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ABSTRACT

Age-related macular degeneration (AMD) is the primary cause of vision loss in Americans

over 65. The retinal pigment epithelium (RPE) is essential for photoreceptor cell health, and

its dysfunction is an early AMD indicator. Although RPE shape changes are observed in

AMD conditions, detailed morphological understanding is limited. State-of- the-art mor-

phometric analysis focuses on the apical surface in 2D, missing true physiological dynamics.

3D experimental observations of RPE and Corneal Endothelial Cells (CECs) which exhibit

similar patterns to RPE, revealed basal infolding and interdigitation, respectively. We de-

veloped a computational model using the Cellular Potts Model (CPM) to represent RPE

cells in 3D, investigating the biophysical mechanisms of these features. Our findings reveal

that cell-cell and cell-matrix adhesion interactions, along with geometric constraints, drive

these morphological changes. Variations in adhesion properties significantly affect cellular

morphology and organization, and their interplay with geometric constraints results in the

observed interdigitation and infolding patterns.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

The Retinal Pigment Epithelium (RPE) is a single layer of cell located between the pho-

toreceptors of the retina and blood vessels of the choroid. Figure 1.1 (adapted from (1))

shows the anatomical structure of the eye focusing on the macula to depict the position of

the RPE. In healthy eyes, the RPE is a single sheet of densely packed hexagonal cells that

performs crucial functions such as acting as a barrier between the retina and choroid, light

absorption, supplying nutrients to photoreceptors, controlling ion homeostasis, eliminating

water and metabolites from the outer retina to choroid (2). Thus, the degeneration of the

RPE can have a profound impact on visual acuity leading to several eye conditions, some

of which might cause vision impairment or total blindness (3). Some examples of eye de-

fects caused by degeneration of this organ include: retinitis pigmentosa, age-related macular

degeneration (AMD), stargardt disease (SD), choroideremia and bestrophinopathies.

Age-related Macular Degeneration (AMD) is one of the most common eye condition

caused by the dysfunction of the RPE cell. It is a leading cause of vision impairment

worldwide among persons 65 years and older in industrialized countries (4). AMD manifests

as a progressive deterioration of the macular, the central part of the retina responsible for

sharp, central vision. As an age-related disease, the prevalence of AMD increases with age

affecting approximately 19.8 million Americans aged 40 and older (5) . The earliest stage of

the disease is asymptomatic and is usually diagnosed when extracellular aggregates called
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Figure 1.1 (adapted from (1) shows the cross-sectional area of the eye with a focus on the
macular to depict the position of the retinal pigment epithelium.

drusen, small yellow deposits that accumulate beneath the retina, are detected in sufficient

size and number clinically, causing alterations in the RPE’s structural integrity (6). This

type of macular degeneration is known as the dry form of macular degeneration (7). The late

stage of AMD can be choroidal neovascularization which is the growth of abnormal blood

vessels from the choroid underneath the macular towards the outer retina. The occurrence

of this is known as the wet form of macular degeneration, it causes fluids to leak below the

retina leading to photoreceptor death and severe vision loss(6). However, the vast majority

of cases of AMD (90%) remain non-neovascular, for which no treatment exists. Late-stage
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non-neovascular AMD is termed geographic atrophy and is defined by substantial RPE loss

and progressive degeneration of the proximal photoreceptors (6). This condition significantly

impacts activities like reading, driving, and recognizing faces(1). Figure 1.2 (adapted from

(8)) shows the visual representation of a normal vision in comparison to vision affected by

age-related macular degeneration

Figure 1.2 (adapted from (8)) shows the visual representation of a normal vision in compari-
son to vision affected by age-related macular degeneration. The left side shows two children
holding soccer balls, with clear and sharp details. The right side shows the same scene but
with a blurred central area, depicting how a person with AMD might see it.

Several studies have established a link between changes in the shape and morphology of

retinal pigment epithelium (RPE) cells as early events in age-related macular degeneration

(AMD) (7). These morphological alterations in RPE cells are considered significant indica-

tors of the onset and progression of AMD. Researchers have observed that as AMD develops,

RPE cells undergo noticeable changes in their structure, which may contribute to the de-

terioration of visual function. Understanding these early changes is crucial for developing
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targeted interventions and treatments to slow or prevent the progression of AMD. Although

the dynamics behind these changes are yet to be fully understood, numerous attempts have

been made to study the shape of RPE cells and structural changes that occur during AMD.

For example, a comprehensive study on human eyes utilizing modern computational meth-

ods and high-resolution imaging by (9) highlights variations in RPE structures due to age

and topographic location. It is noted that RPE cells in the macula maintain a more regular

and hexagonal shape but become less pronounced with aging, indicating a gradual disorga-

nization in cell structure. Specifically, the comparative analysis across different age groups

in the study showed a general trend of increasing cell size and decreasing density with age.

Comparatively, another study (10) carried out on C57BL/6J mice during aging was consis-

tent with the findings in the human model specifying region-specific adaptations of RPE cells

within the mice eye and also variations with aging which could be implications for studying

diseases like age-related macular degeneration (AMD).

In a study aimed at differentiating RPE cell morphology linked to mouse genotypes and

age in (11; 12), it was found that variations in RPE cell morphology significantly correlate

with genetic differences and aging. These changes include alterations in cell size, shape, and

arrangement, underscoring that RPE morphology evolves with age which could be indicative

of AMD. This emphasizes the need to thoroughly understand these structural changes to

potentially predict and manage age-related visual disorders.

While many of these studies are presented in 2D in vitro, the complexities of the human

organ in vivo means that these models often fail to capture the full details of the RPE cells.
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Consequently, they are limited in their ability to explain the structural changes that occur

at the onset and during development of AMD.

In 2D, particularly in microscopy flat-mount images, the RPE appears as a tightly packed

mosaic of polygonal cells. These cells are predominantly hexagonal ensuring efficient coverage

without cell overlap or empty areas. However, the true structure of the RPE becomes clearer

in the 3D space. Even though there are relatively few studies detailing the 3D shape of the

RPE, recent research has begun to shed light on the complex structure of the cell, moving

beyond the limitations of 2D models and providing new insights into the morphology and

functional implications in vivo. In two of the most recent studies (13; 14), researchers

achieved comprehensive 3D reconstructions of the retinal pigment epithelium (RPE) cells

and Corneal Endothelial Cells (CECs), which exhibit similar patterns to the RPE, using

human models.

Figure 1.3 (adapted from (13)) shows the reconstruction of RPE cells using a deep learning-
assisted volumetric method based on observations from a 21-year-old male donor’s post-
mortem eye. The image highlights the complexity of the RPE basal surface, including
the presence of basal infoldings, which are critical for attachment to the underlying Bruch’s
membrane and play a vital role in the metabolic exchange necessary for photoreceptor health.

Findings in these studies revealed similar and specialized membrane structures across the
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Figure 1.4 (adapted from (14)) showing 3D reconstruction of CECs using computer-aided
design and drafting (CADD) software packages based on observations from human models.
The image highlights the hexagonal structure of apical surface with tightly joined interdigi-
tating foot processes at the basal surface.

species. The specialized structure, typically presents three different layers which includes

apical processes, apico-basal axis and the basal layer. Aside from the observed layers, the

studies also revealed the complexity of the basal surface, particularly with the presence of

infoldings in the RPE cells as presented by (13) which are critical for the attachment to the

underlying bruch’s membrane and play a vital role in the metabolic exchange necessary for

photoreceptor health. Additionally, the presence of interdigitations in the basal layers of the

CECs was presented by (14). These new findings have paved way for more research on the

three dimensional studies of the RPE in which computational models can help to reduce the

cost of carrying out expensive experimental setups.

1.2 Problem Discussion

Despite the significance of the crucial functions of the retinal pigment epithelium to maintain

the well-being of the photoreceptor, understanding its organization and dynamics poses a
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fundamental challenge. Previous research has detailed the apical-basal polarity of epithelial

cells, emphasizing their tight adhesion to neighboring cells at the apical surface, and the

formation of lateral cell-cell junction which binds tightly to the basal lamina and provides

mechanical stabilization along the apico-basal axis (15). However, the majority of the re-

search focused on the changes that occur in the RPE, especially during AMD, are conducted

in 2D, focusing solely on the apical surface of the cell, which limits our understanding of the

full cellular dynamics and interactions that occur throughout the entire cell, including the

basal and lateral aspects which are essential for comprehensive tissue modeling.

This limitation in research methodologies shows the need for innovative approaches, such

as 3D computational modeling, to capture the RPE’s full structural and functional complex-

ity. 3D models can offer insights into the interactions across the entire epithelium, potentially

revealing novel mechanisms of disease progression. Such advancements could significantly

enhance our understanding of RPE-related diseases, leading to improved diagnostic and

treatment strategies for conditions like AMD.

1.3 Purpose of the Thesis

To address the gap of study in understanding the structure and dynamics of the RPE in

3D, we embark on a novel journey to develop a comprehensive three-dimensional (3D) com-

putational model of the RPE employing the Cellular Potts Model framework. This model

intends to replicate the complex cellular dynamics and architecture of the RPE in vivo, pro-

viding insights into the mechanisms driving RPE function, dysfunction, and its interactions.
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A particular focus of our study is on exploring and simulating the dynamic expansion and

intercalation of the basal footprint of RPE cells. We hypothesize that modulating cellular

parameters, such as the target perimeter (in 2D) and surface area (in 3D) coupled with weak

cell-to-cell adhesion property not only affects the shape and behavior of individual cells but

also facilitates the formation of interdigitations or how well the collective cell structure is

preserved.

1.4 Significance of the Study

The significance of this study cannot be overstated, as it addresses critical gaps in the

current understanding of the Retinal Pigment Epithelium’s (RPE) role in the pathology of

Age-related Macular Degeneration (AMD). By employing the innovative approach of 3D

modeling using CompuCell3D, this research ventures beyond the limitations of traditional

2D models and in vitro studies, offering a more complex and dynamic exploration of RPE

behaviors and interactions within a simulated three-dimensional environment.
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CHAPTER 2

METHODS

2.1 The Cellular Potts Model

The Cellular Potts Model (CPM) is an extension of the Potts model, which was originally

developed by physicists to simulate magnets. Inheriting concepts from the Potts model,

researchers François Graner and James Glazier developed the CPM in the early 1990s to

simulate how cells can sort themselves into ordered spatial patterns. The subsequent contri-

butions of Paulien Hogeweg, who extensively applied the CPM, were instrumental in demon-

strating its versatility and effectiveness in studying various biological phenomena. Due to

Paulien Hogeweg’s significant advancements in refining and applying the model across dif-

ferent contexts, the CPM is often referred to as the Glazier-Graner-Hogeweg (GGH) model,

acknowledging the foundational work of Graner and Glazier as well as Hogeweg’s pivotal

role in its popularization (16).

The CPM is a time-discrete Markov process based on a lattice with state space X, in

which the transition probabilities are specified with the help of an energy function E (16) .

The latter is a function E : X → R that governs the dynamics of the model (17). It is the

sum of several terms that control single aspects of the cells’ interdependence structure within

specific models. The Standard CPM uses two terms which include the surface interaction

term between the cell types and also a volume constraint (18).
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Figure 2.1 Example of a generic configuration of the Cellular Potts Model. The Cells are
modeled as sets of square lattice sites. Three cells with indices (”spins”) 1−3 are defined.
The index 0 denotes the extracellular matrix (medium). J represents the contact energy
between the cell boundaries.

Consider a two-dimensional (2D) space with a variety of cells, each uniquely identified

and interacting within a structured lattice. This space, depicted in Figure 2.1, is a visual

representation of a CPM, where each site in this discretized area is marked by a value, a

numerical identifier from a set that ranges from 0 up to n, where n represents the total number

of cells modeled, suggesting the presence of different cells or the medium surrounding them.

The lattice, a meticulously arranged grid serves as the stage at which these cells operate.

These lattices can be extended into three dimensions to offer a more complex and detailed

view of cellular interactions. Interactions between cells, either of the same or different types,

are characterized by a concept known as the contact or adhesive energy, denoted by J .

This contact energy is a crucial parameter that quantifies the affinity or aversion cells have

towards each other, influencing how they adhere to, repel, or otherwise interact with their
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neighbors within the lattice. Since cells occupy specific spaces within the arranged lattices,

they inherently possess an area (or volume in 3D simulations). This spatial characteristic is

fundamental to the model, allowing for the simulation of physical constraints and behaviors

associated with cellular size and shape. As a result, the total energy governing the standard

CPM is the addition of the adhesive term and the area (2D) or volume (in 3D), where:

Es(σ) =
∑
(i,j)

Jτ(σi),τ(σj) (1 − δ(σi, σj)) , σ ∈ X (2.1)

and

Ev(σ) = λvolume

∑
σ

(v(σ) − Vtarget(σ))2 , σ ∈ X (2.2)

Es and Ev above correspond to the energy contributed by surface interaction and the

volume constraint, respectively. In addition, the parameter J is the contact or adhesive

energy between the cells having σ’s as the cell IDs, τ ’s denote cell types and i and j are

labels indicating two neighboring lattice sites respectively. λarea is the strength of the volume

constraint, v represents the actual volume and Vtarget is the volume at the target site.

Thus, the total Hamiltonian of a typical CPM is the addition of the adhesive energy

between cells and additional terms that may include volume constraints, surface tension,

and other cellular properties.



12

In the described scenario in Figure 2.1, the total energy of the dynamics is:

E = Es + Ev (2.3)

=
∑
(i,j)

Jτ(σi),τ(σj) (1 − δ(σi, σj)) + λvolume

∑
σ

(v(σ) − Vtarget(σ))2 (2.4)

Depending on the phenomenon under investigation, further parameters, and Hamiltonian

terms can be included to fully capture its applicability to real-world biological contexts.

In a CPM simulation, the cell shape dynamics are calculated using a modified Metropolis

Monte Carlo algorithm which fundamentally employs stochastic methods to minimize the

system’s free energy (19). This approach allows the temporal evolution of the cells through

probabilistic updates of site identifications or spins. The core principle of the algorithm is

to drive the system towards lower energy states, mirroring biological processes where cells

reorganize to minimize energy, thereby achieving a more stable configuration. Procedurally,

at each discrete time step, t, a lattice site x, belonging to an object interface is randomly

selected (source), and proposed to copy its spin σ(x) into an arbitrary unlike neighbor x
′

(target). The change in energy (∆E) due to this update is accepted with a Metropolis-

Boltzmann probability which is given as:

P (σ(x) → σ(x′))(t) =


e

−∆E|σ(x)→σ(x′)
T ∆E|σ(x)→σ(x′) ≥ 0

1 ∆E|σ(x)→σ(x′) < 0

(2.5)

∆E is the net variation of the total energy of the system as a consequence of the spin
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update.

∆E|σ(x)→σ(x′) = Eafter spin − Ebefore spin = E(t) − E(t− 1) (2.6)

If the energy change (∆E < 0), the index/spin change is always accepted, whereas if the

energy change (∆E ≥ 0), the site index change is allowed with the probability exp (−∆E
T

)

where T is a Boltzmann temperature, which does not reflect any conventional thermal tem-

perature, rather correlates to the overall system motility.

In summary, the implementation of the CPM guided by the Metropolis algorithm involves

the following steps:

1. Random Site Selection: Choose a random site i (source);

2. Neighbor ID Copy Proposal: Choose a neighboring lattice site, labeled j, adjacent

to site i, and propose to copy the ID (or ”spin”) from j to i.

3. Energy Difference Calculation: Determine the change in the system’s Hamiltonian

(∆E) that results from the proposed ID copy. This calculation assesses the energetic

consequence of altering the current configuration, encapsulating factors such as adhe-

sion between cells, volume constraints, and other cell-specific properties.

4. Decision to Accept or Reject the Proposal:

• If the new energy is lower, always accept the copy;
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• If the new energy is higher, accept the copy with probability e−
∆H
T (the Boltz-

mann temperature T determines the likelihood of energetically unfavorable fluc-

tuations).

By repeating these steps iteratively, the CPM simulates the dynamic evolution of cellular

structures over time. Each Monte Carlo Step (MCS), comprising a complete cycle through

all lattice sites, incrementally advances the simulation, enabling the detailed investigation of

tissue development, cellular patterning, and the emergent properties of complex biological

systems.

This process might take multiple Monte Carlo Time Steps (MCS) to converge on an

outcome that sufficiently resembles any observable behavior that is being modelled and

continues until all of the sites on the lattice have attempted such a change (2).

2.2 The Compucell3D (CC3D)

Compucell3D is a robust modelling environment for simulations of biocomplexity problems,

mostly at the cellular level (20). By integrating various mathematical models, CC3D serves

as a crucial tool for implementing the Cellular Potts Model. It enables users to develop

sophisticated simulations more efficiently and rapidly compared to traditional custom coding

approaches.

Just like every other computer simulation program, CC3D has an interface for writing

configuration files and codes for modifying cell types, properties and simulation parameter

and also, a player called CC3D player for carrying out the simulation process.
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The default environment where the configuration files and python script is set up and

edited is called Twedit, an integrated development environment. The ”.cc3d” is an extension

for Compucell3D programs and usually contains three (3) sub-files including a XML and two

python script files serving as the steppables and its configuration file.

The CC3D Extensible Markup Language (XML) file is a file format and mark up lan-

guage that allows user to specify details of their cell configurations or attributes such as

cell types, properties, interactions, and simulation parameters with ease. It allow for proper

configuration of the parameters involved in the Cellular Potts Model. For example, defini-

tion of cell volume, contact or adhesion energy within the cells and also, addition of other

parameters through the use of a menu called plugin which houses extended properties of

cells like growth, mitosis, etc.

The steppable file is mostly a python script or sometimes C++ scripts used for performing

operations on cells. Steppables are called at fixed intervals measured in MCS and has three

uses which include modifying cell parameters in response to simulation events, to solve PDEs

and to load simulation initial conditions or save simulation results.

The software’s user-friendly interface simplifies the process of running simulations, en-

abling users to load their XML files and initiate simulations with a simple click of a button

through the CC3D player. The CC3D player is the main simulation program interface with

menu including ”play”, ”pause”, ”forward step”, to mention a few. It is used for observing

interaction within the cellular model simulations and modelling processes. This approach not

only enhances the user experience but also accelerates the setup and execution of complex



16

biological models without excessive writing of codes.

One of the key advantages of utilizing CompuCell3D for biological modeling is its time

efficiency. Compared to coding simulations from scratch in languages like C/C++, Java, or

Fortran, setting up simulations in CompuCell3D can save significant time and effort. While

coding the same simulation in traditional languages could require at least 1000 lines of code,

CompuCell3D streamlines the process with its XML-based configuration. Additionally, the

software allows for easy modification of simulation parameters and logic without the need

for recompilation. Users can adjust settings in the XML file or Python scripts and rerun

simulations seamlessly, eliminating the time-consuming recompilation processes typically

associated with traditional coding approaches.

Furthermore, CC3D benefits from active development, maintenance, and support within

a dedicated community. With regular releases, comprehensive documentation, and user fo-

rums, CompuCell3D provides a dynamic platform for biological modeling. The software’s

versatility extends to a wide range of applications in biological research, including cell behav-

ior studies, tumor growth and invasion modeling, and developmental biology investigations.

By simulating complex biological processes such as cell sorting, chemotaxis, proliferation,

differentiation, tumor progression, and tissue development, researchers can gain valuable

insights into the underlying mechanisms driving these phenomena. Overall, CompuCell3D

stands as a valuable tool for studying biological systems, offering researchers a flexible, effi-

cient, and well-supported platform for conducting sophisticated simulations and analyses.
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2.3 Model Initialization

The introduced computational model simulates the complex structure and interactions within

the Retinal Pigment Epithelium (RPE) cell. This model, built using the CC3D platform,

focuses on the three main forces regulating cell surface mechanics - adhesion-driven tension,

cortical tension and pressure within the CPM framework. The model development occurs in

two stages. The first stage is a simple 2D representation of a single RPE cell layer represent-

ing, the Basal cell. This simplified 2D setup serves as a foundation for understanding the

fundamental cellular behaviors and interactions that contribute to basal surface expansion

and cell interdigitation. Next, the model progresses to a 3D structure consisting of three (3)

interconnected regions of the RPE cell which include apical, lateral, and basal surfaces, all

lying on the Extracellular Matrix (ECM).

(a) (b)

Figure 2.2 (a) 2D initial cell setup in CC3D with cell size 10 on a 100×100 pixel. Hexagonal
cell lattices were set for the cells, however, the initial cell layout always begin with the
square lattices before transforming to the target (hexagonal) lattice. (b) 3D initial cell layout
showcasing the apical (blue), lateral (green), basal (red) and the ECM (ash) on 120×180×37
pixel.
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The initial configuration of the cells is shown in Figure 2.2 which correspond to the 2D

and 3D models respectively.

2.3.1 2D Model Governing Equation

In the 2D case, based on the configuration of the cells involving cell contacts with themselves,

an area which keeps them from collapsing and the fact they each have a boundary separation,

three (3) basic parameters were selected which include the cell area, cell perimeter, and

contact energy or adhesion parameter. As a result, the governing energy equation within

the Cellular Potts Model is given as:

E = Ec + Ea + Ep

=
∑
(i,j)

Jτ(σi),τ(σj) (1 − δ(σi, σj)) + λa

∑
σ

(a(σ) − Atarget(σ))2

+ λp

∑
σ

(p(σ) − Ptarget(σ))2

(2.7)

Where E represents the total energy of the system which is a sum of contact energy Ec,

area elasticity energy Ea, and perimeter elasticity energy Ep. The contact energy Ec is calcu-

lated based on the adhesion parameter Jτ(σi),τ(σj) and the Kronecker delta function δ(σi, σj),

which differentiates whether cells are identical or different. The area elasticity energy Ea

penalizes deviations from a cell’s target area Atarget(σ), promoting volume consistency, while

the perimeter elasticity energy Ep manages the cell’s perimeter by penalizing deviations from

a target perimeter Ptarget(σ), helping to maintain cell shape.
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The parameters λa and λp are coefficients for the elasticity of area and perimeter, respec-

tively, which are also referred to as Lagrange multiplier, dictating the strength of penalties

for deviations from target values. Jτ(σi),τ(σj) serves as the adhesion coefficient between differ-

ent types of cells, influencing how strongly they adhere or repel each other. Negative values

of J signify attraction while positive values denotes repulsion. a(σ) and p(σ) represents the

actual area and perimeter, respectively. Atarget(σ) and Ptarget(σ) are the target area and

perimeters, respectively.

We configured the cells to occupy an area of 100×100 pixels on a hexagonal lattice within

the Compucell3D platform. The hexagonal lattice was chosen for this simulation because it

better reflects the natural packing of RPE cells, which are mostly hexagonal in vivo.

The periodic boundary condition was set at both x and y boundaries allowing the cells

to interact freely across the lattice, effectively eliminating edge effects or artificial edges and

allowing for a more naturalistic representation of RPE cellular behaviours and interactions

occurring as a continuous sheet in vivo. By periodic boundary condition, we mean a cell

moving off one edge of the lattice reappears on the opposite edge, ensuring continuous and

unrestricted movement.

By default, in Compucell3D, the cell layout always starts as a square-shaped cell lattice.

As such, the length of the cells is set at 10 with each area summing up to 100. Mathematically,

based on the hexagonal lattice type applied during the simulation and the motive of obtaining

a hexagonal shape, the target area was set at approximately 93.53 representing the actual

area of the cells that can be obtained within the initial target area of 100 for each square
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lattice layout implying that each hexagonal side is 6 using the formula for calculating the

area of a hexagon,

A =
3
√

3

2
· l2 (2.8)

where A is the area and l represents each side of the hexagon. However, this did not take

effect since the periodic boundary conditions are applied.

Based on the observed simulation preliminary results, the neighbor order was set at 1.

An increase in the neighbor order was observed to cause the cells to have a prolong time

before reaching equilibrium but resulting into the same outcome. Also, the temperature, T ,

as in the context of the Metropolis Algorithm was set at 15.0 for most of the simulation.

The temperature parameter is not a direct representation of physical temperature but is

analogous to it in the sense that it controls the level of intrinsic fluctuation or motility of

the cell membrane within the simulation.

2.3.2 3D Model Governing Equation

Building upon the 2D model, the 3D lattice adopts dimensions of 120 x 180 x 40 pixels.

Cells are arranged on a hexagonal lattice, reflecting the natural packing of RPE cells. As

identified by existing literature on RPE morphology, the model incorporates three distinct

cell layers stacked vertically: apical (top), lateral (middle), and basal (bottom) resting on

an extracellular matrix (ECM). Periodic boundary condition was also considered for both x

and y sides to allow for unrestricted shape of the cell.
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Similar to the 2D case, three distinctive physical properties of the cell surface mechanics

including volume, contact energy or adhesion parameter, and surface area are considered

within the Compucell3D simulation environment. As a result, the governing energy equation

of the system in 3D is given as:

E = Ec + Ev + Es

=
∑
(i,j)

Jτ(σi),τ(σj) (1 − δ(σi, σj)) + λv

∑
σ

(v(σ) − Vtarget(σ))2

+ λs

∑
σ

(s(σ) − Starget(σ))2

(2.9)

The neighbour order is set to be ≥ 2, making spin copy attempt possible to nearest and

second-nearest neighbors with at least a total of eight neighbours for each lattice site and

the temperature parameter T at 15.0 is maintained all through the simulation.

Throughout the simulation, the following assumptions were made in the modeling ap-

proach, including those related to cell behavior, interactions, and the environment includes:

• Cells are assumed to maintain a hexagonal shape in both 2D and 3D representations.

• The ECM is considered static and uniform throughout the simulation.

• Homogeneity of Cell Properties: It is assumed that all cells within a given layer

(apical, lateral, basal) exhibit uniform properties such as area or volume, perimeter,

and adhesion parameters.
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Parameter Value Description

2D 3D

Cell type Basal Cell Apical, Lateral,
Basal Cell &

ECM

The 2D model features a single layer of
Basal cells. In contrast, the 3D model
includes multiple layers comprising Apical,
Lateral, and Basal cells, along with an
Extracellular Matrix (ECM).

Lattice
dimensions

100x100 120 x 180 x 40 Cartesian lattice size and 3D dimension for
the cell layout

a or v 93.53 calculated based
on cell

dimension
defined in the
python script

a represents the 2D actual cell area while v
represents the cell volume in 3D

λa, λv, λp, λs 2.0 2.0 λ is a Lagrange multiplier determining the
strength of the parameters denoted in the
subscript where a is the area, v - volume, p
- perimeter and s - surface area

J Weak adhesion
to favour
complex

structures and
allow for

intercalation
within the basal

layer

Varies between
cell layers and

cell types

Cell-Cell contact adhesion energy defined
with the assumption of strong bonds
between the apical and lateral cell layer, a
bit relaxed adhesion energy and weak
adhesion energy between the lateral and
basal

T 15.0 15.0 Fluctuation parameter. Higher values make
it more likely for spin flips to occur.

Table 2.1 Initial simulation parameter within the 2D and 3D cell model setup

• Simplified Adhesion Parameters: The complexity of cell adhesion mechanisms is

reduced to a single adhesion parameter in both 2D and 3D simulations, simplifying the

diverse range of molecular interactions into a more manageable form.

• Periodic Boundary Conditions: Cells in both 2D and 3D models utilize periodic

boundary conditions, allowing them to move freely across the lattice and interact
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with cells on opposite edges. This eliminates edge effects and simulates continuous

interaction.

• The model focuses on physical properties related to cell surface mechanics, neglecting

other biological processes or cellular components for simplicity.
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CHAPTER 3

2D SIMULATION OF RPE BASAL CELL MORPHOLOGY USING
CELLUAR POTTS MODEL

3.1 Quantitative Analysis of Morphological Changes and Interdigitation in RPE

Cells

This section presents the detailed quantitative analysis of morphological changes in the

retinal pigment epithelium (RPE) basal cells simulated in a two-dimensional environment

using the Cellular Potts Model (CPM). The main focus lies on understanding how cell

morphology evolves and interdigitates under varied simulation conditions.

A two dimensional (2D) cellular potts model (CPM) was used to set up a total of a

hundred (100) squared cells on a 100×100 pixel grid to initiate the simulation. A hexagonal

cell lattice was applied through the compucell3D software to encourage the cells to evolve

from their initial square form into hexagonal shapes and mimic the biological behaviour of

the RPE cell more closely. Figure 3.1 shows the transition of these cells from the initial

square layout to hexagonal shape.

To accurately simulate interdigitation formation, we began by searching for a control

parameter that influences interactions among cells through random variation of the adhe-

sion, area and perimeter. Ultimately, we identified the perimeter, P, as the critical control

parameter corroborating findings from (21) on confluence systems.

We concentrate on investigating the effect of increasing perimeter on the cell shapes.

At the simulation’s onset, we found a minimum perimeter value, Pmin of the system which
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Figure 3.1 Transition of cells from the initial square to hexagonal shapes. (Left) Initial
configuration where each cell is shaped as a square, neatly arranged on a 100x100 pixel grid.
(right) at 250mcs depicts the state of the simulation where the cells have transformed into
irregular hexagonal shapes depicting a more biologically realistic model, which optimizes
packing and reduces boundary energy.

lies between 44.0 ≤ Pavg ≤ 45.0 due to the geometric constraints and an initial average

perimeter, Pavg ≈ 48.39. Starting with different target perimeter P0 values, we observed two

(2) distinct phases and a transition phase based on the perimeter settings.

Figure 3.2 (a) shows the temporal dynamics of the system in the first phase. For small

values of target perimeter, P0 such that P0 < Pmin, the initial average perimeter, Pavg of

the system continually minimizes to reach an equilibrium point at Pmin. In this phase, any

selected target perimeter P0 is classified as low target perimeter in which cells attempt to

adjust their pixels to facilitate the retention of the hexagonal shapes.

Above this point, we found a transition point which lies at approximately values ≥ Pavg

where selected target perimeter values overcame the geometric constraint within the cells

and shift away from their attempt in becoming a hexagonal shape to a point where some

levels of interdigitation is observed within the cell−cell boundaries. We labelled this phase

as the high target perimeter P0 phase. A consistent increase in the P0 within this phase

gradually produces complex structures indicating interdigitation between the cells.
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(a) (b)

Figure 3.2 (a) Dynamics of the cell shapes in the low P0 phase over time. Starting from
an initial square configuration (0 mcs), cells evolve through a series of Monte Carlo steps
towards more biologically realistic hexagonal shapes. At 1500mcs, most cells have adopted a
near uniform hexagonal shape. (b) The graph displays the dynamics of the average perimeter
of cells simulation over time, measured in Monte Carlo Steps (MCS) within the low target
perimeter P0 phase. It tracks the changes in average perimeter under different target perime-
ter settings (P0), specifically for P0 values of 0, 10, 20, and 30 indicating the minimization
from the initial Pavg to Pmin

The transition phase which lies between (Pmin < P0 < Pavg) is observed to produce erratic

behavior where cells’ average perimeter do not settle to a certain equilibrium point but hap-

hazardly range between values slightly lower and above the initial Pavg. Full interpretation

of this phase isn’t very well understood, however, the visual results of the simulation depict a

combination of straight edges and slight interdigitation within the cells. Figure 3.4 presents

a phase diagram summarizing the effect of increasing perimeter value at 2000mcs where the

target perimeter value P0 = 48.39 indicating a point within the transition phase where the

cell do not settle to an equilibrium point (hexagonal shape or interdigitated boundaries).
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(a) (b)

Figure 3.3 (a) Dynamics of the cell shapes in the high P0 phase over time. Starting from
an initial square configuration (0 mcs), cells evolve through a series of Monte Carlo steps
towards a complex irregular shapes with protuding and intruding boundaries representing
interdigitation within the cells (b) The graph displays the dynamics of the average perime-
ter of cells simulation over time, measured in Monte Carlo steps (mcs) within the high
target perimeter P0 phase. It tracks the changes in average perimeter under different target
perimeter settings (P0), specifically for P0 > Pavg, indicating that the perimeter constraint
is satisfied.

3.2 Adhesion Dynamics

A crucial aspect of our study involves the interplay of both adhesion energies and perimeter

constraints on cell morphology and interactions. Our initial hypothesis suggested that inter-

digitation could be achieved using weak negative adhesion (attractive force) and perimeter

constraints. However, our simulation outcomes shows otherwise demonstrating that the dy-

namics of the cell are consistent across both the positive and negative values. This result

aligns with the previous research findings by (22), which indicate that adhesion energies and
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target perimeter have a one-to-one mapping relationship.

As a result of the findings in (22), we proceeded to investigate if increasing or decreasing

the target perimeter, P0, makes up for the value of the adhesion energy. This is due to

the one-to-one mapping relationship between J and P0 suggesting that modifications in one

parameter should reflect alterations in the other. For example, if P0 is decreased, theoretically

decreasing the adhesion energy should reflect the same similar dynamics. Conversely, if P0

is increased, increasing the the target perimeter could counterbalance this effect such that

the original cell behaviour and interactions is preserved. Although, we could not account

for the scaling factor discussed in (22), it is evident that there is a one-to-one mapping

relationship between both adhesion energy, J and target perimeter, P0 and produces same

cellular dynamics irrespective of the sign of J . Figure 3.4 below shows the phase plot of

P0 versus J depicting similar cellular dynamics between negative and positive J value in

response to increasing target perimeter, P0
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(a) J = −20, P0 = 80 (b) J = −10, P0 = 80 (c) J = 10, P0 = 80 (d) J = 20, P0 = 80

(e) J = −20, P0 = 48 (f) J = −10, P0 = 48 (g) J = 10, P0 = 48 (h) J = 20, P0 = 48

(i) J = −20, P0 = 10 (j) J = −10, P0 = 10 (k) J = 10, P0 = 10 (l) J = 20, P0 = 10

Figure 3.4 Phase diagram showing the effects of increasing target perimeters (P0) vs varying
contact energies (J) on cell morphology within the Cellular Potts Model framework. A one-
to-one mapping between adhesion energy J and target perimeter P0 presenting that varying
the adhesion energy between negative values and positive values results into same dynamics.
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CHAPTER 4

SIMULATION OF THE RPE CELL IN 3D

4.1 Dynamics of Interdigitation and Infolding the Basal Cells in 3D

Building on the findings from the 2D simulations discussed in Chapter 3 and the fact that

recent research on the biophysical nature of cells posits that cell shapes are a consequence of

the cell surface mechanics, we decided to extend the investigation into 3D, employing similar

computational method as in the 2D morphological structure (22). For the 3D computational

modelling, we considered the surface area, volume and adhesion energy as described in the

governing equation based on the CPM framework in chapter 2.

Our conceptual model is designed to align closely with the recent findings presented by

Lindell et. al (13) on RPE cells and the work by He, Zhiguo, et al. (14) on corneal endothelial

cells which is similar to the structure of RPEs. Their work explicitly described three layers

of the cells along the apical to basal axis and as such, we developed a three layers of the

RPE cell labelled apical, lateral and basal cell and an extra fourth layer, the extracellular

matrix which serves as a foundation supporting these cells. In addition, both research works

specifically stated a special infolding or interdigitation found in the regions of the basal cells.

While our main focus is to investigate the formation of interdigitation or interlocking and

infoldings structure in the basal cell, there is need to include the other cell layers to replicate

the 3D cellular environment more accurately.

As previously discussed, the initial configurations of the 3D models started with cuboidal

cells aligned on a 120 × 180 × 40 pixel grid. The compartmental layers include the apical,
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lateral, basal and an extracellular substrate on which these cells are resting. Unlike in the

2D set up where the cells start as squares, the 3D cells initial layout is in hexagonal packing,

reflecting a complex spatial organization observed in natural cellular environments.

Just as in the 2D process, the interdigitation process was obtained through the surface

area constraint and adhesion energy. However, the process is more complex and the adhesion

dynamics differs from what it was in the two dimensional structure. The contact energy,

J between the cell layers play crucial role in the morphology of the cell structure and as

such they are setup distinctively across the cell boundaries and cell types. Since there are

a total of four cell compartments with description from in vivo experiments stating that

the cells at the apical have tight end-to-end junctions, within our simulation, the adhesion

and surface energies within the model are adjusted such that the apical cells exhibit a tight

surface constraints that minimizes ripples, theoretically represented by lower contact energy

and reduced surface area compared to the other cells. To prevent mixing of the cells within

this layer, the repulsive contact forces were applied which is synonymous to positive J values

theoretically, ensuring that the cells maintain their integrity and spatial separation within

the simulation environment.

The contact energy between the compartment layers is carefully calibrated to prevent

the cells from mixing by setting the interaction energies in a way that discourages cells from

migrating across their designated compartments. For example, basal cells are prevented from

moving into the lateral membrane area during the simulation and likewise for the other cell

types. We investigated the interplay of J (contact energy) and the target surface area, S on
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the cellular behaviour and formation of interdigitation and infoldings within the basal cell.

Preliminary results revealed that the contact energy between lateral-basal and basal-ECM

is an important factor to consider during the simulation coupled with the increase surface

area of the cells. While the surface area for the lateral and basal cell types was correctly

adjusted to enhance formation of complex structures, four modes of adhesion energy were

explored to assess their impact on the cellular configurations and interdigitation processes.

The four modes considered for this process are summarized in the table below.

Modes Lateral-Basal Basal-Basal Basal-ECM
I J > 0 J > 0 J > 0
II J < 0 J < 0 J < 0
III J > 0 J < 0 J > 0
IV J < 0 J > 0 J < 0

Table 4.1 Adhesion energy settings for different interactions

The adhesion energy is structured such that the J values between Lateral-Basal and

Basal-ECM interactions are aligned in the same direction, either both positive or both nega-

tive. Additionally, the Basal-Basal interactions are set to consider both negative and positive

J values, which may sometimes alternate with the sign of adhesion of the other cell layers.

As detailed in Table 4.1, the adhesion energy interactions for modes I, II, and III are

structured with specific J values alignments. We began setting up as shown in Table 4.1,

adhesion energy interaction in modes 1, 2 and 3 coupled with an increase in surface area.

Considering the adhesion settings in mode 1, where the adhesion interaction is set at

positive for all J values, we observed that the cells tend to exhibit a behaviour where the

cells are discouraged from approaching each other, leading to lack of interdigitation but

presence of infoldings similar to the experimental result in (13). Figure 4.1 below shows the
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simulation result of the cells in mode 1.

(a) 0mcs (b) 20mcs (c) 100mcs

Figure 4.1 Adhesion parameter settings in mode 1 with JLateral−Basal = 10.0, JBasal−Basal =
5.0, JBasal−ECM = 10.0. At 0mcs, the cells are at their original hexagonal structure with
distinct and separated boundaries. As time progresses, the boundaries between the cells
begin to blur out and eventually lose the distinct hexagonal boundaries indicating that the
repulsive forces within the basal cells are mostly countered by other constraints thereby
resulting into infoldings in the basal cell.

In mode 2, we considered all negative J values between the basal-basal cell and also in

their interactions with the lateral cell and ECM to see if the attractive forces coupled with

the surface area constraint will produce the desired interdigitation. While some wiggling

in the cell boundaries was observed over time as shown in figure 4.2, the cells were unable

to go beyond the boundary wigglings. The same outcome is observed in mode 3 where the

negative J value is retained for basal-basal cell while the lateral-basal and basal-ECM layers

are configured with positive values. However, a slight difference involving breakage from the

cell boundaries when simulated over a longer time as displayed in figure 4.3, which might be

due to stress which exceed the structural limits.
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(a) 0mcs (b) 20mcs (c) 300mcs

Figure 4.2 Adhesion parameter settings in mode 2 configured with JLateral−Basal = −10.0,
JBasal−Basal = −5.0, JBasal−ECM = −10.0. At 0mcs, the cells are at their original hexagonal
structure with distinct and separated boundaries. The cell boundaries begin to wiggle over
time showing some form of interlockings only at the boundary.

(a) 0mcs (b) 20mcs (c) 300mcs

Figure 4.3 Adhesion parameter settings in mode 3 configured with JLateral−Basal = 10.0,
JBasal−Basal = −5.0, JBasal−ECM = 10.0. At 0mcs, the cells are at their original hexagonal
structure with distinct and separated boundaries. The cell boundaries begin to wiggle over
time showing some form of interlockings only at the boundary which later breaks off
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Finally, we configured our model using the parameters defined in model 4 where the

interaction between the basal-basal cells are set to repel each other while an attractive force

is set between their interactions with both the Lateral cell and the ECM, respectively.

(a) 0mcs (b) 50mcs (c) 150mcs

Figure 4.4 Adhesion parameter settings in mode 4 configured with JLateral−Basal = −10.0,
JBasal−Basal = 5.0, JBasal−ECM = −10.0. At 0mcs, the cells are at their original hexagonal
structure with distinct and separated boundaries. Thereafter a progression into fluid-like
with boundary wigglings which later developed into interlockings or interdigitations within
the basal cells as seen at 100mcs

As shown in figure 4.4, with this confirguration, the cells are able to overcome the geo-

metric constraint and form interdigitation similar to the result in of the single basal cell of

CECs described in (14).
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CHAPTER 5

DISCUSSION AND CONCLUSION

With the use of biophysical parameters of the CSM model under the CPM framework and

computer simulation, we have been able to gain an insight into the formation of interdigi-

tation within the basal cells of the retinal pigment epithelium (RPE). We began our model

initialization with a 2D simulation of cells under hexagonal lattice constraint to replicate the

closely packed, orderly arrangement typical of epithelial tissues. This setup was chosen to

model the natural geometric configuration of cells, particularly in the RPE. Thereafter, we

employed some of the insights gained through the 2D simulation into the 3D simulation to

investigate the formation of interdigitation and infolding surfaces in these cells when they are

in their natural form which involves layers of compartmental cells which might contribute to

their morphology. Our initial hypothesis propose that an increase in surface area where cells

are able to overcome their geometric constraints coupled with a weak adhesion are responsi-

ble for these observed structures. This hypothesis is grounded in the notion that when cells

have more surface area to contact their neighbors but are only weakly adhesive, they may

extend and interlock with each other to maximize stability and cohesion within the tissue

structure.

In the 2D simulation, the cells are setup in confluence with periodic boundary conditions

which allow each cell to retain the same area and interact continuously across the boundaries

of the simulation area. As a result of this, the dynamics of the cells presented in this study

are independent of the area of the cells. Our simulation results show that dynamics of the
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cells are dependent on the perimeter which serves as the control parameter. We found two

different regions of the dynamics and a transition point which includes a low target perimeter

regions where cells are unable to overcome their geometric constraints thereby retaining their

hexagonal structure and also, a high target perimeter region, usually greater than the average

perimeter of the cells in which interdigitation occurs. The transition phase lies between both

the low P0 and high P0 region where some forms of instabilities occur - cells fluctuating

between forming hexagonal structure with straight edges and wiggling edges. We observed

that an increased surface area which maximizes the average perimeter of the total system

beyond the minimum perimeter Pmin produces the wiggling boundaries and eventually leads

to interdigitation. Building on our earlier findings and to refine our initial hypothesis, our

observations indicate that within the CPM framework, while the perimeter acts as a control

parameter, a decrease in the adhesion strength leads to similar dynamics as increasing the

target perimeter, P0. In addition, there is no difference between using a positive or negative

J value.
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(a) (b)
Figure 5.1 displays two key relationships of the 2D simulations, showcasing how variations
in the target perimeter, P0 influences cell morphology. (a) is a trendline summarizing the
average perimeters of the cells against P0. P0values below 48.39 shows converges at the
minimum average perimeter of the system, thereby cells retaining their hexagonal cells. P0

values greater than this point are able to cause the average perimeter to increase, depicting
an increased wiggle behaviour in cell boundaries and consequent interdigitation (b) presents
a correlation analysis for target perimeters above the threshold, highlighting a linear increase
in average cell perimeter as P0 increases.

Figure 5.1 (a) summarizes the dynamics of the system in the 2D simulation environment,

highlighting the effect of increasing target perimeter, P0 on the cell morphology. For target

parameter at 0 - 40 which represents the lower P0 regions, it is noticed that the cells average

perimeter is constant thereby retaining their hexagonal shapes with straight edges. Further

increase in the P0 parameter at values greater than Pmin or the initial saturation level causes

the cells average perimeters to increase resulting into cell boundary wiggles and consequent

interdigitation. Relationship between the average perimeter of the system at high P0 region

shows a linear correlation plot with positive slope indicating that as P0 is increased beyond

the minimum geometric constraint, the cells are able to expand their boundaries accordingly
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as shown in figure 5.1 (b).

We extended our work to explore the three-dimensional (3D) model, applying insights

gained from the 2D simulations to a more complex, 3D context. A three (3) layer of com-

partmental cells including apical, lateral and basal with an additional extracellular matrix

(ECM), which serves as a foundational support. We hypothesize that adhesion strength be-

tween the layers of the cells decreases from the apical to the ECM with the apical exhibiting

tight surface constraint that minimizes ripple, cells in the lateral region showing noticeable

effects of ripples. The basal layer, with the weakest adhesion strength among the three, ex-

hibits pronounced tendencies for ripple effects and interdigitation. Unlike in the 2D model,

the 3D model revealed that while an increase in the surface area of the cells are responsible

for promoting interdigitation, the adhesion interactions within the layers of the cells also

play a critical role in determining the extent and nature of these interdigitations, infoldings

and other structural changes Figure 5.2 shows the XY plane of the layers of the cells after

150mcs capturing the moment when interdigitation of the basal cells have occurred and re-

vealing the wiggling surface of the lateral cell and the tight end-to-end hexagonal packing of

the apical cell.

The adhesion interaction within the layers of the basal cell and the cells directly above

and below, coupled with their interplay with increased surface area, form the major pivot

point for interdigitation within the basal cells.

In summary, our simulation analysis in the 2D model showed that cell morphology and

packing are influenced by geometric constraints. Extending this to 3D, we confirmed that
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(a) Apical (b) Lateral (c) Basal

Figure 5.2 This image illustrates the XY plane of the three cellular layers after 150 Monte
Carlo steps, showcasing the RPE cells morphology across layers. (a) shows the apical cells in
a tight end-to-end hexagonal packing, maintaining a highly structured and orderly arrange-
ment. (b) reveals the lateral cells with a wiggling surface. and (c) captures the basal cells
where significant interdigitation has occurred, highlighting their complex and interdigitated
boundaries.

while geometric constraints limit cell morphology, they are not solely responsible for inter-

digitation and infolding within the basal cells. Differences in adhesion properties also cause

significant variations in cellular morphology and organization. The interplay between ad-

hesion properties and geometric constraints results in the observed interdigitation patterns,

demonstrating that changes in these constraints can lead to different cellular behaviors, such

as interdigitation in the case of CECs observed in (14) and infoldings described in RPE cells

(13).

5.1 Significance of the other Variables within the system’s dynamics

This section details how the other parameters within the model affect the dynamics of the

system. In the biomechanism process explained in the study, the major parameter explored
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due to the focus of the study was solely based on the effect of adhesion and perimeter in 2D

while the 3D featured the effect of adhesion and 3D. However, there is need to explain how

variations in the other parameters affects the dynamics of the system.

5.1.1 Effect of other variables in the 2D model

In section 2, the governing energy equation for the 2D model is defined as:

E =
∑
(i,j)

Jτ(σi),τ(σj) (1 − δ(σi, σj)) + λa

∑
σ

(a(σ) − Atarget(σ))2 + λp

∑
σ

(p(σ) − Ptarget(σ))2

(5.1)

where
∑

(i,j) Jτ(σi),τ(σj) (1 − δ(σi, σj)) is the differential adhesion, λa

∑
σ (a(σ) − Atarget(σ))2

represents the area conservation and λp

∑
σ (p(σ) − Ptarget(σ))2 is the cortical tension. From

the energy equation of the differential adhesion, the kronecker delta function δ for the cells

provided in this study are all of the same type which implies that the nearest neighbour of

each cell are all ith cell. As a result, the first term of equation (5.1) results into zero. This

implies that the adhesion between the boundaries of the cells is affected by the change in

the perimeter. As such, the effective energy of the cell’s surface, Ec is proportional to its

perimeter as highlighted by (21). Hence, Ec =
∑N

i=1 JPi .

Similarly, from the area conservation energy, the tuning parameter Atarget have no effect

on the dynamics of the system. This is because of reasons which include the fact that

the cells are in confluence without any space for cell growth with an addition of a periodic

boundary condition which overcomes the boundary effect meaning that each cell’s actual area
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is preserved throughout the simulations. Thus, the dynamic of the system is independent of

the Atarget and hence leaves the dynamics of the systems to be defined by Ptarget.

5.1.2 Effect of other variables in the 3D model

In the 3D energy function in equation (2.9), five parameters including the adhesion, J ; the

target surface area, Starget; the target cell volume, Vtarget and the Lagrange multipliers λs

and λv describes the cell properties.

Unlike in the 2D model, simulation analysis in the 3D models revealed that all the

five (5) parameter play a role in the morphology of the cell. The role of adhesion and its

interplay with the surface area of the cell has been explicitly explained as it played the

vital role in the formation of interdigitation within the basal cells. In addition to this, our

simulation analysis revealed that the volume and the Langrange multipliers are also effective

and important. Ev = λv

∑
(v(σ) − Vtarget)

2 describes how the cell’s internal pressure is

preserved and how it deviates from the Vtarget. An increase in Vtarget causes a corresponding

increase in the cell’s size and vice versa. λv and λs affects the balance between maintaining

cell shape and allowing deformations which is necessary for the deformation of the cells.

As such, an increase in these multipliers causes stiffness within the cell boundaries thereby

slowing down the deformation processes but at the same time ensures a tight cell packing.

5.2 Biological Implication

This study has provided a foundation for the comprehensive understanding of RPE cell

morphology by extending its morphometric analysis from 2D to 3D, capturing the complex
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interactions and dynamics that occur in the cell, most especially the biophysical mechanism

involved in the interdigitation of the basal cell. Most adhesion complexes explained in

textbooks do not fully capture the dynamic and complex nature of cell-cell and cell-matrix

interactions observed in this study which are relevant to shape changes in RPE cells. The

model demonstrates that disruptions in the balance of cell adhesion and geometric constraints

can result in abnormal RPE morphology, which may compromise the supportive role of RPE

cells in maintaining photoreceptor health and lead to the progression of AMD.

5.3 Limitations and Future Research

Our computational model is limited by several factors which include a primary focus on

the basal interdigitation of the RPE cell, overlooking other important aspects of RPE cell

morphology and functions such as those involving apical and lateral surfaces may not be

fully captured or understood within the current model framework. In addition, the model’s

findings are based on computational simulations, and experimental validation is limited.

Further experimental studies are needed to validate and refine the model, ensuring that the

simulated behaviors accurately reflect real biological processes.
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