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Major depressive disorder (MDD) is associated with increased functional connectivity
in specific neural networks. Electroconvulsive therapy (ECT), the gold-standard treat-
ment for acute, treatment-resistant MDD, but temporal dependencies between networks
associated with ECT response have yet to be investigated. In the present longitudinal,
case–control investigation, we used independent component analysis to identify distinct
networks of brain regions with temporally coherent hemodynamic signal change and func-
tional network connectivity (FNC) to assess component time course correlations across
these networks. MDD subjects completed imaging and clinical assessments immediately
prior to the ECT series and a minimum of 5 days after the last ECT treatment. We focused
our analysis on four networks affected in MDD: the subcallosal cingulate gyrus, default
mode, dorsal lateral prefrontal cortex, and dorsal medial prefrontal cortex (DMPFC). In
an older sample of ECT subjects (n=12) with MDD, remission associated with the ECT
series reverses the relationship from negative to positive between the posterior default
mode (p_DM) and two other networks: the DMPFC and left dorsal lateral prefrontal cortex
(l_DLPFC). Relative to demographically healthy subjects (n=12), the FNC between the
p_DM areas and the DMPFC normalizes with ECT response. The FNC changes following
treatment did not correlate with symptom improvement; however, a direct comparison
between ECT remitters and non-remitters showed the pattern of increased FNC between
the p_DM and l_DLPFC following ECT to be specific to those who responded to the treat-
ment.The differences between ECT remitters and non-remitters suggest that this increased
FNC between p_DM areas and the left dorsolateral prefrontal cortex is a neural correlate
and potential biomarker of recovery from a depressed episode.

Keywords: major depressive disorder, electroconvulsive therapy, resting state fMRI, independent component
analysis, functional network connectivity

INTRODUCTION
Electroconvulsive therapy (ECT) remains the gold-standard treat-
ment for severe, treatment-resistant patients with major depressive
disorder (MDD) where a rapid response is indicated. The ECT suc-
cess rate in MDD, the most common diagnostic indication for the
estimated 100,000 annual ECT treatments in the U.S., is approx-
imately 75% (Hermann et al., 1995; Weiner et al., 2001). During
a 3–4 week course of an ECT series, most depressive episodes
remit, and formerly suicidal or psychotically depressed patients
will resume their premorbid levels of functioning. The short time
interval and magnitude of response make ECT an ideal therapeu-
tic intervention to assess biomarkers of response in MDD. Resting
state functional magnetic resonance imaging (fMRI) has recently
expanded the scope and generalizability of fMRI investigations to
include patients with severe MDD treated with ECT (Beall et al.,
2012; Perrin et al., 2012).

Functional connectivity in resting fMRI data has become a
widely used technique and can be measured in various ways
(Erhardt et al., 2011a). The two most widely used approaches
include the use of a seed-based method (Biswal et al., 1995) and
spatial independent component analysis (ICA; McKeown et al.,
1998; Calhoun and Adali, 2012). A cross-sectional seed-based
approach of MDD revealed increased temporal coherence within
limbic, cortical, and default mode networks (Sheline et al., 2010).
Furthermore, these networks overlapped with an area of the dor-
sal medial prefrontal cortex (DMPFC). The increased temporal
coherence of these brain regions may be an important therapeutic
target in MDD. Perrin et al. (2012) tested this hypothesis with a
longitudinal resting state fMRI investigation and found that ECT
response was associated with reduced temporal coherence within
the left dorsal lateral prefrontal cortex (l_DLPFC; Perrin et al.,
2012).
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In contrast to the seed-based approach, spatial ICA utilizes a
data-driven multivariate approach to identify distinct groups of
brain regions with temporally coherent (and hence functionally
connected) hemodynamic signal change (Calhoun et al., 2008).
While the ICA spatial maps are maximally independent, their
respective time courses can have considerable temporal depen-
dencies. Functional network connectivity (FNC) measures corre-
lations between component time courses (Jafri et al., 2008). FNC
has been applied to fMRI investigations of schizophrenia, aging,
and neurodegenerative disorders (Jafri et al., 2008; Allen et al.,
2011; Filippi et al., 2012). The longitudinal differences in FNC
associated with remission from a depressed episode have yet to be
investigated.

The pathophysiology of MDD can be conceptualized as a
“systems-level” disorder affecting multiple brain areas and their
related neurotransmitter systems (Mayberg, 2003; Mayberg et al.,
2005). Functionally integrated networks or pathways in cortical
and limbic regions that fail to maintain homeostatic emotional
control may result in affective, cognitive, and neurovegetative
symptoms of depression. In the present investigation, we focus
our analysis on four regions (or components) affected in MDD:
the subcallosal cingulate gyrus (SCC), default mode network, dor-
sal lateral prefrontal cortex, and DMPFC (Greicius et al., 2007;
Sheline et al., 2010). Previous cross-sectional fMRI studies have
shown increased connectivity in these networks in MDD relative to
healthy comparison subjects with seed-voxel correlations (Sheline
et al., 2010) and ICA (Greicius et al., 2007). Furthermore, a recent
resting state fMRI investigation has shown decreased connectiv-
ity in the dorsolateral prefrontal cortex in MDD associated with
ECT response (Perrin et al., 2012). First, we assessed differences
in the longitudinal pre- and post-ECT data. Second, we compared
the pre-ECT and post-ECT data with demographically matched
healthy comparisons to assess the degree of normalization associ-
ated with ECT response. Third, we compared differences in FNC
between ECT remitters versus non-remitters. We defined aberrant
FNC as differences in the MDD group relative to the healthy com-
parisons subjects. We hypothesized that ECT response would be
associated with normalization of aberrant FNC relationships.

MATERIALS AND METHODS
PARTICIPANTS
Prior to initiating this study, ethical approval was obtained from
the Human Research Protections Office at the University of New
Mexico (UNM), and the study was conducted in accordance with
the principles expressed in the Declaration of Helsinki. Patients
were recruited from the UNM Mental Health Center’s inpa-
tient and outpatient services. Patients had decisional capacity
or assented with a surrogate decision maker providing formal
consent. For this investigation, depressed patients met the follow-
ing inclusion criteria: (1) DSM-IV TR diagnosis of MDD made
be a board-certified geriatric psychiatrist (CA); (2) the clinical
indications for ECT including treatment resistance and a need
for a rapid and definitive response (Weiner et al., 2001); (3) a
Hamilton Depression Rating Scale – 24 item (HDRS-24)≥ 21
(Kellner et al., 2006); and (4) age ≥50 years to reduce age-related
heterogeneity. Exclusionary criteria included the following: (1)
defined neurological or neurodegenerative disorder (e.g., head

injury or epilepsy, Alzheimer’s disease); (2) other psychiatric
conditions (e.g., schizophrenia, schizoaffective disorder, Bipolar
I or II disorder); (3) current drug or alcohol dependence; (4)
contraindications to MRI (e.g., pacemaker); and (5) pregnancy.

Age- and gender-matched healthy comparison participants
were recruited from the same demographic area and completed
one session of resting state fMRI using the identical imaging proto-
col. Additional exclusion criteria for the healthy comparison group
included psychiatric diagnosis and current use of psychotropic
medications. The use of cross-sectional data for the comparison
subjects is consistent with other longitudinal case–control studies
assessing treatment effects with resting state data in neuropsychi-
atric disorders (Lui et al., 2010). Previous resting state studies have
shown a high level of consistency in healthy individuals (Harrison
et al., 2001; Shehzad et al., 2009; Guo et al., 2012).

CLINICAL ASSESSMENTS
Patients receiving ECT underwent clinical assessments with the
HDRS-24 and Hamilton Endogenomorphic Scale (HES; Thase
et al., 1983) and cognitive assessments with the Repeatable Bat-
tery for the Assessment of Neuropsychological Status (RBANS;
Randolph et al., 1998) and the Trail Making Test Parts A and B
(Reitan, 1958) before and after the ECT series. The initial assess-
ment occurred 1–2 days prior to ECT series, and the final imaging
assessment followed the last ECT treatment by a minimum of
5 days. The delay from the last ECT treatment to the post-ECT
scan minimized the subacute effects of the seizure (Schmidt et al.,
2008). Patients were considered remitters if they had a 60% reduc-
tion in pretreatment HDRS-24 and a maximum post-treatment
score of 10 following the ECT series (Sackeim et al., 2001).

ELECTROCONVULSIVE THERAPY
The anesthetic agents included methohexital (1 mg/kg) and suc-
cinylcholine (1 mg/kg). Clinical judgment from the ECT physician
determined lead placement at the start of the ECT series. A Thy-
matron System IV (Somatics LLC, Lake Bluff, IL, USA) delivered
a right unilateral (n= 10) or bitemporal ECT (n= 2) stimulus
delivery with a constant-current, brief pulse (0.50 ms). For the
bitemporal stimulus delivery, the center of the stimulus electrodes
were placed 3 cm above a line connecting the canthus of the eye and
the external auditory meatus (Kellner et al., 2010). For the right
unilateral stimulus delivery, the right temporal lead was placed as
previously described. Another lead was placed 3 cm lateral to the
right of the vertex of the skull. Seizure threshold obtained during
the first session with a dose titration method guided subsequent
stimulus dosage (6× threshold for right unilateral, 2× threshold
for bitemporal; Kellner et al., 2010). Treatments occurred thrice
weekly (Monday, Wednesday, and Friday) until adequate clinical
response or clinical decision to stop treatment in the context of
non-response (11.17± 3.33 sessions in the series).

MRI AND fMRI DATA ACQUISITION
All MRI images were collected on the Mind Research Net-
work (MRN) 3-Tesla Siemens Trio scanner. High-resolution
T1-weighted structural images were acquired with a 5-
echo MPRAGE sequence with TE= (1.64, 3.5, 5.36, 7.22,
9.08) ms, TR= 2.53 s, TI= 1.2 s, flip angle= 7, number of
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excitations= 1, slice thickness= 1 mm, field of view= 256 mm,
resolution= 256× 256. T2-weighted functional images were
acquired with a gradient-echo EPI sequence with TE= 29 ms,
TR= 2 s, flip angle= 75, slice thickness= 3.5 mm, slice gap=
1.05 mm, field of view 240 mm, matrix size= 64× 64, voxel
size= 3.75× 3.75× 4.55 mm. Resting state scans were acquired
over a minimum of 5 min, 16 s in duration (158 volumes). Sub-
jects were instructed to keep their eyes open during the scan and
stare passively at a fixation cross.

STRUCTURAL AND fMRI IMAGE PROCESSING
An automated pipeline and neuroinformatics system developed
at the MRN and based on Statistical Parametric Mapping 5
(SPM5)1 preprocessed the functional and structural MRI data
(Scott et al., 2011). In the functional data pipeline, the first
four volumes were discarded to remove T1 equilibration effects.
Images were realigned with INRIalign (Freire et al., 2002), and
slice-timing correction was applied with the middle slice as the
reference frame. Data were then spatially normalized into the
standard Montreal Neurological Institute (MNI) space, resliced
to 3 mm× 3 mm× 3 mm voxels and smoothed using a Gaussian
kernel with a full-width at half-maximum (FWHM) of 10 mm.

INDEPENDENT COMPONENT ANALYSIS
Group ICA (Calhoun et al., 2001) was performed using the
Group ICA fMRI Toolbox (GIFT)2. In contrast to the seed-
based approach, spatial ICA utilizes a data-driven multivariate
approach to identify distinct groups of brain regions with tempo-
rally coherent (and hence functionally connected) hemodynamic
signal change (Calhoun et al., 2008). The advantages of ICA
over seed-based correlational techniques include the following:
(1) eliminates the arbitrary choice of seed-voxel, (2) takes into
account all between voxel information, (3) successfully identifies
and removes motion-related sources, and (4) increases sensitiv-
ity to detect group differences (McKeown et al., 2003; Kochiyama
et al., 2005; Koch et al., 2010; Allen et al., 2011).

The preprocessed fMRI data were reduced in two steps. First,
subject-level data dimensionality was reduced to 100. Second,
the concatenated, aggregate data was further reduced to 75. The
relatively higher model order (Components, C = 75) identified
components that correspond with known functional networks
(Ystad et al., 2010). The Infomax algorithm was repeated 20 times
with ICASSO to maximize the reliability and robustness of the
component spatial maps. Subject specific time courses and spatial
maps were then back reconstructed (Erhardt et al., 2011b). Three
raters (Christopher C. Abbott, Shruti Gopal, and Jessica A. Turner)
used visual inspection of spatial maps and low frequency power
spectra to select the components of interest (Cordes et al., 2000;
Allen et al., 2011).

FUNCTIONAL NETWORK CONNECTIVITY
The FNC Toolbox (FNCtb)3 bandpassed filtered the ICA time
courses from 0.01 to 0.10 Hz and computed the differences

1http://www.fil.ion.ucl.ac.uk/spm/software/spm5
2http://mialab.mrn.org/software/gift
3http://mialab.mrn.org/software/fnc

in lagged correlations (±3 s) between pairs of the selected
components (6 components, 15 pairs of correlations; Jafri et al.,
2008). Fisher’s transformation converted each correlation to a
z-score prior to the statistical analysis.

STATISTICAL ANALYSIS
Because of the small sample size, we assessed normality assump-
tions with box plots and Levene’s test for equality of variance
on the demographic, clinical, and FNC Fisher transformed data.
For the longitudinal differences in symptom scores (HDRS-24 and
HES), we used non-parametric statistics (paired-sample Wilcoxon
signed-rank test) to assess longitudinal differences before and after
the ECT series.

Within ECT remitters, we assessed longitudinal differences
(pre- and post-ECT) in FNC with paired t -tests. We used a false
discovery rate (P < 0.05) to correct for multiple comparisons
(Genovese et al., 2002).

Following these analyses, we compared pre-ECT FNC measures
on the significant pairs of networks to the same measures in healthy
subjects using a two-sample t -test. We also compared post-ECT
measures to the healthy subject FNC measurements in the same
way. Significant threshold were set to P < 0.05.

We correlated the change in FNC measures with the change in
symptom measures for all subjects, and for ECT remitters only
with a significance threshold of P < 0.05.

Finally, a two-factor analysis of variance assessed longitudinal
changes in FNC between group (ECT remitters and non-remitters)
and time (pre- and post-ECT). A two-factor analysis of variance
also assessed differences in stimulus delivery (bitemporal and right
unilateral) and time (pre- and post-ECT).

RESULTS
PARTICIPANTS
The average age for the depressed patients (n= 12) was
66.42± 9.78 years (four male/eight females). Eleven of the twelve
depressed subjects started this study during an inpatient psychi-
atric hospitalization. Three subjects had a depressive episode with
psychotic features and the remaining subjects had non-psychotic
depressive episodes. Eleven of the twelve depressed subjects had
a history of recurrent depressive episodes. All depressed sub-
jects were treated with antidepressant medications throughout
this investigation. Eight subjects were concurrently treated with
antipsychotics, and two subjects were treated with a mood stabi-
lizer (lamotrigine). Medication changes between the two imaging
assessments were minimal and consisted of an antidepressant
cross titration (n= 1),antidepressant discontinuation (n= 2),and
the addition of an antipsychotic (olanzapine, n= 1). The healthy
comparison subjects (n= 12) were matched for age and gender
(age t 22= 0.90, P = 0.90; gender x2

= 0.00, P = 1.00). The demo-
graphic and clinical characteristics of the patients and comparison
subjects are shown in Table 1.

CLINICAL ASSESSMENTS
Subjects completed the post-ECT assessment and imaging scan
at least 5 days after their last treatment to minimize the effect
of the seizure on the imaging results (mean 21.13± 13.90 days
after the last ECT treatment). The post-ECT HDRS-24 confirmed
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Table 1 |The top section includes the demographic variables of the subjects with major depressive disorder (MDD) and demographically

matched healthy comparison subjects (HC). The lower section includes clinical symptom ratings and neuropsychological indices (RBANS index scores,

Trail Making Test Parts A and B in seconds).

Demographics MDD mean (SD) or ratio HC mean (SD) or ratio P -value

Age (n=12) 66.42 (9.78) 67.58 (8.89) 0.83

Gender (M/F) 4/8 4/8 1.00

Pre-ECT mean (SD) Post-ECT mean (SD) P -value Cohen’s d

HDRS-24

Remitters (n=9) 34.56 (10.02) 2.89 (2.93) <0.01 4.29

Non-remitters (n=3) 33.67 (6.66) 18.33 (3.51) 0.11 2.88

HES

Remitters 13.22 (2.86) 0.67 (0.71) <0.01 6.02

Non-remitters 11.00 (3.61) 5.33 (3.06) 0.11 1.69

RBANS (n=10)

Total scale 77.10 (22.70) 80.20 (23.22) 0.43 −0.14

Immediate memory 70.54 (25.09) 81.54 (25.48) 0.10 −0.44

Visual spatial/construction 84.50 (24.42) 87.20 (24.56) 0.66 −0.11

Language 90.55 (10.33) 89.64 (17.53) 0.84 0.06

Attention 82.00 (25.13) 80.10 (24.32) 0.57 0.08

Delayed memory 80.80 (23.79) 81.80 (23.39) 0.79 −0.04

Trails (n=7)

Trails A (s) 64.14 (29.19) 50.57 (14.01) 0.11 0.59

Trails B (s) 181.57 (85.95) 148.00 (89.57) 0.26 0.38

HDRS-24, Hamilton Depression Rating Scale – 24 item; HES, Hamilton Endogenomorphy Scale; RBANS, repeatable battery for neuropsychological status.

remission from a pre-ECT assessment of 34.56± 10.03 to a
post-ECT assessment of 2.89± 2.93 post-ECT for nine of the
twelve subjects (z = 2.67, P = 0.0076). The ECT remitters also
had a similar reduction in the HES from a pre-ECT assess-
ment of 13.22± 2.86 to a post-ECT assessment of 0.67± 0.71
subjects (z = 2.67, P = 0.0074). The average post-ECT HDRS-24
for the non-remitter group also demonstrated a non-significant
trend toward clinical improvement from a pre-ECT assessment of
33.67± 6.66 to a post-ECT assessment of 18.33± 3.51 (z = 1.60,
P = 0.10) as shown in Figure 1. The neuropsychological indices
did not show any significant differences before and after ECT
(P > 0.05).

COMPONENTS OF INTEREST
We refer to the individual components by functional spatial map:
anterior default mode (a_DM), SCC, DMPFC, posterior default
mode (p_DM), and (right/left) dorsal lateral prefrontal cortex
(r_DLPFC, l_DLPFC). Figure 2 displays the selected components
of interest and Table 2 details the anatomic locations (Brodmann
areas) of the selected components.

FUNCTIONAL NETWORK CONNECTIVITY
Our primary analysis assessed pre- and post-ECT longitudi-
nal changes in FNC among ECT remitters (n= 9). Among 15
component correlations, two pairs of components had signifi-
cant FNC changes associated with ECT response (PFDR < 0.05).
The FNC measures between p_DM and the DMPFC increased

FIGURE 1 |The Hamilton Depression Rating Scale-24 (HDRS-24) is on
the y -axis, and the pre- and post-ECT depression ratings are on the
x -axis. The dashed red line (HDRS-24) differentiates ECT remitters from
non-remitters.

from a negative (r =−0.49) to a positive correlation (r = 0.36)
during the ECT series (t 8=−5.38, P < 0.001). The FNC mea-
sures between the p_DM and the l_DLPFC correlation also
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FIGURE 2 | Maps of the networks of interest include the anterior
default mode network (a_DM), subcallosal cingulate gyrus (SCC),
dorsal medial prefrontal cortex (DMPFC), posterior default mode
network (p_DM), and dorsal lateral prefrontal cortex (r_DLPFC,

l_DPLFC). Each component map has a lower threshold of t =10. The
images are shown in radiological convention. The arrows represent the
significant (FDR-corrected), longitudinal differences in FNC associated with
ECT response.

increased from negative (r =−0.50) to a weak positive correlation
(r = 0.010) during the ECT series (t 8=−3.85, P = 0.0049). These
longitudinal, between network changes are shown in Figure 3 and
reported in Table 3.

The secondary analyses focused on the two network pairs
that demonstrated significant longitudinal differences after the
ECT series. Relative to the healthy subjects, the pre-ECT sub-
jects had significantly lower FNC measures between p_DM and
DMPFC (t 16=−3.22, P = 0.005) and the pDMN and l_DLPFC
(t 16=−3.23, P = 0.005). The post-ECT and healthy comparison
contrasts for both network pairs were not significant (P > 0.05).
Pairwise correlations between changes in FNC and symptom
changes were not significant, whether performed over all 12 ECT
subjects or the 9 remitters only (P > 0.05).

The two-factor ANOVA comparing groups (ECT remitters and
non-remitters) and time (pre- and post-ECT) had significant
group× time interactions for p_DM and l_DLPFC (f1, 20= 7.52,
P = 0.013). The FNC measures increased from pre- to post-ECT
for the remitters but not for the non-remitters. The interaction
was not present with for p_DM and DMPFC (P > 0.05). The two-
factor ANOVA comparing stimulus delivery (bitemporal and right
unilateral) and time (pre- and pot-ECT) was not significant for the
stimulus delivery× time interaction for both FNC correlations
(P > 0.05).

DISCUSSION
This investigation assessed changes in FNC associated with
ECT response in MDD. ECT response reverses the relation-
ship from negative to positive between two pairs of networks:
the p_DM/DMPFC and the p_DM/l_DLPFC. Relative to healthy
comparisons, both of the aberrant network pairs (i.e., differ-
ent pre-ECT relative to HC) normalized with ECT response.
Although the change in FNC did not predict symptom improve-
ment, the correlation between the p_DM/l_DLPFC did not
increase in the ECT non-remitters. The differences between ECT
remitters and non-remitters suggest that changes in FNC are
related to the therapeutic underpinnings of ECT, as opposed to
epiphenomenon.

In order to contextualize our findings with Perrin et al.’s lon-
gitudinal resting state fMRI ECT investigation, we compare FNC
with seed-voxel correlations. Sheline et al.’s (2010) “hypercon-
nectivity” hypothesis posits that treatment response during a
depressed episode may be associated with reduced seed-voxel func-
tional connectivity, which is supported by the Perrin et al. (2012).
Perrin et al.’s (2012) investigation demonstrated reduced func-
tional connectivity with seed-voxel correlations in the l_DLPFC.
Their analysis, as they point out, did not indicate a change in con-
nectivity between the DLPFC and specific other regions, but that
the overall connectivity from the DLPFC to the rest of the brain
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Table 2 | Networks of interest.

Area Brodmann areas R/L (cm3) R/L (max-t, MNI coordinates)

ANTERIOR DEFAULT MODE (a_DM)

Anterior cingulate 10, 24, 32 6.3/6.8 27.3 (−3, 47, 9)/24.2 (3, 44, 12)

Superior frontal gyrus 9, 10 6.8/5.9 24.6 (−3, 54, 28)/18.4 (18, 51, 22)

Middle frontal gyrus 10 0.5/0.7 14.6 (−24, 51, 20)/15.9 (24, 53, 19)

Cingulate gyrus 32 0.2/0.2 13.6 (−3, 36, 26)/14.5 (3, 36, 26)

Subcallosal gyrus 25 0.0/0.1 (_, _, _)/12.2 (3, 23, −11)

SUBCALLOSAL CINGULATE GYRUS (SCC)

Caudate 1.3/1.2 31.4 (−6, 14, −3)/27.4 (6, 11, −3)

Anterior cingulate 10, 24, 25, 32 3.4/3.8 26.8 (−3, 11, −3)/25.3 (3, 14, −6)

Medial frontal gyrus 10, 11 0.6/0.8 17.0 (−9, 26, −11)/23.0 (6, 26, −11)

Subcallosal gyrus 11, 13, 25, 47 1.2/1.0 21.0 (−3, 14, −11)/21.6 (3, 20, −11)

Lentiform nucleus 0.4/0.2 14.1 (−12, 6, −5)/14.1 (12, 6, −3)

Inferior frontal gyrus 47 0.1/0.2 10.3 (−21, 14, −16)/12.7 (21, 17, −16)

Parahippocampal gyrus 0.1/0.0 10.1 (−12, −7, −15)/(_, _, _)

DORSAL MEDIAL PREFRONTAL CORTEX (DMPFC)

Cingulate gyrus 24, 32 6.0/6.5 22.1 (−3, 11, 38)/26.0 (6, 22, 32)

Medial frontal gyrus 6, 8, 9, 32 4.1/3.2 20.8 (−3, 23, 43)/21.8 (3, 25, 40)

Middle frontal gyrus 9 0.3/1.0 11.9 (−30, 33, 29)/21.7 (30, 36, 29)

Anterior cingulate 24, 32, 33 2.0/1.9 15.5 (−3, 10, 24)/16.3 (3, 16, 24)

Superior frontal gyrus 6, 8, 9 1.3/1.4 14.3 (−3, 34, 43)/14.7 (33, 37, 31)

Paracentral lobule 5, 31 0.1/0.2 10.5 (0, −24, 43)/11.0 (3, −21, 43)

Postcentral gyrus 5 0.0/0.1 (_, _, _)/10.8 (6, −40, 66)

Insula 13 0.1/0.0 10.1 (−33, 14, −3)/(_, _, _)

POSTERIOR DEFAULT MODE (p_DM)

Precuneus 7, 23, 31 14.3/12.2 29.8 (−3, −57, 30)/28.0 (3, −57, 30)

Cingulate gyrus 23, 31 5.7/3.5 29.2 (−6, −57, 28)/25.5 (6, −54, 28)

Cuneus 7 0.4/0.3 27.9 (−6, −65, 31)/20.8 (6, −65, 31)

Posterior cingulate 23, 29, 30, 31 4.4/3.4 25.7 (−6, −54, 25)/26.3 (9, −54, 25)

RIGHT DORSAL LATERAL PREFRONTAL CORTEX (r_DLPFC)

Inferior frontal gyrus 9, 13, 44, 45, 46, 47 16.5/4.4 27.9 (−50, 27, 18)/18.0 (48, 21, 7)

Middle frontal gyrus 9, 10, 46, 47 5.8/0.1 24.3 (−48, 27, 21)/10.9 (48, 33, 15)

Insula 13 4.9/0.2 22.9 (−45, 12, 2)/10.9 (39, 15, 10)

Precentral gyrus 6, 44 3.1/0.3 22.4 (−50, 9, 13)/18.1 (50, 18, 7)

Superior temporal gyrus 22 0.8/0.0 17.0 (−45, 11, −3)/(_, _, _)

Inferior temporal gyrus 0.1/0.0 10.1 (−50, −59, −7)/(_, _, _)

LEFT DORSAL LATERAL PREFRONTAL CORTEX (l_DLPFC)

Inferior frontal gyrus 6, 9, 44, 45, 46 3.9/8.1 18.0 (−48, 10, 27)/30.6 (48, 21, 21)

Middle frontal gyrus 6, 8, 9, 46 6.8/16.1 18.3 (−45, 13, 27)/26.5 (50, 16, 27)

Precentral gyrus 6, 9 0.4/2.9 12.5 (−45, 19, 35)/18.3 (42, 16, 35)

Superior frontal gyrus 8, 9 0.0/0.4 (_, _, _)/11.4 (33, 11, 52)

Inferior parietal lobule 40 0.0/0.1 (_, _, _)/10.4 (53, −46, 22)

Postcentral gyrus 0.0/0.1 (_, _, _)/10.2 (45, −10, 25)

We applied a one-sample t-test to determine the areas of strongest weighting within each ICA spatial map. The anatomic areas described here are the same areas in

Figure 2 (each component map has a lower threshold of t=10.).

was changed with ECT treatment. Seed-voxel correlations are the
summation of ICA-derived within network connectivities (power)
and ICA-derived between network connectivities (FNC; Joel et al.,
2011). Thus, FNC is a part of the seed-voxel functional connectiv-
ity totality. Our results, which show increased temporal coherence
between anterior and posterior independent components with
ECT response (i.e., increased FNC) offer more specificity regarding

type and direction change between components associated with
recovery from a depressed episode.

Similar to Perrin’s investigation, ECT response was specific
for the l_DLPFC despite the different analysis methods. Previ-
ous cross-sectional investigations have established the relationship
between depression severity and cognitive deficits with aberrant
connectivity between the dorsal lateral prefrontal and default
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FIGURE 3 | (A) Functional network connectivity (FNC) increased between the
p_DM and DMPFC pre- to post-ECT. FNC correlations are represented on the
y -axis. The red lines (dashes) are the means (standard errors) of the matched
healthy comparison FNC correlations. Relative to healthy comparisons, the

pre-ECT FNC was significantly reduced and normalized with ECT response.
(B) The p_DM and l_DLPFC had a similar increase in FNC associated with the
ECT series. (DMPFC, dorsal medial prefrontal cortex; p_DM, posterior default
mode network; l_DLPFC, left dorsal lateral prefrontal cortex.)

Table 3 | Functional network connectivity (FNC) results are shown for

the paired- and two-sample t -tests.

Component pair Pre/post t8 (P ) Pre/HC t16 (P ) Post/HC t16 (P )

a_DM/SCC 0.94 (0.38)

a_DM/DMPFC 1.38 (0.20)

a_DM/p_DM −1.95 (0.09)

a_DM/r_DLPFC 1.01 (0.34)

a_DM/l_DLPFC 1.73 (0.12)

SCC/DMPFC 1.28 (0.24)

SCC/p_DM −0.15 (0.89)

SCC/r_DLPFC 1.27 (0.24)

SCC/l_DLPFC 2.62 (0.03)

DMPFC/p_DM −4.66 (0.002)* −3.22 (0.005) 0.82 (0.42)

DMPFC/r_DLPFC 0.17 (0.87)

DMPFC/l_DLPFC 0.09 (0.93)

p_DM/r_DLPFC −1.91 (0.09)

p_DM/l_DLPFC −3.85 (0.005)* −3.23 (0.005) 0.11 (0.91)

r_DLPFC/l_DLPFC 0.48 (0.07)

The paired t-tests between the pre- and post-ECT data within ECT remitters are

presented in the second column. Post hoc two-sample t-tests (third and fourth

columns) for the significant pre- and post-ECT component pairs were conducted

between the ECT subjects and the healthy comparisons (HC).

*False discovery rate significant at P < 0.05.

a_DM, anterior default mode; p_DM, posterior default mode; r_DLPFC, right dor-

sal lateral prefrontal cortex; l_DLPFC, left dorsal lateral prefrontal cortex; DMPFC,

dorsal medial prefrontal cortex; SCC, subcallosal cingulate.

mode regions (Vasic et al., 2009; Goveas et al., 2011). Executive
function, largely dependent on intact prefrontal and frontal lobe
performance, has emerged as one of the core cognitive deficits
in major depression and may be related to deficits in atten-
tional control and maladaptive ruminative thought (Austin et al.,
2001).

Electroconvulsive therapy response was associated with
increased FNC (or loss of anticorrelation) between the dorsal lat-
eral prefrontal cortex and the default mode. We offer two potential
explanations regarding the loss of the well-established anticorrela-
tion between these two regions (Fox et al., 2005). First, our sample
is older and age-related changes, which show diminished anti-
correlations between these networks, may provide the context for
interpreting the direction of change from negative to weakly pos-
itive (Wu et al., 2011). Second, dynamic FNC changes, as opposed
to the implicit assumption of “stationarity” (i.e., the relationship
between components does not change during the fMRI run), may
also explain the increased FNC correlations (Allen et al., 2012). In
healthy participants, the default mode and dorsal attentional sys-
tems have been established as “zones of instability” characterized
by functional connections that “emerge and dissolve” (Allen et al.,
2012). Although not tested in this investigation, ECT response may
normalize dynamic FNC among the zones of instability result-
ing in the return of the ebb and flow of negative and positive
relationships between these networks.

Electroconvulsive therapy response may have anatomic speci-
ficity with respect to FNC differences. The p_DM network, which
has been implicated in depression conceivably through its role
in maladaptive, depressive ruminations (Hamilton et al., 2011), is
involved in both of the between network changes and appears to be
a FNC “hub” for network changes in the context of ECT response.
In contrast, the SCC, which has been the target of therapeutic
interventions from antidepressant medications to deep brain stim-
ulation, is not involved with any between network changes tested
in this investigation, despite being extensively implicated in the
pathophysiology of MDD. Normally, therapeutic interventions in
this area are associated with reduced activity (Hamani et al., 2011).
In the absence of between network changes, our data suggests that
the SCC may be more impacted by within network changes in
the context of ECT response. Larger investigations are needed to
confirm these findings.
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Some limitations of this investigation should be acknowledged.
First, the small sample size limited further analyses between clin-
ical and treatment variables (e.g., psychotic versus non-psychotic
depression). Second, MDD subjects were medicated at both assess-
ment points, confounding a straightforward interpretation of ECT
effects. Because of the acuity of the depressed episodes, with-
drawing medications would not have been feasible prior to the
first imaging assessment, and the expert consensus is that anti-
depressant medications act synergistically with ECT to enhance
response (Weiner et al., 2001; Sackeim et al., 2009). However,
only 3 of the 12 subjects had modification in their antidepres-
sant drug therapy during the ECT course, reducing the likelihood
of a confounding effect of the medications. However, antide-
pressant medications may also reduce functional connectivity
(McCabe and Mishor, 2011). As previously discussed, FNC is
a part of the seed-voxel functional connectivity totality (Joel
et al., 2011) and FNC is also measuring functional connectivity
(Joel et al., 2011). We hope to study these effects in future work
with more extensive numbers of subjects on different medication
levels.

In conclusion, this research enhances our understanding of the
functional neural correlates of ECT response. Continued research
in this area may differentiate ECT remitters from non-remitters

prior to the ECT series and identify patients at risk of relapse
immediately following the ECT series, an essential step in the
development of biomarkers for treatment response in MDD.
Results from this study may also be applicable to a spectrum of
treatments for MDD of varying invasivity. For example, many focal
neuromodulation treatments have excellent safety profiles, such as
transcranial magnetic stimulation or transcranial direct-current
stimulation, which do not require anesthesia and have the poten-
tial for widespread use beyond academic medical centers and large,
metropolitan hospitals (Pascual-Leone et al., 1996). Despite this
safety profile, the speed of response and efficacy of other neural
modulation treatments does not match the “gold-standard” of
ECT (Eranti et al., 2007; Kalu et al., 2012). A better understand-
ing of ECT response may improve the efficacy of potentially safer,
more accessible treatments for MDD.
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