Treatment of surf clam Spisula spp. oocytes with phorbol esters, cPKC and nPKC 

activators (Nishizuka 1984) similar to bryostatins, was reported to stimulate germinal vesicle 

breakdown (GVBD), a key event in the initiation of the meiotic maturation of the primary 
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oocytes (Dube et al. 1987; Eckberg et al. 1987).  Similarly, PKCs were shown to induce GVBD 

in the annelid Chaetopterus spp. (Eckberg and Carroll 1987; Eckberg et al. 1996), and in 

vertebrate oocytes (Aberdam and Dekel 1985; Stith and Maller 1987; Kwon and Lee 1991; Rose-

Hellekant and Bavister 1996; Mondadori et al. 2008).  Conventional PKC-α was highly 

expressed in the ovary and oocytes of the starfish Asterina pectinifera (Miyake et al. 2009).  

While there is little information regarding the molecular regulation of bryozoan reproduction, the 

results suggest that PKC is potentially involved in B. neritina reproduction, especially in oocyte 

maturation, similar to what has been shown in evolutionarily diverse organisms.  I hypothesize 

that symbiont-produced bryostatins act as a signal for B. neritina reproduction via PKC 

activation.  The hypothesized role of PKC-bryostatin interaction in the regulation of activity of 

host PKC isozymes was investigated by comparing host PKCs in presence and absence of the 

bryostatin-producing symbiont.  I compared PKC isoforms in total protein extracts from 

symbiotic, naturally symbiont-reduced, and gentamicin-treated B. neritina colonies by Western 

blot analysis.  There was a clear difference between the cPKC (α, β, γ) proteins that are activated 

by bryostatins, in symbiotic hosts, and those that are from antibiotic cured and naturally 

symbiont-reduced animals.  The lower molecular protein band in extracts from the symbiotic 

colonies is a potential cPKC degradation product following bryostatin activation.  In contrast, the 

similarity of the aPKC protein profiles among all of the types of animals is expected, as the 

aPKCs lack a C1b binding domain and are not affected by the presence of bryostatins.  Taken 

together, these results suggest that symbiont-produced bryostatins affect PKC activity, which 

may affect some host physiological processes, including reproduction.  To confirm the 

importance of bryostatins for host fecundity, further experimentation with bryostatins and 

symbiont-reduced colonies is needed. 
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In order to better understand the effects of bryostatin on reproduction without the 

confounding effects of host-symbiont coevolution or alternative symbiont effectors, I measured 

the effects of differing concentrations of bryostatin 1 on the PKC proteins and fecundity in a 

naïve invertebrate, C. elegans.  Two independent studies have demonstrated the effects of the 

phorbol ester, PMA, on the morphology and physiology of C. elegans (Lew et al. 1982; Miwa et 

al. 1982).  In both studies, exposure to phorbol ester (0.1 µg/mL) resulted in smaller sized 

animals, reduced numbers of eggs laid, and uncoordinated movement of the worms.  The 

molecular target of PMA was identified to be tpa-1 (Tabuse and Miwa 1983; Tabuse et al. 1995) 

that encodes two proteins, TPA-1A and TPA-2B, with high homology to the nPKCs δ and θ 

(Tabuse et al. 1989; Sano et al. 1995).  Bryostatin 1 has a higher binding affinity to PKC than 

phorbol esters (Kraft et al. 1986; De Vries et al. 1988), but its effects on reproduction in C. 

elegans have not been studied.  Exposure of C. elegans to different concentrations of bryostatin 1 

and PMA resulted in significantly decreased fecundity at high concentrations (Fig. 2.4).  

Reduced fecundity in C. elegans with bryostatin exposure contrasts with the fecundity results of 

B. neritina.  This would be expected in an organism that has not co-evolved with bryostatin or 

bryostatin-producing symbionts.  Western blot analysis of PKC isoforms in C. elegans exposed 

to bryostatin 1 and PMA showed differences in bryostatin-activated cPKCs (α, β, γ) compared to 

control samples, while no difference was seen for aPKC ζ (not activated by bryostatins) (Fig. 

2.5a and c).  The western blot analysis of PKC isoforms in C. elegans exposed to bryostatins 

supports the bryostatin-PKC interaction in this evolutionarily diverse model organism. 

Host-symbiont interactions and coevolution are important for the establishment and 

maintenance of diverse mutualistic partnerships (Ruby 2008; Schmidt 2008; Chaston and 

Goodrich-Blair 2010; McFall-Ngai et al. 2013).  These relationships can be established through 
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vertical transmission of the symbiont from parent to offspring during host reproduction, or by 

horizontal acquisition of the symbiont by the host from the environment (Moran 2006).  Benefits 

of the association ensure maintenance of the relationship in both vertically and horizontally 

transmitted symbiosis by enhancing the fitness of host and symbiont, and efficient transmission 

of symbiont to the host next generation to increase the frequency of infected hosts, in the case of 

vertically transmitted symbionts (Moran 2006).  Symbiont-dependent host reproduction may 

play a key role in maintenance of the association and guarantees persistence of the symbiont in 

the host population.  The intracellular bacterium, Wolbachia sp., is a well-studied reproductive 

parasite in arthropods that causes manipulation of host reproduction to enhance its own 

transmission [reviewed in (Stouthamer et al. 1999; Werren et al. 2008; Engelstaedter and Hurst 

2009)] and in some cases, is essential to promote host oogenesis and oocyte maturation (Dedeine 

et al. 2001; Zchori-Fein et al. 2006; Pannebakker et al. 2007).  The mutualistic association 

between the plant-pathogenic fungus Rhizopus microsporus and its bacterial symbiont, 

Burkholderia rhizoxinica, is maintained by strict dependence of fungal sporulation upon the 

endosymbiont type III secretion system (Partida-Martinez et al. 2007; Lackner et al. 2011).  The 

symbiotic association between B. neritina and its uncultured symbiont “Ca. Endobugula sertula” 

is thought to be established via vertical acquisition of the symbiont cells by the growing embryo 

within the maternal ovicell (Sharp et al. 2007).  As the symbiont-produced bryostatins participate 

in the chemical defense of the vulnerable host larvae (Lindquist 1996; Lindquist and Hay 1996; 

Tamburri and Zimmer-Faust 1996; Lopanik et al. 2004b), the host, B. neritina, would need to 

ensure presence of symbiont-mediated defense for its offspring before expending its resources 

into reproduction.  I hypothesize that the interaction between B. neritina and its symbiont has 

evolved such that host reproduction is dependent on the symbiont, bryostatins, or both to 
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increase frequency of symbiont infected host larvae and survivability of host larvae in the 

environment. 
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Table 2.1  Primers used in this study. 

 

Name Sequence (5’3’) Target 
Product 

size (bp) 
Purpose Reference 

BnCOIf ACAGCTCATGCATTTTTA 
B. neritina COI gene 469 PCR 

(Linneman et al. 

2014) 
BnCOIr CATTACGATCGGTTAGTAG 

Bn240f TGCTATTTGATGAGCCCGCGTT 
"Ca. Endobugula 

sertula" 16S 
1013 PCR 

(Haygood and 

Davidson 1997) 
Bn1253r CATCGCTGCTTCGCAACCC 

BryS_576f CATTGACAGTCAGTTCTTCATTGA 
bryS 198 PCR 

(Linneman et al. 

2014) 
BryS_774r CTTTTCCAGATTGAGTTTTTAACCA 

EBn16S_254f TACTCGTTAACTGTGACGTTACTC 
"Ca. Endobugula 

sertula" 16S 
389 

PCR and 

qPCR 

(Mathew and 

Lopanik 2014) 
EBn16S_643r ACGCCACTAAATCCTCAAGGAAC 

BnCOIQf TTGATACTGGGGGCTCCTGATATG 
B. neritina COI gene  155 qPCR 

(Lopanik et al. 

2004b) 
BnCOIQr AAGCCCGATGATAAGGGAGGGTA 
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Table 2.2  Symbiont quantification of Bugula neritina colonies.   

Symbiont titer in gentamicin-treated (T) and control (C) B. neritina colonies was investigated by 

quantitative real time PCR using symbiont-specific 16S rRNA gene primers and B. neritina 

cytochrome c oxidase I (COI) primers.  Since CT value is inverse to the amount of template 

DNA, a higher ratio of CT (16S) to CT (COI) indicates less symbiont DNA per unit of host DNA.  

The asterisks denote statistically significant difference in the ratio of symbiont DNA normalized 

to host DNA.  SD= standard deviation from the mean. 

 

Plate CT(16S)  

CT(COI) 

SD 

C1 0.88 0.18 

C2 1.15 0.07 

C3 0.93 0.22 

C4 1.02 0.03 

C5 1.04 0.19 

C6 0.95 0.02 

T1 1.58* 0.12 

T2 1.66* 0.03 

T3 1.74* 0.09 

T4 1.28 0.08 

T5 1.26 0.02 

T6 1.26 0.03 
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Figure 2.1  Fecundity assessment in antibiotic treated Bugula neritina.   

a Size as measured by the number of bifurcations, b fecundity as measured by the number of 

ovicells, and c the fecundity normalized to colony size of control and antibiotic treated colonies.  

The asterisks denote significant differences (Mann-Whitney U-test, Welch ANOVA, P < 0.05) 

and SE = standard error of the mean. 

 

 

Figure 2.2  PKC expression in antibiotic treated Bugula neritina.   

Western blot analysis of a conventional PKCs (α, β, or γ) and b atypical PKC ζ in total protein 

extracts of control (symbiotic) and treated (gentamicin-treated) B. neritina colonies.  Positive 

control (+) = NIH/3T3 whole cell lysate.  The box in a shows a lower molecular weight cPKC 

(α, β, or γ) protein fragment (25 kDa) detected only in the total protein extracts from symbiotic 

colonies. 
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Figure 2.3  PKC expression in naturally symbiont-reduced Bugula neritina.   

Identification of B. neritina Type S and N genotype by restriction digestion of B. neritina 

mitochondrial COI gene amplicon with a Dde1 and b Hha1, respectively.  c Determination the 

symbiotic status of the colonies by PCR detection of bryostatin biosynthetic gene cluster, bryS.  

L = DNA molecular weight ladder.  Western blot analysis of d conventional PKCs (α, β, or γ) 

and e atypical PKC ζ in total protein extracts of S+ (Type S symbiotic), S- (Type S aposymbiotic 

), N+ (Type N symbiotic), and N- (Type N aposymbiotic) B. neritina colonies.  Western blot 

positive control (+) = NIH/3T3 whole cell lysate.  The box in d shows a lower molecular weight 

cPKC (α, β, or γ) protein fragment (25 kDa) detected only in the total protein extracts from 

symbiotic colonies. 
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Figure 2.4  Effect of PKC activators on Caenorhabditis elegans.   

Progeny of C. elegans exposed to different concentrations of PKC activator molecules, phorbol 

12-myristate 13-acetate (PMA) and bryostatin 1 (Bryo 1).  Dimethyl sulfoxide (0.1% DMSO) 

was the diluent control.  The letters denote significant differences in number of progeny between 

treatments (one-way ANOVA, Tukey’s HSD, P < 0.05) and SE = standard error of the mean. 
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Figure 2.5  Western blot analysis of PKC proteins in Caenorhabditis elegans exposed to PKC 

activators.   

a Western blot analysis of conventional PKCs (α, β, or γ) in total proteins extracts of C. elegans 

exposed to 0.1 µg/mL of PKC activators and DMSO control.  b Relative intensity of lowest 

molecular weight cPKC (α, β, or γ) protein fragment (denoted by arrow in a) among the 

treatments.  The letters indicate significant differences (P < 0.05, one-way ANOVA, Tukey’s 

HSD).  c Western blot analysis of atypical PKC ζ in total proteins extracts of treated C. elegans.  

Western blot positive control (+) = NIH/3T3 whole cell lysate. 

  

a b 

c 
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3 TRANSCRIPTOME ANALYSIS OF BUGULA NERITINA 

3.1 Introduction 

The transcriptome is defined as the complete set of transcripts in a cell or population of 

cells at a given time.  The term was first used by Charles Auffray in 1996 (Piétu et al. 1999).  

Knowledge of the transcriptome is necessary to understand the dynamics of expression of gene 

transcripts and its regulation under different conditions such as differentiation, development, 

physiological changes, environmental influence, disease, etc.  Complementary DNA microarray 

(Schena et al. 1995) and RNA sequencing (RNA-seq) (Mortazavi et al. 2008) are the most 

popular techniques used in transcriptomic studies to quantify the expression levels of genes.  

However, RNA-seq has gained an upper hand due to its key advantages.  First, prior knowledge 

of gene transcripts and genomic sequence is not required for RNA-seq.  Therefore, it is the 

method of choice for transcriptomic studies in non-model organisms, which generally lack 

extensive genetic information (Ekblom and Galindo 2011).  Second, RNA-seq is less time 

consuming and efficient because transcriptome characterization (i.e. identification of expressed 

gene transcripts) and quantification of genomewide expression patterns can be achieved in a 

single high-throughput assay (Wang et al. 2009).  A third advantage of RNA-seq over microarray 

is its ability to detect expression levels in novel gene transcripts (Nielsen et al. 2006).  Another 

advantage of RNA-seq methods is very low background noise and no cross-hybridization 

encountered during the assay compared to fluorescently labeled hybridization probes in 

microarray method (Okoniewski and Miller 2006; Casneuf et al. 2007).  RNA-seq approach has 

very high resolution to a single base,  as well as has a broad dynamic range to successfully detect 

subtle expression differences in rare and highly expressed gene transcripts (Wang et al. 2009; 

Ekblom and Galindo 2011).  Furthermore, technological advancements in next generation 
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sequencing (NGS) has allowed sample multiplexing and significant reduction in RNA-seq cost 

(Shishkin et al. 2015). 

The above advantages of RNA-seq has revolutionized transcriptomic studies in the fields 

of ecology and evolution in non-model organisms and wild populations (Ekblom and Galindo 

2011; Alvarez et al. 2015).  The first NGS-based transcriptomic study in a non-model species 

was carried out on the wasp Polistes metricus (Toth et al. 2007).  Currently, transcriptome 

characterization and gene expression profiling in non-model species are the most common 

application of NGS-based RNA-seq studies (Ekblom and Galindo 2011).  Transcriptome 

characterization is done by in silico mapping of short sequence reads generated by NGS to an 

existing genome or de novo assembly to a draft transcriptome when genome information is not 

known, as in the case of non-model organisms (Vijay et al. 2013; Wolf 2013).  Though 

characterization of transcriptome in non-model species is descriptive in nature, it serves as an 

important background for further research and ecological studies to identify the cause (Ellegren 

2008; Andrew et al. 2013).  In addition to identification of expressed gene transcripts, RNA-seq 

approach also allows quantification of transcript expression.  This is done by using 

computational algorithms to count the number of reads mapped to a transcript and normalizing 

for factors such as transcript length, total number of reads, read size, and sequencing biases 

(Wolf 2013; Conesa et al. 2016).  Furthermore, integrating RNA-seq with established targeted 

methods, such as qPCR and microarray, enable cost-effective large scale transcriptomic studies 

in to investigate interindividual and interpopulation variance in the expression of ecologically 

important gene transcripts (Alvarez et al. 2015; Todd et al. 2016). 

Due to limited genetic information available for B. neritina, RNA-seq was used to 

characterize B. neritina transcriptome and to identify gene transcripts whose expression is 
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potentially dependent on the symbiotic association with “Ca. Endobugula sertula.”  Specifically, 

genes involved in the regulation of GVBD and initiation of oocyte maturation were investigated. 

3.2 Methods 

3.2.1 Collection of Bugula neritina samples and RNA preparation for Illumina sequencing 

Mature colonies of B. neritina attached to floating docks were collected from Radio 

Island Marina, Radio Island, NC, USA (34°43'N, 76°41'W) in November 2011 and March 2012, 

as well as from Oyster public docks, Oyster, VA, USA (37°17'N, 75°55'W) in June 2012.  The 

colonies were cleaned with 0.45µm filtered seawater and zooids were carefully dissected from 

individual colonies separately to avoid any cross contamination.  A portion of the excised zooids 

were preserved in RNAlater RNA Stabilization Solution (Ambion, Life Technologies, Carlsbad, 

CA, USA) at -20°C for genomic DNA extraction, while the remaining zooids were preserved in 

TRIzol reagent (Invitrogen, Carlsbad, CA, USA) at -80°C for total RNA extraction.  Genomic 

DNA was isolated from the preserved zooids using ZR Fungal/Bacterial DNA MiniPrep (Zymo 

Research, Orange, CA, USA) and used for the determination of the colony genotype and 

symbiont status as described above.  Total RNA was extracted from the TRIzol-preserved zooids 

of the identified colonies as per the manufacturer’s instructions.  The total RNA was further 

purified (RNeasy Mini kit, Qiagen, Valencia, CA, USA) and treated with RNase-free DNaseI to 

remove any contaminating DNA molecules.  The integrity of the RNA was determined using an 

Agilent 2100 Bioanalyzer system (Agilent Technologies, Santa Clara, CA, USA).  The purified 

total RNA was processed according to standard operating procedure for preparation of adaptor-

ligated cDNA library for sequencing (TruSeq RNA Sample Preparation Kit, Illumina, San 

Diego, CA, USA).  The adapter-ligated cDNA library was hybridized to the surface of Illumina 

flow cell and sequenced on an Illumina sequencing platform (Illumina HiSeq 2500, San Diego, 
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CA, USA) at the Integrated Genomics Facility, Georgia Regents University Cancer Center, 

Augusta, Georgia, USA. 

3.2.2 Assembly of sequenced Illumina reads 

The paired-end reads were assembled de novo using Trinity software package (version 

r2013-02-25) (Grabherr et al. 2011) and the assembled contigs were annotated by performing 

blastx searches (Translated Query-Protein Subject BLAST 2.2.26+) against the Swiss-Prot 

database.  The total number of reads mapped to a contig was normalized for sequencing depth 

and assembled contig length by computing fragments per kilobase of transcript per million 

mapped reads (FPKM) values using the IsoEM algorithm, which is an expectation-maximization 

algorithm to calculate frequency of gene isoforms in the RNA-seq data (Nicolae et al. 2011).  

Differential expression of annotated transcripts in the symbiotic and symbiont-reduced Type S B. 

neritina samples was determined using the IsoDE package.  The IsoDE utilizes the FPKM values 

estimated by the IsoEM algorithm to determine fold change by bootstrapping to determine 

differential gene expression of the transcripts (Al Seesi et al. 2014). 

3.3 Results 

3.3.1 Genotyping and symbiont screening of Bugula neritina colonies 

Randomly collected mature colonies of B. neritina were genotyped by restriction 

digestion of the of the B. neritina mitochondrial COI gene amplicon with restriction enzymes 

DdeI and HhaI.  All the colonies collected belonged to Type S genotype as indicated by DdeI 

digested mitochondrial COI gene amplicons (Fig. 3.1b).  The symbiotic status of the colonies 

was determined by PCR amplification of symbiont-specific 16S rRNA and a portion of the 

bryostatin biosynthetic gene cluster, bryS (Fig. 3.1c and d).  All the colonies collected from NC 

were symbiotic, while the colony collected from VA lacked the symbiont.  Total RNA was 
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purified from the above colonies and the quality of the RNA isolated was determined to have a 

recommended RNA Integrity Number (RIN) value greater than or equal to 8.  The B. neritina 

samples used for high-throughput sequencing included: Type S symbiotic, Type S aposymbiotic, 

Type S symbiotic ovicell-bearing, and Type S symbiotic ovicell-free. 

3.3.2 De novo assembly and differential expression of Bugula neritina transcriptome 

The de novo assembly of the reads was performed on the union of all the reads obtained 

from the four B. neritina samples sequenced by Illumina paired-end sequencing.  A total of 

221,818,850 paired reads with an average length of 50 bp per read were assembled into contigs 

by using Trinity software.  We obtained 166,951 contigs after filtering with RSEM isopct-

cutoff=1.00.  Out of which 76,769 were ORFs, 37,026 BLAST hits of translated ORFs against 

the SwissProt database, and 12,067 annotated protein hits.  This indicates 59.37 % ORFs hits and 

63.35 % contigs hits.  Using IsoDE, 1184 transcripts were identified to be over-expressed (fold 

change ≥ 2) in aposymbiotic Type S B. neritina compared to the symbiotic colony, while 301 

transcripts were under-expressed (fold change ≤ 0.5) in the aposymbiotic colony.  Specifically, 

genes involved in the regulation of GVBD of and initiation of oocyte maturation were identified 

(Table 3.1).  Functional annotations were assigned to the differentially expressed transcripts 

using the online KEGG Automatic Annotation Server (http://www.genome.jp/kegg/kaas/).  The 

KEGG Orthology (KO) annotations were queried against closely related nematodes and 

flatworm in KEGG genes database.  The KO annotation were performed for 1184 over-expressed 

(Fig. 3.2) and 301 under-expressed (Fig. 3.3) transcripts. 

3.4 Discussion 

Because extensive genetic information for B. neritina is lacking, the host bryozoan 

transcriptome in presence and absence of the symbiont, “Ca. Endobugula sertula,” was 

http://www.genome.jp/kegg/kaas/
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characterized by high-throughput RNA-seq method.  Additionally, the expression of the 

identified transcripts among the bryozoan host was computationally quantified and compared 

using IsoEM and IsoDE programs, respectively.  The genomic sequence of genes involved in the 

regulation of GVBD and initiation of oocyte maturation in B. neritina were identified and their 

expression among the host colonies was determined for gene expression study performed in 

section 4 below. 

All the differentially expressed gene transcripts were assigned to functional categories by 

KEGG annotation.  More than 120 transcripts over-expressed in the aposymbiotic colony 

belonged to signaling molecules and signal transduction, suggesting that presence of the 

symbiont potentially downregulates many of the host bryozoan’s molecular signaling processes.  

A few of these highly expressed transcripts were closely related to protein flightless-1 

(m.27690), caltractin (m.534), guanylate cyclase (m.6535), autophagy-related protein 8 

(m.4463), follistatin-related protein (m.21891), histone acetyltransferase (m.17341), phototropin 

(m.6157), laminin (m.14155), P2X purinoceptor (m.27211), metabotropic glutamate receptor 

(m.2882), and gamma-aminobutyric acid receptor (m.12980).  The role the above transcripts in 

the host-symbiont interaction are unknown and require further investigation. 

The second most expressed transcripts in the aposymbiotic B. neritina were the ones 

involved in infectious diseases (83 transcripts).  This is expected because in the symbiotic host 

the expression of these gene transcripts would be repressed to allow successful infection and 

maintenance of the symbiont within the host.  The expression of transcripts encoding lysozyme 

(m.27152 and m.22675) was reduced in the symbiotic host.  Lysozymes are antibacterial 

compounds that damage bacterial cell wall by hydrolysis of peptidoglycan and therefore function 

as defense against bacterial infections (Callewaert and Michiels 2010).  Down-regulation of 



42 

lysozyme gene expression upon bacterial symbiont infection has been reported in other 

symbiotic systems.  In symbiotic association between Wolbachia and female parasitoid wasp 

Asobara tabida, lysozyme gene is down-regulated in the symbiont-infected ovaries of the host 

(Kremer et al. 2012).  The expression of lysozyme gene was also found to be decreased in the 

bacteriocytes harboring primary endosymbiont of the cereal weevil Sitophilus oryzae (Vigneron 

et al. 2012).  Another transcript identified to be expressed more in aposymbiotic B. neritina 

colony is cathepsin L protease (m.28374).  Cathepsins are lysosomal cysteine proteases found in 

metazoans (Turk et al. 2000).  Cathepsin L have been proposed to play a role in controlling the 

bacterial symbiont population in symbiotic midgut organ of bean bug, Riptortus pedestris 

(Byeon et al. 2015) and in the symbiont-harboring bacteriocytes in pea aphid (Nishikori et al. 

2009).  Similarly in symbiotic B. neritina, the reduced expression of transcripts encoding 

antibacterial compounds potentially allows infection of the symbiont in the host tissues. 

Additionally, forty five transcripts with a role in host immunity were down-regulated in 

symbiotic host colony.  One of these transcripts identified is hemicentin (m.4015), which is an 

extracellular matrix immunoglobin protein involved in pathological processes and immune 

response in C. elegans (Vogel et al. 2006).  Transcript encoding hemicentin was found to be 

upregulated in Caribbean coral, Orbicella faveolata, affected by yellow band disease (Closek et 

al. 2014), which is proposed to be caused by Vibrio spp. upon rise in seawater temperature 

(Cervino et al. 2004).  In case of symbiotic B. neritina, the down-regulation of genes involved in 

immunity and immune response is potentially a host adaptation to reduce immune defense 

processes against the symbiont. 
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Table 3.1  Transcriptomic analysis of genes involved in germinal vesicle breakdown (GVBD) 

and initiation of oocyte maturation. 

Fold change (FC) of gene expression in aposymbiotic Type S B. neritina compared to symbiotic 

animal. 

 

Contig Annotated gene FC 

23292 Cyclin dependent kinase 1(CDK1/Cdc2/p34
cdc

) 0.78 

3692 Cyclin B 0.68 

3823 Cyclin B1 7.58 

24871 Cyclin B3 0.52 

25078 Wee1 kinase 0.66 

11412 Myt1 kinase 0.85 

4502 Cyclin dependent kinase 7 (CDK7) 0.93 

12711 Cyclin H 0.83 

1582 CDK-activating kinase assembly factor Mat1 0.98 

4532 Serine/threonine-protein kinase Mos 1.02 

10546 

Mitogen activated protein kinase (MAPK) 

1.17 

10547 1.22 

20059 1.04 

18385 Calcineurin 1.36 

27705 Anaphase promoting complex/Cyclosome (APC/C) 7.75 
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Figure 3.1  Genotyping and symbiont screening of Bugula neritina colonies. 

Identification of B. neritina Type N and S genotype by restriction digestion of B. neritina 

mitochondrial COI gene amplicon with a Hha1 and b Dde1, respectively.  c Determination the 

symbiotic status of the colonies by PCR amplification of c symbiont 16S rRNA gene, and d 

bryostatin biosynthetic gene cluster, bryS.  L = DNA molecular weight ladder, 1 = Type S 

symbiotic ovicell-bearing, 2 = Type S symbiotic ovicell-free, 3 = Type S symbiotic, and 4 = 

Type S aposymbiotic B. neritina colony. 
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Figure 3.2  KEGG orthology annotations of over-expressed transcripts (fold change ≥ 2) in 

aposymbiotic Type S Bugula neritina. 
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Figure 3.3  KEGG orthology annotations of under-expressed transcripts (fold change ≤ 0.5) in 

aposymbiotic Type S Bugula neritina. 
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4 ROLE OF SYMBIONT IN SEXUAL REPRODUCTION OF MARINE BRYOZOAN 

HOST, BUGULA NERITINA 

4.1 Introduction 

The nutritional and defensive benefits of mutualism provide a competitive advantage to 

the partners with respect to their survival and fitness.  Therefore, the partners in mutualism have 

evolved a variety of specific mechanisms to ensure successful establishment and maintenance of 

the association in the succeeding generations that could be achieved by efficient transmission of 

symbiont in host generations increasing the frequency of infected hosts (Moran 2006).  

Symbiont-dependent host reproduction could guarantee the maintenance of the symbiont in the 

host population.  The association of arthropods with bacterial parasites, Wolbachia sp. and 

Rickettsia sp., in some cases, has been reported to have evolved into a mutualistic interaction by 

providing a fecundity advantage to infected female insects (Weeks et al. 2007; Himler et al. 

2011).  The association of Wolbachia with the female parasitoid wasp, Asobara tabida was 

demonstrated to be obligatory as the bacterium is necessary for oogenesis (Dedeine et al. 2001).  

The presence of Wolbachia was shown to inhibit apoptosis of the host’s nurse cells, thus 

allowing the oocytes to mature (Pannebakker et al. 2007).  Similarly, oogenesis in the date stone 

beetle, Coccotrypes dactyliperda, was impaired in individuals cured of the symbionts Wolbachia 

and Rickettsia (Zchori-Fein et al. 2006).  In another example of symbiont-dependent host 

reproduction, the mutualistic association between the plant-pathogenic fungus Rhizopus 

microsporus and its bacterial symbiont, Burkholderia rhizoxinica, is maintained by strict 

dependence of fungal sporulation upon the bacteria (Partida-Martinez et al. 2007).  In this 

relationship, the endosymbiont type III secretion system is necessary for sporulation of the 

fungal host (Lackner et al. 2011).  These studies illustrate the evolution of host-symbiont 
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interactions that ensure the establishment and maintenance of their association by means of 

microbial manipulation of host reproduction.  Similarly, the observed reduction in the number of 

fertile zooids containing an ovary (ovicell-bearing) in the gentamicin-treated (symbiont-reduced) 

Type S B. neritina colonies is likely to be influenced by the symbiont.  Additionally, the 

interaction of symbiont-produced bryostatins and B. neritina PKCs, as demonstrated by Western 

blot analysis, suggests that the symbiont-produced compounds may affect PKC-regulated 

cellular processes.  PKCs have been demonstrated in various studies to play a role in initiation of 

maturation of oocytes during oogenesis [reviewed in (Kalive et al. 2010; Deguchi et al. 2014)].  

Taken together, the absence of the symbiont or symbiont-produced bryostatins potentially affects 

the formation and development of the ovary or the formation and maturation of oocytes in the 

ovary in Type S B. neritina, resulting in the observed reduced fecundity phenotype. 

In gymnolaemate Bryozoa, the ovary is generally found on the basal wall inside the 

zooids, interconnected to the gut by the funicular strands.  The ovary comprises of oogonia and 

oocytes partially surrounded by follicle cells.  The female germ cell, the oogonium, undergoes an 

incomplete mitotic division to form an oocytic doublet consisting of a primary oocyte and its 

nurse cell connected by a cytoplasmic bridge (Dyrynda and Ryland 1982; Dyrynda and King 

1983; Temkin 1996; Ostrovsky 2013a).  The primary oocyte accumulates yolk reserves from the 

maternal zooid by vitellogenesis.  During oocyte maturation, the primary oocyte divides 

meiotically to become a haploid egg.  Similar to all other metazoans, the developmental 

progression of the primary oocyte is arrested at the prophase stage of the first meiotic division 

(Wourms 1987).  The nucleus of the prophase-I arrested primary oocyte (called the germinal 

vesicle) is characterized by the presence of an intact nuclear envelope enclosing the nuclear 

material and preventing resumption of subsequent cycles of meiosis.  In the gymnolaemate 



49 

suborder Flustrina to which B. neritina belongs, an intraovarian precocious sperm fusion with the 

arrested primary oocyte takes place (Temkin 1996; Ostrovsky 2013a).  Following vitellogenesis, 

the disintegration of oocytic nuclear membrane, termed as germinal vesicle breakdown (GVBD), 

occurs just before ovulation of the vitellogenic primary oocyte from the ovary to the coelom of 

the maternal zooid.  GVBD indicates the start of oocyte maturation by removing the prophase 

arrest and resumption of meiotic division of the primary oocyte.  Upon ovulation of the oocyte, 

the nurse-cell detaches from its sibling and degenerates.  The fertilized mature primary oocyte is 

then oviposited from the coelom of the maternal zooid to the ovicell.  As soon as the oocyte 

appears in the brood chamber, meiosis is completed and two polar bodies are sequentially 

separated from the oocyte, resulting in formation of the mature ovum or an egg.  The male 

pronucleus co-exists with the oocytic nucleus in the cytoplasm of the maturing oocyte during the 

entire process of oogenesis.  The next step is egg activation, followed by fusion of the male and 

female pronuclei (karyogamy) to form a zygote that begins cleavage (Reed 1991; Temkin 1996; 

Ostrovsky 2013a). 

Molecular mechanisms that regulate GVBD and oocyte maturation in bryozoans have not 

been determined.  However, in metazoans, GVBD and resumption of the meiotic cycle in 

arrested oocytes is directly governed by the activation of the maturation promoting factor (MPF) 

protein complex (Masui and Markert, 1971).  It comprises of a catalytic P34cdc kinase 

(CDK1/Cdc2) and its regulatory subunit cyclin B (Labbe et al. 1989; Dorée and Hunt 2002).  

Activation of MPF is caused by phosphorylation of its catalytic subunit CDK1 [reviewed in 

(Coleman and Dunphy 1994; Yamashita et al. 2000; Voronina and Wessel 2003; Adhikari and 

Liu 2014)].  The Thr161 residue of CDK1 is phosphorylated by CDK-activating kinase (CAK), 

which is a complex of CDK7, cyclin H, and Mat1 (Fesquet et al. 1993; Poon et al. 1993; Fisher 
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and Morgan 1994).  Additionally, stimulation of MPF is also induced by a balance of regulation 

by two genes, Wee1/Myt1 kinases and Cdc25 phosphatase.  Wee1/Myt1 kinases cause inhibitory 

phosphorylation of CDK1 at Thr14 and Tyr15 residues and subsequently inactivate MPF 

(Gautier et al. 1989; Mueller et al. 1995).  In contrast, Cdc25 phosphatase removes the 

Wee1/Myt1-mediated inhibitory phosphorylation of CDK1 to turn on MPF (Rudolph 2007).  The 

meiotic arrest of oocytes is also maintained by the anaphase promoting complex/cyclosome 

(APC/C)-mediated degradation of cyclin B, the regulatory component of MPF (Murray et al. 

1989; Morgan 1999). 

An increase in calcium ion (Ca
2+

) concentration within the oocyte has been shown to be 

the signal that triggers molecular cascades for the GVBD and initiation of oocyte maturation 

[reviewed in (Nader et al. 2013; Sobinoff et al. 2013; Costache et al. 2014; Deguchi et al. 2014)].  

The intraoocytic rise in Ca
2+

 is caused by the sperm via fertilization-induced release from the 

intracellular stores such as endoplasmic reticulum (Stricker 1999; Miyazaki 2006).  In the eggs 

of marine invertebrates, the Ca
2+

-activated phosphatase calcineurin was reported to influence 

APC/C-dependent cyclin B degradation (Levasseur et al. 2013).  Calcium-induced activation of 

PKCs has been demonstrated to have a role in the GVBD and resumption of meiosis during 

oocyte maturation in various organisms.  In marine polychaete worms, Chaetopterus spp., PKC 

has been reported to be an essential regulator of GVBD by directly activating CDK1, the 

catalytic subunit of MPF (Eckberg and Carroll 1987; Eckberg et al. 1996).  In the surf clam 

Spisula spp., oocytes underwent GVBD upon treatment with phorbol esters, PKC activators 

(Nishizuka 1984) similar to bryostatins (Dube et al. 1987; Eckberg et al. 1987).  Similarly, PKCs 

were shown to induce GVBD in vertebrate oocytes (Aberdam and Dekel 1985; Stith and Maller 

1987; Kwon and Lee 1991; Rose-Hellekant and Bavister 1996; Avazeri et al. 2004; Mondadori 
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et al. 2008).  A conceptual model for molecular regulation of GVBD and initiation of oocyte 

maturation is represented in Figure 4.1. 

The symbiont-dependent reproduction in B. neritina, as indicated by a reduction in the 

number of ovicell-producing zooids (and, thus, ovaries) in Type S symbiont-reduced (antibiotic-

treated) colonies, is likely due to an effect of the bacteria on female reproductive processes.  

Formation of the ovicells in brooding cheilostomes, including confamiliar species Bicellariella 

ciliata, has been reported to occur in concert with the development of the ovary (Reed 1991; 

Moosbrugger et al. 2012).  My hypothesis is that the absence or low level of the symbiont cells 

or symbiont-produced metabolites (supposedly bryostatins) could potentially affect the formation 

and development of the ovary or the formation and maturation of oocytes in the ovary of B. 

neritina.  I tested my hypothesis by comparing host fecundity in symbiotic and naturally-

occurring symbiont-reduced Type S B. neritina colonies.  Any difference in host fecundity was 

confirmed by investigating anatomical differences in the host female reproductive system as well 

as oogenesis mode in symbiotic and naturally symbiont-reduced B. neritina colonies collected in 

spring, summer, and autumn.  Specifically, differences in the type, number, and size of oocytes 

in ovaries as well as the ovarian structure were examined in the fertile zooids of the colonies by 

histological sectioning and light microscopy.  I also assessed difference in oocyte maturation at 

the molecular level.  Genes involved in molecular regulation of the GVBD of primary oocyte and 

oocyte maturation in B. neritina were identified and expression of key genes involved these 

processes was compared in symbiotic and symbiont-reduced colonies.  Interestingly, no 

anatomical or molecular differences was found in the ovaries among the colonies, indicating that 

the symbiont does not affect the female structures and functions in the zooid, but potentially 

decreases the proportion of female zooids in the hermaphroditic colony.  However, ‘funicular 
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bodies’ containing bacteria were present in symbiotic colonies only.  Additionally, two variants 

of funicular strands were observed associated with morphologically different forms of bacteria. 

4.2 Methods 

4.2.1 Collection of Bugula neritina colonies and fecundity assessment in naturally 

symbiont-reduced colonies 

Colonies of B. neritina were collected on the NC and VA coasts between November 2014 

and December 2015 (collection sites listed in Table 4.1).  Mature colonies attached to floating 

docks at the collection sites were randomly collected by hand.  Colonies collected from the NC 

coast were temporarily housed in seawater laboratory facilities at UNC-Chapel Hill’s Institute of 

Marine Sciences in Morehead City, NC, while the colonies collected from the VA coast were 

processed immediately at the sampling site.  For genomic DNA extractions, individual colonies 

were rinsed in 0.45µm filtered sea water and young ovicell-free zooids at the extremities of a 

colony were dissected and preserved in RNAlater RNA Stabilization Solution (Ambion, Life 

Technologies, Carlsbad, CA) at -20°C.  Genomic DNA was extracted from the preserved 

colonies using ZR Fungal/Bacterial DNA MiniPrep (Zymo Research, Orange, CA), and used for 

genotyping and symbiont-screening as mentioned above.  In addition, relative symbiont levels in 

the colonies were determined by qPCR using symbiont-specific 16S rRNA primers and B. 

neritina COI qPCR primers as described above.  The qPCR reactions were performed using a hot 

start version of modified Thermus aquaticus (Taq) DNA polymerase with SYBR Green I 

fluorescent dye, and ROX passive reference dye (Maxima SYBR Green/ROX qPCR Master Mix, 

Thermo Scientific).  The reactions were performed under the following parameters: initial 

denaturation at 95°C for 10 min, 40 cycles of denaturation at 95°C for 15 s, annealing at 60°C 
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for 30 s, extension at 72°C for 30 s, and a final extension of the amplified products at 72°C for 5 

min. 

Following the genotyping and symbiont-screening by PCR, naturally occurring symbiont-

reduced Type S B. neritina colonies were identified.  The growth and fecundity of naturally 

occurring symbiotic and symbiont-reduced B. neritina colonies (n = 8, symbiotic and n = 6, 

symbiont-reduced) collected from the NC coast in May and November, 2015 were determined as 

mentioned above.   

4.2.2 Microscopic investigation of Bugula neritina 

For light microscopy, fertile (ovary-bearing) zooids with ovicells (empty as well as with 

embryos) of the adult symbiotic and symbiont-reduced colonies of both genotypes, Type S and 

Type N, were excised and preserved by fixing in Bouin’s fluid without acetic acid (3 parts of 

water saturated picric acid and 1 part of formalin) for at least 24 h at room temperature 

(Ostrovsky 1998).  All the fixed tissue samples were dehydrated in a graded ethanol series (40-

50-60-70-80-90-100%) or acidified dimethoxy-propane (DMP), and subsequently embedded in 

epoxy resin.  Serial semi-thin sections (1 μm) were produced with a Histo Jumbo diamond knife 

(Diatome, Biel, Switzerland) on a Leica UC6 Ultramicrotome (Leica Microsystems, Wetzlar, 

Germany).  Sections were stained with toluidine blue and digitally photographed with an 

Olympus DP73 camera (Olympus, Tokyo, Japan) on an Olympus BX53 compound microscope. 

4.2.3 Differential expression of Bugula neritina genes involved in oocyte maturation 

B. neritina genes involved in the regulation of GVBD and initiation of oocyte maturation 

were identified by the transcriptome sequencing study discussed previously (Table 4.2).  A 

preliminary computational analysis of differential expression of the identified genes in a 

symbiotic colony compared to a symbiont-reduced colony, as well as a review of literature on 
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previous research on oocyte maturation in metazoans, lead us to investigate differential 

expression of cyclin dependent kinase 1 (CDK1), cyclin B, and anaphase promoting 

complex/cyclosome (APC/C) genes that play an important role in GVBD and resumption of 

meiosis for oocyte maturation.  The differential expression of the genes was examined by qPCR 

analysis.  The expression of two housekeeping genes, 18S rRNA (Wong et al. 2010; Mathew and 

Lopanik 2014) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Thellin et al. 1999; 

Lee et al. 2002), was used to normalize the target gene expression level.  Primer pairs to amplify 

the genes of interest were designed using Primer 3 Plus tool (Untergasser et al. 2012) (Table 

4.3).  The PCR amplification efficiency of the primer pair for each of the genes was assessed 

with known concentrations of purified PCR amplicon standards and was found to be more than 

90%; CDK1: 95.82%, cyclin B: 100.37%, APC/C: 92.72%, 18S: 90.94%, and GAPDH: 96.7%. 

For gene expression analysis, young zooids and ovicell-bearing zooids at the tips of 

branches of the symbiotic and symbiont-reduced Type S B. neritina colonies (n = 9 symbiotic 

and 8 symbiont-reduced) were separately collected and preserved in TRIzol reagent (Invitrogen, 

Carlsbad, California, USA).  Total RNA was extracted from the samples using Direct-zol RNA 

MiniPrep kit (Zymo Research Corp., Irvine, California, USA) as per the manufacturer’s protocol 

and the total RNA was treated with RNase-free DNase I to digest any contaminating DNA 

molecules.  The RNA was cleaned and concentrated using OneStep PCR inhibitor Removal kit 

(Zymo Research Corp.), followed by RNA Clean and Concentrator-5 kit (Zymo Research Corp.).  

The concentration and purity of the RNA was measured using a NanoDrop 1000 

spectrophotometer (Thermo Scientific).  Single-stranded cDNA was synthesized from equal 

amounts of total RNA from each replicate sample using SuperScript III reverse transcriptase and 

random hexamer primers (SuperScript III First-Strand Synthesis System for RT-PCR, Invitrogen, 



55 

Carlsbad, California, USA).  A control reaction lacking the reverse transcriptase was also 

performed to ensure that the cDNA synthesized lacks any genomic DNA contamination.  An 

equal quantity of the single-stranded cDNA from each replicate sample was used as template for 

qPCR analysis using the optimized concentrations of target and reference gene primers 

(Integrated DNA Technologies, Coralville, Iowa, USA).  The qPCR reaction for each gene of 

interest was performed in triplicate as described above.  The relative expression level of the 

target genes in the symbiotic and symbiont-reduced Type S B. neritina samples was estimated by 

the comparative CT method (2
-ΔΔC

T) (Livak and Schmittgen 2001). 

4.3 Results 

4.3.1 Genotyping and symbont-screening of Bugula neritina colonies 

Adult B. neritina colonies (n = 225) were randomly collected between November 2014 to 

December 2015 from coastal NC and VA.  All the colonies were genotyped by restriction 

digestion of the B. neritina mitochondrial COI gene amplicon.  Twenty-four colonies belonged 

to Type N genotype, while the remaining 201 colonies were Type S (Table 4.1, and Fig. 4.2a and 

b).  The colonies were also screened for the presence of the symbiont by PCR amplification of 

symbiont-specific 16S rRNA and a portion of the bryostatin biosynthetic gene cluster, bryS (Fig. 

4.2c and d).  Among the Type S colonies, eleven colonies were identified to be naturally 

occurring symbiont-reduced; 3 colonies were from the November 2014 sampling, 4 colonies 

from May 2015, 2 colonies from July 2015, and 2 colonies from the November 2015 collection 

(Table 4.1).  Of the Type N colonies, 19 colonies were naturally occurring symbiont-reduced 

(Table 4.1).  The relative symbiont titer in the colonies was also estimated by qPCR by 

calculating the CT ratio (mean CT for symbiont 16S rRNA gene to mean CT for host COI gene).  

The CT ratios for the naturally occurring Type S symbiont-reduced colonies was significantly 
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higher than the Type S symbiotic colonies (independent samples Student’s t-Test, P < 0.01, Fig. 

4.3), indicating a significant reduction of symbiont load in the colonies.  Similarly, the symbiont 

titer in symbiont-reduced Type N colonies was significantly lower than that in symbiotic Type N 

colonies (independent samples Student’s t-Test, P < 0.01). 

4.3.2 Bugula neritina fecundity in naturally occurring symbiont-reduced colonies 

The growth and fecundity of the naturally occurring symbiotic and symbiont-reduced B. 

neritina colonies collected in May and November, 2015 were determined.  Both symbiotic (n = 

8) and symbiont-depleted (n = 6) adult colonies appeared to be healthy and growth of the 

colonies was statistically similar (independent samples Student’s t-test, assuming equal variance, 

P = 0.346; Fig. 4.4a).  Similar to the results observed in the control and gentamicin-treated 

colonies, both the number of ovicells per colony and the number of ovicells per bifurcation in 

naturally symbiont-reduced colonies was significantly less compared to symbiotic colonies 

(independent samples Student’s t-test, assuming equal variance, P < 0.001; Fig. 4.4b and c). 

4.3.3 Comparative anatomy of female reproductive structures in Bugula neritina 

The decreased fecundity of the symbiont-reduced colonies, as indicated by decrease in 

ovicell number, is likely due to an effect on female reproductive processes.  Microscopic 

investigation was performed to examine anatomical differences in the female reproductive 

structures and oogenesis in fertile zooids containing ovaries in the symbiotic and symbiont-

reduced colonies of both, Type S and Type N collected in different seasons.  No visually 

detectable differences were observed in symbiotic and symbiont-reduced Type S B. neritina 

colonies (Fig 4.5a and c).  The oligolecithal mode of oogenesis, having 1-2 oocytic doublets in 

the ovary, was identical in all colony types.  The small ovary is positioned in the distal half of 

zooid on its basal wall or suspended in the zooidal coelomic cavity on funicular cords beneath 
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the gut.  Oocytic doublets are enveloped by the flattened follicle cells.  A narrow subovarian 

zone was detectable in some ovaries that sometimes contained oogonia (4-5 μm).  Small ovulated 

oocytes (32-38 μm) with a light granulated cytoplasm are subsequently transported to the 

ovicells where very large larvae (230×190 μm) grow by aid of a placental analogue.  

Microscopic investigation was also performed on symbiotic and symbiont-reduced Type N B. 

neritina colonies (Fig. 4.5e and g) and the observations were similar to that in Type S colonies.  

Further, there were no differences in the oogenesis mode in the colonies collected in summer 

(July 2015) and autumn-winter (November 2014 and December 2015). 

4.3.4 Presence of ‘funicular bodies’ 

In both Type N and Type S symbiont colonies the prominent structures called ‘funicular 

bodies’ (Lutaud 1969) were found inside the zooids with and without ovaries.  The round, oval 

or elongated (sometimes, with a central constriction) ‘funicular bodies’ were generally 

positioned on the upper surface of the blind part of the stomach (caecum) (Fig. 4.5b and f).  They 

contained granular material of various densities that is surrounded by an envelope of flattened 

somatic cells of the host.  These ‘granules’ are round or oval in shape and 1.5-2 μm in diameter, 

obviously representing bacterial cells staining either in light or dark blue.  Each ‘funicular body’ 

(28‒31× 31‒65 μm) was associated with the thin funicular strands.  In a few instances, ‘funicular 

bodies’ were suspended on them inside the zooidal cavity and not connected with the gut.  In 

contrast, no such ‘funicular bodies’ were found in the Type S and Type N symbiont-reduced 

colonies. 

Also, in the symbiotic and symbiont-reduced colonies of both host types, Type N and 

Type S, the funicular system comprised of two variants of strands: thin/narrow (3-4 μm wide) 

and thick/wide (11-17 μm).  The thick cords looked like vessels or tubes with walls of flattened 
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cells and were filled with fine-granulated darkly stained material evenly or chaotically 

distributed within its lumen (Fig. 4.5c, e, and h).  We hypothesize that these granules may 

represent bacteria too, although differing in the size and appearance from those in the ‘funicular 

bodies’.  The ‘funicular bodies’ were only seen connected with the thin strands (Fig. 4.5b and f), 

however, some of which also showed a stained material inside their canal.  Structural and spatial 

relationships between thin and thick funicular strands require further study. 

Finally, smaller structures (8-10 μm in diameter, also possibly of bacterial nature) were 

found in Type S symbiont-reduced colonies (Fig. 4.5d).  They appeared as round or oval shaped 

dense accumulations of tiny dark granules reminiscent to those found in the thick funicular 

strands.  These small ‘bodies’ were placed among the thin funicular strands inside or close to 

ooecial vesicle with the placental analogue.  The ooecial vesicle is a retractile expansion of the 

zooidal wall that plugs the entrance to the ovicell.  Similar small ‘bodies’ were also seen in one 

Type N symbiotic colony, but due to its insufficient preservation, the result is inconclusive.  In 

contrast to the ‘funicular bodies’, a cellular envelope was not detected around the small ‘bodies’ 

that were only seen in the ovicells containing embryos. 

4.3.5 Differential expression of Bugula neritina genes involved in oocyte maturation 

Expression of B. neritina genes involved in oocyte maturation in symbiotic Type S B. 

neritina zooids was compared to that in symbiont-reduced colonies using qPCR analysis.  Primer 

pairs designed to amplify the genes of interest were specific and the absence of any non-specific 

amplification was confirmed by melt curve analysis during qPCR experiments, which showed a 

single dissociation peak for each primer pair.  The relative expression of B. neritina, CDK1, 

cyclin B, and APC/C genes normalized to expression of housekeeping genes, host 18S rRNA and 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was determined by the comparative CT 



59 

method (2
-ΔΔC

T).  The qPCR analysis did not show any statistically significant difference in the 

expression of the investigated genes between the colonies (n = 9 symbiotic and 8 symbiont-

reduced colonies; independent samples Student’s t-Test, P > 0.05; Fig. 4.6).  The expression of 

the genes between symbiont and symbiont-reduced colonies was also determined to be similar in 

samples collected in different seasons. 

4.4 Discussion 

Consistent with the results observed in antibiotic-treated colonies, growth and 

development of the naturally occurring symbiotic and symbiont-reduced adult B. neritina 

colonies was similar.  Also, the number of reproductive ovicell-bearing zooids per bifurcation in 

naturally occurring symbiont-reduced colonies was significantly less than the symbiotic colonies 

(Fig. 4.4) suggesting that the fecundity of Type S B. neritina is influenced by the depletion of 

symbiont and not due to an effect of gentamicin treatment.  The decreased fecundity of the 

symbiont-reduced colonies seems more likely due to an effect on female reproductive processes, 

as any effect on male reproductive process or sperm production should have been rescued by 

healthy sperm from the surrounding symbiotic colonies. 

The study showed that regardless of the season, colony type, and the abundance of 

bacteria (symbiotic vs. symbiont-reduced), the oogenesis mode is similar in all studied colonies.  

It is oligolechital with few small, sequentially produced oocytes that corroborate the data on B. 

neritina sexual reproduction in California (Woollacott and Zimmer 1972; Woollacott and 

Zimmer 1975) and the Caribbean (Ostrovsky 2013a; Ostrovsky 2013b).  Also, the expression of 

the genes involved in GVBD that leads to initiation of oocyte maturation is similar in symbiotic 

and symbiont-reduced Type S colonies.  The results indicate that both types of colonies form 

normal fertile hermaphroditic zooids that are similar with respect to the anatomy of ovary, type 
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and number of female cells, and molecular regulation of GVBD during oocyte maturation.  

However, fewer zooids in the symbiont-reduced colonies develop ovaries.  This was indicated by 

a significant reduction in number of ovicells (Mathew et al. 2016), whose formation occurs 

simultaneously with the development of incipient ovary in the fertile zooid (Silén 1945; Reed 

1991; Moosbrugger et al. 2012).  The findings suggest that the formation of zooids with ovaria in 

B. neritina colony is influenced, but not strictly dependent on the symbiont because symbiont-

reduced colonies do produce a few fertile zooids.  We hypothesize that the symbiont affects host 

reproduction at the colony level, and not on the individual zooid level.  In colonial animals such 

as bryozoans, individual zooids within a colony have diverse morphologies and functions, 

including feeding, reproduction, protection, cleaning, mechanical strength, or anchorage to the 

substrate [reviewed in (Silén 1977; Lidgard et al. 2012)].  Being integrated morphologically and 

physiologically, they still are relatively interdependent on each other in respect to their 

development and functioning.  The depletion of the symbiont in a B. neritina colony does not 

seem to affect the reproductive function of fertile zooids but the fecundity of the colony is 

reduced due to their fewer numbers. 

The only difference revealed is the presence and absence of the ‘funicular bodies’ in the 

symbiotic and symbiont-reduced colonies, respectively.  While we did not study these ‘bodies’ at 

the ultrastructural level, their bacterial nature is very likely when comparing their structure, 

position, epithelial envelope, and granular content with the data from the literature, especially 

with that from confamiliar Bugulina turbinata (Lutaud 1969).  Also, in fluorescent in situ 

hybridization (FISH) experiments with “Ca. Endobugula sertula” specific and universal 

eubacterial oligonucleotide probes, symbiont cells were observed in the funicular strands of the 

rhizoids of B. neritina (Sharp et al. 2007).  The usage of both the probes suggests that “Ca. 
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Endobugula sertula” is the only bacterium in the funicular strands.  Our findings indicate that the 

absence of the ‘funicular bodies’ that are supposedly voluminous reservoirs containing symbiont 

cells could explain why the symbiont-reduced colonies have fewer fertile zooids and ovicells.  In 

bryozoans, the differentiation of germ cells to form sex cells is governed by epigenetic factors 

(Extavour and Akam 2003).  Formation and development of gonads and gametes in bryozoan 

zooids depend on various factors including: cycles of polypide degeneration and regeneration 

(Dyrynda and Ryland 1982; Dyrynda and King 1983), age and size of the colony, and 

environmental conditions such as water temperature, day-length, density and composition of 

neighboring communities, and water flow rates [reviewed in (Reed 1991)].  We hypothesize that 

a low titer of the symbiont cells and, thus, reduced amount of secondary metabolites (such as 

bryostatins) produced by the symbiont affects an unknown molecular mechanism connected with 

production of female sex cells and, thus, ovaries, in symbiont-depleted colonies.  In our previous 

study, a difference in the profile of bryostatin-activated PKC proteins among symbiotic and 

symbiont-reduced B. neritina was observed and proposed to alter a diverse range of cellular 

processes regulated by PKC signal transduction (Mathew et al. 2016).  In the marine cheilostome 

bryozoan Celleporella hyalina (suborder: Flustrina), increased allocation to male zooids was 

reported to be a general response to exposure to a variety of environmental stress (Hughes et al. 

2003).  It was hypothesized that in hermaphroditic modular animals, stress conditions would 

promote male function because oogenesis and brooding of larvae warrants more energy and time 

than that required for spermatogenesis and sperm release.  Furthermore, swimming sperm from a 

stressed parent colony will be dispersed farther and more likely to reach favorable environment 

to mate with a healthy female.  Similarly, in B. neritina, reduction of the symbiotic or symbiont-

produced compounds may induce a stress response that results in the increased production of 
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male gonads.  The sperm released by the symbiont-reduced colony will have the opportunity to 

mate with a neighboring symbiotic female colony to produce symbiotic paternal offspring that is 

defended against predation.  To confirm this hypothesis, an additional study on the 

spermatogenic tissue production in the symbiotic and symbiont-reduced colony should be 

undertaken. 

Alternatively, the high titer of symbiont cells in symbiotic colonies could be associated 

with an increased resource allocation to the production of female gonads and would be selected 

because of the high survival of sexually-produced symbiotic larvae protected by symbiont-

produced bryostatins (Lindquist 1996; Lindquist and Hay 1996; Tamburri and Zimmer-Faust 

1996; Lopanik et al. 2004b).  Such translocation of resources among specialized modules of 

colonial marine invertebrates has been reported in many studies (Best and Thorpe 1985; Lutaud 

1985; Miles et al. 1995; Best and Thorpe 2002).  Additionally, a higher proportion of fertile 

zooids and mass larval production in symbiotic colonies would also benefit the distribution and 

persistence of the symbiont cells in the next generation of the host via vertical transmission from 

the maternal zooid to the developing larva (Woollacott 1981; Haygood and Davidson 1997; 

Sharp et al. 2007).  It is estimated that each larva receives an inoculum of about 2500 symbiont 

cells within its pallial sinus from the maternal zooid (Haygood et al. 1999).  Thus, if the colony 

is devoid of sufficient amount of the symbiont, the larval production would be reduced to 

maintain the symbiont inoculum received per larva.  The low level of metabolites (bryostatins) 

produced by the symbiont could be a signal for the host to produce fewer ovaries, i.e. fertile 

zooids [(Hillman and Goodrich-Blair 2016) and references therein].  Thus, the symbiont or the 

symbiont-produced bioactive compounds could influence the host genes responsible for the germ 

cell differentiation, thus being responsible for the reproductive plasticity of the host within 
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population.  The existence of symbiotic and symbiont-reduced colonies belonging to one 

bryozoan species could also indicate an influence of some environmental constrains or an 

unknown cost associated with hosting the symbiont, but this requires further study. 

Woollacott and Zimmer (1975) observed bacteria in the canal of the funicular strands of 

B. neritina from California on the ultrastructural level, but did not find the ‘funicular bodies’ that 

were observed in this study (Fig. 4 e and f).  The close proximity of the ‘funicular bodies’ to the 

gut and the thin funicular strands, suggests that the bacteria use these reservoirs to get nutrition 

for active multiplication and growth.  Later they are transported by an unknown mechanism via 

canals of the funicular system to the placental analogue of the ooecial vesicle, where they 

accumulate as small ‘bodies’.  Numerous small ‘bodies’ found in this area were earlier described 

in confamiliar Bugulina flabellata (Ostrovsky et al. 2009).  Their bacterial nature was initially 

suggested based on the fact that they develop exclusively in the ovicells containing embryos 

(Ostrovsky 2013a), and our later ultrastructural findings of the bacterial aggregations close to 

placenta in Bugulina cf. avicularia from Adriatic Sea supported this (Moosbrugger, Schwaha, 

and Ostrovsky, unpubl. data).  Further, the FISH experiments with a symbiont-specific probe 

demonstrated the presence of “Ca. Endobugula sertula” within the funicular strands in zooids as 

well as base of the ovicell, and in the funicular cords leading to the epithelium of the ooecial 

vesicle adjoining developing larva in the brood chamber (Sharp et al. 2007).  Since the symbiont 

cells are transmitted from the ooecial vesicle to the larvae just before its release from the ovicell, 

it is likely that the small ‘bodies’ found in B. neritina are the aggregations of the symbiont cells 

gathered close to the placental analogue of the ooecial vesicle before inoculation. 

The strong morphological and size difference between the granulated content of the large 

‘funicular bodies’ and of the thick funicular strands and the small ‘bodies’ is enigmatic.  The 
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question then arises if the symbiont could exist in two forms: a large stationary form that is 

feeding and dividing in the ‘funicular bodies,’ and a small motile form that is transported via 

thick funicular strands and assemble as small ‘bodies’ near the entrance of the ovicell.  Bacteria 

are known to change their morphology during their life cycle and in response to environmental 

conditions [reviewed in (Yang et al. 2016)].  Many species of pathogenic bacteria, including 

Escherichia, Salmonella, Campylobacter, and Helicobacter have been reported to change their 

shape and behavior to assist infection and colonization in the host (Justice et al. 2014; Li et al. 

2014; Sarem and Corti 2016).  Morphological and physiological changes in Vibrio fischeri were 

observed during the initiation and establishment of the symbiotic association with Hawaiian 

bobtail squid, Euprymna scolopes (Ruby and Asato 1993).  Following the initial symbiotic 

infection, the V. fischeri cells colonized in the light organ of the squid suffered a significant 

reduction in growth rate.  Additionally, the established population of the symbiont cells in the 

light organ was smaller in size and non-flagellated.  However, the same symbiont cells when 

expelled from the light organ into the environment reverted back to normal growth rate and 

began to synthesize functional flagella.  Similarly, Rhizobium spp. that colonize the root nodules 

of leguminous plant host differentiate into nitrogen-fixing bacteroids with diverse shapes, sizes, 

and surface biochemistry depending on the bacterium-plant combination [reviewed in (Oke and 

Long 1999)].  In anaerobic protozoans, Metopus contortus and Trimyema sp., a single species of 

symbiotic archaebacterium belonging to Methanocorpusculum (methanogen) was shown to 

change its shape during its life cycle and interaction with the host hydrogenosome (hydrogen-

evolving redox organelle) (Finlay and Fenchel 1991; Embley et al. 1992; Embley and Finlay 

1993; Finlay et al. 1993).  Such morphological transformation was proposed to increase the 

surface area to volume ratio of the symbiont for an efficient uptake of hydrogen substrate 
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released by the hydrogenosome.  The observed morphological differences in the bacteria present 

in the ‘funicular bodies’ and the funicular strands in the symbiotic B. neritina colonies could be 

an adaptation for successful establishment and maintenance of the mutualistic relationship and 

requires further investigation. 
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Table 4.1  Bugula neritina sample collection sites. 

 

        Colony genotype and symbiont status 

    
Type S Type N 

Location Latitude (°) Longitude (°) Collection time(s) Symb + S       Symb + S       

Morehead City Yacht Basin 

Marina, Morehead City, NC 
34.721 -76.705 November 2014 26 3 2 1 

  
May 2015 48 4     

  
July 2015 10 0     

Public docks, Oyster, VA 37.287 -75.924 July 2015 0 2 0 18 

Beaufort docks, Beaufort, NC 34.716 -76.665 November 2015 44 0     

Town Creek Marina, Beaufort, NC 34.726 -76.665 November 2015 34 0     

Mariner's Point Marina, Salter Path, 

NC 
34.69 -76.88 November 2015 28 2     

  
December 2015     3 0 
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Table 4.2  Bugula neritina genes involved in germinal vesicle breakdown (GVBD) of primary oocyte and oocyte maturation. 

Contigs were annotated by BLASTx search against non-redundant protein sequences.  Relative expression was quantified for genes in 

bold. 

 

Contig Sequence 

Length (bp) 

Best Match Protein GeneBank 

Accession 

E-value Identity 

(%) 

23292 903 Cyclin-dependent kinase 1 (CDK1) [Crassostrea gigas] AEJ91557 2E-173 78 

3823 1239 Cyclin B2 [Allium cepa] BAE53369 9E-74 46 

12711 981 Cyclin H [Operophtera brumata] KOB67509 4E-93 48 

27705 1566 Anaphase promoting complex Cdc20 subunits [Klebsormidium 

flaccidum] 

GAQ84943 5E-173 54 

25078 1995 Wee1-like kinase [Platynereis dumerilii] CAA12274 2E-117 48 

11412 1671 Membrane-associated tyrosine- and threonine-specific cdc2-inhibitory 

kinase (Myt1) [Crassostrea gigas] 

EKC29619 1E-126 59 

4502 1065 Cyclin-dependent kinase 7 (CDK7) [Habropoda laboriosa] KOC69523 4E-163 66 

1582 1044 CDK-activating kinase assembly factor MAT1 [Anopheles darlingi] ETN62227 1E-74 45 

18385 513 Calcineurin B [Mizuhopecten yessoensis] BAA94543 3E-106 89 

4532 1053 Serine/threonine-protein kinase mos [Exaiptasia pallida] KXJ12961 9E-67 44 

10547 1059 MAP kinase-activated protein kinase 2 (MAPK2) [Crassostrea gigas] EKC21781 2E-174 70 
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Table 4.3  Primers used in the study. 

 

Name Sequence (5’3’) Target 
Product 

size (bp) 
Purpose Source 

CDK1_Q1_479f ACACACATGAGGTTGTCACG 
B. neritina CDK1 gene 201 qPCR This study 

CDK1_Q1_679r TGTCTTCTTTTGGCGTTCCC 

CycB_Q1_89f TGGGCAAGTCCAATGTCAAC 
B. neritina Cyclin B 

gene 
207 qPCR This study 

CycB_Q1_295r TATTTCGGCTTTCGGTTGCG 

APC_Q1_812f AAACGGGCAAATTGCTGAGG 
B. neritina APC/C gene 255 qPCR This study 

APC_Q1_1066r AAAAGCGTGCATCCCAAAGC 

G3P_QPCR_2f GCCACTCAGAAATGCGTAGA 
B. neritina GAPD gene 77 qPCR This study 

G3P_QPCR_2r GGGATGATGTTCTGGTAGGC 

Bn18S_QPCR_f CCGGCGACGCCTTCACTGAG 
B. neritina 18S rRNA 154 qPCR (Wong et al. 2010) 

Bn18S_QPCR_r CGCGCCTGCTGCAAACCTTG 
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Figure 4.1  Conceptual model of initiation of oocyte maturation.   

Adapted from (Coleman and Dunphy 1994; Eckberg et al. 1996; Yamashita et al. 2000; 

Voronina and Wessel 2003; Levasseur et al. 2013; Adhikari and Liu 2014). 
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Figure 4.2  Genotyping and symbiont-screening of a subset of Bugula neritina colonies. 

Identification of B. neritina Type S genotype (S) by restriction digestion of B. neritina 

mitochondrial COI gene amplicon with Dde1.  b Identification of Type N genotype (N) by 

restriction digestion of the COI gene amplicon with Hha1.  Determination the symbiotic status of 

the colonies by PCR detection of c symbiont 16S rRNA gene, and d bryostatin biosynthetic gene 

cluster, bryS.  (+) = symbiotic, (−) = symbiont-reduced, C = no template negative PCR control 

sample, and L = DNA molecular weight ladder. 
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Figure 4.3  Symbiont quantification in naturally occurring Bugula neritina colonies.   

Symbiont titer in naturally occurring symbiotic and symbiont-reduced colonies estimated by 

qPCR analysis of symbiont 16S rRNA gene and B. neritina COI gene.  Since CT value is inverse 

to the amount of template DNA, a higher ratio of CT (16S) to CT (COI) indicates less symbiont 

DNA per unit of host DNA.  The asterisks denote statistically significant (independent samples 

Student’s t-Test, P < 0.01,) difference in the ratio of symbiont DNA normalized to host DNA.  

SE= standard error of the mean. 

 

 

Figure 4.4  Fecundity assessment in naturally symbiont-reduced Bugula neritina.   

a Size as measured by the number of bifurcations, b fecundity as measured by the number of 

ovicells, and c the fecundity normalized to colony size of control and antibiotic treated colonies.  

The asterisks denote significant differences (independent samples Student’s t-test, assuming 

equal variance, P < 0.001) and SE = standard error of the mean.  
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Figure 4.5  Histological sections of autozooids in reproducing colonies of Bugula neritina. 

Ovary with mature oocyte in Type S symbiotic (A), Type S symbiont-reduced (C), Type N 

symbiotic (E), and Type N symbiont-reduced (G) colonies.  In (C), ovary is suspended in the 

visceral cavity underneath of the thin (arrow) and thick funicular strands, while in (E) ovary is 

above the thick funicular strand.  ‘Funicular body’ on the wall of caecum in Type S symbiotic 

(B) and Type N symbiotic (F) colonies (cellular envelope is clearly seen).  On both images the 

‘funicular bodies’ are associated with thin funicular strand (arrows).  Part of the embryo in the 

brood cavity, along with presumed small ‘body’ (arrowhead) near placental analogue in Type S 

symbiont-reduced colony (D).  Thick funicular strand in zooidal cavity (cellular walls are clearly 

seen) in Type N symbiont-reduced colony (H).  Abbreviations: e, embryo; g, gut wall; fb, 

‘funicular body’; fs, thick funicular strand; nc, nurse-cell; ov, ovary; pl, cells of placental 

analogue; zw, zooidal wall.  Scale bars: 20 μm. 
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Figure 4.6  Relative expression of oocyte maturation genes in symbiotic and symbiont-reduced 

Type S Bugula neritina colonies.   

Expression of the genes normalized to reference genes a 18S rRNA and b GAPDH.  SE= 

standard error of the mean. 
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5 CONCLUSION 

This study extends our understanding of the role of the symbiont, “Ca. Endobugula 

sertula” in the mutualistic association with the bryozoan host.  Since symbiont-produced 

bryostatins are potent modulators of the eukaryotic signaling protein PKCs, the close association 

of the host and symbiont should result in interaction between the symbiont-produced bryostatins 

and host PKCs.  Altered PKC profiles among symbiotic and symbiont-reduced B. neritina 

indicate that the bryostatins produced by the symbiont cells within the host colony potentially 

interact with the host PKCs to affect the host cellular processes, leading to changes in host 

physiology.  A significant decrease in the fecundity of symbiont-depleted (gentamicin-treated) 

and naturally symbiont-reduced colonies suggest that the bryostatin-PKC interaction possibly 

influences B. neritina reproduction.  The results suggest that B. neritina has adapted to the 

presence of symbiont-derived bryostatins in its tissues, to the extent that the bryostatins act as a 

signal for B. neritina reproduction via PKC activation.  The decreased fecundity of the symbiont-

reduced colonies was due to a fewer number of fertile zooids possessing an ovary in the colonies, 

indicating that the presence of the symbiont or symbiont-produced bryostatin potentially 

influence the female reproductive processes in the host.  We compared the anatomy of the female 

reproductive system in symbiotic and naturally-occuring symbiont-reduced B. neritina colonies.  

We also assessed differential expression of genes regulating the oocyte maturation among the 

colonies.  Interestingly, female gonads in both types of colonies were similar anatomically, as 

well as the reproductive process examined at molecular level, indicating that the symbiont does 

not affect the reproductive structures or the function of female zooids.  I hypothesize an 

unknown role of the symbiont-produced bioactive compound in signaling the differentiation of 

germ cell into female sex cells and gonadogenesis, resulting in a fewer proportion of sexual 
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zooids in symbiont-reduced colonies.  An extensive molecular and microscopical study of cells 

and tissues in newly budding or budded zooids in the colony would reveal the molecular 

mechanism governing the development of oogenic and spermatogenic tissues in fertile zooids.  

Furthermore, studies assessing the interaction of bryostatins with the PKCs in B. neritina would 

shed light onto the evolution of host adaptation to symbiont produced bioactive metabolites, as 

well as the importance of the association to holobiont fitness. 

Additionally, anatomical investigation showed presence of bacteria in the funicular 

strands of both the types of colonies but bacteria containing structures called ‘funicular bodies’ 

were found only in symbiotic colonies.  Furthermore, the bacteria found in the ‘funicular bodies’ 

and the funicular strands appeared to be morphologically different, which could possibly be an 

adaptation for successful mutualistic association with the bryozoan host.  Identification of the 

bacteria within the funicular strands and the ‘funicular bodies’ by FISH and their morphological 

characterization by electron microscopy could answer the role of the bacteria localized in 

different tissues of the host.  Another intriguing question is the mechanism of transmission of the 

symbiont cells from the maternal zooid to the developing larva in the ovicell; specifically the 

processes that allow the symbiont cells to reach placental analogue, move in between placental 

cells, and finally penetrate rather thick cuticle covering the cellular wall of the ooecial vesicle to 

enter the brood cavity.  Answering all these questions requires complex approach combining 

microscopical and molecular methods, and our study is just the first attempt to unite them. 
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