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Review

Increased CNV-Region deletions in mild cognitive impairment (MCI)
and Alzheimer's disease (AD) subjects in the ADNI sample
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We investigated the genome-wide distribution of CNVs in the Alzheimer's disease (AD) Neuroimaging Initia-
tive (ADNI) sample (146 with AD, 313 with Mild Cognitive Impairment (MCI), and 181 controls).
Comparison of single CNVs between cases (MCI and AD) and controls shows overrepresentation of large hetero-
zygous deletions in cases (p-value b 0.0001). The analysis of CNV-Regions identifies 44 copy number variable
loci of heterozygous deletions, with more CNV-Regions among affected than controls (p = 0.005). Seven of
the 44 CNV-Regions are nominally significant for association with cognitive impairment. We validated and con-
firmed our main findings with genome re-sequencing of selected patients and controls. The functional pathway
analysis of the genes putatively affected by deletions of CNV-Regions reveals enrichment of genes implicated in
axonal guidance, cell–cell adhesion, neuronalmorphogenesis and differentiation. Ourfindings support the role of
CNVs in AD, and suggest an association between large deletions and the development of cognitive impairment

© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Copy number variations (CNVs) represent an important source of
genetic diversity that can affect biological functions. With the advent
of genome-wide tools, CNV mapping on a genomic scale has proven to
be crucially relevant to integrate the information provided by SNP
microarray technologies in studies of complex traits [1]. The recent
availability of high-throughput genotyping technologies has propelled
an increasing number of genome-wide association studies (GWAS) of
Alzheimer's disease (AD) producing a progressive number of candidate
genes (http://www.alzgene.org/). Nevertheless, the risk factors identi-
fied in AD patients collectively explain a relatively modest amount of
the total genetic risk for the disease. CNV may be an important piece
to complete the puzzle of the “missing heritability” [2] in the study of
cognitive impairment and AD. Recent studies supported a substantial
role of chromosomal structural variations in the pathogenesis of several
neurological disorders [3]. This evidence is consistent with the hypoth-
esis that genetic susceptibility to late onset complex disorders such as
Alzheimer's disease (AD), Amyotrophic Lateral Sclerosis (ALS) and
Parkinson's disease (PD) depends on dosage-sensitive loci directly
affected by copy number variations [4]. CNV position and dose-related
effects may have a strong indirect influence on gene expression, as
supported by recent studies on CNV's global role in shaping the
human transcriptome [5]. These effects may be further enhanced by
the increased action of environmental age-related factors [6].

Three recent studies screened for an effect of CNVs in three differ-
ent samples of late-onset AD [7–9] using both whole genome and
candidate gene approaches. Despite the lack of statistically significant
results, several genes were deemed interesting for further investiga-
tions since they were modestly enriched in CNVs in cases compared
to controls. Whole genome SNP-microarray CNV studies may general-
ly fail to reach statistical significance in case–control study designs
because of the rarity of the events. A significant methodological chal-
lenge is identifying a common pattern of variation across different
subjects when structural events have different sizes. Large structural
events partially overlapping with previously identified smaller CNVs
in the general population are usually not considered novel, but the ef-
fect of a very large CNV may be totally different from those of much
smaller CNVs. To address this concern, Redon et al. [10] introduced
the concept of loci-encompassing CNV-Regions. CNV-Regions can
provide a more realistic representation of the distribution of structur-
al rearrangements across subjects than single copy number events
[11]. The effect size of a CNV may explain only a small proportion of
the whole genetic variability underlying common disorders, since
rarely a single CNV has a high frequency in the general population
[12]. On the contrary, a combination of different CNVs in different
individuals, can alter biological functions in the same important
pathway and result in a much larger effect, although identifying the
correct pattern of jointly acting CNVs is complex. In this context the
proximity of CNVs to functional genetic variants and regulatory

elements is likely to be critical. Recent papers have described how
CNVs are strongly involved in controlling overall gene expression [5]:
their genome-wide distribution is non-random, and is strongly
correlated with genomic features like exons, segmental duplications,
repetitive elements (e.g. Alu elements) [1] and microRNAs [13].
Interestingly, CNVs can shape the expression level of a gene not
only by gene dosage, but also by inducing a variety of epigenetic
modifications some of which can act on genes located more than
half a megabase from the physical location of the CNV [5,14].

A further challenge is developing a copy number detection algo-
rithm that is not biased toward the specific probe-content of different
available commercial array platforms [15]. Different algorithms and pa-
rameter optimization can lead to substantial differences in CNV detec-
tion [16,17]. Another critical aspect of a SNP microarray approach is
the difficulty in resolving the breakpoints of CNVs, whose assignment
is based on estimates driven from array intensities that are dependent
on SNPs density [18]. To address these limitations, we opted for a strat-
egy that integrates the SNPmicroarray information with deep sequenc-
ing validation of the most promising results [15,19,20].

In this study, we present the genome-wide distribution of Copy
Number Variations (CNVs) and Copy-Number-Variable Regions (CNV-
Regions) using SNP microarrays in the Alzheimer's Disease Neuro-
imaging Initiative (ADNI) cohort forwhichwe have previously described
genome-wide association analyses of individual SNPs [21,22].We looked
for duplications and deletions using intensity data from SNPmicroarrays
in the ADNI cohort composed by 640 subjects, namely 181 healthy con-
trols, 313 mild cognitive impairment (MCI) and 146 Alzheimer's disease
(AD) patients. The affected cases (e.g. MCI and AD) include individuals
with mild to moderate cognitive impairment. We investigated the
association of CNVs and CNV-Regions with cognitive impairment as
expressed in MCI and late-onset AD patients. We created CNV-Region
profiles to investigate the potential consequences of these structural var-
iations on gene function using a pathway-based framework. Finally, we
confirmed our CNV results comparing individual calls with a different al-
gorithm and validated our main findings by re-sequencing our
CNV-Regions in selected patients and controls.

2. Results

2.1. Quality control

After removing subjects that did not pass the quality score threshold
for the raw intensity data (QS > 0.2), the ADNI sample contained 640
subjects subdivided in 146 AD patients, 313 MCI patients and 181
matched healthy controls. The Nexus CNV calling algorithm identified
11,058 CNVs from the raw data across the whole sample. In 85 subjects
we identified and excluded from the analysis 373 “overlapping” CNVs
that can be grouped in 3 categories: 1) 74 segments called as a contigu-
ous deletion and duplication (33 subjects), 2) 89 segments in which
heterozygous and homozygous deletions could not be distinguished
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(40 cases), 3) 1 case where a heterozygous duplication and a homozy-
gous duplication could not be distinguished. There were 208 segments
with contiguous heterozygous deletions (92 cases) that were analyzed
as 92 deletions after merging two or more segments for each of the 92
subjects. This latter phenomenon seems to be due to slight differences
in the intensities data that are detected by the Nexus CNV-calling
algorithm as different events. We performed this merge procedure
since the “call fragmentation” issue is known to possibly affect the
assessment of large CNVs [16]. In total, 116 segments of the group of
208were removed from the final list of CNVs alongwith the CNVs listed
in categories 1 (74 segments), 2 (89 segments), and 3 (2 segments),
leaving 10,777 CNVs.

2.2. Genome-wide map of CNVs detected in the ADNI sample

Our first aimwas to evaluate the frequencies of CNVs detected in the
ADNI population defined by deletions, duplications, size and diagnosis
as reported in Table 2. Of the 10,777 CNVs, we identified 8443 heterozy-
gous deletions, 806 homozygous deletions, and 1528 duplications,
including 5 multi-allelic variants (i.e. high copy gain). The median size
of CNVs was 230 kb, ranging from 2.5 kb to 72 Mb. Homozygous
deletions tended to be smaller than heterozygous deletions and were
similar in size and number in patients and controls, as were duplications.

The number of CNVs per individual did not differ significantly be-
tween cases and healthy controls. We observed a slightly higher number
of the total copynumber events inMCI subjects (mean#-of-calls = 18.1)
compared to either AD patients (mean #-of-calls = 15.5) or healthy
controls (mean #-of-calls = 15.6) (see Table 2 for details).

Although the differences in the total number of CNVswas not signif-
icant, we observed a greater number of copy number events with size
>450 kb in AD and MCI, as well a larger mean size of these events:
AD (mean size = 590 kb), MCI (mean size = 908 kb) versus healthy
controls (mean size = 526 kb).When analyzed by CNV type, heterozy-
gous deletions were significantly larger in MCI and AD patients than
in healthy controls (χ2 = 136.92, p-value b 0.0001). Fig. 1 compares
the genomic distributions of heterozygous deletions larger than
450 kb in cases and healthy controls in an adapted version of the typical
Manhattan plot, where instead of the p-values per SNP by chromosome
we used the CNV size per subject by chromosome.

A Q–Q (quantile–quantile) plot revealed departures from the
expected distribution of CNV size values (Fig. 2). The distribution of
CNV size differed among the three diagnostic groups. In particular, the
MCI CNV size significantly deviates from the reference line starting
from a value of approximately 450 kb. The distribution of CNV size
of the AD patients deviates from the normality starting at a value of

approximately 4 Mb. The departure from the reference line increases
as the CNV size increases for both MCI and AD cases but not healthy
controls, with a greater departure for MCI. The deviations in the Q–Q
plot are primarily driven by the distribution of heterozygous deletion
events (Fig. 3).

2.3. Identification of CNV-Regions with rare large deletions

Comparing the CNVs detected in our sample with those previously
reported in reference control populations, like the Toronto's Database
of Genomic Variants (DGV), requires consideration of the size of the
CNV. For example, very large deletions are likely to encompass regions
that harbor smaller copy number events reported in control reference
populations and the biological consequences of larger deletions can be
different and more functionally relevant. Consequently, we carefully
evaluated the size and location of CNVs in order to distinguish poten-
tially pathogenic from benign CNVs, as discussed by Conrad et al. [23].
CNVs are common among healthy individuals, and the strategy to iden-
tify potentially pathogenic candidates is key. Thus, following Conrad et
al. [23], we consider CNVs as potentially pathogenic if the overlapping
segments are at least 30% larger than those reported in the reference
controls (Fig. 4) and are shared by four or more patients (at least 1%
of our sample). Fig. 4 shows an example of the relationship between
CNVs described in the DGV reference population and the CNV-Regions
observed in our sample on chromosome 2p16.3-p16.2. We used the
intensity data from the SNP microarray to estimate the breakpoint of
each CNV (Conrad et al. [23]). Applying these criteria we identified 44
independent heterozygous deleted CNV-Regions (see Table S1).

To provide a first level of confirmation of these 44 CNV-Regions,
we used an alternative algorithm for CNV identification from single
nucleotide polymorphism arrays, i.e. PennCNV [24]. Although Nexus
and PennCNV provide very different CNV calls both in terms of overall
number and size [18], we opted for PennCNV since it is currently the
most widely used algorithm. As expected, we found that 43% of dele-
tions and 55% of duplications identified by Nexus were also called by
PennCNV. Then, we focused specifically on CNV calls by PennCNV
overlapping with the previously defined 44 CNV-Regions. We found
that 42 over 44 CNV-Regions harbored CNVs detected by PennCNV, 29
of those with deletions larger than 450 kb (Table S2). As expected,
PennCNV calls had a smaller size, but the overall coverage of deletions
within each CNV-Region confirms the pattern of disruption potentially
impacting the same genes and regulatory elements. Despite the
differences between the algorithms, these data confirm the presence
of regions of putative altered functional activity within the boundaries
of the identified CNV-Regions.

2.4. CNV-Regions association analysis

To better investigate the increased number of heterozygous dele-
tions evidenced by the Q–Q plot we evaluated the distribution of the
44CNV–Regionswith a logistic regression approach, since these regions
may have more explanatory power than CNVs alone. Overall, the num-
ber of affected subjects withmore than one CNV-Region deletion is sig-
nificantly greater in cases than controls (χ2 = 14.79, p-value = 0.005),
with the highest contribution due to a larger proportion of MCI subjects
having more than 5 CNV-Regions than healthy controls (Table 3).
To further unravel the role of each single CNV-Region in determining
the strength of the overall association, we tested each CNV-Region for
association with cognitive impairment. We observed that seven of the
forty-four CNV-Regions have nominal p-value b 0.05: CNV-Region 7,
CNV-Region 14, CNV-Region 23, CNV-Region 28, CNV-Region 38,
CNV-Region 48 and CNV-Region 70. These large deletions were present
only in cases (MCI and AD patients) with the exception of one healthy
control (CNV-Regions 28 and 70).

Table 1
Clinical and demographic characteristics of healthy controls, MCI and mild AD subjects
at baseline assessment.

Control MCI AD

# subjects 229 398 193
Mean Age 75.93 ± 5.0 74.83 ± 7.48 75.33 ± 7.47
Gender (male/female) 119/110 257/141 101/91
Smoker/non-smoker 84/145 163/235 75/118
Handedness (right/left) 211/18 362/36 181/12
Ethnicity
(Hispanic/non-Hispanic/
unknown)

2/224/3 14/380/4 4/187/2

Race (American Indian or Alaskan
Native/Asian/African
American/White/more
than one race)

0/3/16/210/0 1/9/15/372/1/ 0/2/8/181/2

Mean years of education 16.04 ± 2.86 15.67 ± 3.04 14.70 ± 3.1
MMSE 29.11 ± 0.99 27.03 ± 1.77 23.32 ± 2.06
CDR global (0–0.5–1) # subjects in
each category and mean values

229–0–0 2–396–0 0–100–93
0.0 0.49 ± 0.035 0.74 ± 0.25

ADAS-cog 6.20 ± 2.91 11.49 ± 4.42 18.36 ± 6.67
APOE (ε2/ε3/ε4) 38/354/66 28/509/259 9/214/163
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Table 2
Characteristics of CNVs detected using microarray data in the ADNI sample.

CNV size
ranges

Homozygous deletions Heterozygous deletions Duplications High copy gain

CTRL MCI AD Total CTRL MCI AD Total CTRL MCI AD Total CTRL MCI AD Total

0–20 kb Number of CNV detected 41 96 33 170 46 72 33 151 2 18 6 26 1 1 – 2
Mean CNV size kb (SD) 11,382

(4807)
10,522
(4206)

11,130
(3797)

10,847
(4277)

14,560
(3116)

14,249
(3220)

14,235
(3534)

14,341
(3241)

15,439
(2099)

15,496
(2880)

16,244
(3004)

15,664
(2780)

16,054
(0)

16,054
(0)

– 16,054

20–100 kb Number of CNV detected 120 170 77 367 468 777 369 1614 91 199 84 374 0 1 – 1
Mean CNV size kb (SD) 45,912

(20,436)
47,134
(21,647)

44,442
(20,671)

46,169
(21,023)

62,431
(22,446)

63,201
(21,922)

62,080
(21,978)

62,721
(22,079)

58,457
(18,978)

58,685
(22,608)

59,282
(22,812)

58,764
(21,774)

– 46,259
(0)

– 46,259

100 kb–450 kb Number of CNV detected 77 127 64 268 1092 2084 915 4091 212 380 168 760 2 0 – 2
Mean CNV size kb (SD) 153,417

(47,905)
153,644
(40,175)

156,993
(40,218)

154,379
(42,412)

255,886
(116,761)

263,490
(117,022)

262,689
(116,642)

261,281
(116,884)

242,418
(106,611)

248,233
(103,951)

238,330
(102,066)

244,422
(104,231)

148,958
(32,608)

– – 148,958
(32,608)

450 kb–2 Mb Number of CNV detected 0 1 0 1 473 1001 432 1906 99 162 89 350 – – – –

Mean CNV size kb (SD) – 527,566
(0)

– 527,566
(0)

873,373
(353,832)

913,183
(386,963)

875,095
(356,450)

894,671
(372,491)

857,426
(306,587)

881,915
(344,363)

866,698
(316,327)

871,119
(326,257)

– – – –

2 Mb–10 Mb Number of CNV detected – – – – 100 445 72 617 1 9 3 13 – – – –

Mean CNV size kb (SD) – – – – 3,487,306
(1,616,961)

4,223,484
(1,933,931)

3,641,255
(1,812,325)

4,036,226
(1,893,946)

2,268,253
(0)

2,673,911
(539,851)

2,948,826
(642,019)

2,706,148
(542,653)

– – – –

>10 Mb Number of CNV detected – – – – 6 46 12 64 – – – – – – – –

Mean CNV size kb (SD) – – – – 13,032,082
(3,996,942)

13,562,461
(9,103,163)

14,729,801
(5,023,062)

13,731,614
(8,069,805)

– – – – – – – –

All Number of CNV detected 238 394 174 806 2185 4425 1833 8443 405 768 350 1523 3 2 5
Mean CNV size kb (SD) 74,744

(63,843)
73,764
(67,772)

79,522
(66,631)

75,297
(66,344)

526,015
(1,065,102)

907,721
(2,088,887)

589,584
(1,458,033)

739,869
(1,752,991)

355,300
(356,042)

355,757
(431,596)

374,569
(431,851)

359,958
(412,733)

104,656
(80,121)

31,156
(21,358)

75,256
(70,317)

115
G
.G

uffantiet
al./

G
enom

ics
102

(2013)
112

–122



2.5. CNVs validation with next generation sequencing

To provide an initial validation of our findings, we used low-coverage
whole genome re-sequencing to confirm the detection of CNVs in the
seven CNV-Regions associated with cognitive impairment. We selected
six subjects: two patients that presented CNVs in almost all the seven
CNV-Regions, two healthy controls who did not report CNV calls
(negative controls), and two additional patients who presented two
and three CNVs, both called by Nexus and PennCNV. As reported in the
1000 genome study [25], low-coverage whole genome re-sequencing
proved to be valid for CNV identification and provided higher resolution
compared with microarrays. With sequencing, we confirmed the CNV-
Regions, as well as corroborating the reliability of the longer Nexus
algorithm. On average, 87.3% of the sequencing reads passed quality
filters, and approximately 85% align to the reference sequence
(see Supplementary Table S3 for further details). Ninety-nine
percent of the bases of the aligned reads match the reference with
an average error rate of 0.006. The average coverage genome wide
was ~1.0×. Alignment metrics are reported in Supplementary Table S3.

Of the two sequenced patients with 7 CNV-Regions with
nominally significant p-values, one had CNV calls in 5 of the 7 CNV-
Regions that were identified by PennCNV. The second patient had
CNV calls in all the seven CNV-Regions, 5 of which were identified
by PennCNV. The remaining two CNV-Regions that were not called
by PennCNV have nonetheless been validated by NGS (for details
on CNV calls boundaries across Nexus and the two validation
methods see Table S5). As expected, the two healthy subjects did
not present any NGS-based CNV in the seven CNV-Regions.

Of the other two patients selected for having CNVs called by both
Nexus and PennCNV, one presented two CNV calls on chromosomes 3
and 14. On chromosome 3, Nexus called a CNV of 146 kb (35,991,950–
36,138,541) and PennCNV a CNV of 118 kb (36,027,069–36,145,613).
Both segments were cross-validated by the NGS-based CNV of 921 kb
(35,394,001–36,316,000) with additional refinement of the boundaries
of the actual deletion. On chromosome 14 Nexus called a CNV of
711 kb (21,308,832–22,020,471) and PennCNV called a CNV of 70 kb
(21,701,518–21,771,960). The NGS-based CNV size of 855 kb confirms
the deletion at the locus and is in accord with Nexus overall size of
the deletion. On chromosomes 5, 6, and 22: Nexus called three CNVs
with sizes of 206 kb, 72 kb, and 199 kb, respectively. The CNVs called
by PennCNV had sizes of 108 kb, 60 kb, and 2 kb, respectively.

The sequencing cross-validated CNVs on chromosomes 5, and 6
with sizes of 72 kb and 68 kb, but not on chromosome 22.

2.6. CNV-Region genes: functional classification (DAVID)

We analyzed the 231 genes that map within the boundaries of our
CNV-Regions with DAVID, to identify related biological processes and
molecular functions enriched in our dataset. The gene functional classifi-
cation analysis identified 10 clusters of genes that share annotation
terms for the same biological function. Among them only four have en-
richments score > 1.3, a value equivalent to a p-value = 0.05, generally
considered an adequate significance threshold for annotation enrich-
ment analyses. Table 4 presents the results for the top four gene func-
tional clusters along with the top functional annotation terms reported
for each cluster and their enrichment fold value relative to the entire
human genome (DAVID Background: Homo Sapiens). The functional
analysis shows enrichment in our data for four different gene families:
genes that encode for trans-membrane proteins, immunoglobulin-like
domains found in several diverse protein families, the semaphorin
protein family and leucine-repeat-rich (LRR) proteins.

Fig. 1.Manhattan plot of the CNV size distribution for heterozygous deletions >450 kb in the ADNI sample. Each dot represents the CNV size in logarithmic scale of each deletion for each
chromosome. The distance between ordered CNVs is relative and does not accurately depict the physical location of the deletions on the genome. Blue circles and squares represent CNVs
belonging toMCI and AD subjects respectively. Red triangles represent CNVs belonging to healthy control subjects. The horizontal lines display two different size levels: green line for size
1 Mb and red line for size 10 Mb.

Fig. 2. Q–Q plot of the size distribution of CNVs detected in the ADNI sample by
diagnostic group (healthy controls in green, MCI in orange and AD in red). The size
of the CNVs are in logarithmic scale, for example the value = 4 in the table corresponds
to CNVs with size = 10,000 bp, or the value = 7 to CNVs size equal to 10,000,000 bp.
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We also performed a functional cluster analysis annotation, which
allows including even those genes that might not exert identical biolog-
ical function but that are likely to co-function in the context of the same
biological network. This analysis identified 7 of the 71 total clusters
above the significant threshold of ES = 1.3 (Supplementary Table S6).
The overall biological function of the two top clusters, Clusters 1 and 2
(ES = 2.03 and 1.71 respectively) is associated with genes implicated
in glycosylation, the posttranslational modification process of integral
membrane proteins like glycoproteins. Cluster 3 relates to axon guid-
ance, neurogenesis and differentiation and includes the genes coding
for the semaphorin protein family (e.g. SEMA3A, -3C, -3D, -3E) and
the axon guidance receptors (e.g. ROBO1 and ROBO2) as well as tran-
scription factor involved in the differentiation of retinal ganglion cells
(e.g. ATOH7). Interestingly, the two most significant annotation terms
(p-value b 0.01 corrected for multiple testing) both belong to Cluster
3: the UniProt classification of the superfamily of semaphorin proteins,
obtained from the Protein Information Resource SuperFamily (PIRSF)
site, and the axon guidance pathway as described by KEGG [26]. Cluster
4 is enriched for annotation terms related to proteins containing

immunoglobulin-like domains and includes genes coding for neural
cell adhesion molecules (e.g., NCAM2 and JAM2) as well as genes that
regulate cell surface interactions during nervous system development
(e.g. CNTN5). Cluster 5 relates to biological processes implicated in the
modulation of the assembly that allows the fusion of transport vesicles
and the plasmamembrane in the cytoplasm (e.g. STXBP5) and in synap-
tic vesicle trafficking to cytoplasmic vesicles (e.g. PLCO). Cluster 6
reveals the enrichment of annotation terms related to neuron develop-
ment, differentiation and more specifically neuron projection morpho-
genesis and axonogenesis. Besides the above mentioned semaphorin
protein family and axon guidance receptors, the biological functions
enriched in this cluster are associated with genes such as SLITRK-1, -5
and -6, responsible for enhancing neuronal dendrite outgrowth, and
FOXG1, a transcription repression factor which plays an important
role in brain development. Finally, cluster 7 relates to cell–cell adhesion
and includes genes coding for cadherins, glycoproteins involved in
Ca2+-mediated cell–cell adhesion (e.g. CDH7, CDH19, and PCDH7) as
well as for proteins implicated in cellular migration (e.g. ROBO1 and
ROBO2).

Fig. 3. Q–Q plot of the size distribution of CNVs detected in the ADNI sample represented by CNV type (panel A, heterozygous deletions; panel B, homozygous deletions; panel C, dupli-
cations) and diagnostic group (healthy controls in green,MCI in orange and AD in red). The size of the CNVs are in logarithmic scale, for example the value = 4 in the table corresponds to
CNVs with size = 10,000 bp, or the value = 7 to CNVs size equal to 10,000,000 bp.

Fig. 4. CNV detection and CNV-Regions (Copy-Number-Variable Regions) boundaries. The physical map of chromosome 2p16.3-p16.2 is depicted. The percentages of duplications and
deletions size are indicated by horizontal percentage reference line for the region. The CNVs from the reference population DGV are indicated by horizontal line (purple). Each horizontal
line indicates a study subject and the red indicates the extent of the deletion. The vertical blue lines indicate the area of maximum overlap (95%) of deletions for the study subjects.
The black vertical lines indicate the Copy-Number-Variable Regions (CNV-Regions), independent CNVs overlapping at the same copy-number variable loci.
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3. Discussion

CNV mapping has proven to be highly relevant in increasing our
understanding of genetic susceptibility to complex traits. We focused
our investigations on CNV-Regions rather than CNVs, mostly because
CNV-Regions are more likely to capture the extent of loci disrupted by
deletions or duplications. Based on Redon el al. [10] a CNV-Region is
defined as the union of juxtaposed or overlapping unique CNVs all of
which may impact the same biological function. The assessment of the
enrichment of biological signatures of the functional sequences that
fall within a CNVR (i.e. genes, regulatory elements, non-coding RNAs)
may inform on the functional genomic impact of the CNVs. Recently,
several studies have attempted to study the functional impact of CNVs
by integrating CNVs and gene expression data by reconstructing the
functional CNV-Region networks [5,27,28]. The overall number of sub-
jects with CNV-Regions is low, a finding compatible with CNV-Regions
being rare events. We hypothesize that multiple rare CNV-Regions
characterize a profile that confer susceptibility to cognitive impairment
by acting synergistically in combination with other genetic, epigenetic
or environmental factors.We found a statistically significant overrepre-
sentation of subjects with more than one CNV-Region in affected cases
compared to healthy controls and we found that very large deletions
>450 kb are associated with MCI and/or AD. Recent studies supported
the role of the overall load of large deletions in many complex traits
[29,30]. Our findings are consistent in particular with the hypothesis
that links large copy number events and disease susceptibility as previ-
ously described in the context of large CNV studies of schizophrenia,
autism and other psychiatric disorders [31,32]

In addition, several studies provided evidence for a substantial role of
chromosomal structural variations in the pathogenesis of neurological

disorders [3,33–35]. For AD, three papers [7–9] reported the results of
an initial CNVs analysis with both genome-wide and candidate gene
strategies, evaluating the association of single CNVs to AD and MCI.
Heinzen and colleagues [7] reported a duplication in the CHRNA7 gene,
although not significantly overrepresented in cases, and the possibility
of large heterozygous deletions in cases. Swaminathan and colleagues
identified some potential candidate genes enriched in CNVs in cases
(CSMD1, SLC35F2, HNRNPCL1 as well as the candidate gene CHRFAM7A),
although none met the conventional significance (p-value b .05) after
correction for multiple testing. Recently, the same authors replicated
these findings in an independent sample from the NIA-LOAD/NCRAD
Family Study, with the identification of a new candidate gene
(IMMP2L) possibly involved in AD susceptibility [9]. These previous ob-
servations of single CNVs enriched in MCI and AD subjects within candi-
date genesmay have failed to reach statistical significance in a traditional
case–control study design because of the rarity of the events. Our focus
on CNV-Regions shifts the attention from a single event to the region of
overlap of events characterized by different sizes, but likely affecting
the same underlying functional biology of the deleted or disrupted
gene(s). This is consistent with the biological plausibility of the previous
findings, despite the lack of statistical significance. Furthermore, the
interpretation of the clinical significance of single CNVs, especially for
small events b500 kb, is challenging since their pathogenicity is modu-
lated by many factors. We also applied ab initio a stringent filtering
procedure to ultimately pull out a set of rare candidate CNVs, excluding
all the events quite common throughout the healthy population [36].
Our approach should be seen as a complementarymethodology to single
CNVs that leverages the power of genome-wide CNV-Region profiling
to overcome the limitation of incomplete penetrance and variable
expressivity of single CNVs

Our findings of increased number and size of heterozygous deletions
associated with late-onset cognitive impairment are consistent with the
neurobiology of late-onset diseases. The presence of CNVs in a coding re-
gion can alter the abundance of the corresponding transcripts affecting
the amount of protein product that may influence cell differentiation
[3]. Excessive protein production may lead to age-dependent protein
misfolding with implied disruption of protein transport, mitochondrial
dysfunction and apoptosis [37]. On the other hand, also CNVs present
in the vicinity of genes may influence their expression through a variety
of epigenetic mechanisms [5]. An advantage of CNVs and particularly
CNV-Regions is that they identify structural changes within DNA
that have the potential to affect gene function. To further elucidate the
clinical relevance of our CNV-Regions, we analyzed the gene functions
or pathways these CNV-Regionsmight affect using DAVID. The deletions
within these CNV-Regions occur in genes implicated in the biological
pathways of axonal guidance, neuronal morphogenesis and differentia-
tion, cell–cell adhesion and glycoprotein glycosilation [38].

We established the reliability of our CNV calls using two different
algorithms implemented in Nexus and PennCNV, and confirmed our

Table 3
Co-occurrence of large deletions at more than 5 CNV-Regions.

Diagnostic group Number of Individuals with CNV-Regions

No
CNVRs

1–5
CNVRs

>5
CNVRs

Total

Healthy
(n = 181)

Observed
frequency

162 (89.5%) 18 (9.9%) 1 (0.84%) 181

Expected
frequency

147.9 (81.7%) 29.4 (16.24%) 3.7 (2%)

MCI
(n = 313)

Observed
frequency

239 (76.36%) 64 (20.44%) 10 (3.2%) 313

Expected
frequency

255.8 (81.72%) 50.9 (16.26%) 6.4 (2.04%)

AD (n = 146) Observed
frequency

122 (83.56%) 22 (7.03%) 2 (1.37%) 146

Expected
frequency

119.3 (81.71%) 23.7 (16.23%) 3 (2.05%)

Total 523 104 13

Pearson chi2 (4) = 14.79 p-value = 0.005

Table 4
Functional gene cluster classifications using the Database for Annotation, Visualization and Integrated Discovery (DAVID) for enrichment scores (ES) > 1.3.

Gene functional classification Top 3 associated annotation terms

Gene cluster N. of genes Enrichment score Annotation category Annotation term Enrichment fold

1 37 1.91 UP_SEQ_FEATURE transmembrane region 3.79
SP_PIR_KEYWORDS transmembrane 3.76
SP_PIR_KEYWORDS membrane 2.99

2 8 1.78 SP_PIR_KEYWORDS Immunoglobulin domain 35.81
INTERPRO IPR007110:Immunoglobulin-like 29.10
INTERPRO IPR003598:Immunoglobulin subtype 2 60.95

3 4 1.70 UP_SEQ_FEATURE domain:Sema 462.41
PIR_SUPERFAMILY PIRSF005526:semaphorin 396.21
INTERPRO IPR001627:Semaphorin/CD100 antigen 403.04

4 6 1.56 UP_SEQ_FEATURE repeat:LRR 10 136.13
UP_SEQ_FEATURE repeat:LRR 9 117.98
UP_SEQ_FEATURE repeat:LRR 8 106.90
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most promising findings by assessing CNV consensus calls and CNV-
Region boundaries using a sequencing strategy. A NGS-based CNV
detection approach provides the highest sensitivity currently available
and allows refining the CNV boundaries, as well as identifying events
that cannot be detected by the most sensitive array technologies
[39,40]. While deep-coverage (≥25×) whole-genome sequencing
costs are significantly dropping, low-coverage sequencing (1–6× base
coverage) is still themost feasible option [41]. Low and high sequencing
both provide data comparable to CGH-based (comparative genomics
hybridization) data [42]. The better resolution of NGS-based CNV detec-
tion identifies additional CNVs in the AD and in MCI patients compared
to SNP microarray calls, strengthening our results. An increasing
number of algorithms that interrogate deep sequencing data for CNV
discovery are becoming available, although there is not yet a consensus
on a “gold standard” method and analysis strategy. A weak point
common to many NGS-based discovery approaches is the requirement
for a paired reference sequenced genome since they were originally
developed for the detection of cancer CNVs where the paired reference
genome for a tumor is the related normal tissue [43]. There is no current
consensus yet on the criteria to build a reference genome for CNV calling
for complex diseases. Here, we opted to use ERDS, a read-depth
NGS-based CNV discovery approach that relies on depth-of-coverage
(DOC) (i.e. the density of reads mapping to the region) and detects
changes in copy number by comparing the observed DOC within a
sliding window of the genome to a reference genome [44–46]. This is
currently the only sequencing-based CNV discovery method that allows
for the accurate prediction of absolute copy numbers [44,47]. The
greatest advantage of ERDS, and DOC algorithms in general, is the ability
to detect broader range of CNV events, with best reliability for large
events and better breakpoint resolution [48].

The overall high rate of consensus calls across approaches, both
cross-algorithm reliabilities using PennCNV and NGS-based confirma-
tion, supports the accuracy of Nexus CNV detection algorithm [49,50].
Recently, Dellinger et al. reported that Nexus may be affected by an
overcall of CNVs, especially with more relaxed analysis parameters
[18]. Our comparative analysis however supports Nexus reliability,
provided that the analysis is set up with conservative parameters to find
a good trade-off between sensitivity and specificity in CNVs detection.

Our findings of large deletions suggest a link between chromosomal
structural alterations and the development of MCI and AD. The
CNV-Region strategy captures much more realistic information than
the simple description of a catalog of single CNV events, enhancing the
genomic relevance of CNVs into a more clinical translational perspective
[38]. The higher prevalence in AD and MCI subjects of large deletions in
genes involved in neurodevelopment and brain functions makes them
good candidates for the definition of predictive profiles for the disease
evolution as possible indicators of progressive brain dysfunction. The pu-
tative clinical significance of the large deletions reported here is based on
several factors including the lack of complete overlapping with benign
losses spanning these genomic regions (as reported in DGV), gene func-
tion and in most cases tissue specific expression. Although these struc-
tural alterations warrant future molecular investigations to fully
understand their functional role, it is possible that disruption of the
gene regulatory networks is the final common pathway [51]. We are
aware that CNV analysis of DNA from blood has limitations, including
the difficulty of directly studying the consequence of the identified
CNV-Regions on the neuronal activity, particularly in the heterozygous
state. There is considerable evidence about the presence of CNVs in nor-
mal brains [52,53], although the extent of these structural variations is
unknown as is their role in brain functioning. Future research plans in-
clude the analysis of post-mortem brain from healthy, MCI and AD sub-
jects to verify the neuronal presence of the CNV-Regions we detected,
and possibly their effect on overall brain gene expression and pathways.
It is very likely that the dysfunction of specific neuronal pathways under-
lyingADandMCI depends on additional genetic and/or epigeneticmech-
anisms tomanifest a particular phenotype. Studies of characteristics that

are quantitative, change over time, or vary across clinical disorders like
cognitive impairment, offer a great opportunity to deepen our under-
standing of the role of genetic variation on human behavior and diseases.
This can perhaps be best accomplished by determining the correspon-
dence between ‘dimensional’ phenotypic and genomic variation data.

4. Material and methods

4.1. Ethics statement

Study subjects gave written informed consent at the time of
enrollment for imaging and genetic sample collection and completed
clinical symptom assessments approved by each participating sites'
Institutional Review Board (IRB).

4.2. ADNI

Data used in the preparation of this article were obtained from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database (www.
loni.ucla.edu\ADNI). For up-to-date information see www.adni-info.org.

4.3. Participants

All subjects were part of the ADNI longitudinal multi-site observa-
tional study that included AD, mild cognitive impairment (MCI), and
elderly individuals with normal cognition. All subjects have been
assessed with clinical and cognitive measures at the time of collection,
including ADAS-Cog, CDR-SB and MMSE, MRI and PET scans (FDG and
11C PIB) and blood and CNS biomarkers. Brain imaging, biological sam-
ples, and clinical assessments are longitudinally collected for a target of
200 healthy controls, 400 MCI, and 200 AD subjects. All AD patients
included in the study are sporadic cases of mild AD that met NINCDS/
ADRDA criteria for probable AD [54–56], between the ages of 55–90,
with an MMSE score of 20–26 inclusive and having an MRI consistent
with the diagnosis of AD (Table 1). Further details about the inclusion
and exclusion criteria can be found in the ADNI protocols [57]. For
CNV whole-genome screening analysis, we downloaded the entire
ADNI genotyping dataset publicly available at the following link:
http://www.loni.ucla.edu/ADNI/Data/. Following CNV quality con-
trol measures (described below), data from a total of 146 AD, 313
MCI subjects and 181 healthy controls were included in the analysis
based on the diagnostic information collected at baseline.

4.4. Genotyping

The ADNI sample was genotyped using the Human-610 Quad
BeadChip with a total of 620,901 markers, including 21,890 intensity-
only probes specifically designed to improve CNV detection and 27,635
additional probes in SNPs desert genomic regions to enrich CNV cover-
age. DNA collection, genotyping and relative quality control analysis
details are provided in Potkin et al. [21]. The intensity datawere analyzed
with Illumina GenomeStudio and are publicly available on the LONI
website (www.loni.ucla.edu/ADNI/Data). For the purpose of this study
we confined the analysis to autosomal chromosomes.

4.5. CNV segmentation algorithm

We used Nexus v5 (Biodiscovery Inc., El Segundo, CA, USA) to
produce CNV calls. Nexus calling algorithm SNPrank Segmentation is
based on the Circular Binary Segmentation model [58]. To detect CNVs
and allelic ratio anomalies, it relies on the normalized measure of the
total signal intensity for the two alleles of a SNP, defined as the Log R
ratio (LRR) and the normalized measure of the allelic intensity ratio of
the two alleles, defined as the B allele frequencies (BAF). Both LRR
and BAF were computed from the array intensity data with Illumina
Genome Studio v1.0.2 software using the manufacturer's cluster file as
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a reference [21]. SNPrank Segmentation classifies three types of CNVs: 1)
CN gain, corresponding to duplications (CN = 3 or 4 copies); 2) CN Loss,
corresponding to single copy deletions (CN = 1 copy); 3) homozygous
copy loss corresponding to a complete deletion event (CN = 0). We
used standard calling parameters recommended by the manufacturer
for Illumina array data: 1) minimum number of probes per segment of
5, 2) max contiguous probe spacing of 1000 kbp, and 3) significance
threshold of p-value = 1 × 10−6 for CNV calling. The combination of
these measures is particularly indicated for the detection of CNV in
regions scarcely covered, while simultaneously accounting for the risk
of false positive calls (e.g. centromeric and telomeric CNV, or CNV calls
merely due to a background waviness of the LRR that involves few
adjacent probes). We also ran PennCNV to evaluate CNV calls that had
a minimum of three SNPs on autosomes in addition to standard default
quality control parameters for CNV calling.

4.6. Statistical analysis

We used Nexus a specific pre-processing quality control parameter
(QCscore) to check for the quality of the individuals' intensity raw data
to minimize the risk of false positive CNV calls andwe excluded samples
exceeding QCscore of 0.2, a threshold value empirically determined for
Illumina array data by the manufacturer. We removed overlapping
CNVs within the same subject blind to diagnostic group where the
overlapping refers to either a situation where more than one deletion
or duplication were called for the same subject in the same region, or
the same event was specified twice for the same subject using PLINK
software package [59] (http://pngu.mgh.harvard.edu/purcell/plink), re-
lease v1.07. Proportion of overlap concordance of Nexus CNV calls with
the PennCNV calls using PLINK was also calculated to provide validation
across different CNV algorithms. We performed descriptive statistics of
single CNV distributions by size and type using chi-square and Fisher
exact test. To identify copy number variable loci (i.e. CNV-Regions for
partially overlapping CNVs), we used the “union overlap” tool of PLINK
that uses the ratio of the number of base-pairs intersected between dif-
ferent CNVs and the length of the CNV as a denominator in calculating
the proportion overlap. The “union overlap” tool allowed to both 1) se-
lect segments that were 95% overlapping between them in a region
with boundaries defined by our own data and 2) exclude segments
that were overlapping for more than 70% with previously described
CNVs. To investigate the effect of CNV-Regions on cognitive impairment,
we tested for associationwith diagnoses andMMSE score using a logistic
regression model. All descriptive and association analyses of single
CNVs and CNV-Regions were performed with STATA11 (StataCorp Stata
Statistical Software: Release11. 200X. College Station, TX: StataCorp LP).

4.7. Bioinformatics and in-silico functional pathway databases

We used the Database for Annotation, Visualization and Integrated
Discovery (DAVID), release 6.7 [60] to screen the genes that appeared
to be affected by CNV-Region variants. DAVID classifies the genes into
functional groups based on annotation similarity criteria. DAVID calcu-
lates an enrichment score that, relative to the ADNI dataset, ranks the
relevance of the annotation terms that describe the genes included in
a functional cluster. To be included in the final list, we required a gene
to harbor a copy number variant in at least 3 subjects and to map in
the region of maximum overlapping within the boundaries of a
CNV-Region. The list of genes affected by CNV-Region variants we sub-
mitted for the gene functional analysis had 231 entries. We used the
fuzzy clustering algorithm implemented in the “gene functional classifi-
cation” tool of DAVID to classify functionally related genes into groups
based on co-occurrence of “motifs” underlying shared biological mod-
ules. Then, we refined our results with the “functional annotation clus-
tering” analysis to cluster the annotation terms associated with the
genes in our list. For the analysis of annotation enrichment, we set

options to the default “medium” stringency criteria values provided
by DAVID.

4.8. Graphics (Nexus and R-ggplot2)

All plots and histograms were created using the plotting system
“ggplot2” of R (http://had.co.nz/ggplot2/). All images related to CNVs
and CNV-Regions have been created within the graphical framework
provided by Nexus v5.

4.9. Whole genome sequencing

After sonication of genomic DNA using a Covaris S2 to an average
size of 250–300 bp, libraries were constructed manually using the
Wellcome Trust protocol and reagents [61]. Each library was then
sequenced to depth of ~4–7× coverage on a Illumina HiSeq2000 DNA
sequencer using v5 kits, with pair-end reads of 75–100 bp flow cell.
The Illumina pipeline (v1.7–1.8) was then used to convert digital
images into base pair calls (with quality scores). The number of raw
reads generated per patient is reported in Supplementary Table S3.

Sequencing reads were aligned to the NCBI36 human reference
genome (Ensembl hg18 release 50: ftp://ftp.ensembl.org/pub/current/
fasta/homo_sapiens/dna/) using BWA software v0.5.9 (http://bio-bwa.
sourceforge.net/) [62]. We used the software package SAMtools v0.7.1
(http://samtools.sourceforge.net/) to generate the SAM/BAM format
files after screening the alignment data for duplicate reads, sorting and
indexing procedures. Summary Alignment metrics were calculated
using the CollectAlignmentSummaryMetrics program implemented
in the PICARD Java-based command-line software package v2.6.21
(http://picard.sourceforge.net/). The CNV calling was performed with
“Estimation by ReadDepthwith Single Nucleotide Variants” (ERDS) soft-
ware v1.02 (http://web.duke.edu/~mz34/erds.htm), a Hidden Markov
Model (HMM) based approach that relies on depth-of-coverage
(DOC) to infer the copy number state. It represents an extensions to
the methods described in [63]. The algorithm has been described
more in detail in [64]. A deletion was called when its average read
depth was below 0.7 ∗ expected read depth (corresponding to copy
number b1.4), and a duplication is called when its average read depth
is above 1.3 ∗ expected read depth (corresponding to copy number
>2.6). Expected read depth is calculated using the expectationmaximi-
zation (EM) approach and corrected by GC bias. Sequence Variant
Analyzer (SVA, http://www.svaproject.org) and Integrative Genome
Viewer (IGV, http://www.broadinstitute.org/software/igv/) were used
to visually inspect and annotate the CNV-Regions.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.ygeno.2013.04.004.
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