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ABSTRACT 

This study examines the effects of hydrologic disturbances and land cover on stream 

metabolism within various watersheds in the Piedmont region. I utilized continuous dissolved 

oxygen measurements and stream metabolism data from 14 sites, collected over a period of up to 

11 years. This research builds on existing datasets to assess changes in flow and land cover 

impacts on gross primary productivity (GPP) and ecosystem respiration (ER). Results indicate 

that GPP resistance significantly decreases with flow event size, while ER resistance remains 

stable. GPP recovery times were longer for larger storms, showing significant differences 

between the highest and lower flow quartiles. Even-mixed land-cover watersheds exhibited 

lower GPP resistance and longer recovery times than urban and vegetated watersheds, while ER 

resistance and recovery did not significantly differ across land cover types. These findings 

underscore the importance of considering hydrologic regimes and land cover in watershed 

management to enhance stream resilience. 
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1 INTRODUCTION  

Whole-stream metabolism, the summation of all biological processes within a stream 

ecosystem, has become a key indicator for evaluating aquatic biological productivity and 

ecosystem functionality. Stream metabolism is highly responsive to environmental shifts and 

provides insights into the health and operational dynamics of aquatic ecosystems (Odum 1956, 

Trentman et al., 2022, Young et al., 2008). Historically, the analysis of diel changes in dissolved 

oxygen (DO) levels has been integral to assessing whole-stream metabolism and biological 

processes. The importance in utilizing DO data has become more pronounced in the wake of the 

Clean Water Act (33 U.S.C. §1251 et seq., 1972), which placed a spotlight on the management 

of aquatic environments. While stream metabolism data does not necessarily provide a simpler 

alternative to raw DO data, it enriches our understanding by offering detailed insights into the 

dynamics of DO production and consumption through the lenses of gross primary productivity 

(GPP) and ecosystem respiration (ER). This approach allows for a more granular examination of 

ecological processes in streams, highlighting the intricate balance between autotrophic and 

heterotrophic activities. Stream metabolism has been found to be controlled by light (Bernhardt 

et al., 2018), flow (Roley et al., 2014), nutrient availability (Hoellein et al., 2013), and human 

impacts (Blaszczak et al., 2019). 

One of the central concepts of stream metabolism is the dynamic between light exposure 

and the generation of oxygen by primary producers through photosynthesis. The availability of 

light is influenced by various stream and watershed characteristics, notably the presence of 

riparian vegetation, which plays a pivotal role in attenuating sunlight, consequently, decreasing 

the photosynthetic potential of aquatic organisms (Bernhardt et al., 2022, Fellows et al., 2006, 

Hill et al., 2001). Beyond vegetation, a stream's geomorphology and geological attributes can 
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affect its clarity and light penetration by influencing sediment suspension and the nature of the 

streambed (Andreadis et al., 2020, Bott 1983). Previous studies have attempted to account for 

stream bed mobilization by quantifying the flow volume or stream power required to displace a 

streams benthic surface (Atkinson et al., 2008, Uehlinger 2006) 

Land use practices adjacent to and within watersheds further drive variability in stream 

metabolism. Land use can impact stream metabolism by changing many of the controlling 

factors, including light, flow, and nutrients. Land use can disproportionality effect GPP or ER. 

Studies have found that photosynthetically active radiation can explain up to 90% of daily 

variation in GPP while changes in nutrient concentrations can largely explain daily variation in 

ER (Mulholland et al., 2001). Changes in the landscape, particularly through urban development, 

significantly alter flow regimes, leading to enhanced variability in nutrients entering streams and 

sediment movement—factors that directly impact metabolic rates and the communities of 

primary producers (Blaszczak et al., 2019, O’Driscoll et al., 2010, Walsh et al., 2005). These 

hydrologic changes can largely be attributed to the spread of impermeable surfaces, as 

extensively documented in literature (Bhaskar et al., 2016, Walsh et al., 2005). Urbanization, in 

particular, leads to increased stream "flashiness," a phenomenon that can displace primary 

producers and cause rapid sediment movement, thus influencing stream metabolism (Blaszczak 

et al., 2019, O’Driscoll et al., 2010, Walsh et al., 2005). Agricultural land use can have similar 

effects as urbanization but can often have elevated nutrients concentrations in comparison to 

streams in urban or highly vegetated watersheds (Bernot et al., 2010, Griffiths et al., 2013). 

Hydrologic disturbances, characterized by significant changes in water discharge, are 

critical factors influencing the metabolic dynamics of stream ecosystems. Early research by 
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Young & Huryn (1996) highlighted the potential negative impacts of discharge variability on 

stream metabolism, setting the stage for more detailed investigations. Uehlinger (2000) furthered 

this work by providing a structured framework for identifying hydrologic disturbances and 

examining their effects on stream metabolism, emphasizing the importance of considering the 

unique hydrologic attributes of different regions. Bernhardt et al. (2018) discusses the multitude 

of possible outcomes of flow events depending on water velocity, turbidity, and antecedent 

conditions. Bernhardt et al. (2018) notes floods can regulate spatial and temporal patterns of 

many ecological processes by inputting or removing organic matter. Roley et al. (2014) showed 

that by restoring an agricultural floodplain, thus decreasing average flow velocity streams can 

become more resistant to flow events.  

Recent studies have begun to emphasize the importance of resistance and recovery as key 

metrics to evaluate how stream metabolism responds to and recovers from disturbances. 

Resistance reflects the degree to which an ecosystem's metabolic rates remain stable in the face 

of disturbances, indicating its robustness. Conversely, recovery indicates the ecosystem's ability 

to return to its original metabolic state post-disturbance, capturing the speed and efficiency of its 

recovery. These concepts are pivotal in understanding the adaptability of stream ecosystems to 

environmental changes, yet their application in the context of varying land uses and hydrologic 

disturbances remains underexplored. Studies focusing on metabolic responses to storm events 

have published a varying range of results. Reisinger et al. (2017) showed metabolic responses to 

large storms hardly differ in urban catchments, Qasem et al. (2022) discussed how wastewater 

treatment plants can cause GPP and ER to increase during flood events, and O’Donnell & 

Hotchkiss (2022) displayed a relationship between the magnitude of isolated flow events and 

GPP resistance. 
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Work to bridge these competing metabolic drivers is still needed, particularly when 

considering the complex interconnections between land use and stream metabolism, an area less 

developed within aquatic ecology (Alberts et al., 2017, Fuß et al., 2017, Young & Huryn 1999). 

The nuanced impacts of hydrologic disturbances, coupled with diverse land uses on stream 

metabolism, are often confined to localized studies and lack a broader synthesis (Griffiths et al., 

2013, Trentman et al., 2022). This oversight raises a critical question: how do stream metabolic 

responses to hydrologic disturbances vary across different land use scenarios? To address this, 

my study aims to quantify these effects by comparing stream metabolism across various degrees 

of watershed urbanization and assessing the role of riparian vegetation. I propose two 

hypotheses: (H1) Stream metabolism’s resistance to disturbances decreases with increased 

anthropogenic land use and larger hydrologic disturbances; and (H2) Higher recovery will be 

related to lower anthropogenic influences during small flow events but will quickly decline as 

flow events increase (Fig. 1). 

 

The graph displays the hypothesized trends in resistance and recovery of stream metabolism 

across varying flow event sizes and land cover—urban influenced, agriculturally influenced, and 

heavily vegetated. It supports hypothesis 1, suggesting a negative correlation between resistance 

and anthropogenic land cover, and hypothesis 2, where higher recovery associated with low 

anthropogenic impact decreases as flow events intensify. Both figures assume GPP and ER will 

respond similarly. 

Figure 1:Visual Representation of Hypotheses 
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2 METHODS 

2.1 Study Sites 

All sites (Fig. 2) were initially modeled for stream metabolism by Appling et al. (2018b), 

with the earliest data spanning from 2008 to 2016. Of these, nine sites continued to be modeled 

by Marzolf et al. (2023), extending the data range from 2016 to 2021. Additionally, I selected 

two sites previously modeled by Appling that were not included in Marzolf's selection (Cornish 

Creek and Nancy Creek at Johnson Ferry), continuing their analysis for the period of 2016 to 

2021. Sites range in watershed size from 10.9 to 491.8 km2 (Table 1). 

 
Figure 2:Site Locations In the Piedmont Physiographic Region 

Pictured are all sites. Colors represent flow conditions on 02/16/2024. Green signifies high flow, 

orange low flow conditions, and red extreme low flow conditions. 
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Table 1:Number of Flow Events Captured Across Multiple Study Sites Ordered by 

Watershed Size (2008-2021). 

This table is ordered by watershed size and contains the number of flow events captured across 

multiple study sites in Georgia (GA), Pennsylvania (PA), North Carolina (NC), Maryland (MD), 

South Carolina (SC), and New Jersey (NJ) over the years 2008-2021. It includes details on the 

state and USGS gage number and watershed area (in square miles) for each site. 

Site  USGS 

Gage 

Number 

Watershed 

area mi^2 

Years 

Modeled 

Events 

captured 

Land    

Cover 

Intrenchment 

Creek, GA 02203700 10.9 2008-2020 20 

Urban 

Proctor 

Creek, GA 02336526 15.7 2007-2021 69 

Urban 

Nancy Creek, 

GA 02336410 23.2 2013-2021 43 

Urban 

South 

River,GA 02203655 23.2 2009-2021 9 

Urban 

Cornish 

Creek, GA 02208493 27.6 2015-2021 50 

Vegetated 

Nancy Creek 

RB, GA 02336360 28.1 2008-2021 51 

Urban 

Nancy Creek 

WW,  GA 02336410 37.5 2008-2021 44 

Urban 

West Branch, 

PA 01480617 55 2008-2021 75 

Even 

Mixed 

Rocky R,  

NC 

 02101726 69.5 2009-2021 34 

Vegetated 

NE Anacostia 

River, MD 01649500 75.0 2008-2020 66 

Urban 

East Branch, 

PA 

 01480870 89.7 2008-2021 99 

Even 

Mixed 

Brandywine, 

PA 

 01481000 288.1 2008-2021 71 

Even 

Mixed 

Enoree River, 

SC 

 02160700 445.1 2008-2021 13 

Vegetated 

Raritan River, 

NJ 

 

01400500 491.8 2008-2021 
54 

Even 

Mixed 
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2.2 Estimating Metabolism 

While numerous models exist to estimate and describe stream metabolism, many utilize 

measurements of DO to distinguish between the processes that produce and consume oxygen in a 

stream. The model I have chosen, the one-station method developed by Odum (1956), 

specifically correlates GPP with factors like stream depth and the availability of sunlight, which 

are crucial for photosynthesis. Similarly, ER is associated with stream depth, which affects 

oxygen availability and consumption by aquatic organisms. Additionally, the model links the 

reaeration constant—a measure of how oxygen moves between water and air—with water 

temperature and oxygen saturation levels.  

Equation 1: Appling et al. (2018a) 
𝑑𝑂𝑖,𝑑

𝑑𝑡
= (

𝐺𝑃𝑃𝑑

𝑍𝑖,𝑑 
 𝑋 

𝑃𝑃𝐹𝐷𝑖,𝑑

𝑃𝑃𝐹𝐷𝑑
) + (

𝐸𝑅𝑑

𝑍𝑖,𝑑
) + 𝑓𝑖,𝑑(𝐾600𝑑)(𝑂𝑠𝑎𝑡𝑖,𝑑 − 𝑂𝑖,𝑑) 

• dOi,d/dt: This is the rate of change of dissolved oxygen concentration at a specific time 

index (i) on a particular day (d). 

• GPPd: Stands for Gross Primary Productivity on day d, which is the amount of oxygen 

produced by photosynthesis per square meter per day. 

• PPFDi,d/PPFDd: This ratio compares the Photosynthetic Photon Flux Density at a 

specific time (i) on day (d) (PPFDi,d) to the daily average PPFD (PPFDd). It reflects how 

light availability at a specific time relates to the average over the day. 

• ERd: Represents the Ecosystem Respiration on day d, the rate at which oxygen is 

consumed by respiration across the ecosystem per square meter per day. 

• 1/zi,d: The inverse of the stream depth at time i on day d, indicating that GPP and ER are 

influenced by the depth of the water. 
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• fi,d(K600d): A function that modifies the daily average gas exchange rate coefficient 

(K600d) to an O2-specific, temperature-specific gas exchange coefficient (KO2i,d,d
−1). 

• (Osati,d - Oi,d): The difference between the theoretical saturation concentration of oxygen 

(Osati,d) — the expected concentration if water and air were at equilibrium — and the 

actual concentration at time i on day d (Oi,d). This difference drives the exchange of 

oxygen with the atmosphere. 

 

To estimate metabolism, I employed the b_Kb_oipi_tr_plrckm.stan variant within the 

StreamMetabolizer R package, adhering to the methodology and statistical procedures outlined 

by Appling et al. (2018a). The StreamMetabolizer package Appling et al. (2018a) provides 

comprehensive tools for analyzing stream metabolism. This variant's core equation models the 

change in oxygen concentration over time, incorporating daily parameters such as GPP, ER, and 

the gas exchange rate coefficient adjusted for the Schmidt number of 600 (K600). These 

parameters, alongside inputs like stream depth, photosynthetic photon flux density, and 

temperature-corrected gas exchange coefficients, facilitate a nuanced analysis of oxygen 

dynamics within aquatic environments. 

This approach leverages a state space time series model to accommodate both observational 

and process errors, enhancing the accuracy of parameter estimation and reducing uncertainty. 

The adoption of the Bayesian Markov Chain Monte Carlo fitting procedure is essential for 

accurately determining the values of GPP, ER, and K600. This method allows me to finely tune 

the model to reflect observed oxygen concentrations and their variations with high precision, 

ensuring that my predictions remain closely aligned with actual biological processes and physical 

conditions in streams. 
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The days I continued to model were for Cornish Creek and Nancy Creek Johnson Ferry, 

specifically between the years of 2017-2021, thus extending Appling et al. (2018b). Each site 

had model parameters previously established by Appling. Both sites had 1000 burn-in steps to 

get the model warmed up and an additional 500 runs saved. To further evaluate the model 

results, the metric Rhat (Gelman-Rubin convergence statistic) was utilized. Appling et al. 

(2018a) states that model performance significantly decreases when Rhat values exceed 1.20, 

and modelers should aim to keep this value as close to 1.00 as possible. Cornish Creek and 

Nancy Creek Johnson Ferry both had Rhat values between 1.00-1.03 for all model runs. 

Furthermore, I employed partial pooling for K600 values across all days I modeled for each 

site. Partial pooling of K600 is informed by a site-specific, piecewise linear relationship between 

K600 and daily discharge, and addresses the complexity and variability inherent in stream 

metabolism studies. This methodological choice, as Appling et al. (2018a) illustrates, mitigates 

the risk of inaccurate parameter estimates, thereby improving overall model precision. 

Additionally, further quality control checks removed all metabolism estimates that were 

biologically impossible. This includes negative GPP or positive ER, or days where the 95% error 

estimate of GPP or ER did not have the correct sign. 

2.3  Depth and DO 

Depth is one parameter in the Stream Metabolizer model, and was estimated from 

discharge data from USGS National Water Information System (NWIS) and the "calc_depth" 

StreamMetabolizer function. This function uses the equation Z=cQf, where Z is depth (m), c (m) 

and f (unitless) are the regionalized hydraulic geometry coefficients, and Q is discharge (m3 s-1) 

Appling et al. (2018b). The “calc_depth” function fixes the coefficients in the above equation at 

c=0.409 and f=0.294 which is based on a global regression Raymond et al. (2012). While long-
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term discrete measurements of discharge and depth were accessible for all sites, offering an 

alternative approach for depth calculation, I opted for the Raymond et al. (2012) methodology to 

ensure uniformity across all sites and throughout the time series whenever regionalized hydraulic 

geometry coefficients were not present. The other key parameter for running StreamMetabolizer 

is the diel DO record, which was also retrieved at 15-minute intervals from the NWIS using the 

dataRetrieval package (DeCicco et al., 2024). 

2.4 Characterizing and Grouping Watershed Land Cover 

As an approximation for land use, I assumed land cover data would adequately represent 

the effects of anthropogenic influence via land use. To accomplish this, land cover for each 

watershed was characterized using the 2021 National Land Cover Database (Dewitz 2023). I 

used the open-source Geographic Information System (QGIS) software, alongside existing 

plugins such as the Watershed Stream Mapper tool. This tool generated a shapefile for each 

watershed at specified USGS stream gage locations. These watershed shapefiles were then 

overlaid onto the land cover data and clipped to match the boundaries of each watershed, 

creating specific land cover files. 

I reclassified land cover into six categories: urbanization, agriculture, vegetation, water, 

wetlands, and other. This reclassification involved grouping land cover characteristics into three 

broad categories. Specifically, urbanization included 'Developed, High Intensity', 'Developed, 

Low Intensity', 'Developed, Medium Intensity', and 'Developed, Open Space'. Agriculture 

comprised 'Cultivated Crops' and 'Hay/Pasture', while vegetation included 'Deciduous Forest', 

'Evergreen Forest', 'Mixed Forest', 'Shrub/Scrub', and 'Herbaceous'. Wetlands were categorized 

into 'Woody Wetlands' and 'Emergent Herbaceous Wetlands', and water was simply classified as 

'Open Water'. Any land cover not fitting into these categories was classified as other. Using the 



11 

newly created land cover classifications, calculated as percentages, each watershed consisted of 

at least 88% of either vegetation, urbanization, or agriculture (Table 2). This means that land 

cover falling into the categories of water, wetlands, or other was largely excluded from further 

consideration. Each site was then labeled as one of three categories: urbanization, even-mixed, or 

vegetation. Sites characterized as urbanization had an urbanization percentage of at least 63%, 

while those characterized as vegetation had a vegetation percentage of at least 50%. Sites 

containing at least 25% of vegetation, urbanization, and agriculture were labeled as even-mixed.  

Table 2: Site Watershed Characteristics 

This table summarizes key watershed characteristics. It includes details on the state, RBI index, 

watershed area (in square miles), and land cover percentages (urban, vegetation, and agriculture) 

for each site. 

Site  RBI %  

Urban 

% 

Vegetation 

% 

Agriculture 

Watershed 

area mi^2 

Land    

Cover 

Nancy Creek, 

GA 0.9602716 84.7 13.3 0.2 23.2 Urban 

South 

River,GA 0.9307987 79.9 18.2 0.4 23.2 Urban 

Intrenchment 

Creek, GA 0.8975408 83 13.6 2.3 10.9 Urban 

Rocky R, NC 0.8659065 11.4 49.4 36 69.5 Vegetation 

Proctor Creek 0.8356924 83.7 13.3 1.5 15.7 Urban 

Nancy Creek 

RB, GA 0.7693709 84.4 13.8 0.2 28.1 Urban 

Nancy Creek 

WW,  GA 0.707486 79.1 19 0.5 37.5 Urban 

NE Anacostia 

River, MD 0.6707848 63.3 24.1 6.9 75 Urban 

Cornish 

Creek, GA 0.5391049 9.9 50.7 27.4 27.6 Vegetation 

Enoree River, 

SC 0.3751936 26.4 52.2 15.6 445.1 Vegetation 

Raritan 

River, NJ 0.3570739 26.4 39.6 24.9 491.8 

Even 

Mixed 

East Branch, 

PA 0.2852599 30.9 37.1 25.9 89.7 

Even 

Mixed 

Brandywine, 

PA 0.2736311 29.8 33.4 32.4 288.1 

Even 

Mixed 

West Branch, 

PA 0.2641431 28.3 33.3 34.1 55 

Even 

Mixed 
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2.5 RBI Index 

To better explain the relationship between watershed land cover and flow regimes I 

calculated the Richards-Baker Flashiness Index (RBI). The Richards-Baker Flashiness Index 

quantifies the variability or "flashiness" of discharge, indicating how rapidly a site responds to 

rainfall events in terms of rising and falling water levels (Baker et al., 2004). The RBI is 

calculated using daily streamflow data, the RBI then sums the absolute values of day-to-day 

changes in streamflow and divides this by the total annual streamflow. A higher RBI suggests a 

more flashy stream with rapid changes in streamflow, while a lower RBI indicates a more stable 

stream with less variation. To provide a mechanistic link between land cover and stream 

metabolism, sites were split into one of two groups based on their RBI value. If a site has an RBI 

value above 0.60 it is considered flashy with sites having lower RBI values than 0.60, being 

classified as non-flashy (Table 2).  

Equation 2: Baker et al. (2004) 

𝑅𝐵𝐼 =  
∑ |𝑄𝑖 − 𝑄𝑖 − 1|

∑ 𝑄𝑖
 

2.6 Selecting Hydrologic Flow Events 

I wanted to identify storm events that were relatively isolated while also allowing for a 

variety of storm events to occur.  To achieve this, I calculated the percent change in the variation 

of daily average discharge using the formula: 

 Equation 3: O’Donnell & Hotchkiss (2022) 

(
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒2− 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒1

𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒1
) × 100 

Where discharge1 is the daily average discharge preceding discharge2. For selection of a flow 

event for further analysis, the criteria required that the percent change in daily variation of 
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average discharge remains below 40% for three consecutive days prior to the event, followed 

immediately by an event where the percent change exceeds 50%, which in turn is followed by 

another three consecutive days where the percent change once again falls below 40%. This 

threshold of up to 40% was chosen to better represent the hydrologic regimes across sites, 

particularly given the highly urbanized watersheds and the flashy flow regimes observed at some 

locations. This criterion also allowed the inclusion of a larger dataset of flow events for analysis. 

While the percent change in daily variation of average discharge can be used to isolate steady 

state conditions, I also calculated flow recurrence intervals to group the flow events. All events 

at a site that were isolated via the pre- and post- flow event criteria were ranked and put into 

quartile groups. This culminated in a total of 698 flow events, with each site having between 9-

99 flow events (Table 1).  This method was validated by visually inspecting the amount and type 

of storms at each site. Out of all the possible thresholds of change in average daily discharge for 

the pre – and post – event conditions, this method produced the widest variety of storm types and 

total storms across sites.    

Out of the 14 sites, 12 have datasets of at least 10 years, with the other two sites having at 

least 7 years of data (Table 1). While it is possible that extreme flow events were not included in 

the flow recurrence intervals due to the flow duration curve being calculated during each site's 

data availability period, the length of the dataset mitigates this. However, it doesn’t mitigate the 

possible impact of extreme changes in climate, which could influence the likelihood of a flow 

event occurring. This could result in wet periods or dry periods overlapping with the flow 

recurrence intervals, which would allow for events to shift up or down flow quartiles. Similarly, 

the distribution of flow events was an issue. I was able to record a multitude of flow events; 

however, the distribution of differing flow events across sites and seasons was not even. Some 
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sites had fewer events of varying storm sizes. However, this is largely mitigated by grouping 

sites by their watershed land cover and avoiding site-to-site comparisons (Table 4). Additionally, 

across all sites, there was no shortage of events in the uppermost quartile and lower third of 

quartiles, allowing for the comparison of large events to smaller ones. 

 

2.7 Calculating Resistance and Recovery  

To calculate resistance, I utilized metrics previously developed by Reisinger et al. (2017) 

and O’Donnell & Hotchkiss (2022). Considering the inherent day-to-day variability in GPP and 

ER, I determined the mean antecedent metabolism using the average of estimates from the three 

days prior to each flow event. To determine the stability of metabolism at baseflow and justify 

the use of three-day averages, I calculated the coefficient of variation (CV) of daily metabolism 

values during both baseflow and three-day periods of non-event conditions. The results showed 

that while CVs were similar, the three-day metabolic averages had more occurrences with lower 

CVs than baseflow periods, indicating greater stability (Appendix). This pattern was consistent 

across all seasons and for both GPP and ER, suggesting that three-day averages provide a more 

stable and representative measure of metabolism than seasonal baseflow means.  

I assessed the metabolic responses to flow disturbances by comparing the pre-event 

metabolic averages to the metabolic rates during and after the event. Resistance, specifically to 

higher flow disturbances, was quantified by estimating the metabolic magnitude of departure (M) 

for GPP and ER (Eq. 4) This was calculated for each flow event as the difference between the 

event's GPP or ER (g O2 m
−2 d−1) and the antecedent mean, designated as Xprior. To clearly 

represent changes in stream productivity, I visualized increases in productivity as positive values, 

and decreases as negative values, regardless of the directionality of the metric. Therefore, I 

multiplied the resistance values for both ER and GPP by -1. This adjustment ensures that an 
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increase in ER, even though it results in more negative values, is visualized positively, aligning 

with increases in GPP. Similarly, decreases are visualized negatively, simplifying the 

interpretation of my results. 

Equation 4: O’Donnell & Hotchkiss (2022) 

𝑀 = 1 − 𝑋_𝑒𝑣𝑒𝑛𝑡/𝑋_𝑝𝑟𝑖𝑜𝑟 

 To evaluate the recovery of GPP and ER, I measured the recovery intervals (RIs), defined 

as the duration, in days, required for metabolic rates to revert to or surpass the average GPP or 

ER observed prior to the event, indicative of a re-establishment of the original environmental 

conditions. If metabolism data was missing for any days when calculating the recovery intervals, 

or if the metabolism never returned to pre-event conditions the flow event was excluded. This 

method for determining recovery follows the approach implemented by O’Donnell & Hotchkiss 

(2022).  15% of all events were removed due to their inability to return to pre-event conditions. 

This was largely due to the size of the dataset, which allowed for a multitude of scenarios where 

metabolism data was either unavailable or influenced by hydrologic conditions during recovery. 

Therefore, I opted to remove those days to avoid over-estimating the time of metabolic recovery. 

2.8 Statistical Analyses 

To answer the first portion of each of my hypotheses, assessing if there is a relationship 

between resistance and recovery to the size of storms, I compared the resistance and recovery 

values to the size of the flow events by using the four quartile groupings of storm event size. I 

used the Kruskal-Wallis test with a statistical threshold of p = 0.05 to test for differences in 

response (i.e., resistance and recovery) between storm event groups. This test determines if at 

least one group is significantly different than another, with groups being one of the flow quartiles 

in this example. This was performed for resistance and recovery of GPP and ER. If the Kruskal-

Wallis test resulted in p-values less than 0.05, that indicates at least one group differs, and the 
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Wilcoxon two-sided rank sum test with the Bonferroni adjustment and a statistical threshold of p 

= 0.05 was used to determine which flow quartiles were significantly different from each other. 

To answer the second portion of my hypothesis, which is that land cover can influence how 

resistant or resilient metabolism is to varying flow events, I tested the relationship between 

resistance and recovery and the land cover categories as well as the RBI flashiness groupings 

using the same statistical approach. 
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3 RESULTS 

3.1 Overall Patterns 

Across all sites I see that high metabolic productivity is related to high dissolved oxygen 

concentrations. Watersheds grouped by land cover had similar median dissolved oxygen and 

metabolism rates within each group (Table 3). Sites in the even-mixed watershed have some of 

the highest median DO levels and some of the highest median GPP. Urban sites typically have 

median DO and GPP values that fall between the even-mixed and vegetated watersheds (Fig. 3). 

The exception for median urban metabolism rates is ER, which has the highest median value out 

of the three watershed groupings. The vegetated watersheds all have very low rates of GPP and 

high rates of ER. These groupings by land cover become even more distinct when looking at net 

ecosystem production (NEP, Table 3). All sites are heterotrophic but to varying degrees. The 

even-mixed sites are the least heterotrophic and contain multiple sites that are almost 

autotrophic, the urban sites are more heterotrophic than the even-mixed sites, and the vegetated 

sites are strongly heterotrophic showing large rates of ecosystem respiration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3:A Comparative Analysis of Daily Dissolved Oxygen and Metabolism Metrics 

Across Sites and Grouped by Watershed Land Cover. 

Median, range, and standard deviations for daily DO levels and metabolism rates (GPP, ER, 

NEP) are summarized for various sites under 'Even-mixed', 'Urban', and 'Vegetated' land cover 

categories. The table emphasizes the differences in stream metabolism associated with different 
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types of land cover, highlighting the ecological responses across a spectrum of environmental 

conditions. 

 
 

 

 

 

 

 

 
Figure 3:Daily Ecosystem Respiration and Gross Primary Production by Land Type 

This figure illustrates the variation in daily ER and GPP across three land cover types: even-

mixed, urban, and vegetation, using the entire dataset. The box plots display the median, 

interquartile range, and outliers. ER values are shown on the left, while GPP values are on the 
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right. Significant differences (p < 0.05, indicated by "bracketed values above the comparisons) 

between land types highlight the impact of land cover on ecosystem metabolism rates. 

3.2 Resistance and Recovery across Flow 

Median GPP resistance to storms ranged from -0.08 for small storms to -0.24 for large 

storms, while median ER resistance ranged from 0.12 for small storms to 0.03 for large storms 

(Table 4). Metabolic resistance across the four defined flow categories—below 25th percentile, 

25th to 50th percentile, 50th to 75th percentile, and above the 75th percentile—varied for GPP 

but not ER (Table 4). GPP resistance exhibited statistically significant differences between the 

resistance to highest flows and each of the lower three quartiles (Fig. 4, p=0.00028, p=0.00035, 

and p=0.01529 when comparing above the 75th percentile to 50-75, 25-50, and below 25 

respectively). GPP resistance to high flows was lower than the other flow categories. Conversely, 

I did not find statistically significant variations in ER resistance across these flow categories 

(Fig. 4).  

 

 

Table 4:Median Resistance and Recovery of GPP and ER in Response to Storm and 

Flood Events Across Watershed Types and Watershed Flashiness. 

This table presents the median resistance of GPP and ER to storms and the median recovery 

times (± standard deviation) to floods for each watershed type and flow event. It also includes 

flood stimulation data, which indicates the frequency with which flow events enhanced GPP or 

ER, shown as a count and percentage of the total floods analyzed per group. For flood 

stimulations, the larger number on the numerator above the percentage is the total amount of 

storms that occurred for each category. 
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To further explore the resistance differentiation in response to flow events, I consolidated 

the data into two groups: those below the 75th percentile and those above. After doing so the 

discrepancy in GPP Resistance was starkly evident, marked by strong significance (p = 2.1e-07), 

while the ER Resistance remained statistically insignificant (p = 0.07, Fig. 5). These results 

indicate that GPP is more strongly influenced by flow while ER seems to be controlled by other 

variables. 

Median GPP recovery to storms ranged from 1 day for large storms to 0 days for small 

storms, while median ER recovery was 0 for all storm sizes (Table 4). Similarly, to resistance, 

metabolic recovery across the four defined flow categories—below 25th percentile, 25th to 50th 

percentile, 50th to 75th percentile, and above the 75th percentile—varied for GPP but not ER. 

Although GPP recovery was slightly different across flow quartiles it was not statistically 

significant (Fig. 6). Only after consolidating flow into either the uppermost or the lower three 

quartiles did I observe a statistically significant difference (Fig. 7, p = 0.00924 GPP recovery, 
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when comparing above the 75th quartile to the consolidation of lower quartiles). GPP recovery 

from high flows was lower (slower) than the smaller flow group. Conversely, I did not find 

statistically significant variations in ER recovery across these flow categories or after 

consolidating flow into two groups (Fig. 7, p = 0.08751 ER recovery). To further assess how 

recovery is related to anthropogenic influences I plotted median GPP and ER recovery values 

against the four flow quartiles for each watershed land cover type (Fig. 8). Results reemphasize 

the findings of the recovery box plots in (Fig. 6), which is that GPP and ER recovery are driven 

by variables other than flow due to the wide variety of responses across watershed types and 

flow quartiles. 

 

Illustrates the resistance of ecosystem respiration (ER) and Gross Primary Production (GPP) to 

varying flow conditions, categorized by percentile ranges. The box plots compare the resistance 

metrics across four flow categories: below 25th percentile, 25th to 50th percentile, 50th to 75th 

percentile, and above 75th percentile. Resistance is expressed as medians, where values further 

from zero indicate a stronger metabolic shift due to flow events; positive values signify 

stimulation and negative values indicate suppression. Statistical significance between categories 

is marked for GPP, revealing differing impacts of flow intensity on production rates. Significant 

differences (p < 0.05, indicated by "bracketed values above the comparisons) between flow 

categories highlight the impact of flow on ecosystem metabolism rates. 

 

 

Figure 4:Resistance of ER and GPP Across Flow Categories. 
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Figure 5:ER and GPP Resistance Across Subgroups Defined by Flow Intensity. 

This figure depicts the resistance of ecosystem respiration (ER) and Gross Primary Production 

(GPP) to flow events, separated into subgroups above and below the 75th percentile of flow 

intensity. Resistance values closer to zero suggest minimal impact, whereas medians further from 

zero indicate a significant shift in metabolism due to flow events; positive resistance denotes 

stimulation and negative indicates suppression. The box plots show variability and outliers 

within each subgroup, and statistical significance is noted, with bracketed p-values indicating 

differences in GPP resistance between the subgroups. 

 

 

 
 

The recovery metrics of ecosystem respiration (ER) and Gross Primary Production (GPP) after 

flow events, categorized into four flow categories: below 25th percentile, 25th to 50th percentile, 

50th to 75th percentile, and above 75th percentile. The recovery is measured by the time it takes 

for ER and GPP to return to baseline levels after a disturbance, with shorter recovery times 

indicating a more resilient ecosystem response. The box plots display variability within each 

subgroup, and significant differences in GPP recovery times are highlighted by the annotated 

bracketed p-values. 

Figure 6:Recovery of ER and GPP across flow categories. 

1 
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Figure 7:Recovery of ER and GPP in Subgroups Based on Flow Intensity. 

The recovery metrics of ecosystem respiration (ER) and Gross Primary Production (GPP) after 

flow events, categorized into subgroups above and below the 75th percentile of flow intensity. 

The recovery is measured by the time it takes for ER and GPP to return to baseline levels after a 

disturbance, with shorter recovery times indicating a more resilient ecosystem response. The box 

plots display variability within each subgroup, and significant differences in GPP recovery times 

are highlighted by the annotated bracketed p-values. 

 

 
Figure 8:Median Recovery of ER and GPP Across Watershed Land Types and Flow 

Quartiles. 

Median recovery times of ecosystem respiration (ER) and gross primary production (GPP) 

following environmental disturbances, across three watershed land types: even-mixed, Urban, 

and Vegetation. Recovery time is quantified by the duration needed for ER and GPP to return to 

pre-disturbance levels, with shorter times indicating a more resilient ecosystem. The scatter plots 

compare the median recovery times within each land type against the four flow quartiles.  
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3.3 Resistance and Recovery Across Land Cover 

Median GPP resistance to storms ranged from -0.11 in urban watersheds to -0.16 in 

vegetated watersheds and -0.22 in even-mixed-use watersheds (Table 4). While median ER 

resistance ranged from 0.10 in vegetated watersheds, 0.10 in urban watersheds, and 0.02 in even-

mixed-use watersheds. I found statistically significant differences for GPP and ER resistance 

between watersheds with mixed land cover and watersheds characterized by urbanization (p = 

7e-06 for GPP resistance; p = 1e-05 for ER resistance, Fig. 9) with urban watersheds having 

higher resistance. However, I did not find any statistically significant differences between urban 

and vegetated watersheds, nor did I see any statistically significant differences between 

vegetated and even-mixed watersheds. Median GPP recovery was different for all watershed 

land cover types ranging from 0 days for urban watersheds, 1 day in vegetated watersheds, and 2 

days for even-mixed watersheds (Table 4).  Median ER recovery was 0 regardless of watershed 

land cover type.  For metabolic recovery the only statistically significant differences were 

between the even-mixed watersheds in comparison to the urban watersheds (p = 2.1e-06 GPP 

recovery; p = 0.004 ER recovery, Fig. 10). I originally hypothesized (Fig. 1) that stream 

metabolism’s resistance to disturbances decreases with increased anthropogenic land use and 

larger hydrologic disturbances. Plotting median resistance values against the four flow quartiles 

for each watershed land cover type indicates that GPP resistance does decreases in relation to 

flow disturbances across sites (Fig. 11). While GPP resistance does decrease, ER resistance is 

shown to increase often being stimulated by flow events regardless of flow event size or 

watershed land cover type (Fig. 11, Table. 4). Overall, I see that the even-mixed watersheds have 

the lowest resistance to flow events as well as take the longest to recover from flow events (Fig. 

11, Fig. 10).  
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Figure 9:Resistance of ER and GPP Across Watershed Land Types. 

Comparing the resistance of ecosystem respiration (ER) and gross primary production (GPP) 

across three watershed land types: even-mixed, urban, and vegetation. Resistance measures the 

deviation of ER and GPP from baseline conditions in response to environmental stressors, with 

positive values indicating stimulation and negative values indicating suppression. The box plots 

display the distribution of resistance values within each land type. Statistical annotations reveal 

significant differences in resistance patterns, particularly in GPP response between even-mixed  

and other land types. Significant differences (p < 0.05, indicated by the "bracketed values above 

the comparisons) between land types highlight the impact of land cover on ecosystem 

metabolism rates. 

 
Figure 10:Recovery of ER and GPP Across Watershed Land Types. 

The recovery times of ecosystem respiration (ER) and Gross Primary Production (GPP) 

following environmental disturbances, across three watershed land types: even-mixed, Urban, 

and Vegetation. Recovery time is quantified by the duration needed for ER and GPP to return to 

pre-disturbance levels, with shorter times indicating a more resilient ecosystem. The box plots 

reveal the range and distribution of recovery times within each land type. Statistically significant 

differences in recovery rates are highlighted, indicating varying resilience among land types. 



26 

Significant differences (p < 0.05, indicated by "bracketed values above the comparisons) 

between land types highlight the impact of land cover on ecosystem metabolism rates. 

 

 
Figure 11:Median Resistance values of ER and GPP Across Watershed Land Types and 

Flow Quartiles. 

Comparisons of ecosystem respiration (ER) and gross primary production (GPP) resistance 

across three watershed land types: even-mixed, urban, and vegetation. Resistance measures the 

deviation of ER and GPP from baseline conditions in response to environmental stressors, with 

positive values indicating stimulation and negative values indicating suppression. The scatter 

plots show median resistance values for each site across each flow category. 
 

 

3.4 Watershed Flashiness vs. Resistance and Recovery 

The results of watershed flashiness in comparison to stream metabolism were very 

similar to resistance and recovery across land cover. The median GPP and ER resistance for the 

groups categorized as flashy was -0.11 and 0.10 with the non-flashy group having median GPP 

and ER resistance values of -0.22 and 0.02 (Table 4). These resistance values are identical as the 

watersheds characterized as urban and even mixed. This trend continues with recovery for GPP 

and ER for between the flashy and non-flashy groups and the even-mixed and urban groups.  

Further, the statistical significance between the flashy and non-flashy watershed groups and 

resistance was strongly significant. (p = 9.1e-07 for GPP resistance; p = 1.1e-05 for ER 

resistance, Fig. 12). Significant differences in watershed flashiness in comparison to GPP and ER 
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recovery were found as well (p = 6.4e-07 for GPP recovery; p = 0.0017 for ER recovery, Fig. 

13). Ultimately, results show watersheds that are characterized as flashy are more resistant and 

recover quicker to flow events than non-flashy watersheds. 

 
Figure 12:Resistance of ER and GPP against Watershed Flashiness 

Compares the resistance of ecosystem respiration (ER) and gross primary production (GPP) 

across watersheds deemed flashy or non-flashy. Resistance measures the deviation of ER and 

GPP from baseline conditions in response to environmental stressors, with positive values 

indicating stimulation and negative values indicating suppression. RBI measures how quickly a 

watersheds hydrograph can change day to day. Watersheds that display volatile hydrographs 

score higher on the RBI index and are considered flashy. The box plots display the distribution 

of resistance values within each watershed type. Statistical annotations reveal significant 

differences in resistance patterns in regard to sites classified as flashy. Significant differences (p 

< 0.05, indicated by the "bracketed values above the comparisons) between land types highlight 

the impact of land cover on ecosystem metabolism rates. 
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Figure 13:Recovery of ER and GPP against Watershed Flashiness. 

Displays the recovery times of ecosystem respiration (ER) and Gross Primary Production (GPP) 

following environmental disturbances, across two watershed land types: Flashy or Non-Flashy. 

Recovery time is quantified by the duration needed for ER and GPP to return to pre-disturbance 

levels, with shorter times indicating a more resilient ecosystem. Flashiness is determined by the 

RBI index. Watersheds that scored high on the RBI were classified as flashy with others being 

non-flashy. The box plots reveal the range and distribution of recovery times within each 

watershed type. Statistically significant differences in recovery rates are highlighted, indicating 

varying resilience among land types. Significant differences (p < 0.05, indicated by "bracketed 

values above the comparisons) between watershed types highlight the impact of stream 

flashiness on ecosystem metabolism rates. 
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4 DISCUSSION 

4.1 Variation in Metabolic Resistance with Flow Intensity 

My hypothesis that there would be a negative correlation between resistance of stream 

metabolism to disturbance events was partly correct. For GPP I found that flow events above the 

75th percentile have lower resistance when compared to events of lesser magnitude (Fig. 5 and 

Fig. 11).  Specifically, flow events in the lower three quartiles have no significant statistical 

differences to each other, but when comparing the lower three quartiles to the upper quartile, 

significant differences appear (p = 2.1e-7 for GPP resistance; Fig. 5). Previous studies that 

compared resistance to flow magnitude have had contrasting results. Both Qasem et al. (2019) 

and Reisinger et al. (2017) found no relationship between flow event size and GPP or ER 

resistance, while Griffiths et al. (2013) found a significant, negative relationship between GPP 

resistance and the magnitude of change in discharge during flow events. Similarly to my 

findings, Griffiths et al. (2013) found a relationship between resistance and flow only for GPP 

and not ER. While ER resistance was not significant across flow quartiles, it did get closer to the 

statistical threshold as flow event size increased (p = 0.07; Fig.5). This result is similar to 

O’Donnell & Hotchkiss (2022) who observed that ER was more resistant than GPP across flow 

events. The result of ER being more resistant than GPP indicates ER is likely responding 

differently to storm events due to it being strongly influenced by organic material, and thus 

might not be as immediately responsive to flow changes as GPP (Roberts et al., 2007, O’Donnell 

& Hotchkiss 2022). Large flow events can easily disrupt the benthic layers where much of the 

respiration activity occurs, but the overall impact may be buffered by the accumulation of new or 

transported organic matter, which allows microbial consumption to continue even after 

disturbance events. Furthermore, ER can be influenced by factors such as temperature and 
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dissolved oxygen levels, which may not vary directly with flow intensity in the short term 

(Bernot et al., 2010). This decoupling between ER and GPP during flow events suggests that 

ER's response mechanisms are more complex and perhaps moderated by longer-term ecological 

processes or legacies of previous disturbances.    

4.2 Recovery Across Flow Categories 

My analysis suggests that recovery in stream metabolism exhibits significant variations 

between flow extremes. Specifically, recovery metrics display marked differences when 

comparing the upper quartile of flow events with the lower third, with statistical significance 

observed in GPP responses (p = 0.0092) but not ER (p = 0.088). For both metrics larger storms 

result in lower recovery (longer recovery, Fig. 7). During high flow events, which are likely 

characterized by scouring processes, benthic materials are removed but may be offset by the 

influx of new organic materials. This dynamic could explain why even though GPP and ER show 

longer recovery times for larger storm events, ER’s median recovery values are identical across 

the studied flow extremes (median RI = 0) which could also explain ER’s statistical 

insignificance as well. Similarly, O’Donnell & Hotchkiss (2022) report multiple instances where 

ER recovery was 0 and their mean ER recovery was 1.1 days. Notably, the range of recovery 

times post-disturbance varies significantly between groups, with higher flows experiencing a 

quicker recovery range (0-24 days) compared to the lower flows (0-41 days). The quicker 

recovery times in the upper quartile may reflect the dual impact of physical disturbance—both 

clearing old benthic layers and introducing new organic substrates, which could facilitate faster 

metabolic recovery (Uehlinger 2006).  

There is a possible bias in this data set due to the removal of events that did not return to 

pre-event conditions. The percentage of events that were removed were 15% of all events. To 
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address the issue of possible under estimation, the use of recovery rates regressed over time 

could remedy this issue. However, doing so comes with different limitations. Regressing 

recovery rates introduces situations where metabolism data may be decreasing after flow events, 

thus allowing for negative recovery times. Regressing recovery rates, also allows for events that 

never returned to pre-event conditions, which may have hit a new equilibrium to be interpreted 

as extremely long recovery times. Serious thought and consideration will be necessary to address 

the issue of possibly biased estimation of metabolism recovery times.   

My findings extend the range of recovery times reported in previous studies, such as those 

by Reisinger et al. (2017) and Qasem et al. (2022), which documented recovery periods ranging 

from 4-18 days and 0.9-9.5 days.  Reisinger et al. (2017) did not find a significant relationship 

between the size of the flow event and the time it takes to recover nor did Qasem et al. (2022). 

The broader range observed in this study underscores the influence of varying stream conditions 

and the scale of disturbance events. Overall, the recovery of stream metabolism to flow 

disturbances is influenced by both the intensity of the event and the pre-existing ecological 

conditions.  

4.3 Land Cover Effects on Metabolic Responses 

When accounting for land cover in my hypothesis, I observed that land cover is 

correlated to the metabolic responses of storm events for GPP resistance and recovery. 

Specifically, even-mixed watersheds exhibit distinctly different responses to storm events for 

resistance and recovery when compared to urban watersheds (Fig. 8, Fig.11, and Table 4). GPP 

in the even-mixed group has a lower resistance and recovery than the other watershed groups 

(even-mixed median GPP resistance = -0.22 and recovery = 2 days, Urban GPP median 

resistance = -0.11 and recovery = 0 days, Vegetated median resistance = -0.16 and recovery = 1 
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day; Table 4). When comparing GPP in the even-mixed watershed to another catchment with 

similar land cover characteristics, we do see some similarities; O’Donnell & Hotchkiss. (2022) 

observed a mean GPP resistance of -0.38 for large, isolated flow events in their mixed-use 

watershed. They also showed a similar average recovery interval with 2.5 days. However, if I 

compare an even-mixed catchment to a catchment that is dominated by agriculture, similarities 

decrease. Trentman et al. (2022) who focused on an agricultural dominated watershed, 

documented an average GPP resistance of -0.59 and a GPP recovery of 3.4 days. Although 

studies focusing on metabolism in agriculturally influenced or mixed-use watersheds are in short 

supply, I do see that GPP responds very differently depending on the amount of agriculture being 

practiced in a given catchment. These differences in agricultural land cover could explain the 

differing metabolic responses between Trentman et al. (2022)’s watershed which is 80% 

agriculture, and this studies agricultural watersheds which are less than 35% agricultural land 

cover.  

Conversely to GPP, I see stronger similarities for ER resistance and recovery across land 

cover types (even-mixed median ER resistance = 0.02 and recovery = 0 days, Urban ER median 

resistance = 0.10 and recovery = 0 days, Vegetated ER median resistance = 0.10 and recovery = 

0 days, Table 4). Often ER recovered quickly and was frequently stimulated across all land cover 

types, similar to that of Roley et al. (2014) and Qasem et al. (2022). When comparing ER 

resistance and recovery values across watersheds with significant agricultural influence, 

similarities are apparent. Notably, O’Donnell & Hotchkiss (2022) recorded an ER resistance of   

-0.09 and a recovery of 1.1 days, aligning closely with Trentman et al. (2022), who reported an 

ER resistance of -0.21 and a recovery of 2.7 days. Other studies in highly urban catchments also 
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found that ER is often more resistant and shows quicker recovery times in comparison to GPP as 

well (Qasem et al., 2022, Reisinger et al., 2017).  

Surprisingly, the resistance for GPP and ER in urban watersheds were not statistically 

different from those of vegetated watersheds (Fig. 9). This is surprising because other studies 

focusing on urban sites show very different results from this study. Reisinger et al. (2017) 

showed that urban streams in Baltimore Maryland have a very low resistance to flow events 

(GPP resistance = -0.79 ER resistance = -0.72) and Qasem et al. (2022) showed metabolism in 

urban streams in Chicago often increase after flow events (GPP resistance = 0.23 ER resistance = 

0.80). Multiple factors could contribute to the lack of observed differences in GPP between 

urban and vegetated watersheds, the first being baseline conditions. Analysis of baseline 

metabolic activity by land cover shows that urban and vegetated watersheds have lower average 

GPP compared to even-mixed sites (Fig. 3). Given that GPP is largely controlled by sunlight 

exposure, this suggests that the urban and vegetated watersheds may share similar riparian 

attributes. This is corroborated by the observation that both groups have low average GPP (Table 

3), while the even-mixed group displays the highest average GPP. The lack of dissimilarities 

between urban and vegetated watersheds could indicate that watershed-wide metrics of land 

cover are not representative of canopy cover over streams (Bernot et al., 2010). My results show 

that the group with the highest average GPP is the least likely to be stimulated by a storm event. 

Taken together, this means baseline conditions are important and might strongly influence 

metabolic resistance for GPP. This process is likely occurring due to the fact that sites with high 

production have more producers to lose than they could gain during a given flow event. 

However, it also suggests that the riparian vegetation, which would typically attenuate light, is 

insufficient, thus not mitigating the impact of streambed scouring and habitat destruction. 
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 It is also possible that a bias in watershed size is affecting the results. Six of the seven 

urban streams have a watershed area equal to or less than 37.2 mi2 (Table 1). Watersheds larger 

than 37.2 mi2 have different land cover classes and can be an order of magnitude larger. These 

differences in watershed size could be driving the results of his study and explain differences 

between land cover groups. Alternatively, if it is not the size of watersheds that is skewing land 

cover comparisons to metabolism, it could be watershed flashiness. While the majority of 

watersheds that are urban can be categorized as a small watershed, all urban watersheds in this 

study have RBI values above 0.60 (Table 2). The only site that is not urban with an RBI above 

0.60 is the site Rocky R and is categorized as vegetated due to land cover percentages. This 

implies that stream flashiness and metabolism are influenced by land cover, but other factors are 

also at play. Studies show that variables contributing to stream flashiness include urbanization, 

road density, proximity to roads, and climate (Gannon et al., 2022).  Although multiple studies 

have found inverse relationships between watershed size and flashiness at the regional scale 

(Baker et al., 2004, McPhillips et al., 2019), recent studies show that watershed size and 

flashiness are not correlated at the national scale (Gannon et al., 2022) 

Interestingly, other studies of urban streams show no significant difference in metabolic 

recovery from my vegetated watersheds either. Reisinger et al. (2017) and O’Donnell & 

Hotchkiss (2022) have shown that urban streams often have high recovery or quick recovery 

times to storms, which is true for my study as well. However, my vegetated watersheds also 

show quick recovery times which is very different than Uehlinger (2006). Uehlinger (2006) 

reported GPP recovery values between 15-25 days for a vegetated headwater catchment. The 

lack of significant statistical differences between my vegetated and urban watersheds might be 

an indication that the scale at which I analyzed land cover (e.g., watershed-scale metrics) might 
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not represent the spatial scale that influences metabolism and storm response. This could be 

remedied by incorporating a riparian metric or by assessing land cover at a more granular scale.  
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5 CONCLUSION 

The goal of this study was to assess the recovery and resistance of GPP and ER to storms 

across watersheds in the Piedmont region. I hypothesized that there would be a negative 

relationship between resistance of stream metabolism to disturbance events and anthropogenic 

land cover. I observed that GPP exhibits significant resistance to high-flow events, particularly in 

even-mixed watersheds where such disturbances often lead to suppressed metabolic activity. 

Conversely, ER shows a varied response, indicating a recovery that is less influenced by flow 

events and more by the ecological characteristics and legacy effects within the watershed. This 

study underscores the complex dynamics between hydrologic events, land cover, and stream 

metabolism, offering novel insights into aquatic ecosystem dynamics.  

My study bridges gaps in understanding the nuanced impacts of land cover on stream 

metabolism. The findings suggest that even-mixed watersheds, with their diverse land cover, 

often display the highest baseline metabolic rates, making them more responsive to storm events. 

I hypothesize the extent of riparian vegetation is possibly the strongest factor in mitigating the 

effects of hydrologic disturbances on metabolic processes. Notably, urban watersheds, while 

characterized by high recovery, did not exhibit significantly different recovery patterns from 

vegetated watersheds, hinting at the potential oversimplification of categorizing land cover types. 

These insights call for a more granular approach in future research, incorporating fine-scale land 

cover assessments and riparian metrics. 

Ultimately, this research lays the groundwork for more refined management of aquatic 

environments. As long-term DO and discharge data become increasingly available, 

understanding the intricacies of stream metabolism across different watersheds will become 

easier. The knowledge gained from this study will inform future research and conservation 
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strategies aimed at quantifying the health of aquatic ecosystems. This will contribute to the 

shared goal of sustaining the integrity and functionality of stream ecosystems in the face of 

increasing disturbances. 
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APPENDICES  

Appendix  

Table 5: CV Results Quantifying Non-Event Flow Daily Metabolism Stability Across 

Seasons. 

Displayed is the average coefficient of variation (CV) calculated for each site during each season 

for GPP and ER. CVs for daily metabolism were calculated at baseflow and during periods that 

qualified as pre-event conditions (Xprior). Out of the 56 entries in this table, GPP during Xprior 

had a lower CV than baseflow 35 times, while ER Xprior had a lower CV than baseflow 31 

times indicating the methodology employed to capture pre-event metabolism is sufficient.  

 
 

 

 

 

Site Site land cover type Season Average CV for ER at baseflow Average CV for GPP at baseflow Average CV for ER at Xprior Average CV for GPP at Xprior
East_Branch_Brandywine_Creek Even Mixed Fall -51.42204 42.13289 -49.16284 42.65415

East_Branch_Brandywine_Creek Even Mixed Spring -45.66797 56.44372 -45.11262 58.12181

East_Branch_Brandywine_Creek Even Mixed Summer -34.71178 33.5061 -33.33345 36.30917

East_Branch_Brandywine_Creek Even Mixed Winter -34.82929 67.23949 -28.31279 67.19643

Brandywine_Creek Even Mixed Fall -45.29313 55.18518 -41.80036 55.17319

Brandywine_Creek Even Mixed Spring -51.21358 48.73222 -48.67519 50.0722

Brandywine_Creek Even Mixed Summer -33.43037 40.04716 -33.02471 43.56602

Brandywine_Creek Even Mixed Winter -43.58069 92.64943 -48.57243 64.70162

West_Branch_Brandywine_Creek Even Mixed Fall -38.34313 41.3622 -38.67447 39.96397

West_Branch_Brandywine_Creek Even Mixed Spring -42.87538 50.87099 -46.1725 53.82874

West_Branch_Brandywine_Creek Even Mixed Summer -29.05364 37.09874 -30.68323 36.50545

West_Branch_Brandywine_Creek Even Mixed Winter -70.80162 56.94623 -46.44743 56.35096

Raritan_River Even Mixed Fall -60.80517 62.16137 -53.61339 62.4448

Raritan_River Even Mixed Spring -47.98133 52.12812 -41.83768 51.63394

Raritan_River Even Mixed Summer -35.32694 44.99151 -36.15131 48.40525

Raritan_River Even Mixed Winter -37.5233 74.63746 -45.48426 65.68572

Nancy_Creek Urban Fall -46.60861 69.92499 -51.3163 71.27258

Nancy_Creek Urban Spring -64.03223 55.46547 -69.78998 54.2435

Nancy_Creek Urban Summer -61.89703 56.31151 -67.76552 58.81889

Nancy_Creek Urban Winter -41.0645 49.45889 -57.13953 40.31682

Nancy_Creek_Rickenbacker Urban Fall -61.11227 57.46252 -54.70003 53.64865

Nancy_Creek_Rickenbacker Urban Spring -65.94086 60.84775 -57.77609 64.31642

Nancy_Creek_Rickenbacker Urban Summer -51.32326 50.83772 -47.26507 47.38772

Nancy_Creek_Rickenbacker Urban Winter -56.20656 59.26798 -47.54972 56.16257

Proctor_Creek Urban Fall -58.61171 66.43694 -54.05496 63.21387

Proctor_Creek Urban Spring -42.75204 44.91791 -35.96049 49.62465

Proctor_Creek Urban Summer -51.1684 46.66929 -44.69594 47.11722

Proctor_Creek Urban Winter -46.28729 66.30122 -39.96369 60.75595

Intrenchment_Cr Urban Fall -49.06372 69.7395 -56.44273 64.71932

Intrenchment_Cr Urban Spring -54.03995 73.73022 -48.61504 66.97763

Intrenchment_Cr Urban Summer -67.64692 56.78869 -58.91958 55.12193

Intrenchment_Cr Urban Winter -48.45714 67.46547 -48.84617 69.95061

South_River Urban Fall -39.25034 48.26888 -38.64254 45.82816

South_River Urban Spring -39.77829 51.60181 -40.20628 46.25326

South_River Urban Summer -40.06532 44.3194 -43.12308 38.4298

South_River Urban Winter -37.84264 56.10941 -38.55343 52.67049

Nancy_Creek_West_Wesley Urban Fall -52.44139 55.88603 -46.07338 48.98666

Nancy_Creek_West_Wesley Urban Spring -40.67433 57.59982 -35.35052 58.40039

Nancy_Creek_West_Wesley Urban Summer -40.67465 46.38797 -35.48895 43.20657

Nancy_Creek_West_Wesley Urban Winter -51.82046 68.02651 -45.4945 67.05817

Northeast_Branch_Anacostia_River Urban Fall -42.13276 52.4224 -40.00381 52.86448

Northeast_Branch_Anacostia_River Urban Spring -45.9299 38.73558 -48.92975 42.91238

Northeast_Branch_Anacostia_River Urban Summer -31.04269 33.87274 -29.40411 36.44692

Northeast_Branch_Anacostia_River Urban Winter -36.60916 49.42585 -38.59883 48.79724

Enoree_River Vegetation Fall -31.21278 107.72929 -30.47364 100.27614

Enoree_River Vegetation Spring -30.30703 54.39505 -31.09501 45.94866

Enoree_River Vegetation Summer -23.33374 112.2763 -25.57888 104.04949

Enoree_River Vegetation Winter -38.84986 64.22481 -50.61077 77.61956

Rocky_R Vegetation Fall -39.85388 44.30032 -39.95799 41.8379

Rocky_R Vegetation Spring -51.43775 73.53426 -50.92278 66.68777

Rocky_R Vegetation Summer -36.8079 48.54127 -38.81555 43.3177

Rocky_R Vegetation Winter -52.02544 88.24821 -47.85018 78.17805

Cornish_Creek Vegetation Fall -27.78181 33.7485 -34.49427 37.48408

Cornish_Creek Vegetation Spring -64.58055 81.00478 -65.88659 74.63569

Cornish_Creek Vegetation Summer -34.7751 35.89553 -30.04431 22.44884

Cornish_Creek Vegetation Winter -38.30115 59.94194 -79.76204 84.08503
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