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ABSTRACT 

A novel multi-modality spectro-microscopic system that combines far-field interferometry 

based optical microscopy imaging techniques (differential interference contrast microscopy and 

cross-polarized light microscopy), total internal reflection microscopy (total internal reflection 

fluorescence and scattering microscopy) and confocal spectroscopy (Raman spectroscopy and 

photoluminescence spectroscopy) is developed. Home-built post treatment stages (thermal 

annealing stage and solvent annealing stage) are integrated into the system to realize in situ 

measurements. Departing from conventional characterization methods in materials science mostly 

focused on structures on one length scale, the in situ multi-modality characterization system aims 

to uncover the structural information from the molecular level to the mesoscale. Applications of 



the system on the characterization of photoactive layers of bulk heterojunction solar cell, two-

dimensional materials, gold nanoparticles, fabricated gold nanoparticle arrays and cells samples 

are shown in this dissertation.  
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1 GENERAL INTRODUCTION  

1.1 Dissertation Organization 

This dissertation is composed of six chapters. Chapter 1 is the general introduction of the 

dissertation. It includes the overall organization, introduction to spectro-microscopic techniques, 

and their applications. It also includes the introductions of optical microscopic and spectroscopic 

techniques that are integrated in the design of the multi-modality multiscale spectro-microscopic 

imaging system: differential interference contrast (DIC) microscopy, cross-polarized light 

microscopy (PM), total internal reflection fluorescence and scattering (TIRF/TIRS) microscopy, 

Raman spectroscopy, and photoluminescence (PL) spectroscopy. Chapter 2 describes the 

development of the multi-modality multiscale spectro-microscopic imaging system. 

Instrumentation details about each module in the multiscale spectro-microscopic imaging system 

are discussed in this chapter. Chapter 3 is the application of the multi-modality spectro-

microscopic imaging system on the in situ multiscale characterization of photoactive layers in bulk 

heterojunction (BHJ) solar cells under thermal stress. Chapter 4 is the applications of the multi-

modality multiscale spectro-microscopic imaging system on nanoparticles, two-dimensional (2D) 

materials, fabricated gold nanoarrays and cell samples. Chapter 5 is the study of localization 

accuracy of gold nanoparticles in single particle orientation and rotational tracking under DIC 

microscopy. Chapter 6 is the overall conclusion of the dissertation. 

1.2 Introduction to Differential Interference Contrast (DIC) Microscopy 

DIC microscopy introduced by Nomarski in the 1950s (1), is in principle an interferometric 

detection technique capable of visualizing objects below the diffraction limit of light without 

fluorescence labeling (2; 3). It has been used for decades to visualize cellular samples with higher 

contrast, better resolution, and shallower depth of field than other far-field optical imaging 
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techniques (4; 5). In addition, spectrally resolved DIC microscopy has been developed for 

multiplexing imaging (2; 6). Over the last decade, DIC microscopy has been transformed into a 

primary research tool for single particle orientation and rotational tracking (SPORT) of plasmonic 

nanoparticles in various chemical and biological systems (7-11). 

In the transmitted DIC setup (Figure 1.1), light firstly passes through a linear polarizer. The 

linearly polarized light passes through the first Nomarski prism to generate two orthogonally 

polarized light which are mutually shifted by a shear distance along the shear direction. Then the 

two sheared light beams are collimated by the condenser and shine on the sample. The two light 

beams after passing through the sample are collected by the objective and recombined by the 

second Nomarski prism. Finally, the recombined light beam passes through a second linear 

polarizer (also called analyzer) and generates interference images of the sample which are detected 

by the charge-coupled device (CCD) camera.  

Benefitting from the high numerical apertures (N.A.) of the objective and condenser used 

in DIC microscopy, DIC microscopy can provide higher lateral and axial resolutions than bright-

field and dark-field microscopies (4). Three-dimensional (3D) DIC microscopy has been 

developed by taking advantage of the optical sectioning capability (better axial resolution) of DIC 

microscopy and harnessed to study a complete cell division process in situ (12). Moreover, live 

cells and their morphology changes without staining can be monitored by DIC microscopy in situ. 

For example, DIC microscopy has been used to characterize the diffusion and transport of 

nanoprobes and cell morphology changes during the endocytosis process of live cells (2; 13). 

Resulting from the working principle of interference, DIC images of nanoparticles show 

bright and dark patterns, in which the 2D Gaussian fitting methods cannot be used in the study of 

localization of nanoparticles (4; 14).  In chapter 5, the localization accuracy and inherited 
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uncertainties of gold nanoparticles in single particle orientation and rotational tracking using DIC 

microscopy is studied with the assistance of computer simulation. These discussions provide 

guidance for researchers to properly evaluate their data and avoid making claims beyond the 

technical limits. The understanding of the intrinsic localization errors and the principle of DIC 

microscopy also leads us to propose a new localization strategy that utilizes the experimentally-

measured shear distance of the DIC microscope to improve the localization accuracy (14). 

1.3 Introduction to Cross-polarized Light Microscopy 

For more than a century, cross-polarized light microscopy has been applied to characterize 

submicroscopic alignments in specimens that are usually unrevealed and invisible under other 

optical microscopy techniques (15). Images generated under a cross-polarized light microscope 

result from the interaction between polarized incident light and polarizable chemical bonds in 

regioregular molecules and are orientationally sensitive. Phase shifts between sampling beams due 

to the different refractive indexes along different optical axes of birefringent samples lead to 

interference patterns of the sample and reveal submicroscopic orientational information. 

Moreover, cross-polarized light microscopy can also provide quantitative measurements such as 

phase retardation, which can be used to calculated refractive index differences and the thicknesses 

of samples (16; 17).  

In 2015, Shribak et al. developed the polychromatic polarization microscope and realized 

direct characterization of both phase retardance and slow-axis orientation in samples (15; 18). 

Dynamic changes of birefringence in samples such as various types of fast-moving bdelloid 

rotifers were successfully characterized by polychromatic polarization microscope (18). In 2016, 

Mehta et al. invented an instantaneous fluorescence polarizing microscope in which total internal 

reflection (TIR) illumination was combined with custom image splitter to image fluorescence 
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emission signals along four polarization directions and realize orientation and position tracking of 

single molecules in live cells (19). 

The transmitted cross-polarized light microscopy setup is the same as transmitted DIC 

microscopy without the pair of Nomarski prism (Figure 2.1), light firstly passes through a linear 

polarizer. Then the linearly polarized light passes through the birefringent sample to generate two 

orthogonally polarized light with different phase information of the sample which are then 

collected by the objective. The two orthogonally polarized light beams project onto the 

transmission axis of a second linear polarizer (also called analyzer) and interfere with each other. 

Finally, interference images are detected by the camera.  

1.4 Introduction to Total Internal Reflection Fluorescence/Scattering Microscopy 

Total internal reflection fluorescence microscopy (TIRFM) is arguably the most sensitive 

mode of fluorescence microscopy and has been successfully applied in studies of chemistry (20-

24), biochemistry (25-27) and biology (28-30). Under total internal reflection (TIR) illumination 

(Figure 1.2), the incident angle of light is varied upon a material with a high index of refraction 

(n1). At angles beyond the critical angle, the incident light is completely reflected, and an 

evanescent wave is created in the adjacent medium (n2), which must have a lower index of 

refraction than n1. The penetration depth of the evanescent wave varies with the angle of incidence, 

the wavelength of light, and the indices of refraction of the two media (31). The penetration depth 

into the sample medium, dSPR, is 

𝑑𝑆𝑃𝑅 = 𝐼 [
𝜆

4𝜋𝑛𝑐

√(𝜀𝑚 + 𝑛𝑐
2)] 

where εm is the dielectric constant of gold. The penetration depth at SPR varies from ~100 

nm up to 5 µm as the wavelength increases from 600 nm to 4 µm as predicted theoretically (32-

34) and also verified experimentally (35).  
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The TIR geometry provides excellent background rejection for interfacial measurements. 

The ratio of fluorescence intensities from sequential acquisitions with fixed-angle TIRFM and 

wide-field microscopy (36; 37) or from two-angle TIRFM (38) can give good estimates of axial 

distances, while more depth-resolved information is obtainable with prism or objective-based 

variable-angle TIRFM (22; 39-42) where a stack of multi-angle images contains the integrated 

fluorescence intensity over various thicknesses of the sample.  

There are basically two types of optical configurations for TIRF/TIRS microscopy: 

objective-based TIRF/TIRS in which a high numerical aperture (N.A.) objective is used for both 

TIR excitation and emission, and prism-based TIRF/TIRS, in which a prism is used to direct 

incident light to the interface and an objective is used only to collect emission signals. (Figure 1.3 

and 1.4)  

Figure 1.3 shows the optical configuration of objective-based TIRF/TIRS microscopy. A 

beam expander is placed after the laser to expand the convergence/divergence angle of the laser 

light beam at the back focal plane of the objective and to enlarge the illumination area at the sample 

plane. The focusing lens is used to change the incident angle of laser beam and realize TIR 

illumination. Objective-based TIRF/TIRS microscopy suffers from the impure illumination 

resulting from excitation scattering light inside the objective and impure emission collection 

resulting from luminescence signals from the objective internal components (31). 

Figure 1.4 shows the schematic light path of prism-based TIRF/TIRS microscopy. A pair 

of mirrors (Mirror 1 and Mirror 2) is used to change the incident angle of laser beam in TIR 

illumination. A focusing lens is used in the light path to control illumination area at the sample 

plane which should be smaller than the field of view. Prism-based TIRF/TIRS microscopy 
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provides cleaner evanescence field illumination and wider range of incident angle than objective-

based TIRF/TIRS microscopy (31). 

1.5 Introduction to Raman Spectroscopy 

Raman spectroscopy is a commonly used spectroscopic technique to investigate the 

vibrational and rotational modes of a system (43; 44).  As shown in Figure 1.5, Raman scattering 

is an inelastic scattering process, the molecule is photo-excited into a virtual state and then emits 

photons to a vibrational state higher (Stokes) or lower (anti-Stokes) than the original state. The 

quantum yield of Raman scattering is on the order of 10-6. In resonance Raman spectroscopy 

(Figure 1.5), the molecule is photo-excited into an excited state instead of a virtual state and lead 

to much higher intensity of the scattering. 

Raman spectroscopy has been considered to be a powerful technique for structural analysis 

(45; 46). By using lasers of different frequencies from the near-ultraviolet to the near-infrared red 

in the Raman module, different samples can be excited under their optimum excitation conditions. 

By choosing lasers with appropriate frequencies, certain electronic transitions can be excited and 

resonance Raman studies of certain components of a sample or parts of a molecule can be realized 

(7; 47). Raman spectroscopy can provide rich information about chemical structures without 

special sample preparation requirements, making it capable for in situ experiments (48; 49). Also, 

since the measurements can be operated in an open and ambient environment, different conditions 

such as temperature, pH and electronic voltages can be applied to the sample with various designs 

of sample holder. By changing the immersion objectives, sampling in different environments like 

water or air is made possible.  

The spatial and temporal resolution of Raman scattering measurements are determined by 

the excitation laser spot size and pulse length. In confocal Raman technique, Raman signals from 
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femtoliter volumes (~1 µm3) can be measured, which realizes spatially resolved measurements in 

chromosomes and cells (47; 50). Moreover, by using different data analysis techniques based on 

multivariate analysis, more information about the sample chemical structure and chemical 

composition of complex systems can be obtained (51). 

1.6 Introduction to Photoluminescence Spectroscopy 

Photoluminescence (PL) spectroscopy has been widely recognized as an useful technique 

for the optical and electronic characterization of materials such as quantum dots (52), crystalline 

semiconductors (53) and carbon nanotube bundles (54) and dynamic processes of materials (53). 

PL spectroscopy is widely applied to study different defects (55; 56), the photocatalysis of 

semiconductors and quantum effects in nanocrystals (52; 57), complex molecules and their 

chemical environments and locations in biochemistry (58). Moreover, PL spectroscopy as a 

nondestructive technique is applied to in situ and operando measurements in electrochemical 

reactions revealing defect formation (59-62). 

In PL spectroscopy, sample is firstly photo-excited with electrons promoted into excited 

states and then excess energy releases in the form of light emission when excited electrons return 

to the ground state. The energy of the emission light is related to the energy difference between 

the two electron states in the transition. Therefore, PL spectroscopy can be used to measure the 

direct band gap of semiconductors (53).   

1.7 Introduction to Spectro-microscopic Imaging System 

Optical microscopy imaging has been playing an increasingly important role in the 

investigations of nano- and bio-materials and fundamental chemical processes (e.g., diffusion, 

adsorption and reaction) at the molecular and nanoscale level. However, its wide chemical 

applications have been hindered by the absence of definitive chemical information of the sample 
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in light microscopy images. Spectroscopic techniques (Raman, Infrared, etc.) are often required as 

companion tools to gain structural fingerprints of the sample.  

Various types of spectroscopic measurements (such as Raman, infrared, absorption, and 

fluorescence) can add valuable chemical and/or structural information as a new dimension of 

information to samples’ optical microscopy images when integrated with optical microscopes. 

Optical spectroscopic measurements provide rich molecular fingerprint information of samples 

and has shown capability in visualizing the molecular composition of subcellular structures 

noninvasively (63-65). Through the combination of microscopic and spectroscopic techniques, 

physical and chemical processes can also be correlated and discerned. 

1.7.1 Integration of Optical Microscopy with Raman Spectroscopy 

Raman spectroscopy is a non-invasive and label-free spectroscopic technique that is highly 

sensitive to chemical composition and structural information. Raman spectroscopy has been 

successfully integrated with different optical microscopy techniques such as light-sheet 

microscopy (66), confocal microscopy (67-69),  scattering microscopy (70; 71), fluorescence 

microscopy (72), mid-infrared photothermal microscopy (73) and multi-photon imaging system 

(74). The integration helps to characterize chemical distribution within samples (67; 75), confirm 

reversible chemical reactions detected by other imaging modality (71), provide real-time 

information of chemical bonds (70), decrease acquisition time and increase imaging specificity 

(68), avoid interference between encoding and label signal and increase accuracy in multiplexed 

biological detection (72), and elucidate various tissues with their molecular details with no lengthy 

procedures such as fixation, sectioning and staining when study pathological transformations (74).  
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1.7.2 Integration of Optical Microscopy with Infrared Spectroscopy 

Similar to Raman spectroscopy, Infrared (IR) spectroscopy is another nondestructive 

spectroscopic technique that provides fingerprint spectra of samples and therefore can characterize 

sample with rich chemical information without staining and labeling. Different from Raman 

spectroscopy which arise from the change of polarizability of the molecular vibration (76), IR 

spectroscopy is due to a net change in the dipole moment of a molecular vibration (73) and 

provides comprehensive characterization for samples with Raman spectroscopy.  

Improvements in spatial resolution and detection sensitivity have been made by replacing 

the conventional thermal emission sources used in FTIR spectro-microscope with a synchrotron 

IR source (77; 78), which is 100-1000 times brighter than conventional thermal emission sources 

(79). The high signal to noise ratio resulting from the enhanced source brightness not only 

improves the spatial resolution but also benefits its applications on studies of very weak IR signals 

from isotopic shifts (80) and makes in situ experiments in solution possible. On the other hand, to 

improve the spatial resolution, the integration of atomic force microscope with an infrared laser 

source (AFM-IR) (81), which utilizes an AFM tip to sense and map IR-induced thermal expansion, 

is invented and achieved a spatial resolution of 20 nm (82). Another IR technique developed to 

overcome the poor spatial resolution is infrared photothermal imaging (63-65; 83), in which the 

resolution is determined by the diffraction limit of the visible probe wavelength. Cheng et al. 

developed a system that combines mid-infrared photothermal microscopy with confocal Raman 

spectroscopy realizing fast infrared photothermal imaging of living cells with submicrometer 

resolution and full-spectrum Raman analysis (73). 

Whelan and Bell integrated synchrotron Fourier transform infrared (S-FTIR) spectroscopy 

with direct stochastic optical reconstruction microscopy (dSTORM) to study biochemical changes 
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induced by different cell fixation methods at single cell level (84). dSTORM imaging was applied 

to characterize cell structures and distribution of targeted biomolecules. IR spectroscopy, limited 

by the spatial resolution of ~5 µm, was used to characterize the biochemical changes of an entire 

cell. dSTORM images and corresponding IR spectra were taken before and after chemical fixation 

of the cell preparation protocol of the dSTORM using different fixatives. By interpreting IR 

spectra, fixation effects of different fixatives on the composition of lipid bilayer and overall DNA 

secondary structure were investigated and correlated to the changes of dSTORM images.  

1.7.3 Integration of Optical Microscopy with Transient Absorption Spectroscopy 

Transient absorption (TA) spectroscopy has been widely applied to provide valuable 

insights into the dynamics of excited-state molecules (85). TA microscopy, integrating TA 

spectroscopy with scanning microscopy (86) (both near-field (87; 88) and far-field super-

resolution techniques (89-96)), provides both time-resolved and space-resolved measurements of 

TA.  

By combining the spatial information with TA spectroscopy, signals from heterogenous 

samples can be located spatially and temporally. In material science, characterization of both 

temporal and spatial behaviors of the carriers is very helpful in understanding the relationship 

between excited state properties and material morphological features such as interfaces (97-103). 

It also benefits heterogeneity studies of nano-objects (104-111) and interaction studies between 

materials and substrates (104; 105; 112-114). Recent advances have been made to improve the 

performance of TA microscopy in detection sensitivity (115-117), spatial resolution (86-96) and 

imaging speed (86; 118).  
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1.7.4 Integration of Optical Microscopy with Fluorescence Spectroscopy 

Super resolution microscopy, which overcomes diffraction limit of light and provides 

spatial resolution of ~10 nm however typically can only offer monochrome images, has been 

widely integrated with fluorescence emission spectroscopy to realize multicolor or ‘true color’ 

imaging.  

In earlier studies, fluorescence emission spectroscopic information is reflected as the ratio 

of photon numbers which are detected by two split detection channels covering two different 

wavelength regions. The ratio of photon numbers is then used to distinguish signals from different 

markers and realize simultaneous multicolor fluorescence imaging (119-121). During the 

experiments, fluorescence signal from switch-on molecules was split into two light paths according 

to wavelength (by inserting different emission filters into light collection path) and detected by the 

different areas on the electron-multiplying CCD (EMCCD) detector. The 2D frequency histogram 

of the photon number ratio of molecules from different detection channels are used to distinguish 

molecules with different emission spectra. In recent studies, the fluorescence emission 

spectroscopic information is obtained by dispersing the fluorescence signal through a prism before 

it is detected by one of the detection channels (122-125). With recent studies, high-throughput 

single-molecule spectroscopy combined with super-resolution microscopy has achieved recording 

spectra of ~102 molecules per few-millisecond and 3 D characterization both spectrally and 

spatially (122). There are also studies replacing the prism with a grating and realizing simultaneous 

spatial and spectral characterization (126; 127). The optical microscopy integrated with 

fluorescence spectroscopy has been utilized to investigate physicochemical changes of local 

environments (125; 127) and reaction pathways of single molecules (128).  
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Figure 1.1 Schematic light path of transmitted DIC microscope.  
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Figure 1.2. Total internal reflection illumination light path. 
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Figure 1.3. Schematic light path of objective-based TIRF/TIRS microscopy. 
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Figure 1.4. Schematic light path of prism-type TIRF/TIRS. 
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Figure 1.5. Jablonski energy diagram of stokes Raman scattering, anti-stokes Raman scattering 

and resonance Raman scattering processes. 
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2 DEVELOPMENT OF MULTISCALE SPECTRO-MICROSCOPIC IMAGING 

SYSTEM 

2.1 Introduction  

To this date, it is still challenging to perform in situ microscopic and spectroscopic 

measurements of the exact same sample (or the exact same region of a sample), especially for 

samples undergoing continuous transformations (129-135). The existing multi-modality spectro-

microscopic systems employ microscopy modes mostly for relatively simple purposes, such as 

sample positioning and fluorescence image acquisition as discussed in Chapter 1. The more 

advanced features, including single molecule sensitivity, sub-diffraction-limited spatial resolution, 

and fast (millisecond range) temporal resolution, that have become the trademarks of microscopy 

development in the past decade, have rarely been combined with spectroscopic measurements. In 

the meanwhile, a system that can characterize both physical and chemical properties of samples in 

situ is necessary for a fuller understanding of physicochemical characteristics (48; 136-143).   

   On the other hand, new challenges and opportunities evolve at the intermediate scales 

(length scales from ~10 nm to 10 m) between nano- and traditional macro-scale (bulk) materials. 

A fundamental challenge is to observe and characterize the inherent imperfection and statistical 

variation in mesoscale materials. It has been realized that many functional materials begin to 

manifest their functional behaviors starting at mesoscale, where nanoscale building blocks are 

assembled into more complex functional architectures for more diverse interactions with the 

environment and greater functionality (144-146). Significant progresses have been made on our 

understanding of nanoscale structures in the past decades; however, mesoscale structures, which 

are intrinsically dynamic and metastable, remain relatively unexplored. Mesoscale structures have 

a relatively lower energy cost to change their configurations or introduce boundaries and generate 
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more distinct phases, resulting from more densely spaced energy levels comparing to nanoscale 

structures (144). The lack of knowledge in mesoscale has restrained our ability to predict and 

optimize the performance of functional materials and often limited their application to trial and 

error. In situ multi-modality characterization systems, capable of performing and correlating 

various physical and chemical measurements of the same sample area undergoing continuous 

transformations under environmental stimuli, are much needed to monitor and understand the 

evolution of materials from molecular level to mesoscale. 

Optical microscopy imaging is inherently suited for studying mesoscale structures and 

dynamics for its matching resolution range (tens to hundreds of nanometers). It is much less 

invasive compared to electron microscopy (EM), where high-energy electron beams could easily 

damage the sample, especially fragile crystalline structures in organic films (147). In most cases, 

special sample preparation is not needed for optical microscopy, therefore allowing high-

throughput in situ characterization and screening. High throughput is an advantage of wide-field 

optical microscopy imaging techniques over other high resolution and high contrast techniques, 

such as EM, scanning probe microscopy, atomic force microscopy (AFM) and near-field scanning 

optical microscopy. Near-field scanning optical microscopy has low incident light intensity 

hindering excitation of weak fluorescent molecules and is not suitable for imaging soft materials 

because of the high spring constants of the optical fibers (48). When a transformation is subtle or 

spectroscopic measurements of fine sample structures are needed, high resolution and high contrast 

microscopic techniques that can quickly locate and observe the subtle structures are required while 

spectroscopic measurements are taken. Therefore, the high resolution and high contrast images of 

physical morphology changes of the sample can be correlated with the spectroscopic changes, 

which indicates the chemical property changes of the sample.  
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Optical microscopic imaging techniques are also advantageous because they are less 

invasive; thus, the sample integrity is usually maintained throughout the sampling process enabling 

the study of dynamic progressions over an extended timeframe. Usually for samples observed 

under optical microscopy imaging techniques, no special sample preparations are needed; 

therefore, samples can be observed and studied under their working conditions.  

On the application side, samples like polymeric blend thin films used in bulk heterojunction 

(BHJ) organic photovoltaics (OPVs) and organic field transistors are deposited on silicon surfaces 

which is nontransparent and highly reflective. Therefore, techniques that can test samples on 

reflected surface is necessary to study the properties of those materials since material properties 

may change during its transferring to a regular microscope glass slide. 

   Therefore, the multi-modality multiscale imaging system which combines far-field 

optical microscopy imaging (DIC microscopy, crossed-polarize light microscopy, TIRF 

microscopy and TIRS microscopy) with confocal spectroscopy (Raman and photoluminescence 

spectroscopy) is developed to provide chemical (by Raman and photoluminescence spectroscopy) 

and morphological (by DIC microscopy, cross-polarized light microscopy, TIRF microscopy and 

TIRS microscopy) information of samples in situ from molecular level to mesoscale. Integrated 

with the home-built post treatment (thermal annealing and solvent annealing) sample stages, the 

system provides a platform to study the relevant multiscale structures and their response to 

environmental stimuli in situ. This chapter provides the instrumentation details of each imaging 

module in the multi-modality multiscale spectro-microscopy imaging system. 

2.2 Experimental Section 

The optical microscopy imaging module was equipped with a Dhyana 400BSI sCMOS 

camera (Tucsen Photonics, Fuzhou, China) and a Zeiss EC Epiplan-Apochromat 100X objective 
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(N.A. 0.95) and Zeiss Apo Plan 100X oil immersion objective (N.A. 1.40). The confocal 

spectroscopy module was equipped with an IsoPlane 160 spectrometer and a PIXIS 100B camera 

(Teledyne Princeton Instruments, Acton, MA), and a 488nm laser as the excitation source for both 

Raman and photoluminescence spectroscopy measurements. Filters and the dichroic mirror were 

purchased from Semrock (Rochester, NY). All other optics and optomechanical components were 

purchased from Thorlabs (Newton, NJ). 

2.3 Results and Discussion 

The multi-modality multiscale spectro-microscopic imaging system consists of differential 

interference contrast (DIC) microscopy module, cross-polarized light microscopy module, total 

internal reflection fluorescence/scattering (TIRF/TIRS) microscopy module, confocal 

spectroscopy (Raman and photoluminescence) module (Figure 2.1A) and home-built post 

treatment (thermal annealing and solvent annealing) sample stages module (Figure 2.1 B and 2.1 

C). 

2.3.1 Reflected Differential Interference Contrast (DIC) Microscopy Module 

Different from the transmitted light DIC setup (Figure 1.1) which adopts a two-prism 

transmitted-light configuration, the reflected light DIC setup (Figure 2.2) only adopts one 

Nomarski prism. The objective is used both as a condenser to collimate incident light onto the 

sample and a detection optics to collect scattering signals from the sample. The reflected DIC 

microscope was optimized for the detection of individual nanoscale building blocks and 

intermediate features of mesoscale materials on reflective surfaces such as silicon wafers, gold 

coated substrates, etc. The advantages of reflected DIC microscopy on characterization of samples 

on reflective surfaces over other conventional methods such as EM and scanning probe microscopy 
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include noninvasive and nondestructive rapid characterization, relatively simple sample 

preparation, dynamic measurements in real time, and relatively less expensive. 

It is worthwhile to note that reflected DIC configuration was demonstrated as early as 1979 

by Lessor et. al. and applied towards surface topography studies (148). Traditionally, reflected 

DIC has been used to both qualitatively and quantitatively report surface roughness while studying 

polishing techniques, and it has also found much use in visualizing details and defects in 

semiconductor chips made on silicon wafers. However, all of the previously developed reflected 

DIC microscopes are limited to standalone systems with relatively low magnification and low 

resolution due to design and instrumental challenges. An oil-immersion objective with a high 

numerical aperture and high magnification is necessary to achieve high resolution and high 

sensitivity imaging in reflected DIC. Yet, this requires sophisticated instrumentation due to the 

limited space and short working distance.  

Figure 2.1A shows the key components of the reflected light DIC microscope. Light 

emitted from a light-emitting diode (LED) light source was collimated by a group of lenses, passed 

through a linear polarizer, and was reflected by a beamsplitter plate placed at 45 angle to the 

incident light beam. Then, the light was focused onto the Nomarski prism which was positioned 

at the rear focal plane of the objective. The Nomarski prism can be translated laterally across the 

optical path to introduce bias retardation to achieve best image contrast for different samples. The 

objective then collimated sheared orthogonally polarized wavefronts onto the sample. Then, light 

scattered from the sample was collected by the same objective and focused onto the interference 

plane of the Nomarski prism where they were recombined to eliminate the shear. After passing 

through the Nomarski prism, the same beamsplitter and a second linear polarizer (also called 

analyzer), the light was focused on the CCD camera by a 200 mm tube lens.  
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2.3.2 Reflected Cross-polarized Light Microscopy Module 

The configuration of the reflected cross-polarized light microscope is similar to the 

reflected light DIC microscope, except for the Nomarski prism (Figure 2.3). These two modes can 

be easily switched by changing the position of the Nomarski prism in the light path. Instead of 

being separated by the birefringent Nomarski prism into two orthogonally polarized light 

wavefronts, the linearly polarized incident light in cross-polarized light microscopy is separated 

by the anisotropic sample itself along its longitudinal axis and transverse axis. The light beams 

passed through the sample along different optical axes of the sample and experienced different 

refractive indexes resulting in different phase retardation. Then the two orthogonally polarized 

light beams projected onto the transmission axis of a second linear polarizer and interfered with 

each other. Finally, the interference pattern of the sample with orientation information was 

detected by the camera. 

2.3.3 Total Internal Reflection Microscopy Module 

The prism-type TIRF/TIRS microscopy module with 532 nm and 488 nm excitation lasers 

is integrated into the multi-modality multiscale spectro-microscopic imaging system (Figure 

2.1A). The light path of the signal collection in the reflected light DIC microscope module was 

shared with the TIRF/TIRS microscopy module. A home-built sample stage (Figure 2.1D) was 

used to couple prism-type TIRM/TIRS into the imaging system. Excitation light was guided by 

the prism towards the solid-liquid interface at an incident angle larger than the critical angle and 

generated an evanescent field (Figure 2.4), which excited samples near the interface. Fluorescence 

or scattering signals from the sample were collected by the objective and delivered to the camera. 

This design enabled us to directly mount sample slides on top of the prism and allowed the 

simultaneous acquisition of TIRF/TIRS microscopy images and Raman spectra. Special substrate 
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such as quartz slides coated with a thin layer of gold film (149; 150) can be used to support the 

sample. The gold film was at the interface of a glass substrate and the sample (e.g., cells or aqueous 

medium). The incident light was converted to surface plasmon resonance (SPR) at the 

electronically conducting gold film. The plasmon then created an evanescent wave field that 

extended into the medium on either side of the gold film. The gold film also served as the reflection 

mirror for reflected DIC imaging. 

2.3.4 Confocal Spectroscopy Module 

A confocal spectroscopy system was built into the multi-modality multiscale spectro-

microscopy imaging system to allow in situ acquisition of both spectroscopic and microscopic 

measurements. The coupling of the Raman spectroscopy and reflected DIC microscopy can be 

used to correlate the surface enhancement and inter-particle distance information. The main design 

challenge was to enable the coexistence of two very different sets of optics for reflected DIC 

microscopy and Raman spectroscopy meanwhile achieved the best image and spectra quality, 

respectively.  

In this instrument, the inherent sensitivity of Raman/Photoluminescence spectroscopy on 

the chemical properties of the sample and the inherent sensitivity of Reflected DIC microscopy on 

the topographical geometrical profile of the sample were combined to provide an accurate, high 

throughput, non-destructive, label-free and in situ available analytical method under ambient 

conditions. 

Most of the reflected DIC optics were shared with the built-in confocal spectroscopy 

module. (Figure 2.1A) The excitation laser was reflected by a flip mirror and a 45° dichroic mirror 

onto the back focal plane of the objective. Then the excitation laser was focused by the objective 

into a diffraction limited spot on the sample. The scattering or emission signal from the sample 
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was collected by the objective and focused onto the slit of a spectrometer. (Figure 2.5) Therefore, 

Raman/PL spectra of the same area as in the optical image can be taken by using the Raman/PL 

spectroscopy module. The laser spot size used in Raman/PL spectroscopy module was about 

0.5µm.  

2.3.5 Post Treatment Sample Stages Module 

The thermal stage (Figure 2.1B) was made of a thermoelectric (Peltier) cooling module 

from TE Technology, which was used for heating by reversing the electric current flow. The 

thermoelectric module was controlled by a temperature controller (TC-720, TE Technology). 

The solvent annealing stage (Figure 2.1C) can be used to provide different solvent 

environment for samples during solvent annealing experiments. 

2.4 Conclusions 

A multi-modality spectro-microscopy imaging system capable of in situ optical 

characterization with sub-diffraction-limited spatial resolution and fast temporal resolution has 

been developed. The in situ imaging capability of this new system makes it a valuable 

characterization technique complementary to other conventional methods, such as electron 

microscopy and scanning probe microscopy. By integrating spectroscopy modules into the 

imaging system, both physical and chemical information of the same sample area can be correlated. 

The multi-modality spectro-microscopy imaging system is also a high throughput optical 

instrument system operating under ambient or controlled conditions using visible light sources. 

The system will stimulate new scientific explorations that are previously unattainable by providing 

scientists with a new capability in acquiring and correlating a broad range of information of their 

samples dynamically with sub-micron spatial resolution. 
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2.5 Figures 

Figure 2.1 (A)Instrumentation scheme; Components with dashed outline are removeable among 

different modules; M:Mirror; L:Lens; F:Filter; B/D: Beamsplitter or Dichoric Mirror; 

P:Polarizer; A:Analyzer; FM: Flip Mirror; TL: Tube lens; NP: Nomarski prism. (B)Thermal 

annealing stage and its temperature controller. (C)Solvent annealing stage. (D)Prism-type 

TIRF/TIRS sample stage. 
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Figure 2.2. Schematic light path of reflected DIC microscope.  
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Figure 2.3. Schematic light path of reflected cross-polarized light microscope.  
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Figure 2.4. Schematic light path of prism-type TIRF/TIRS.  
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Figure 2.5. (A)Schematic light path of the confocal spectroscopy module. (B) Schematic light 

path of total internal reflection scattering light path. 



30 

3 IN SITU CHARACTERIZATION OF PHOTOACTIVE LAYERS IN BULK 

HETEROJUNCTION SOLAR CELL UNDER THERMAL STRESS BY THE 

MULTI-MODALITY MULTISCALE SPECTRO-MICROSCOPY IMAGING 

SYSTEM 

3.1 Introduction 

Structures of organic semiconducting materials in different length scales, ranging from the 

π-π stackings at the molecular level to charge transport pathways at the meso-, micro- and 

macroscopic scales, can profoundly affect the properties and features of the resulting architectures 

and their consequent performance in organic optoelectronic devices, including organic thin-film 

field-effect transistors (FETs), organic light-emitting diodes (LEDs), and organic photovoltaics 

cells (151-154). However, it is challenging to obtain information spanning such a wide length scale 

correlatively in situ using conventional characterization methods, (147; 154-156) which restrains 

our understanding of the inherent hierarchical structures of organic semiconductors and their 

structure-property relationship. Departing from conventional characterization methods of material 

science mostly focused on structures from one length scale, we apply an in situ multi-modality 

characterization system onto the study material structural information from the molecular level to 

the mesoscale.  

Photoactive layers in bulk heterojunction (BHJ) solar cells as a standout example with 

imperative need of in situ characterization in mesoscale, are composed of polymer semiconductors 

as hole-conducting materials and acceptor molecules, e.g., fullerene derivatives, as electron-

conducting material. They are intrinsically metastable and demonstrate a range of physical and 

chemical properties across different regions within a sample. Dramatically different optoelectronic 

properties may result from small changes occurred during sample preparation or post deposition 
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processes (151). Nanoscale domains in these polymer films have been studied extensively by 

electron microscopy (EM) and atomic force microscopy (AFM), which benefits from their superior 

spatial resolution; (147; 154-156) however, the mesoscale pattern formation, which reflects the 

collective behavior of nanoscale domains, is rarely studied. It is reported that features generated 

in different length scales, from molecular level  to micrometer scale  will all affect optoelectronic 

properties of polymer active layers in BHJ solar cell and device performance (151; 154), which 

makes it necessary to characterize the order and arrangement of materials of the same sample area 

under in situ transformation at multiple length scales (157). Furthermore, techniques like EM, 

AFM and X-ray diffraction can be elaborate and time-consuming and affecting the working 

conditions when they are applied routinely on the characterization and test of active blend films 

that are being used in devices (158).    

In material science area, grazing incidence X-ray scattering (GIXS) has been demonstrated 

as an useful tool in the characterization of the morphology of polymer-fullerene BHJ blends thin 

film for qualitative purpose. However, GIXS is not able to provide the morphology information 

with spatially properties (159-161). GIXS also has relatively long collection times ranging from 

120s to 180 s depending on the scattering properties of the sample. In contrast, our multi-modality 

imaging system can provide spatial information in ms and can be a good complementary 

characterization technique to other bulk characterization techniques.  

Differential scanning calorimetry (DSC) is another technique that is commonly used to 

characterize the thermal properties of photoactive layers used in BHJ solar cells and the melting 

points of the components and other first order phase transitions can be revealed by DSC (161). 

However, DSC measures the thermal properties of the bulk material, but the phase behavior may 

be significantly different for thin film samples of the same material.  
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Atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning 

electron microscopy (SEM) are also most commonly used characterization methods in material 

area with a high resolution to several nm, however, the observation field of view is  small compared 

to the size of the photoactive layers used in real solar cells or organic field transistors. Long-time 

scanning and special sample preparation are needed for those techniques, which makes in situ 

characterization difficult. The wide-field optical microscopy in the multi-modality spectro-

microscopy imaging system has a much larger field of view and therefore can provide quick 

screening, high throughput characterization in situ. On the other hand, for BHJ blend, for example, 

poly(3-hexylthiophene) (P3HT)/ [6,6]-phenyl C61 butyric acid methyl ester (PCBM), both 

components are carbon materials and electron density are similar, which makes it difficult to 

differentiate different chemical domains by using TEM and SEM, which are characterization 

techniques relying on the electron density of samples.  

Absorption is also a widely used technique to characterize the polymeric thin films. For 

conjugated polymers, absorption spectra of polymer films with higher molecular order (or high 

crystallinity) have a shoulder peak comparing to polymer films with lower molecular order (or low 

crystallinity). For example, in regioregular P3HT films, there is a distinct shoulder peak on the 

long-wavelength side of the absorption maximum peak resulting from the closer interchain 

packing. However, in the blend thin film of 1:1 P3HT: PCBM, the spectra overlap severely 

between unaggregated P3HT transitions and PCBM, which makes accurate characterization of the 

blend thin film sample of P3HT and PCBM difficult. In the meanwhile, the different lineshapes 

(Franck-Condon factors) of aggregated and unaggregated components also contributes to the 

inherent difficulty of characterizing the relative contributions of regioregular and regiorandom 

components to the overall absorption lineshape (162; 163). Fortunately, more reliable 
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characterization for regioregular and regiorandom components in conjugated polymeric thin films 

can be obtained from Raman spectroscopy, which also provides the basis for spatially mapping 

structural feature of the conjugated polymeric thin films on the submicrometer size scale. 

Post deposition treatments, such as thermal annealing, are commonly used to improve the 

power conversion efficiency (PCE) of the photovoltaic devices. Many research groups reported 

that P3HT/PCBM optoelectronic performance is greatly enhanced after 10-30 mins thermal 

annealing after deposition (164). However, in many cases, it is not fully clear how to characterize 

the microstructure changes in situ during a transformation and how to control the microstructures 

to increase the PCE (165). The lack of understanding results in the limits of the optimization of 

electron-donating and electron–accepting materials in solar cells to trial and error (166). Therefore, 

it is critically important to develop techniques to quickly characterize microstructures in situ both 

spatially and spectrally.  

The spectroscopic properties of conjugated polymers are related to the conformation and 

aggregation of the polymer chains (167-169). For example, P3HT has coil-like conformation in 

dilute THF solution (169), which results from shorter conjugation length caused by distortion and 

the C-C bond bending between adjacent thiophene rings (170). However, in the film samples, the 

conjugated polymers have a planar conformation resulting from the efficient π-π stacking between 

adjacent polymer chains (171). Therefore, polymer chains become more extended and rigid, have 

limited flexibility and rotations, and thus have an increased conjugation length in film samples 

(170). The optoelectronic properties of the blend thin films of conjugated polymer blends and 

PCBM are closely related to the polymer chain morphology and polymer chain interactions (170). 

Different chain conformations and packing or aggregation types lead to complex heterogeneous 

materials and performance, for example as shown in Figure 3.1, the π-π stacking is the second fast 
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charge transport direction in the edge-on packing motif of conjugated polymers (170; 172; 173). 

Because of the high complexity and heterogeneity of conjugated polymers, it is difficult to obtain 

a detailed understanding of optoelectronic processes occurring in BHJ polymeric blend films from 

one type of spectroscopic technique and one length scale. 

In this chapter, the multi-modality spectro-microscopic imaging system is applied on in 

situ characterization of photoactive layers in bulk heterojunction (BHJ) solar cells under thermal 

stress from multiscale. With the multi-modality spectro-microscopic imaging system, knowledge, 

and associated strategies for controlling the equilibrium microstructure of BHJ organic solar cell 

have been developed. Utilizing the home-built thermal annealing microscope stage, the multi-

modality spectro-microscopic imaging system has been employed for an in situ multiscale 

correlative study of the thermotropic evolution of a photoactive layer of 1:1 P3HT: PCBM. The 

multiscale thermotropic evolution is characterized by three phase transition stages with their 

critical temperatures identified. At last, the impact of different temperature dropping processes on 

the photoactive layers are also studied using the spectro-microscopic imaging system. 

3.2 Sample Preparation and Experimental Measurements 

3.2.1 Film Preparation 

Regioregular P3HT (RR-P3HT) was purchased from Rieke Metals. The molecular weight 

(Mw) was 50-70 kg/mol on average, and regioregularity was 91%-94%. Regiorandom P3HT 

(RRa-P3HT) and PCBM were purchased from Sigma Aldrich. All materials were used as received. 

To prepare the blend thin films, 12.5 mg RR-P3HT and 12.5 mg PCBM were dissolved in 1 ml 

chlorobenzene. The solution was stirred for 8 hours to fully dissolve before spin-coated on Si 

substrates (silicon wafers) at 1000 rpm for 60 s. Silicon wafers were cleaned for 30 min in piranha 
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solution and then rinsed by DI water before spin coating. In thermal annealing studies, the blend 

thin films were annealed under nitrogen protection. 

3.2.2 Temperature Control 

During the thermotropic evolution, temperature increased at a rate of 10 °C/min from room 

temperature (~20 °C) to 100 °C. Each temperature was maintained for 1 min while measurements 

were taken under the protection of nitrogen.  

During the programmed temperature dropping process, temperature decreased at a rate of 

5 °C/min from 100 °C to 20 °C. 

3.2.3 Cross-polarized Light Microscopy Images Measurement 

Cross-polarized light microscopy images were taken with an ET605/70 filter (Chroma, 

Bellows Falls, VT) inserted in the incident light path of the cross-polarized light microscope. 

Dhyana 400BSI sCMOS camera (Tucsen Photonics, Fuzhou, China) was used as detector and a 

Zeiss EC Epiplan-Apochromat 100X objective (N.A. 0.95) was used to collected light signal. The 

camera’s exposure time was set to 110 ms in all imaging experiments. 

3.2.4 Raman Spectroscopy Measurement 

Raman spectra were obtained under the excitation wavelength of 488 nm. The laser power 

was ~0.13 µw before the beamsplitter and acquisition time was 2000 ms. Spectral resolution was 

~1 cm-1. Raman spectra were taken at 10 different regions at each temperature and the average 

spectrum was used to calculate the crystallinity. 

3.2.5 Photoluminescence Measurement 

Photoluminescence (PL) spectra were obtained under the excitation wavelength of 488 nm. 

The laser power was ~0.13 µw before the beamsplitter and acquisition time was 2000 ms. Spectral 
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resolution was ~5 cm-1. PL spectra were taken at 10 different regions at each temperature and the 

average PL spectrum was used to calculate the 𝐼𝑃𝐿
0−0/𝐼𝑃𝐿

0−1. 

3.3 Data Analysis 

3.3.1 Cross-polarized Light Microscopy Images Analysis 

Charge transport in solution-processed polymeric blend photoactive layers in BHJ solar 

cells is sensitive to grain boundaries, molecular alignment and orientation, (174-176) with much 

higher mobilities in semicrystalline polymer domains than amorphous polymers (177). It has been 

reported that different relative grain orientations lead to different charge transport barrier (175). 

The mesoscale orientational domains can affect essential optoelectronic properties, such as charge 

transport (178; 179) and absorption of unpolarized light (180).  

Analysis of domain orientation and alignment can be achieved through the study of optical 

anisotropy, (181) while other characterization methods may struggle in generating contrast from 

the compositionally similar sample domains. It has been reported that the strong π-π interactions 

perpendicular to the conjugated backbone lead to the efficient packing and crystallization of many 

conjugated polymer. Resulting from the rigidity and planar conformation of the conjugated 

backbone of P3HT, efficient packing and crystallization occur in the blend films (172). Cross-

polarized light microscopy images of the photoactive layers can uncover the orientation of the 

domains with respect to the electric field vector of the incident light beam. Similar results reported 

previously by transmission polarized X-ray microscopy (182). The image intensity is related to the 

angle between the electric field vector of the incident light beam and the anisotropic structures of 

the samples by the following equation (Figure 3.2): 

𝐼 ≈ 𝑠𝑖𝑛2(2𝑥)………………………………………………...(1) 
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where I is the intensity of the cross-polarized light microscopy image and 𝑥 is the angle 

between the polarization direction of the incident light and the domain’s dominant orientational 

angle. The contrast in cross-polarized light microscopy images (Figure 3.3 A) results from 

different in-plane domain orientations relative to the polarization direction of the incident light. In 

comparison, unpolarized bright field images (Figure 3.3 B) cannot reveal the heterogeneity of 

domain’s dominant orientations, suggesting the polarization-averaged images are remarkably 

homogeneous despite the large-scale orientational heterogeneity. Therefore, if the images from all 

polarization directions of incident light are added together, which means taking polarized light 

microscope images with incident lightbeams with all electric field orientations, then the resulting 

image after summation would be independent of the orientation of each domain. That explains 

why under bright field microscopy, no domain orientation features appear. 

As shown in Figure 3.3 C, the image intensity distribution in cross-polarized images can 

be deconvoluted into three intensity peaks corresponding to the two dominant orientational 

domains (Peak 1, 3) and domain boundaries between them (Peak 2) in Figure 3.3 A. For same 

sample under unpolarized bright field image, only a single peak was obtained (Figure 3.3 D). The 

percentage of peak overlap (OP) which can be calculated using the following equation. 

𝑂𝑃𝑖,𝑗 =
1

2
(1 −

𝐼𝑗−𝐼𝑖

0.5(𝑊𝑖+𝑊𝑗)
) =

1

2
(1 − 1.18 ×

𝐼𝑗−𝐼𝑖

𝑊0.5ℎ𝑖+𝑊0.5ℎ𝑗
)………………………….(2) 

𝑂𝑃𝑖,𝑗: Overlap percentage of peak i and peak j. 

𝐼𝑖: Peak i position in the image intensity distribution. 

𝐼𝑗: Peak j position in the image intensity distribution. 

𝑊𝑖: The peak width of peak i. 

𝑊𝑗: The peak width of peak j. 

𝑊0.5ℎ𝑖: Full width half maximum (FWHM) of Peak i. 
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𝑊0.5ℎ𝑗: Full width half maximum (FWHM) of Peak j. 

3.3.2 Raman Spectra Analysis 

3.3.2.1 Raman Spectra of Regioregular P3HT and Regiorandom P3HT 

Raman spectroscopy has been considered to be a powerful spectroscopy characterization 

technique for structural analysis (46; 183). On the other hand, Raman measurements are 

noninvasive under ambient conditions and no special sample preparations are required, (48; 49) 

hence, widely used to monitor the conformational changes of molecules in situ. In previous studies, 

symmetric in plane C=C stretching Raman mode of P3HT was used to distinguish different phases 

of P3HT in its blend with PCBM (184-186). It has been reported that the C=C peak position is 

sensitive to the degree of molecular order of P3HT (186) resulting from its sensitivity to π-

delocalization of P3HT. The peak position is ~1449 cm-1 for regioregular P3HT (RR-P3HT) and 

~1470 cm-1 for regiorandom P3HT (RRa-P3HT) under 488 nm excitation (Figure 3.4). RR-P3HT 

has a lower wavenumber than that of RRa-P3HT film resulting from that RR-P3HT backbone 

contains longer conjugated segments than that of RRa-P3HT (186). In Raman measurements, 488 

nm was chosen as the excitation wavelength because at 488 nm, RR-P3HT and RRa-P3HT had 

comparable absorption features, hence, C=C stretch modes of RR-P3HT and RRa-P3HT regions 

had similar Raman intensity (186). 

3.3.2.2 Raman Spectra of P3HT in the Photoactive Layer under Thermal Stress 

The relative crystallinity of P3HT in the nonannealed and annealed RR-P3HT:PCBM blend 

film can be quantify by deconvolute the symmetric C=C stretch Raman mode of blend films into 

symmetric C=C stretch of RR-P3HT films and RRa-P3HT films, where the relative contributions 

of the two peaks are fitting parameters. The relative crystallinity can be quantify by the following 

equation (186): 
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𝐶𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑖𝑡𝑦𝑅𝑅−𝑃3𝐻𝑇(%) =
𝑃𝑅(𝑅𝑅−𝑃3𝐻𝑇)

𝑃𝑅(𝑅𝑅−𝑃3𝐻𝑇)+𝑃𝑅(𝑅𝑅𝑎−𝑃3𝐻𝑇)×(
𝜎𝑅𝑅𝑎−𝑃3𝐻𝑇
𝜎𝑅𝑅−𝑃3𝐻𝑇

)
× 100..........(3) 

PR(RR-P3HT) is the Raman peak intensity or integrated area of the C=C stretch mode in RR-

P3HT. PR(RRa-P3HT) is the Raman peak intensity or integrated area of the C=C stretch mode in RRa-

P3HT. σRRa-P3HT/σRR-P3HT is the relative Raman scattering cross-section of C=C mode in RRa-P3HT 

to RR-P3HT films, which is ~1.69 under 488 nm excitation wavelength (186).  

As shown in Figure 3.5, the symmetric C=C stretch Raman mode of both as-cast and 

annealed P3HT: PCBM blend films are fitted well with a sum of RRa-P3HT and RR-P3HT spectra. 

Using this method, the change of relative crystallinity of P3HT in 1:1 P3HT: PCBM photoactive 

layers comparing to pristine regioregular P3HT thin films under thermal stress is quantitively 

characterized.  

3.3.3 Photoluminescence Spectra Analysis 

Different aggregates of polymeric semiconductors can exhibit different electronic 

interactions (187). Michael Kasha introduced the earliest models to study the photoluminescence 

(PL) spectra of molecular aggregates (188) and the models were developed and applied on 

polymeric semiconductors by Spano (187), based on which the different π-π aggregate types: H-

favored aggregates and J-favored aggregates (189-191) resulting from different exciton 

delocalization along the stacking axis in a π-stack can be analyzed from the PL spectral lineshape 

(188).  

The PL spectra of polymeric semiconductors can be deconvoluted into three emission 

energy: 0-0, 0-1 and 0-2, according to the weakly coupled H-aggregate model (Figure 3.6) (187). 

The 0-0 emission peak is substantially attenuated for H-favored aggregates and enhanced for J-

favored aggregates in PL spectra of polymeric semiconductors (187; 189; 191). The electronic 

interactions among chromophores (chromophores can be one or group of repeat units in polymer) 
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lead to distortions of the vibronic progression in PL spectra and therefore result in the changes of 

relative peak intensities (158; 187). This interaction-induced changes in the relative peak intensity 

show the exciton bandwidth, the nature of disorder, and the exciton coherence length within a π-

stack (189-192). Therefore, the peak ratio of 0-0 to 0-1 emission peaks (𝐼𝑃𝐿
0−0/𝐼𝑃𝐿

0−1) were used in 

the experiments of this chapter to monitor the change of aggregate type of P3HT under thermal 

stress and after cooling down.  

As shown in Figure3.7, the PL spectra of both as-cast and annealed P3HT: PCBM blend 

films were fitted well with a sum of 0-0, 0-1 and 0-2 emission spectra. Using this method, the 

change of 𝐼𝑃𝐿
0−0/𝐼𝑃𝐿

0−1of P3HT in 1:1 P3HT: PCBM photoactive layers under thermal stress was 

quantitively characterized.  

3.3.4 Tcc
min, Tcc

max and Tcc Calculation 

Tcc
min and Tcc

max are defined as the beginning and ending temperatures of the cold 

crystallization process. Tcc
min corresponds to the temperature at which the crystallinity equals the 

crystallinity of the as-cast blend thin film plus the 5% the crystallinity difference between the as-

cast film and the annealed film: (193) 

𝐶𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑖𝑡𝑦𝑐𝑐
𝑚𝑖𝑛 = 𝐶𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑖𝑡𝑦𝑎𝑠−𝑐𝑎𝑠𝑡 + (𝐶𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑖𝑡𝑦𝑎𝑛𝑛𝑒𝑎𝑙𝑒𝑑 − 𝐶𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑖𝑡𝑦𝑎𝑠−𝑐𝑎𝑠𝑡) × 0.05..........(4) 

Tcc
max corresponds to the temperature at which the crystallinity equals the crystallinity of 

the as-cast blend thin film plus the 95% the crystallinity difference between the as-cast film and 

the annealed film: (193) 

𝐶𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑖𝑡𝑦𝑐𝑐
𝑚𝑖𝑛 = 𝐶𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑖𝑡𝑦𝑎𝑠−𝑐𝑎𝑠𝑡 + (𝐶𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑖𝑡𝑦𝑎𝑛𝑛𝑒𝑎𝑙𝑒𝑑 − 𝐶𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑖𝑡𝑦𝑎𝑠−𝑐𝑎𝑠𝑡) × 0.95...….(5) 

To determine the Tcc
min and Tcc

max, we first fitted the crystallinity-temperature correlation 

(Figure 3.8) with a sigmoid function (6): 

𝐶𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑖𝑡𝑦 = 𝐴2 +
(𝐴1−𝐴2)

1+(
𝑇

𝑇0
)

𝑝………………………….……..(6) 



41 

𝑇  is temperature; 𝐴1,  𝐴2, 𝑝  and 𝑇0  are fitting parameters. Then, 𝐶𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑖𝑡𝑦𝑐𝑐
𝑚𝑖𝑛  and 

𝐶𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑖𝑡𝑦𝑐𝑐
𝑚𝑎𝑥 were calculated using equations (4) and (5), followed with calculating Tcc

min 

and Tcc
max  by solving equation (6). 

Tcc was calculated as the peak position of the first derivative curve of the sigmoid function 

in (6) (Figure 3.8). 

3.4 Results and Discussion 

3.4.1 Thermotropic Realignment of Mesoscale Orientational Ordered Domains 

Characterized by Cross-polarized Light Microscopy Module under Thermal Stress 

In this section, cross-polarized light microscope integrated with the home-built post 

treatment stage (the thermal annealing stage) which were able to provide thermal stress when 

measurements were taking place, was used to in situ characterize the thermotropic domain 

realignment of 1:1 P3HT: PCBM blend thin films in mesoscale and microscale. Characterization 

of the mesoscale and microscale orientational domains in the thin films is essential for 

understanding the optoelectronic properties, such as charge transport (178; 179) and absorption of 

unpolarized light (180). 

Firstly, cross-polarized light microscopy was used to characterize the mesoscale and 

microscale features in the as-cast blend thin film of 1:1 P3HT: PCBM (as discussed in Data 

Analysis 3.3.1). The microscopy images captured under cross-polarized light microscope display 

domains of different contrasts (Figure 3.9 A), indicating that these mesoscale domains were 

anisotropic with dominant orientations (Data Analysis 3.3.1). Figure 3.9 A shows that the interface 

between micro size domains are not sharp and there are transition domains ~200 nm wide, whose 

domain orientation lies between the two large micro domains. Similar results were reported before 

by using X-ray microscope (182). During fast film deposition processes, for example, spin-coating, 
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the films were dried under nonequilibrium conditions (172) and mesoscale to microscale 

orientational domains were generated. Other polycrystalline films processed by solution 

deposition, for example poly(9,9’-dioctylfluorene-co-benzothiadiazole) (F8BF) were reported as 

films composed of well-ordered micro size domains (182). 

It has been reported that the ~200 nm domain boundaries are closely related to charge 

recombination in the film (182; 194). Because the mobility of charge carriers in the domains in 

which the polymer packed in the same orientation is much larger than that between domains in 

which direction of polymer packing is not aligned, the charge density in the domain boundaries is 

high and can result in charge recombination (182). The blue and red contrast regions gave rise to 

a bimodal distribution of pixel intensity (Figure 3.9 B), in which peak 1 represented blue domains, 

peak 3 represented red domains and peak 2 represented domain boundaries (195). (As discussed 

in Data Analysis 3.3.1) These experimental results suggest that the highly microcrystalline and 

anisotropic lamellar microstructure of P3HT on molecular level lead to anisotropic orientational 

ordered mesoscale and microscale domains in as-cast blend thin films. 

Secondly, the dynamic changes of mesoscale domains were characterized by the cross-

polarized light microscopy module as temperature increased from 20°C to 100°C. Thermotropic 

alignment of the mesoscale orientational domains occurred as shown by the images and image 

intensity distributions (Figure 3.10 and Figure 3.11). There was no change in image patterns and 

image intensity distributions from 20°C to 40°C. As temperature increased, realignment of 

domains occurred from 40°C until 70°C, starting from domain boundaries. Then the realigned 

blend thin film split into mesoscale domains with different dominant orientations again from 70°C 

to 100°C. As shown in Figure 3.11, in thermal annealing experiments, the intensity peak of domain 
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boundaries began to increase after the sample was heated to the glass transition temperature (Tg) 

of ~30 °C  (196). The blend thin film with highest orientational order was achieved at 70°C.  

Moreover, the overlap percentages (OP) of peaks representing different orientational 

ordered domains and boundaries between domains in image intensity distribution of the blend thin 

film were also calculated to characterize the dynamic process of the realignment of mesoscale 

orientational ordered domains. (Figure 3.12) As shown in Figure 3.12, the largest percentage of 

peak overlap between peak 2, 3 and peak 1, 2 happened ~ 50 °C and ~ 70 °C, respectively. When 

increasing the temperature even higher (> 80 °C), the domain boundary reappeared as shown in 

Figure 3.11. Moreover, there were two stages of the merging process observed when temperatures 

raise from 20 °C to 100 °C. Firstly, from 40 to 50°C, domain boundaries (Peak 2 in Figure 3.11) 

fully merged with one of the domains (Peak 3 in Figure 3.11). Further increasing temperature (60 

to 70 °C), the remained two domains started to merge with each other and primarily a single 

domain (Peak 1 in Figure 3.11) was generated. The changes of the overlap percentages (OP) of 

peaks with temperature coincided with the thermotropic alignment process of the mesoscale 

orientational domains.  

3.4.2 Thermotropic Evolution of Relative Crystallinity (Molecular Order) of Photoactive 

Layers Characterized by Confocal Raman Spectroscopy Module under Thermal Stress 

On the molecular level, confocal Raman spectroscopy module was used to in situ 

characterize the thermotropic evolution of crystallinity (molecular order or π-π stacking of 

molecules) in the 1:1 P3HT:PCBM photoactive blend thin films relative to a pristine regioregular 

P3HT film. Figure 3.13 shows the evolution of Raman spectra of 1:1 P3HT: PCBM blend thin film 

from 20°C to 100°C. The relative crystallinity of P3HT in the thin films has significant impact on 

optoelectronic properties such as, absorption wavelength and charge carrier mobility (186). 
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The C=C Raman peaks from P3HT in a blend thin film (Figure 3.14) can be deconvoluted 

into regioregular (RR, ordered) and regiorandom (RRa, disordered) peaks (Figure 3.4). The 

relative crystallinity of the P3HT blending with PCBM is quantified as the fraction of the ordered 

P3HT phase, i.e., the ratio of the RR peak to RRa peak (186). Details of Raman spectra analysis 

are provided in Data Analysis 3.3.2. 

Overall, Figure 3.14 shows that the Raman peak of regiorandom (RRa) P3HT significantly 

decreases and that of regioregular (RR) P3HT significantly increases under the thermal stress from 

20°C to 100°C, indicating an increase of crystallinity of P3HT in the blend thin film. 

Figure 3.15 shows the changes of crystallinity calculated from the C=C Raman peaks with 

temperature from 20°C to 100°C. (Details are discussed in Data Analysis 3.3.2) The crystallinity 

began to increase slightly when temperature reached 30°C, which is the glass transition 

temperature(196) of the blend thin film and at which the polymer chains began to gain flexibility 

resulting from the high temperature. The crystallinity kept increasing between 30°C and 84°C 

indicating the commencement and completion of the cold crystallization process with cold 

crystallization temperature at 49°C which was the peak position of the first derivative curve of the 

crystallinity changing curve (Figure 3.8). From 84°C to 100°C, the increase of the peak ratio 

slowed down and became stable.  

The crystallinity-temperature correlation (Figure 3.15) was fitted with a sigmoid function 

(Data Analysis 3.3.2). Tcc was then identified to be 49 °C from the first derivative curve of the 

sigmoid fitting function (Figure 3.8). Moreover, two other critical temperatures (Tcc
min and Tcc

max) 

that corresponded to the start and end of the cold crystallization process (193) were calculated 

(Data Analysis S3.4) to be 30 and 84 °C, respectively. 
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3.4.3 Thermotropic Transformation of Aggregate Type Characterized by Confocal 

Photoluminescence Spectroscopy Module under Thermal Stress 

In this section, confocal PL spectroscopy is utilized to distinguish the two types of 

aggregates, that is, H-favored and J-favored (As discussed in Data Analysis 3.3.3), (187; 189-191) 

formed by emissive P3HT semiconductors. The type of aggregate depends on the relative 

alignment of the transition dipoles of adjacent molecules in stackings (197-199). On the molecular 

level, studies showed that J-favored aggregates offer higher exciton mobilities, larger exciton 

diffusion length (197; 198) and an order of magnitude higher in power conversion efficiency than 

H-favored aggregates (199). 

Figure 3.16 shows the evolution of PL spectra from 20°C to 100°C. The PL spectra can be 

deconvoluted into 0-0, 0-1 and 0-2 emission peaks (Figure 3.17) (As discussed in Data Analysis 

3.3.3). The 0-0 emission peak is substantially attenuated for H-favored aggregates, while enhanced 

for J-favored aggregates (187; 189; 191; 199). Therefore, the ratio of 0-0 to 0-1 emission peaks 

(𝐼𝑃𝐿
0−0/𝐼𝑃𝐿

0−1) can be used to identify different types of aggregate in the blend thin film (187). Details 

of PL spectra analysis are provided in Data Analysis 3.3.3. 

As shown in Figure 3.17, the increasing rate of the 𝐼𝑃𝐿
0−0/𝐼𝑃𝐿

0−1 was smaller from 20°C to 

80°C than that from 80°C to 100°C. In Figure 3.18, the change of the peak ratio of 0-0 to 0-1 

emission peaks (𝐼𝑃𝐿
0−0/𝐼𝑃𝐿

0−1) with increasing temperature was fitted with two piecewise linear 

functions, and the transformation temperature (TH-J) from H- to J-favored aggregates (200) was 

identified to be ~ 77 °C from the intersection of the two linear functions. There are two stages of 

the 𝐼𝑃𝐿
0−0/𝐼𝑃𝐿

0−1-temperature curve during the thermotropic evolution from 20°C to 100°C. The first 

stage was from 20°C to 77°C, where the peak ratio of 0-0 to 0-1 emission peaks (𝐼𝑃𝐿
0−0/𝐼𝑃𝐿

0−1) were 

attenuated and increased slowly with temperature indicating the aggregates generated during the 
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cold crystallization process (as discussed in 3.4.2) were H-favored aggregates. The second stage 

was from 77°C to 100°C, where the peak ratio of 0-0 to 0-1 emission peaks (𝐼𝑃𝐿
0−0/𝐼𝑃𝐿

0−1) were 

enhanced indicating the transformation of H-favored aggregates to J-favored aggregates occured. 

3.4.4 Multiscale Evolution of the Photoactive Layers in Bulk Heterojunction Solar Cells 

The in situ correlative study using these three technique modules (cross-polarized light 

microscopy module, confocal Raman spectroscopy module and confocal photoluminescence 

spectroscopy module) offered a more complete understanding of the thermotropic evolution of 1:1 

P3HT: PCBM blend thin films from multiscale. Three phase transition processes (glass transition 

process, cold crystallization process and H- to J-favored aggregate type transformation process) 

and their corresponding transition temperatures were identified when the temperature was raised 

from 20°C to 100°C.  

As shown in Figure 3.10 and 3.11, transformations started after the sample was heated to 

above the glass transition temperature (Tg) of ~30 °C (196), when amorphous P3HT on molecular 

level began to obtain flexibility. The thermotropic realignment and merging of the mesoscale 

orientational domains was first observed at the domain boundaries (Figure 3.10 and Figure 3.11), 

where a higher amorphous polymer composition existed. The thermotropic realignment of 

orientational ordered domains described by the merging of overlap percentage of peaks in intensity 

distributions (Figure 3.12) agrees with the evolution process shown in Figure 3.10 and Figure 3.11. 

This is firstly followed by the cold crystallization process with commencement temperature 

(Tcc
min) at 30 °C, completion temperature (Tcc

max) at 84 °C and cold crystallization temperature 

(Tcc) at 49 °C. (Figure 3.15) (As discussed in 3.3.2) During the process of cold crystallization, 

enhanced flexibility of polymer chains at high temperature on molecular level leaded to a further 

merging of orientational domains and the most uniformly aligned blend thin film was achieved at 
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70°C (Figure 3.10). However, the blend thin film spilt into domains of various dominant 

orientations again at 80 °C (Figure 3.10). On the other hand, the attenuated  𝐼𝑃𝐿
0−0/𝐼𝑃𝐿

0−1 indicated 

that H-favored aggregates were generated during the cold crystallization process on molecular 

level. Furthermore, the transformation from H- to J-favored aggregates (TH-J) happened at ~ 77 °C 

(Figure 3.18) (Details in 3.4.3), resulting from the longitudinal stacking slip at high temperature. 

The temperatures (from 20°C to 100°C) were not high enough to melt the aggregates, and J-favored 

aggregates became dominant until 100°C. Finally, the melting process would happen at ~150 °C 

(201); however, it is beyond the technical limit of our spectro-microscopy system. Based on these 

results, the entire thermotropic evolution is depicted in Figure 3.19. 

These in situ multiscale measurements unravel the thermotropic evolution process and 

provide direct experimental evidence for the optimization of the photoactive layers in BHJ solar 

cells. There are two optimization factors at the mesoscale and molecular level, respectively. On 

the mesoscale, blend thin films with high orientational order are favored because domain 

boundaries affect the charge carrier transportation adversely (202) and more uniform orientation 

results in higher charge mobility (195). Therefore, based on the characterization from mesoscale, 

thermal annealing temperature above ~70 °C is necessary (Figure 3.10). On the molecular level, 

studies showed that J-favored aggregates offer higher exciton mobilities, larger exciton diffusion 

length (197; 198) and an order of magnitude higher in power conversion efficiency (PCE) than H-

favored aggregates (199). Hence, J-favored aggregates are preferred in photoactive layers in BHJ 

solar cells and thermal annealing temperature  above the transition temperature TH-J (~77 °C) but 

lower than the cold crystallization of PCBM (~130 C) (201) is necessary (Figure 3.18).   
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3.4.5 Effect of Programmable Temperature Dropping and Uncontrolled Temperature 

Dropping Processes on the Photoactive Layers in Bulk Heterojunction Solar Cells 

After heating the 1:1 P3HT: PCBM blend thin film sample to 100 °C, we cooled the sample 

down to the room temperature while taking similar measurements using the spectromicroscopy 

system. The results are shown in Figure 3.20. Two temperature dropping methods were applied: 

programmed or uncontrolled temperature dropping, namely PTD and UTD, respectively. 

Mesoscale structures were restored and the orientational order in each domain was enhanced after 

programmed temperature dropping (Figure 3.20 top and Figure 3.21 a-d). In contrast, after 

uncontrolled temperature dropping, the patterns of the mesoscale orientational domains were lost, 

and a blend thin film with high orientational order was obtained (Figure 3.20 bottom, Figure 3.21 

e-h). For the molecule-level structural information, there was no significant difference in the 

Raman spectra (Figure 3.20 B) or crystallinity (Figure 3.20 D, red) of the annealed blend thin film 

processed by two temperature dropping procedures. However, the photoluminescence spectra 

(Figure 3.20 C) were different. The 𝐼𝑃𝐿
0−0/𝐼𝑃𝐿

0−1  (Figure 3.20 D, blue) of the blend thin film 

processed by uncontrolled temperature dropping was significantly higher than that processed by  

programmed temperature dropping (Student’s t-test p<0.005), which implies different types of 

polymeric aggregates obtained by the two temperature dropping procedures. As shown in Figure 

3.18, there are two stages of the 𝐼𝑃𝐿
0−0/𝐼𝑃𝐿

0−1-temperature curve during the thermotropic evolution. 

When temperature dropped quickly (uncontrolledly), the J-favored aggregates were maintained; 

however, during the programmed temperature dropping, the polymeric aggregates changed 

gradually and were able to transform from J-favored back to H-favored. Combining information 

of mesoscale and molecular level, the results explain why the fast temperature dropping process is 

preferred as post-treatment for photoactive layers. 
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3.5 Conclusion 

In summary, the in situ multiscale spectromicroscopy system successfully characterized 

the photoactive layers of BHJ solar cell in a wide range of length scales (from molecular level to 

mesoscale) under thermal stress. The correlative evolution of mesoscale structures and molecular 

conformations was revealed experimentally. The optimized thermal annealing temperature 

window and preferred temperature dropping operation in thermal annealing were therefore 

identified based on the three phase transition stages with their critical transition temperatures 

during the thermotropic evolution. The molecular packing can be effectively tuned by temperature 

and post-treatment operation. Through this study, we demonstrate the essential capability of in situ 

characterization at multiple length scales in monitoring the morphology evolution, phase 

development and idendifying critical changes of complex functional materials under external 

stimuli. The 1:1 P3HT:PCBM blend active layer is not a special case but rather an example for 

many polymeric semiconductors widely applied in optoelectronic devices and the 

spectromicroscopy imaging system provides a platform for all of them having more or less rigid 

chains and prone to self-assemble to mesoscale structures to be in situ characterized under certain 

environment. Benefit from the home-built platform, the system is configurable and ready to 

integrate other modules in future, for example, electrochemical characterization modules, to 

corelate morphology and chemical changes with optoelectrical properties. 
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3.6 Figures 

Figure 3.1. Schematic illustration of charge transport in conjugated polymers. 
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Figure 3.2. Schematic setup of cross-polarized light microscope and the sample. 
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Figure 3.3. Optical microscopy images of a 1:1 P3HT: PCBM blend thin film and their 

corresponding image intensity distributions. (A) The crossed-polarized light microscopy image. 

(B) The bright field microscopy image. (C) Image intensity distribution of the crossed-polarized 

light microscopy image in (A). (D) Image intensity distribution of the bright field microscopy 

image of (B). 
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Figure 3.4. Raman spectra of regio-regular (RR) P3HT and regio-random (RRa) P3HT. 
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Figure 3.5. Raman spectrum of the (A) as-cast and (B) annealed P3HT: PCBM blend thin film. 

The Raman spectra are obtained by averaging the spectra obtained at 10 different regions in the 

sample area. 

  



55 

Figure 3.6. Approximate Jablonski diagram of ideal (A) H-aggregates and (B) J-aggregates 

corresponding to the weak exciton coupling regimes. 
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Figure 3.7. Photoluminescence (PL) spectrum of the (A) as-cast and (B) annealed P3HT: PCBM 

blend thin film. The photoluminescence spectra are obtained by averaging the spectra obtained at 

10 different regions in the sample area. 
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Figure 3.8. The evolution of crystallinity under thermal stress and the first derivative curve of the 

crystallinity fitting curve. Tc is the cold crystallization temperature, which is identified by the peak 

position of the first derivative curve. The solid line is the sigmoid fitting line of the change of 

crystallinity with temperature. 
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Figure 3.9. (A)The cross-polarized light microscopy image of P3HT: PCBM blend thin film on Si 

substrate. (B) Image intensity distribution of (A). The scale bar is 5 µm. 
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Figure 3.10. The evolution of P3HT: PCBM blend thin film under the cross-polarized light 

microscopy. The scale bar is 2.5 µm. 
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Figure 3.11. Thermotropic evolution of image intensity distributions of 1:1 P3HT: PCBM 

photoactive layer from 20°C to 100 °C. 
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Figure 3.12. The change of overlap percentage of peak 1, peak 2 and peak 2, peak 3 in Figure 

3.11 with temperature. The dash line is a guide to show the potential trend. 
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Figure 3.13. The evolution of Raman spectra of P3HT: PCBM blend thin film. 
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Figure 3.14. Raman spectra of 1:1 P3HT: PCBM blend thin film from 20°C to 100 °C. The Raman 

spectra are obtained by averaging the spectra obtained at 10 different regions in the sample area. 

  



64 

 

Figure 3.15. The evolution of crystallinity calculated from Raman spectra. The solid line is the 

sigmoid fitting line of the change of crystallinity with temperature. The error bars show the 

standard deviations of 10 measurements. 
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Figure 3.16. The evolution of Photoluminescence (PL) spectra of the P3HT: PCBM blend thin 

film. 
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Figure 3.17. Photoluminescence (PL) spectra of 1:1 P3HT: PCBM blend thin film from 20°C to 

100 °C. The PL spectra are obtained by averaging the spectra obtained at 10 different regions in 

the sample area. 
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Figure 3.18. The evolution of I0-0/I0-1 calculated from PL spectra. The dash line is the two piecewise 

linear fitting of the change of I0-0/I0-1 with temperature. The error bars show the standard 

deviations of 10 measurements. 
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Figure 3.19. Proposed mechanism of the thermal evolution process.  
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Figure 3.20. Comparison of 1:1 P3HT: PCBM blend thin film processed by programmed and 

uncontrolled temperature dropping. (a)The top two images are the P3HT: PCBM blend thin films 

as-cast and its corresponding film after programmed temperature dropping (PTD), respectively. 

The bottom two images are the P3HT: PCBM blend thin films as cast and its corresponding film 

after uncontrolled temperature dropping (UTD), respectively. (b)Typical Raman spectra of as-

cast, PTD and UTD P3HT: PCBM blend thin film. (c)Typical PL spectra of as-cast, PTD and UTD 

P3HT: PCBM blend thin films. (d)The I0-0/I0-1 and crystallinity of as-cast, PTD and UTD P3HT: 

PCBM blend thin films. The error bars show the standard deviations of 10 measurements. 
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Figure 3.21. Cross-polarized light microscopy images of 1:1 P3HT: PCBM blend thin film (A) As-

cast. (B) After programmed temperature drop (PTD). (C) Image intensity distribution of (A). (D) 

Image intensity distribution of (B). Cross-polarized light microscopy images of 1:1 P3HT: PCBM 

blend thin film (E) As-cast. (F) After uncontrolled temperature drop (UTD). (G) Image intensity 

profile of (E). (H) Image intensity profile of (F). The scale bar is 5 µm. 
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4 OTHER APPLICATIONS OF THE MLTI-MODALITY SPECTRO-MICROSCOPY 

IMAGING SYSTEM 

4.1 Introduction  

In many cases, the visualization and characterization of nanostructures is typically 

performed by a series of invasive or destructive techniques such as scanning electron microscopy 

(SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) (203). 

While these techniques provide high-resolution images, little information about the optical 

characteristics can be gathered directly. In addition, surface characterization techniques do not 

have the ability to follow dynamic processes in real time as compared to optical microscopy 

techniques such as DIC, total internal reflection scattering (TIRS) microscopy (204; 205) and dark-

field microscopy (206; 207), which have been applied to the studies of both the optical 

characterization of nanoparticles/ nanostructures and the investigation into real-time dynamics (2; 

4; 11; 13).  

Many substrates used in material sciences, for example, silicon wafer used in solar cells 

and gold coated glass slides used in surface enhanced Raman scattering (SERS) measurements are 

reflective. On the other hand, the formation of metallic nanoparticles and nanostructures is 

fundamentally interesting due to their applications in electronics (208-210), optoelectronics and 

plasmonic (211-217), chemical sensing and biosensors (218-223), and medical diagnostics and 

therapies (224-226). The fabrication of many of these materials is done through lithographic means 

typically taking place on reflective surfaces such as silicon wafers. The wide application of these 

particles and structures depends upon their optical, electronic, and catalytic properties that can be 

finely tuned over a broad range by controlling their size, shape, and composition (227-229). Many 

interesting particles and structures have been developed such as particle multi-mers (230), 
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pyramids (206), bowties (231), nanoholes (232; 233), and many others. In 1979 Lessor et. al. 

developed the reflected Nomarski DIC (RDIC) configuration and applied it towards surface 

topography studies (148). Differential interference contrast (DIC) microscopy, which is an 

interferometric detection technique, is able to provide images of sample surface features with 

enhanced contrast. Traditionally, RDIC has been used to both qualitatively and quantitatively 

report surface roughness while studying polishing techniques, but it has also found much use in 

visualizing details and defects in semiconductor chips made on silica wafers (234). In the 

meanwhile, the confocal spectroscopy can provide chemical information for samples on reflective 

surfaces. Herein, the RDIC module and confocal spectroscopy module of the spectro-microscopic 

imaging system are applied to characterize material and cell samples on silicon wafer substrates 

and gold coated glass slides. 

4.2 Sample Preparation and Experimental Measurement 

4.2.1 Isotropic Nanospheres and Anisotropic Nanorods 

The solution of gold (80 nm, 60 nm and 40 nm), polystyrene (PS) (240 nm, 200 nm, 150 

nm and 100 nm) nanospheres or gold nanorod (40 x 118 nm (Nanopartz, Loveland, CO)) was drop 

cast on a clean silicon wafer and covered by a 25 mm2 Corning coverslip, sealed with enamel.  

Zeiss 100X Plan Apo/1.40 oil immersion objective was used to collected signals for 

isotropic nanospheres and anisotropic nanorods samples. NIH ImageJ was used to analyze the 

collected images and videos.  

4.2.2 Graphene  

Monolayer graphene made by chemical vapor deposition was bought from Graphenea, Inc. 

Cambridge, MA. Image exposure time was set to 100 ms. A 532 nm filter bought from Semrock, 
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Rochester, New York was used in the incident light path of RDIC microscope. Zeiss 100X EC 

Epiplan-Apochromat air objective was used to collected signals. 

4.2.3 Bulk Heterojunction Solar Cell Photoactive Layers 

Sample preparation of the photoactive layers are described in 3.2.1.  

4.2.4 Cells 

A549 human lung cancer cells (ATCC, CCL-185) were used in the cell imaging section. 

Zeiss 100X Plan Apo/1.40 oil immersion objective was used to collected signals. Cells were 

cultured on glass coverslip. Two pieces of double-sided tape were used between the coverslip and 

glass slide to construct a chamber. Phosphate-buffered saline (PBS) was added to the chamber. 

NIH ImageJ was used to analyze the collected images and videos. 

4.3 Results and Discussion 

4.3.1 Characterization of Nanomaterials 

4.3.1.1 Isotropic Nanospheres 

DIC microscopy is advantageous for live cellular characterizations since there is no need 

for fluorescent labels. Comparison among DIC, bright-field, and dark-field microscopy on their 

characterizations on a single cell has been reported by Tsunoda, et al. in 2008, showing the optical 

sectioning capability of DIC in minimization of interference from cell features located outside the 

focal plane (235). Without the need for staining, observations using DIC microscopy can last for 

several hours with minimal disturbance to the biological samples. Simultaneous observation of 

both nanoparticles and a cancer cell during the endocytosis process (236), and the recording of 40 

nm gold nanospheres going through endocytosis (237) have been demonstrated by using DIC 

microscopy. Figure 4.1 A-D show the RDIC images of gold nanospheres of different sizes. Within 
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the surface plasmon resonance (SPR) wavelengths, an isotropic gold nanoparticle has a consistent 

appearance no matter the orientation of the particles in relation to the transmission axis of the 

polarizer. As expected, the contrast of RDIC images decreases with the decreasing size of the gold 

nanoparticles (Figure 4.1 A-C) and RDIC image contrast can be enhanced by increasing the 

exposure time (Figure 4.1 D). Figure 4.1 E-H show the RDIC images of polystyrene (PS) 

nanospheres with different sizes.  

4.3.1.2 Anisotropic Nanorods 

Different from the isotropic nanosphere, the rotation of an anisotropic nanoparticle can 

change the RDIC image appearance among all-dark, half-bright and half-dark, and all-bright 

depending on its orientation. Anisotropic gold nanorods (AuNRs) display a distinct pattern under 

DIC microscopy that can be used for orientation determination (238; 239) and rotational studies 

(239-241). Depending on the orientation of the long axis of the particles, the intensity of the bright 

and dark patterns of the particle can vary from appearing entirely bright, to half dark and half 

bright, to entirely dark (Figure 4.2).  

Figure 4.2 depicts the images of the 40 nm x 118 nm AuNRs under 700/13 nm illumination 

with 100 ms exposure time. The particles exhibit a range of patterns due to their random 

orientations upon the surface. Figure 4.3A shows the RDIC images of a single AuNR at different 

orientations in the plane of the substrate.  Figure 4.3B shows the periodic changes of the bright/dark 

intensities of the AuNR with its in-plane orientation angle. The orientation of the gold nanorod, 

i.e., the angle ϕ between the projection of nanorod’s long axis and the x-polarization direction as 

defined in Figure 4.3C, can be determined using the bright or dark intensities of its DIC images 

collected at 700 nm. As reported previously, there is a sin2 (cos2) relationship between the relative 

brightness ΔI/ΔImax (the relative darkness ΔI’/ΔI’max ) of the image of a nanorod and ϕ (242).  The 
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relative brightness and relative darkness are measures of effective projections of the nanorod onto 

the two polarization directions.  

4.3.1.3 Graphene 

Monolayer graphene has attracted a large amount of interest because of its novel 

optoelectronic properties (243; 244). It has been reported that the monolayer graphene can be 

identified by optical microscopy taking advantage of the light interference (245-247). Figure 4.4 

A and B show the images of monolayer graphene made by chemical vapor deposition (CVD) under 

bright field microscope and RDIC microscope. The feature contrast in RDIC image is significantly 

enhanced at the direction perpendicular to the shear direction of RDIC microscopy comparing to 

that in bright field microscopy.  

Raman spectroscopy is a powerful technique in the characterization of 2D materials such 

as graphene (248-254). Different parameters such as peak height, peak position, full width at half 

maximum (FWHM) of major peaks and peak ratios are used to identify different structural features 

of graphene such as layer numbers (255; 256), defects (257-259), stacking configurations (260-

262) and interlayer coupling (263-266). The thickness of graphene can significantly affect its 

electrooptical (267), thermal (268) and mechanical properties (269).  

G peak and 2D peak are the two most intense Raman peaks in graphene samples (249; 253; 

254; 256). The G peak results from the doubly degenerate zone center E2g mode (in-plane vibration 

of sp2 carbon atoms) and 2D peak is due to the second order of zone-boundary phonons (249; 256). 

As the thickness of graphene sample increases, the peak intensity ratio of 2D and G peaks 

decreases (249; 253; 254). Figure 4.4 C shows the Raman spectra of two areas with different 

contrast in the RDIC image of the CVD monolayer graphene. The ratio of 2D peak to G peak in 
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area 1, which shows darker contrast under RDIC is smaller than the ratio in area 2, which shows 

brighter contrast under RDIC.  

4.3.1.4 Nanoarrays 

Benefit from the rapid development of nanofabrication, the interaction between light and 

nanostructured materials has been widely studied these years (232; 233; 270-273). A rich 

interesting experimental phenomena have been reported from the  study of the interaction between 

nanoarrays and light (274-281). It has been reported that the geometry, spatial distribution and 

surrounding medium of nanoarrays can significantly affect the frequency range and locations of 

coupled resonances for surface plasmon resonance (SPR) (281; 282).     

Figure 4.5 shows nanoparticles created on silicon wafers through lithographic means. The 

gold nanoparticles are thermal deposited onto the substrate. Due to the boat structure of the 

template, the path difference that the light takes entering and reflecting off the substrate gives rise 

to the RDIC pattern. Figure 4.5 are SEM and RDIC images, respectively, of gold particle 

monomers, dimers, trimers and tetramers made within the template. The orientation of the RDIC 

image corresponds to that of the SEM. It can be seen that RDIC images of 0- and 90-degrees 

orientation gives high contrast for both column and rows for all samples. However, RDIC images 

of 45-degrees have high contrast at the direction that is perpendicular to the shear direction of the 

Nomarski prism and low contrast at the direction of shear direction. 

4.3.1.5 Photoactive Layers in Bulk Heterojunction Solar Cells 

The RDIC integrated with confocal spectroscopy was applied to characterize the 

photoactive layers (1:1 P3HT: PCBM) in BHJ solar cells deposited on silicon wafer. Figure 4.6 A 

and B show the comparison of the image of 1:1 P3HT: PCBM thin film under bright field 

microscope and RDIC microscope. Domains with different contrasts were revealed by RDIC 
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microscopy and hidden by the bright field microscopy. Figure 4.6 C and D show the Raman and 

photoluminescence (PL) spectra of the sample in Figure 4.6 B. Data analysis of the Raman and PL 

spectra is provided in section 3.3.2. Figure 4.6 E shows a PCBM crystal embedded in P3HT matrix 

observed under RDIC microscope. By using the confocal Raman spectroscopy, a line scanning 

across the PCBM crystal was conducted and the crystallinity of the sample along the scanning line 

were calculated (Figure 4.6 F). Under RDIC, it shows that the PCBM crystal is surrounded by a 

circle of darkest region in the image area which is characterized by Raman as a highly crystallized 

P3HT region. 

4.3.2 3D Scanning of Cell Samples 

Nomarski type DIC microscopy has been proven to be powerful in the characterization of 

cellular features due to the nonintrusive nature of DIC microscopy (2; 13; 242; 283-285). Resulting 

from the large numerical aperture (N.A.) of the condenser and objective used in DIC microscopy, 

DIC microscopy can provide better axial resolution than both dark field microscopy and bright 

field microscopy (4; 235; 286) and give sharper images for cell samples without suffering signals 

from cell structures out of focus plane. Figure 4.7 shows the RDIC images of A549 cells cultured 

on a silicon wafer. Due to the optical sectioning capability of RDIC microscopy, 3D scanning of 

A549 cell samples was obtained (Figure 4.8). 

4.4 Conclusions 

It has been demonstrated that the RDIC integrated confocal spectroscopy can be applied to 

study materials and cell samples on reflective surfaces. Samples of nanoparticles, 2D material, 

polymeric blend thin films and cells were tested on the instrument. It is expected that RDIC 

integrated confocal spectroscopy will become a useful tool in characterizing nanofabrication on 

reflective surface as an alternative to more expensive methods such as SEM, TEM, and AFM. The 
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system also allows for the observation of dynamic processes such as self-assembly or monitoring 

the stability of structures in changing conditions.  
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4.5 Figures 

Figure 4.1. Examples of PS nanobeads and gold nanospheres imaged under RDIC. (A-C) 

correspond to 80 nm, 60 nm, and 40 nm gold nanospheres in diameter respectively. (D) is the same 

area as (C) with 20 images summed. (E-H) correspond to 240 nm, 200 nm, 150 nm, and 100 nm 

in diameter PS nanospheres respectively. All exposure times are 50 ms. Scale bar is 2 µm. 
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Figure 4.2. Gold nanorods (40x118 nm) imaged under RDIC. (A) Random assortment of AuNRs 

with different 3D orientations. (B-F) Examples of AuNRs with different in-plane orientations. 

Patterns range from nearly completely dark to nearly completely bright. (G-F) Examples of AuNRs 

with different 3D orientations. The positions of the dark and bright “lobes” are orientation 

dependent. All images are the sum of 20 frames exposed for 50 ms. Scale bar is 2 µm. 
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Figure 4.3. RDIC images of a gold nanorod (40x118 nm) imaged at different in-plane orientations. 

(A). The in-focus image patterns of the gold nanorod at different orientations relative to the optical 

axes. The sample slide is rotated from 10° to 360° in 10° per per step. The scale bar represents 1 

μm. (B). The normalized bright part (red) and dark part intensities (blue)of the images on the top 

in each pair. Periodic changes of the bright/dark intensities of a gold nanorod when rotating under 

a DIC microscope and being illuminated at the 700 nm wavelengths. All intensities are relative to 

the background level. (C). Schematic illustration of a fixed dipole with polar angle ψ and azimuthal 

angle θ. One of the polarization direction (x-axis) may be referred to as the dark optical axis 

because a gold nanorod would generate a nearly all dark image when its long axis is aligned with 

this polarization direction; similarly, the other orthogonal polarization direction (y-axis) may be 

called the bright optical axis in accordance to the presentation of nearly all bright DIC image 
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Figure 4.4. Characterization of monolayer graphene made by chemical vapor deposition. (A) 

Bright field microscopy image of the film on Si substrate. (B) RDIC microscopy image of the same 

sample area in (A) on Si substrate. The scale bar is 5 µm. (C) Raman spectra of the area 1 and 2 

(pointed by the arrows) in the sample in (B). 
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Figure 4.5. SEM and RDIC images of nanostructures fabricated in silica wafer templates at 

orientational angles of 0, 45 and 90 degrees. Monomers within the template (A) SEM. RDIC image 

with (B) 0 degrees orientation. (C) 45 degrees orientation. (D) 90 degrees orientation. Dimers 

within the template (E) SEM. RDIC image with (F) 0 degrees orientation. (G) 45 degrees 

orientation. (H) 90 degrees orientation. Trimers within the template (I) SEM. RDIC image with 

(J) 0 degrees orientation. (K) 45 degrees orientation. (L) 90 degrees orientation.   Tetramers 

within the template (M) SEM. RDIC image with (N) 0 degrees orientation. (O) 45 degrees 

orientation. (P) 90 degrees orientation. RDIC images taken with 100 ms exposure. the scale bar 

of SEM images is 500 nm and RDIC images is 2 µm. 
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Figure 4.6. Characterization of 1:1 P3HT: PCBM blend thin film at room temperature. (A) Bright 

field microscopy image of the film on Si substrate. (B) RDIC microscopy image of the same film 

on Si substrate. The scale bar is 5 µm. (C) Raman and (D) PL spectra of the same sample in (B). 

(E) A PCBM crystal in P3HT matrix. (F) Image intensity and crystallinity of P3HT along the 

dotted red line. Each scanning step is 500 nm. The Raman and PL spectra are averaged from 10 

measurements in the sample area.  
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Figure 4.7. RDIC image of A549 cell samples on Si wafer. 
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Figure 4.8. 3D scanning of A549 Cells on Si wafer.  
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5.1 Abstract 

The Single Particle Orientation and Rotational Tracking (SPORT) technique, which 

utilizes anisotropic plasmonic gold nanorods and differential interference contrast (DIC) 

microscopy, has shown potential as an effective alternative to fluorescence-based techniques to 

decipher rotational motions on the cellular and molecular levels. However, localizing gold 

nanorods from their DIC images with high accuracy and precision is more challenging than the 

procedures applied in fluorescence or scattering microscopy techniques due to the asymmetric DIC 

point spread function with bright and dark parts superimposed over a grey background. In this 

paper, localization accuracy and inherited uncertainties from unique DIC image patterns are 

elucidated with the assistance of computer simulation. These discussions provide guidance for 

researchers to properly evaluate their data and avoid making claims beyond the technical limits. 

The understanding of the intrinsic localization errors and the principle of DIC microscopy leads 

us to propose a new localization strategy that utilizes the experimentally-measured shear distance 

of the DIC microscope to improve the localization accuracy. 

mailto:*yangkai@suda.edu.cn
mailto:yan.gu1@bms.com
mailto:nfang@gsu.edu
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5.2 Introduction 

Fluorescence polarization microscopy (287-289) and defocused fluorescence imaging 

techniques (290-293) have been widely used to acquire the dipole orientation of fluorescent 

molecules or quantum dots. More recently, to overcome several critical limitations of fluorescence 

microscopy, such as photobleaching and photoblinking, anisotropic plasmonic nanoparticles have 

been chosen as rotational tracking probe in differential interference contrast (DIC) microscopy 

(242; 294), total internal reflection scattering (TIRS) microscopy (150; 205; 295), dark field 

polarization microscopy (207), defocused dark field microscopy (296), and planar illumination 

scattering microscopy (297). These techniques have enabled the studies of rotational motions in 

live cells. For example, the DIC microscopy-based single particle orientation and rotational 

tracking (SPORT) technique (242; 294; 298) resolved rotational motions of cargos at the pause 

during the axonal transport (299) and drug delivery carriers on live cell membranes (284). 

Localization of single molecule or nanoparticle probes with high accuracy and precision is 

an essential requirement in single particle tracking experiments. The concept and principle of 

fluorescence imaging with one-nanometer accuracy (FIONA) (300), which allows the localization 

of single fluorescent molecules with nanometer precision via curve fitting of the approximately 

Gaussian shaped point spread functions (PSF), can be applied in rotational tracking. However, 

localizing anisotropic imaging probes is more challenging than localizing isotropic imaging probes 

because the 3D orientation of anisotropic probes may give rise to low signal intensities and/or 

asymmetric intensity distributions, which could result in significant localization errors (301-303). 

Efforts have also been devoted to the search of optimal PSFs as the fitting model for accurate 

localization of emitting dipoles. For example, a three-axis dipole PSF was found to best 
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approximate the experimental PSF of a nanorod in Surface Enhanced Raman Scattering (SERS) 

microscopy (304). 

A greater challenge in localization is met in the case of DIC microscopy, which has an 

asymmetric PSF with bright and dark parts superimposed over a grey background. This non-

Gaussian PSF cannot be fitted with a simple mathematical function. Therefore, a correlation 

mapping algorithm has been implemented to localize isotropic particles in 2D (305) and 3D (306). 

However, the correlation mapping algorithm does not work properly when anisotropic plasmonic 

nanoparticles are imaged in SPORT experiments, because the model changes constantly as a 

nanorod rotates to different orientations. To overcome this challenge, we have developed a dual-

channel imaging system to localize gold nanorods with high accuracy in the bright-field channel 

at the gold nanorod’s transverse localized surface plasmon resonance (LSPR) wavelength and 

track the rotational motions in the DIC channel at the gold nanorod’s longitudinal LSPR 

wavelength (307).  

In the present study, we attempt to further address the challenges of superlocalization in 

DIC microscopy with the assistance of computer simulation. The intrinsic localization errors 

caused by the DIC imaging principle are quantified from both theoretical and experimental images 

of gold nanorods. Based on this quantitative understanding, a new localization strategy is proposed 

to improve the localization accuracy of gold nanorods in SPORT experiments. 

5.3 Experimental Section 

5.3.1 Sample Slide Preparation 

The 25 nm × 73 nm gold nanorod and 80 nm gold nanosphere colloidal solutions were 

purchased from Nanopartz (Loveland, CO). To prepare the sample solutions, 0.1 mL of colloidal 

gold underwent centrifugation for 10 min at 5500 rpm, followed by removal of the liquid layer and 
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resuspension in 0.1 mL of 18.2 MΩ Milli-Q water. The solution was diluted to a concentration of 

1 × 1010 nanoparticles/mL 10 µL of the diluted solution was spin-casted onto a pre-cleaned 

microscope slide and covered by a glass coverslip. To prevent evaporation, the coverslip was 

sealed by clear nail polish. The sample slide was then placed on the microscope stage for imaging. 

5.3.2 Instrumentation 

An upright Nikon Eclipse 80i microscope and a Nikon Ti-E inverted microscope were used 

in the imaging experiments. These microscopes were equipped with a Nikon 1.40 numerical 

aperture (NA) oil-immersion condenser. Two objectives, a Nikon 100× 1.40 NA Plan Apo VC oil-

immersion objective and a 100× 1.49 NA Apo TIRF oil-immersion objective, were used for 

comparison. A 540 nm or 700-nm band-pass filter (Semrock, Rochester, NY) with a bandwidth of 

20 nm was inserted at the illumination side. A rotary stage was installed on the microscope for 

taking images of gold nanorods positioned in different orientations. At each angle, a vertical scan 

was done to help find the focal plane. Two scientific CMOS cameras were used to capture the DIC 

images: a Hamamatsu C11440-22CU, ORCA-Flash 4.0 V2 with a 2048 × 2048 pixel array and a 

pixel size of 6.5 μm × 6.5 μm and a Tucsen Dhyana 95 with a 2048 × 2048 pixel array and a pixel 

size of 11 μm × 11 μm. These cameras performed similarly in our experiments. Finally, the images 

were analyzed using MATLAB and NIH ImageJ (308). 

5.3.3 Computer Simulation of DIC PSFs 

The scattering PSFs of dipoles in different orientations were generated by a Python script 

modified from a published program (302). These PSFs were then used as inputs for the DIC PSF 

simulation program, which was written in MATLAB and is available upon request. 

The core of the DIC PSF simulation is the principle of interferometry for DIC microscopy. 

For the Nomarski-type DIC microscope used in our experiments, the specimen is illuminated with 
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a plane-polarized beam split into two orthogonally polarized and mutually coherent components 

by the first Nomarski prism. The two components are recombined into a single beam by the second 

Nomarski prism and interfere with each other after the analyzer to form an image. The DIC 

microscope converts the phase variations caused by the specimen to intensity variations. The 

image is formed from the two waves that are phase-shifted to different extents and laterally shifted 

by a shear 2Δx along the x-axis and 2Δy along the y-axis. The 2D DIC PSF is thus derived from 

the interference of the PSF of the two phase-shifted waves with a bias retardation 2Δθ (expressed 

in radians) and the lateral shear 2Δx and 2Δy (309): 

( ) ( ) ( ) ( ) ( ) ( ),   1    ,   –   ,  h x y R exp j p x x y y Rexp j p x x y y = − −  +  +   −  − 
     (1) 

where p(x, y) is the scattering amplitude PSF for transmitted-light optics under coherent 

illumination, and R is the amplitude ratio, defined as the amplitude of one wave field divided by 

the sum of the amplitudes of the two wave fields. Δx and Δy are equal in all commercial DIC 

microscopes, including the Nikon microscopes used in our experiments. Eq.1 was implemented in 

a MATLAB program, which was used to generate the simulated DIC images in this paper. 

5.3.4 Shear Distance Measurement 

The two intermediate images of 80-nm nanospheres were taken separately by setting the 

polarization direction of the second polarizer to +45 or -45 with respect to the polarization 

direction of the first polarizer. These polarizer settings block one of the two laterally separated 

beams. Then the two images were fitted with 2D Gaussian functions in MATLAB to obtain the 

centroid coordinates of each image. It should be noted that the intermediate images are essentially 

in the bright field mode; therefore, the typical scattering PSFs or Gaussian functions as a close 

approximation can be used to fit the images to find the centroid coordinates.  

 



92 

5.3.5 Gold Nanorod Localization-Weighing Algorithm 

 The DIC image pattern of a single gold nanorod consists of a bright part and a dark part 

over a grey background. As the first step of localization, a square is defined to cover the entire 

DIC image pattern. Within the square, the bright (or dark) part of the image can be identified by 

comparing the intensity of each pixel to the bright (or dark) intensity threshold, which is defined 

as the highest (or lowest) intensity value of the local background. Then the centroid coordinates of 

the bright part and the dark part of the DIC image are computed separately by weighing all of the 

pixels that have been identified as either bright or dark: 
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Note that the pixels fall in the bright (or dark) part are used only in the calculation of the 

bright (or dark) centroid coordinates. Finally, the centroid coordinates of the simulated or 

experimental DIC images are obtained at the midpoint of the bright and dark centroids. 

5.4 Results and Discussion 

5.4.1 Localization Uncertainty for Inclined Gold Nanorods  

As a simplified case within the framework of classical electrodynamics, anisotropic gold 

nanorods are deemed as ideal electric dipoles scattering radiation. The polar angle ψ and azimuthal 

angle θ of an inclined dipole (Fig. 5.1(a)) are defined based on the two polarization directions 

determined by the configuration of the polarizers and Nomarski prisms in the DIC microscope. 

Gold nanorods are imaged at their longitudinal LSPR wavelength and exhibit nearly all bright, 

nearly all dark, or half bright – half dark image patterns depending on their orientations. A set of 
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samples DIC images of a gold nanorod with a fixed polar angle of 90° (lying flat on the surface) 

and varying azimuthal angles are shown in Fig. 5.1(b).  

To understand how a dipole’s orientation affects its localization in DIC microscopy, we 

first take into account the errors that already exist in the localization based on the scattering PSF 

from a dipole tilted relative to the horizontal plane. The errors in localization are associated with 

both the azimuthal and polar angles of the dipole. The simulated elliptical-shaped amplitude 

scattering PSFs of inclined dipoles with various polar and azimuthal angles (images not shown) 

were generated with a Python script modified from a published program (302), and they were used 

as inputs for the DIC simulation program (294; 309). The deviation of the coordinates of the 

brightest spot from the center coordinates of the dipole brings about the intrinsic localization errors 

(310). Lower signal intensities associated with smaller polar angles also lead to localization errors 

(311).   

Conventional single particle localization methods rely on curve fitting of fluorescence or 

scattering images. 2D Gaussian functions are often used as an approximate model to fit the 

emission/scattering PSF. However, the DIC PSF cannot be fitted by Gaussian functions due to the 

shadowcast half-bright and half-dark images resulted from interference. Moreover, a lateral shear 

between the bright part and the dark part of a DIC image further complicates the localization. In 

our previous SPORT studies, localization was done by assuming a round-shaped DIC image and 

simply looking for the image center. The simplified method was adequate for the previous works 

where superlocalization was not necessary or the DIC image patterns were kept relatively constant 

within short time periods (242; 299).  

It should be noted that the present study focuses on the cases with the polar angles ranging 

from 45 to 90, which are more commonly observed in tracking nanorods on cell membranes or 
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functionalized surfaces. Outside of this polar angle range, the nanorods are tilted to an even larger 

degree relative to the horizontal plane and give rise to the donut-shaped scattering PSFs (301), 

which complicates the DIC image patterns (312) and requires further development of computer 

simulation. 

5.4.2 Lateral Shear of DIC Microscope  

Quantitative characterization of the DIC image patterns, which is essential to improve the 

accuracy and precision in localizing gold nanorods in SPORT, requires the knowledge of DIC 

optical components. In principle, DIC microscope is one particular kind of shearing interference 

optical system (313). Illumination light is separated into two mutually orthogonally polarized plane 

light and laterally sheared by the birefringent (Nomarski or Wollaston) prisms because of the 

different refractive indices of the ordinary ray and extraordinary ray.  

Lateral shear has significant effects on contrast, resolution, sensitivity, optical sectioning 

depth, and localization accuracy and precision (313). The shear distance is determined primarily 

by the geometry of the prisms, the wavelength of the incident light, and the focal distance of the 

optics (314; 315). Therefore, it is required to experimentally measure the shear distance for a given 

microscope configuration.  

Several methods have been developed to measure the shear distance (307; 316-318). In the 

present work, the lateral shear distances of two commercial Nomarski prisms (Nikon 

standard/high-contrast prisms (Part # 100XI) and high-resolution prisms (Part # 100XI-R)) were 

measured by using the modified bright-field method described in our previous work (307). This 

procedure is illustrated in Fig. 5.2. 

Table 1 lists the measured shear distances for various combinations of the type of Nomarski 

prism, microscope objective’s numerical aperture (NA), and illumination wavelength (540 or 700 
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nm). At least 10 measurements were carried out for each configuration. As predicted by the theory, 

longer wavelength and larger NA correspond to shorter shear distance and smaller shear angle. For 

example, the measured shear distance with the standard Nomarski prisms at 700 nm is ~7.5% 

smaller than that at 540 nm. 

5.4.3 Experimental and Simulated DIC Images  

The simulated DIC images of gold nanospheres and nanorods with different shear distances 

are shown together with their corresponding experimental DIC images (Fig. 5.3). As expected, the 

images obtained with the high-resolution Nomarski prisms (100XI-R), which results in a smaller 

shear distance, are stretched to a less extent along the shear direction and the bright part and the 

dark part are positioned closer when compared to the images obtained using the standard Nomarski 

prisms (100XI).  

Localization errors in DIC microscopy should be assessed based on the corresponding 

shear distance measured for a specific configuration. The discussion in this section will be focused 

on the results acquired with the following parameters: the high-resolution Nomarski prisms 

(100XI-R), 100x oil-immersion NA 1.40 objective, and illumination wavelength of 700 nm.  

We first investigate the experimental and simulated DIC images of a gold nanorod with a 

fixed polar angle of 90° (flat on the surface) and varying azimuthal angles (Fig. 5.1). The 

cylindrical shape of a gold nanorod with a two-fold symmetry suggests a challenge in 

differentiating the supplementary azimuthal angles of θ and 180°-θ. Indeed, the experimental 

results published previously showed nearly identical bright and dark DIC image intensities and 

patterns at any pair of supplementary azimuthal angles. However, the simulated results presented 

here suggest the DIC image patterns at the supplementary azimuthal angles (except for 0° and 

180°) are not identical. For example, the dark lobe in the simulated DIC image at 45 is nearly 
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vertical, where the dark lobe in the simulated image at 135 is nearly horizontal (Fig. 5.1(d)). These 

differences stem from the oval-shaped scattering PSFs, which are used as the input for the DIC 

simulation program. These differences are also visible in the experimental DIC images (Fig. 

5.1(b)), suggesting an additional element of uncertainty in localization. Furthermore, the 

experimental DIC intensity traces (Fig. 5.1(c)) show a broader valley at ~90 compared to the 

simulated traces (Fig. 5.1(e)). These differences can be attributed to the noise in the real images, 

the approximation of the theoretical equations used in simulation, the limit in imaging resolution, 

and the actual morphology of the gold nanorods that have not been taken into account in the 

theoretical simulations, for example, the rod’s end-cap geometry affects the longitudinal surface 

plasmon band in real cases. 

5.4.4 Improving Localization Accuracy with Measured Shear Distance  

Based on the understanding of orientation-dependent DIC image patterns, we have 

developed an improved localization strategy, which takes the lateral shear between the bright part 

and dark part of the DIC images into considerations.  

The initial step of the new strategy is to examine the DIC image patterns. When both the 

bright and dark parts of a DIC image have sufficiently high signal to noise ratio (S/N) (azimuthal 

angle θ near 45 or 135), the weighing algorithm is applied to find the centroid coordinates of 

both the bright and dark parts and then take their midpoint as the centroid coordinates of the gold 

nanorod (see Experimental Section for details). On the other hand, when a DIC image is dominated 

by either a bright or dark part (azimuthal angle θ near 0, 90° or 180), the centroid coordinates of 

this dominant part can be easily found with the weighing algorithm; however, the S/N of the other 

half of the image becomes too low to warrant sufficient localization accuracy and precision. In 

such cases, we should discard the localization information from the weak part of the image and 
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take the following more accurate measurement: shifting the centroid coordinates of the dominant 

part by half of the shear distance in both x and y. Specifically, for the DIC microscope used in our 

experiments, the final centroid coordinates are calculated as the weighed bright center (for a DIC 

image dominated by the bright part) minus half of the shear distance or the weighed dark center 

(for a DIC image dominated by the dark part) plus half of the shear distance. 

The improved localization accuracy offered by the new localization strategy is 

demonstrated in Fig. 5.4(a) for gold nanorods lying flat on the surface (polar angle ψ = 90). Even 

though both the bright and dark centroid positions determined by the weighing method are clearly 

influenced by the azimuthal angles, the new strategy provide rather consistent accuracy for the 

entire angle range (0-180). The collective standard deviations of both the x and y centroid 

coordinates for all azimuthal angles are ~7 nm.  

For inclined gold nanorods (polar angle ψ < 90), as the polar angle gets smaller, the 

decreasing DIC image contrasts and increasing complexity in image patterns result in larger 

localization errors. The localization results gold nanorods with polar angles of 75, 60, and 45 

(images not shown) are displayed in Fig. 5.5. At the polar angle of 45°, variations in the determined 

centroid coordinates (Fig. 5.5(c)) are much more significant than the other two polar angles 

because of the much larger uncertainties in the weighing algorithm to find the centroid coordinates 

of the bright and dark parts. 

5.4.5 Localization Accuracy and Precision in Real DIC Images  

The new localization strategy has also been tested experimentally by measuring the 

distance between two neighboring gold nanorods during a 360 in-plane rotation (Fig. 5.6). The 

DIC image patterns of these spin-casted gold nanorods suggest that they are nearly perfectly flat 

on the surface (ψ ~ 90), and the angle between their long axes is estimated to be ~ 50 from their 
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DIC intensities. From the 72 measurements during the 360 rotation (in 5 steps), the standard 

deviation of the distance calculated between the two nanorods is 53.6 nm. Using particle 1 as the 

reference with the coordinates set at (0, 0), the positions of particle 2 are shown in Fig. 5.6(c). 

Rather consistent localization accuracy is demonstrated in nearly the entire 360. The deviation of 

the distance of particle 2 relative to particle 1 from the average distance is the largest when the 

link between the two particles is oriented at around 25, 95, 200, and 280. A close examination 

of the DIC images (Fig. 5.6(a)) shows that at these angles the two particles display opposite image 

patterns: a dominantly bright image and a dominantly dark image. Because the largest localization 

errors are associated with these image patterns, the errors in the measured distances are also the 

largest.  

5.5 Conclusions 

In summary, we have studied the localization accuracy of gold nanorods in DIC 

microscopy imaging. The inherited localization errors from the asymmetric scattering PSF of a 

tilted dipole and the unique DIC patterns of gold nanorods with various polar angles and azimuthal 

angles have been discussed based on computer simulated DIC images. The localization accuracy 

in real examples of DIC microscopy imaging has also been demonstrated by measuring the 

distance between two neighboring gold nanorods at various orientations. These discussions 

provide guidance for researchers to properly evaluate their data and avoid making claims outside 

the technical limits. The dependence of localization accuracy on the instrument-specific lateral 

shear adds an additional layer of complexity to SPORT in DIC microscopy, compared to the 

fluorescence or dark field microscopy-based methods. A refined localization strategy has been 

proposed to use the experimentally measured shear distance to compensate for the localization 

errors.  
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Future efforts will be required to deal with even more complicated DIC images from highly 

inclined gold nanorods (polar angle ψ < 45). Furthermore, sacrificed image contrast as a trade-

off for faster temporal resolution can significantly impact the ability of the SPORT technique to 

resolve rapid rotational motions in complex environments. Just like in all fluorescence or 

scattering-based SPT experiments, the desires of higher sensitivity, faster imaging rate, better 

spatial and angular resolution, and robust automation will continue to drive the technical 

development and enable novel single-molecule/nanoparticle based studies.  
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5.6 Figures 

 

Figure 5.1 (a) Schematic illustration of a fixed dipole with polar angle ψ and 

azimuthal angle θ. One of the polarization direction (x-axis) may be referred to as 

the dark optical axis because a gold nanorod would generate a nearly all dark 

image when its long axis is aligned with this polarization direction; similarly, the 

other orthogonal polarization direction (y-axis) may be called the bright optical 

axis in accordance to the presentation of nearly all bright DIC image. These 

definitions of optical axes are used consistently in all the experimental and 

simulated images of gold nanorods in this study. (b) Experimental DIC images of 

a gold nanorod with the azimuthal angles from 0 to 180 in 15 steps. Note that 

0 and 180 are equivalent due to the symmetry. (c) The corresponding bright-part 

intensity (blue) and dark-part intensity (red) traces for the experimental DIC 

images in b. (d) Computer simulated DIC images of a gold nanorod with a polar 

angle of 90 and azimuthal angles from 0 to 180 in 15 steps. (e) The 

corresponding bright-part intensity (blue) and dark-part intensity (red) traces for 

the simulated DIC images in d.  
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Figure 5.2 Two intermediate bright-field images of an 80-nm gold nanosphere obtained when the 

angle between the first and second polarizer is (a) 45° and (b) -45°. (c) The merged image. The 

two crosses are the centers of the two intermediate bright-field images (a) and (b) by fitting with 

2D Gaussian functions. The distance between the two centers is the shear distance. The shear 

direction is from northwest to southeast, which is indicated by the relative positions of the two 

centers. 
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Table 1. Shear distances for different configurations. 

  

DIC Prism 

Type 

Shear Distance (nm) 

Objective: Apo TIRF 100x Oil 

NA 1.49 

Plan Apo VC 100x Oil NA 

1.40 

Wavelength:  

540 nm 

 

700 nm 

 

540 nm 

 

700 nm 

Nikon 

100XI 

246 ± 7 227 ± 16 290 ± 3 268 ± 20  

Nikon 

100XI-R 

145 ± 18 134 ± 19  189 ± 3 175 ± 33  
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Figure 5.3 Experimental and simulated DIC images of (a) a 40 nm × 118 nm gold nanorod (90° 

polar angle and 45° azimuthal angle) and (b) an 80-nm gold nanosphere under 540 or 700 nm 

incident light with either Nikon standard/high-contrast (100XI) or high-resolution (100XI-R) 

prisms. 
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Figure 5.4 (a) Localization of the simulated gold nanorod images with a 

constant polar angle of 90˚ and various azimuthal angles. Red and blue: 

the x and y coordinates of the weighed centers of the bright part. Black and 

green: the x and y coordinates of the weighed centers of the dark part. Cyan 

and magenta: the x and y coordinates of the midpoint between the weighed 

centers of the bright part and dark part. Grey and yellow: the x and y 

centroid coordinates of the gold nanorod when either bright or dark part 

dominates. Yellow squares are hardly visible in the figure because they are 

closely overlapped with grey squares. (b) Standard deviations of the 

localized x (black) and y (red) coordinates of gold nanorods at four polar 

angles: 45˚, 60˚, 75˚and 90˚. Each data point is calculated from the 

simulated images with various azimuthal angles from 0-180˚, in 5˚ step size. 

The localization is determined from the weighed centers of the bright part 

and the dark part of the images.  
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Figure 5.5 Localization of the simulated gold nanorod images with constant polar angles at 75° 

(a), 60° (b) and 45° (c) and with various azimuthal angles. Red and blue: the x and y coordinates 

of the weighed center of the bright part. Black and green: the x and y coordinates of the weighed 

center of the dark part. Cyan and magenta: the x and y coordinates of the midpoint between the 

weighed centers of the bright part and dark part. Grey and yellow: the x and y centroid coordinates 

of the gold nanorod when either the bright or dark part dominates; they are calculated as the 

weighed bright center minus half of the shear distance or the weighed dark center plus half of the 

shear distance.   
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Figure 5.6 (a). The DIC images of two neighboring gold nanorods (labeled 

with 1 and 2) during 360° in-plane rotation. The scale bar represents 2 μm. 

(b) The bright (blue) and dark (red) DIC intensity traces of particle 1 (solid 

square) and 2 (hollow square) during the 360° in-plane rotation. (c) 

Localization of particle 2 relative to the position of particle 1. The radius 

of the green circle indicates the average distance between these two 

particles. 
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6 OVERALL CONCLUSIONS 

Optical microscopy imaging has been playing an increasingly important role in the 

investigations of nano- and bio-materials and fundamental chemical processes. Spectroscopic 

measurements as companion tools can add valuable chemical and/or structural information as a 

new dimension of information to samples’ optical microscopy images.  

In this dissertation, a multi-modality spectro-microscopic system that combines far-field 

interferometry based optical microscopy imaging techniques (differential interference contrast 

microscopy and cross-polarized light microscopy), total internal reflection microscopy (total 

internal reflection fluorescence and scattering microscopy) and confocal spectroscopy (Raman 

spectroscopy and photoluminescence spectroscopy) is developed and provides multiscale in situ 

optical characterization with sub-diffraction-limited spatial resolution and millisecond temporal 

resolution. Home-built post treatment stages (thermal annealing stage and solvent annealing stage) 

are integrated into the system to realize in situ measurements for different material and biological 

samples.  

Departing from conventional characterization methods in materials science mostly focused 

on structures on one length scale, the in situ multi-modality spectro-microscopy system aims to 

uncover the structural information from the molecular level to the mesoscale. Applications on 

photoactive layers of bulk heterojunction solar cell, two-dimensional materials, gold nanoparticles 

fabricated gold nanoparticle array and cells samples of the system are shown in this dissertation.  

Resulting from the working principle of interference, DIC images of nanoparticles show 

bright and dark patterns, which precludes the 2D Gaussian fitting methods in the study of 

localization of nanoparticles. The last project (chapter 5) studies localization accuracy of gold 

nanoparticles in single particle orientation and rotational tracking under DIC microscope. This 
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study provides guidance for researchers to properly evaluate their data and avoid making claims 

beyond the technical limits. The understanding of the intrinsic localization errors and the principle 

of DIC microscopy leads us to propose a new localization strategy that utilizes the experimentally-

measured shear distance of the DIC microscope to improve the localization accuracy. 
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