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ABSTRACT 

High fidelity maintenance of the genome is imperative to ensuring stability and 

proliferation of cells. The genetic material (DNA) of a cell faces a constant barrage of metabolic 

and environmental assaults throughout the its lifetime, ultimately leading to DNA damage. Left 

unchecked, DNA damage can result in genomic instability, inviting a cascade of mutations that 

initiate cancer and other aging disorders. Thus, a large area of focus has been dedicated to 

understanding how DNA is damaged, repaired, expressed and replicated. At the heart of these 

processes lie complex macromolecular dynamics coupled with intricate protein-DNA interactions. 

Through advanced computational techniques it has become possible to probe these mechanisms at 

the atomic level, providing a physical basis to describe biomolecular phenomena. To this end, we 



have performed studies aimed at elucidating the dynamics and interactions intrinsic to the 

functionality of biomolecules critical to maintaining genomic integrity: modeling the DNA editing 

mechanism of DNA polymerase III, uncovering the DNA damage recognition/repair mechanism 

of thymine DNA glycosylase and linking genetic disease to the functional dynamics of the pre-

initiation complex transcription machinery. Collectively, our results elucidate the dynamic 

interplay between proteins and DNA, further broadening our understanding of these complex 

processes involved with genomic maintenance. 
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CHAPTER 1. GENOMIC REPLICATION, REPAIR, TRANSCRIPTION AND KEY 

OUTCOMES 

1.1 DNA Replication and Editing 

Cellular chromosomal replicases are responsible for accurate and faithful DNA replication, 

which is essential for genomic stability. Replicases in all living organisms are tripartite and contain 

a DNA polymerase (Pol III in bacteria; Pol δ and ε in eukaryotes),  a sliding clamp for processivity 

(β in bacteria, proliferating cell nuclear antigen in eukaryotes) and a clamp loader (DnaX in 

bacteria; replication factor C in eukaryotes)[1]. These proteins assemble at the origin of replication 

in the genome, along with a helicase (DnaB in bacteria; mini-chromosome maintenance complex 

in eukaryotes), a primase and single-stranded binding proteins to initiate the replication fork 

(Figure 1.1.1). At the replication fork, helicases unwind double-stranded DNA (dsDNA) into two 

complementary single strands of DNA (template strands). With the help of DNA polymerase and 

its processivity factor, nucleotides are added according to Watson-Crick pairing to the ssDNA to 

form two identical copies of the original dsDNA molecule. Due to the antiparallel nature of 

dsDNA, polymerases can only extend pre-existing primers from their 3’-OH end. Thus, one strand 

is synthesized continuously (leading strand) and the other in short ~1000 nucleotide sections called 

Okazaki fragments (lagging strand). 

In recent years considerable progress has been made in the characterization of the chemical 

and structural description of DNA polymerases. Across all forms of life the structure of 

polymerases share a similar organization, and the nucleotidyl transferase reaction of adding new 

nucleotides appears conserved[2]. Structurally, all known DNA polymerases appear to resemble a 

right hand, where the functional domains are classified as fingers, palm and thumb domains. The 

catalytic reaction of adding new nucleotides occurs in the palm domain which is the most highly 
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conserved subdomain. Here, the active site contains two invariable aspartic amino acids that 

coordinate two magnesium ions and form the basis of the two-metal ion catalytic mechanism, 

conserved in all polymerases studied to date[3].  

Polymerases are highly accurate during the synthesis of DNA. In the rare instance that a 

mistake is made during replication, replicative polymerases have a 3’ - 5’ exonuclease to remove 

the incorrect nucleotide (termed editing). A functionally competent exonuclease is imperative to 

genomic stability as errors generated during synthesis, if left unchecked, can result in a cascade of 

mutations, some of which have been linked to cancer and premature aging[4]. The exonuclease 

domain is either built-in to the polymerase or located on a separate enzyme that associates with 

the polymerase. In either case, the active site of the exonuclease is distal to polymerase active site 

imposing strict structural and spatial requirements on the ssDNA transfer between sites[1, 6]. 

Despite decades of experimental work, the molecular details of this transfer mechanism had 

remained unknown.  
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Figure 1.1.1 – Cartoon depiction of DNA replication at the origin of replication. The helicase 

separates the dsDNA into two complementary strands. Replication proceeds continuously on the 

leading strand, while the lagging strand is synthesized in short Okazaki fragments.  
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1.2 Glycosylases and Base Excision Repair 

The integrity of genomic information is under constant threat by erroneous chemical 

modifications that occur ~10,000 times per cell per day from endogenous and exogenous 

sources[7]. Several DNA repair pathways exist to counter this threat and can be found in all 

domains of life. One prominent example is the base excision repair (BER) pathway which can 

handle damage occurring to nitrogenous bases of DNA, as well as, other types of DNA damage[8-

10]. In general, the steps of BER include (i) removal of the damaged or modified base by a DNA 

glycosylase, resulting in an abasic or apurinic/apyrimidinic (AP) site, (ii) cleavage of 

phosphodiester bond, (iii) generation of the 3’-OH and 5’-phosphate needed for DNA synthesis 

and ligation, (iv) DNA synthesis to replace to excised nucleotide and (v) ligation of the resulting 

DNA nick.  

DNA glycosylases initiate the BER pathway by employing a nucleotide-flipping strategy 

(also known as base-flipping) to identify damaged or modified bases and remove them through 

cleavage of the N-glycosidic bond (Figure 1.2.1)[11, 12]. In many cases this strategy facilitates 

the search for lesions that may not dramatically distort the overall structure of DNA. There are 11 

distinct mammalian glycosylases and while some of these act predominantly on a single type of 

lesion, such as uracil DNA glycosylase (UDG), others remove many different modified substrates. 

Three glycosylases act on mismatches involving two canonical nucleotides (G:T mismatches), 

including thymine DNA glycosylase (TDG)[13], methyl binding domain IV (MBD4)[14] and 

mismatch DNA glycosylase (MIG)[15]. These glycosylases excise only thymine from G:T 

mispairs in order to protect against lesions arising from deamination of 5mC to thymine. While 

much is known on the BER pathway and glycosylases in general, questions still remain on how 

these enzymes are able to detect lesions amongst an enormous backdrop of normal base pairs.  
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Figure 1.2.1 – Overview of the base excision repair pathway (BER). DNA damage is 

recognized and removed through DNA glycosylases. This is followed by AP-endonuclease, lyase, 

DNA polymerase and ligase activity to restore the correct base pair.  
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1.3 Transcription Initiation  

Transcription, the pivotal first step in gene expression, is the process by which a particular 

segment of DNA is copied into RNA via RNA polymerase. The stretch of DNA to be copied is 

known as the transcription unit and encodes at least one gene. For proteins, transcription produces 

messenger RNA (mRNA) to serve as a template for the protein’s synthesis through translation. By 

synthesizing and regulating protein production, transcription plays a fundamental role in everyday 

cellar activities.  

In eukaryotes, the process of transcription begins with RNA polymerase II (Pol II), together 

with one or more general transcription factors (GTFs) binding to promoter DNA to form the pre-

initiation complex (PIC)(Figure 1.3.1).  Formation of the closed promoter complex (PIC-CC) is 

initiated by the transcription factor IID (TFIID) which binds to promoter DNA via contacts 

between its TATA binding protein (TBP) and the TATA element of the promoter[16]. This is 

followed by the recruitment of TFIIA, TFIIB, TFIIF and Pol II to the core promoter, ending with 

TFIIE and TFIIH[17]. Upon formation, the PIC-CC then transitions into the open complex (PIC-

OC), in which the melted single-stranded DNA is inserted into the active site and Pol II locates the 

transcription start site (TSS). The PIC-OC is transient and rapidly converts into the initial 

transcribing complex (ITC), where mRNA starts to be synthesized[18, 19]. Eventually, Pol II 

clears the promoter and a stable elongation complex forms, competent for transcription. In recent 

years, advances in cryogenic electron microscopy (cryo-EM) have led to high-resolution structures 

of the PIC, thus broadening our understanding of this complex machinery.    
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Figure 1.3.1 – Schematic depiction of Pre-Initiation complex (PIC) formation. Pol II (gray), 

along with several transcription factors (labeled and colored) bind to promoter DNA in a step-wise 

fashion to begin the process of transcription. 
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1.4 Key Outcomes 

The biological systems and processes discussed in this dissertation can be thought of as a 

smaller subset of the much larger field of genomic duplication and maintenance. In short, the 

collective theme for this work can be summarized as the study on how the dynamic interactions of 

these biomolecules influence the conformational changes that govern their everyday functional 

activities. Notable research accomplishments include: 

1. We developed a structural, kinetic and thermodynamic model for the site-to-site 

transfer mechanism of ssDNA in DNA polymerases during editing. The underlying 

kinetics and thermodynamics of this transfer mechanism are foundational to 

maintaining synthesis speeds at the replication fork. As a case study, we investigated 

DNA polymerase III, the bacterial replicase, which is not only highly accurate but 

remarkably processive. Moreover, the active sites between the polymerase and 

exonuclease are separated by ~60 Å. Through path optimization methods, we 

uncovered the sequence of molecular events that must proceed for translocation of the 

ssDNA. Employing stochastic modeling techniques, we discovered intermediate (or 

metastable) states separated by kinetic barriers. We predicted important protein 

residues using dynamical network analysis. These residues were then tested by 

biochemical analysis, thereby validating our results. Collectively, this study aids 

increased our understanding of how polymerases handle errors produced during DNA 

synthesis. 

2. We developed a structural, kinetic and thermodynamic model for the base-interrogation 

and -flipping   mechanisms of thymine DNA glycosylase (TDG). Glycosylases employ 

unique strategies for recognizing and repairing damaged DNA. Through stochastic 
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modeling, we showed how TDG employs an intercalating arginine residue to probe the 

microstructure of dsDNA in search of lesions. TDG then exploits the unstable geometry 

of the mismatch or lesion through local deformation, allowing the enzyme to effectively 

“push” the incorrect nucleotide through the minor grove of the dsDNA. Dynamic 

protein-DNA contacts then facilitate the lesion’s ~180ͦ  rotation into the enzyme’s 

active site. Collectively, our modeling revealed that this strategy lowers the energetic 

barrier for base-flipping by ~10 kcal/mol. Moreover, the kinetics of this process occur 

on a timescale not easily captured by experimental techniques like NMR. 

3. Developed a structural model of the human transcription pre-initiation complex (PIC) 

based on cryo-EM and used the model to make the connection between the PIC 

functional dynamics and known disease mutations associated with severe genetic 

disorders. While techniques like cryo-EM and X-ray crystallography have revealed 

much on the structure of this transcription machinery, these models were incomplete. 

In this study, we utilized hybrid modeling techniques to build the most complete model 

of the human PIC to date. This allowed us to characterize undiscovered, yet, important 

interactions pertinent to the stability of this massive macromolecular complex (22 

protein chains). Combining principal component analysis and network analysis then 

permitted us to partition the dynamics of the PIC into tightly-connected clusters of 

residues. Importantly, we found that certain genetic mutations appear at critical 

junctures of dynamic network. Moreover, our results provide a link between the 

functional dynamics of the PIC and genetic disease. 
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CHAPTER 2. METHODS 

2.1 Molecular Dynamics 

2.1.1 The Molecular Dynamics Potential Energy Function 

At the core of the MD framework is the potential energy function (or forcefield) which 

describes the interactions between all atoms in the system of interest. The analytical complexity 

of atomic interactions results in approximations being made for most quantities (e.g. bonds are 

treated with Hooke’s Law, torsions are treated sinusoidally, van der Waals interactions are 

computed using an empirically derived 6-12 Lennard-Jones potential). Electrostatic interactions, 

on the other hand, are represented using Coulomb’s Law. Additionally, planarity in aromatic rings 

can be enforced using improper torsions. Combined, these interactions can be expressed as an N-

dimensional function that is dependent on the atomic coordinate space R[20]: 

𝑉(𝑅) =  ∑ 𝑘𝑏𝑜𝑛𝑑(𝑟 − 𝑟0,𝑏𝑜𝑛𝑑)2
𝑏𝑜𝑛𝑑𝑠 +  ∑ 𝑘𝑎𝑛𝑔𝑙𝑒(𝜃 −  𝜃0,𝑎𝑛𝑔𝑙𝑒)2

𝑎𝑛𝑔𝑙𝑒𝑠 +  ∑ 𝑘𝜙[1 − cos(𝑛𝜙 −𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠

 𝛿)] + ∑ 𝑘𝜑(𝜑 − 𝜑0,𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟)2
𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠 +

1

2
∑ ∑ (

𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
𝑗≠𝑖𝑖 +  𝜀𝑖𝑗(

𝐷𝑖𝑗

𝑟𝑖𝑗
)12 − 2(

𝐷𝑖𝑗

𝑟𝑖𝑗
)6)       (2.1) 

where k represents the force constant, naught-subscripts are equilibrium values, q is the atomic 

charge, rij represents the distance between atoms i and j, and Dij is the optimum interatomic 

distance for van der Waals interactions. The first 4 terms in the forcefield (bonds, angles, torsions 

and impropers) are referred to as bonded interactions, whereas the last two terms (electrostatic and 

van der Waals) are referred to as nonbonded interactions. Halving the nonbonded interactions 

eliminates double counting and ignores self-interactions (i ≠ j). 

 A number of different sources allow the parameters of Eq 2.1 to be fitted with some degree 

of accuracy. Bond and angle force constants are derived from spectroscopic studies. Quantum 

mechanical (QM) optimizations are employed to compute equilibrium bond lengths, triatomic 

angles and torsional angles. Torsional angle barriers and Lennard-Jones parameters are fitted to 
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QM potential energy surface (PES) scans. Finally, atomic charges are typically computed using 

the RESP method[21].  

 Over the years a number of different research groups have independently developed 

forcefields, including AMBER, GROMACS and CHARMM[22-24]. Differences in functionality 

between these forcefields are almost negligible, thus leaving the choice of forcefield primarily to 

the user’s preference. With the advancements in computer architecture and increasing length of 

MD simulations, unobserved flaws in the forcefield become apparent and parameters are adjusted 

accordingly. Additionally, most forcefields are updated frequently to improve fidelity with 

experimental results.  

2.1.2 Force Integration and Trajectory Propagation 

MD simulations propagate a collection of atoms through time according to the laws of 

classical Newtonian mechanics. The acceleration, force and potential energy of a Newtonian 

system are related to time through, 

𝑚
𝑑2𝒙

𝑑𝑡
= 𝐹(𝒙(𝑡)) =  −∇𝑉(𝒙(𝑡)). (2.2) 

Where m is the mass, x is the set of atomic positions, t is time, F denotes the force, −∇V is the 

negative gradient of the potential energy function and the acceleration, a, is equal to 𝑑
2𝒙

𝑑𝑡⁄ . Note 

that the expressions in Eq. 2.2 are a system of coupled ordinary differential equations (ODEs).  

In a purely mathematical sense, this system of ODEs can be readily solved. However, in 

order to propagate this system through time on a digital machine we need to discretize the time 

element for some finite number of steps (n steps) using a discrete time step (Δt, i.e. x(t) → x(t+Δt) 

→ x(t+2Δt) … x(t+nΔt)). If we choose a small Δt then we can expand any function around some 

arbitrary point and truncate using an expansion series, 
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𝒙(𝑡 + 𝛥𝑡) = 𝒙(𝑡) + 𝒙′(𝑡)𝛥𝑡 +
1

2
𝒙′′(𝑡)𝛥𝑡2 +

1

6
𝒙′′′(𝑡)𝛥𝑡3 + 𝑂𝛥𝑡4 , (2.3) 

𝒙(𝑡 − 𝛥𝑡) = 𝒙(𝑡) − 𝒙′(𝑡)𝛥𝑡 +
1

2
𝒙′′(𝑡)𝛥𝑡2 −

1

6
𝒙′′′(𝑡)𝛥𝑡3 + 𝑂𝛥𝑡4. (2.4) 

Equations 2.3 and 2.4 represent the time reversibility of the system evolution and form the basis 

for Verlet integration[25], one of the most common propagation algorithms employed in MD 

simulations. Through a little rearrangement and summation of these two equations, one can obtain, 

𝒙(𝑡 + 𝛥𝑡) = 2𝒙(𝑡) − 𝒙(𝑡 − 𝛥𝑡) + 𝒂(𝑡)𝛥𝑡2 + 𝑂𝛥𝑡4. (2.5) 

Note that the acceleration a enters Eq. 2.5 through the third term in Eqs. 2.3 and 2.4 as the second 

derivative of the position vector x with respect to time. Conveniently, Eq. 2.5 provides a means to 

propagate the atomic positions while avoiding the direct calculation of atomic velocities and with 

an error on the order of Δt4.  

A typical MD simulation begins by collecting the initial positions for all atoms in the form 

of Cartesian coordinates. Generally, atomic positions are obtained either from X-ray 

crystallography, NMR or cryogenic electron microscopy (cryo-EM). Additionally, one may obtain 

initial positions from advanced computational techniques such as homology modeling or de novo 

modeling. To initiate the simulation, velocities drawn from a Maxwellian distribution are assigned 

to all of the atoms. The forces are calculated through Eq. 2.2. Atoms are then propagated according 

to Eq. 2.5 one step in time (Δt) and the positions and velocities are updated. The velocities are 

related to Eq. 2.5 via, 

𝒗(𝑡) =  
𝒙(𝑡+𝛥𝑡)−𝒙(𝑡−𝛥𝑡)

2𝛥𝑡
. (2.6) 

This process of force calculation followed by propagation is repeated for n number of steps which 

is set by the user.  

 In order for the Verlet integration formulation to hold, a very small time step needs to be 

employed. From a MD perspective the time step needs to be such that it captures the fastest 
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molecular motions. Since MD explicitly ignores electrons, the fastest molecular motion 

corresponds to the vibration of hydrogen bonds, which is on the order of femtoseconds. In most 

cases, however, the researchers may not be interested in these motions. Thus, these bonds can be 

constrained around the equilibrium bond length, permitting the use of a 2-fs time step. 

 As the MD trajectory is propagated through time, instantaneous snapshots of the atomic 

positions are captured and saved. These represent the time-evolution of the trajectory and can be 

further analyzed for equilibrium, thermodynamic, kinetic and dynamical properties. Depending on 

the research problem, snapshots are typically saved between 3 to 6 orders of magnitude longer 

than the actual time step (2 ps to 2 ns).  

2.1.3 Nonbonded Interactions 

While bonded interactions can be readily computed, the direct calculation of nonbonded 

interactions is computationally expensive. The main reason for this discrepancy is that there are 

potentially O(n2) nonbonded interactions in a system of n particles. For the sake of speed and 

efficiency, a distance cutoff is enforced for all nonbonded interactions, drastically reducing the 

computational cost. In the context of van der Waals interactions, the rapid spatial decay of the 

Lennard-Jones r-6 dependence permits the exclusion of all interactions that lie outside the cutoff. 

Electrostatic interactions, on the other hand, do not decay as rapidly. Thus, these interactions are 

generally treated with the particle mesh Ewald summation method[26] (PME). 

In short, the PME method considers all electrostatic interactions between particles in a unit 

cell. The Coulombic potential is given by the 5th term in Eq. 2.1, 

𝑉𝑒𝑒𝑙 =  
1

2
∑ ∑

𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
𝑗≠𝑖𝑖 . (2.7) 

Eq. 2.7 can easily be extended to include electrostatic interactions in neighboring periodic cells, 

𝑉𝑒𝑒𝑙 =
1

2
∑ ∑ ∑

𝑞𝑖𝑞𝑗

4𝜋𝜀0|𝑟𝑖𝑗+𝑁𝐿|𝑗≠𝑖𝑖𝑁 . (2.8) 
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In Eq. 2.8, N is the number of periodic cells with a unit cell length of L in any given direction. The 

direct calculation of Eq. 2.8 still presents a computational burden since it converges very slowly. 

To alleviate this, the Ewald summation separates the distance component r into short- and long-

range terms,  

1

𝑟
=

𝑓(𝑟)

𝑟
+

1−𝑓(𝑟)

𝑟
. (2.9) 

Where f(r)/r is the short-range term and 1-f(r)/r is the long-range term. Each particle in the cell is 

then represented as a point charge with a local neutralizing charge taking the form of a Gaussian 

distribution, 

𝜌𝑖(𝑟) =  
𝑞𝑖𝛼3

𝜋3/2 exp (−𝛼2𝑟2). (2.10) 

This results in the short-range term of the Ewald sum taking the form, 

𝑉𝑠ℎ𝑜𝑟𝑡 =
1

2
∑ ∑ ∑

𝑞𝑖𝑞𝑗

4𝜋𝜀0|𝑟𝑖𝑗+𝑁𝐿|𝑗≠𝑖𝑖𝑁
𝑓(𝛼|𝑟𝑖𝑗+𝐿𝑁|)

|𝑟𝑖𝑗+𝐿𝑁|
. (2.11) 

Neutralizing charges from the Gaussian distribution in Eq. 2.10 are corrected by adding a 

background distribution, resulting in an expression for the long-range term, 

𝑉𝑙𝑜𝑛𝑔 =
1

2
∑ ∑ ∑

1

𝜋𝐿3

𝑞𝑖𝑞𝑗

4𝜋𝜀0

4𝜋2

𝑘2 exp (−
𝑘2

4𝛼2) cos (𝑘 ∙ 𝑟𝑖𝑗)𝑗≠𝑖𝑖𝑁 . (2.12) 

Where k are the reciprocal vectors. The free parameter α needs to be selected such that it optimizes 

convergence for both the short- and long-range interactions. Small values of α can lead to faster 

convergence of the long-range interactions, while large values result in the quicker convergence 

of the short-range interactions. 

 To improve performance and scaling, PME relies on a fast Fourier transform (FFT) to 

convert the long-range interactions to reciprocal space resulting in faster convergence with 

minimal loss in accuracy. Additionally, MD engines like NAMD smooth the reciprocal-space 

discretized point charges over multiple point grids by employing a Euler spline[27].  
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2.1.4 Solvent and Simulation Box  

Generally, MD simulations can be performed in vacuo[28]. However, in the context of 

biological systems, solvent interactions and electrostatic screening play central roles in the 

functionality of biomolecules. Currently, there are several computationally efficient water models 

that exist for MD[29] with the most popular being the TIP3P model. Briefly, TIP3P models the 

bonds between all atom pairs as rigid bonds set to the equilibrium length. The benefit of this 

approach is that is removes multiple degrees of freedom while maintaining minimal deviations 

from experimental bulk properties. This work relies entirely on the TIP3P model for all MD 

simulations. 

Depending on the research problem, MD simulations are typically performed under the 

canonical (NVT), microcanonical (NVE) or isothermal-isobaric (NPT) ensemble. The N, V, T, P 

and E are constant variables corresponding to the number of particles, volume, temperature, 

pressure and energy, respectively. There are multiple schemes that adequately enforce constant 

temperature and pressure[30-32]. While both the NVT and NVE ensembles possess computational 

advantages, the NPT ensemble closely replicates experimental conditions. Throughout this work, 

it is safe to assume that all analysis was performed on trajectory data obtained from MD 

simulations carried out in the NPT ensemble.     

2.2 Enhanced Sampling Methods 

While MD is a powerful technique for elucidating structural and dynamic phenomena, the 

simulation time is limited between the nanosecond and microsecond timescale. Due to its 

simplicity, MD is not capable of adequately sampling portions of energy landscapes separated by 

high energy barriers. Moreover, most biological molecules possess complex energy landscapes 

that contain multiple minima separated by high free energy barriers, leaving the simulation system 
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to become “trapped” in one or more of these minima for long periods of time. The nonergodic 

nature of the current MD methodology, therefore, does not permit the direct simulation of 

thermodynamic and kinetic properties for large biological systems with high energy barriers. 

In order to address the limitations of conventional MD a number of different methodologies 

have been proposed[33-36]. These enhanced sampling methods seek to increase the number of 

rare-event crossings between minima separated by high energy barriers. In most cases, rare-event 

transitions are accelerated by employing a non-physical force (or bias) which is added to the MD 

potential energy function. Consequently, this alters the underlying energy landscape in which the 

statistics at the barriers is significantly increased. Therefore, a post hoc reweighting scheme must 

be applied to enhanced simulation data in order to recover the true thermodynamic and kinetic 

properties. In the absence of a suitable reweighting protocol, enhanced sampling methods provide 

an efficient means of phase space exploration.  

2.2.1 Accelerated Molecular Dynamics 

In 2004, Hamelberg et al. proposed adding a bias potential to the MD potential energy 

function in order to stimulate infrequent events in molecular simulations[37]. Based on the 

previous work of Voter[38], accelerated molecular dynamics (aMD) assumes no prior knowledge 

of the energy landscape. By adding a bias potential to the true potential, aMD modifies the potential 

energy surfaces near the minima while those near the barrier or saddle point are left unaffected. 

This, in turn, raises the local minimum surface, thus reducing the dwell time in local minima and 

increasing the escape rate and chances for phase space exploration. Overall, aMD, provides a 

robust way to alter the energy landscape while preserving the underlying shape of potential energy 

surface. 
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In general, aMD defines a non-negative bias boost potential function, ΔV(R), such that 

when the true potential, V(R), is below a chosen threshold (E), the simulation is performed on the 

modified potential, 

𝑉∗(𝑅) = 𝑉(𝑅) +  𝛥𝑉(𝑅).   (2.13) 

Where the modified potential, V*(R), is related to true potential, bias potential and boost energy 

by, 

𝑉∗(𝑅) =  {
𝑉(𝑅),                            𝑉(𝑅) ≥ 𝐸
𝑉(𝑅) +  𝛥𝑉(𝑅),        𝑉(𝑅) < 𝐸

.     (2.14) 

Various definitions of the bias potential, ΔV(R), have been suggested and extensively studied[38, 

39]. In the current aMD implementation, the bias potential is defined such that: i) the calculation 

is computationally inexpensive, ii) the derivative of V*(R) is continuous and iii) the modified 

potential reproduces the shape of the minima even at a high threshold (E).  

𝛥𝑉(𝑅) =  
(𝐸−𝑉(𝑅))2

𝛼+(𝐸−𝑉(𝑅))
 .       (2.15) 

In Eq. 2.15, the tuning parameter, α, determines the depth of the modified potential energy basin. 

Note that when α is zero, the modified potential is flat such that V*(R) = E. Additionally, the 

selection of the tuning and threshold parameters (α and E) determines how aggressively the MD 

simulation will be accelerated. The current standard is to set the threshold value, E, to a value 

higher than the average potential energy (Vmin). The average potential energy, Vmin, is calculated 

from a short, normal MD simulation. On the other hand, the tuning parameter, α, is normally set 

to E – Vmin. This allows the modified potential to mirror the shape of the potential basins. 

 In this work, aMD is strictly used as a means of phase space exploration for some of the 

simulation systems. Reweighting of configurations obtained from aMD simulations involving 

large systems has proved challenging due to large fluctuations in the boost energy. While several 

reweighting protocols have been investigated, including the use of exponential, Maclauren and 
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cumulant expansions[40], these reweighting schemes rely on small fluctuations in the variance in 

order to converge to a realistic result. Thus, the recovery of the true canonical ensemble from aMD 

appears to have only been successful in a handful of cases involving small proteins. Due to this 

uncertainty, no reweighting of aMD simulation data was performed in this work.  

2.2.2 Umbrella Sampling 

Another popular method for increasing rare-event transitions in MD is the umbrella 

sampling (US) method which was first developed by Torrie and Valleau[41, 42]. In US, a bias 

term is applied to the system along a user-defined reaction coordinate (RC). The RC is defined 

such that it restricts the sampling to a few degrees of freedom which must adequately describe the 

transition of interest (i.e. torsions, angles, distances). Additionally, the RC is discretized into 

multiple segments (windows) that include only a part of the range of the RC. The bias is then 

applied either to a single simulation or to multiple, independent simulations (windows) in which 

the distributions overlap.  

First, consider that the canonical partition function, Q, of a system can be calculated over 

the whole phase space via, 

𝑄 =  ∫ exp[−𝛽𝑉(𝑅)] 𝑑𝑁𝑅.   (2.16) 

In Eq. 2.16, V(R) is the potential energy of coordinate system R, β is equal to 1/kBT and N is the 

number of degrees of freedom. The Helmholtz energy is related to Q by A = -1/β ln(Q). If a suitable 

RC can be defined, then the probability distribution along the RC, ξ, can be expressed as 

𝑄(𝜉) =  
∫ 𝛿[𝜉(𝑅)− 𝜉]exp [(−𝛽𝑉)]𝑑𝑁𝑅

∫ exp [(−𝛽𝑉)]𝑑𝑁𝑅
.      (2.17) 

Essentially, Eq. 2.17 can be interpreted as the probability of finding the system in a small interval 

dξ around ξ. Notably, the free energy along the RC can be readily calculated by A(ξ) = -1/β 

ln(Q(ξ)), also known as the potential of mean force (PMF). In MD the direct phase-space integrals 
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are impossible to calculate. However, assuming that the system is ergodic, the ensemble average 

Q(ξ) becomes equal to the time average P(ξ) for infinite sampling. This leads to, 

𝑃(𝜉) =  lim
𝑡→∞

1

𝑡
∫ 𝜌[𝜉(𝑡′)]𝑑𝑡′

𝑡

0
 .             (2.18) 

Where t denotes the time and ρ counts the occurrence of ξ in a given interval, typically of finite 

width. 

 In US, we consider that ξ has been split into multiple windows and that the bias potential, 

wi, of some window i is an additional energy term that only depends on the RC,  

𝑉𝑏(𝑅) = 𝑉𝑢(𝑅) +  𝑤𝑖(𝜉).                    (2.19) 

In Eq. 2.19, the superscript u denotes unbiased, while the superscript b denotes biased quantities. 

Starting with the unbiased distribution, the unbiased free energy, Ai(ξ), can be readily derived to 

give, 

𝐴𝑖(𝜉) =  − (
1

𝛽
) ln (𝑃𝑖

𝑏(𝜉)) −  𝑤𝑖(𝜉) + 𝐹𝑖 . (2.20) 

Where Pi
b is the probability distribution obtained from the biased MD simulation and Fi = -

(1/β)ln(exp[-βwi(ξ)]) is independent of ξ. The only assumption here is that there is sufficient 

sampling for each window which is facilitated by the appropriate choice of umbrella potentials, 

wi(ξ). 

 Ideally, the bias potential is chosen such that it ensures uniform sampling within each 

window spanning the RC. The most common form of the bias term is expressed as a harmonic 

potential with a force constant of strength k, 

𝑤𝑖(𝜉) =
𝑘

2
(𝜉 −  𝜉𝑖

0)2.  (2.21) 

Here, ξi
0, is a reference point which is typically chosen to be the center of each umbrella window. 

The choice of bias strength (k) is a critical decision, one that has to be made prior to the simulation. 

Overall, the choice of k has to be large enough to drive the system over the barrier, yet not so large 
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that it leads to narrow distributions. Overlap between adjacent window distributions is required for 

some reweighting protocols like the weighted histogram analysis method[43, 44] (WHAM; 

described below). 

In order to recover the unbiased free energy from multiple windows Fi in Eq. 2.20 must be 

estimated. A widely used method to accomplish this is the weighted histogram analysis method 

(WHAM). In short, WHAM aims to minimize the statistical error of Pu(ξ) where the global 

distribution is calculated by a weighted average of distributions of the individual distributions,  

𝑃𝑢(𝜉) =  ∑ 𝑝𝑖(𝜉)𝑃𝑖
𝑢(𝜉).𝑤𝑖𝑛𝑑𝑜𝑤𝑠

𝑖  (2.22) 

The weights, pi, are chosen to minimize the statistical error of Pu which leads to, 

𝑝𝑖 =  
𝑎𝑖

∑ 𝑎𝑗𝑗
, 𝑎(𝜉) =  𝑁𝑖 exp[−𝛽𝑤𝑖(𝜉) +  𝛽𝐹𝑖]. (2.23) 

Where N is the number of steps sampled for window i. Fi is then readily computed via, 

exp(−𝛽𝐹𝑖) =  ∫ 𝑃𝑢(𝜉) exp[−𝛽𝑤𝑖(𝜉)] 𝑑𝜉. (2.24) 

In WHAM, the global PMF is obtained by iterating equations 2.23 and 2.24 until convergence. As 

discussed earlier, the most important requirement for WHAM is sufficient overlap between 

adjacent window distributions. Failure to meet this requirement will result either in discontinuities 

or overestimated barrier heights in the combined PMF.  While there are several computer programs 

that perform this calculation, in this work, we make use of the C code distributed by Alan 

Grossfield[45]. 

2.3 Path Optimization Methods 

Another class of enhanced sampling methods aims to discover the optimal transition 

pathway or minimum energy path (MEP) between two stable states. Over the years numerous 

methods have been developed with the purpose of finding suitable transition pathways[46-48]. 

Generally, these can be divided into two subclasses, in which one relies on the definition of a 
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suitable RC and the other which does not require a priori knowledge of the reaction or transition 

of interest. In this work, we utilized methodologies from both subclasses that represent the path as 

a collection of configurations (or images) connected by a band or string, namely, the finite 

temperature string method with swarms of trajectories method (STSM) and the partial nudged 

elastic band method (PNEB).    

2.3.1 Finite Temperature String Method with Swarms of Trajectories Method 

In 2007, Roux and co-workers developed the finite temperature string method with swarms 

of trajectories method (STSM) for discovering minimum energy paths (MEPs) between two stable 

states[49]. Based on the earlier work of Maragliano et al.[50], STSM builds paths onto the energy 

surface of the subspace corresponding to a large but finite set of coordinates, referred to as 

collective variables (CVs). Note that CVs are analogous to what we have defined earlier as the 

reaction coordinate or RC. Limiting the search to a few degrees of freedom is advantageous since 

many of the stiff degrees of freedom can be integrated out. If all of the relevant coordinates are 

included in the definition of CVs, then the MEP becomes an isocommittor path. Moreover, the 

transition path found constitutes a well-ordered set of states representing the progress of the 

transition from one basin to another. 

In the original formulation, the string is a parameterized curve representing the path and is 

evolved as a collection of images by estimating the mean force and the metric tensor at each image 

using constrained dynamics. Notably, STSM follows a very similar formulation. However, in 

STSM, the string evolves by using a swarm of trajectories initiated from each image to estimate 

the average drift of each image in CV space. 

First, we consider that the probability distribution, Q, along some defined set of CVs, ξ, is 

given by Eq. 2.6 and that the mean force is related to this probability distribution by A(ξ) = -
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1/βln(Q(ξ)). Over some time step, δt, the CVs evolve according to non-inertial Brownian dynamics 

on a free energy surface, 

𝜉𝑖(𝛿𝑡) =  𝜉𝑖(0) +  ∑ (𝛽𝐷𝑖𝑗[𝜉(0)]𝐴𝑗[𝜉(0)] +  𝛿𝜉𝑗𝐷𝑖𝑗[𝜉(0)])𝛿𝑡 +  𝑍𝑖(0)𝑗 . (2.25) 

Where Dij is the diffusion tensor and Zi(0) is a Gaussian thermal noise with <Zi(0)> = 0. Note that 

the underlying dynamics that govern the evolution of the full Cartesian coordinates need not evolve 

with Brownian or Langevin dynamics, but, may instead evolve by Newtonian dynamics as with 

MD simulations.  

 We now consider a path, ξ(α), connecting two stable states in a system. The path contains 

a list of CVs parameterized by the variable α, where α = 0 corresponds to the initial state and α = 

1 is the final state. Accordingly, the system evolves by, 

𝜉𝑖(𝛼) =  𝜉𝑖(𝛼′) +  ∑ (𝛽𝐷𝑖𝑗[𝜉(0)]𝐴𝑗[𝜉(0)] + 𝛿𝜉𝑗𝐷𝑖𝑗[𝜉(0)])𝛿𝑡𝑗 . (2.26) 

Typically, the path is presented by an ordered sequence of M discrete images, {ξ1, ξ2,…,ξM}. Note 

that if Eq. 2.26 is employed for repeated propagation, the images will also move downhill towards 

favorable energy regions. The pooling of images in stable basins is undesirable since the goal is to 

find a MEP that connects two stable states via a high energy transition state. In order to avoid this, 

a constraint is imposed on each image such that the distance between each neighboring image is 

equal. This constraint is reinforced at the end of each iteration and allows the reaction path to 

remain well resolved, especially in high energy transition regions.  

 Finally, an approximation is needed for Eq. 2.26 to evolve an initial path towards a MEP. 

The simplest way to accomplish this is to compute the average drift from an ensemble of unbiased 

trajectories of length δt initiated from each image, 

𝛥𝜉𝑖(𝛿𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  ∑ (𝛽𝐷𝑖𝑗[𝜉(0)]𝐴𝑗[𝜉(0)] +  𝛿𝜉𝑗𝐷𝑖𝑗[𝜉(0)])𝛿𝑡𝑗 . (2.27) 
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In Eq. 2.27, it is assumed that the thermal noise, Zi(0), from Eq. 2.25 cancels out. Using this 

formulation, the system is first thermalized with a bias restraint to keep the CVs near a reference 

point, ξM. The restraints are then released to generate the unbiased trajectory. In this way, the 

average drift, Δξ(δt), can be estimated without making any assumptions about the underlying 

dynamics of the full Cartesian coordinates. After each evolution, the path is then re-parameterized 

to satisfy equidistance constraints between images, as with the original string method formulation. 

 In practice, one iteration of STSM consists of five steps: 

(i) Prepare a configuration for each of the M images whose corresponding CVs are close 

to the value ξM. 

(ii) Generate an equilibrium trajectory for each of the M images with ξ restrained around 

ξM. 

(iii) Use configurations from the restrained trajectory to run large numbers of short unbiased 

trajectories for each image. 

(iv) Calculate the average drift, 𝛥𝑧𝑀̅̅ ̅̅ ̅̅ , to determine the position in CV space of each of the 

M images. 

(v) Re-parameterize the path to impose equidistant conformity in CV space for all M 

images. 

Generally, the above cycle should be repeated until the images no longer move in CV space. 

Depending on the transition of interest, this can take many iterations. It should be mentioned 

that while STSM is a mathematically sound algorithm, success of finding a well-represented 

MEP is largely dependent on the choice of CVs.   



24 

2.3.2 Partial Nudged Elastic Band 

An alternative method to STSM is the partial-nudged elastic band method (PNEB)[51]. 

Briefly, PNEB is a variation of the nudged elastic band method[52] (NEB) which built upon the 

plain elastic band method proposed by Elber and Karplus[53]. In the original formulation, NEB 

employs multiple simulations of the system connected by springs to map conformational changes 

along a path, 

𝐹𝑖 =  𝐹𝑖
∥ +  𝐹𝑖

⊥. (2.28) 

In Eq. 2.28, the force on each image i is decoupled to a perpendicular force, 𝐹𝑖
∥, and a parallel 

force, 𝐹𝑖
⊥, by a tangent vector, 

𝐹𝑖
⊥ =  −𝛻𝑉(𝑃𝑖) + ((𝛻𝑉(𝑃𝑖)) ⋅ 𝜏) 𝜏,   (2.29) 

 

𝐹𝑖
∥ = [(𝑘𝑖+1(𝑃𝑖+1 −  𝑃𝑖) −  𝑘𝑖(𝑃𝑖 −  𝑃𝑖−1)) ⋅ 𝜏]𝜏. (2.30) 

The tangent vector, τ, defines the path between the initial and final configurations at every image 

along the path. The dot product of τ with the force field, ∇V(Pi), represents the contribution of the 

force field for that image along the path. This is subtracted from the true potential of the image to 

remove any force contribution along the path from the individual potential of the image. Notably, 

Eq. 2.29 represents each image as it moves in potential energy space normal to the path, hence the 

term perpendicular force.   

The parallel component, 𝐹𝑖
∥, accounts for the virtual springs connecting the images. In Eq. 

2.30, ki is the force constant and P is the positional vector of image i. As with the perpendicular 

force, the tangent vector is used to subtract out the spring forces that act normal to the path. In this 

way, the spring force keeps the images evenly spaced along the path and does not affect the 
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relaxation of each image. Additionally, maintaining even spacing between images keeps the path 

well resolved in the saddle point regions, as with STSM. 

The only difference between PNEB and the original NEB formulation is that PNEB allows 

the forces to act on a subset of atoms, thereby excluding the solvent from the calculation. This 

feature dramatically increases the performance of the algorithm since it limits the optimization to 

only the relevant part of the system. As with all chain of replicas methods, images along the path 

are simulated independently, thus, permitting the exploitation of massively parallel computing 

architectures. Perhaps one of the more important distinctions between PNEB and methods like 

STSM is that PNEB does not require a priori knowledge of the reaction. This means that the user 

avoids the task of determining a suitable set of CVs to describe the transition. In most systems 

involving many degrees of freedom this can be a daunting, if not, impossible feat. In this respect, 

PNEB has a tremendous advantage over CV-based optimization methods like STSM.   

2.4 Markov State Models 

Over the last several decades a combination of experiment and computation have shown 

that conformational transitions are essential to the function of proteins and nucleic acids. The 

length and timescales of these transitions span large ranges and involve complex rearrangements 

between substrates[54]. In addition to complexity, biomolecular kinetics often involve transitions 

between a multitude of long-lived, or metastable states that exists on a range of different 

timescales.  

While MD has become an increasingly accepted tool to elucidate conformational 

transitions in biomolecules, its simplistic formulation does not supply the statistical relevance to 

accurately quantify the transition rates or kinetics (as discussed previously). To overcome this 

limitation, a common approach is to partition the conformational space into discrete states. From 
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this partitioning, transition rates or probabilities between states can be calculated, either based on 

rates theories[55] or based on observations from the MD trajectories[56, 57]. These stochastic 

models are often referred to as transition networks, master equation models or Markov state models 

(MSMs), where “Markovianity” means the kinetics are modeled by a memoryless jump process 

between states[58]. 

In short, MSMs abandon the view of single trajectories and replace it with an ensemble 

view of the dynamics. This allows all of the statistical properties to be directly computed since the 

MSM encodes the ensemble dynamics. Since only conditional probabilities between discretized 

states are needed to construct the model, simulation trajectories only need to be long enough to 

reach local equilibrium within the discretized state rather than exceed global equilibrium relaxation 

times which can be orders of magnitude longer. Thus, long timescale processes can be accurately 

modeled from simulation trajectories that are orders of magnitude shorter. In the following 

sections, we describe the individual steps to constructing MSMs, which include:  (i) reducing the 

dimensionality of the MD trajectory data, (ii) discretizing the reduced space, (iii) estimating the 

transition probability matrix from the discrete states, (iv) agglomerating the discrete states into 

larger macrostates from the transition probability matrix and (v) calculating the transition rates 

between macrostates using transition path theory.    

2.4.1 Dimensionality Reduction 

The first step to constructing an MSM from an ensemble of MD trajectories is to reduce 

the dimensionality of the MD time series data. While, in principle, one could skip this step and 

proceed to discretize the full conformational space, this would be impractical due to the high 

dimensionality and the computational burden it would impose. A robust and automated approach 

to removing unimportant degrees of freedom is to project the dynamics onto a few ordered 
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parameters using principal component analysis[59] (PCA). Briefly, PCA attempts to find linear 

combinations of the input coordinates that best explain the variance in the data. This option is 

attractive since PCA can find orthogonal degrees of freedom that account for the largest amount 

of variance, while removing degrees of freedom that do not account for much variance in the data. 

However, in the context of MSMs, PCA suffers from a severe setback in that the underlying 

assumption is that the kinetically slow degrees of freedom correspond to the high variance degrees 

of freedom, which is not always the case.  

This section describes a dimensionality reduction technique, in the context of MSMs, that 

utilizes a projection-based metric that is motivated by kinetics. The method, referred to as time-

lagged independent component analysis[60, 61] (TICA), was first introduced as a solution to the 

blind source separation problem. Generally, the goal of TICA is to find linear combinations of the 

input coordinates that maximize the autocorrelation function of that projection. In addition, each 

linear combination is constrained to be uncorrelated to previous ones. This is done in a series of 

maximizations, where each step finds a new independent component (IC) that is slowest subject 

to being uncorrelated to all of the previously found ICs. Overall, TICA has been shown to 

dramatically improve the quality of the resulting MSM compared to PCA[62], making it an ideal 

choice for the dimensionality reduction step in the MSM pipeline.  

The theoretical framework begins with {𝑿𝑡}𝑡=0

𝑁𝑓−1
 which is a multidimensional, discrete 

time-series. Each snapshot, Xt, is a column vector of dimension d, corresponding to vectorized 

representation of the system conformation. In this notation, Nf is the total number of frames in the 

trajectory and Xt is a snapshot at some time t. To apply TICA to the time-series both the covariance 

matrix, 𝑪, and the time-lagged covariance matrix, 𝑪̅ are needed, 

𝑪 =  〈(𝑿(𝑡) −  〈𝑿(𝑡)〉)𝑇(𝑿(𝑡) −  〈𝑿(𝑡)〉)〉, (2.31) 
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𝑪̅ =  〈(𝑿(𝑡) −  〈𝑿(𝑡)〉)𝑇(𝑿(𝑡 −  𝜏) −  〈𝑿(𝑡)〉)〉. (2.32) 

In the above equations, angular brackets denote the time averages, the superscript T denotes the 

transpose and τ denotes the lag time.  As with PCA, the generalized eigenvalue problem is then 

solved, 

𝑪̅𝑟𝑖 = 𝑪𝜆𝑖𝑟𝑖. (2.33) 

Where ri are the independent components (eigenvectors) and λi are their respective normalized 

time autocorrelations (eigenvalues). Note that the time-lagged covariance matrix is usually 

asymmetric and will generally produce eigenvectors and eigenvalues expressed as complex 

numbers. In order to avoid this, the time-lagged covariance matrix is symmetrized using ½(𝑪̅ +

 𝑪𝑇̅̅̅̅ ). This is justified by the assumption of time reversibility of the MD trajectory. While it will 

not be proven here, Eq. 2.33 reveals two important properties of the projected trajectories:  (i) the 

covariance matrix, C, is equal to the unity matrix and (ii) the time-lagged covariance matrix, 𝑪̅, is 

identical to the eigenvalue matrix λ. The first property conveys that the projected trajectories are 

normalized so as to have unit variance and that there exists no correlation between any two of 

them. The second property means that the autocorrelation function of some projection, ai(t), has a 

value of λi at Δt = τ, where Δt is the timestep. Additionally, the cross-correlation function between 

some projection, ai(t) and some other projection, aj(t) (i ≠ j), vanishes at Δt = τ and τ = 0. Thus, 

the eigenvalues can used as a rough estimate to transition timescales through, 

𝑡𝑖 =  −
𝜏

𝑙𝑛|𝜆𝑖|
. (2.34) 

 Clearly, the lag time (τ) is an important parameter, one that must be chosen with great care. 

Theoretically, the ideal lag time is selected such that it encapsulates degrees of freedom that remain 

correlated for long timescales while ignoring degrees of freedom that quickly decorrelate. The 

process of lag time selection is not entirely intuitive and depends primarily on the input coordinates 
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selected for dimensionality reduction with TICA. While small lag times, in most cases, will clearly 

resolve multiple states in the projected space, they can also give the impression of discontinuities 

in the sampling which may or may not be the case in the full conformational space. On the other 

hand, large lag times will begin to incorporate irrelevant degrees of freedom, thereby merging 

multiple states and masking important kinetic barriers.  In practice, a trial and error approach can 

be employed in which the dimensionality of the input coordinates is reduced systematically using 

different lag times. This allows the user to assess the effect of lag time on the projected space. 

Ideally, the optimal lag time will be one that clearly resolves multiple states in the projected space 

while preserving the kinetic barriers that separate them.      

2.4.2 Discretization  

MD simulations in the full conformational space are Markovian by construction. However, 

in practice, the full conformational space is typically projected onto a few ordered parameters 

(projected or reduced space). The next step is to partition the reduced space into discrete states in 

order to obtain a computationally tractable description of the dynamics. MSMs then combine these 

discrete states with the transition probability matrix (discussed in the next section) to model the 

jump process of the observed trajectory projected onto the discrete states.  

Consider a discretization of some state space Ω into n sets. For practical reasons, the 

discussion is limited to a simple partition with sharp boundaries. In order to quantify the 

probability that some point x belongs to set i, membership functions (χi(x)) can be defined with 

the property ∑ 𝜒𝑖(𝒙) = 1𝑛
𝑖=1 . In the simple partition example, the membership function can be 

expressed as a step function, 

𝜒𝑖(𝒙) =  {
1, 𝑖𝑓 𝒙 ∈  𝑆𝑖

0, 𝑖𝑓 𝒙 ∉  𝑆𝑖
.  (2.35) 
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Here, there are n sets S = {S1,…,Sn} which entirely partition the state space (⋃ 𝑆𝑖  ∈  𝜴𝑛
𝑖=1 ) and 

have no overlap (Si ∩ Sj = 0 for all i≠j). An example of this type of partitioning is a Voronoi 

tessellation, where one defines n centers 𝒙𝒊̅, i = 1…n, and set Si is the union of all points x ∈ Ω 

which are closer to 𝒙𝒊̅ than any other center. The closeness of all points to every center is related 

through a distance metric (e.g. Euclidean distance). The stationary probability of any given point 

to be in set i is then expressed in terms of the full stationary density, 

𝜋𝑖 =  ∫ 𝜇 (𝒙)𝑑𝒙, (2.36) 

where the local stationary density (μi(x)) restricted to set i is given by, 

𝜇𝑖(𝒙) =  {

𝜇(𝒙)

𝜋𝑖
, 𝒙 ∈  𝑆𝑖

0, 𝒙 ∉  𝑆𝑖

. (2.37) 

Notably, these properties are local and thus do not require information about the full 

conformational space. 

 In general, there are many clustering algorithms that utilize a Voronoi tessellation and 

adhere to the discretization formulation described above. These include k-means, k-medoids, 

regular space clustering, regular time clustering and uniform time clustering. In this work, we 

make no argument in favor or against any particular clustering method. Any metric that can finely 

discretize the reduced space as the number of clusters is increased, theoretically, should work. 

More importantly, a metric should be selected such that it resolves the molecular events of interest, 

as with dimensionality reduction. 

2.4.3 The Transition Probability Matrix 

At the core of the MSM framework is the transition probability matrix (TPM). The TPM 

is a row stochastic matrix that, when combined with the discretization, defines the Markov model. 

Specifically, the TPM is the discrete approximation of the transfer operator, 𝒯, 
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𝑇𝑖𝑗(𝜏) =  
〈𝜒𝑗,(𝒯(𝜏)∘ 𝜒𝑖)〉𝜇

〈𝜒𝑖,𝜒𝑖〉𝜇
  . (2.38) 

In Eq. 2.38, each element (Tij) represents the time stationary probability to find the system in state 

j at time t + τ, where τ is the lag time, given that it was in state i at time t. The conditional 

probability, by definition, is then, 

𝑇𝑖𝑗(𝜏) =  ℙ[𝒙(𝑡 +  𝜏) ∈  𝑆𝑗  | 𝒙(𝑡) ∈  𝑆𝑖], (2.39) 

or, 

𝑇𝑖𝑗(𝜏) =  
∫ 𝜇𝑖(𝒙)𝑝(𝒙,𝑆𝑗; 𝜏)𝑑𝒙

∫ 𝜇𝑖(𝒙)𝑑𝒙
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈  𝑆𝑖. (2.40) 

Notably, Eq. 2.40 reveals that the integrals run over individual sets (Si) and thus, the only 

requirement is the local equilibrium distribution (μi(x)), which is used as weights. This is a very 

powerful feature of MSMs. Essentially, this means that we do not need any information on the 

global equilibrium distribution of the system in order to estimate transition probabilities. 

Additionally, the dynamical information needs only extend over the lag time, τ. Hence, we can 

estimate the kinetics of a dynamic process from an ensemble of short trajectories, so long as they 

are at least of length τ and the starting points are drawn from a local equilibrium density. In order 

to do so, we must first have an expression that describes the change in probability, given that a 

configuration begins in set Si and ends in set Sj at some fixed time later (t + τ), 

𝑷 = 𝑝𝑗(𝑡 +  𝜏) =  ∑ 𝑝𝑖(𝑡)𝑇𝑖𝑗(𝜏), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 ∈ 𝑆𝑛
𝑖=1 . (2.41) 

Note that in Eq. 2.41 the probability of being in set j is obtained through a summation of the 

probabilities of all configurations in set i multiplied by the conditional probabilities of transitioning 

from set i to set j. Analogous to the problem encountered in TICA, the resulting matrix, P, is 

symmetrized to enforce detailed balance under the assumption of time reversibility. Moreover, the 

TPM (P) leads to a stationary distribution (π) by virtue of a simple eigenvalue problem, 
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𝝅𝑇𝑷 =  𝝅𝑇 . (2.42) 

Here, the superscript T denotes the transpose. Eq. 2.42 reveals that the global stationary 

distribution can be computed from conditional probabilities. Thus, MSMs can correctly recover 

both equilibrium thermodynamic and kinetic properties of the system, even if trajectories shorter 

than the longest timescale were used for construction. 

As with TICA, the lag time (τ) is a crucial parameter for estimating the TPM, one that will 

determine the quality and utility of the model. In practice, a suitable value for τ is selected based 

on the relaxation time of the timescales estimated at different lag times. Short lag times can result 

in overestimated kinetics and possible discontinuities in the TPM. On the other hand, larger lag 

times will offset configurations that violate global equilibrium, thus providing higher fidelity but 

coarser temporal resolution [58].  

2.4.4 Simplifying the Transition Probability Matrix  

In general, one could immediately proceed to calculating relaxation times (or transition 

rates) directly from the TPM discussed in the previous the section. However, in practice, the 

discretization typically produces a large number of states (possibly thousands), resulting in a n x n 

TPM (where n = number of states). While the calculation of transition rates from a highly 

dimensional TPM is computationally feasible, the interpretation of such a kinetic model is 

impractical. Thus, we would like to be able to simplify the TPM such that it:  (i) renders the results 

more interpretable and visually appealing and (ii) the slow processes are preserved. 

A natural approach to simplifying the TPM is to agglomerate the discrete states into larger 

clusters based on some kinetic metric resulting in a coarse-grained TPM. Eigen-spectrum 

clustering methods (or spectral clustering) represent an ideal choice since they both simplify the 

TPM and potentially can preserve information on the slow processes. Initially, Perron-Cluster 
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Cluster Analysis (PCCA) was proposed for coarse-graining transition matrices[63]. Unfortunately, 

it was soon discovered that the original PCCA formulation suffered from a severe limitation when 

it comes to Markov chains in the context of MD. Briefly, PCCA attempts to assign every state in 

the TPM to a unique cluster based on an eigenvalue decomposition of the TPM. However, 

transition matrices derived from MD simulations usually contain transition states that cannot be 

assigned to a unique cluster. Consequently, this results in a large deviation in the TPM from an 

ideal block structure, a requirement for spectral clustering[64]. Simply put, the corresponding 

Markov chain is no longer decomposable. 

In order to overcome this limitation, the Robust Perron Cluster Analysis (PCCA+) was 

developed by introducing the concept of fuzzy clustering into the PCCA formulation[65, 66]. In 

short, fuzzy clustering assigns every object to every cluster with certain probabilities. In contrast 

to other fuzzy clustering methods, PCCA+ aims to make the clusters as sharp (or crisp) as possible, 

thus attempting to avoid negative entries in the coarse-grained TPM. A major advantage of PCCA+ 

is that the coarse-grained TPM obtained from the fuzzy clusters exactly preserves the slow 

timescales. 

The theoretical framework begins with the concept of a simple partition with sharp 

boundaries, where the membership function (χi(x)) can be expressed by Eq. 2.35. With fuzzy 

clustering the condition of discrete values is discarded and the membership function is allowed to 

take values in the interval [0,1] such that, 

0 ≤  𝜒𝑖(𝒙) ≤ 1, ∑ 𝜒𝑖(𝒙) = 1𝑛
𝑖=1  . (2.43) 

From here, the data is represented in the form of an undirected similarity graph, G = (V,E), where 

the vertices (V = {v1,…,vn}) represent the data points. Edges connect the vertices and carry a weight 
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wij ≥ 0, where i and j are two distinct vertices. These values enter the adjacency matrix and the 

degree (D) of this matrix contains entries along the diagonal, 

𝑑𝑖 =  ∑ 𝑤𝑖𝑗
𝑁
𝑗=1 . (2.44) 

The weights (wij) in Eq. 2.44 are obtained from similarities sij. In practice, there are numerous 

possibilities to transform the weights to similarities[67]. However, the discussion of these 

transforms extends beyond the scope of this dissertation. 

 The next step is to find a partition of the graph (G) such that edges between different 

clusters have a low weight and edges within clusters have high weight. Note that the number of 

connected components A1,…,Anc ∈ V of some graph G is equal to the multiplicity of the eigenvalue 

zero of the graph Laplacian, 

𝐿 = 𝐼 −  𝐷−1𝑊. (2.45) 

Where I is the identity matrix, W is the adjacency matrix and D-1 is the inverse of the degree matrix. 

Correspondingly, the eigenspace is spanned by the characteristic vectors 𝕝𝐴1, … , 𝕝𝐴𝑁  ∈ {0, 1}𝑁, 

where 𝕝 denotes the vector with all components equal to 1 and, 

𝕝𝐴𝑗 = {
1, 𝑖𝑓 𝑣𝑖  ∈  𝐴𝑗

0,           𝑒𝑙𝑠𝑒  
. (2.46) 

Thus, the most common spectral clustering algorithms proceed through the following steps: 

1. Construct a similarity graph with a weighted adjacency matrix W. 

2. Calculate a graph Laplacian L. 

3. Compute the first n eigenvectors of L. 

4. For i = 1…N let yi ∈  ℝ𝑁 be the ith row of the eigenvectors. Cluster the points {yi}i=1,..,N 

into clusters C1,…,CN. 
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A unique feature of spectral clustering is that it requires only the calculation of the first few 

eigenvectors. This can be achieved quite readily with standard numerical software, most of which 

is freely available. 

 The clustering in step 4 is done with PCCA+, although other choices are possible, including 

k-means or fuzzy k-means. With PCCA+ the simplex structure of the rows yi is exploited, making 

the cluster result independent of any initialization step. Note that the simplex structure would not 

occur if singular vectors instead of eigenvectors were used for clustering[68].  

In the context of MSMs, the TPM is a row-stochastic matrix of the form, P = D-1W, and 

can be interpreted as a transition matrix of a random walk which jumps from vertex to vertex. 

Moreover, if the graph (G) is connected and non-bipartite then the random walk possesses a unique 

stationary distribution. Thus, the main idea behind spectral clustering essentially boils down to 

finding a partition of the graph such that the random walk has long dwell times within the same 

cluster and seldom jumps between clusters. Additionally, because P and L = I – P have the same 

eigenvectors, spectral clustering on L is equivalent to clustering on P. The main difference between 

PCCA+ and other fuzzy clustering methods is that clustering obtained from PCCA+ is the result 

of a linear transformation of the eigenvectors, which preserves the slow timescales of the random 

walk[69]. This makes it an excellent choice for coarse-graining TPMs obtained from MD 

simulations. 

2.4.5 Transition Path Theory 

The final step in the MSM pipeline is to compute the rates for transitions between states 

using transition path theory[70, 71] (TPT). For this discussion we will assume that the TPM has 

been coarse-grained in a manner described previously. To simplify the mathematics, the coarse-
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grained TPM under consideration contains two metastable states (A and B) and one intermediate 

state (I), although the theory is generalizable to n metastable states.  

Prior to computing the rate of the transition from A to B, we first need to calculate the 

committor probability, q+, which is defined as the probability, when being in state i, that the system 

will reach state B next rather than A. By definition, qi
+ = 0 for all i in A and qi

+ = 1 for all i in B. 

In relationship to the TPM, the committor probability for all intermediate states i can be computed 

by solving the following the system of equations, 

−𝑞𝑖
+ +  ∑ 𝑇𝑖𝑗𝑞𝑘

+
𝑘 ∈ 𝐼 =  − ∑ 𝑇𝑖𝑘𝑘 ∈ 𝐵 . (2.47) 

In Eq. 2.47, T is the transition probability obtained from the appropriate elements in the TPM. The 

backward-committor probability, q-, is then the probability, when being in state i, that the system 

was in state A previously, rather than B. Under the assumption of equilibrium, this probability is 

simply q- = 1 – q+. Notably, the transition probability, Tij, contains contributions from all 

trajectories. These include trajectories that leave A and return to A before hitting B, or B → A 

transitions. Thus, in order to evaluate the statistics strictly in terms of A → B trajectories, only a 

fraction of the transitions which come from A and go to B is relevant (i.e qi
-Tijqj

+). The probability 

flux along edge i, j, contributing to the transition A → B is then, 

𝑓𝑖𝑗 =  𝜋𝑖𝑞𝑖
−𝑇𝑖𝑗𝑞𝑗

+. (2.48) 

Where fij is known as the effective flux and πi is the stationary probability. Unfortunately, the 

effective flux still contains unnecessary detours such as recrossings. Thus, we need to compute the 

net flux, 

𝑓𝑖𝑗
+ = max {0, 𝑓𝑖𝑗 −  𝑓𝑗𝑖}. (2.49) 
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In Eq. 2.49, the net flux (fij
+) is a network fluxes leaving states A and entering states B. Notably, 

this network is flux-conserving, where the total amount of flux that leaves state A will enter state 

B (i.e input flux equals output flux).  

 From Eq. 2.49 we can compute the total number of observed A → B transitions per lag time 

τ, 

𝐹 =  ∑ ∑ 𝜋𝑖𝑇𝑖𝑗𝑞𝑖𝑗
+

𝑗 ∉ 𝐴𝑖 ∈ 𝐴 . (2.50) 

Where F is the total flux. This is a particularly important quantity since it allows us to directly 

compute the rate of the A → B transition, 

𝑘𝐴𝐵 =  𝐹
(𝜏 ∑ 𝜋𝑖𝑞𝑖

−𝑛
𝑖=1 )⁄ . (2.51) 

An important point to make is that all states that trap the trajectory for some time will reduce the 

value of kAB. However, these traps are properly accounted for in the total flux, even if they do not 

contribute to productive pathways. For a more in-depth discussion on the derivation and 

justification of transition path theory refer to [70, 71].  

2.5 Multi-Ensemble Markov Models 

One of the limitations of MSMs is that they rely on the underlying MD to reversibly sample 

rare events. For reasons discussed earlier, high-energy barriers are still out of reach for 

conventional MD. Enhanced sampling methods like umbrella sampling or accelerated MD, 

combined with reweighting techniques, can help estimate thermodynamic properties like free 

energy. However, these reweighting techniques are unsuitable for simulation data with long 

correlation times in some of the variables, since they treat the input data as uncorrelated samples 

of the ensemble distribution. To overcome both of these limitations, Wu et al. proposed estimating 

multi-ensemble Markov models (MEMMs) using the transition-based reweighting analysis 

method[72] (TRAM). The benefit of MEMMs is that they integrate simulation data from both 
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biased and unbiased ensembles. Moreover, MEMMs estimated with TRAM combine the power of 

kinetics-based clustering (a feature of traditional MSMs) with the strength of bias sampling to 

produce thermodynamic and kinetic information at all ensembles.   

2.5.1 Transition-based Reweighting Analysis Method 

The transition-based reweighting analysis method (TRAM) was developed to integrate 

simulation data from multiple ensembles in a way that allows it to:  (i) work with high-dimensional 

data and coarse state-space discretizations, (ii) utilize unbiased MD simulations from 

nonequilibrium starting points and (iii) optimally combine data to full thermodynamics and 

kinetics at all ensembles. In short, TRAM is a significant improvement to previously proposed 

transition-based reweighting methods[73, 74], which do not offer all of the above properties. 

Additionally, methods like WHAM (discussed previously), multistate Bennet acceptance ratio[75] 

(MBAR), reversable MSMs and discrete TRAM can all be derived from TRAM.  

First, consider a molecular system in a reference ensemble with configuration x and a 

dimensionless potential function u(x). The units of u(x) are the thermal energy kBT = 1/β. 

Additionally, u(x) is a sum of terms, including βV(x) and pressure-volume or chemical potential 

terms. The equilibrium distribution of such a system is, 

𝜇(𝑥) =  𝑒𝑓−𝑢(𝑥). (2.52) 

In Eq. 2.52, the free energy f is the negative logarithm of the potential energy function V(x).  

 Now, suppose that we have simulations from different ensembles. The content of these 

simulations may comprise an arbitrary combination of unbiased and biased energy functions. Any 

ensemble can be related to the reference ensemble by introducing a bias potential bk(x) such that 

uk(x) = u(x) + bk(x). The corresponding equilibrium distribution can then be expressed as, 

𝜇𝑘(𝑥) =  𝑒𝑓𝑘−𝑏𝑘(𝑥)𝜇(𝑥). (2.53) 
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The relative free energy fk of some ensemble k is chosen such that μk(x) is normalized. In general, 

the bias potential bk(x) is selected such that it models commonly used enhanced sampling methods.  

 We can now expand the earlier discussion on MSMs to include some ensemble k that 

consists of a partition of the state space into m discrete states S1,…Sm. Additionally, this ensemble 

contains transition probabilities Tij
k(τ) that the system is in state Si at time t will be found in state 

Sj at time t+τ. The local free energy of state Si in ensemble k is then, 

𝑒−𝑓𝑖
𝑘

= 𝑒𝑓𝑘
∫ 𝜇𝑘(𝑥)𝑑𝑥. (2.54) 

Notably, the integral in Eq. 2.54 evaluates to the equilibrium probability of the system to be in 

state Si when simulated in ensemble k. Finally, the likelihood of the MSM with transition matrix 

P is given by, 

𝐿𝑀𝑆𝑀
𝑘 = ∏ ∏ (𝑚

𝑗=1
𝑚
𝑖=1 𝑇𝑖𝑗

𝑘)𝑐𝑖𝑗
𝑘

. (2.55) 

Where the simulation data from ensemble k contains cij
k transitions from state Si at time t to Sj at 

time t+τ. Recall that one of the assumptions of MSMs is that the underlying dynamics is reversible. 

This will be the case only for simulations conducted at thermal equilibrium in ensemble k and, 

thus, will adhere to the detailed balance equations, 𝑒𝑓𝑖
𝑘
𝑇𝑖𝑗

𝑘 = 𝑒𝑓𝑗
𝑘

𝑇𝑗𝑖
𝑘. Including detailed balance 

constraints, the maximum likelihood in Eq. 2.55 has no closed-form solution but can be solved 

iteratively.  

 When combining simulation data from multiple ensembles, a central problem is to ascertain 

the equilibrium distribution at a reference ensemble given the data from all ensembles. The reason 

behind this is that the equilibrium probability of sample x can be reweighted between different 

ensembles by means of Eq. 2.53. Methods like MBAR provide optimal estimates of the 

equilibrium distribution μ(x) under the assumption that at each ensemble k, the samples x are drawn 

independently from their global equilibrium distribution μk(x). In contrast to this approach, TRAM 
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does not rely on the global equilibrium assumption, but, instead defines the local equilibrium 

distribution for each configuration state Si, 

𝜇𝑖
𝑘(𝑥) =  {𝑒𝑓𝑖

𝑘−𝑓𝑘
, 𝑖𝑓 𝑥 ∈ 𝑆𝑖

0, 𝑒𝑙𝑠𝑒
. (2.56) 

The main assumption in Eq. 2.56 is that the simulations are sampling the local equilibrium 

distributions. However, these simulations do not need to be in equilibrium with other configuration 

states, a necessary requirement for employing the MSM framework. The likelihood is then given 

by, 

𝐿𝐿𝐸𝑄
𝑘 = ∏ ∏ 𝜇𝑖

𝑘(𝑥)𝑥∈𝑋𝑖
𝑘

𝑚
𝑖=1 . (2.57) 

Here, Xi
k represents the set of all samples in the kth ensemble and in state Si. Note that μi

k can be 

related to μ(x) through Eqs. 2.53 and 2.56. Thus, the local equilibrium is key to reweight samples 

between different ensembles. 

 The TRAM estimator combines the MSM likelihood and local equilibrium likelihood to 

give the following, 

𝐿𝑇𝑅𝐴𝑀 = ∏ (∏ (𝑇𝑖𝑗
𝑘)𝑐𝑖𝑗

𝑘

𝑖,𝑗
𝐾
𝑘=1 )(∏ ∏ 𝜇(𝑥)𝑒𝑓𝑖

𝑘−𝑏𝑘(𝑥)
𝑥∈𝑋𝑖

𝑘
𝑚
𝑖=1 ). (2.58) 

Eq. 2.58 represents the probability that a given set of trajectories sampling from different 

ensembles has visited a particular sequence of discrete states (Lk
MSM) and has sampled the local 

configurations contained within these discrete states. The unknown variables in the TRAM 

likelihood are μ(x), fi
k and Tij

k. The goal of the TRAM estimator is to maximize the likelihood in 

the unknown variable space subject to three constraints, 

𝑒−𝑓𝑖
𝑘
𝑇𝑖𝑗

𝑘 = 𝑒−𝑓𝑗
𝑘

𝑇𝑗𝑖
𝑘. (2.59) 

∑ 𝑇𝑖𝑗
𝑘

𝑗 = 1. (2.60) 

∑ 𝜇(𝑥) = 1𝑥∈𝑋 . (2.61) 
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Eqs 2.60 and 2.61 are simple normalization constraints. Importantly, the detailed balance condition 

denoted by Eq. 2.59 couples the MSM part to the local equilibrium part. Thus, the TRAM problem 

can be thought of expressing two optimization problems simultaneously: (i) optimize the MSMs 

for given free energies for all configurations at each ensemble k, and (ii) optimize the free energies 

for all ensembles at each configuration Si.  

 In practice, the TRAM problem is transformed into a more tractable system of nonlinear 

algebraic equations and solved through fixed-point iteration, although Newton-based and other 

stochastic optimization methods are possible. For a more robust derivation of the TRAM estimator, 

including the algorithmic details, please refer to [72]. 

2.6 Dynamical Network Analysis 

Dynamical network analysis (network analysis or graph analysis) encompasses a wide 

array of methodologies based on graph theory. In recent years, network analysis has become a 

popular tool for examining the dynamics of many body systems, including computer networks, 

social networks and physical systems[76]. Generally, the individual components of the system 

under investigation are represented by a node (or vertex). Edges connect interacting components 

and are assigned a weight indicative of the strength of interaction between the interacting 

components.  

While the definition of nodes in biomolecular systems can be arbitrary, the most common 

definition is to assign a node to each residue in the protein or nucleic acid. The edges between 

nodes are determined by contact persistence (typically >90%) and are weighted proportionally to 

the dynamic correlation between the interacting residues, 

𝑤𝑖𝑗 = −log |𝑐𝑖𝑗|, (2.62) 

where the correlation cij is determined by,  
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𝑐𝑖𝑗 =
∑(𝑥𝑖−𝑥̅𝑖)(𝑥𝑗−𝑥̅𝑗)

𝜎𝑖𝜎𝑗
. (2.63) 

In Eq. 2.63, 𝑥̅𝑖 and 𝑥̅𝑗 denote the time averages obtained from the MD trajectory and σ is the 

respective standard deviations. Within the constructed network lies key dynamical information on 

the correlated motions of the biological system. Importantly, these correlated motions can be 

associated with conformational changes involved in the biological process. Moreover, there exists 

numerous methods designed to extract pertinent details on the network, some of which will be 

discussed here.  

2.6.1 Community Analysis 

One property that many networks have in common is clustering, or network transitivity. 

This is defined when two nodes that are both neighbors of the same third node have an increased 

probability of also being neighbors of one another. In terms of biomolecular systems, the network 

transitivity (or community structure) can be thought of as tightly connected clusters of residues 

that move together as modules. Traditionally, the community structure of any network can be 

determined through hierarchical clustering. However, this approach tends to separate single 

peripheral nodes from the communities to which they rightly belong to.  

In order to circumvent the limitation of hierarchical clustering, Girvan and Newman 

proposed systematically removing edges from the graph based the edge betweenness 

centrality[77]. The betweenness of an edge is defined as the number of shortest paths between 

pairs of nodes that run along it, 

𝑐𝐵(𝑒) = ∑
𝜃(𝑠,𝑡|𝑒)

𝜃(𝑠,𝑡)𝑠,𝑡∈𝑉 . (2.64) 

Where V is the set of nodes, θ(s,t) is the number of shortest paths connecting nodes s and t, and 

θ(s,t|e) is the number of those paths passing through edge e. The assumption here is that the 
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network contains communities that are loosely connected by a few intercommunity edges. 

Additionally, all shortest paths between these different communities must go along one of the 

intercommunity edges. Hence, the intercommunity edges will have a high edge betweenness. By 

progressively removing these edges, the clusters gradually separate out to reveal the underlying 

community structure of the graph. 

Generally, the Girvan-Newman algorithm proceeds through the following steps: 

1. Calculate the betweenness for all edges in the graph. 

2. Remove the edge with highest betweenness. 

3. Recalculate the betweenness for the remaining edges. 

4. Repeat steps 2 and 3 until no edges remain. 

More recently, Newman proposed optimizing the modularity[78] as a substitute to the 

termination protocol (step 4) of removing all edges. Briefly, the modularity of a graph is the 

fraction of edges that fall within the given communities minus the expected fraction if the edges 

were distributed at random. Graphs with high modularity have dense connectivity within 

communities but sparse connections between different communities. Thus, the focus of the 

algorithm shifts to maximizing the strength of the partition computed at every iteration. In the case 

of networks derived from MD, a careful balance between optimal modularity and the number of 

communities found must be observed. This is due to the fact that small changes in modularity can 

disproportionally increase the number of communities. In the end, striking a balance between the 

two will produce more interpretable results.    

2.6.2 Suboptimal Paths 

The transfer of information (or communication) between two nodes spanned by multiple 

edges can proceed through numerous pathways in a densely connected network. The two nodes 
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under consideration are denoted the source (s) and the target (t), respectively. Networks derived 

from MD are undirected and therefore the source and target are interchangeable. Consider now the 

shortest path between s and t, which is also the optimal path. In addition, there exists a number of 

slightly longer, albeit, nearly optimal paths that will contribute to communication between these 

two nodes (e.g. residues from two distal active sites on a protein). In order to accurately map the 

flow of information between s and t, these suboptimal pathways must be taken into account[79]. 

For MD networks, these paths are responsible for the bulk of allosteric communication between s 

and t. 

The length l of any given path between s and t is given by the summation of all the edge 

weights we connecting s and t, 

𝑙 = ∑ 𝑤𝑒𝑒 ∈ 𝑠|𝑡 . (2.65) 

Recall that the edge weights are proportional to the dynamic correlation between any two nodes i 

and j (Eq. 2.62). One reason for computing the shortest pathways is that the negative logarithm of 

strongly correlated residues results in shorter distances. The code used in this work finds all 

suboptimal paths that are longer than the optimal path, yet, shorter than a user-defined cutoff value. 

Thus, it is assumed that all pathways that fall within this cutoff contribute significantly to allosteric 

communication.  
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CHAPTER 3. POLYMERIZATION AND EDITING MODES OF A HIGH-FIDELITY 

POLYMERASE ARE LINKED BY A WELL-DEFINED PATH 

The work presented in this chapter was performed in collaboration with Meindert H. 

Lamers, Margherita Botto, Rafael Fernandez-Leiro and Fabian Paul. All computational work was 

conducted by Thomas Dodd, while the biochemical experiments were performed by Margherita 

Botto. This chapter of the manuscript was written with input from all persons named above.  

3.1 Abstract 

Proofreading by replicative DNA polymerases is a fundamental mechanism ensuring DNA 

replication fidelity. In proofreading, mis-incorporated nucleotides are excised through the 3’-5’ 

exonuclease activity of the DNA polymerase holoenzyme. The exonuclease site is distal from the 

polymerization site, imposing stringent structural and kinetic requirements for efficient primer 

strand transfer. Yet, the molecular mechanism of this transfer is not known. Here we employ 

molecular simulations using recent cryo-EM structures and biochemical analyses to delineate an 

optimal free energy path connecting the polymerization and exonuclease states of E. coli 

replicative DNA polymerase Pol III. We identify structures for all intermediates, in which the 

transitioning primer strand is stabilized by conserved Pol III residues along the fingers, thumb and 

exonuclease domains. We demonstrate switching kinetics on a tens of milliseconds timescale and 

unveil a complete pol-to-exo switching mechanism, validated by targeted mutational experiments. 

3.2 Introduction 

Replicative DNA polymerases synthesize new DNA with extraordinary fidelity[80, 81]. 

Incorrect nucleotide insertion into the growing primer strand occurs at a rate not exceeding one 

per 106 synthesized bases. Three distinct features of the DNA polymerase holoenzyme are 

responsible for this remarkable precision[82-85]. First, polymerases’ active sites have evolved to 
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select for the nucleotide with correct Watson-Crick base pairing to the template strand. Second, 

after mismatch incorporation, the growing end of the primer terminus becomes misplaced, 

preventing further DNA extension. Third, the mismatch presence induces DNA fraying at the 

primer-template junction[86], promoting release of the primer end from the polymerase active site. 

Together, this outcome alters the equilibrium between DNA synthesis (polymerization) and 

excision by the 3’– 5’ exonuclease subunit (editing or exonuclease activity).  

Removal of mis-incorporated nucleotides is essential for accurate genome duplication. Yet, 

the molecular mechanism of transferring the primer end from the polymerase to the exonuclease 

active sites remains elusive. In a recent breakthrough, cryo-EM captured the bacterial DNA 

polymerase III (Pol III) core in both the polymerase and exonuclease functional states[86, 87], 

shedding light on the conformational changes that must accompany pol-to-exo mode 

conformational switching. While informative, the new structures visualize only the end states of 

the switching transition and, thus, do not explain how the primer end traverses the ~60-Å distance 

separating the two active sites. 

To understand the mechanism of this process vital for genome stability, we focus on the 

core of the Escherichia coli Pol III holoenzyme, composed of the α, ε and θ subunits (Fig. 3.2.1). 

Similar to other C-family polymerases, the α subunit[88] holds the polymerization site and has a 

characteristic shape resembling a right hand with fingers, thumb and palm domains[89-91]. The α 

subunit also has a Polymerase and Histidinol Phosphatase (PHP) domain. Known to function as 

the exonuclease in most bacteria, the PHP has been inactivated in proteobacteria such as E. coli[92, 

93]. Instead, the ε subunit serves as the 3’–5’ exonuclease and is directly attached to α by the 

thumb and PHP domains[94, 95]. The θ subunit has no enzymatic function but binds and stabilizes 

ε[96-98]. The Pol III core (α, ε and θ) binds to the DNA sliding clamp β[99, 100], essential for 



47 

processive DNA synthesis. DNA synthesis by Pol III core – β complex is fast (600-1000 

nucleotides per second), processive (>100,000 nucleotides per binding event) and at the same time 

highly precise (error rate ~ 1 per million) [101, 102, 95, 103].  

Modern computational science offers powerful tools to expose the microscopic dynamics 

underlying complex biomolecular transitions, provided that structures for the initial and final states 

are known. Specifically, in this study we relied on chain-of-replicas path optimization[51, 104-

106] to compute a minimum free energy path connecting the polymerization and proofreading 

states of the Pol III holoenzyme, in which the DNA construct had a G:T mismatch at the primer 

end. Applying path optimization methods to large macromolecular complexes was, until recently, 

computationally prohibitively expensive. Advances in GPU technology and massively parallel 

computing platforms made it possible to use molecular dynamics (MD) to sample the 

conformational ensemble along the precomputed path (>6 μs of combined unbiased and biased 

sampling). We then employed the transition-based reweighting analysis method (TRAM) to 

construct a multi-ensemble Markov model (MEMM)[52, 107] from the MD trajectory data.  
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Figure 3.2.1 - Overview of DNA polymerase III in both polymerization (left) and editing 

(right) modes. Subunits are colored and labeled. Active sites in both the α and ε subunits are 

highlighted with circles.   
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The MEMM yields a complete kinetic model for the pol-to-exo mode conformational switching, 

including transition rates for all on-path intermediates. After partitioning the conformational 

ensemble into distinct kinetic macrostates, we applied dynamic network analysis to each 

macrostate. Key residues (critical nodes) along the path of the transitioning primer were 

determined, extending from the α subunit palm and thumb domain to the ε subunit. To validate the 

computational models, knowledge of the critical nodes was combined with data from conservation 

analysis to design mutations that disrupt the ordered transfer of the primer end to the exonuclease 

site and, thus, affect the balance between DNA synthesis and editing. Collectively, our results 

unravel the molecular origins of Pol III holoenzyme efficiency and fidelity.   

3.3 Results  

3.3.1 Pol III holoenzyme transitions from pol to exo mode along a well-defined path 

To model the Pol III holoenzyme conformational transition from polymerization to editing, 

we started with the end point conformations captured by cryo-EM[86, 87]. We built models for 

the two end states (denoted pol and exo, respectively), comprised of Pol III core, the β-clamp and 

primer-template DNA with a G-T mismatch at the primer end. We then used molecular dynamics 

flexible fitting (MDFF) with a weak scaling factor (ξ=0.1) to extensively equilibrate the models, 

while ensuring conformance to the respective EM densities. A short targeted MD run was used to 

connect the equilibrated end states. From the targeted MD trajectory we selected 32 evenly spaced 

snapshots (replicas) that served to initiate our path optimization protocol, employing the partial 

nudged elastic band method (PNEB)[52, 104]. In PNEB, the minimum energy path connecting 

protein functional states is represented by a series of replicas of the simulation system. PNEB uses 

forces from MD to optimize the protein conformations in all replicas to minimize the energy 
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gradient perpendicular to the path. Forces applied parallel to the path keep the conformations in 

neighboring replicas distinct, while allowing the path to sample favorable regions of the free 

energy landscape. In this instance, we ran PNEB until convergence with 32 replicas representing 

the path, accumulating 18 ns of sampling per replica. 

Our computed MEP delineates the sequence of molecular events and precise 

conformational shifts that transition the Pol III core from a pol to exo state. The process begins by 

fraying of the mismatched G-T pair at the primer terminus. To reach the exonuclease active site, 

three nucleotides must unpair at the primer-template junction and extend toward the ε subunit. 

Indeed, apart from G-T mismatch fraying, we observe two additional sequential unpairing events. 

However, DNA fraying and unpairing is not sufficient to accomplish this transition. In 

polymerization mode, a 3-nucleotide ssDNA overhang, even if fully extended, would not be able 

to span the ~70-Å distance to the exonuclease site. Instead, we observe 5.3 Å backtracking and 

32.9º rotation of the DNA duplex that occupies the central cavity formed by the ring-shaped β-

clamp and the Pol III core (Fig. 3.3.1A and 3.3.1B). Importantly, the Pol III core takes advantage 

of the spiral motion of dsDNA inside the cavity – a motion which is also essential for successful 

primer extension during replication. The Pol III core accommodates this motion by presenting 

positively charged residues along the entire length of the bound dsDNA[87]. These transient 

contacts track along the DNA backbone and facilitate the forward rotational movement of Pol III 

during DNA synthesis. Upon encountering a mismatch, a continuation of the spiral motion, but 

without addition of nucleotides brings the fraying primer terminus in proximity to the exonuclease 

site. The third element necessary for pol-to-exo mode switching is the conformational change of 

the Pol III core itself.  
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Figure 3.3.1 - Concerted motions of Pol III holoenzyme guide the primer along the path 

toward the exonuclease state. A, Initial backtracking motion of the DNA duplex away from 

polymerase active site observed in the MEP. B, Subsequent rotational motion of the DNA and 

additional backtracking facilitates sequential unpairing at the primer/template junction. C, Tilting 

motion of the ε subunit toward the α subunit shortens the distance between the polymerase and 

exonuclease active sites. D, Outward shift of the thumb domain with respect to the PHP domain 

creates an opening to accommodate repositioning of the ε subunit. Red arrows indicate direction 

of motions observed in the minimum free energy path (MEP). Shifts in atomic positions for 

consecutive replicas of the MEP during different stages of the pol-to-exo transition were computed 

as vectors and mapped onto the structural elements of the Pol III holoenzyme. The α subunit is 

shown in orange; the ε subunit is shown in light green; the primer and template DNA strands are 

shown in light and dark blue, respectively; residues in the pol and exo active sites are shown as 

black spheres. The θ subunit has been omitted for clarity. 
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Specifically, in the minimum energy path we observe an ~12o tilting movement of the ε subunit 

toward the α subunit, which shortens the distance to the exo site by ~10 Å in the pol-to-exo mode 

transition (Fig. 3.3.1C). Furthermore, the thumb domain moves outwards to make space for the 

passing primer (Fig. 3.3.1D). While the thumb domain’s role as a steric wedge to separate the 

DNA strands is unique to the C-family of DNA polymerases, its functional significance has been 

highlighted in both A and B-family DNA polymerases[86, 108, 109]. Here, our computational 

modeling sheds light on a new role for the thumb domain, which is to create an opening to 

accommodate the shift of the ε subunit. 

3.3.2 Stable intermediates and a complete kinetic model for the pol-to-exo mode transition 

PNEB optimization produces a time ordered series of structures, representing the Pol III 

pol-to-exo mode transition in its entirety. Next, we used these structures as seeds to initiate free 

molecular dynamics simulations and extensively sample the conformational ensemble along the 

optimal path. Since unbiased MD yields an ensemble obeying Boltzmann statistics, it becomes 

possible to analyze this ensemble and identify metastable states, corresponding to stable 

intermediates along the path. Moreover, the MD trajectories hold information on all observed state-

to-state transitions, which allows us to construct kinetic models linking the on-path metastable 

states.  

Prior to estimating kinetic rates from our simulation data, we carried out time-lagged 

independent component analysis[61] on the unbiased MD trajectories to identify the slowly 

varying degrees of freedom associated with the pol-to-exo conformational transition. Select atomic 

distances between the primer strand and the α/ε subunits (Materials and Methods) were computed 

along the unbiased MD trajectories. Time-lagged independent components (ICs) were obtained 

from this distance data and all trajectory frames were projected onto the first two ICs (Fig. 3.3.2A). 
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Under-sampled regions in the space defined by the two ICs indicated the presence of significant 

energy barriers in the pol-to-exo mode transition. Umbrella sampling was then selectively applied 

only to these barrier regions of the free energy landscape.   

To combine the biased and unbiased MD data, we employed the transition-based 

reweighting analysis method (TRAM)[72], a recently introduced statistically optimal approach to 

estimate multi-ensemble Markov models (MEMM)[72, 107] with full thermodynamic and kinetic 

information at all ensembles. The approach combines the benefits of Markov state models[110, 

111, 71, 112] - kinetics-based clustering of high-dimensional data and modeling of complex many-

state systems - with the strength of biased MD to accelerate rare event sampling. The method has 

been shown to yield reliable microstate free energies and accurate kinetic rates on timescales of 

milliseconds to seconds, directly comparable to experiment[107]. We constructed an MEMM, 

which partitioned the conformational ensemble into 8 kinetically distinct macrostates (denoted S1-

S8, Fig. 3.3.2B). We then computed probability fluxes and estimated transition timescales in and 

out of each macrostate. The end result was a complete kinetic model for pol-to-exo conformational 

switching (Fig. 3.3.3). Notably, we found that primer translocation to the exonuclease site occurs 

on an overall timescale of ten milliseconds, exceeding the timescale of nucleotide incorporation 

by an order of magnitude. Thus, Pol III core achieves a delicate balance: the rate of conformational 

switching is slow enough not to interfere with normal nucleotide incorporation, and yet minor 

stalling upon mismatch encounter causes efficient transfer and removal of the incorrect nucleotide 

by the Pol III ε subunit. The effective free energy landscape along the two ICs (Fig. 3.3.2A) 

indicates a stepwise pol-to-exo mode transition with clearly resolved DNA melting and primer end 

translocation events. The process starts from state S1 (polymerization mode), proceeding through 

two early intermediates S2 and S3, in which the terminal G-T base pair is unraveled.  
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Figure 3.3.2 - Analysis of the Pol III conformational ensemble reveals distinct kinetic 568 

intermediates in the pol-to-exo transition. A, Effective free energy profile projected onto the 

first two independent components (ICs) from TICA analysis. Inset denotes ΔG scale in kcal/mol 

and is set relative to the polymerization state. B, Multi-ensemble Markov model (MEMM) 

constructed by combining the biased and unbiased simulation ensembles. Microstates (dots) are 

colored by the macrostate (intermediate) they belong to. Macrostate identities were computed with 

the PCCA+ algorithm. Color scheme for the macrostates is shown in the inset. C, Microstates 

(dots) colored by their computed free energies from the MEMM analysis. Inset denotes ΔG scale 

in kcal/mol and is set relative to polymerization state. 

 

 



55 

While in state S2 the frayed primer end is still proximal to the polymerization site, in state S3 the 

mispaired T base has rotated away by 6 Å, effectively preventing DNA synthesis. Additional DNA 

translocation along the DNA axis by ~7 Å in S4 leads to an intermediate with completely open G-

T base pair and partially disrupted hydrogen bonding for the second base pair from the primer end. 

DNA backtracking and rotation are facilitated by a patch of positively charged residues from the 

extended fingers domain (K839, R876, R877 and K881) that make contacts with the downstream 

DNA duplex. The highest barriers in the free energy landscape correspond to unpairing of the 

second and third nucleotide from the primer end (S4-S5 and S5-S6 transitions). The respective 

saddle point regions are 10.9 and 15.5 kcal/mol higher than the initial state S1 (Fig. 3.3.2C), 

resulting in the slowest computed timescales of 2,100 μs and 5,100 μs. Starting in S4, residues 

from the Pol III thumb domain insert between the template and the primer end serving as a wedge 

to separate the two strands. In states S5 and S6, a positively charged patch on the surface of the 

thumb domain (K439, R443, R447, K461) binds and provides electrostatic stabilization for the 

transitioning DNA primer overhang. The final stages of primer translocation (S6-S7 and S7-S8 

transitions), involve tilting of the Pol III thumb domain away from the dsDNA and the π-stacking 

of a tyrosine (Y453) onto the last base pair of the DNA duplex. Together, these conformational 

shifts induce strain in the downstream DNA duplex and further increase the separation of the 

primer and template strands. In state S7, the terminal thymine base contacts a hydrophobic residue 

cluster from the ε subunit (M18, V65, F102). Between states S7 and S8, we observe closing of the 

gap between the α and ε subunits, allowing the primer end to insert into the exonuclease active site 

in a catalytically competent orientation. The timescale for this transition is comparatively slow 

(711.1 µs and a free energy barrier of 8.2 kcal/mol), suggesting that primer insertion is gated by 

the motion of ε subunit within the Pol III core. Indeed, in previous studies the ε subunit was found 
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to be relatively mobile during pol-to-exo switching due to the weak interactions of ε with the β 

clamp[113, 114].  
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Figure 3.3.3 - Complete kinetic model for the pol-to-exo mode transition connecting all on-

path intermediates identified by the MEMM analysis. Macrostates S1-S8 are denoted by 

circles. Larger circles correspond to more populated macrostates. Transition between states are 

indicated with arrows and computed timescales for transitioning in and out of each macrostate are 

shown above the arrows. Each microstate is also represented by a cartoon, indicating the position 

and the extent of unpairing of the DNA primer end. The position of the mismatch nucleotide on 

the primer strand is indicated by a yellow star. 
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When the primer strand is bound to the exonuclease active site, most contacts are to the terminal 

nucleotide, with an important hydrogen bond between the 3' hydroxyl of the ribose and the 

backbone nitrogen of Threonine 15[115]. Therefore, once the bond between the terminal and 

adjacent nucleotide is cleaved, there are few interactions that keep the primer strand within the 

exonuclease. With the mispaired nucleotide removed and only two melted nucleotides remaining, 

the return to the polymerase active site will be swift, enabling DNA synthesis to resume without 

delay. 

3.3.3 Critical residues in the pol-to-exo conformational transition 

The MEMM results allowed us to analyze each kinetically distinct macrostate and dissect 

the precise interactions, dynamic rearrangements and residue networks underlying the switching 

mechanism. Knowledge of the detailed mechanism served as a basis for successful validation of 

our computational models. Specifically, we employed dynamic network analysis to partition the 

holoenzyme complex into dynamic communities (tightly connected clusters of residues that move 

together as modules), mapping protein and nucleic acid residues onto graphs wherein each residue 

is a node and contacting nodes are connected by edges. All edges are weighted by dynamic 

correlation. Using these graphs, we computed suboptimal paths[116, 117] connecting the 

polymerization and exonuclease active sites for states S1-S8. Suboptimal paths are a set of paths 

with length shorter than a specified limit above the optimal path. Suboptimal paths reflect residue 

correlations in molecular dynamics and, thereby, offer a way to quantify allosteric communication. 

Furthermore, nodes traversed by the largest number of suboptimal paths frequently correspond to 

critical residues for allosteric communication and regulation. Critical residues in the Pol III core 

identified by the above analysis were also tested for amino acid conservation and persistent 

contacts between DNA and the α or ε subunits. Combined residue scores were obtained from the 
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individual suboptimal path score, conservation score and contact persistence score. Highest 

scoring residues were then mapped onto the Pol III holoenzyme structure (Fig. 3.3.4A and 

Materials and Methods). Critical residues were found in the palm and thumb domains, for which 

we posit multiple roles in pol-to-exo conformational switching (Fig. 3.3.4B-D). In pol mode, 

residues R443, R447 and K510 form contacts to the DNA minor groove, while also stabilizing the 

separated template and primer strands during the latter stages of the transition. Pol III thumb 

domain residues Y453 and K461 stabilize the separated primer. The importance of Y453 was noted 

in previous experimental studies[86, 118]. We also noted a loop in the thumb domain (P464-M469) 

that protrudes into the DNA major groove in polymerization mode, while directly binding the 

template strand in exonuclease mode. We posit that the P464-M469 loop restricts the movement 

of the DNA duplex during replication while during the pol-to-exo transition it serves to anchor the 

template strand, ensuring strand separation prior to exonuclease excision. Palm domain residues 

R411, H511 and R560 may serve similar roles, interacting with the DNA minor groove and the 

template strand. We also identified a hydrophobic cluster at the opening of the ε active site (M18, 

V65, F102; Fig. 3.3.3.1E) that transiently stabilizes the primer end prior to insertion into the 

exonuclease site – a process which is dynamically gated by the motion of the ε subunit. 
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Figure 3.3.4 - Specific interactions along the optimal path accommodate the transitioning 

primer end to ensure facile pol-to-exo switching. A, Key residues (critical nodes) for pol-to- 

exo mode switching determined from dynamic network, conservation and persistent contacts 

analyses and mapped onto the Pol III structure. Critical nodes are shown as spheres, labeled and 

colored in red. Polymerase and exonuclease active site residues are shown as spheres and colored 

in black. B-D, Palm and thumb domain residues of the α subunit forming contacts important for 

polymerization (B, C) and for transitioning the primer end (D). Residue sidechains are shown in 

stick representation and labeled and colored by atom type (C is green, N is blue, S is yellow). Salt-

bridge and polar interactions to the DNA are shown as dashed red lines. Hydrophobic interactions 

are shown as a dashed black line. E, Stabilization of the incoming mismatched nucleotide by the 

hydrophobic cluster of the ε subunit. Residues from the ε subunit hydrophobic patch are shown as 

sticks, labeled and colored in green. 
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3.3.4 Biochemical analysis of Pol III core mutants confirms an optimal transition path 

To validate the defined path between the polymerase and exonuclease active site, we 

created eleven different mutations located in the vicinity of the polymerase and exonuclease active 

sites and along the path between the two sites. Seven of the mutations are located near the DNA 

in the palm or thumb domain (α439, α443, α447, α453, α461, α506/507, α510/511) (Fig. 3.3.5A). 

One of the mutations is located distal from the polymerase active site at the interface of the thumb 

and exonuclease (α489/490). Two are located in the exonuclease at the entrance of the active site 

(ε18, ε65) (Fig. 3.3.5B) A third exonuclease mutant ε102 was not soluble and therefore excluded 

from the experiments. Finally, we also deleted a loop in the thumb domain (residues 464-469: α 

loop) that protrudes into the DNA major groove, seemingly pushing it down into the polymerase 

active site, yet having no direct contact with the DNA[87].  

All mutants were assembled into the trimeric polymerase-exonuclease-clamp complex and 

purified by gel filtration. To ensure a stable complex, an improved clamp-binder variant of the 

polymerase was used. This variant shows a >100-fold more stable complex than wild-type while 

retaining normal polymerase activity[87].  

Next, we analyzed the polymerase and exonuclease activity of all the mutant polymerase-

exonuclease-clamp complexes on different DNA substrates and conditions (Fig. 3.3.5). On a 

matched DNA substrate (containing a C:G base pair at the terminal position) (Fig. 3.3.5D) the two 

ε mutants and two α mutants located further away from the pol active site show no change in their 

activity compared with the wild type (ε18 and ε65, α loop, α489/490). The remaining α mutants 

show varying degrees of reduction in polymerase activity (α439, α443, α447, α461, α506/507) 

whereas two mutants are completely inhibited (α453, α510/511). None of the α mutations are part 

of the catalytic triad (composed of the three aspartates 401, 403, and 555)[99] but instead contact 
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the DNA substrate backbone. Their reduced activity highlights the complexity of the polymerase 

active site and the necessity for accurate positioning of the DNA substrate for optimal polymerase 

activity.  

Next, we tested the polymerase activity on a mismatched DNA substrate (containing a C:T 

mismatch at the terminal base pair), which requires the removal of the mismatched base before 

polymerase activity can proceed (Fig. 3.3.5E). The wild type and α mutants show no discernable 

difference in polymerase activity between the matched and mismatched substrate. In contrast, the 

exonuclease mutants ε18 and ε65 show an almost complete inhibition of activity on the 

mismatched DNA substrate. The ε mutants do not show significant difference in exonuclease 

activity when tested in isolation on a ssDNA, indicating that the reduction of activity is unique to 

the pol-exo-clamp complex, and the required transition of the primer strand from pol to exo site. 

As the reduced polymerase activity of the majority of α mutants is masking the exonuclease 

activity in the DNA extension assay, we isolated the exonuclease activity from the polymerase 

activity by omitting dNTPs from the reaction conditions and followed DNA excision (Fig. 3.3.5F). 

On a matched (C:G) substrate, no exonuclease activity was observed, indicating that the DNA is 

prevented from reaching the exonuclease site. In contrast, on a mismatched substrate (C:T) the 

wildtype and several of the α mutants (α453, α510/511, α489/490,  α loop)   show robust removal 

of the first nucleotide. In all, only the first nucleotide is removed while the isolated exonuclease 

on ssDNA show processive exonuclease activity, further supporting the observation that within 

the pol-exo-clamp complex the polymerase protects matched DNA from the exonuclease. The 

remaining α mutants that are located in the path between the pol and exo active site (α439, α443, 

α447, α506/507) show decreased exonuclease activity on a mismatched DNA substrate, while 

α461 and the two ε mutants show a complete inhibition of exonuclease activity. As all the α mutant 
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complexes are assembled with wildtype ε, and the ε mutants show near wild type activity on 

ssDNA, the reduced exonuclease activity of the pol-exo-clamp complexes indicates a defect in the 

transitioning of the primer strand from the polymerase to exonuclease active site. This is consistent 

with our MD analysis that predicted an essential role of these residues in the transfer of the primer 

strand between the two active sites. 
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Figure 3.3.5 - Residues experimentally determined to be critical for transfer of DNA primer 

strand from polymerase to exonuclease active site. A-C, Close up of the transition path between 

polymerase and exonuclease active site in (A) polymerase mode (B) intermediate mode and (C) 

exonuclease mode. Polymerase is colored in orange, exonuclease in green, template DNA strand 

in dark blue, primer strand in light blue. Mutated residues are shown in dark green sticks. D, 

Denaturing gel analysis of polymerase activity of wild type and mutant proteins on matched DNA. 

Mutants showing W-T activity are highlighted in green, mutations that are moderately affected in 

orange, and mutations that render the protein inactive in red. E, Similar analysis using a DNA 

substrate with a terminal C-T mismatch. F, Exonuclease activity on matched 604 (C-G) and 

mismatched (C-T) DNA measured in the same DNA substrates as in panels D and E in the absence 

of nucleotides. G, Overview of Pol III core complex in polymerase mode. The mutated residues 

are highlighted in dark green and the β-clamp in gray. All experiments were performed by 

Margherita Botto.   
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3.4 Discussion 

Replicative DNA polymerases achieve their remarkable fidelity by striking a delicate 

balance between DNA synthesis and excision of mis-incorporated nucleotides from the growing 

primer strand. To efficiently switch between DNA synthesis and excision, these versatile enzymes 

confine each activity into distinct active sites[119]. To ensure facile transfer of the DNA primer 

between these spatially separated sites, the entire DNA polymerase holoenzyme reorganizes along 

a well-defined conformational path. In this contribution, we combine state-of-the-art 

computational methods with closely coupled biochemical analyses to determine the optimal free 

energy path connecting the polymerization and exonuclease states of bacterial Pol III holoenzyme. 

We also use new data mining and classification strategies to discover kinetic intermediates, 

compute transition timescales and define molecular mechanisms based on analysis of the simulated 

Pol III conformational ensemble. Importantly, our results delineate a complete pol-to-exo mode 

switching mechanism addressing structural intermediates, protein dynamics, free energies and 

kinetics of the Pol III holoenzyme. All aspects of the mechanism emerge from our data analysis 

without a priori assumptions.  

Our predictive mechanism involves stepwise melting of the first three nucleotides from the 

DNA primer end. Fraying of the mismatched terminal base pair is facile and occurs on a 

microsecond timescale at the earliest stages of the transition. The departure of the terminal thymine 

base from the polymerase active site results in a stalled polymerase state. Next, the Pol III 

holoenzyme exploits the natural motion of the DNA inside the Pol III/β-clamp central cavity to 

backslide and rotate, completely releasing the primer-template junction from the polymerase active 

site. The motion is guided by residues from the Pol III thumb and fingers domains. Base unpairing 

at the second and third position from the primer end is progressively more energetically costly. 
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Thus, the second and third unpairing events result in the highest barriers along the path and bring 

the overall timescale for the pol-to-exo transition into the millisecond range. High-energy 

intermediates on the landscape (plateau regions corresponding to S4 and S5) are stabilized by 

interactions with thumb domain residues, preventing backsliding toward pol mode. Notably, once 

base unpairing is complete the ssDNA primer undergoes fast sliding along the surface of the thumb 

domain, facilitated by contacts with strategically positioned residues. Consistent with their 

proposed mechanistic roles, mutations of these residues (e.g. α453, α461) slow down but do not 

abolish exonuclease activity. The fast rate of primer translocation compared to DNA melting has 

been noted in previous experimental studies and appears to be conserved across the A, B and C-

family polymerases[114, 120-123]. The DNA primer’s initial binding to the ε subunit is also a 

crucial step in ensuring efficient transfer. We identify a hydrophobic residue cluster that serves to 

stabilize the primer end prior to exonuclease site insertion. Importantly, we show that site 

mutations disrupting the cluster (ε18, ε65) affect exonuclease activity. Finally, we note the 

conformational shift and increased mobility of the ε subunit are essential features of our proposed 

mechanism. Insertion of the primer terminus into the exonuclease active site is gated by the motion 

of the ε subunit highlighting the important role of protein dynamics in the pol-to-exo mode 

transition. 

In summary, our results shed light on the sophisticated strategies that allow replicative 

polymerases to achieve their extraordinary precision. Combining advanced computational 

modeling with insightful validation experiments, our study contributes to integrated understanding 

of high-fidelity DNA polymerases as dynamic assemblies engaged in safeguarding genome 

integrity. 
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3.5 Materials and Methods 

3.5.1 Model Building and Equilibration  

Pol III holoenzyme models (Pol III/β-clamp/primer-template DNA) we constructed in 

polymerization and editing modes from the available cryo-EM structures[86, 87]. The last base of 

the primer strand was converted to a thymine to produce a G:T'  mismatch (' indicates primer 

strand). Missing residues in the ε flexible linker connecting the C-terminus with the catalytic 

domain were built using ModLoop[125].  The template strand was extended by 8-nt as the presence 

of an overhang has been shown to be important for exonuclease activity[86]. All simulations were 

carried out with the Amber ff14SB force field parameters[126] using the NAMD molecular 

dynamics code[127]. Electrostatics were calculated using the smooth particle mesh Ewald method 

and non-bonded interactions were evaluated with a 10-Å cutoff and 8.5-Å switching distance. 

Models were solvated with TIP3P water molecules from an equilibrated solvent box, ensuring 10 

Å padding from the protein or nucleic acid atoms to the edge of the simulation box. Na+ and Cl- 

counterions were added to neutralize the overall charge of the Pol III holoenzyme complex and 

bring the ionic concentration to 150 mM. Both simulation systems were subjected to energy 

minimization for 5000 steps using the conjugate-gradient and line search algorithm and 

equilibrated for 5 ns with molecular dynamics flexible fitting (MDFF)[128] to ensure conformance 

to the respective cryo-EM densities. In the first stage of MDFF models were gradually heated to 

300 K in the NVT ensemble while enforcing positional restraints on all heavy atoms using a force 

constant of 5.0 kcal mol-1 Å-2. Positional restraints were then incrementally decreased to 0.0 kcal 

mol-1 Å-2 in the NPT ensemble (1 atm and 300 K). A scaling factor of ξ = 0.1 was employed 

during all stages of MDFF. By simultaneously decreasing positional restraints and enforcing weak 
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MDFF grid forces, both systems were allowed to gradually relax into their respective EM densities. 

The MDFF simulations employed a 1-fs timestep. 

3.5.2 Path Optimization Protocol 

A short 10-ns targeted molecular dynamics (TMD) run was used to connect the equilibrated 

end states. The exo-mode conformation was selected as the TMD target and the pol-mode 

conformation was driven to the target with a force constant of 1000 kcal mol-1 Å-2. From the TMD 

trajectory we selected 32 evenly spaced snapshots (replicas) that served to initiate our path 

optimization protocol, employing the partial nudged elastic band method (PNEB)[51, 104]. The 

optimization protocol was carried out in several stages. First, replicas were heated to 300 K for 1.5 

ns while employing a 20 kcal mol-1 Å-2 PNEB force constant. This was followed by a 3-ns run at 

300 K using a 10 kcal mol-1 Å-2 force constant. For the subsequent 1.5 ns the chain-of-replicas was 

cooled to 0 K using a force constant of 20 kcal mol-1 Å-2. This annealing cycle was repeated two 

more times to allow the replicas to gradually spread along the path and relax into local minima. 

The initial and final replicas were excluded from optimization to ensure conformance to the 

observed pol and exo conformations from cryo-EM. All protein and DNA heavy atoms were 

included in the PNEB calculation. The CUDA PMEMD module of the Amber molecular dynamics 

package was used for these simulations[129-131]. 

3.5.3 Unbiased and Biased Sampling Along the Minimum Energy Path 

To sample extensively the conformational states along the optimal path, we initiated 

unbiased molecular dynamics simulations from each of 32 optimized replicas. Replicas were 

heated to 300 K for 500 ps in the NVT ensemble while imposing 5 kcal mol-1 Å-2 positional 

restraints on all heavy atoms. The restraints were scaled down to 0 kcal mol-1 Å-2 in a 5-ns NPT 

run. Each replica was then simulated for 200-ns using free unbiased MD, resulting in 6.4 μs of 
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aggregate sampling along the PNEB path. All production runs were executed in the NPT ensemble 

(1 atm and 300 K) with a 2-fs timestep using the CUDA PMEMD module of the Amber code. 

To improve sampling of regions in conformational space inaccessible to free unbiased MD 

we used umbrella sampling (US). These regions corresponded to barrier or high-energy plateau 

regions of the free energy landscape. We used a distance-based reaction coordinate (RC) for US 

biasing. Specifically, we selected the center-of-mass distance between the three nucleotides from 

the primer end and the exonuclease active site residues (D12, E14 and D167). The RC was 

subdivided into 12 overlapping windows with 1.0-Å spacing. Each window was simulated for 25 

ns employing a force constant of 15 kcal mol-1 Å-2. Umbrella sampling trajectories were then 

projected onto the first two eigenvectors obtained from time-lagged independent component 

analysis (TICA; refer to next section for details)[61, 62]. All umbrella sampling simulations were 

performed in the NPT ensemble (1 atm and 300 K) using the NFE module of AMBER. 

Configurations from the center of each umbrella window were then used as seeds for short (50-ns) 

unbiased MD simulations. This was done to ensure that the barrier regions contained both biased 

and unbiased sampling, a requirement for TRAM. 

3.5.4 Time-Lagged Independent Component Analysis 

To identify slowly varying degrees of freedom associated with the pol-to-exo 

conformational transition, we carried out dimensionality reduction on the trajectory data using 

time-lagged independent component analysis (TICA)[61, 62]. Atomic distances between the first 

ten base pairs of dsDNA and protein residues on the α/ε subunit were selected as collective 

coordinates for TICA. Residues from α/ε were selected by computing all protein contacts within 5 

Å of the first ten base pairs of dsDNA across all configurations in the MEP. Phosphorous atoms 

on the backbone of each nucleotide and Cα atoms from each α/ε amino acid were used as a 
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reference to compute the Euclidean distance between residues. Additionally, we included distances 

between N1 and N3 atoms on the first three base pairs that split and form the separated primer 

strand. In total, 456 unique distances were selected for dimensionality reduction with TICA. A lag 

time of τ = 500 ps was used to compute the time-lagged covariance matrix. This matrix was then 

diagonalized to produce the respective eigenvectors and eigenvalues. MD trajectories were then 

projected onto the first two eigenvectors to yield the time-lagged independent components (ICs).  

3.5.5 Multi-Ensemble Markov Model Estimation  

Combining unbiased and biased simulation data allowed us to sample and achieve 

uninterrupted coverage of the transition path space defined by the first two ICs. K-means clustering 

was then employed in projected IC space producing 1000 microstate clusters. We then employed 

the transition-based reweighting analysis method (TRAM) to analyze our biased and unbiased 

simulation data producing correct free energy weighting of our microstates. A lag time of 500 ps 

was selected for the TRAM estimator based on the relaxation time of the estimated implied 

timescales. Kinetically similar microstates were then agglomerated into the S1-S8 macrostate 

clusters using the PCCA+ algorithm57. Mean first passages of times were then computed between 

macrostates using transition path theory[132] resulting in a kinetic model for primer translocation 

through the Pol III holoenzyme complex. 

3.5.6 Bootstrapping 

In order to compute error bars associated with the transition timescales and microstate free 

energies a bootstrap was performed. Prior to bootstrapping, multiple independent simulations were 

initiated from all 32 configurations along the MEP and from the center of each umbrella window. 

For each bootstrap sample one TRAM estimation was performed. Samples were generated by 

combining a simple bootstrap with a stationary bootstrap as described by Politis et al[133]. Under 
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this paradigm, whole trajectories from the unbiased simulation data are drawn with replacement, 

while trajectory blocks of random length from the biased simulation data are drawn according to 

the stationary bootstrap algorithm. The minimum block length was selected to be the mean 

statistical inefficiency of the discretized trajectories in the umbrella sampling data set (5 ns). Error 

bars for the transition timescales and the microstate free energies in the barrier regions are 

presented in Table 3.5.1 and Table 3.5.2. 

3.5.7 Critical Residues in the Pol III Holoenzyme Network 

Dynamic network analysis was used to map protein and nucleic acid residues onto graphs 

wherein each residue is a node and contacting nodes are connected by edges (See Supplementary 

Fig. 6). All edges are weighted by dynamic correlation. Using these graphs, we computed 

suboptimal paths[116, 117] connecting the polymerization and exonuclease active sites for states 

S1-S8. Sampling of 50,000 frames from each macrostate were selected for this structural analysis. 

Suboptimal paths are a set of paths with length shorter than a specified limit above the optimal 

path. Suboptimal paths reflect residue correlations in molecular dynamics and, thereby, offer a 

way to quantify allosteric communication. Nodes traversed by the largest number of suboptimal 

paths frequently correspond to functionally important residues in the biological complex. Paths 

connecting αD403 and εD17 were calculated for macrostates S1-S8 using the Floyd-Warshall 

algorithm and a distance cutoff of 30 Å. We then normalized the distribution of critical residues 

across all macrostate suboptimal pathways. In addition to occupying privileged positions in the 

dynamic network we also require candidate residues to be conserved and to be in persistent 

contacts with the first ten dsDNA pairs for at least part of the pol-to-exo conformational transition. 

It was recently suggested that the E. coli polymerase is a phylogenetic outlier due to its ε-

subunit[92]. Moreover, the E. coli-like exonuclease appears to exist explicitly in alpha-, beta- and 
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gamma-proteobacteria leading us to only include these three groups in our conservation analysis. 

Amino acid conservation scores were determined using the EVfold server[134] and mapped to the 

structure of Pol III. Finally, we determined contacts between Pol III and the first ten dsDNA base 

pairs for all macrostates S1-S8. Protein residues were considered in contact if they were within 5 

Å of the first 10 base pairs of the dsDNA. Contact persistence was computed as the frequency of 

appearance of the contact in the MD trajectories within the distance cutoff. Persistence values for 

each contact were then summed across all eight macrostates. Scores were obtained for each residue 

by combining their suboptimal path score, conservation score and contact persistence score. From 

the combined scores (Table 3.5.3) we selected the top 16 top scoring residues as candidates for 

experimental testing and validation. 

3.5.8 Protein Purification and Complexes Assembly 

All chemicals were purchased from Sigma Aldrich or Fisher Scientific, DNA 

oligonucleotides from Sigma and chromatography columns from GE Healthcare. Site direct 

mutagenesis was used to create nine mutants of the DNA Polymerase III α subunit and two mutants 

of the exonuclease ε (Supplementary Table 4). All proteins were expressed in E. coli BL21 (DE3). 

The α mutants were purified using a Histrap, Hitrap Q and a HiLoad Superdex 200 (120 ml) 

column. The β clamp was purified with a Histrap and a Hitrap Q column. The two exonuclease 

mutants ε18 and ε65 where purified from inclusion bodies in 6 M Urea using a Histrap column. 

The protein was then refolded by overnight dialysis into 0 M Urea and subsequently loaded on a 

Hitrap Q column. A third exonuclease mutant ε102 did not refold into soluble protein as was 

excluded from the studies. To assemble the complexes α, β and ε were mixed in a ratio 1:1.5:1.5, 

respectively, and loaded on a Superdex 200 Increase (2.4 ml) column. After 12% SDS PAGE gel 

analysis, fractions that contained the three proteins were pooled together. The individually created 
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mutant complexes were further analyzed by SDS Page using 4-20% Mini-PROTEAN TGX Precast 

Protein Gels to confirm all complexes were at the same concentration. All proteins and complexes 

were flash frozen in liquid nitrogen and stored at -80 °C. 

3.5.9 DNA Primer Extension Assay 

Polymerase and exonuclease activities were measured using a 26 base pair dsDNA 

substrate with a 11-nucleotide single stranded overhang. (template strand: 5’ 

GCTAGCTTACACGAGTCCTTCGTCCTAGTACTACTCC; matched primer strand: 5’ 6-FAM  

GGAGTAGTACTAGGACGAAGGACTCG 3’; mismatched primer strand: 5’ 6-FAM 

GGAGTAGTACTAGGACGAAGGACTCT 3’). All the reactions were performed at room 

temperature in 20 mM Hepes pH 7.5, 2 mM DTT, 5 mM MgCl2, 50 mM NaCl and 0.5 mg/ml 

BSA. For the experiments with nucleotides 100 μM dNTPs (each) were added to the buffer. 

Reactions were started by addition of 40 nM of protein complex to 50 nM of DNA (final 

concentrations). Reactions with dNTPs were stopped at 5 and 20 minutes, while reactions without 

dNTPs were stopped at 5 minutes. All the reactions were performed with matched (CG) and 

mismatched DNA (CT). Reactions were then run on a denaturing 20% Acrylamide (19:1) gel in 

1xTBE with 6M Urea for 1 hour and 20 minutes at 30W. Afterwards the gel was imaged on 

Typhoon using Alexa Fluor 488 filter. 
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Table 3.5.1 – Associated errors of the transition timescales determined with TRAM. 

Macrostate Transition Timescale (μs) StdErr +/- (μs) 

S1 → S2 1.9 0.08 

S1 ← S2 0.4 0.01 

S2 → S3 19.8 0.03 

S2 ← S3 3.9 0.02 

S3 → S4 17.3 0.01 

S3 ← S4 0.03 0.001 

S4 → S5 2100 1.2 

S4 ← S5 90.1 0.1 

S5 → S6 5100 2.2 

S5 ← S6 13300 12.8 

S6 → S7 0.2 0.03 

S6 ← S7 0.3 0.01 

S7 → S8 711.1 0.8 

S7 ← S8 1400 1.3 
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Table 3.5.2 – Associated errors of the microstate free energy estimates determined with 

TRAM 

Macrostate ΔG (kcal/mol) StdErr +/-  

S4:S5 9.33 0.32 

S4:S5 10.41 0.37 

S4:S5 10.96 0.43 

S5:S6 13.14 0.79 

S5:S6 15.92 0.66 

S5:S6 15.83 0.26 

S5:S6 15.54 0.29 

S5:S6 16.01 0.56 

S5:S6 16.18 1.02 
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Table 3.5.3 – Critical residue scores determined from combining suboptimal paths, 

conservation and contact persistence data. 

Residue Subopt 

Distribution 

Conservation 

Score 

Summed 

Contact 

Persistence 

Total 

R411 0 0.84 1.2 2.0 

K439 0.20 0.50 3.8 4.5 

R443 0.35 0.67 2.4 3.4 

R447 0.29 0.48 1.6 3.0 

Y453 0.35 0.45 2.8 3.7 

K461 0.54 0.35 1.8 2.7 

E489 0.90 0.38 0.0 1.3 

E490 0.68 0.45 0.0 1.1 

R506 0.10 0.94 1.3 2.3 

N507 0.17 0.42 1.1 1.7 

K510 0.15 0.32 5.8 6.3 

H511 0.05 0.56 4.1 4.7 

R560 0 0.80 4.0 4.8 

M18ε 0.41 N/A 1.8 2.2 

V65ε 0.37 N/A 1.7 2.1 

F102ε 0.25 N/A 1.7 2.0 
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CHAPTER 4. UNCOVERING UNIVERSAL RULES GOVERNING THE SELECTIVITY 

OF THE ARCHETYPAL DNA GLYCOSYLASE TDG  

4.1 Abstract 

Thymine DNA glycosylase (TDG) is a pivotal enzyme with dual roles in both genome 

maintenance and epigenetic regulation. TDG is involved in cytosine demethylation at CpG sites 

in DNA. Here we have used molecular modeling to delineate the lesion search and DNA base 

interrogation mechanisms of TDG. First, we examined the capacity of TDG to interrogate not only 

DNA substrates with 5-carboxyl cytosine modifications but also G:T mismatches and non-

mismatched (A:T) base pairs using classical and accelerated molecular dynamics. To determine 

the kinetics, we constructed Markov State Models (MSM). Base interrogation was found to be 

highly stochastic and proceeded through insertion of an arginine-containing loop into the DNA 

minor groove to transiently disrupt Watson-Crick pairing. Next, we employed novel path sampling 

methodologies to compute minimum free energy paths for TDG base extrusion. We identified the 

key intermediates imparting selectivity and determined effective free energy profiles for the lesion 

search and base extrusion into the TDG active site. Our results show that DNA sculpting, dynamic 

glycosylase interactions and stabilizing contacts collectively provide a powerful mechanism for 

the detection and discrimination of modified bases and epigenetic marks in DNA. 

4.2 Significance Statement 

The most prominent epigenetic modification in mammalian genomes is cytosine 

methylation at position 5 on the pyrimidine ring. Thymine DNA glycosylase plays a central role 

in the pathways for 5-methyl cytosine removal and, thus, influences gene silencing, stem cell 

differentiation and alterations in normal development. Additionally, methylation abnormalities in 

DNA are often observed in diseases, specifically cancer. Here we examine the mechanisms by 
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which TDG detects, extrudes and excises modified bases in DNA. Using novel path sampling 

methodologies, we compute minimum free energy paths for TDG base extrusion. The computed 

paths reveal a novel mechanism underpinning TDG selectivity for DNA lesions or modified bases, 

which involves DNA sculpting, global protein dynamics, conformational gating and specific 

protein-nucleic acid interactions. 

4.3 Introduction 

Genome maintenance occurs in the context of chromatin and it is becoming increasingly 

apparent that epigenetic regulation is intricately intertwined with the DNA damage response in 

ensuring genome stability. Understanding how epigenetic marks are recognized, distinguished 

from exogenous or endogenous DNA lesions, and processed by the canonical DNA repair 

machinery is a topic of great current interest. Here our focus is on the base excision repair (BER) 

pathway, which in addition to an established role in genome maintenance, is associated with many 

other cellular processes[135], including a recently discovered critical role in epigenetic 

regulation[136-139]. The most prominent epigenetic modification in mammalian genomes is 

cytosine methylation, which typically occurs at CpG islands and enhances chromatin packing to 

promote gene silencing[140]. Consequently, 5mC demethylation is crucial for resuming the 

transcription of silenced genes. Notably, unbalanced cytosine methylation is a hallmark of 

cancer[141-143]. In cancer, predominantly demethylated regions of the genome could become 

hyper-methylated leading to the silencing of tumor suppressor genes. Furthermore, 5-methyl 

cytosine deamination results in G·T mismatches that could cause C to T transition mutations 

during DNA replication. It is estimated that nearly a third of cancer mutations found in coding 

regions of the genome arise from C and 5mC deamination at CpG sites[137]. There is also a clear 

link between aging and methylation levels in GpG islands[144]. The importance of maintaining 
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the methylation state of the genome requires tight regulation of pathways controlling the levels of 

5mC. Removal of 5-methylcytosine (5mC) bases (Figure 4.3.1) is known to proceed through 

successive steps of oxidation by enzymes from the ten-eleven-translocase (TET) family, producing 

5-formyl cytosine (5fC) and 5-carboxyl cytosine (5caC) intermediates[140, 145, 146]. Unlike 

methyl cytosine, these intermediates are substrates for thymine DNA glycosylase[140, 147, 148] 

– a classic DNA repair enzyme. While TDG is important for the repair of mutagenic DNA lesions, 

it has an even more prominent role in ensuring epigenetic stability. In this capacity, TDG activity 

is vital during embryonic development[149]. TDG also interacts with numerous protein partners 

engaged in epigenetic regulation (e.g. DNMT3a[150] and CBP/p300 acetylase[151]) and 

transcription (transcription factors, nuclear receptors [152]) and is intricately involved in the 

regulation of gene expression.  

A second pathway to process 5mC is through deamination followed by the action of 

MBD1-4 glycosylases[153, 154]. The resulting abasic DNA is then channeled through the BER 

pathway. BER efficiency relies on a remarkably discriminating search for modified bases among 

an enormous background of normal DNA. The search is followed by damage-specific base 

extrusion into to the enzyme’s active site, removal of the damaged bases and handoff of the product 

DNA to downstream pathway participants.  
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Figure 4.3.1 - Schematic representation of the two active demethylation pathways known in 

mammals. MBD4-mediated pathway is shown with blue arrows; the TET-mediated pathway is 

shown with red arrows. 
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Here we establish a basis to understand the key principles underpinning the extraordinary 

power of the TDG glycosylase to discriminate in favor of modified bases against a backdrop of 

normal genomic DNA. We further elucidate the protein-nucleic acid interactions ensuring 

specificity for lesions or epigenetic marks. Key to selectivity is nucleotide extrusion - a process 

involving a nucleotide swinging out of the DNA helix and being accommodated in the catalytic 

pocket of TDG. Nucleotide extrusion[155-157] is a major determinant of glycosylase selectivity, 

with potential for selection or rejection of substrates at each intermediate along the base eversion 

path. Glycosylases[156, 158] also employ DNA sculpting strategies (e.g. DNA bending and loop 

insertion) to lower the energetic barrier of base extrusion and, thus, increase the efficiency of the 

dynamic lesion search. Whether glycosylases employ active or passive strategies in this search 

process has been a topic of considerable debate. NMR evidence has suggested glycosylases could 

act as passive kinetic traps for spontaneously exposed extrahelical bases[159, 160]. Conversely, 

evidence from molecular crystallography (MX) has pointed to active base extrusion mechanisms. 

Numerous glycosylase structures[154, 156, 161-163] have shown that DNA binding is 

accompanied by a multitude of conformational changes preceding active site chemistry: 1) DNA 

sculpting through interactions with the enzyme DNA-binding groove; 2) DNA bending, minor 

groove compression and backbone distortion at the lesion site; 3) residue insertion into the DNA 

stack to expel the lesion base and stabilize the orphaned base; and 4) base flipping into a lesion-

specific recognition pockets that sterically exclude non-lesion bases. Crosslinking strategies have, 

in rare instances, captured crystallographic snapshots of base extrusion intermediates[164] and 

could, in principle, provide insight into short-lived species along base extrusion paths. 

Nonetheless, base flipping is inherently dynamic and, therefore, not easily construed from static 

crystallographic snapshots. Therefore, molecular modeling studies have been extensively used to 
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complement structural biology approaches and have proven enormously valuable in unraveling 

detailed dynamics of glycosylase enzymes and the origins of selectivity in BER[157, 163, 165]. 

4.4 Results and Discussion 

To explore whether TDG employs an active or passive mechanism, we carried out 

simulations on TDG/5caC-DNA complexes. As starting points for computational modeling, we 

utilized existing structures of TDG/5caC-DNA in a pre-extrusion and post-excision state (PDB 

codes: 2RBA and 5HF7)[166, 167].  The following initial models were created: (i) pre-extrusion 

state (5caC accommodated in the DNA base stack); (ii) fully extruded state (5caC inserted in the 

TDG active site); and (iii) an initial interrogation complex. To address base interrogation, we 

started from systems with initially separated TDG and 5caC-DNA and simulated complex 

formation. We also simulated TDG in the presence of a G:T mismatch and with normal DNA.  

Our first goal was to delineate the accessible conformational space for TDG/5caC-DNA 

and to assess the capacity of TDG to interrogate not only 5caC but also G:T mismatches and non-

mismatched (A:T) base pairs. To this end, we carried out accelerated MD[168] (aMD) runs on the 

TDG interrogation complexes. The aMD method enhances sampling of the torsional degrees of 

freedom to accelerate phase space exploration and facilitate transitions over high energy barriers. 

Surprisingly, we observed that the presence of TDG induces multiple transient base-opening 

events that occur within 200 ns of aMD sampling. Base interrogation was found to be highly 

stochastic and appeared to proceed through insertion of an arginine-containing loop (Arg275) into 

the DNA minor groove to transiently disrupt Watson-Crick pairing. To ascertain that these events 

are also detectable in unbiased MD, we carried out multiple trajectory regular MD runs for an 

aggregate simulation time of 8 μs. Analogous runs were performed on the G:T mismatch and 

unmodified DNA systems. DNA backbone torsion angles for the interrogated base pair and 
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distances between the two bases and the guanidinium group of Arg275 were selected as 

coordinates for time-lagged independent component analysis (TICA)[62, 169]. The combined 

trajectories were projected onto the first two independent components (ICs) of the A:T system, 

which allowed for direct comparison of all three substrates. Different energy minima (metastable 

states) are present and clearly separated in the TICA projections (Figure 4.4.1A-C). All trajectory 

frames were then clustered in the projected space of the two ICs using the k-means algorithm, 

producing 800 clusters (i.e. microstates). From this data we constructed Markov State Models 

(MSM)[71, 110] and evaluated the kinetics of TDG base interrogation using transition path 

theory[170]. Results are presented in Figure 2D-F. Several conclusions are immediately apparent 

from our analysis. First, TDG probes DNA bases non-specifically, interrogating not only 5caC-

modified bases but also on G:T mismatches and normal base pairs. Among the identified 

kinetically distinct macrostates we distinguish two low-populated extrahelical states with Arg275 

inserted into the DNA stack in two different orientations (Figure 4.4.2). These states are accessed 

through two kinetic intermediates: (1) an intermediate with TDG-induced local torsional shift and 

intact Watson-Crick pairing; and (2) an intermediate with partially broken Watson-Crick pairing 

and Arg275 inserted between the extruded and the orphaned base (Figure 4.4.2C and Figure 

4.4.2D). The second key observation is that the extrahelical states are extremely short-lived, and 

thus, not readily detectable by NMR (Figure 4.4.2A). The free energy landscapes in Figure 4.4.2 

reflect this, with barriers to the extrahelical states not exceeding 4 kcal/mol. Third, the H-bonding 

between Arg275 and 5caC is variable and differs from the pattern for normal DNA (Figure 4.4.3). 

This observation rationalizes the differences between the free energy landscapes in Figure 4.4.1A 

and 4.4.1C with a lower barrier for a 5caC modified base to access the extrahelical state.  
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Figure 4.4.1 - Conformational dynamics of TDG/DNA complexes during base interrogation. 

Computed free energy profiles projected onto the first two ICs for (A) 5caC-DNA (B) G:T 

mismatch and (C) A:T base pair. The color bar inset denotes the ΔG scale in kcal/mol. Results 

from MSM analysis for (D) 5caC-DNA (E) G:T mismatch and (F) A:T base pair systems. Panels 

D-F show the positions of all microstate clusters in the space of the two ICs (small dots); how 

these small clusters were agglomerated into macrostates (denoted by large dots for the intrahelical 

or triangles for the extrahelical states) and the probabilities of transitions between macrostates.  

Microstates (dots) are colored by the macrostate they belong to and the coloring scheme is 

consistent between all three systems. The relative thickness of the arrows connecting the 

macrostates denotes the macrostate transition probabilities computed using transition path theory.  
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We also analyzed DNA structural parameters using the Curves+ code[171] to determine if TDG 

exploits local DNA deformation to facilitate lesion interrogation and selection. We found very 

little difference between the inter-base parameters as well as the total bend of the 5caC and the 

A:T intrahelical states (Table S5). However, analysis of the transient extrahelical states revealed 

changes to both the shift and tilt values (~2 Å and ~6.5◦) at the interrogation site and flanking base 

of 5caC. Importantly, the negative charge on 5caC provides a convenient handle for TDG to 

stabilize an extrahelical intermediate using an opportunely positioned Lys201 (Figure 4.4.3E). 

G:T mismatches could also rapidly transition between non-extruded and extruded states 

(Figure 4.4.1E), exhibiting two well-defined metastable states with disrupted base pairing.  This 

can be rationalized by the fact that G:T mismatches form “wobble” hydrogen-bonding pairs, which 

require a sideways shift of one base relative to Watson-Crick positioning. Our structural analysis 

of the interrogation site confirms this, with intrahelical shift and twist values differing significantly 

(by ~2 Å and ~5◦, respectively) from the ones measures for the intrahelical states of the 5caC and 

A:T. This leads to increased propensity for bending and base pair disruption at the G:T site[172-

175], which TDG takes advantage of through backbone distortion alone. Thus, TDG has shown 

stronger G:T mismatch repair activity, in vitro, when compared to modified substrates[176].  

Interestingly, Curves+ analysis of the interrogation states for the G:T mismatch system indicates 

that base stacking is disrupted not only for the transient extrahelical macrostates but also for the  

intrahelical basin that contains the majority of conformers from the unbiased MD trajectories. 

Thus, unlike the regular (A:T) DNA or 5caC, the G:T mismatch has a local structural distortion at 

the very outset of interrogation. This leads to an energetically destabilized initial state and lower 

energetic cost for base extrusion in the G:T mismatch system.   
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Figure 4.4.2 - Representative structures selected from each macrostate of the Markov State 

Model corresponding to 5caC base interrogation by TDG. (A) Calculated transition timescales 

determined from transition path theory.  Representative structure for macrostates (B) Intrahelical 

state S1, (C) Extrahelical state S2, (D) Extrahelical state S3, (E) Partially extruded state S4 and 

(F) Intrahelical state S5.  Each state is colored according to the color scheme in Figure 4.4.1D; 

panels are labeled by macrostate designation.  TDG is shown in grey; DNA is shown in blue. The 

intercalating Arg275 residue at the tip of the insertion loop is shown in ball and stick representation 

and colored in green. The extruded 5caC base and the orphaned base are shown in ball and stick 

representation and colored in orange. 
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These results further substantiate the differences in the transition timescales, with G:T base 

extrusion occurring on a faster timescale than both the 5caC and A:T substrates (Figure 4.4.2). 

The results also highlight the role of the TDG insertion loop (Ala270-Pro280) and 

particularly Arg275, which stabilizes the extrahelical intermediates by stepwise replacement of the 

Watson-Crick hydrogen bonds. Several glycosylases have been proposed to utilize similar 

mechanisms in which both DNA sculpting and loop insertion is exploited. Structures of hOGG1, 

its bacterial homolog MutM, and MBD4 all exhibit Arg-loop insertion[154, 163, 177, 178].  

Similarly, single molecule experiments have shown the E. coli repair enzymes Fpg, Nei and Nth 

to utilize DNA sculpting and intercalating loop strategies to interrogate and extrude damage 

bases[179, 180]. 

As the next step in our analysis, we determined the complete base eversion path for 

TDG/5caC-DNA, starting with the interrogation complexes and ending with the fully extruded 

state. We identified the key intermediates imparting selectivity and also computed an effective free 

energy landscape for this transition. Our results show that base eversion in TDG is a gated process 

that involves motions of several flexible loops and a gating helix (Figure 4.4.3). Therefore, 

intuitive reaction coordinates (e.g. pseudo torsions) are, in this case, not practical. Recently, there 

has been considerable progress in methods[181-183] to optimize minimum energy paths (MEP) 

when the initial and final states are known. We leveraged two of these methods, the partial nudged 

elastic band (PNEB)[184, 51] and finite temperature string method[49, 50], to investigate 

recognition of modified bases by TDG. Both methods define the MEP as a chain of replicas of the 

system connecting the initial and final configurations. First, we optimized a MEP between the pre-

extrusion and the fully extruded states using PNEB. Gradually spreading the replicas from these 

two states allowed the optimization process to discover the path in an unbiased way.  
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Figure 4.4.3 - Optimized base extrusion path for 5caC in TDG. (A) The path is indicated by 

colored dots tracking the position of the carbon atom of the 5caC carboxylate group along the path. 

Color denotes the replica index from initial (red) to final (blue). Four snapshots along the path are 

shown. (B) Early intermediate with Arg275 intercalating into the DNA; (C) 5caC at the Pro198 

loop; (D) 5caC positioned next to the gating helix; and (E) 5caC extruded into the TDG active site. 

 

 

 

 

 

 

 

 

 

 

 

 

 



89 

The PNEB optimized path served as a starting point for further optimization with the finite 

temperature string method, which could provide more extensive path sampling. Since the string 

method works in projected collective variable (CV) space, a preliminary PNEB step was necessary 

to provide an unbiased initial path and to select CVs for the string method. Using this protocol for 

TDG/5caC-DNA, we completed 25 ns of PNEB optimization (with 28 replicas) and 224 ns (200 

iterations) of the string method (Figure 4.4.3). After MEP convergence, we released each replica 

and sampled an aggregate of 11.2 μs of unrestrained MD trajectories along the base eversion path, 

which we further analyzed to construct an MSM. 

Our results reveal an intricate network of protein-DNA contacts necessary to accommodate 

the 5caC base during its passage from the DNA base stack into the TDG active site. Importantly, 

these contacts significantly lower the free energy barriers for base extrusion to approximately 4 

kcal/mol (Figure 4.4.4A). By comparison, umbrella sampling simulations of base eversion in the 

absence of the glycosylase result in barriers of at least 12 kcal/mol, which is consistent with 

previously published values for base extrusion barriers in DNA[155-157]. From the MSM analysis 

we identify 6 kinetically distinct states along the 5caC eversion path (Figure 4.4.4B, 4.4.4C and 

Figure 4.4.5).  State S1 has the modified base accommodated in the stack; state S2 is an early 

intermediate wherein 5caC is inserted between the intercalating Arg275 and Lys201. The positive 

charge on the lysine stabilizes the negative charge on the 5caC carboxyl group. States S3, S4 and 

S5 correspond to configurations wherein 5caC interacts with residues of the Pro198 loop of TDG. 

Indeed, access to these three relatively rapidly interconverting states is gated by the motion of the 

Pro198 loop and the adjacent helix (Ser205-Lys221). The TDG gating helix (Leu143-Lys148) 

serves as a secondary gate by closing over the active site after the 5caC base is inserted. Thus, base 
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eversion by TDG is a global conformational transition and conformational gating is necessary for 

the 5caC base to access the active site. 
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Figure 4.4.4 - Conformational Dynamics of TDG/5caC-DNA complex during base eversion.  

(A) Free energy profile projected onto the first two ICs.  Color bar inset denotes ΔG scale in 

kcal/mol.  (B) Results from MSM analysis.  Microstates (dots) are colored by macrostate they 

belong to. Probability fluxes between macrostates from transition path theory are shown by arrows.  

(C) Calculated macrostate transition timescales. 
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Figure 4.4.5 - Representative structures selected from each macrostate along the optimized 

TDG base eversion path for 5caC DNA. (A)  Intrahelical state S1, (B) Partially extruded state 

S2, (C) Extrahelical state S3, (D) Extrahelical state S4, (E) Extrahelical state S5 and (F) 

Extrahelical base in TDG active site, denoted S6.  Each state is colored according to the color 

scheme in Figure 4.4.4B; panels are labeled by macrostate designation. TDG is shown in grey; 

DNA is shown in blue. Residues contacting the extruded base are explicitly shown and labeled in 

green. The 5caC base is shown in ball and stick representation and colored in orange. Hydrogen 

bonds to the extruded base are denoted as red dash lines. 
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4.5 Conclusions 

Our computational modeling reveals a novel mechanism underpinning TDG selectivity for 

DNA lesions (G:T mismatches) or modified bases (e.g. 5caC), which  involves DNA sculpting, 

global protein dynamics, conformational gating and specific protein-nucleic acid interactions that 

stabilize the extruded base along the path from the DNA stack to the TDG active site. Our model 

for base extrusion by TDG bears certain similarities to an earlier proposed mechanism (“pinch-

push-pull”) for human UNG [185-188]. In this model, the “pinch” involved compression of the 

DNA backbone such that the distances between the phosphates flanking the uracil base were 

reduced by ~4 Å. Three static enzyme loops were proposed to mediate DNA recognition: the minor 

groove reading loop (His268-Ser273), the Pro-rich loop (Pro165-Pro168) and the Gly-Ser loop 

(Gly246-Ser247). Nucleotide flipping was proposed to be facilitated by the intercalation (“push”) 

of Leu272 into the DNA base stack. The final step was the pulling of the uracil base and ribose 

ring deep into the uracil recognition pocket, resulting in hydrogen bonding to every polar atom of 

the uracil and in face to face π stacking with Phe158 and Tyr147. In a similar scenario for TDG, 

the “pinch” step is achieved by DNA sculpting via protein-DNA interactions and dynamic Arg275-

loop insertion. This leads to kinking of the DNA substrate and compression of the distance between 

the flanking phosphates above and below the extrusion site by up to 3 Å in the extrusion 

intermediates (Table 5.5.1).  The “push” involves insertion of an interrogation loop into the DNA 

minor groove, intercalation of an arginine (Arg275) from the tip of the interrogation loop into the 

DNA stack, and stepwise replacement of Watson-Crick H-bonds to lower the energetic barrier for 

base flipping. Finally, the “pull” step is achieved by accommodation of the extrahelical base via 

specific residue interactions in four stable intermediates along the extrusion path (Figure 4.4.5). 

However, there are also important differences with the previous model. First, unlike Leu272 in 
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UNG, which plays a role of a steric plug, Arg275 has the capacity to actively disrupt Watson-Crick 

hydrogen bonding. Stepwise replacement of Watson-Crick H-bonds between the extruded and 

orphaned base lowers the barrier to reach the most populated extrahelical state during 

interrogation. Second, the “pinch-push-pull” model originated from molecular crystallography and 

emphasized the role of static enzyme loops. By contrast, we show that protein dynamics and global 

gating motions of TDG are essential. Specifically, transitioning the 5caC base into the active site 

requires gating motions of the Pro198 loop and the adjacent helix (Ser205-Lys221) as well as 

motions of the TDG gating helix (Leu143-Lys148). These motions cannot be easily construed from 

static crystal structures. Collectively, our results shed light on the key determinants of glycosylase 

selectivity and uncover universal rules governing this class of enzymes. 

4.6 Materials and Methods 

4.6.1 Model Construction 

Models for the pre- and post-extrusion states were constructed from two TDG/DNA crystal 

structures (PDB ID: 5HF7[166] and 2RBA[167]). For the base interrogation, we built the system 

with initially separated TDG and 5caC-DNA.  We also built TDG-DNA complexes with a G:T 

mismatch and normal DNA (A:T pair). For consistency, all systems were built with the same DNA 

sequence 5’-GTACGTGAG-3’.  All systems were then solvated with TIP3P[29] water molecules 

in a box with a minimum distance of 10.0 Å from the surface atoms of the complex to the edge of 

the periodic simulation box. Counter-ions were added to neutralize the net charge of the complex 

and reach 150 mM NaCl concentration to mimic physiological conditions. 5caC force field 

parameters were determined with the Antechamber module of AMBER16[131]. 
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4.6.2 Molecular Dynamics for Base Interrogation 

Steepest decent minimization was performed for 5000 steps.  Each system was then slowly 

heated to 300 K over 50 ps in the NVT ensemble with positional restraints on all heavy atoms 

using a force constant of 5 kcal/mol/Å2. Positional restraints were gradually released over 6 ns in 

the NPT ensemble to fully equilibrate the systems. Production runs were performed in the 

isothermal-isobaric ensemble (1 atm and 300 K), employing smooth particle mesh Ewald (SPME) 

electrostatics, 10 Å cut-off for short-range non-bonded interactions and 2-fs time step.   After 100 

ns of unrestrained MD, 200 ns of accelerated molecular dynamics was employed by boosting both 

the total potential and the dihedral potential.  Calculated values for boost parameters were 8812 

kcal/mol and 155 kcal/mol, respectively.  Eight snapshots leading up to the base extrusion event 

were selected and then replicated 10 times.  The replicas were each simulated for 100 ns of free 

unbiased molecular dynamics, reinitializing velocities for each replica. All simulations were 

performed using the AMBER16 code with the AMBER Parm14SB parameter set[189]. 

4.6.3 Path Optimization with the Partial Nudged Elastic Band (PNEB) Method 

We then carried out path optimization with the string method, based on the swarms of 

trajectories method, requiring definition of a lower dimensional space.  Twenty-eight images from 

the PNEB path (including the two fixed end points) were sampled along the initial pathway defined 

in collective variable space. Two collective variables were defined by using an RMSD collective 

variable (RMSD computed over a selection of atoms relevant to the extrusion transition) and 

pseudo-dihedral angle denoted in Figure S6. We refined these structures using a swarm of 20 short 

(2-ps) simulations launched from each image. Images were updated based on mean drift in each 

swarm, redistributing between end states and relaxing with 980-steps unconstrained and 20-steps 

restrained simulations. At least 200 iterations were completed for each string.  200 ns of 
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unconstraint simulations for each image (total 11.2 μs) were then performed by taking the final 

converged structure for both PNEB (28 images) and string methods (28 images).  Graphics of the 

movie were prepared by Chimera[190]. 

4.6.4 MSM Construction 

All TICA calculations, clustering, and MSM construction were performed using the 

PyEMMA software[110].  Backbone torsions of the interrogated base and the distances between 

base pairs and the guanidinium group of Arg275 were used as descriptive coordinates to define 

the TICA projections.  For base interrogation, all independent components (ICs) were computed 

using a lag time of 50 ps (25 steps).  The combined trajectories were then projected onto the first 

two ICs.  The trajectory frames were then clustered in the projection space using the k-means 

algorithm, producing 800 clusters.  From the clustering data, implied timescales were generated 

by estimating the transition probability matrix at different lag times.  Using these results, 5 

macrostates and a lag time of 50 ps (25 steps) were chosen to construct the MSMs for all three 

base interrogation systems.  For the 5caC-DNA base eversion path, independent components were 

calculated using a lag time of 100 ps (50 steps).  The combined trajectories were then projected 

onto the first two ICs.  Trajectory frames were then clustered using uniform time clustering, a 

method in which data points are selected uniformly in time and assigned using a Voronoi 

discretization.  This produced 800 clusters, from which the implied timescales were then estimated.  

Based on these results, 6 macrostates and a lag time of 80 ps (40 steps) was chosen for MSM 

construction. 
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CHAPTER 5. TRANSCRIPTION INITIATION MACHINERY FUNCTIONAL 

DYNAMICS AND GENETIC DISEASE 

5.1 Abstract 

Transcription pre-initiation complexes (PIC) are vital assemblies whose function underlies 

protein gene expression. Cryo-EM advances have begun to uncover their structural organization. 

Yet, functional analyses are hindered by incompletely modeled regions. Here we integrate all 

available cryo-EM data to build a practically complete human PIC structural model. This enables 

simulations that reveal the assembly’s global motions, define PIC partitioning into dynamic 

communities and delineate how structural modules function together to remodel DNA. We identify 

key TFIIE/p62 interactions linking core-PIC to TFIIH. P62 rigging interlaces p34, p44 and XPD 

while capping XPD DNA-binding and ATP-binding sites. PIC kinks and locks substrate DNA, 

creating negative supercoiling within the Pol II cleft to facilitate promoter opening. Mapping 

Xeroderma Pigmentosum, Trichothiodystrophy, and Cockayne syndrome disease mutations onto 

defined communities reveals clustering into three mechanistic classes, affecting TFIIH helicase 

functions, protein interactions and interface dynamics. 

5.2 Introduction 

Complexes of RNA Polymerase II (Pol II) are foundational for transcription since all 

mRNA in eukaryotic cells originates from Pol II synthesis[191-194]. Additionally, Pol II 

transcribes most small regulatory non-coding RNAs controlling gene expression levels and acting 

in gene silencing. As transcription regulation governs all fundamental aspects of cell biology loss 

of transcriptional control is a hallmark of many autoimmune disorders, cancers, neurological, 

metabolic and cardiovascular diseases[195-199]. To begin transcription, Pol II depends on key 

general transcription factors (GTFs: TFIIA, TFIIB, TFIID, TFIIF, TFIIS, TFIIE and TFIIH) that 
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recognize promoter DNA and assemble with the polymerase into a pre-initiation complex 

(PIC)[194, 199-202]. After PIC assembly, the initial closed promoter complex (CC) transitions 

into an open complex (OC), in which the melted single-stranded DNA template is inserted into the 

Pol II active site. This transient OC is then converted into an initial transcribing complex (ITC), 

competent to synthesize mRNA. When the nascent RNA chain grows to a critical length, Pol II 

clears the promoter and a stable elongation complex (EC) ensues[203, 204]. Formation of PIC and 

its conversion into a productive elongation complex are key for transcription regulation[205]. Yet, 

the molecular architecture of the PIC and its associated functional dynamics remain incompletely 

understood.  

Importantly, with the “resolution revolution” in cryo-electron microscopy, structures of 

these molecular machines have recently come into view[206, 207]. Two recent cryo-EM studies 

achieved near atomic visualization of core Pol II PICs (excluding the mobile TFIIH GTF) in 

multiple states (CC, OC and ITC) and enabled side-by-side comparison of the conformational 

states leading to a competent elongation complex[206, 208]. Two subsequent studies showed 

TFIIH structure both in the absence (apo-TFIIH) and in the presence of core PIC (holo-PIC)[207, 

209]. These breakthrough studies elucidated eukaryotic pre-initiation complex architectures; yet, 

the respective models were incomplete (>20% of residues unassigned in sequence or not modelled) 

and, therefore, unsuitable as starting points for detailed molecular dynamics simulations and 

analysis of the dynamic PIC molecular machine.  

Here we synthesized all available EM data to produce the most complete atomistic model 

of the human PIC to date. All previously omitted/unassigned regions have now been modelled into 

the corresponding EM densities (Figure 5.2.1), including the ten-subunit TFIIH GTF and its 

flexible kinase (CAK) module. The overall assembly conformation was fitted into EM density of 
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the CC holo-PIC. The quality of the new models makes them entirely suitable for molecular 

dynamics (MD) simulations on massively parallel computing platforms. Thus, we employed 

extensive MD simulations to unveil the functional dynamics of Pol II holo- and core-PICs. 

Modeling the above systems (comprised of >1,000,000 atoms) used resources of the Texas 

Advanced Computing Center and the Oak Ridge Leadership Computing Facility. Importantly, 

these analyses reveal the hierarchical organization of the PIC machinery into dynamic 

communities and unveil how its interwoven structural elements function together to remodel the 

DNA substrate and facilitate promoter opening. Strikingly, a mapping of patient-derived TFIIH 

mutations onto the newly discovered dynamic communities showed that mutations were clustered 

at critical junctures in the TFIIH dynamic network. Thus, the results provide a new level of 

understanding into PIC molecular mechanism and the etiology of three devastating autosomal 

recessive genetic disorders - Xeroderma pigmentosum (XP, cancer), trichothiodystrophy (TTD, 

aging) and Xeroderma pigmentosum/Cockayne syndrome (XP/CS, development, cancer). 

Importantly, our methods and models provide a roadmap for future structural, biochemical and 

mutational experiments to understand the interplay between TFIIH structural disruption and the 

complex XP, XP/CS and TTD disease phenotypes[210-215]. 
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Figure 5.2.1 - TFIIH integrative structure model based on comparative analysis of cryo-EM 

densities reveals “molecular rigging” formed by p62 and p44. a, Anterior and posterior cartoon 

views of TFIIH GTF where missing regions or entire domains and proteins are built for XPB, p62, 

p52, p44, p34 and MAT1. Newly modeled p62 and p44 subunits act as molecular rigging, 

interlinking TFIIH. b, Motif schematic highlighting newly modeled regions (solid black lines). 

Two small regions in XPB, not present in the EM maps, were not modeled (red dashed lines). 

Abbreviations denote: DRD - damage recognition domain; NTE - N-terminal extension; HTH- 

helix-turn-helix. c-h, Cartoon of TFIIH subunits with newly modeled regions circled. h, 

Representative cryo-EM electron density from apo-TFIIH overlaid with p62 (PHD domain not 

shown). i, Zoom view of p62 cap region overlaying the XPD ATP binding cleft. Space filling 

views highlighting Interactions newly modeled in j, XPB NTE and p52; k, p34 and p44; l, p62 

helices and p34; m, XPB N-terminus with p44; n, p62 3-helix bundle and p34 plus p44; and o, p62 

and XPD. 
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5.3 Results 

5.3.1 The molecular architecture of TFIIH underlies its role in the human PIC 

The opening of promoter DNA by Pol II and the formation of the nascent transcription 

bubble critically depend on the transcription factor TFIIH[195, 216-219]. Specifically, a 

mechanism has been proposed, in which TFIIH-induced DNA translocation toward Pol II creates 

negative DNA supercoiling inside the polymerase cleft to facilitate promoter opening[206, 208, 

220-222]. To unravel the functional role of TFIIH within the PIC, we first constructed a suitably 

complete model of human apo-TFIIH. Model building was based on comparative analysis of cryo-

EM densities for apo-TFIIH (EMDB accession code: EMD-3802)[209] and yeast core-

PIC/TFIIH/DNA (EMDB accession code: EMD-3846)[207]. To guide our initial TFIIH model 

into the holo-PIC cryo-EM density, we employed the cascade MDFF method[223]. TFIIH and 

core-PIC were separately flexibly fitted into the closed-state human holo-PIC density (EMDB 

accession code: EMD-3307)[206] and then combined to assemble the full PIC/TFIIH/DNA 

complex.  

The structural model (Figure 5.2.1) resulting from the above protocol reveals newly 

modelled TFIIH regions that are demarcated in Figure 5.2.1b and Table 5.5.1, indicating >95% 

completeness. TFIIH is the most complex of all general transcription factors and encompasses ten 

protein subunits.34 Seven subunits form the TFIIH core (Figure 5.2.1a). Two helicase subunits, 

XPB and XPD, are adjacent while four intermediate subunits (p8, p52, p34, p44) lie in a 

characteristic horseshoe shape. The p62 subunit is the most extended: it traverses and interlaces 

the surfaces of p34, p44 and XPD. The MAT1 subunit connects the XPB DNA-damage recognition 

domain (DRD) to the XPD ARCH domain via a 86-Å long α-helix and a helical bundle (Figure 

5.2.1a, b, e). The remaining three TFIIH subunits (CDK7, Cyclin-H and part of MAT1) form the 
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flexible kinase (CAK) subcomplex, which is positioned away from the TFIIH core and is key for 

transcription regulation[225, 226]. 

Two subunits, XPB and XPD, are conceivably the most central to TFIIH’s function in 

transcription[227, 228] and possess independent helicase and ATP-hydrolysis activities[229-232]. 

Yet, in transcription XPD serves a structural role and its helicase activity is suppressed. In contrast, 

XPB engages promoter DNA downstream of the transcription start site (TSS) (Figure 5.2.1a, 

Figure 5.3.1), and its ATPase activity is obligatory for Pol II initiation. Human XPB features two 

RecA-like lobes (denoted RecA1 and RecA2), the DRD, and an N-terminal extension domain 

(NTE) (Figure 5.2.1b,c). The DRD and NTE domains were built de novo in our model after tracing 

the entire length of XPB in the apo-TFIIH EM density. The DRD domain recognizes distortions 

in DNA41 and may act in DNA damage detection. Not surprisingly, it has structural similarity to 

the mismatch recognition domain (MRD) of MutS/MSH[233] and the SMARCAL1 HARP 

domain[234]. The NTE domain, important for anchoring XPB within TFIIH34, consists of three 

α-helices and five β-strands (residues 1-159) that contact the XPB-interacting domain of p52 

(Figure 5.2.1c,d). Two human disease mutations map to the NTE, supporting its functional 

significance. Thus, the structural elements uncovered in our more complete TFIIH model 

underscore the GTF’s dual functional role: (i) to unwind dsDNA and facilitate promoter opening 

by Pol II PIC; and (ii) to recognize damaged DNA and enable nucleotide excision repair (NER). 

5.3.2 TFIIE, MAT1 and p62 are Critical for the Integrity of the Core-PIC/TFIIH Interface 

In Figure 5.3.1 the TFIIH GTF is revealed in the context of the complete PIC assembly. 

Notably, the holo-PIC has a bipartite architecture with Pol II Rpb4/7, TFIIE, p62 and MAT1 

principally responsible for the interface between core-PIC and TFIIH (Figure 5.3.2a, d and e; Table 

5.5.2). Specifically, the MAT1 RING domain lodges in-between the Rpb4 and Rpb7 chains of Pol 
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II while also contacting α4 and α6 helices of TFIIE GTF. Additionally, MAT1 ARCH anchor 

domain lies between the ARCH domain of XPD and Rpb4, thus stabilizing the TFIIH/core-PIC 

interface. The lower half of the interface highlights the critical role of p62. We built the entire 

length of p62 by comparing the human and yeast EM densities. We furthermore confirmed 

positional assignments of all p62 domains (N-terminal plekstrin homology domain (PHD), two 

BSD domains - BSD1 and BSD2, XPD/p34 anchor and C-terminal 3-helix bundle) by matching 

our model to existing chemical cross-linking data[209, 224] (Figure 5.2.1b, h, n, l, o). Importantly, 

two domains from p62 (BSD2 and PHD) directly bind TFIIE through its α7 helix and adjacent 

loops (Figure 5.3.2e). Interfacial interactions include β-sheet formation with one strand from TFIIE 

and the other from p62 (e.g. p62 PHD domain forms secondary structure with the TFIIE acidic 

patch; Figure 5.3.2f) to strengthen the interface. Interestingly, we found that yeast and human PIC 

differ in the contacts at the TFIIH/core-PIC juncture. In yeast, the PHD domain extends to make 

direct contact with the Pol II core[207]. An analogous interaction in human PIC is impossible as 

the linker leading into the PHD domain is shortened by >50 residues. Instead, the PHD domain is 

unambiguously positioned between the XPB and XPD subunits in all existing holo-PIC EM 

reconstructions[206]. Crosslinking data[224] also supports this positioning, showing that PHD 

forms crosslinks to XPB in the human but not in the yeast PIC. The linker deletion in human PIC 

has more subtle effects on the lower half of the TFIIH/core-PIC interface as compared to yeast 

PIC. Furthermore, our model supports regulatory as well as structural roles: one p62 region 

(residues 274-293) tracks along the DNA path on XPD, based on a recent XPD ortholog 

structure[235] and another (residues 333-342) caps the XPD ATPase as suitable to influence DNA 

binding and ATPase function, respectively (Figure 5.2.1i and Figure 5.2.1o).  
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Figure 5.3.1 - TFIIE links human PIC to TFIIH. a, Sequence of the DNA substrate in PIC. b, 

Cartoon of human PIC structure including TFIIH highlighting non-TFIIH subunits. Most striking 

is TFIIE which crosses over a quarter of TFIIH. Model is based on integration and comparative 

analysis of cryo-EM densities for human apo-TFIIH, human closed-state holo-PIC density, and 

yeast core-PIC/TFIIH/DNA c, Computed B-factors mapped onto the PIC-TFIIH structural model 

with values colored from high (red) to low (blue) reveal a network of stable interactions. Black 

dashed outline highlights an unexpected rigid anchor region between TFIIH and PIC.  
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Notably, our results highlight a key role of TFIIE GTF (comprised of TFIIEα and TFIIEβ for PIC 

structural integrity as it holds a central position in the PIC assembly. TFIIEβ is a crucial constituent 

of the core-PIC, forming a cap over the Pol II cleft and the DNA substrate and making functionally 

important contacts with TFIIF. TFIIEα on the other hand, consists primarily of three α-helices (α7, 

α8, α9) and a β5 strand, which are splayed on the surface of TFIIH and connected by long flexible 

linkers (Figure 5.3.2.1 and Figure S5). Specifically, α9 binds BSD1 and the 3-helix bundle of p62; 

α8 interacts with the p62 PHD domain and the α7-BSD2 interaction is critically important for the 

TFIIH/core-PIC interface. The unusual engagement mode between TFIIEα and TFIIH highlights 

the key architectural role of TFIIE for assembling the pre-initiation complex. In essence, TFIIE 

serves as a structural adhesive to link TFIIH to the rest of the transcription initiation machinery – 

a finding that supports and extends current understanding of why TFIIE is required for TFIIH 

recruitment to the PIC[236, 237].   
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Figure 5.3.2 – TFIIE, MAT1 and p62 are critical for the integrity of the core-PIC/TFIIH 

interface. a, Human PIC structure in cartoon representation with colored TFIIH subunits. Circles 

demark zoomed regions in d.-g. b, Domain schematic of TFIIE. c, TFIIE cartoon. d, MAT1 - 

core PIC interaction. The MAT1 RING-finger docks into a groove between the Pol II stalk subunit 

Rpb7 and TFIIE 4/7 helices. The RING-finger connects to the ARCH anchor which binds the 

XPD ARCH domain. e, TFIIEα helix α7 is wedged between TFIIE winged helix (eWH) domain 

and p62. f, TFIIE 5/α7 and acidic domain interacts with p62 PHD and BSD2. g, TFIIE helix α9 

binds p62 BSD1 domain adjacent to the p62 3-helix bundle. 
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5.3.3 Promoter Opening is Linked to the Global Motions and Dynamic Networks Within 

TFIIH  

Our holo-PIC model provided an excellent starting point to initiate MD simulations aimed 

at addressing the role of dynamics and conformational switching in driving the multifaceted 

functional responses of the transcription initiation machinery. We performed ~300-ns production 

simulations of holo-PIC (TFIIH/core-PIC/DNA) and core-PIC. Specifically, holo-PIC is a ~1M 

Dalton complex, encompassing substrate DNA and some 31 individual protein chains. Addition 

of solvent and counterions resulted in simulation systems of >1,000,000 atoms that required 

supercomputing resources. To begin to dissect the staggering complexity of the simulations, we 

first tested if the relative rigidity or flexibility of the numerous PIC structural elements was linked 

to their putative functional roles. To this end, we mapped the computed B-factors from the 

simulation data onto the structure of holo-PIC (Figure 5.3.1b). The core of Pol II (Rpb1 and Rpb2 

chains) is the most rigid scaffold within the PIC, and also the best resolved region in cryo-EM 

(local resolution going down to ~3 Å)[206]. The low B-factors support the importance of this 

region, which establishes the path of the DNA substrate and confines it within the Pol II cleft. The 

DNA duplex upstream of the initiation region (INR; Figure 5.3.1a) is also structurally rigid, 

especially in the TBP-associated TATA box region. The downstream portion of DNA is more 

mobile, and its mobility is linked to the motion of XPB. Notably, there is a ridge of stability 

extending across the TFIIH/core-PIC interface starting with the Pol II core, continuing through 

TFIIE and encompassing core XPD, portion of p62 and lobe1 of XPB. In contrast, the middle 

domains (p8, p52, p34 and p44) are dynamic and appear to participate in concerted global motions. 

To analyze and visualize such global PIC motions, we relied on two methods - principal 

component analysis (PCA)[238] and community network analysis[72]. Briefly, PCA is a 
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dimensionality reduction technique that involves three steps: 1) computing the matrix of residue-

residue covariances from the MD trajectories; 2) diagonalizing the covariance matrix to yield 

eigenvectors (principal modes) and eigenvalues (mean square fluctuations); and 3) projecting the 

trajectory onto the principal modes to yield principal components. The first few principal modes 

are especially important as they capture the slow, large-amplitude motions that are also the most 

functionally significant. Our focus was on the second and third principal modes of PIC (denoted 

PC2 and PC3). The PC2 mode reflects an out-of-plane twisting movement of TFIIH with respect 

to the Pol II core above the ringed plane of TFIIH defined by the p44, p34, p52 and XPD and XPB 

subunits. Interestingly, PC3 represents the in-plane swing motion of TFIIH that could push the 

DNA substrate toward the Pol II cleft, leading to DNA bending and deformation. Although 

differing in detail, both PC2 and PC3 imply the DNA substrate is rigidly held by Pol II in the TBP 

region while the downstream DNA duplex is held and pushed by XPB whose motion is directed 

by rotational movement of the TFIIH lever arm (comprised of p44, p34, p52 and p8).  

We employed community network analysis to partition PIC into dynamic communities 

(tightly connected clusters of residues that move together as modules). In this approach, the PIC 

assembly was mapped onto a graph wherein each protein residue is a node and edges connect 

nodes that are in contact. All edges were assigned weights based on the covariance matrix data 

from the MD simulation. The Girvan-Newman algorithm was then used to subdivide the graph 

into strongly connected components. The magnitude of allosteric communication between 

communities was then quantified by estimating the total betweenness for all edges that connect 

individual communities (betweenness is defined as the number of shortest paths that cross an 

edge). We identified sixteen dynamic communities in TFIIH, which were color-coded and mapped 

onto the holo-PIC structure (Figure 5.3.3a) and graphed the level of dynamic communication 
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between communities (Figure 5.3.3b). An important observation from this analysis was that the 

motions of the two XPB lobes are largely decoupled. Lobe1 (community L) carries much stronger 

connection to community A (largely comprised of XPD). Lobe2 (community C) appears more 

closely associated with communities O and J that form the tip of the TFIIH lever arm (subunits 

p52, p34, p44) and community H that includes part of p62. In PC2 and PC3 lobe2 and p62 fragment 

from community H move concertedly in the same direction whereas lobe1 exhibits smaller 

magnitude motions and is most closely correlated to XPD (Figure 5.3.3c, g). Community network 

analysis also nicely captures the fact that the motion of XPB lobe1 is coupled to the motion of 

MAT1 through the long helix (strong connection between communities L and N). The XPD ARCH 

domain separates into its own community (Figure 5.3.3d,h) while the TFIIE (community E) is in 

communication with p62 (community H) and the motions of these elements occur in the same 

direction (Figure 5.3.3e, i). Figure 5.3.3f and j capture the directionality and concerted rotational 

motion of the TFIIH lever arm. Notably, communities I and B and communities B and J are both 

separated by hinge regions. 
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Figure 5.3.3 - Community networks underlying TFIIH functional dynamics. a, Communities 

identified from dynamic network analysis that transcend simple subunit divisions. b, Graph of 

allosteric communication among communities. Colored by community, nodes are sized by number 

of residues in each community. Thickness of edges between community pairs correlate to 

magnitude of dynamic communication (betweenness). c-j, Directional community motions 

(arrows) and magnitude (arrow size) of the corresponding component of the eigenvector for c, A, 

C, H and L along the second principal component; d. A and D along the second principal 

component; e, A, D, E and H along the second principal component; f,  B, I, J and K along the 

second principal component; g, A, C, H and L along the third principal component; h, A and D 

along the third principal component; i,  A, D, E and H along the third principal component; and j, 

B, I, J and K along the third principal component. 
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5.3.4 The Global Dynamics of PIC Facilitates Substrate DNA Bending and Deformation 

To examine the effect of global PIC dynamics on the DNA substrate, we analyzed the DNA 

substrate path through the Pol II cleft for our holo-PIC and core-PIC simulations (Figure 5.3.4). 

The DNA substrate traverses the Pol II cleft undergoing an ~ 90ͦ bend at the position of TBP. The 

DNA path continues relatively straight between the Pol II Rpb2 and Rpb1 subunits. Interactions 

with the Rpb5 subunit lead to ~135ͦ kinking of the DNA near the transcription start site. 

Surprisingly, the DNA duplex is kinked in the INR region with and without TFIIH. Figure 5b 

shows a 2-D histogram of the MD data in terms of two angles ϕ and θ representing the bending 

and twisting of the DNA duplex around the axis defined by the straight region preceding the INR. 

While the bending angle θ appears to be approximately the same for holo- and core-PIC, the 

orientation angle ϕ is different, spanning a far greater range for core-PIC. Thus, besides kinking 

the DNA substrate, TFIIH also locks it into a fixed orientation.  

The kinked DNA conformation could be attributed entirely to interactions with structural 

elements from the Pol II cleft (Rpb2, Rpb1 coiled-coil and clamp head, Rpb5) (Figure 5.3.4c and 

d).  XPB also induces a slight bend in the DNA as it passes between the two lobes but does not 

affect the INR region. Overlaying canonical A-DNA onto the INR region shows that the DNA 

substrate is not only bent but significantly under-wound (Figure 5.3.4e,f). Negative DNA 

supercoiling should facilitate promoter opening. Thus, we propose that the role of TFIIH may be 

to further unwind the DNA until base flipping occurs leading to the formation of a nascent 

transcription bubble. Consistent with this proposition, negative DNA supercoiling relieves the 

requirement for TFIIH in basal transcription at multiple promoters[239, 240]. 

 

 



112 

 

Figure 5.3.4 - Pol II induces DNA bending and distortion neighboring the initiation site. a, 

DNA path within the PIC. The inset defines two geometric variables orientation angle () and 

bending angle () used in the analysis of the MD trajectories. b, Histogram of DNA bending and 

orientation angles in polar coordinates from the MD simulations of core PIC (left) and holo PIC 

(right). c, d, Pol II structural elements induce bending of downstream DNA from simulations of 

core PIC (c) and holo PIC (d). DNA axes (red lines) are computed by the CURVES+ code. e, f, 

Pol II induces structural distortion in the INR region besides bending. Comparison with canonical 

A DNA shows that in the INR region the DNA duplex is significantly underwound in core PIC 

and holo-PIC. 

 

 

 



113 

5.3.5 Disease Mutations Cluster at Critical Junctures of the TFIIH Dynamic Network 

XP, TTD and XP/CS are three distinct autosomal recessive genetic disorders. Patients are 

generally compound heterozygotes carrying two different mutations – one on each allele. The 

expressed phenotype results from contributions of both alleles[241]. In general, TFIIH disease-

causing point mutations relate specific sequence sites to distinct pathways and phenotypes: XP 

mutants are NER defective, TTD mutants have partial transcription defects, XP/TTD mutations 

exhibit both defects, and XP/CS mutations exhibit defective global genome repair (GGR) and 

transcription coupled repair (TCR)[211-215, 242]. 

To link molecular features at these sites to distinct pathways and disease phenotypes, we 

mapped the 36 single-site patient mutations (Figure 5.3.5 and Table S3) onto the dynamic PIC 

model defined here. These fall within the XPD, XPB and p8 subunits of TFIIH and the WH2 

domain of TFIIEβ[243] (Figure 5.3.5b), largely coinciding with the anchor region of reduced 

flexibility between TFIIH and PIC identified in our dynamics study (Figure 5.3.1b). Strikingly 

80% of disease mutations localize to XPD helicase domain with none in transcription-essential 

XPB helicase domains. Two are in the XPB N-terminus (defined in our structure); one in XPD Fe-

S domain, two in XPD Arch domain, and one in p8. Notably, 20 XPD mutants localize to RecA2 

and the 8 in RecA1 cluster close to RecA2, pointing to RecA2’s pivotal role in TFIIH repair 

function. In our structural model, RecA2 is the central and most interactive helicase domain: it 

connects XPB, p62, and p44. The XPD helix (residues 712-725) at the three-community junction 

is a hot spot for patient disease mutations. Intriguingly, many XPD mutations lie along the path of 

p62 as it traverses across XPD, suggesting that p62 has regulatory as well as scaffolding functions: 

one p62 region (residues 274-293) tracks the XPD DNA binding groove and another (residues 

333-342) caps the XPD ATP site. Most patient mutations map to secondary structure ends or loops, 
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highlighting their significance (Table S3). Whereas half the TTD mutations fall within helices, this 

position is rare for XP and XP/CS mutations.  

As has been noted[212, 229],  the single-site disease mutations fall across TFIIH sequence 

and structure in an irregular spatial pattern (Figure 5.3.5). Yet, our largely complete TFIIH and 

dynamics model unveils TTD, XP, XP/TTD and XP/CS mutations in the context of the full TFIIH 

machinery, unhampered by missing regions in XPB, p44, and p62. We find that patient mutations 

cluster primarily at protein and community interfaces (70%). The largest cluster at the intersection 

of communities A (XPD) and K (XPD, p44, p62), demarks the XPD/p44/p62 interaction as 

functionally important. Three mutations are directly at the interface: R592P (TTD), R722W ( 

XP/TTD) and A725P (TTD, XP/CS/TTD), and 12 more are immediately adjacent: Y18H (XP/CS, 

TTD), G47R(XP/CS), S51F (XP/TTD); L485P (XP), R487G(TTD), R616P/Q (TTD), D673G 

(TTD), G675R(XP/CS), A594P(TTD), A596P(TTD), A717G (XP), and G713R (TTD). Switches 

to glycine and proline, which have the greatest impact on local backbone flexibility and dynamics, 

dominate in this region unveiling the critical functional role of dynamics at the XPD/p44 junction. 

The other key interfaces include communities A and D with mutations R636W (TTD), 

R112H/C(XP/TTD), A and L with mutations D681N (XP), R683W/Q (XP, XP/TTD), and R511Q 

(XP). Unlike XPD, neither of the XPB mutations (F99S (XP/CS) or T119P (TTD)) are in the 

helicase domains, but they center in four communities: C (XPB, p8, p52, TFIIEα), L (XPB, p44), 

N (XPB, Mat1) and O (XPB, p44, p52). Similarly, the sole p8 mutation, L21P (TTD), is at a 

community interface between C (XPB, p8, p52, TFIIEα) and P (p8, p52). Importantly, all these 

clusters correspond to critical junctures in the TFIIH dynamic network. 

Considering mutations by disease, we find that 14 TTD or XP/TTD mutations mapped to 

protein-protein interfaces or in helices at protein interfaces in three of the TFIIH subunits (p8, XPB 
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and XPD) - an insight enabled by our fully modeled TFIIH complex. The TTD mutations map to 

all helicase interfaces: XPB with XPD, p8, p44, or p52; or XPD with Mat1, p44, and p62. We 

therefore propose that TTD mutations disrupt protein-protein interfaces (directly or through breaks 

in helices at interfaces) to weaken assembly of TFIIH subunits while retaining residual XPB 

helicase activity for essential transcription function. Notably, TTD mutations were previously 

shown to result in lower levels of unstable TFIIH[210, 215]. Recently, two TTD patient-derived 

mutations, A150P and D187Y, have been discovered in TFIIE.54 In our model, these positions 

map to the WH2 domain of TFIIEβ and near the linchpin TFIIE α7 helix, which is key for the 

integrity of the TFIIE/p62 interface. These mutations are positioned to reduce WH2 stability by 

disrupting secondary structure packing (Table S3). In turn, this is expected to weaken interactions 

with TFIIEα and the interface between dynamic communities E (TFIIE) and H (p62). 

All XP mutations map to XPD near to its exterior and fall into three categories. One set 

(R112H/C, R511H/C, S541R, Y542C, R601L/W, and R683W/Q) tracks the proposed DNA path 

on XPD, also traced by p62. A second set (residues S51F, T76A, D234N, and C663R) neighbors 

the Walker A, B motifs and are expected to reduce ATPase activity. These two sets substitute 

charged or polar for bulky hydrophobic residues, potentially disrupting XPD-DNA binding and 

ATPase activities during NER. The third set (L485P, D681N, R683W/Q, A717G, and R722W) is 

on the opposite side where they appear to weaken interfaces with XPB, p44, and p62, suggesting 

that these XPD interactions with other TFIIH subunits are required for NER function. Mutation in 

residues 683 and 722 also have a TDD phenotype in some patients, suggesting that for these 

mutations both assembly and NER are defective, consistent with our structure.  

All but one XPD XP/CS mutations lie close to p62, which is split between communities A 

and H. p62 wraps the XPD core such that five XP/CS mutants (Y18H, G47R, G602D, R666W, 
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G675W/Q) are near p62, which spans several dynamic communities, running along the XPD DNA 

binding path, capping ATPase site and linking TFIIH to TFIIE and the core-PIC. The one XPB 

XP/CS mutation, F99S, is near p44, another rigging-like protein that links XPB to XPD, p62 and 

p34. XP/CS mutations are primarily at the center of communities and typically increase rigidity or 

distort conformation by removing glycines or changing to more rigid side chains (Table S3). Like 

a broken gear in a machine, these changes appear to break down community coordination. 

Therefore, we propose XP/CS mutations weaken TFIIH dynamic coordination explaining its 

hallmark TCR defects[242]. 
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Figure 5.3.5 - Human disease mutations mapped onto TFIIH and TFIIE show distinct 

patterns within protein-protein and community interfaces. a, TTD, XP/TTD, XP and XP/CS 

point mutations mapped onto XPD, XPB, and TFIIE protein schematic do not co-localize by 

disease on primary sequence. b, Map of human disease mutations (spheres) onto TFIIH structure 

as cartoon colored by community show biased localization (blue outline). c, Zoom view of 

mutations on XPD.  d, Zoom view of XPB and p8 mutations. e, Mutations and function mapped 

onto TFIIH cartoon colored by subunit. Regions of p62 and p44 are removed for clarity. f, Overlay 

of disease mutations, protein chain (cartoon view), and communities (background color). 

Community K is above the plane of the page of Community A, as demarked. View matches e. 
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5.4 Discussion 

Transcription initiation complexes are amazingly dynamic macromolecular machines 

whose function and regulation underlie all of gene expression. By synthesizing cryo-EM data, we 

built and analyzed the functional dynamics of a practically complete atomic model of human PIC. 

Our results support a model for promoter opening in which the TFIIH XPB subunit serves as a 

DNA translocase to bend and unwind the DNA duplex in the cleft of Pol II. In this model, Pol II 

by itself can induce structural deformation in the INR region of the DNA template. TFIIH’s role 

is to lock the downstream DNA duplex in a well-defined orientation and to use a ratcheting 

mechanism to induce further negative supercoiling in the INR region. This action of TFIIH leads 

to strain-induced base flipping and the formation of a nascent transcription bubble. For this model 

to be operational the DNA duplex must be rigidly locked upstream of the transcription start site. 

The 90ͦ bend in the DNA induced by TBP serves precisely this purpose. A second requirement is 

for the molecular motor twisting the downstream DNA duplex to be firmly attached to the rest of 

the initiation machinery. Consistent with this notion, we find a ridge of structural stability 

extending from the Pol II core through the TFIIE/p62 interface and into the central XPD subunit 

of TFIIH while also encompassing lobe1 of XPB. Disruption of this ridge by point mutations 

impairs TFIIH function as seen by the striking clustering of patient-derived mutants in this region.  

Finally, DNA remodeling to produce the transcription bubble appears to be a global 

conformational transition that critically depends on TFIIH global dynamics. Our MD simulation 

powerfully elucidates concerted motions of this complex machinery. Specifically, we show that 

the two lobes of the XPB translocase move independently. Lobe1’s motion is primarily correlated 

with the XPD subunit while lobe2 tracks the large-scale collective motion of the TFIIH lever arm 

(subunits p44, p34, p52). In the absence of ATP such motion is bidirectional. However, during 



119 

cycles of ATP binding and hydrolysis by XPB the backward motion could be disallowed, leading 

to the simultaneous unwinding and pushing of the DNA toward the TSS. Interestingly, mapping 

of patient-derived mutations onto the TFIIH community structure further informs the above model 

for promoter opening. Specifically, this initiation model and disease phenotypes argue that mutants 

affecting XPD stability and/or its community integrity are functionally significant. Conversely, 

interfaces between the p44, p34 and p52 subunits lack disease causing mutations, indicating that 

either mutations at these interfaces are so disruptive as to be invariably lethal or, more probably, 

point mutations in the TFIIH lever arm are too distal from XPB to disrupt the global motions and, 

thus, result in mild or no disease phenotype.  

Overall, our results elucidate the functional dynamics of the human transcription initiation 

machinery. This knowledge enabled structural and mechanistic insights into preinitiation complex 

assembly, promoter recognition, DNA melting, transcription regulation and the roles of general 

transcription factors therein. Collectively, these methods and results provide a framework for 

future experiments aimed at unraveling the intricate molecular choreography of TFIIH in 

nucleotide excision repair as well as transcription initiation. 

5.5 Methods 

5.5.1 Building the apo-TFIIH Model 

To create a model of apo-TFIIH, we used two existing cryo-EM densities: apo human 

TFIIH (EMDB accession code: EMD-3802)[209] and yeast PIC (EMDB accession code: EMD-

3846)[207]. The corresponding structure[209] (PDB accession codes: 5OF4) served as a starting 

point for model building. The following TFIIH elements had no known structural homologues and 

were, therefore, built de novo:  the XPB DNA-damage recognition domain (DRD) (residues 159-

300), the XPB N-terminal extension domain (NTE) (residues 1-158), the p52 XPB binding domain 
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(residues 284-384), the p34 insertion (residues 233-251), the p44 N-terminus and α-helix insertion 

(residues 1-57 and 313-343), the MAT1 ARCH anchor and helices (residues 65-309), the p62 

subunit except the BSD1 and PHD domain (residues 101-173 and 159-548). We used the 

GeneSilico metaserver[244] for consensus secondary structure prediction and applied the results 

to establish the sequence register in the EM density. Individual secondary-structure fragments were 

constructed using COOT[245] to generate a backbone only model by tracing the EM density. The 

resulting polypeptide chain segments were connected by extending the main-chain trace. Side 

chain orientations were built and manually inspected/corrected based on the electron density. 

Bulky residues such as phenylalanine, tyrosine, tryptophan, and arginine were instrumental in 

validating model construction and sequence registration. 

To model the p62 BSD1 domain, the NMR structure of the p62 BSD1 domain (PDB ID: 

2DII) was rigid-body docked into the EM density. The human p52 subunit resembles the yeast 

Tfb2 and shares 40% sequence identity (64% similarity). Therefore, the p52 helix-turn-helix 

(HTH) domain (residues 1-282) was constructed by homology modeling using MODELER 9V15 

software[246] and alignment to yeast Tfb2 (PDB ID: 5OQJ)[207]. To model the p44 subunit and 

the p34 ZINC finger domain (ZnF), the structures of the yeast Ssl1 and Tfb4 subunit (PDB ID: 

5OQJ) [207] were used as templates to construct the human p34/p44 ZnF homology structure. The 

RING domain of p44 was taken from the X-ray p34/p44 structure (PDB accession code: 5O85 

[247]) and docked into the density after overlaying the p34 vWA domain. To model MAT1, the 

solution structure of the human MAT1 RING domain (PDB ID:1G25)[248] was docked into the 

density ascribed to MAT1 RING by superposing the yeast Tfb1 density onto the human MAT1 

density. We then built the entire apo TFIIH structure by docking the newly constructed XPB, p62, 

p52, p34, p44 and MAT1 subunits into the apo-TFIIH EM density. 
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5.5.2 Building the holo-PIC Model 

To model TFIIH holo-PIC (core-PIC/TFIIH/DNA), we first docked the human apo-TFIIH 

structure into the yeast PIC density (accession code: EMD-3846)[207]. We then used the cascade 

molecular dynamics flexible fitting (cMDFF) method[223] to fit apo-TFIIH into the density 

allowing the model to be fit sequentially to a series of maps (computationally blurred derivatives 

of the original map with lower-resolution). Thus, larger-scale features of the Gaussian-smoothed 

EM densities guided the initial stages of flexible fitting. Smaller-scale refinements were then 

introduced when fitting to the higher-resolution maps. The p62 PHD domain was excluded from 

fitting to the yeast PIC density as its orientation in the human PIC density was clearly different. 

Gaussian-smoothed maps were generated using Chimera[190] starting with a half-width of σ = 3 

Å and decreasing by 1 Å for each subsequent map. In total, 4 maps were used in cMDFF runs, 

including the original EM density. The structure was independently fitted using direct MDFF[128] 

to each individual map obtained by Gaussian blurs. 4-ns MDFF simulations were performed at 

each of the 4 resolutions to achieve convergence during the cMDFF protocol. The final structure 

from cMDFF was further refined with direct MDFF to the human PIC density (accession code: 

EMD-3307)[209]. The MDFF bias was applied in each stage with a scaling factor ξ of 0.2. 

5.5.3 Building the Interface of core-PIC with TFIIH 

To model the C-terminus of TFIIEα, we employed the human closed-complex PIC EM 

density and the yeast PIC EM density (EMDB accession codes: EMD-3307[206] and EMD-

3846[207], respectively). The C-terminal region of TFIIEα (residues 215-439) comprises three 

helices and one beta-strand (α7/α5/α8/α9) connected by loop regions. We inspected all holo-PIC 

densities (EMD-3307, EMD-8132 and EMD-8133)[206] and positioned α7 between the TFIIEα 

WH domain and the p62 BSD2 domain. The predicted α5/α8/α9 elements were modeled based on 
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the corresponding positions in the yeast PIC density (EMD-3846). The NMR structure for a short 

TFIIEα C-terminal segment bound to PHD (PDB accession code: 2RNR)[236] was positioned 

between XPD and XPB and subsequently validated by crossing-linking[224]. We then built the 

linker connecting the p62 BSD1 and PHD domains. TFIIH, TFIIEα C-terminus, the p62 PHD 

domain, core-PIC (PDB accession code: 5IYA)[206] and duplex DNA were then fitted to the 

human closed-complex PIC density (EMD-3307) to produce the complete holo-PIC assembly. The 

apo-TFIIH and holo-PIC models were refined in real space with the PHENIX package[249, 250]. 

MolProbity results for the apo-TFIIH and holo-PIC models are presented in Table 5.5.3. Map-to-

model cross correlation values of 0.75 and 0.72 were computed for apo-TFIIH and holo-PIC, 

respectively. Table 5.5.4 summarizes map-to-model validation statistics for TFIIH fitted against 

the EMD-3802 and EMD-3846 cryo-EM maps. 

5.5.4 Molecular Dynamics Simulations of core-PIC and holo-PIC 

To address the functional dynamics of the holo-PIC and core-PIC assemblies, we 

performed extensive molecular dynamics simulations. The systems were set up with the TLeap 

module of AMBER 14[131] and solvated with TIP3P water molecules[29]. The minimum distance 

from the surface atoms of the complex to the edge of the periodic simulation box was 12.0 Å. In 

addition to Na+ counterions to neutralize the total charge in the simulation box, we introduced 

150-mM NaCl concentration to mimic physiological conditions. Energy minimization was 

conducted for 3000 steps with fixed protein backbone atoms and for an additional 1500 steps with 

harmonic restraints on the backbone atoms (k = 10 kcal mol-1 Å-2). The temperature of the 

simulated systems was then gradually increased to 300 K over 500 ps of dynamics in the NVT 

ensemble. The equilibration was continued for another 4 ns in the NPT ensemble, and the harmonic 

restraints were gradually released. Production runs were performed in the NPT ensemble (1 atm 
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and 300 K) for 300 ns for each of the two models of the core PIC and holo-PIC. The particle mesh 

Ewald (PME) method was used to treat long‐range electrostatic interactions. The r-RESPA 

multiple time step method[25] was employed with a 2-fs time step for bonded, 2-fs  time step for 

short-range nonbonded interactions, and 4-fs for long-range electrostatic interactions.  The short-

range nonbonded interactions were evaluated by using a cutoff distance of 10 Å and a switching 

function at 8.5 Å. All covalent bonds to hydrogen atoms were constrained using the SHAKE 

algorithm. The simulations were carried out with the NAMD 2.12 code[251, 127] and the AMBER 

Parm14SB force field[126]. Snapshots from the MD trajectories were collected at 2.0 ps intervals. 

We then selected and sampled 50,000 conformations from the last 280 ns of the MD trajectories 

for principal component analysis (PCA) and community network analysis. DNA structural 

parameters were analyzed with the program CURVES+[171].  All figures were generated using 

UCSF Chimera[190]. 

5.5.5 Principal Component Analysis 

Principal component analysis (PCA) was performed based on the covariance matrix whose 

elements are defined as: 

Cij = 〈(xi-〈xi〉)(xj-〈xj〉)〉 

where xi is a Cartesian coordinate of atom i, and 〈xi〉 represents the time average over all 

the configurations obtained in the simulation. In PCA, diagonalization of the covariance matrix 

yields a complete set of orthogonal eigenvectors with corresponding eigenvalues.  Eigenvectors 

with the larger eigenvalues contribute more to the total variance in the data and, therefore, to the 

overall motion seen in the MD trajectories.  In this way, PCA helped to separate out the slower 

global motions, essential for PIC dynamics. Prior to construction of the covariance matrix the MD 

trajectory was aligned on a reference configuration to remove all translational and rotational 
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motion. The covariance matrix C was computed using all protein Cα atoms and P atoms in the 

DNA backbone and then diagonalized to produce the PCA eigenvectors and eigenvalues. PCA 

analysis was performed using the CPPTRAJ module in AmberTools17[252]. 

5.5.6 Community Network Analysis 

The dynamic community network of TFIIH was constructed using the NetworkView 

plugin in VMD[79, 253]. In community network analysis, the protein topology was represented as 

a collection of nodes connected by edges whose weights were derived from the MD simulation. 

Nodes were associated with the protein Cα atoms. Edges were added to the network connecting 

pairs of in-contact nodes. Two non-adjacent nodes were connected by an edge if the nodes are 

within 4.5 Ǻ of each other for at least 75% of the simulation trajectory. The edge weights, wi,j, 

were computed from the correlation coefficients, ci,j, of the i-j node pair: 

wi,j = -ln(|ci,j|) 

Here, ci,j is the residue-residue correlation calculated between the i-j residue pair in the MD 

trajectory. Residue-residue correlations were calculated using the program CARMA[254]. The 

contact map was generated within the NetworkView plugin. After constructing the TFIIH network 

the Girvan-Newman algorithm was employed to determine the underlying community structure 

using the betweenness centrality measure[78]. The betweenness centrality measure (betweenness) 

of an edge is measured by calculating the number of shortest paths that cross that edge and is 

indicative of the probability of information transfer between nodes (protein residues). In Girvan-

Newman, the betweenness is calculated for all edges and the edge with the largest betweenness 

value (most central edge) is subsequently removed. This process was repeated and a modularity 

score tracked to identify the division that resulted in an optimal community structure. The 

algorithm was run iteratively resulting in a modularity score of 0.871 and a network partitioning 



125 

of 16 distinct communities. We then computed the summation of the betweenness for all edges 

between communities to determine the strength of communication between dynamically correlated 

sets of residues within TFIIH. 
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Table 5.5.1 – Summary of TFIIH and PIC structural elements and original sources used for 

modeling. 

 

 

 

 

 

 

 

Protei
n 

Chai
n 

Siz
e 
(aa
) 

Modele
d 
Residu
es 

Alternati
ve 
names 

Structures (PDB IDs) used for hybrid modeling 

XPD 0 760 11-742 ERCC2 Residues 11-742 modeled from 5OF4 
p62 1 548 1-546 GTF2H1 Residues 159-546 built de novo; p62 BSD1 domain 

(residues 110-158) modeled from NMR structure 
(2DII); p62 PHD domain (residues 1-109) modeled 
from NMR structure (2RNR) 

p52 2 462 6-458 GTF2H4 Residues 284-384 built de novo; Residues 6-383 
constructed by homology modeling using the yeast 
Tfb2 (5OQJ) as a template 

MAT1 3 309 1-309 MAAT1 Residues 65-309 built de novo; MAT1 RING domain 
(residues 1-64) modeled from NMR structure (1G25) 

p34 4 308 6-300 GTF2H3 Residues 233-251 built de novo; ZINC finger domain 
(residues 252-300) constructed by homology modeling 
using the yeast Tfb2 (5OQJ) as a template; vWA 
domain (residues 6-251) modeled from 5OF4 

p8 5 71 2-67 GTF2H5 Residues 2-67 modeled from 5OF4 
p44 6 395 10-394 GTF2H2 Residues 1-57, 313-343 built de novo; vWA domain 

(residues 58-312) modeled from 5OF5; ZINC finger 
domain (residues 344-394) constructed by homology 
modeling using the yeast Ssl1 (5OQJ) as a template 

XPB 7 782 30-201 
267-
728 

ERCC3 Residues 30-201 and 267-300 built de novo; Residues 
301-728 modeled from 5OF5 

CDK7 8 346 13-311 MO15 Residues 13-311 constructed by homology modelling 
using human CDK2 (1JSU) as a template 

Cyclin
H 

9 323 11-286 CCNH Residues 11-286 modeled from human Cyclin H 
(1KXU) 

TFIIE

 

Q 439 10-439 GTF2E1 Residues 10-215 modeled from human TFIIE (5GPY); 
Residues 215-234 built de novo; Residues 335-439 
modeled from NMR structure 2RNR 

TFIIE

 

R 292 75-242 GTF2E2 Residues 75-242 modeled from NMR structure 
(2RNR) 

Core PIC (pol II, TBP, TFIIA, TFIIB, 
TFIIF, TFIIS and DNA) 

Core PIC modeled from the EM structure (5IY6) 
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Table 5.5.2 – Summary of interfaces between TFIIH and core-PIC 

Interface Area (Å2) 1 Ninter 
2 NHB 

3 NSB 
4 

MAT1 – Rpb4/7 584.3 17 11 9 

MAT1 – TFIIEα 320.4 13 5 5 

CDK7 – Rpb4 456.7 15 3 2 

TFIIEα – p62 4607.2 105 75 41 

TFIIEα – TFIIH 6107.6 141 97 56 

TFIIEα – core-PIC 1257.0 43 16 8 

TFIIEβ – core-PIC 628.7 20 9 6 

1 – Buried surface area at the interface 

2 – Number of interfacial residues 

3 – Number of interfacial hydrogen bonds 

4 – Number of interfacial salt bridges 
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Table 5.5.3 – MolProbity results of apo TFIIH and holo PIC 

 

 

 

 

 

 

  

Validation Apo TFIIH Holo PIC 

MolProbity score 2.66 2.12 

MolProbity Clashscore  23.5 7.98 

Rotamers outliers (%) 1.34 0.39 

C deviations (%) 0.23 0.04 

Ramachandran favored (%) 81.34 83.72 
Ramachandran allowed (%) 17.17 13.33 

Ramachandran outliers (%) 1.50 2.95 
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Table 5.5.4 – Human and yeast TFIIH MDFF map-to-model statistics  

 MolProbity iFSC1 (Å)2 iFSC2 (Å)2 d_Model (Å) d_FSC_Model (Å)3 

hTFIIH – h1 2.66 3.76 3.68 6.7 3.6/4.4/7.3 

hTFIIH – h2 2.66 3.83 3.76 6.8 3.7/4.4/7.3 

hTFIIH – f 2.66 4.50 4.29 4.2 3.9/4.3/7.2 

yTFIIH – h1 2.46 2.82 2.80 6.7 3.9/6.4/8.7 

yTFIIH – h2 2.46 2.77 2.75 6.8 4.0/6.2/8.6 

yTFIIH – f 2.46 3.33 3.29 6.8 4.7/5.0/8.5 

1 – All values are reported for both half maps and full map denoted h1 (half map 1), h2 (half map 2) and f (full map).  hTFIIH denotes 
human TFIIH and yTFIIH denotes yeast TFIIH maps, respectively. 

2 – Integrated FSCs (iFSC) between 12 – 4.4 Å for human TFIIH (hTFIIH) and 12 – 4.7 Å for yeast TFIIH (yTFIIH). 

3 – Values reported at 0, 0.143 and 0.5 Fourier shell coefficients (FSC). 
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CHAPTER 6. PROSPECTIVE 

The works presented in this manuscript employ numerous computational methods to 

address molecular mechanisms involved in maintaining genomic integrity. Sophisticated path 

optimization strategies coupled with extensive MD sampling proved crucial in elucidating these 

mechanisms. Until recently, path optimization on large systems was computational prohibitive. 

However, this constraint has been alleviated through recent advances in computer and GPU 

architecture. Perhaps more important is the evolution of structure elucidating techniques like cryo-

EM and X-ray crystallography, which have also benefited from computer advancements. Indeed, 

the success of both path optimization and MD hinge on coordinates derived from structural 

biology. Thus, the two disciplines are intricately intertwined.   

It is important to note that while the studies presented here elucidate new details 

surrounding specific biological processes, outstanding issues remain unresolved. For example, 

multiple substrates exist for TDG, yet, it is not entirely clear if the details of the base-flipping 

mechanism will remain the same for each substrate. In the case of Pol III, proofreading for the 

bacterial replicase is likely to be different from that of the eukaryotic replicase. Even more 

interesting would be determining how proofreading and replication are conducted in the context 

of the entire replisome. For the PIC, molecular details on the transitions between the CC, OC and 

ITC functional states remain elusive.  

Looking forward, these issues are poised to take advantage of both structural and advanced 

computational methods. For TDG and the PIC, structural coordinates are already available through 

X-ray crystallography and cryo-EM. Additionally, the eukaryotic structures of both the lagging 

strand and leading strand polymerases (Pol δ and Pol ε) have been solved via cryo-EM. Perhaps 

even more exciting is the recent breakthrough with Pol ε, which is presented in the context of CMG 
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helicase. Thus, these systems, and the questions they pose, are primed for computational 

investigation. Specifically, path optimization with PNEB could be combined with extensive 

sampling and Markov modeling to define the biomolecular mechanisms, while also identifying 

important intermediates that lie beyond the reach of conventional experimental methods. 

Moreover, the predictive power of these models will drive the formulation of new hypotheses, 

ones that are directly testable through experiment. In the end, a multi-disciplinary effort aimed at 

providing a complete description of these mechanisms will be key to broadening our understanding 

on the complex relationship between genomic machinery and disease. 
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