Characterizing Novel Filovirus Proteins and 3-Deazaneplanocin A Derivatives as Antivirals against Non-Segmented Negative Sense RNA Viruses

Joyce Sweeney Gibbons
Georgia State University

Follow this and additional works at: https://scholarworks.gsu.edu/chemistry_diss

Recommended Citation
doi: https://doi.org/10.57709/22658663

This Dissertation is brought to you for free and open access by the Department of Chemistry at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Chemistry Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact scholarworks@gsu.edu.
Filoviruses belong to a family of RNA viruses that includes deadly emerging zoonotic pathogens such as Ebola and Marburg viruses. A concern of public health is whether recently discovered filoviruses have the potential to infect humans and cause disease. Filoviruses encode proteins that suppress innate immune signaling and this is postulated as a contributing determinant of virulence in animals. Měnglà virus (MLAV), a recently discovered bat filovirus, can infect human cells using a vesicular stomatitis virus (VSV)-MLAV GP pseudotype system. In Chapter 2, we characterize MLAV’s VP35, VP40 and VP24 proteins on their ability to regulate both human and bat type I IFN responses. Our assessment also includes MARV and EBOV protein homologs for points of comparison.
Analogous to its filovirus equivalents, MLAV VP35 and VP40 proteins inhibited type I IFN responses. MLAV VP40 suppressed the IFNβ production pathway, and this is independent of its inhibition on the type I IFN signaling pathway. MLAV VP24 did not behave like either EBOV VP24, an inhibitor of type I IFN, or MARV VP24, an activator of the antioxidant response pathway.

Another critical concern is the lack of approved pan-filovirus therapeutics. Broad-spectrum nucleoside analogs have demonstrated antiviral activity against filoviruses. 3-deazaneplanocin (DzNep) and its brominated derivates (CL123, CL4033 and CL4053) are adenosine analogs and exhibit inhibition of non-segmented negative sense (NNS) RNA viruses. The antiviral effect is through inhibition of the enzyme, S-adenosylhomocysteine hydrolase (SAHase), resulting in obstruction of viral methyltransferase activity and consequently impaired translation of viral mRNA. The D-like-CL4033 and L-like-CL4053 exert antiviral activity against NNS RNA viruses, however the L-isomer, CL4053, has approximately a 1000 fold higher 50 percent inhibitory concentration (IC50) relative to the D-isomer, CL4033, suggesting an alternative antiviral mechanism. In chapter 3 we have elucidated, using VSV as a model NNS RNA virus, mechanisms of how DzNep, CL123, CL4033 and CL4053 exert their antiviral activity in cell culture. Our data indicates that DzNep, CL123 and CL4033 inhibit VSV by preventing viral mRNA cap methylation. A virus selected for CL123-resistance demonstrates cross-resistance against all derivatives, suggesting L-like-CL4053 may function through a similar mechanism of inhibition as the D-like-CL4033.

INDEX WORDS: Filoviruses, Innate immune antagonism, Interferon, Deazaneplanocin derivatives, Non-segmented negative sense RNA viruses, Vesicular Stomatitis Virus
CHARACTERIZING NOVEL FILOVIRUS PROTEINS AND 3-DEAZANEPLANOCIN A DERIVATIVES AS ANTIVIRALS AGAINST NON-SEGMENTED NEGATIVE SENSE RNA VIRUSES

by

JOYCE SWEENEY GIBBONS

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the College of Arts and Sciences Georgia State University 2021
CHARACTERIZING NOVEL FILOVIRUS PROTEINS AND 3-DEAZANEPLANOCIN A DERIVATIVES AS ANTIVIRALS AGAINST NON-SEGMENTED NEGATIVE SENSE RNA VIRUSES

by

JOYCE SWEENEY GIBBONS

Committee Chair: Christopher Basler
Committee: Margo Brinton
Donald Hamelberg
Ming Luo

Electronic Version Approved:

Office of Graduate Studies
College of Arts and Sciences
Georgia State University
May 2021
DEDICATION

This dissertation is dedicated to my parents, Donald and Catherine Sweeney, and my husband, Christopher Gibbons.

To my parents - you are the most amazing and supportive parents. Thank you for encouraging my curiosity, for allowing me to play in your chemistry and physics labs, for reading the newspaper and books to me, for letting me build forts, tree-houses, and bridges in the most ridiculous places and for always believing that I could achieve anything I set my mind to. I am forever grateful. You pushed me to achieve the highest possible academic and personal success. You never once doubted my abilities, even when I failed multiple times. Thank you. I love you guys.

To my husband, Christopher Gibbons. I would not have finished this journey had you not been in my life, thank you. Thank you for unconditionally loving me, for standing by me and thank you for just being you. You have taught me how to love unconditionally and to be a kinder, and more forgiving person, thank you. You are my heart, my soul, and my everything. I am eternally grateful for your unconditional love, friendship, support, and patience. Cobestie spouses for life. I love you, more. Honk, honk.
ACKNOWLEDGEMENTS

To my Ph.D. mentor, Christopher Basler, thank you for providing me with a rigorous and solid tool kit on how to effectively do science. Your training has been invaluable, and I could not have asked for a better scientific mind to guide me. Thank you for your patience, your encouragement, and your dedication in helping me get started on my science journey.

To my dissertation committee - Margo Brinton, Donald Hamelberg, and Ming Luo - thank you for your guidance and valuable scientific contribution to the beginning of my scientific career. In particular, Donald Hamelberg, thank you for listening to me, encouraging me to stick with the program and to ignore the white-noise. Your guidance was most valuable and uplifting.

To the Basler Lab members, thank you for years of support, friendship, encouragement and stimulating science conversations. In particular, Caroline Williams, aka Love Bug, your love and friendship are very precious to me. Thank you for being a wonderful and supportive friend. Love Bugs for life.

To my siblings, Nicola McCarthy, Brefne Sweeney, Shane Sweeney and Danielle Bingham, thank you for supporting, encouraging, and loving me. I am fortunate to have siblings who care and love me the way you do. I love you guys.
# TABLE OF CONTENTS

ACKNOWLEDGEMENTS ........................................................................................................ V

LIST OF TABLES ................................................................................................................ XI

LIST OF FIGURES ................................................................................................................. XII

LIST OF ABBREVIATIONS .................................................................................................... XIV

1 INTRODUCTION ................................................................................................................ 1

1.1 Filoviruses ..................................................................................................................... 1

1.1.1 Taxonomic classification .......................................................................................... 1

1.1.2 History of outbreaks ............................................................................................... 2

1.1.3 Natural reservoirs ................................................................................................... 6

1.1.4 Structure and composition ...................................................................................... 8

1.1.5 Genome organization and proteins products ......................................................... 9

1.1.6 Life cycle: entry, transcription, replication, and egress ....................................... 16

1.1.7 Broad-spectrum nucleoside analog inhibitors ....................................................... 18

1.2 Host signaling pathways and Filovirus interactions .................................................... 24

1.2.1 Type I IFN pathway ............................................................................................... 24

1.2.2 Filovirus antagonism of the type I IFN pathway .................................................. 26

1.2.3 MARV VP24 activation of the ARE pathway ......................................................... 29

1.3 VSV: A prototype NNS RNA virus ............................................................................. 30

1.3.1 VSV genome and L protein organization ............................................................. 30
2 IMPACT OF MĚNGLÀ VIRUS PROTEINS ON HUMAN AND BAT INNATE IMMUNE PATHWAYS

2.1 Author figure contributions

2.2 Abstract

2.3 Importance

2.4 Introduction

2.5 Materials and Methods

2.5.1 Cells and viruses

2.5.2 Plasmids

2.5.3 Cytokines

2.5.4 IRF3 Phosphorylation assay

2.5.5 IFNβ and ISG54 promoter-reporter gene assays

2.5.6 IFNβ reporter gene assay in the presence of a Jak1/Jak2 inhibitor

2.5.7 Measurements of endogenous gene expression

2.5.8 ARE reporter assay

2.5.9 Co-immunoprecipitation assays

2.5.10 Western blot analysis

2.5.11 VP40 Budding Assay

2.5.12 Statistics
2.6 Results .......................................................................................................................... 42

2.6.1 MLAV VP35 blocks virus-induced IFNβ promoter activation in both human and bat cells. .............................................................................................................. 42

2.6.2 MLAV VP35 protein inhibits phosphorylation of PKR in human cells. 47

2.6.3 MLAV VP40 protein inhibits responses to type I IFN in both human and bat cells. ........................................................................................................................ 48

2.6.4 MLAV and MARV VP40 bud with similar efficiencies from human and bat cells. ..................................................................................................................................... 54

2.6.5 MLAV VP40 and EBOV VP24 inhibition of IFNβ promoter activation occur independently of Jak-STAT signaling. ........................................ 56

2.6.6 MLAV VP24 fails to interact with Keap1 or activate ARE gene expression due to the absence of a Keap1-interacting K-loop. 59

2.6.7 MLAV VP35 and VP40 maintain their ability to inhibit the IFN response in the presence of other viral proteins. ..................................................... 63

2.7 Discussion .................................................................................................................... 67

2.8 Acknowledgments ........................................................................................................ 73

3 MECHANISMS OF ANTI-VESICULAR STOMATITIS VIRUS ACTIVITY OF DEAZANEPLANOCIN AND ITS 3-BROMINATED ANALOGUES......................... 74

3.1 Author figure contributions ......................................................................................... 74

3.2 Abstract....................................................................................................................... 74
3.3 Introduction........................................................................................................... 75

3.4 Materials and Methods.......................................................................................... 77

3.4.1 Compounds ......................................................................................................... 77

3.4.2 Cell culture, compound treatments and virus infections............................... 77

3.4.3 Plaque assays........................................................................................................ 77

3.4.4 Determining IC50 and CC50 values...................................................................... 78

3.4.5 Selection of a CL123-resistant VSV................................................................. 78

3.4.6 Viral genome amplification and sequencing.................................................... 78

3.4.7 Determining m7G capped viral mRNA levels.................................................... 79

3.4.8 Quantifying viral RNA synthesis........................................................................ 80

3.4.9 Pulse-chase analysis of viral protein synthesis................................................ 80

3.4.10 Polysome profiling............................................................................................. 81

3.4.11 Experimental design and statistics................................................................. 81

3.5 Results ..................................................................................................................... 81

3.5.1 Neplanocin analogs are potent inhibitors of WT-VSV-GFP......................... 81

3.5.2 VSV\textsuperscript{R} demonstrates cross-resistance to all neplanocin derivatives. 83

3.5.3 VSV\textsuperscript{R} possesses a mutation in the CTD of the L protein. .......... 86

3.5.4 Neplanocin congeners modestly impact VSV transcription........... 89
3.5.5  VSV protein expression is impaired in the presence of neplanocin like compounds. ................................................................. 91

3.5.6  CL123 diminishes parental VSV mRNA cap methylation and RNA association with polysomes ................................................. 92

3.6  Discussion ........................................................................................................ 97

3.7  Acknowledgments ............................................................................................ 101

4  DISCUSSION AND FUTURE DIRECTIONS ................................................. 101

4.1  Characterizing novel Filovirus proteins ....................................................... 101

4.2  DzNep derivatives as antivirals against NNS RNA viruses .................... 106

4.3  Concluding remarks ....................................................................................... 111

REFERENCES ............................................................................................................. 112
LIST OF TABLES

Table 1.1.1 Taxonomy of the Filoviridae family ................................................................. 2
Table 1.2.1 Chronological cases and outbreaks of Marburgviruses .............................. 3
Table 1.3.2 Chronological cases and outbreaks of Ebolaviruses ................................. 5
Table 1.4.1 Protein functions .......................................................................................... 15
Table 3.1.1 Identified mutations, location on the viral genome and allele frequency. .... 88
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Structure and protein composition of the virion.</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Genome organization with bipartite promoters.</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>EBOV life cycle.</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>Structures of nucleoside analogs with <em>in vitro</em> and <em>in vivo</em> activity against EBOV and MARV.</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>Structure of adenosine and SAHase inhibitors.</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>Proposed mechanism of antiviral inhibition by neplanocin analogs.</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>Type I IFN pathway inhibition by filovirus VP35, VP40 and VP24.</td>
<td>29</td>
</tr>
<tr>
<td>8</td>
<td>VSV genome organization.</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>VSV L protein domain organization.</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>MLAV VP35 blocks virus-induced IFNβ promoter activation in both human and bat cells.</td>
<td>46</td>
</tr>
<tr>
<td>11</td>
<td>MLAV VP35 inhibits Sendai virus-induced PKR activation.</td>
<td>48</td>
</tr>
<tr>
<td>12</td>
<td>MLAV VP40 protein inhibits responses to type I IFN in both human and bat cells.</td>
<td>52</td>
</tr>
<tr>
<td>13</td>
<td>MLAV VP40 protein inhibits type I IFN induced gene expression and Jak-STAT signaling.</td>
<td>54</td>
</tr>
<tr>
<td>14</td>
<td>MLAV VP40 is capable of forming virus-like particles from both human and bat cells.</td>
<td>55</td>
</tr>
<tr>
<td>15</td>
<td>MLAV VP40 blocks Sendai virus-induced IFNβ promoter activation independently of Jak-STAT signaling.</td>
<td>58</td>
</tr>
</tbody>
</table>
Figure 16 MLAV VP24 does not interact with human or bat KEAP1 or activate the ARE promoter. ............................................................ 60

Figure 17 Transfer of the MARV K-Loop sequence confers on MLAV VP24 interaction with Keap1 and activation of ARE signaling............................. 62

Figure 18 MLAV VP35 and VP40 maintain their ability to inhibit the IFN response in the presence of other viral protein.................................................. 66

Figure 19 Neplanocin analogs are potent inhibitors of WT-VSV-GFP......................... 83

Figure 20 VSVR exhibits cross-resistance to all four neplanocin analogs.................. 85

Figure 21 VSVR is impaired early during infection.................................................. 85

Figure 22 VSVR mutation I1905R is located in the CTD of the L protein............... 87

Figure 23 Analogs have a minor impact on transcription........................................ 90

Figure 24 Each of the compounds inhibits WT-VSV-GFP protein expression....... 92

Figure 25 CL123 decreases levels of VSV mRNA cap methylation...................... 95

Figure 26 CL123 diminishes the amount of WT-VSV-GFP RNA associated with polysomes......................................................................................... 97
LIST OF ABBREVIATIONS

3-Deazaneplanocin (DzNep)
Antioxidant response element (ARE)
Base pairs (bp)
Bombali ebolavirus (BOMV)
Bundibugyo ebolavirus (BDBV)
Complementary deoxyribonucleic acid (cDNA)
Cyclic GMP-AMP (cGAS)
Democratic Republic of Congo (DRC)
Deoxyribonucleic acid (DNA)
Double-strand ribonucleic acid (dsRNA)
Ebola virus disease (EVD)
Glycoprotein (GP)
Huángjiāo thamnovirus (HUJV)
Inclusion bodies (IBs)
Interferon (IFN)
Interferon alpha/beta receptor 1 (IFNAR1)
Interferon alpha/beta receptor 2 (IFNAR2)
Interferon beta (IFNβ)
Interferon inhibitory domain (IID)
Interferon regulatory factor (IRF)
Interferon stimulated gene factor 3 (ISGF3)
Interferon stimulated genes (ISGs)
Janus kinase 1 (Jak1)
Karyopherin alpha (KPNA)
Kelch-like ECH-associated protein 1 (Keap1)
Kilobases (kb)
Kilodaltons (kDa)
Large protein (L protein)
Leader (le)
Lloviu virus (LLOV)
Marburg virus (MARV)
Marburg virus disease (MVD)
Měnglà virus (MLAV)
Messenger ribonucleic acid (mRNA)
Methyltransferase domain (MTD)
Newcastle disease virus (NDV)
Nicotinamide adenine dinucleotide (NAD+)
Nipah virus (NiV)
Non-human primates (NHPs)
Non-segmented negative sense (NNS)
Nuclear factor erythroid 2-related factor 2 (Nrf2)
Nucleocapsid (NC)
Nucleoprotein (NP)
Open reading frame (ORF)
Pairwise sequence comparison (PASC)
Promoter element 1 (PE1)
Promoter element 2 (PE2)
Protein kinase, interferon-inducible double stranded RNA dependent activator (PACT)
Ravn virus (RAVV)
Respiratory syncytial virus (RSV)
Reston ebolavirus (RESTV)
Reverse transcription-quantitative polymerase chain reaction (RT-qPCR)
Ribonucleic acid (RNA)
Ribonucleoprotein (RNP)
RNA-dependent RNA polymerase (RdRp)
Sendai Virus (SeV)
Signal transducer and activator of transcription 1 (STAT1)
Signal transducer and activator of transcription 2 (STAT2)
Single-strand ribonucleic acid (ssRNA)
small soluble GP (ssGP)
soluble GP (sGP)
Stimulator of IFN genes (STING)
Sudan ebolavirus (SUDV)
Tai Forest ebolavirus (TAFV)
Trailer (tr)
Transcription start signal (TSS)
Tyrosine kinase 2 (Tyk2)
United Kingdom (UK)
United States of America (USA)
Universal Interferon (UIFN)
Untranslated regions (UTRs)
Vesicular Stomatitis Virus (VSV)
Viral protein 24 (VP24)
Viral protein 30 (VP30)
Viral protein 35 (VP35)
Viral protein 40 (VP40)
Xīlang striavirus (XILV)
Zaire ebolavirus (EBOV)
1 INTRODUCTION

1.1 Filoviruses

1.1.1 Taxonomic classification

Of the order Mononegavirales, the Filoviridae family contains six phylogenetically related genera (Table 1.1) [1, 2]. Genome nucleotide sequences can diverge between 55-58% to be considered part of a genus, and 23-26% divergence can occur at the species level [3]. Of the six genera, Ebolavirus contains the most species, Bombali ebolavirus (BOMV), Bundibugyo ebolavirus (BDBV), Reston ebolavirus (RESTV), Sudan ebolavirus (SUDV), Tai Forest ebolavirus (TAFV), and Zaire ebolavirus (EBOV) [2]. Marburgvirus contains one species, Marburg marburgvirus; however, there are two distinct lineages, Marburg virus (MARV) and Ravn virus (RAVV), with approximately 20% genetic divergence in their genome sequences [2, 4, 5]. The remaining virus species were discovered within the last decade, with viral RNA and not infectious virus being isolated [6-10]. Cuevavirus contains one virus species, Lloviu virus (LLOV) [9, 10]. LLOV RNA was isolated from Schreiber’s bats that had died in Cueva del Lloviu, Spain [10]. Recently, novel fish filoviruses were found in China, resulting in the creation of two more genera, Striavirus, containing the species Xīlang striavirus (XILV) and Thamnovirus containing the Huángjiāo thamnovirus (HUJV) species [8]. The latest proposed addition to the Filoviridae family is the Dianlovirus genus, which contains one species, Měnglà virus (MLAV) [6]. The near complete MLAV RNA genome was isolated from the liver of a Rousettus bat in China [6].
Table 1.1.1 Taxonomy of the Filoviridae family

<table>
<thead>
<tr>
<th>Order</th>
<th>Family</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mononegavirales</td>
<td>Filoviridae</td>
<td>Cuevavirus</td>
<td>Lloviu virus (LLOV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dianlovirus</td>
<td>Mēnlà virus (MLAV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ebolavirus</td>
<td>Bombali ebolavirus (BOMV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bundibugyo ebolavirus (BDBV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reston ebolavirus (RESTV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marburgvirus</td>
<td>Marburg marburgvirus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Marburg virus (MARV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Ravn virus (RAVV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Striavirus</td>
<td>Xīlang striavirus (XILV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thamnovirus</td>
<td>Huángjiāo thamnovirus (HUJV)</td>
</tr>
</tbody>
</table>

1.1.2 History of outbreaks

The first documented filovirus outbreak occurred in 1967 in laboratory workers in Marburg and Frankfurt, Germany, and Belgrade, Serbia (Table 1.2.1) [5, 11, 12]. After ruling out all other known infectious pathogens with the capacity to cause hemorrhagic fever, it was determined that a new virus had been discovered, MARV [11, 12]. Ironically, the MARV-infected laboratory workers were isolating tissue from imported Ugandan African green monkeys (Chlorocebus tantalus) for use in poliomyelitis vaccine production.
Over the next fifty years, sporadic outbreaks of MARV and RAVV infections occurred predominantly within sub-Saharan African countries (Table 1.2.1) [5, 13]. The largest outbreaks of Marburgviruses occurred in the Democratic Republic of the Congo (DRC) (1998-2000) and Angola (2004-2005) with both outbreaks having high case fatality rates of 83 and 90%, respectively [4, 14]. Several cases were reported outside of African countries; however, both the United States of America (USA) and Netherlands’ cases originated due to an infection in Uganda [15, 16], and the isolated Russian case occurred due to a laboratory infection [17].

**Table 1.2.1 Chronological cases and outbreaks of Marburgviruses**

<table>
<thead>
<tr>
<th>Year</th>
<th>Country</th>
<th>Species</th>
<th>Reported cases</th>
<th>Deaths</th>
<th>% Fatality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1967</td>
<td>Germany and Serbia¹</td>
<td>MARV</td>
<td>32</td>
<td>7</td>
<td>22%</td>
</tr>
<tr>
<td>1975</td>
<td>South Africa</td>
<td>MARV</td>
<td>3</td>
<td>1</td>
<td>33%</td>
</tr>
<tr>
<td>1980</td>
<td>Kenya</td>
<td>MARV</td>
<td>2</td>
<td>1</td>
<td>50%</td>
</tr>
<tr>
<td>1987</td>
<td>Kenya</td>
<td>RAVV</td>
<td>1</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>1990</td>
<td>Russia²</td>
<td>MARV</td>
<td>1</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>1998-2000</td>
<td>DRC</td>
<td>MARV/RAVV</td>
<td>154</td>
<td>128</td>
<td>83%</td>
</tr>
<tr>
<td>2004-2005</td>
<td>Angola</td>
<td>MARV</td>
<td>252</td>
<td>227</td>
<td>90%</td>
</tr>
<tr>
<td>2007</td>
<td>Uganda</td>
<td>MARV/RAVV</td>
<td>4</td>
<td>1</td>
<td>25%</td>
</tr>
<tr>
<td>2008</td>
<td>USA³</td>
<td>MARV</td>
<td>1</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>2008</td>
<td>Netherlands³</td>
<td>MARV</td>
<td>1</td>
<td>1</td>
<td>50%</td>
</tr>
<tr>
<td>2012</td>
<td>Uganda</td>
<td>MARV</td>
<td>15</td>
<td>4</td>
<td>27%</td>
</tr>
<tr>
<td>2014</td>
<td>Uganda</td>
<td>MARV</td>
<td>1</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>2017</td>
<td>Uganda</td>
<td>MARV</td>
<td>3</td>
<td>3</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table adapted from [13] and [https://www.cdc.gov/vhf/marburg/outbreaks/chronology.html#eleven](https://www.cdc.gov/vhf/marburg/outbreaks/chronology.html#eleven).

¹ MARV infected African green monkeys imported from Uganda; ² Laboratory infection; ³ Travelers returning from a cave in Maramagambo forest, Uganda.

In 1976, two outbreaks of a “Marburg-Like Virus Disease” occurred in southern Sudan and the DRC (Table 1.3.2) [18-22]. Based on an antigenic comparison, it was determined that this new infectious agent was distinct from MARV. In fact, each outbreak was caused by two different species of *Ebolavirus*, EBOV and SUDV [18, 19, 21, 22].
EBOV is the most commonly occurring species, and most outbreaks have occurred in countries within the equatorial belt of Africa [13, 23]. Since the first documented case in 1976, the DRC has had 12 outbreaks constituting greater than a third of the total outbreaks [13]. In 2018, a mere week after the ninth DRC outbreak was declared over, the North Kivu province of northeastern DRC experienced the second deadliest EBOV outbreak with 3,470 reported cases and a 66% fatality rate [13]. The deadliest EBOV outbreak occurred over a period of two years, 2014-2016, with an estimated 28,652 suspected and reported cases and an approximately 40% case fatality rate [13]. The magnitude of this outbreak was enormous and also unusual in that the most affected countries of Liberia, Sierra Leone, and Guinea are all located on the western coast of Africa. The 2014 outbreak also exported cases to Nigeria, Mali, the USA, Senegal, the United Kingdom (UK), Spain, and Italy [13]. In February 2021, two new outbreaks of EBOV were announced. In Guinea, as of mid-March, there have been 18 confirmed cases and 9 deaths. Based on sequencing of the virus genome, it is believed that this outbreak is the result of a dormant virus infection from an individual previously infected in the 2014-2016 EBOV outbreak [24, 25]. In the DRC, as of early March, 11 confirmed cases and 4 deaths have been reported. Similar to the ongoing Guinea outbreak, it is thought that the DRC outbreak was originated by a persistently infected individual from the 2018-2020 DRC outbreaks [26, 27].
Table 1.3.2 Chronological cases and outbreaks of Ebolaviruses

<table>
<thead>
<tr>
<th>Year</th>
<th>Country</th>
<th>Species</th>
<th>Reported cases</th>
<th>Deaths</th>
<th>% Fatality</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>Sudan</td>
<td>SUDV</td>
<td>284</td>
<td>151</td>
<td>53%</td>
</tr>
<tr>
<td>1976</td>
<td>DRC</td>
<td>EBOV</td>
<td>318</td>
<td>280</td>
<td>88%</td>
</tr>
<tr>
<td>1976</td>
<td>England&lt;sup&gt;1&lt;/sup&gt;</td>
<td>EBOV</td>
<td>1</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>1977</td>
<td>DRC</td>
<td>EBOV</td>
<td>1</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>1979</td>
<td>Sudan</td>
<td>SUDV</td>
<td>34</td>
<td>22</td>
<td>65%</td>
</tr>
<tr>
<td>1979</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979</td>
<td>Philippines &amp; USA&lt;sup&gt;2&lt;/sup&gt;</td>
<td>RESTV</td>
<td>7</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>1992</td>
<td>Italy&lt;sup&gt;3&lt;/sup&gt;</td>
<td>RESTV</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>1994</td>
<td>Gabon</td>
<td>EBOV</td>
<td>51</td>
<td>31</td>
<td>61%</td>
</tr>
<tr>
<td>1994</td>
<td>Cote d'Ivoire</td>
<td>TAFV</td>
<td>1</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>1995</td>
<td>DRC</td>
<td>EBOV</td>
<td>315</td>
<td>254</td>
<td>81%</td>
</tr>
<tr>
<td>1996</td>
<td>Gabon</td>
<td>EBOV</td>
<td>31</td>
<td>21</td>
<td>68%</td>
</tr>
<tr>
<td>1996</td>
<td>Gabon</td>
<td>EBOV</td>
<td>60</td>
<td>45</td>
<td>75%</td>
</tr>
<tr>
<td>1996</td>
<td>South Africa</td>
<td>EBOV</td>
<td>2</td>
<td>1</td>
<td>50%</td>
</tr>
<tr>
<td>1996</td>
<td>Philippines &amp; USA&lt;sup&gt;3&lt;/sup&gt;</td>
<td>RESTV</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>1996</td>
<td>Russia&lt;sup&gt;1&lt;/sup&gt;</td>
<td>EBOV</td>
<td>1</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>2000</td>
<td>Uganda</td>
<td>SUDV</td>
<td>425</td>
<td>224</td>
<td>53%</td>
</tr>
<tr>
<td>2001</td>
<td>Gabon</td>
<td>EBOV</td>
<td>65</td>
<td>53</td>
<td>81%</td>
</tr>
<tr>
<td>2001</td>
<td>Republic of the Congo</td>
<td>EBOV</td>
<td>59</td>
<td>44</td>
<td>75%</td>
</tr>
<tr>
<td>2003</td>
<td>Republic of the Congo</td>
<td>EBOV</td>
<td>143</td>
<td>128</td>
<td>89%</td>
</tr>
<tr>
<td>2003</td>
<td>Republic of the Congo</td>
<td>EBOV</td>
<td>35</td>
<td>29</td>
<td>83%</td>
</tr>
<tr>
<td>2004</td>
<td>Sudan</td>
<td>SUDV</td>
<td>17</td>
<td>7</td>
<td>41%</td>
</tr>
<tr>
<td>2004</td>
<td>Russia&lt;sup&gt;1&lt;/sup&gt;</td>
<td>EBOV</td>
<td>1</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>2005</td>
<td>Republic of the Congo</td>
<td>EBOV</td>
<td>12</td>
<td>10</td>
<td>83%</td>
</tr>
<tr>
<td>2007</td>
<td>DRC</td>
<td>EBOV</td>
<td>264</td>
<td>187</td>
<td>71%</td>
</tr>
<tr>
<td>2007</td>
<td>Uganda</td>
<td>BDBV</td>
<td>131</td>
<td>42</td>
<td>32%</td>
</tr>
<tr>
<td>2008</td>
<td>Philippines&lt;sup&gt;2,4&lt;/sup&gt;</td>
<td>RESTV</td>
<td>6</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>2008</td>
<td>DRC</td>
<td>EBOV</td>
<td>32</td>
<td>15</td>
<td>47%</td>
</tr>
<tr>
<td>2011</td>
<td>Uganda</td>
<td>SUDV</td>
<td>1</td>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>2012</td>
<td>Uganda</td>
<td>SUDV</td>
<td>11</td>
<td>4</td>
<td>36%</td>
</tr>
<tr>
<td>2012</td>
<td>DRC</td>
<td>BDBV</td>
<td>38</td>
<td>13</td>
<td>34%</td>
</tr>
<tr>
<td>2012</td>
<td>Uganda</td>
<td>SUDV</td>
<td>6</td>
<td>3</td>
<td>50%</td>
</tr>
<tr>
<td>2014</td>
<td>Various countries&lt;sup&gt;5&lt;/sup&gt;</td>
<td>EBOV</td>
<td>28,652</td>
<td>11,325</td>
<td>40%</td>
</tr>
<tr>
<td>2014</td>
<td>DRC</td>
<td>EBOV</td>
<td>69</td>
<td>49</td>
<td>71%</td>
</tr>
<tr>
<td>2017</td>
<td>DRC</td>
<td>EBOV</td>
<td>8</td>
<td>4</td>
<td>50%</td>
</tr>
<tr>
<td>2018</td>
<td>DRC</td>
<td>EBOV</td>
<td>54</td>
<td>33</td>
<td>61%</td>
</tr>
<tr>
<td>2018</td>
<td>DRC, Uganda</td>
<td>EBOV</td>
<td>3,470</td>
<td>2,287</td>
<td>66%</td>
</tr>
<tr>
<td>2020</td>
<td>DRC</td>
<td>EBOV</td>
<td>130</td>
<td>55</td>
<td>42%</td>
</tr>
<tr>
<td>2021</td>
<td>Guinea&lt;sup&gt;6&lt;/sup&gt;</td>
<td>EBOV</td>
<td>18</td>
<td>9</td>
<td>50%</td>
</tr>
<tr>
<td>2021</td>
<td>DRC&lt;sup&gt;5&lt;/sup&gt;</td>
<td>EBOV</td>
<td>11</td>
<td>4</td>
<td>36%</td>
</tr>
</tbody>
</table>

Table adapted from [13] and https://www.cdc.gov/vhf/ebola/outbreaks/history/chronology.html#thirtyfour.

<sup>1</sup> Laboratory infection; <sup>2</sup> Asymptomatic; <sup>3</sup> RESTV contaminated monkeys <sup>4</sup> RESTV contaminated pigs <sup>5</sup> Guinea, Liberia, Sierra Leone, Italy, Mali, Nigeria, Senegal, Spain, UK, USA <sup>6</sup>Ongoing outbreaks
1.1.3 Natural reservoirs

Filoviruses are zoonotic viruses, and it is of significant public interest to identify the natural reservoir. The natural reservoir is critical for the virus’s environmental maintenance, and presumably, the reservoir species would not succumb to the virus infection and would be capable of virus transmission [28]. Since filoviruses are endemic to African countries, substantial field studies to determine the natural reservoir have been conducted across several African countries, including the DRC [29], Gabon [30-33], Ghana [34, 35], Guinea [36], Kenya [37], Republic of the Congo [32, 33], Sierra Leone [38], Uganda [39-41], South Africa [42], and Zambia [43, 44].

Bats became a suspected filovirus reservoir for several reasons. Following the 1995 EBOV outbreak in Kikwit, DRC, a study was undertaken to determine if plant and animal life native to Kikwit were susceptible to EBOV infection [45]. Of the 24 plant species, and the 19 animal species, only three different species of bats, Angola-free tailed bat (Tadarida condylura), Little free-tailed bat (Tadarida pumila), and Wahlberg’s epauletted fruit bat (Epomophorus wahlbergi) were capable of being infected, producing virus, and did not appear to show any overt signs of illness [45]. EBOV RNA was found to be present in the bats’ lungs and feces suggesting a potential for virus transmission [45].

In 2007, ten different bat species collected at various Gabon sites were tested for MARV RNA and IgG antibodies. Only one bat species, Egyptian rousette (Rousettus aegyptiacus), a fruit bat typical to many African countries, tested positive for both [31]. Since several outbreaks of MARV are associated with humans entering caves, [14-16, 46, 47] animal species inhabiting caves were of particular interest. In Goroumbwa Mine
(Durba, DRC), 20.5% of the sampled Egyptian rousette fruit bats tested positive for MARV antibodies [29]. Definitive evidence of the Egyptian rousette bat as the bonafide MARV natural reservoir was provided in 2009 when the infectious virus was isolated from five Egyptian rousette bats native to Kitaka Cave (Uganda). Multiple distinct MARV strains were found circulating in the bats, which is consistent with the long-term maintenance of the virus within the species [41]. In 2012, live MARV virus was again isolated from seven Egyptian rousette bats native to Python Cave (Uganda) [40]. MARV RNA was also present in organs (kidneys, colon, lungs, and reproductive tissues) that could potentiate virus dissemination. Increased number of bats with virus infections were observed in older juvenile bats during bi-annual birthing times and these increased number of bat infections coincided with 54/65 or 83% of MARV outbreaks in humans [40]. Recently, infectious MARV was isolated from four Egyptian rousette bats in caves located in Sierra Leone [38]. To date, no west African countries have reported MARV outbreaks; however, this study highlighted the geographic distribution of MARV-infected bats.

The natural reservoir for *Ebolavirus* has yet to be identified [48]. Based on survey studies of infectable species and the presence of *Ebolavirus* antibodies and RNA [30, 32-36, 44, 45, 49-54], a species, or multiple species, of bat is the likely natural reservoir. The latest addition to the *Ebolavirus* genus, BOMV, was discovered in molossid bats (*Chaerephon pumilus* and *Mops condylurus*) [55]. LLOV RNA, the sole species of the genus *Cuevavirus*, was found in Schreiber’s bats (*Miniopterus schreibersii*) [9, 10]. MLAV RNA as well as RNA from unclassified filoviruses were isolated from *Rousettus* and *Eonycteris* genera [6, 56]. Interestingly, HUJV and XILV RNA were found in Actinopterygii
(ray-finned fish) [8]; however, whether these species are natural versus accidental hosts remains to be determined.

1.1.4 Structure and composition

Filoviruses are pleomorphic, enveloped structures with a virion diameter of ~80 nm and an average length of ~1000 nm (Figure 1) [57-65]. EBOV particles can be of three different types: single genome, multi-genome and empty [64]. Particles containing as many as 22 genome copies have been identified, and this genome polyploidy may allow for greater infectivity rates [64, 66, 67]. MARV and EBOV genomes contain a similar number of nucleotides, 19.1 kilobases (kb) and 18.9 kb, respectively [68, 69].

The helical nucleocapsid (NC), ~50 nm in diameter, constitutes the core of the host-derived, lipid envelope and consists of the non-segmented, negative sense (NNS) RNA genome, encapsidated with the nucleoprotein (NP) and four viral structural proteins, viral protein (VP) 24, VP35, VP30 and the RNA-dependent RNA polymerase (RdRp) Large (L) protein [59, 60, 62, 64, 70, 71]. VP24 and VP35 form bridges across the NP coated RNA and help stabilize and condense the NC [59, 64, 70, 72]. The VP30 and L protein are not required for NC assembly but are required for infectivity [61, 62, 64, 73, 74]. The major matrix protein, VP40, decorates the inner-most part of the virion lipid membrane and is indispensable for assembly and release of the virus particle from the host cell [59, 60, 62, 64, 75-78]. The final component of the virion is a class I transmembrane glycoprotein (GP1,2). Homotrimers of GP1,2 are embedded within and protrude out of the exterior portion of the virion lipid membrane and ultimately will be used to bind to and enter into a target host cell [79-83].
1.1.5 Genome organization and proteins products

1.1.5.1 Genome organization

Filovirus genomes encode seven genes, which, depending on the genus, generate seven to nine proteins (Figure 2) [84-91]. The genome is organized as follows, 3'-Leader-NP-VP35-VP40-GP-VP30-VP24-L-Trailer-5' [85, 86]. The leader (le) and trailer (tr) sequences are contained within the untranslated regions (UTRs) of the genomic RNA. These UTRs flank the 3’ and 5’ open reading frames (ORFs) and contain essential sequences and RNA structures for initiation and termination of viral transcription and replication (Figure 2) [85, 86, 89, 90, 92-96]. The 3’ UTR contains the bipartite replication promoter, promoter element 1 (PE1), and promoter element 2 (PE2), and is separated by...
a spacer region that includes the transcription start signal (TSS) [92, 93, 97]. PE1 is predicted to exist as a stable RNA hairpin loop [85, 92, 93, 98]. Immediately downstream of PE1 is the spacer region, the length of which must be a multiple of six (“hexamer phasing”) to allow for replication and transcription [92, 93, 96, 97, 99]. For EBOV and MARV, the PE1 is similarly organized and sized, ranging from 48-55 nucleotides, followed by a varying sized spacer and PE2 regions (Figure 2) [85, 92, 93, 98]. Recently, a LLOV chimeric minigenome (MG) system, was found to be replication competent with the EBOV le and tr sequences but not with the MARV le sequence suggesting that LLOV contains a promoter organization similar to that of EBOV [100].

**Figure 2 Genome organization with bipartite promoters.**

Cartoon representation of EBOV, MARV and MLAV genome organization showing gene order, overlapping genes and protein products. The nucleotide locations of EBOV and MARV promoter element sequences are given in detail. The MLAV promoter region is currently unknown. PE promoter element; Le leader; Tr trailer Promoter figures modified from [92, 93].
The details of the MLAV promoter are currently unknown; presumably, it is similar to other characterized filoviruses given that chimeric MLAV MG replicons containing either MARV or EBOV le and tr sequences had the ability to replicate in vitro [6].

The individual filovirus genes are bordered by highly conserved gene start and end sequences, followed by an intergenic region (IR) or a downstream gene overlap (Figure 2) [85, 86, 98, 101, 102]. A gene overlap occurs when the stop signal of an upstream gene overlaps with the start signal sequence of the adjacent downstream gene. MARV contains one gene overlap at the VP30-VP24 junction, whereas EBOV contains three: VP35-VP40, GP-VP30, and VP24-L [85, 86]. Interestingly, MLAV appears to be a combination of both EBOV and MARV patterns with four gene overlaps occurring at VP35-VP40 (similar to EBOV), VP40-GP (unique to MLAV), VP30-VP24 (similar to MARV) and VP24-L (similar to EBOV) [6]. LLOV appears to be unique among the filoviruses in that six ORFs are present with VP24 and L being fused together [10].

The GP gene of EBOV and LLOV undergoes an unusual transcription editing mechanism and produces three unique mRNA transcripts, soluble GP (sGP), immature GP$_{1,2}$, and small soluble GP (ssGP) [103-105]. The transcriptional editing event occurs when the RdRp encounters a string of seven uridines on the genomic viral RNA (vRNA). The polymerase can stutter or slip on this sequence which results in the insertion or deletion of nucleotides in the mRNA products. Insertion of an additional adenosine (8 adenosines) produces the immature GP$_{1,2}$ mRNA and either insertion of two adenosines or deletion of one adenosine (6 or 9 adenosines) produces the ssGP mRNA. Synthesis of the unedited, full length gene (7 adenosines) produces the small GP (sGP) [103-105].
1.1.5.2 Protein products

Translation and cleavage of filovirus proteins produces seven proteins for MARV and MLAV and ten for EBOV (Table 1.4.1) [84-91]. Five of the proteins, NP, VP35, VP24, VP30 and L are components of the mature nucleocapsid [59, 60, 64] with NP, VP35 and VP24 being necessary and sufficient for NC transport to the host membrane [106]. Four of these proteins, NP, VP35, VP30 and L make up the ribonucleoprotein (RNP) complex that is required for EBOV transcription and replication [94]. The MARV RNP complex comprises the same set of proteins but VP30 appears to be expendable in a MG system [95, 107]. VP40 and VP24 are the major and minor matrix proteins, respectively [108], and GP\(_{1,2}\) is responsible for cell entry [109]. The major roles of the viral proteins are given in Table 1.4.1.

NP is the major protein involved in the generation of the NC and is also required for virus transcription, replication, and assembly [59-62, 64, 73, 75, 76, 91, 94, 95, 110-117]. The NP can also independently generate perinuclear localized inclusion bodies (IBs) which are the sites of filovirus replication [118-121]. Additionally, the C-terminal domain of NP is implicated in helping with virus assembly and budding [75, 76, 110, 118].

The VP30 phosphoprotein is a novel protein among NNS RNA viruses [85, 86, 88] and recently, several VP30 crystal structures have provided detailed insight into both the structure and roles of VP30 in binding NP and modulating both transcription and replication [122-126].

VP35 is analogous to the P proteins of other NNS RNA viruses and in addition to its role in the maturation of the NC, is a required co-factor of the L protein. VP35 is believed to function as a bridge between the NP-RNA and L during transcription and
replication [59, 60, 64, 73, 91, 94, 95, 115, 117]. Similar to NP, VP35 is found localized within IBs [118, 119]. Antagonism of the innate immune pathway, in particular, inhibition of type I interferon (IFN) production, is a well characterized function of VP35, and this functionality will be discussed in more detail below [127, 128].

Named for its large size, the L protein contains all the obligatory enzymatic motifs and binding sites for polymerization, capping, methylation, and polyadenylation of nascent RNA [94, 95, 115, 129-132]. There is only one partial crystal structure of the SUDV methyltransferase domain (MTD) currently available [133]. Much of what we know about the filovirus L protein comes from our studies of RdRp proteins of other NNS RNA viruses [131-137]. In particular, cryo-EM structures of full length L vesicular stomatitis virus (VSV) and more recently rabies virus L, has given detailed insight into the L domain organization [131, 135]. Filovirus L proteins presumably share a similar organization and functionality [138, 139]; however, further work needs to be done to confirm this. Based on the structure of the VSV L and sequence comparisons, several shared motifs exist within the L proteins of NNS RNA viruses [131, 140]. The RdRp domain contains the classic fingers-palm-thumb polymerase architecture and a conserved GDNQ catalytic motif, which is responsible for polymerization. The capping domain contains the conserved HR residues, which aid in the addition of the 5' guanosine cap to the viral mRNA. The third enzymatic domain resides within the MTD and this contains the conserved motif for SAM binding (GxGxG) and methyl-transfer catalysis (K-D-K-E) [131, 133, 140, 141]. The domain and structural organization for VSV L is given in detail in Figure 9 and Figure 22.
VP40 forms multimeric lattices beneath the host plasma membrane and is the primary protein involved in assembly and budding of the virion [59, 60, 75-77, 142-146]. Both MARV and MLAV VP40 are potent inhibitors of the interferon signaling pathway [127, 128] and these roles will be discussed in detail below. VP24 is the minor matrix protein and also, in addition to VP30, appears to be a unique protein among the NNS RNA viruses [59, 60, 64]. Curiously, the VP24s of the filoviruses have evolved quite different strategies for hijacking cellular pathways. MARV VP24 can activate the antioxidant response pathway whereas EBOV and LLOV antagonize the type I IFN signaling pathway [127, 128]. These functionalities will be discussed more in detail below.

The filoviruses have only one glycoprotein, GP_{1,2}, that is required for virus binding and fusion with cellular membranes [79, 109, 147-150]. It also functions as a major antigenic determinant with the most virus epitopes being reported for GP_{1,2} [151, 152]. EBOV infected cells can also secrete sGP which is believed to function as a decoy for antibodies targeting the GP_{1,2} [153]. Cleavage of the sGP C-terminus produces the Δ-peptide, which functions as a viroporin [154]. The roles of ssGP are currently undetermined [103].
<table>
<thead>
<tr>
<th>Protein</th>
<th>~Molecular Weight (kDa)$^1$</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>90-110</td>
<td>Major component in NC formation; RNP component; essential for replication and transcription</td>
</tr>
<tr>
<td>VP35</td>
<td>35</td>
<td>NC &amp; RNP component; essential for replication and transcription; IFN antagonist; inhibits DC maturation</td>
</tr>
<tr>
<td>VP30</td>
<td>27-30</td>
<td>NC &amp; RNP component; transcriptional activator (EBOV)</td>
</tr>
<tr>
<td>L</td>
<td>250</td>
<td>NC &amp; RNP component; essential for replication and transcription; polymerizes, caps, methylates and polyadenylates nascent viral RNA</td>
</tr>
<tr>
<td>VP40</td>
<td>35-40</td>
<td>Major matrix protein; NC assembly and egress; IFN antagonist (MARV and MLAV)</td>
</tr>
<tr>
<td>VP24</td>
<td>24-25</td>
<td>NC component; condenses nucleocapsid; minor matrix protein; egress; IFN antagonist (EBOV and LLOV)</td>
</tr>
<tr>
<td>GP</td>
<td>150</td>
<td>Binds and fuses receptor for cell entry; major antigenic protein; cytotoxic factor</td>
</tr>
<tr>
<td>sGP</td>
<td>50</td>
<td>Decoy antigen; curtails cytotoxic effects of GP; potential virulence factor</td>
</tr>
<tr>
<td>Δ-peptide</td>
<td>5</td>
<td>Unknown roles; potential viroporin</td>
</tr>
<tr>
<td>ssGP</td>
<td>50</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Table modified from [117]$^1$ Based on reducing conditions of gel migration; Data sourced from [91, 103, 108, 109, 115, 127].
1.1.6 Life cycle: entry, transcription, replication, and egress

The life cycle of a filovirus begins when its GP₁,₂ binds and fuses with the host endosomal lipid membrane [79, 109, 147-150] (Figure 3). Filoviruses have a broad cellular tropism. Antigen-presenting cells, in particular monocyte-derived macrophages and dendritic cells, are hypothesized to be the preferential target cells [155-160]. The extracellular receptor that GP₁,₂ binds with to gain entry is currently unknown. However, the α-folate receptor and C-type lectins are implicated in contributing to entry [161-165]. The virus enters through the host-mediated pathway of macropinocytosis [166] and fusion of the viral and endosomal membranes occurs with the aid of the interaction between the endosomal cholesterol receptor, Niemann-Pick type C1 (NPC1) and GP₁,₂ [150, 167]. Upon fusion, the NC is released into the cytoplasm. All transcription and replication events occur within the cytoplasm [168]. The RNP complex initiates primary transcription with the polymerase entering a single site at the 3' end of the genomic RNA [169, 170]. The polymerase recognizes and binds conserved sequences found within the bipartite promoter region and scans downstream to begin transcription of viral mRNA [130, 168]. Transcription proceeds via the start-stop mechanism with the polymerase recognizing conserved gene start sequences and end sequences flanking each of the genes [95, 98, 130, 168]. Similar to other NNS RNA viruses, filoviruses produce mRNAs in a gradient with genes closer in proximity to the 3' bipartite promoter producing more mRNA than genes more distant from the 3' bipartite promoter (Figure 3) [171] [130]. All viral mRNAs are 5' guanosine capped and methylated. Methylation occurs on the seven position of the 5' guanosine cap, as well as at the first and second nucleotide on the 2' hydroxyl of the ribose ring. Viral mRNAs are also polyadenylated at the 3' end of the viral transcript. [130-
The host translational machinery is hijacked for the synthesis of viral proteins and this allows the production of more genomic and antigenomic viral RNA. How the polymerase switches between transcription and replication is regulated is not entirely understood for NNS RNA viruses; however, the molar concentration of the nucleocapsid protein may be a driving factor [130]. When this switch does occur, the polymerase will ignore all gene start and stop signals and replicate the entire full length antigenome (5’-3’). From this, full length genomic RNA (3’-5’) can be produced [130, 168]. Replication of filoviruses occurs within NP-derived IBs and all components of the NC (NP, VP35, VP30, VP24 and L) are also localized here [118-121]. Recently, it was postulated that a two-stage interaction with both the N and C terminal domains of NP and VP40 may function as a switching mechanism between viral replication and NC assembly [110]. Ultimately, VP40 association with both the NC and the host membrane will allow for assembly and budding of new virions [59, 60, 75-77, 142-146]. To aid in assembly and release, the late domain motifs of VP40 interact with host proteins such as Tsg101 and Nedd4 [75, 146, 173-176]. The final step in the virus life cycle occurs when the virus buds from the host cell from filopodia-like protrusions [65]. GP$_{1,2}$, which has been transported to the cell surface membrane [103], also helps in the virus egress by counteracting the effects of the host restriction factor, type II transmembrane glycoprotein, tetherin [177-179].
1.1.7 Broad-spectrum nucleoside analog inhibitors

At the end of 2019, the FDA approved Ervebo, a VSV-based recombinant vector vaccine pseudotyped with the EBOV GP [180]. Ervebo has proved effective at inhibiting EBOV spread when delivered in a ring vaccination method; however, it is important to note that this vaccine is effective only against EBOV and no other filovirus species [181, 182]. At the end of 2020, two more antibody-based therapeutics (Inmazeb and Ebanga) against EBOV were FDA approved [183, 184]. Currently, there are no FDA-approved pan-filovirus inhibitors. Nucleoside analogs demonstrating potential as pan-filovirus inhibitors are described below [185, 186].
1.1.7.1 BCX4430, GS-5734 and T-705 antiviral activities

Nucleoside analogs are attractive candidates for inhibiting NNS RNA viruses, and the presumed target of inhibition is the viral RdRp domain within the L protein [185-189]. Nucleoside derivatives utilize one of three mechanisms for direct RdRp inhibition: 1) non-obligate chain termination, 2) obligate chain termination and 3) mis-sense incorporation [190]. BCX4430 (Galidesivir), a non-obligate chain terminator, has shown both *in vitro* and *in vivo* efficacy against both EBOV and MARV species (Figure 4) [191, 192]. More importantly, BCX4430 protected 100% of non-human primates (NHPs) against a lethal dose of MARV when administered twice daily starting at 48 hours-post-infection [191]. GS-5734 (Veklury or Remdesivir), a non-obligate chain terminator, has demonstrated broad-spectrum antiviral activity against a myriad of viruses and was most recently recognized by the FDA as an approved treatment of SARS-CoV-2 (Figure 4) [193-198]. Previously, Remdesivir, due to its *in vitro* and *in vivo* activity against EBOV [197], was also re-purposed for EBOV treatment during the 2014-2016 West African EBOV outbreak and the 2018-2020 DRC outbreak [199-201]. Treatment with Remdesivir during the 2018-2020 DRC outbreak was halted mid-trial due to inferior inhibition as compared to treatment with Inmazeb and Ebanga [199]. Finally, T-705 (Avigan or Favipiravir) is postulated to function via a mis-sense antiviral mechanism and has shown potent activity against NNS RNA viruses as well multiple influenza virus strains (Figure 4) [202-207]. T-705 is currently approved and stockpiled in Japan for treatment of influenza infections [208]. In 2014, utilizing a type I IFN receptor (IFNAR) knockout A129 mouse model, T-705 (administered post virus infection, 2 times daily at 150 mg/kg) was found to offer full protection from a lethal aerosolized dose of EBOV strain E718 [202]. A similar study,
using EBOV infected IFNAR knockout mice, found that T-705 (twice daily at 300 mg/kg) rendered complete protection relative to vehicle treated mice when administered six days post infection [207]. Unfortunately, results of T-705’s efficacy at inhibiting EBOV in non-human primates, cynomolgus macaques (Macaca fascicularis), were disappointing with all animals succumbing to EBOV infection, even when different dosing regimens were employed [209]. However, the T-705-treated and EBOV-infected monkeys did show reduced viral loads and a longer time of survival. Also, in MARV-infected animals treated with intravenous doses of T-705, 83% survival was observed [209]. T-705 was also employed during the 2014-2016 EBOV outbreak. However, the effectiveness in EBOV-infected humans was confounding due to the design of the trials and potential dosing issues. As was seen in the NHP studies, T-705 did reduce viral RNA levels and extended the survival times to death [210-215].

Figure 4 Structures of nucleoside analogs with in vitro and in vivo activity against EBOV and MARV. Chemical structures of the nucleoside analogs, BCX-4430, T-705 and GS-5734.
1.1.7.2 S-Adenosylhomocysteine hydrolase inhibitors

Rational structural modifications to the different nucleoside moieties (the nitrogenous nucleobase and the ribose sugar) can be conducted to facilitate the synthesis of nucleoside analogs with targeted specificities for cellular proteins [186, 189, 216]. The removal of the ribose ring oxygen and its replacement with carbon, produced the adenosine analog, Aristeromycin (Figure 5) [217]. Synthesis of Aristeromycin ultimately lead to the generation of the carbocyclic nucleoside analog series, some of which exhibited very potent antiviral activities against both DNA and RNA viruses [189, 218]. Dehydration across the 4’,6’ bond of the cyclopentyl ring gave rise to Neplanocin A [219-222], which had previously been isolated from the sponge Ampullariella regularis and was known to exert antimicrobial activity (Figure 5) [223, 224]. The cellular toxicity associated with Neplanocin A was removed when 3-deazaneplanocin (DzNep) was synthesized [225]. DzNep differs from its parent compound, Neplanocin A, in that that the nitrogen at the 3 position in the nucleobase is replaced with a carbon (Figure 5) [225]. DzNep is of particular interest within the filovirus field and was demonstrated to potently inhibit EBOV replication in cell culture [226]. More importantly, a single dose (2 mg/kg at the time of infection or one hour post infection) of DzNep completely protected BALB/c mice that were infected with mouse-adapted EBOV at 300 times the 50% lethal dose (LD50) [227]. Curiously, only the DzNep-treated and infected mice were observed to produce massive amounts of IFN alpha, the reason for which has not been resolved [227]. Unfortunately, for reasons unknown, when DzNep was transitioned into the NHP model, the compound was not effective at protecting NHPs from EBOV infection.
Brominated derivatives of DzNep (CL123, CL4033 and CL4053) have been developed to explore their potential for anti-filovirus activity (Figure 5) [228, 229]. In chapter 3 of this dissertation, we assess the mechanisms of antiviral activity of these DzNep congeners using VSV as a model NNS RNA virus.

Figure 5 Structure of adenosine and SAHase inhibitors. Chemical structures of adenosine and SAHase inhibitors where X represents the point of modification within the structure. The atom (s) of X are given below each structure.

The known cellular target of inhibition for the described carbocyclic adenosine analogs is S-adenosylhomocysteine hydrolase (SAHase, E.C.3.3.1.1) [218]. SAHase hydrolyzes S-adenosylhomocysteine (SAH) into homocysteine and adenosine with the chemical equilibrium lying in favor of SAH synthesis. Removal of homocysteine and adenosine shifts the equilibrium in the hydrolysis direction [230]. In the absence of SAH breakdown, increased intracellular levels of SAH are observed [231, 232]. SAH can potently inhibit S-adenosylmethionine (SAM)-dependent methyltransferases [225, 231-
For viruses that encode SAM-dependent methyltransferases, inhibition of SAHase could inhibit the viral methyltransferase. Indeed, the antiviral activities of SAHase inhibitors against distinct species of viruses has been well demonstrated [218, 226-229, 257-297]. Additionally, there is a strong correlation between antiviral activity and SAHase inhibition [218]. The proposed mechanism of inhibition of neplanocin analogs (SAHase inhibitors) is given in Figure 6.

**Figure 6 Proposed mechanism of antiviral inhibition by neplanocin analogs.** Cartoon representation of how neplanocin analogs are hypothesized to exert their antiviral activity. The structure of the viral methylated caps is given adjacent to the orange colored MTase. The neplanocin analogs (SAHase inhibitors, red box) are indicated at the point of their inhibition (SAHase hydrolysis). SAHase S-adenosylhomocysteine hydrolase; NAD+ nicotinamide adenine dinucleotide; THF tetrahydrofolate; ATP adenosine triphosphate; MTase methyltransferase; SAM S-Adenosylmethionine and SAH S-Adenosylhomocysteine. Schematic modified from [270].
1.2 Host signaling pathways and Filovirus interactions

1.2.1 Type I IFN pathway

The type I IFN pathway is an ancient defense system that vertebrates have evolved and maintained to combat microbial infections [298-300]. The pathway consists of two major branches, the production of type I IFN and the subsequent signaling induced by the type I IFN production. To date, there are eight distinct type I IFN proteins that have been identified within mammals. The most well characterized are IFN-α and IFN-β (referred to as IFN α/β in the below) [299, 301]. To induce the production of IFN α/β, animal cells utilize the germ-line encoded pathogen recognition receptor (PRR) proteins. Currently, there are five different classes of PRRs: 1) toll-like receptors (TLRs), 2) nucleotide-binding oligomerization domain-like receptors (NLRs), 3) C-type lectin receptors (CLRs), 4) retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), and 5) DNA sensors (cyclic GMP-AMP, cGAS, and stimulator of IFN genes, STING). These PRRs function as sentinel sensors both intracellularly and extracellularly to detect and signal the presence of foreign pathogens. The PRR recognition of these foreign pathogens comes with the ability to be able to differentiate between “self” and “non-self” molecular motifs. Examples of “non-self” motifs or pathogen-associated molecular patterns (PAMPs) include the lipopolysaccharide (LPS) found in gram-negative bacteria (TLRs), sugars present in bacteria cell walls (CLRs), cytosolic DNA (cGAS), or virus nucleic acids (RLRs, TLRs and NLRs). Upon detection and discrimination of the PAMP by the PRR, a signaling cascade within the cell will stimulate activation of multiple proteins. This culminates in cytoplasmic transcription factors (interferon regulatory factor (IRF) 3 and IRF7) localizing to the nucleus to bind and turn on the IFN α/β promoter for
the production of IFN α/β genes [302-309]. Secretion of IFN α/β cytokines from the cell allows binding to their receptor (IFNAR) in either an autocrine or a paracrine fashion. This binding event stimulates the activation of the type I IFN signaling pathway. IFN α/β binding of IFNAR causes it to dimerize and activate intracellular, IFNAR-associated kinases, Janus kinase 1 (Jak1) and tyrosine kinase 2 (Tyk2) [310]. The activation of Jak1 and Tyk2 by transphosphorylation provides a docking site for the subsequent recruitment and phosphorylation of signal transducer and activator of transcription (STAT) proteins. Heterodimers of phosphorylated STAT1 and STAT2, together with IRF9 form the interferon-stimulated gene factor (ISGF) 3 complex and localize to the nucleus with the help of a nuclear transporting protein, karyopherinα (KPNA). Interaction of the ISGF3 complex with a conserved DNA sequence, interferon-stimulated response elements (ISREs), stimulates the production of hundreds of interferon-stimulated genes (ISGs) [311-317]. These ISGs will render an antiviral cellular milieu [316, 317].

For NNS RNA viruses, the contribution of RLRs to detection of their RNA and production of IFN α/β has been well documented [128, 302, 304]. The RLR family consists of three nucleic acid sensors: 1) RIG-I, 2) melanoma differentiation association gene 5 (MDA5), and 3) laboratory of genetics and physiology 2 (LGP2). RIG-I preferentially detects 5’ triphosphates (5’ppp) of short (~10-300 base pairs (bp)) double-strand (ds) RNAs and single-strand (ss) RNAs. MDA5 recognizes longer dsRNAs. The most recent addition to the group, LGP2, is thought to play more of a regulatory role for RIG-I and MDA5. The helicase domain of RIG-I recognizes the PAMPs found on NNS RNA virus RNAs (5’ppp) and activation of the pathway occurs through its tandem caspase and activation recruitment domains (CARD). Activated RIG-I then travels to the mitochondria
where it interacts with the mitochondrial antiviral-signaling (MAVS) protein to form a signalsome platform. This platform recruits cellular kinases TANK binding kinase 1 (TBK1) and inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKKe) that will phosphorylate the latent transcription factor IRF3. Phosphorylation and dimerization of IRF3 results in movement to the nucleus where IFN α/β genes will be turned on (Figure 7) [302, 318].

1.2.2 Filovirus antagonism of the type I IFN pathway

1.2.2.1 Filovirus antagonism of the type I IFN pathway and virulence

For filoviruses, inhibition of the type I IFN pathway has been well characterized [127, 128, 319]. Suppression of interferon responses is one of the factors that is believed to contribute to the virulence of EBOV and MARV in animals. Immunocompetent mice are not susceptible to either MARV or EBOV infection; however, immunodeficient mice (IFNAR knockout and severe combined immunodeficiency (SCID)) mice can be lethally infected with EBOV, MARV or RAVV [320-322]. Additionally, serially passaging of RAVV in immunocompetent mice (using SCID-RAVV as the initial source of virus) was demonstrated to evolve virus that could cause a lethal infection in the immunocompetent mice. Sequencing the mouse-adapted RAVV genome revealed amino acid substitutions in several of the viral proteins, of which, seven non-synonymous amino acid changes were in the matrix VP40 protein [322, 323]. Later, it was demonstrated that the non-mouse-adapted MARV and RAVV VP40 proteins were incapable of inhibiting mouse type I IFN responses. However, two of the seven non-synonymous RAVV VP40 amino acid changes that developed during the mouse adaptation process, V57A and T165A, were
adequate to inhibit mouse type I IFN responses. These data suggest VP40 as a potential candidate for host adaptation and virulence [324].

1.2.2.2 Filovirus antagonism of the type I IFN pathway

Three viral proteins, VP35, MARV VP40 and EBOV and LLOV VP24 can potently suppress type I IFN responses and ISG production. Interestingly, the three viral proteins antagonize the signaling pathway through very distinct mechanisms (Figure 7) [128, 319].

In 1999, EBOV infection was found to inhibit interferon responses [325]. Shortly thereafter, EBOV VP35 was characterized as an inhibitor of the type I IFN pathway that could inhibit both dsRNA and Sendai virus-induced activation of an IFN-β promoter construct [326]. Since then, VP35 has been shown to inhibit at multiple points in the RIG-I pathway and to impair activation of IFN-inducible ISGs [327-340]. Basic residues within the VP35 IFN inhibitory domain (IID), located within the C-terminal region, bind dsRNA and VP35 mediated inhibition of RIG-I signaling, strongly correlates with this dsRNA binding capacity [327-331, 334-336, 338, 341, 342]. In addition to sequestering dsRNA, VP35 can disrupt the interaction between protein kinase, interferon-inducible double stranded RNA dependent activator (PACT) and RIG-I [339, 343]. PACT aids in the activation of RIG-I signaling [344]. Cellular kinases TBK1 and IKKε functions are also modulated by VP35, where VP35 is thought to function as a decoy substrate for these kinases and is phosphorylated instead of IRF3 [345, 346]. Antagonism of VP35 at these different points in the RIG-I pathway resulted in inhibition of phosphorylation of IRF3 and subsequently diminished IFN-β responses [128, 339, 346]. Additionally, MARV, MLAV
and EBOV VP35 can inhibit phosphorylation of the IFN-inducible ISG, protein kinase R (PKR), although the mechanism of how this occurs is not fully understood [339, 340, 347].

As mentioned above, during type I IFN signaling, phosphorylated STAT1 utilizes the NPI-1 KPNAs to translocate to the nucleus [313, 314]. The EBOV VP24 minor matrix protein can also bind to the members of the NPI-1 family of KPNAs (KPNA1, KPNA5 and KPNA6). It is known that the type I IFN signaling mechanism of inhibition by EBOV VP24 is driven by VP24’s disruption of the phosphorylated-STAT1-KPNA interaction [348-350]. Presumably, LLOV’s VP24, which is also capable of inhibiting the type I IFN response, inhibits through a similar mechanism as EBOV VP24 [351].

MARV and MLAV VP40 can also prevent type I IFN signaling. Both MARV and MLAV VP40 can potently inhibit the phosphorylation of STAT1 that occurs during type I IFN signaling. Universal-IFN treatment and overexpression of Jak1 can induce phosphorylation of STAT1 and both MARV and MLAV VP40 inhibit phosphorylation of STAT1, regardless of either stimulation [128, 324, 339, 352, 353]. To date, we have not been able to fully elucidate how MARV and MLAV VP40 proteins are capable of this inhibition.

In chapter 2 of this dissertation, we describe the regulation of both human and bat innate immune responses by MLAV VP35, VP40 and VP24 proteins.
Figure 7 Type I IFN pathway inhibition by filovirus VP35, VP40 and VP24. Cartoon representation of the cellular events leading to the production of IFNβ. Points of inhibition by filovirus viral proteins are also noted. RIG-I retinoic acid-inducible gene I; PACT protein kinase, interferon-inducible double stranded RNA dependent activator; MAVS mitochondrial antiviral signaling protein; TBK1 TANK binding kinase 1; IKKε inhibitor of nuclear factor kappa-B kinase subunit epsilon; IRF3/9 interferon regulatory factor 3/9; IFN interferon; IFNAR1/2 interferon alpha/beta receptor 1/2; Jak1 janus kinase 1; Tyk2 tyrosine kinase 2; STAT1/2 signal transducer and activator of transcription 1/2; KPNA karyopherin alpha.

1.2.3 MARV VP24 activation of the ARE pathway

MARV VP24 does not inhibit IFN activities but rather activates a cytoprotective response in both infection and transfection-based experiments [354, 355]. Under basal conditions, the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf-2) is held in the cytoplasm by an interaction with Kelch-like ECH-associated protein 1 (Keap1). This
interaction allows Nrf2 to be tagged for proteasomal degradation, thereby preventing its nuclear accumulation. If cellular stress occurs (reactive oxygen species, UV damage, etc.), this Keap1-Nrf2 interaction is disrupted and Nrf2 translocates to the nucleus to bind with an antioxidant response element (ARE) DNA sequence. Nrf2 can translocate into the nucleus due to the presence of a nuclear localization signal in its C-terminus [356]. Nrf2 binding with the ARE stimulates the production of antioxidant genes and will render a cytoprotective state [357, 358]. MARV VP24, specifically the K-loop residues, can disrupt the Nrf2-Keap1 interaction. This disruption inhibits Keap1 mediated degradation of Nrf2, allowing Nrf2 to shuttle to the nucleus and consequently turn on ARE genes. It is postulated that MARV uses this cytoprotective state as a means to assist its replication cycle [339, 354, 355].

In Chapter 2 of this dissertation, we further confirm the importance of the MARV VP24 K-loop residues for interaction with both human and bat Keap1. We also determine that MLAV VP24 appears to be functionally distinct from its EBOV and MARV VP24 counterparts.

1.3 VSV: A prototype NNS RNA virus

1.3.1 VSV genome and L protein organization

Vesicular Stomatitis Virus (VSV) belongs to the Rhabdoviridae family and often serves as the prototype virus for NNS RNA viruses. VSV has provided seminal research for NNS RNA viruses on genome organization, modes of transcription and replication as well as mechanisms of capping, methylation, and polyadenylation of viral mRNA [130].

The genome gene organization is 3'-Le-N-P-M-G-L-Tr-5’ (Figure 8) The transcriptase complex, which contains the nucleoprotein (N) encapsidated viral genome
(N-vRNA), the L protein and the phosphoprotein (P) \[359-361\], initiates primary transcription at the 3’ end of the N-vRNA. L polymerizes the nascent mRNA transcript while P serves as a cofactor \[359, 362-366\].

During transcription, L adds a 5’ guanosine cap and also methylates and polyadenylates all viral mRNA transcripts \[172, 367-374\]. The functional diversity of the L protein can be attributed to its organization into five highly interconnected domains - RdRp, capping, connector, MTD, and the C-terminal domain (Figure 9 and Figure 22). As described above, three of these domains, RdRp, capping and MTD, possess enzymatic activity. The other two domains, connector, and C-terminal are thought to have a structural role \[131, 132, 375\].

Since work with Ebola and Marburg viruses requires a biosafety level four (BSL-4) lab, we decided to utilize VSV as a surrogate virus. In Chapter 3 of this dissertation, we utilize VSV as a model NNS RNA virus to investigate the anti-VSV mechanisms of DzNep and its 3-brominated derivatives.

![Figure 8 VSV genome organization. Cartoon representation of VSV's genome organization. N nucleoprotein (yellow); P phosphoprotein (blue); M matrix protein (green); G glycoprotein (cyan); L large protein (pink).](image)

![Figure 9 VSV L protein domain organization. Cartoon representation of VSV's L domain organization. RdRp RNA-dependent RNA polymerase domain (cyan); Cap Capping domain (green); CD connector domain (yellow); MT methyltransferase domain (orange); CTD C-terminal domain (red); N, N-terminal; C, C-terminal. Adapted from [131].](image)
2 IMPACT OF MĚNGLÀ VIRUS PROTEINS ON HUMAN AND BAT INNATE IMMUNE PATHWAYS


2.1 Author figure contributions

The below outlines the figure contribution of each author.

Joyce Sweeney Gibbons - Figure 10 A-D, Figure 12 A-C, Figure 15 A-C, Figure 16 A-C, Figure 17 A-D, and Figure 18 A, B and D.

Caroline G. Williams - Figure 10 E, Figure 11, Figure 13 A-F, and Figure 18 C and E

Timothy Keiffer - Figure 14 A-B.

2.2 Abstract

Měnglà virus (MLAV), identified in Rousettus bats, is a phylogenetically distinct member of the family Filoviridae. Because the filoviruses Ebola virus (EBOV) and Marburg virus (MARV) modulate host innate immunity, MLAV VP35, VP40 and VP24 proteins were compared with their EBOV and MARV homologs for innate immune pathway modulation. In human and Rousettus cells, MLAV VP35 behaved like EBOV and MARV VP35s, inhibiting virus-induced activation of the interferon (IFN)-β promoter and IRF3 phosphorylation. MLAV VP35 also interacted with PACT, a host protein engaged by EBOV VP35 to inhibit RIG-I signaling. MLAV VP35 also inhibits PKR activation. MLAV VP40 was demonstrated to inhibit type I IFN induced gene expression in human and bat cells. It blocked STAT1 tyrosine phosphorylation induced either by type I IFN or over-expressed Jak1, paralleling MARV VP40. MLAV VP40 also inhibited virus-induced IFNβ promoter activation, a property shared by MARV VP40 and EBOV VP24. A Jak kinase
inhibitor did not recapitulate this inhibition in the absence of viral proteins. Therefore, inhibition of Jak-STAT signaling is insufficient to explain inhibition of IFNβ promoter activation. MLAV VP24 did not inhibit IFN-induced gene expression or bind karyopherin α proteins, properties of EBOV VP24. MLAV VP24 differed from MARV VP24 in that it failed to interact with Keap1 or activate an antioxidant response element reporter gene, due to the absence of a Keap1-binding motif. These functional observations support a closer relationship of MLAV to MARV than to EBOV but also are consistent with MLAV belonging to a distinct genus.

2.3 Importance

EBOV and MARV, members of the family Filoviridae, are highly pathogenic zoonotic viruses that cause severe disease in humans. Both viruses use several mechanisms to modulate the host innate immune response, and these likely contribute to severity of disease. Here, we demonstrate that MLAV, a filovirus newly discovered in a bat, suppresses antiviral type I interferon responses in both human and bat cells. Inhibitory activities are possessed by MLAV VP35 and VP40, which parallels how MARV blocks IFN responses. However, whereas MARV activates cellular antioxidant responses through an interaction between its VP24 protein and host protein Keap1, MLAV VP24 lacks a Keap1 binding motif and fails to activate this cytoprotective response. These data indicate that MLAV possesses immune suppressing functions that could facilitate human infection. They also support the placement of MLAV in a different genus than either EBOV or MARV.
2.4 Introduction

Měnglà virus (MLAV) was discovered when its genomic RNA was identified in the liver of a bat of the *Rousettus* genus that had been collected in Měnglà County, Yunnan Province, China [6]. To date, only RNA sequence is available and viable MLAV has not yet been isolated. MLAV has been proposed to represent a new genus, *Dianlovirus*, within the family *Filoviridae*. The filovirus family includes three additional genera, *Ebolavirus*, *Marburgvirus* and *Cuevavirus*, that contain viral species isolated from or identified in mammals [1]. Placement of MLAV in a distinct genus was based on its comparatively low sequence identity to other filoviruses, phylogenetic and pairwise sequence comparison (PASC) analyses [6]. It was also noted to have, compared to other filoviruses, unique gene overlaps and a unique transcription start signal [6]. MLAV displays some features more reminiscent of *Marburgvirus* members than *Ebolavirus* members. Specifically, MLAV RNA was identified in tissue from a *Rousettus* bat, the same genus of bat which serves as a MARV reservoir in Africa [48]. In addition, the MLAV Large (L) protein exhibits closer phylogenetic relatedness to *Marburgvirus* L than to the L of other filoviruses, and in contrast to *Ebolavirus* and *Cuevavirus* members, MLAV can express its glycoprotein (GP) without the need for editing of the GP mRNA [128].

Filoviruses are noteworthy because of their capacity to cause severe human disease [128]. Some members of the *Ebolavirus* and *Marburgvirus* genera are zoonotic pathogens that have caused repeated outbreaks with substantial lethality in humans [376]. The largest such outbreak on record was caused by *Zaire ebolavirus* (EBOV) and occurred in West Africa between 2013 and 2016. This resulted in upwards of 28,000 infections, more than 11,000 deaths, and the export of infected cases to the United States
EBOV is also the cause of the second largest filovirus outbreak, which was first recognized in August 2018 and has continued well into 2019 [378]. The largest outbreak of MARV occurred in Angola between 2004-2005 and had a reported case fatality rate of 88 percent [376].

Likely contributing to the virulence of filoviruses are viral encoded proteins that target host cell innate immune signaling pathways [128]. Filovirus VP35 proteins suppress interferon (IFN)-α/β responses that play critical roles in innate antiviral immunity [379]. VP35 impairment of IFN-α/β production occurs by inhibition of RIG-I-like receptor (RLR) signaling through several mechanisms, including VP35 binding to RLR activating dsRNAs and the interaction of VP35 with PACT, a host protein that facilitates RIG-I activation [331, 335, 336, 342, 343, 380-386]. VP35s also inhibit the phosphorylation and activation of the IFN-induced kinase PKR [340, 387-389]. EBOV VP24, but not MARV VP24, interacts with the NPI-1 subfamily of karyopherin alpha (KPNA) (also known as importin alpha) nuclear transport proteins, which includes KPNA1, KPNA5 and KPNA6 [349, 350]. The NPI-1 subfamily also mediates nuclear import of STAT1 following its activation by IFN [313, 349, 390]. The interaction of EBOV VP24 with KPNA competes with tyrosine phosphorylated STAT1 (pY-STAT1), blocking pY-STAT1 nuclear import and suppressing expression of IFN stimulated genes (ISGs), a response that mediates the antiviral effects of IFN [348-350, 391]. MARV VP40 protein has been demonstrated to suppress IFN-induced signaling and ISG expression, while EBOV VP40 has no known role in IFN antagonism [392]. Activation of the Jak family of kinases associated with IFN receptors is inhibited by MARV VP40, blocking phosphorylation and activation of the downstream STAT proteins, including STAT1 [392-394]. EBOV VP24 and MARV VP40 have also been described to
modestly inhibit IFN-α/β production, although the mechanism(s) are not defined [353, 395]. While MARV VP24 does not appear to block IFN responses, it has been demonstrated to interact with Kelch-like ECH-associated protein 1 (Keap1). Under homeostatic conditions, Keap1, a cellular substrate adaptor protein of the Cullin3/Rbx1 ubiquitin E3 ligase complex, targets the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) for polyubiquitination and proteasomal degradation [354, 355, 396]. MARV VP24 disrupts the Keap1-Nrf2 interaction, leading to Nrf2-induced expression of genes possessing antioxidant response elements (ARE) [354, 355, 396]. This activity induces a cytoprotective state that may prolong the life of MARV infected cells. MARV VP24 also relieves Keap1 repression of the NF-κB pathway [397].

Given the link between EBOV and MARV innate immune suppressors and virulence, and the unknown potential of MLAV to cause human disease, this study sought to determine whether MLAV possesses effective suppressors of innate immunity. Given the differences in innate immune evasion mechanisms between EBOV and MARV, it was also of interest to determine whether MLAV innate immune evasion mechanisms more closely resemble EBOV or MARV. The data demonstrate that MLAV VP35 functions as an IFN antagonist by mechanisms that mirror those of EBOV and MARV VP35. MLAV VP40 is demonstrated to act as a suppressor of IFN-induced signaling, whereas MLAV VP24 does not, mirroring the inhibitory functions of MARV. Both MLAV VP35 and VP40 effectively suppressed IFN responses in human and Rousettus cells. Interestingly, MLAV VP24 does not detectably interact with Keap1 or activate ARE gene expression due to the absence of Keap1-binding sequences found in MARV VP24. Cumulatively, the data demonstrate the presence of IFN evasion functions in MLAV that are effective in human
cells, suggesting the virus may have the capacity to cause human disease. The similarities in VP40 immune evasion functions are consistent with a closer genetic relationship of MLAV to MARV than EBOV, but the differences in VP24 function are consistent with MLAV occupying a distinct genus within the filovirus family.

2.5 Materials and Methods

2.5.1 Cells and viruses

HEK293T cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM), supplemented with 10% fetal bovine serum (FBS) and cultured at 37°C and 5% CO₂. RO6E cells, immortalized fetal cells from *Rousettus aegyptiacus*, were obtained from BEI Resources and maintained in DMEM F12 and supplemented with 5% FBS. Sendai Virus Cantell (SeV) was grown in 10-day-old embryonating chicken eggs for forty-eight hours at 37°C.

2.5.2 Plasmids

MLAV NP, VP35, VP40, VP30 and VP24 coding sequences (based on accession number KX371887) were synthesized by Genscript. The synthesized open reading frames were cloned into a pCAGGS expression vector with a FLAG-tag at the N-terminus of each coding sequence. EBOV and MARV viral proteins, GFP-STAT1, HA-Jak1, HA-PACT, HA-KPNA5, HA-Keap1 and IRF3 expression plasmids were previously described [343, 350, 355, 380, 393]. VP24 K-loop chimeras were made using overlapping PCR. MARV VP24 residues 202-RRIDIEPCGETVLSESV-219 were inserted into MLAV VP24 between residues 202 and 219 (MLAV VP24<sub>MARV 202-219</sub>) and the corresponding MLAV residues 202- RAINASGRENESVVQNPI- 219 were inserted into MARV VP24 at the same position (MARV VP24<sub>MLAV 202-219</sub>).
2.5.3 **Cytokines**

Universal type I IFN (UIFN) (PBL) was used at 1000 U/mL in DMEM supplemented with 0.3% FBS for 30 minutes at 37°C, unless otherwise stated.

2.5.4 **IRF3 Phosphorylation assay**

HEK293T cells (1x10⁶) were transfected using Lipofectamine 2000® (Life Technologies). The amount of transfected IRF3 was 100 ng per well. Twenty-four hours post transfection, cells were mock-treated, UIFN-treated or SeV-infected, depending on the assay. Subsequently, cells were lysed in NP40 buffer (50mM Tris-HCl [pH 8.0], 280mM NaCl, 0.5% NP-40) supplemented with cOmplete™ protease inhibitor cocktail (Roche) and PhosSTOP (Roche). Lysates were incubated for ten minutes on ice and clarified for ten minutes at 21,100 x g at 4°C. Phosphorylation status of the proteins was determined by western blot.

2.5.5 **IFNβ and ISG54 promoter-reporter gene assays**

HEK293T cells (5x10⁴) and RO6E cells (2x10⁵) were co-transfected using Lipofectamine 2000® with 25 ng of an IFNβ promoter-firefly luciferase reporter plasmid or an interferon stimulated gene 54 (ISG54) promoter-firefly luciferase reporter plasmid, 25 ng of a constitutively expressing *Renilla* luciferase plasmid (pRL-TK, Promega) and the indicated viral protein expression plasmids – HEK293T cells: 62.5, 6.25, and 0.625 ng for VP35 and VP40 and 25, 2.5, and 0.25 ng for VP24; RO6E cells: 250, 25, and 2.5 ng for EBOV and MARV proteins and 125, 12.5, and 1.25 ng for MLAV proteins. Twenty-four hours post transfection cells were mock-treated, SeV-infected (150 hemagglutinin activity units (HAU)) or UIFN-treated (1000 U/mL). Eighteen hours post-infection or treatment, cells were lysed and analyzed for luciferase activity using a Dual Luciferase® Reporter
Assay System (Promega) per the manufacturer’s protocol. Firefly luciferase activity was normalized to *Renilla* luciferase activity. Assays were performed in triplicate; error bars indicate the standard error of the mean (SEM) for the triplicate. Viral protein expression was confirmed by western blot.

### 2.5.6 IFNβ reporter gene assay in the presence of a Jak1/Jak2 inhibitor

HEK293T cells (5x10⁴) were co-transfected using Lipofectamine 2000® with 25 ng of an IFNβ promoter firefly luciferase reporter plasmid, 25 ng of pRL-TK *Renilla* luciferase reporter plasmid and 62.5, 6.25, and 0.625 ng of the indicated viral protein expression plasmids. Twenty-four hours post-transfection, cells were pre-treated for one hour with 5 µM of Ruxolitinib (SelleckChem), a Jak1/Jak2 inhibitor, and then mock- or SeV- infected in the presence of the inhibitor [398]. Eighteen hours post-infection or treatment, cells were lysed and assayed using a dual luciferase assay and analyzed as above. To verify inhibition of Jak1/Jak2 by Ruxolitinib, cells were transfected with 25 ng of an ISG54 promoter-firefly luciferase reporter plasmid and 25 ng of pRL-TK reporter plasmid. Twenty-four hours post-transfection, cells were pre-treated for one hour with 5 µM of Ruxolitinib and then mock- or UIFN-treated for eighteen hours in the presence of the inhibitor and assayed for luciferase activity as above.

### 2.5.7 Measurements of endogenous gene expression

HEK293T cells (5x10⁴) were transfected with 125 ng of empty vector or viral expression plasmids using Lipofectamine 2000®. Twenty-four hours post-transfection, cells were either mock-treated, SeV-infected, or UIFN treated (1000U/mL). At fourteen-hours post-treatment or infection, total cellular RNA was extracted using RNeasy® Mini Kit (Qiagen), as per the manufacturer’s protocol. SuperScript™ IV (Thermo Fisher
Scientific) was used to generate oligo dT cDNA which served as the template for quantitative PCR (qPCR). qPCR was performed using PerfeCTa® SYBR Green FastMix® (VWR Scientific) along with gene specific primers for human β-actin, IFNβ and ISG54.

2.5.8 ARE reporter assay

HEK293T cells (5x10⁴) were co-transfected using Lipofectamine 2000® with an antioxidant response element (ARE) reporter gene, pGL4.37 [luc2P/ARE/Hygro] (Promega) (30 ng) and a pRL-TK reporter plasmid (25 ng) along with either empty vector or 62.5, 6.25, and 0.625 ng of EBOV, MARV, MLAV VP24 or chimeric MARV and MLAV expression plasmids. Eighteen hours post-transfection, luciferase activity was assessed and analyzed as above.

2.5.9 Co-immunoprecipitation assays

HEK293T cells were co-transfected using Lipofectamine 2000® with plasmids for FLAG-tagged MLAV proteins, HA-tagged host proteins, and pCAGGS empty vector. Twenty-four hours post-transfection cells were rinsed with PBS and lysed in NP40 buffer supplemented with cOmplete™ protease inhibitor cocktail (Roche). Lysates were clarified by centrifugation and incubated with anti-FLAG M2 (Sigma-Aldrich) or anti-HA (Thermo Fisher) magnetic beads for two hours at 4°C. Beads were washed five times in NP40 buffer and precipitated proteins were eluted by boiling with SDS sample loading buffer or elution with 3X FLAG peptide (Sigma-Aldrich). Whole cell lysates and immunoprecipitated samples were analyzed by western blot.
2.5.10 Western blot analysis

Blots were probed with anti-FLAG (Sigma-Aldrich), anti-β-tubulin (Sigma-Aldrich), anti-HA (Sigma-Aldrich), anti-phospho-IRF3 (S396) (Cell Signaling), anti-IRF3 (Santa Cruz), anti-phospho-STAT1 (Y701) (BD Transduction Laboratories), anti-STAT1 (BD Transduction Laboratories), anti-phospho-PKR (T446) (Abcam), or anti-PKR (Cell Signaling) antibodies, as indicated. Antibodies were diluted in Tris-buffered saline with 0.1% Tween-20 (TBS-T) with 5% milk or, when detecting phospho-proteins, 5% bovine serum albumin.

2.5.11 VP40 Budding Assay

10 µg of EBOV, MARV and MLAV VP40 expression plasmids were transfected into either HEK293T (3x10⁶) or RO6E (2x10⁶) cells using Lipofectamine 2000® (Life Technologies). Media was harvested 48 hours post-transfection, briefly clarified by centrifugation, and layered over a 20% sucrose cushion in NTE buffer (10 mM NaCl, 10 mM Tris [pH 7.5], 1 mM EDTA [pH 8.0]). The samples were then subjected to ultracentrifugation in a Beckman SW41 rotor at 222,200 x g for 2 hours at 10°C; media was aspirated after ultracentrifugation and virus-like particles (VLPs) were solubilized in NTE buffer at 4°C overnight. Cellular lysates were generated by washing transfected cells with PBS and lysing cells in NP40 buffer containing cOmplete™ protease inhibitor cocktail (Roche). To detect the presence of VP40, 5% of cell lysates and 10% of VLPs were analyzed by western blotting. To confirm that VP40s from isolated VLPs had a membrane that can protect internal components from protease digestion, 10% of VLPs were incubated in NTE buffer with 500 ng/µl of trypsin solution (Corning), either in the absence
or presence of 0.5% Triton X-100 (Sigma), at 37°C for 1 hour prior to western blot analysis.

2.5.12 Statistics

Statistical significance was determined by one-way ANOVA followed with Tukey multiple comparison as compared to the indicated control; **p < 0.0001, * p < 0.001 (GraphPad PRISM8).

2.6 Results

2.6.1 MLAV VP35 blocks virus-induced IFNβ promoter activation in both human and bat cells.

As a measure of the capacity of MLAV VP35, VP40 and VP24 to modulate type I IFN production, the human cell line HEK293T or the Rousettus bat cell line RO6E were assessed by reporter gene assay for their effect on Sendai virus (SeV)-induced IFNβ promoter activation. Either empty vector or FLAG-tagged expression plasmids for the VP35, VP40 and VP24 proteins of EBOV, MARV and MLAV were co-transfected with an IFNβ promoter firefly luciferase reporter and a constitutively expressing Renilla luciferase plasmid. Twenty-four hours post-transfection, cells were either mock-infected or infected for an additional 18 hours with SeV, a potent activator of the IFNβ promoter [399]. As expected, SeV infection activated the IFNβ promoter in the absence of viral protein expression. EBOV and MARV VP35 impaired IFNβ reporter activation in a dose-dependent manner in both cell lines, with EBOV exhibiting greater potency as previously shown (Figure 10A and 10B) [381, 386]. Similarly, MLAV VP35 dramatically diminished IFNβ promoter activity in a dose dependent manner (Figure 10A and 10B).
Expression of EBOV VP24, Lloviu virus (LLOV) VP24 or MARV VP40 has also been reported to impair IFNβ and, in the case of EBOV VP24, IFNλ production [351, 353, 395]. In the present study, in HEK293T cells, modest inhibition of IFNβ promoter activation was evident for EBOV VP24, EBOV VP40, and MARV VP40. MLAV VP40 exhibited potent dose-dependent inhibition of IFNβ promoter activation (Figure 10A). Weak, but statistically significant inhibition of IFNβ reporter gene expression was detected for MARV VP24 and MLAV VP24, however, the biological significance of this minimal inhibition is uncertain. In RO6E cells, MLAV VP40 inhibition of IFNβ promoter activation was also detected but only at the highest concentration of transfected plasmid (Figure 10B).

To evaluate whether or not the inhibition of the IFNβ reporter also correlates with inhibition of endogenous IFNβ gene expression, qRT-PCR assays were performed. MLAV VP35 and VP40 showed significant inhibition of IFNβ transcripts consistent with the results of the reporter assays. Expression of MLAV VP24 had no effect on IFNβ copy numbers, which may suggest that the minor inhibition observed in the luminescence assay is not biologically relevant (Figure 10C).

EBOV and MARV VP35 inhibition of RLR signaling pathways results in inhibition of the phosphorylation and activation of transcription factor interferon regulatory factor 3 (IRF3) [330, 380, 400]. In order to determine whether MLAV VP35 can inhibit activation of IRF3, HEK293T cells were co-transfected with either empty vector or an IRF3 expression plasmid and plasmids that express FLAG-tagged EBOV, MARV, and MLAV VP35 (Figure 10D). Twenty-four hours post-transfection, cells were either mock- or SeV-infected to induce IRF3 phosphorylation. Over-expression of IRF3 substantially increased
detection of the phosphorylated form. As previously reported, EBOV VP35 potently inhibited IRF3 phosphorylation. MARV VP35 also inhibited IRF3 phosphorylation, although less efficiently, consistent with less robust inhibition of RIG-I signaling as compared to EBOV VP35 [381, 386]. MLAV VP35 inhibited IRF3 phosphorylation comparable to EBOV VP35 (Figure 10D).

EBOV and MARV VP35 interact with host protein PACT, and this interaction contributes to VP35 inhibition of RIG-I signaling [340, 343]. To determine if MLAV VP35 might suppress IFN production through a similar mechanism, the PACT-VP35 interactions were evaluated by co-immunoprecipitation assay (Figure 10E). FLAG-tagged EBOV, MARV, and MLAV VP35 or empty vector expression plasmids were co-transfected with HA-tagged PACT in HEK293T cells. A VP35 dsRNA binding mutant (VP35KRA) that has previously been shown to lack the ability to interact with PACT was included as a negative control [343]. All three wildtype VP35 proteins were demonstrated to interact with PACT, with MLAV VP35 interacting comparably to EBOV VP35 (Figure 10E). Together, these data suggest that MLAV VP35 employs mechanisms similar to EBOV and MARV VP35 for inhibition of RIG-I dependent activation of type I IFN responses and that the potency of inhibition is similar to EBOV VP35.
Figure 10 MLAV VP35 blocks virus-induced IFNβ promoter activation in both human and bat cells.
(A) HEK293T cells were transfected with an IFNβ promoter firefly luciferase reporter plasmid, a constitutively-expressed Renilla luciferase reporter plasmid and either empty vector (E) or the specified FLAG-tagged viral proteins. The amounts of VP35 and VP40 plasmids were 62.5 ng, 6.25 ng and 0.625 ng; the amounts of VP24 plasmids were 25 ng, 2.5 ng and 0.25 ng. Twenty-four hours post-transfection, cells were either mock or Sendai virus (SeV)-infected. Firefly and Renilla luciferase activities were determined eighteen hours post-infection using a dual luciferase assay. Fold induction was determined relative to the vector only, mock-infected samples. (B) RO6E cells were assayed as described above, except the amounts of EBOV and MARV VP35, VP40 and VP24 plasmids were 250 ng, 25 ng and 2.5 ng and the amounts of MLAV VP35, VP40 and VP24 plasmids were 125 ng, 12.5 ng and 1.25 ng. (C) HEK293T cells were transfected with 125 ng of empty vector or the indicated protein expression plasmids, mock- or SeV-infected for eighteen hours and endogenous human IFNβ mRNA levels were measured and normalized to human β-actin mRNA levels. For all experiments in A-C, cell lysates were analyzed by western blot with anti-FLAG and anti-β-tubulin antibodies (insets). Experiments were performed in triplicate, error bars represent the SEM for the triplicate, and statistical significance was determined by performing a one-way ANOVA followed with Tukey multiple comparison as compared to SeV-infected control (white bar); **p < 0.0001, * p < 0.001. VPs – viral proteins. (D) HEK293T cells were transfected with empty vector (E) or IRF3 expression plasmid (100 ng), as indicated, and FLAG-tagged EBOV, MARV, MLAV VP35. The amounts of VP35 plasmids were 2,000 ng, 400 ng and 80 ng. Cells were mock or SeV-infected for four hours. Whole cell lysates were analyzed by western blot with anti-pIRF3 (S396), anti-total IRF3, anti-FLAG (VP35), and anti-β-tubulin antibodies. (E) HEK293T cells were transfected with empty vector (E), or plasmids that express FLAG-tagged EBOV VP35, MARV VP35, MLAV VP35, or dsRNA binding mutant EBOV VP35KRA and HA-tagged PACT, as indicated. Immunoprecipitations (IP) were performed with anti-FLAG antibody. Western blots were performed for detection of VP35 (anti-FLAG antibody), PACT (anti-HA antibody), and β-tubulin. WCL, whole cell lysate. **Panel (E) Experiment performed by Caroline G. Williams

2.6.2 MLAV VP35 protein inhibits phosphorylation of PKR in human cells.

To assess whether MLAV VP35 can inhibit activation of PKR, HEK293T cells were transfected with FLAG-tagged EBOV, MARV, and MLAV VP35, or empty vector expression plasmids. Consistent with previous literature, EBOV VP35 and MARV VP35 inhibited SeV-induced PKR phosphorylation (Figure 11). MLAV VP35 also inhibited activation of PKR in a concentration dependent manner (Figure 11).
Figure 11 MLAV VP35 inhibits Sendai virus-induced PKR activation. HEK293T cells were transfected with empty vector (E) or expression plasmids for FLAG-tagged EBOV, MARV and MLAV VP35, as indicated (2000 ng, 400 ng and 80 ng). Twenty-four hours post-transfection, cells were mock- or SeV-infected. Eighteen hours post infection, whole cell lysates were assessed by western blot for levels of total and phosphorylated PKR using anti-FLAG (VP35), anti-total PKR, anti-phospho-PKR (T446) (pPKR) and anti-β-tubulin antibodies. **Figure 11 performed by Caroline G. Williams

2.6.3 MLAV VP40 protein inhibits responses to type I IFN in both human and bat cells.

To test the effects of MLAV VP35, VP40 and VP24 on the response of cells to exogenous type I IFN, empty vector or expression plasmids for FLAG-tagged VP35, VP40 and VP24 proteins of EBOV, MARV and MLAV were co-transfected with an IFN-responsive ISG54 promoter firefly luciferase reporter plasmid and a plasmid that constitutively expresses Renilla luciferase. Twenty-four hours post-transfection, cells were either mock- or type I IFN-treated. The ISG54 reporter was activated by IFN-treatment in the absence of viral protein expression (Figure 12A and 12B). As expected, both MARV VP40 and EBOV VP24 strongly inhibited ISG54 reporter activity in both
human and bat cell lines (Figure 12A and 12B). Similar to MARV VP40, MLAV VP40 potently inhibited the ISG54 reporter in both cell types. Each of the VP35s and MARV and MLAV VP24 modestly inhibited the ISG54 reporter when higher amounts of expression plasmid were tested.

To further address this function, endogenous ISG54 transcripts were measured by qRT-PCR. Inhibition of IFN-induced gene expression was demonstrated for MARV VP40, EBOV VP24 and MLAV VP40 (Figure 12C), consistent with the reporter gene results. Notably, no inhibition was detected with either MLAV VP35 or MLAV VP24 in this assay.

MARV VP40 has been shown to be a potent inhibitor of IFN-α/β induced phosphorylation of STAT1, whereas EBOV VP24 inhibits this pathway by blocking nuclear transport of pY-STAT1 [348-350]. To determine whether inhibition of IFN responses is due to inhibition of STAT1 phosphorylation, HEK293T cells were co-transfected with empty vector or expression plasmids for FLAG-tagged EBOV, MARV, and MLAV VP24 or VP40. GFP-STAT1 was (Figure 13A) or was not (Figure 13B) included in the transfection. Addition of IFN triggered the phosphorylation of GFP-STAT1 and endogenous STAT1 in the vector only samples. Among the EBOV and MARV constructs, only MARV VP40 was inhibitory. MLAV VP40 inhibited STAT1 tyrosine phosphorylation to a similar degree as MARV VP40. MLAV VP24 did not detectably affect STAT1 phosphorylation.

MARV VP40 inhibits STAT1 phosphorylation following over-expression of Jak1 [392]. To determine whether MLAV VP40 can prevent Jak1 induced STAT1 phosphorylation, HA-tagged Jak1 was co-transfected with empty vector or FLAG-tagged EBOV, MARV or MLAV VP40. As expected, expression of exogenous Jak1 induced
STAT1 tyrosine phosphorylation, and this was suppressed in the presence of MARV VP40 (Figure 13C). Similarly, MLAV VP40 prevented Jak1-dependent STAT1 phosphorylation, suggesting that MLAV VP40 inhibits IFN signaling through mechanisms similar to those used by MARV VP40.

EBOV VP24 interacts with NPI-1 subfamily members of the KPNA nuclear transporters, including KPNA5, to block nuclear import of pY-STAT1 [348-350]. To assess whether MLAV VP24 interacts with KPNA5, co-immunoprecipitation assays were performed in HEK293T cells (Figure 13D). KPNA5 did not precipitate in the absence of a co-expressed protein. Among FLAG-tagged EBOV, MARV, and MLAV VP24, only EBOV VP24 detectably interacted with KPNA5. To determine if MLAV VP24 might interact with other KPNA family members, additional co-immunoprecipitation assays were performed between MLAV VP24 and KPNA1-6. EBOV VP24 was used in parallel as a control. As expected, EBOV VP24 co-precipitated with KPNA1, KPNA5, and KPNA6. MLAV VP24 failed to detectably co-precipitate with any of the KPNA family members (Figure 13E and 13F). The absence of MLAV VP24-KPNA interactions is consistent with the inability of MLAV VP24 to inhibit IFN-induced gene expression and identifies a functional difference from EBOV VP24.
Figure 12 MLAV VP40 protein inhibits responses to type I IFN in both human and bat cells. 

(A) HEK293T cells were transfected with an ISG54 promoter firefly luciferase reporter plasmid, a constitutively-expressed Renilla luciferase reporter plasmid, and either empty vector (E) or the specified FLAG-tagged viral proteins. The amounts of VP35 and VP40 plasmids were 62.5 ng, 6.25 ng, and 0.625 ng; the amounts of VP24 plasmids were 25 ng, 2.5 ng, and 0.25 ng. Twenty-four hours post-transfection, cells were either mock- or UIFN-treated. Eighteen hours post-treatment, firefly, and Renilla luciferase activities were determined. Firefly luciferase values were normalized to Renilla luciferase values, and fold induction was calculated relative to the vector only, mock-treated samples. (B) RO6E cells were transfected as described above, except the amounts of EBOV and MARV VP35, VP40, and VP24 plasmids were 250 ng, 25 ng, and 2.5 ng, and the amounts of MLAV VP35, VP40, and VP24 plasmids were 125 ng, 12.5 ng, and 1.25 ng. (C) HEK293T cells were assessed for endogenous human ISG54 mRNA levels in the presence of empty vector or expression plasmids for the indicated viral proteins, 125 ng. Results were normalized to human β-actin mRNA levels. All experiments were performed in triplicate; error bars represent the SEM for the triplicate. Whole cell lysates were analyzed by western blot with anti-FLAG and anti-β-tubulin antibodies (inset). Statistical significance was determined by performing a one-way ANOVA followed by Tukey’s multiple comparison test as compared to UIFN-treated control (white bar); **p < 0.0001, *p < 0.001.
Figure 13 MLAV VP40 protein inhibits type I IFN induced gene expression and Jak-STAT signaling.

HEK293T cells were transfected with empty vector (E), FLAG-tagged VP24s or VP40s from EBOV, MARV and MLAV, as indicated. Twenty-four hours post-transfection, cells were treated with UIFN for 30 minutes and the phosphorylation status of exogenous GFP-STAT1 (A) or endogenous STAT1 (B) was assessed by western blotting. (C) HEK293T cells were co-transfected with empty vector (E) or FLAG-tagged VP40s from EBOV, MARV and MLAV and HA-tagged Jak1 expression plasmids. Twenty-four hours post-transfection cells were lysed and the phosphorylation status of endogenous STAT1 was analyzed. Western blotting was performed with anti-FLAG, anti-STAT1, anti-pSTAT1 (Y701), and anti-β-tubulin antibodies. (D) HEK293T cells were co-transfected with FLAG-tagged EBOV, MARV, MLAV VP24, and HA-tagged KPNA5. Immunoprecipitation (IP) was performed with anti-FLAG antibody and precipitates and whole cell lysates (WCL) were assayed by western blotting with anti-FLAG (VP24), anti-HA (KPNA5) and anti-β-tubulin antibodies. (E-F) HEK293T cells were co-transfected with either FLAG-tagged EBOV or MLAV VP24, and HA-tagged KPNA1-6. Immunoprecipitation (IP) was performed with anti-HA antibody and precipitates and whole cell lysates (WCL) were assessed by western blotting with anti-FLAG (VP24), anti-HA (KPNA) and anti-β-tubulin antibodies. **Figure 13 performed by Caroline G. Williams

2.6.4 MLAV and MARV VP40 bud with similar efficiencies from human and bat cells.

Filovirus VP40 proteins play a critical role in budding of new virus particles, and expression of VP40 is sufficient for formation and budding of VLPs [143, 144, 146, 401, 402]. MLAV VP40 displays more potent activity than MARV VP40 in several assays. To determine whether this might reflect altered cellular accumulation due to different levels of budding from cells, the capacity of EBOV, MARV and MLAV VP40s to bud as VLPs
was assessed. Upon expression in human and bat cells, each VP40 budded from both cell types. Furthermore, significant portions of the EBOV, MARV, and MLAV VP40 in cell supernatants were only trypsin-sensitive upon addition of Triton X-100 detergent, consistent with the VP40s from both HEK293T and RO6E cells being protected by a membrane, as is characteristic of filovirus particles (Figure 14A and 14B).

**Figure 14 MLAV VP40 is capable of forming virus-like particles from both human and bat cells.**

To compare the budding of EBOV, MARV, and MLAV VP40 proteins from different cell lines, VLP assays were performed in HEK293T cells (A) and RO6E cells (B). Ten percent of each VLP preparation was subjected to treatment with trypsin (Tryp) or trypsin and Triton X-100 (Tryp+Triton) to determine whether VP40 was contained within a membrane. The presence of VP40 in non-treated (N.T.) and treated VLPs and whole cell lysates (WCL) was assessed by western blot with anti-FLAG antibody. Anti-β-tubulin served as a loading control for the WCL. **Figure 14 performed by Tim Keiffer.**
2.6.5 **MLAV VP40 and EBOV VP24 inhibition of IFNβ promoter activation**

*occur independently of Jak-STAT signaling.*

The type I IFN response includes a positive feedback loop whereby secreted IFN upregulates pattern recognition receptors, such as RIG-I and transcription factors such as IRF7, to amplify the response [403]. It was therefore of interest to test the hypothesis that MLAV VP40, MARV VP40 and EBOV VP24 inhibit virus-induced induction of the IFN response as a result of their inhibition of IFN-induced positive feedback loop. Activation of the IFNβ promoter by SeV was therefore assessed by reporter gene assay in the absence or presence of the Jak1/Jak2 inhibitor Ruxolitinib. In this experiment, cells were transfected with empty vector or FLAG-tagged expression plasmids for the EBOV VP35, EBOV, MARV and MLAV VP40 and EBOV VP24, pre-treated with DMSO or Ruxolitinib and then mock- or SeV- infected, in the absence or presence of the inhibitor (Figure 15A). EBOV VP35 acted as a potent suppressor of IFNβ promoter activation under these conditions. MARV VP40, MLAV VP40, and EBOV VP24 all suppressed IFNβ promoter activation to similar extents in the absence or presence of the Jak kinase inhibitor. To confirm that inhibition of IFN induced signaling was complete, cells transfected with an ISG54 promoter reporter gene were DMSO or Ruxolitinib treated and then mock or IFN-treated. As expected, IFN activated the ISG54 promoter in the presence of DMSO but not Ruxolitinib (Figure 15B). To validate the inhibitory activities detected in the reporter gene assays, quantitative RT-PCR was performed to detect expression of the endogenous IFNβ and ISG54 mRNA. Consistent with the reporter assays, IFNβ and ISG54 copy numbers were significantly inhibited in the presence of EBOV VP35, EBOV VP24 and both MARV and MLAV VP40 (Figure 15C). It is notable that inhibition of SeV-induced
IFN responses by EBOV VP35 was more robust than for the other proteins. That degrees of inhibition were unaffected by the presence of the Ruxolitinib, these data suggest that MARV VP40, MLAV VP40 and EBOV VP24 all utilize mechanisms independent of inhibition of STAT1 phosphorylation to impair induction of type I IFN responses.
Figure 15 MLAV VP40 blocks Sendai virus-induced IFNβ promoter activation independently of Jak-STAT signaling.

(A) HEK293T cells were transfected with an IFNβ promoter firefly luciferase reporter plasmid, a constitutively-expressed Renilla luciferase reporter plasmid and either empty vector (E) or the specified FLAG-tagged viral proteins. The amounts of VP35, VP40, and VP24 plasmids were 62.5 ng, 6.25 ng, and 0.625 ng. Twenty-four hours post-transfection, cells were pre-treated with either DMSO or the Jak1/Jak2 inhibitor Ruxolitinib for one hour. Post treatment, cells were mock- or SeV-infected in the presence of DMSO or Ruxolitinib. Firefly and Renilla luciferase activities were determined eighteen hours later using a dual luciferase assay (Promega). Fold induction was determined relative to the DMSO vector only, mock-infected samples. Viral protein expression was confirmed by western blotting with anti-FLAG antibody (inset). Anti-β-tubulin served as a loading control.

(B) HEK293T cells were transfected with an ISG54 promotor firefly luciferase reporter plasmid, a constitutively-expressing Renilla luciferase reporter plasmid and empty vector. Twenty-four hours post-transfection, cells were pre-treated with DMSO or Ruxolitinib for one hour. Post-treatment, cells were mock- or UIFN-treated in the presence of DMSO or Ruxolitinib. Firefly and Renilla luciferase activities were determined eighteen hours later using a dual luciferase assay (Promega). Fold induction was determined relative to the DMSO, mock-treated samples.

(C) HEK293T cells were assessed for endogenous human IFNβ and ISG54 mRNA levels in the presence of viral expression plasmids, 125 ng. Results were normalized to human β-actin mRNA levels. Assays were performed in triplicate. Cell lysates were analyzed by western blot with anti-FLAG and anti-β-tubulin antibodies (inset). For A and C, error bars represent the SEM for the triplicate. Statistical significance was determined by performing a one-way ANOVA followed with Tukey multiple comparison as compared to SeV-infected control; **p < 0.0001, * p < 0.001.
2.6.6 MLAV VP24 fails to interact with Keap1 or activate ARE gene expression due to the absence of a Keap1-interacting K-loop.

MARV VP24 interacts with Keap1 to activate ARE promoters [354, 355]. To determine whether MLAV VP24 possesses similar properties, co-immunoprecipitation experiments were performed with HA-tagged human Keap1 (hKeap1) or HA-tagged Keap1 derived from the bat *Myotis lucifugus* (bKeap1), which is 96.8% identical, at the amino acid level, to the predicted *Rousettus aegypticus* Keap1 (data not shown). As previously described, MARV VP24 interacted with both human and bat Keap1, whereas EBOV and MLAV VP24 did not interact ([Figure 16A and 16B](#)). Consistent with these data, when tested in an ARE promoter reporter gene assay, MARV VP24 activated the ARE reporter, relative to an empty vector control, while neither EBOV nor MLAV VP24 activated the ARE response ([Figure 16C](#)).

MARV VP24 interaction with Keap1 occurs via a specific motif, the K-loop, and transfer of this sequence to EBOV VP24 confers binding to Keap1 [355]. To determine whether this sequence could confer interaction with Keap1 and activation of ARE responses upon MLAV VP24, the MARV VP24 K-loop sequence (amino acid residues 202-219) was transferred to MLAV VP24, replacing the corresponding amino acid residues (MLAV VP24\_MARV 202-219). The reverse chimera was also generated, with MLAV sequences replacing the K-loop in MARV VP24 (MARV VP24\_MLAV 202-219) ([Figure 17A](#)). Transferring the MARV K-loop sequence to MLAV VP24 conferred the capacity to activate an ARE response while transfer of the MLAV sequence to MARV VP24 abolished the activation ([Figure 17B](#)). Interaction with human Keap1 ([Figure 17C](#)) and bat Keap1 ([Figure 17D](#)) yielded corresponding data, where interaction was dependent on the MARV...
VP24 K-loop. Collectively, these data demonstrate that the lack of ARE gene expression by MLAV VP24 is due to the lack of a Keap1 binding motif.

Figure 16 MLAV VP24 does not interact with human or bat KEAP1 or activate the ARE promoter.

(A-B) HEK293T cells were co-transfected with FLAG-tagged EBOV, MARV, MLAV VP24, as indicated, and HA-tagged human Keap1 (hKeap1) (A) or HA-tagged bat Keap1 (bKeap1) (B). Co-immunoprecipitation (IP) was performed with anti-FLAG antibody and precipitates and whole cell lysates (WCL) were assessed by using anti-FLAG (VP24), anti-HA (Keap1) and anti-β-tubulin antibodies. (C) HEK293T cells were transfected with a reporter plasmid with the firefly luciferase gene under the control of an ARE promoter, a reporter plasmid that constitutively expresses Renilla luciferase and either empty vector
(E) or the indicated FLAG-VP24 proteins. The amounts of VP24 plasmids were 62.5 ng, 6.25 ng, and 0.625 ng. Firefly and Renilla luciferase activities were determined eighteen hours post-transfection. Firefly luciferase activity was normalized to Renilla luciferase activities, and fold activity is reported relative to the empty vector only sample. Protein expression was analyzed by western blot using anti-FLAG (VP24) and anti-β-tubulin antibodies (inset). The reporter gene assays were performed in triplicate; error bars represent the SEM for the triplicate. Statistical significance was determined by performing a one-way ANOVA followed with Tukey multiple comparisons as compared to vector-only control (white bar); **p < 0.0001, * p < 0.001.
Figure 17 Transfer of the MARV K-Loop sequence confers on MLAV VP24 interaction with Keap1 and activation of ARE signaling.

(A) Sequences for amino acid residues 202-219, which correspond to the MARV VP24 K-loop, for MARV VP24, MLAV VP24, and the VP24 chimera constructs MLAV VP24<sub>MARV 202-219</sub> and MARV VP24<sub>MLAV 202-219</sub>. (B) HEK293T cells were transfected with reporter plasmid with the firefly luciferase gene under the control of an ARE promoter, a reporter plasmid that constitutively expresses Renilla luciferase and either empty vector (E) or the indicated FLAG-VP24 proteins. The amounts of VP24 plasmids were 62.5 ng, 6.25 ng, and 0.625 ng. Firefly and Renilla luciferase activities were determined eighteen hours post-transfection. Firefly luciferase activity was normalized to Renilla luciferase activities, and fold activity is reported relative to the empty vector only sample. The experiment was performed in triplicate; error bars represent the SEM for the triplicate. Statistical significance was determined by performing a one-way ANOVA followed with Tukey multiple comparisons as compared to vector-only control (white bar); **p < 0.0001, * p < 0.001. Cell lysates were analyzed by western blot with anti-FLAG (VP24) and anti-β-tubulin antibodies (Inset). (C-D) HEK293T cells were transfected with FLAG-tagged constructs, as indicated and either (C) HA-tagged human Keap1 (hKeap1) or (D) HA-tagged bat Keap1 (bKeap1). Co-immunoprecipitation (IP) was performed with an anti-FLAG antibody. IPs were analyzed by western blotting with anti-FLAG (VP24), anti-HA (Keap1) and anti-β-tubulin antibodies. WCL, whole cell lysate.
2.6.7 **MLAV VP35 and VP40 maintain their ability to inhibit the IFN response in the presence of other viral proteins.**

Both VP35 and VP40 are known to independently interact with the nucleoprotein (NP) and together with the VP24 protein NP and VP35 can form mature nucleocapsids [59, 73, 116, 404]. To determine if the formation of the nucleocapsid complex impacted the ability of VP35 to inhibit IFNβ production, varying amounts of EBOV and MLAV VP35 were transfected in the presence of EBOV or MLAV NP and VP24, respectively. Both EBOV and MLAV VP35 were still able to inhibit SeV-induced activation of the IFNβ promoter in the presence of NP and VP24. (Figure 18A). Similarly, to assess if NP could interfere with the ability of VP40 to inhibit IFN production and signaling we co-transfected varying amounts of MARV VP40 or MLAV VP40 in the presence of NP. MLAV VP40 was still a potent repressor of both SeV-induced activation of the IFNβ promoter and the UIFN-induced activation of the ISG54 promoter in the presence of NP (Figure 18B-C). Lastly, we evaluated the effect of co-transfecting multiple viral proteins together on the inhibitory capabilities of EBOV, MARV, and MLAV. The respective NP, VP35, VP40, VP30 and VP24 plasmids were transfected together in either the IFNβ or ISG54 promoter assay. Upon activation with either SeV or UIFN, respectively, it was observed that the combination of proteins inhibited the SeV-induced activation of the IFNβ promoter and the UIFN-induced activation of the ISG54 promoter (Figure 18D-E).
Figure 18 MLAV VP35 and VP40 maintain their ability to inhibit the IFN response in the presence of other viral protein.

(A-C) HEK293T cells were transfected with either an IFNβ (A-B) or an ISG54 (C) promoter firefly luciferase reporter plasmid, a constitutively-expressed Renilla luciferase reporter plasmid, and either empty vector (E) or the specified FLAG-tagged viral proteins. (A) 62.5 ng, 6.25 ng, and 0.625 ng of VP35 plasmid and 6.25 ng of NP and VP24 plasmids. (B-C) 62.5 ng, 6.25 ng, and 0.625 ng of VP40 plasmid and 6.25 ng of NP plasmid. Twenty-four hours post-transfection, cells were either mock, SeV-infected (A-B), or UIFN-treated (C). Eighteen hours post-treatment, firefly, and Renilla luciferase activities were determined. Firefly luciferase values were normalized to Renilla luciferase values, and fold induction was calculated relative to the vector only, mock-treated samples. (D-E) HEK293T cells were transfected with either an IFNβ (D) or an ISG54 (E) promoter firefly luciferase reporter plasmid, a constitutively-expressed Renilla luciferase reporter plasmid, and either empty vector (E) or the specified FLAG-tagged viral proteins. 6.25 ng of NP, VP35, VP40, VP30, and VP24 plasmids. Twenty-four hours post-transfection, cells were either mock, SeV-infected (D), or UIFN-treated (E). Eighteen hours post-treatment, firefly, and Renilla luciferase activities were determined. Firefly luciferase values were normalized to Renilla luciferase values, and fold induction was calculated relative to the vector only, mock-treated samples. Whole cell lysates were analyzed by western blot with anti-FLAG and anti-β-tubulin antibodies (insets). Statistical significance was determined by performing a one-way ANOVA followed with Tukey’s multiple comparison test as compared to SeV-infected (A-B and D) or UIFN-treated (C, E) control (white bar); **p < 0.0001, *p < 0.001. **Panel C&E performed by Caroline G Williams.
2.7 Discussion

The data in this study provide functional evidence that MLAV is biologically distinct from other filoviruses and support its classification in its own genus. The placement of MLAV in a distinct genus was based on its relatively low sequence identity to other filoviruses [6]. It was also noted to have, compared to other filoviruses, unique gene overlaps and a unique transcription start signal. Despite these distinctions, MLAV mechanisms of entry and RNA synthesis, based on pseudotype and minigenome assays, mirror those of both EBOV and MARV. MLAV also possesses some features that suggest a closer genetic relationship to members of the *Marburgvirus* genus as opposed to the *Ebolavirus* and *Cuevavirus* genera. This includes similarities in Large (L) protein sequence and the absence of RNA editing sites in GP [6]. In addition, MLAV was identified in *Rousettus* bats, and *Rousettus* bats in Africa serve as a reservoir for MARV and RAVV [48]. The present study demonstrates commonalities and distinctions between MLAV and either EBOV or MARV in terms of how viral proteins antagonize the innate immune response in both bat and human cells. Inhibition of RIG-I induced IFN responses is thus far a common feature of filoviruses [405]. The suppression of IFN-induced signaling and gene expression by VP40, rather than via VP24, parallels MARV and draws a functional distinction between MLAV and EBOV. The absence of MLAV VP24 interaction with human or bat Keap1, and its lack of ARE transcriptional activation is consistent with MLAV having evolved unique virus-host interactions that are distinct from MARV. These findings further support placement of MLAV in a distinct genus, but also suggest a closer relationship to MARV than EBOV.
The data also demonstrate that MLAV encodes mechanisms to counteract both type I IFN production and cellular responses to exogenous IFN, and that this virus has the potential to antagonize these innate antiviral responses in both bat and human cells. MLAV VP35 was demonstrated to effectively block activation of the IFNβ promoter in response to SeV infection, a known inducer of the RIG-I signaling pathway. In addition, inhibition of SeV-induced phosphorylation of IRF3 was demonstrated. Together, these data indicate that MLAV can block RIG-I signaling, consistent with the function of other filovirus VP35s [399, 406]. Mechanistically, inhibition of IFN-α/β production by EBOV or MARV VP35 correlates with dsRNA binding activity [330, 331, 335, 342, 343, 380, 381, 383, 386]. This may reflect binding and sequestration of RIG-I activating dsRNAs [343, 386]. The VP35 dsRNA binding domain, also known as the interferon inhibitory domain (IID), directly contacts the phosphodiester backbone of dsRNA, via residues that comprise a central basic patch, to mediate this interaction [330, 335, 336, 381, 382, 385]. EBOV VP35 also caps the ends of dsRNA in a manner that likely masks 5’-triphosphates, which contribute to recognition of RNAs by RIG-I [335, 336]. VP35 interaction with host protein PACT, which interacts with and facilitates activation of RIG-I, also contributes to inhibition [343, 407]. Because the residues that make up the central basic patch are conserved between MLAV and other filoviral VP35s (1), MLAV is likely to bind to dsRNA. Given that it also interacts with PACT (Figure 10E), its mechanisms of inhibition are likely similar to other filoviral VP35s.

EBOV, MARV and LLOV VP35 have also been demonstrated to inhibit activation of PKR, an IFN-induced, dsRNA-activated protein kinase that exerts antiviral effects by suppressing translation [340, 351, 387-389]. The mechanism by which VP35s inhibit PKR
remains ambiguous, however, mutation of multiple central basic patch residues in EBOV or MARV VP35 disrupts the inhibitory activity [340, 388]. In contrast, single point mutations that disrupt EBOV VP35 dsRNA binding activity leave PKR inhibition intact, suggesting that inhibition of PKR is not dependent upon VP35-dsRNA interaction or sequestration [387, 388]. Consistent with PKR inhibition being an important function for filoviruses, this activity is conserved in MLAV as well. That the inhibition can occur in human cells further supports the likelihood that MLAV could counter human innate antiviral defenses.

The IFN-inhibitory activities of both EBOV and MARV VP35 have been demonstrated to be important for efficient virus replication in IFN-competent systems [383, 400]. In addition to blocking the production of antiviral IFNs, VP35 inhibition of RIG-I also suppresses maturation of dendritic cells when expressed alone or in the context of EBOV infection [384, 408, 409]. This activity impairs adaptive immunity to EBOV [410, 411]. Therefore, VP35 likely inhibits adaptive, as well as innate, antiviral defenses. Disruption of VP35 anti-IFN function in the context of recombinant EBOVs has been demonstrated to render the virus avirulent in mice, guinea pigs and non-human primates [383, 412, 413]. Based on these data, VP35 suppression of RIG-I signaling appears to be critical for virulence. The effective function in human cells of MLAV VP35 satisfies one apparent criterion for virulence in humans. It should be noted however, that suppression of RIG-I signaling by VP35 is not sufficient on its own to confer virulence. Even though MARV VP35 functions in Rousettus cells and likely has evolved in this species, MARV does not appear to cause significant disease in these animals [414-416]. It does seem
likely that in the reservoir host, VP35 IFN-antagonist function will be important for efficient replication and transmission, although this remains to be tested experimentally.

For MARV, either infection or VP40 expression alone blocks IFN induced phosphorylation of Jak kinases, inhibiting activation and downstream signaling. The absence of these phosphorylation events in response to IFN-α/β or IFNγ is consistent with the phenotype of Jak1-deficient cells, suggesting that Jak1 function may be targeted by MARV VP40, although there is no evidence to date of VP40-Jak1 interaction [392]. Consistent with MARV VP40 impairing Jak1 function, MARV VP40 expression is sufficient to prevent phosphorylation of STAT proteins following Jak1 over-expression or treatment by IFN-α/β or IFNγ (type II IFN) [392]. MLAV VP40 likewise blocks ISG expression and inhibits STAT1 phosphorylation following IFN treatment or over-expression of Jak1. Therefore, inhibition of IFN signaling by MLAV VP40 seems likely to proceed by a mechanism similar to that employed by MARV VP40.

MARV VP24 binds directly to Keap1, a cellular substrate adaptor protein of the Cullin-3/Rbx1 E3 ubiquitin ligase complex [354, 355, 396, 417]. Keap1 regulates the cellular antioxidant response [418]. Under homeostatic conditions, Keap1 promotes Nrf2 polyubiquitination and degradation. Cell stresses, including oxidative stress, disrupt the Keap1-mediated ubiquitination of Nrf2, stabilizing it and promoting Nrf2 dependent expression of antioxidant response genes. Biophysical studies demonstrated that MARV VP24 interacts with the Keap1 Kelch domain at a site that overlaps the region that binds Nrf2 [396]. This interaction disrupts Nrf2-Keap1 interaction and activates ARE gene expression [354, 355, 396]. Keap1 similarly interacts with host kinase IKKβ to repress NF-κB responses and MARV VP24 can also disrupt this interaction, thereby relieving
Keap1 repression on the NF-κB transcriptional response [397]. In contrast, EBOV and LLOV VP24 targets KPNA proteins in a manner that prevents pY-STAT1 nuclear transport, inhibiting ISG expression [348-351, 391].

Given that MLAV VP40 mirrored MARV VP40 in its inhibition of the IFN response, it was of interest to determine whether MLAV VP24 would similarly mimic MARV VP24 in terms of interaction with the Keap1-Nrf2 pathway. However, MLAV VP24 lacks a sequence that resembles the MARV VP24 K-loop and, correspondingly, did not interact with human or a bat-derived Keap1 and did not activate an ARE promoter. Chimeric MARV-MLAV VP24 proteins confirmed that the absence of the K-loop sequence can explain the lack of MLAV VP24 effects on antioxidant responses. Furthermore, consistent with the absence of MLAV VP24 inhibitory activity in IFN-signaling assays, it also fails to interact with KPNA1, 5 and 6, which can mediate nuclear import of pY-STAT1. The interface between EBOV VP24 and KPNA covers a large surface area and involves multiple points of contact [348]. This precluded the mapping of specific amino acid residues that explain the lack of MLAV VP24-KPNA interactions. Nonetheless, these data presented here indicate that MLAV VP24 does not reflect the functions of either MARV or EBOV VP24. It will be of interest to determine whether MLAV VP24 engages different host signaling pathway(s).

The inhibition of IFNβ promoter activity by MLAV VP40 parallels the inhibition by EBOV VP24 and MARV VP40, although inhibition by MLAV VP40 appeared to be more potent. Interestingly, MLAV VP40 inhibits SeV-induced IFNβ gene expression with an efficiency comparable to EBOV VP35, although MLAV VP35 appears to be more potent than MLAV VP40 in this assay. It will be of interest to determine to what extent VP35 and
VP40 contribute to suppression of IFN induction in MLAV infected cells. MARV VP40 and EBOV VP24 inhibition of IFN-α/β production and, in the case of EBOV VP24, production of IFN-λ as well, have been previously reported [353, 395]. However, the mechanism(s) for these inhibitory activities are incompletely defined, although EBOV VP24 was implicated as having an effect post-IRF3 phosphorylation [395]. Inhibition of STAT1 activation and IFN-induced gene expression would be expected to impair the positive feedback loop in which IFN-α/β induces expression of IFN stimulated genes, including RIG-I and IRF7, to amplify IFN responses [403]. This prompted additional experiments to determine whether the detected inhibition was a product of blocking a positive feedback loop involving Jak-STAT signaling. Treatment of empty vector-transfected cells with a Jak1/Jak2 inhibitor did not inhibit SeV-induced IFNβ promoter activation, suggesting that in the system used, Jak-STAT signaling does not contribute to the IFNβ response. Further, the dose response of EBOV VP24, MARV VP40 and MLAV VP40 in the IFNβ promoter assay were unaffected. These data suggest MLAV VP40 has an additional mechanism(s) of IFN antagonism that requires further exploration.

Infectious MLAV is not available to allow us to confirm that suppression of IFN responses occurs in infected cells. As an alternative, we asked whether other viral proteins might modulate these activities. We co-transfected MLAV VP35 and MLAV VP40 with other viral proteins that, based on data from EBOV and MARV, would be expected to form functional complexes. VP35, when co-expressed with NP and VP24, forms nucleocapsid structures [59, 73, 116]. Despite this, NP and VP24 co-expression did not prevent inhibition of the IFNβ promoter by either EBOV or MLAV. Similarly, VP40 interacts with NP [404]. However, NP affected neither VP40 suppression of the IFNβ nor the ISG54
promoter. Additionally, co-expression of the internal viral proteins except the Large (L) protein which is expressed at low levels in filovirus-infected cells, also did not prevent suppression of IFN responses. These findings suggest that these innate immune evasion functions will be active during MLAV infection.

Cumulatively, the present study has identified several functions of MLAV proteins that, in conjunction with previously published data, indicate a compatibility with infection of humans. These include the capacity of MLAV GP to mediate entry into human cells via interaction with NPC1 and suppression of IFN responses through several mechanisms [6]. Notably, given that MLAV VP24 does not detectably interact with the KPNAs or Keap1, it is likely that it may make unique interactions with host cells. Therefore, the existing data also suggests that the outcome of MLAV infection in humans could differ from that of the typical outcome of EBOV or MARV infection.

2.8 Acknowledgments

The following reagent was obtained through BEI Resources, NIAID, NIH: RO6E, Rousettus aegyptiacus (Egyptian fruit bat), Immortalized Fetal Cell Line, NR-49168. This work was supported by NIH grants P01AI120943 and U19AI109945 and Department of the Defense, Defense Threat Reduction Agency grant HDTRA1-16-1-0033. The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred.
3 MECHANISMS OF ANTI-VESICULAR STOMATITIS VIRUS ACTIVITY OF DEAZANEPLANOCIN AND ITS 3-BROMINATED ANALOGUES

Submitted to Antiviral Research as of 3/19/2021

3.1 Author figure contributions

The below outlines the figure contribution of each author.

Joyce Sweeney Gibbons - Figure 19 A-E, Figure 20 A-E, Figure 21, Figure 22 A-C, Figure 23 A-B, Figure 24, Figure 25, and Figure 26 A-C.

Sudip Khadka - Figure 26 A-C - Lysates, sucrose-gradients, polysome profiling and fraction collection.

Lin Wang - Figure 22 A-C - De novo assembly of WT-VSV-GFP and mutant viruses.

3.2 Abstract

3-deazaneplanocin A (DzNep) and its 3-brominated analogues inhibit replication of several RNA viruses. This antiviral activity is attributed to inhibition of S-adenosyl homocysteine hydrolase (SAHase) and consequently inhibition of viral methyltransferases, impairing translation of viral transcripts. The L-enantiomers of some derivatives retain antiviral activity despite dramatically reduced inhibition of SAHase in vitro. To better understand the mechanisms by which these compounds exert their antiviral effects, we compared DzNep, its 3-bromo-derivative, CL123, and the related enantiomers, CL4033 and CL4053, for their activities towards the model negative-sense RNA virus vesicular stomatitis virus (VSV). In cell culture, DzNep, CL123 and CL4033 each exhibited 50 percent inhibitory concentrations (IC50s) in the nanomolar range whereas the IC50 for the L-form, CL4053, was 34-85 fold higher. When a CL123-resistant mutant (VSVR) was selected, it exhibited cross-resistance to each of the neplanocin
analogs, but retained sensitivity to the adenosine analog BCX4430, an RNA chain terminator. Sequencing of VSV\textsuperscript{R} identified a mutation in the C-terminal domain (CTD) of the viral Large (L) protein, a domain implicated in regulation of L protein methyltransferase activity. CL123 inhibited parent VSV viral mRNA 5' cap methylation, impaired viral protein synthesis and decreased association of viral mRNAs with polysomes. Modest impacts on viral transcription were also demonstrated. VSV\textsuperscript{R} exhibited partial resistance in each of these assays but its replication was impaired, relative to the parent VSV, in the absence of the inhibitors. These data suggest that DzNep, CL123 and CL4033 inhibit VSV through impairment of viral mRNA cap methylation and that the L-form, CL4053, based on the cross-resistance of VSV\textsuperscript{R}, may act by a similar mechanism.

### 3.3 Introduction

The synthesis and biological activity of derivatives of DzNep, 3-bromo-3-deazaneplanocin, CL123, and 3-bromo-1',6'-isoneplanocin isomers, CL4033 and CL4053 have been described [228, 229]. Each of these analogs contains unique structural modifications relative to the parent compound, DzNep [225, 419]. Specifically, all analogs are brominated at the C-3 position of the nucleobase and the “D-Like” CL4033 and “L-Like” CL4053 isomers have a double bond in the cyclopentenyl moiety at the 1',6' position instead of the 1',4' position [228, 229].

Compounds from this series have demonstrated broad-spectrum antiviral activity against DNA and RNA viruses [218, 270]. The non-segmented negative-sense RNA viruses (NNSVs) are particularly sensitive to this class of compounds with notable activity demonstrated against Ebola virus (EBOV) both in vitro and in vivo [218, 226, 227]. The antiviral activity of neplanocin derivatives has been attributed to their capacity to inhibit
S-adenosylhomocysteine (SAH) hydrolase (SAHase, E.C.3.3.1.1). In *in vitro* assays, DzNep, CL123 and CL4033 have low nanomolar IC50s against SAHase. However, the L-enantiomer, CL4053, is approximately 1000-fold less inhibitory, relative to the D-enantiomer, CL4033 [228].

SAHase is a critical cellular enzyme in the methylation cycle that hydrolyzes SAH derived from S-adenosylmethionine (SAM)-dependent methyltransferase reactions into homocysteine and adenosine [218, 230, 275]. In the absence of SAH hydrolysis, intracellular levels of SAH increase [231, 232]. The accumulating SAH acts as a feedback inhibitor of SAM-dependent methyltransferases [420]. Inhibition of viral SAM-dependent methyltransferases is proposed to diminish methylation of viral mRNA and thereby impair viral protein synthesis [270].

In this study, we sought to address the mechanisms by which DzNep, CL123, CL4033 and CL4053 inhibit NNSVs by using vesicular stomatitis virus (VSV), a prototypical NNSV. VSV is sensitive to neplanocin congeners [421-423], and there is a strong correlation (r = 0.986) between inhibition of VSV and SAHase [218]. Our data indicate that VSV is inhibited by DzNep, CL123 and CL4033 at low nM IC50s. The anti-VSV activity of the L-form, CL4053, is 85 times higher than the D-form, CL4033. A CL123-resistant mutant, VSV\(^R\), displayed cross-resistance against DzNep and all three DzNep derivatives, including CL4053. Analysis of VSV\(^R\) revealed a non-synonymous mutation, I1905R, within the CTD of the L protein. CL123 inhibited the methylation of parental VSV 5' methylated caps and viral mRNA associated with polysomes. For parental VSV, DzNep, CL123 and CL4033 caused minor inhibition of viral mRNA transcription as well as impaired protein synthesis. VSV\(^R\) demonstrated reduced sensitivity in all these assays.
3.4 Materials and Methods

3.4.1 Compounds

Compounds were dissolved in dimethyl sulfoxide (DMSO) and diluted to 20 mM stock concentrations. All compounds were > 95% pure.

3.4.2 Cell culture, compound treatments and virus infections

Vero 76 cells (ATCC) were cultured in Dulbecco’s Modified Eagle’s Medium supplemented with 10% fetal bovine serum (FBS). For all virus infections, excluding plaque assays, cells were pre-treated for 1 hour prior to infection with either DMSO or 1 µM or the indicated compound concentrations in 2% FBS. Monolayers were infected for 1 hour at 37 °C, 5% CO₂, washed twice with PBS and compounds were added back at the indicated concentrations. Multi-step growth kinetics were performed as described previously [424] at MOI 0.002. The initial infection to generate the CL123-resistant VSV was performed at MOI 0.005. All other infections were performed at MOI 10.

3.4.3 Plaque assays

Ten-fold serial dilutions of virus were adsorbed at 37 °C, 5% CO₂ for 1 hour. Post-adsorption, the inoculum was removed, monolayers were washed twice with PBS and overlayed with DMEM, 1% SeaPlaque™ Agarose (Lonza), and 2% FBS. Plates were incubated at 37 °C, 5% CO₂ for 48 hours. Monolayers were fixed with 4% paraformaldehyde for 30 minutes at room temperature, followed by agarose plug removal and staining with crystal violet stain (19% methanol, 9.5% of 1% crystal violet) for 30 minutes. Plates were dunked in water to remove excess stain and dried at room temperature before counting plaques.
3.4.4 **Determining IC50 and CC50 values**

To obtain IC50 and CC50 values, cells were pre-treated with five-fold compound serial dilutions starting at 30 µM. Infections were performed at MOI 0.002. Viral supernatants were collected 21 hpi and stored at -80 °C until titers were determined by plaque assay. Cell viability was determined with the CellTiter-Glo® assay (Promega) on uninfected cells using the same compound dilutions as described for determining the IC50.

3.4.5 **Selection of a CL123-resistant VSV**

VSVR was selected by serially passaging WT-VSV-GFP in the presence of 1 µM CL123 (>IC90). GFP expression serves as a visual measure for viral replication and was used as a gauge for development of CL123 resistance. The initial infection was performed at MOI 0.005. Twenty-four hpi, viral supernatants were serially passaged onto cells that had been pre-treated for 1 hour with 1 µM CL123. At the thirteenth passage, the effect of CL123 on virus replication (GFP expression) appeared to be reduced and a plaque assay was performed on the cell supernatants. Twelve plaques were isolated and amplified twice in the presence of 1 µM CL123. All titers were determined by plaque assay.

3.4.6 **Viral genome amplification and sequencing**

Viral RNA was extracted using Trizol™ LS Reagent (Thermo Fisher Scientific). First strand cDNA was synthesized using Accuscript High Fidelity 1st Strand cDNA Synthesis Kit (Agilent) and PCR amplification was performed with Phusion® High Fidelity DNA Polymerase (New England Biolabs). Primers used for first strand cDNA synthesis and PCR amplification have been previously described [425]. PCR products were agarose gel-purified and eluted PCR products were then diluted to 5 ng/ul with a
NanoDrop spectrophotometer (Thermo Fisher Scientific) and further quantified with Qubit (Thermo Fisher Scientific). Viral sequencing libraries were prepared with 1 ng of the PCR products using the Nextera XT DNA library preparation kit (FC-131-1024, Illumina). All protocols were carried out as per manufacturer protocols. Analysis of reads was performed using CLC Genomics Workbench 10.0 (Qiagen, Hilden, Germany). The raw reads were assessed for coverage, length, and quality. Adapters were trimmed and default settings were used to trim remaining reads that did not meet the quality thresholds - limit = 0.02, removal of ambiguous nucleotides, maximal 1 nucleotide allowed, and removal of sequences of length with a minimum of 20 nucleotides. Approximately 99.5% (4,776,544 reads) of WT-VSV-GFP total reads (average read length of ~140 base pairs) were de novo assembled using the de novo assembly function of CLC Genomics Workbench and used as a reference genome to assemble the sequencing reads of the clones. The mapped reads of the clones were locally re-aligned automatically, ends with sequencing errors discarded and duplicate reads removed with default settings. Genome-wide SNP variants with average base quality scores over 20.0 and forward to reverse reads ratio over 0.05 were called and compared to the reference genome and clones run in parallel to identify unique variants.

3.4.7 Determining m7G capped viral mRNA levels

Post CL123 treatment and infection, cells were harvested at 3 hpi, and total RNA was Trizol-extracted. Protein G beads (Pierce™ Protein G Magnetic Beads, Thermo Fisher Scientific) were pre-conjugated overnight at 4 °C with either an anti-m7G cap monoclonal antibody (MBL International) or a control mouse IgG2a (MBL International). 40 µg of RNA was incubated with each antibody for 3 hours at 4 °C with gentle rocking.
Samples were washed and eluted from the beads using the RIP-Assay kit (RN1005, MBL International). First strand cDNA was generated with oligo dT primers (SuperScript™ IV kit, Thermo Fisher Scientific). The reactions were carried out as per the manufacturers’ protocol with the exception of halving all reagents. The cDNA was diluted 10 fold in nuclease free water and used as a template for quantitative PCR (qPCR). PerfeCTa® SYBR Green FastMix® (VWR Scientific) was used to determine levels of viral genes and β-actin. The final concentration of primers in the reaction was 0.25 µM. Input RNA, prior to the RNA IP, was also assessed for viral gene expression and the ratio of m7G cap RNA to input RNA was determined.

3.4.8 Quantifying viral RNA synthesis

To assess the effect of the compounds on RNA synthesis, monolayers were compound treated, infected and RNA was harvested at the indicated timepoints (1 and 6 hpi) using the RNeasy® Mini Kit (Qiagen). cDNA synthesis and qPCR were performed as described above.

3.4.9 Pulse-chase analysis of viral protein synthesis

Monolayers were compound treated and infected. One hour prior to each timepoint collection, cell media was replaced with DMEM lacking methionine and cysteine (30 minutes) and the cells were radioactively labeled with 20 µCi/ml of EasyTag™ EXPRESS 35S Protein Labeling Mix (PerkinElmer) (30 minutes). Whole cell lysates were prepared on ice with NP40 buffer (50mM Tris-HCl [pH 8.0], 280mM NaCl, 0.5% NP-40) supplemented with cOmplete™ protease inhibitor cocktail (Roche). Lysates were incubated for ten minutes on ice and clarified for ten minutes at 21,100 x g at 4 °C. Lysates were resolved on a 4-12% polyacrylamide gel which was fixed for 30 minutes in
20% methanol / 7% acetic acid and dried for two hours. Labeled bands were visualized with a phosphorimager.

3.4.10 Polysome profiling

Polysome analysis was performed as previously described [426]. Monolayers were compound treated and infected. Three hpi the media was replaced with media containing 100 µg/ml cycloheximide and incubated for ten minutes at 37 °C, 5% CO₂. Monolayers were washed twice with PBS containing 100 µg/ml cycloheximide. Cell lysates were prepared with NP40 buffer supplemented with cOmplete™ protease inhibitor cocktail (Roche) and Ribolock RNase inhibitor (40 U/µL) (Thermo Fisher Scientific). Lysates were layered over a 10-50% sucrose gradient and centrifuged at 4 °C, 200,000 x g for two hours. One milliliter (ml) fractions were collected using the BR-188 Density Gradient Fractionation System (Brandel). From the 1 ml fractions, 200 µL of RNA was extracted using Trizol LS and oligo dTs were used to generate first strand cDNA. Viral gene expression was determined by qPCR as described above.

3.4.11 Experimental design and statistics

All experiments, except where stated, were performed in triplicate and the error bars represent the SEM for the replicates. Statistics were determined using a student t-test as compared to DMSO-treated-infected controls unless otherwise stated; *** p < 0.0002, ** p < 0.0021, * p < 0.0332.

3.5 Results

3.5.1 Neplanocin analogs are potent inhibitors of WT-VSV-GFP.

To assess the antiviral activity of CL123, CL4033, CL4053, and DzNep, we determined the IC50 of each compound against VSV. Relative to the DMSO control,
CL123, CL4033 and DzNep inhibited WT-VSV-GFP with low nanomolar IC50s (Figure 19A-B, D). CL4053 inhibited WT-VSV-GFP, however, its IC50 was approximately 100-fold higher as compared to the D-enantiomer CL4033 (Figure 19C). Additionally, we evaluated the antiviral activity of the adenosine analog and known nascent RNA chain-terminator BCX4430 [191, 192]. BCX4430 inhibited WT-VSV-GFP with an IC50 of 14.9 µM (Figure 19E). In parallel, the effects on cell viability were assessed. The fifty percent cytotoxic concentrations (CC50s) for all compounds were greater than 30 µM (Figure 19A-E, red curves).
Figure 19 Neplanocin analogs are potent inhibitors of WT-VSV-GFP. Levels of infectious virus and percent viability of cells treated with the indicated concentrations of (A) CL123, (B) CL4033, (C) CL4053, (D) DzNep and (E) BCX4430 are presented. Vero 76 cells were pre-treated for one hour with the compounds at the indicated concentrations and infected with WT-VSV-GFP at MOI 0.002. Twenty-one hours post-infection, supernatants were collected, and levels of infectious virus were determined by plaque assay. Cell viability was determined in the absence of viral infection. The experiment was performed in triplicate and the error bars represent the standard error of the mean (SEM) for the triplicate.

3.5.2 VSV\textsuperscript{R} demonstrates cross-resistance to all neplanocin derivatives.

To gain insight into the antiviral mechanism of these compounds, we serially passaged WT-VSV-GFP in the presence of CL123 and obtained a resistant virus, VSV\textsuperscript{R}. VSV\textsuperscript{R} exhibited increased resistance to each of the compounds, with IC50s shifting to greater than 30 µM (Figure 20A-D). We isolated 11 additional plaque-purified clones, and all exhibited similar resistance against CL123 (data not shown). BCX4430 inhibited VSV\textsuperscript{R}, to a similar extent as WT-VSV-GFP with an IC50 of 11.3 µM (Figure 20E). This suggests that the neplanocin analogs having a different mechanism of inhibition than BCX4430.
To determine whether VSR$^R$ exhibited any growth impairment, its multi-cycle growth kinetics (MOI 0.002) were compared to WT-VSV-GFP (Figure 21). In the presence of DMSO, VSR$^R$ exhibited a significant lag in its replication relative to WT-VSV-GFP, with 100- and 10-fold lower titers at 12 and 24 hours post-infection, but by 36 hours, VSR$^R$ titers were equivalent to those of WT-VSV-GFP. CL123 severely inhibits WT-VSV-GFP, decreasing viral titers 2-5 log$_{10}$ fold; however, the antiviral effect of CL123 was absent with VSR$^R$ (Figure 21).
Figure 20 VSV$^R$ exhibits cross-resistance to all four neplanocin analogs. Levels of infectious VSV$^R$ after growth in the presence of the indicated concentrations of (A) CL123, (B) CL4033, (C) CL4053, (D) DzNep and (E) BCX4430. Vero 76 cells were pre-treated for one hour with the compounds at the given concentrations and infected with VSV$^R$ at MOI 0.002 for twenty-one hours. Supernatants were collected and levels of infectious virus were determined by plaque assay. The experiment was performed in triplicate and the error bars represent the SEM for the triplicate.

Figure 21 VSV$^R$ is impaired early during infection.
WT-VSV-GFP and VSV$^R$ multi-step growth kinetics in Vero 76 cells at MOI 0.002 in the absence and presence of 1 µM CL123 are presented. Cell culture supernatants were collected at the indicated timepoints and the titers were determined by plaque assay. The limit of detection (LOD) is indicated on the graph. The experiment was performed in triplicate and the error bars represent the SEM for the triplicate.

3.5.3 VSV$^R$ possesses a mutation in the CTD of the L protein.

We performed deep sequencing on all twelve isolated clones. All mutations obtained from the 12 sequenced clones are provided in Table 3.1.1. The non-synonymous mutations with single nucleotide polymorphism (SNP) frequencies greater than 10% in the characterized VSV$^R$ (clone 5), are indicated in Figure 22A. In comparison to WT-VSV-GFP, the only non-synonymous mutation, which was present in all 12 resistant clones, was a T to G SNP at nucleotide position 11,286. This gave rise to a non-synonymous substitution, I1905R, within the L protein (Figure 22B). This mutation occurred at high SNP frequency (>98%) in all of the clones. Residue 1905 is located within the CTD (Figure 22B-C, red colored domain), which is adjacent to the L methyltransferase domain (MTD, orange colored) [131]. The amino acid residues that are involved in SAM binding and catalysis are included within the MTD for comparison (Figure 22C).
Figure 22 VSV<sup>R</sup> mutation I1905R is located in the CTD of the L protein. The location of non-synonymous mutations found in VSV<sup>R</sup>. (A) Schematic of the VSV<sup>R</sup> genome with non-synonymous mutations that were present in at least 10% of reads are labeled. (B) Structure of VSV L with the location of amino acid residue I1905 indicated.
Amino acid residue I1905 with SAM binding motif and methyltransferase catalytic residues labeled; oxygen red-color, nitrogen blue-color, carbon green-color, and hydrogen white-color. B and C are PyMOL renderings based on PDB: 5A22.

Table 3.1.1 Identified mutations, location on the viral genome and allele frequency.

<table>
<thead>
<tr>
<th>Type</th>
<th>Nucleotide</th>
<th>Gene</th>
<th>Protein</th>
<th>% SNP Frequency (Clone)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNV</td>
<td>11286 T:G</td>
<td>L</td>
<td>Ile1905Arg</td>
<td>&gt; 98 (1-12)</td>
</tr>
<tr>
<td>SNV</td>
<td>6579 A:T</td>
<td>L</td>
<td>His336Leu</td>
<td>81 (5); 5 (6)</td>
</tr>
<tr>
<td>SNV</td>
<td>6069 A:G</td>
<td>L</td>
<td>Lys166Arg</td>
<td>96 (8); 95 (1); 35 (2); 9 (3); 6 (5)</td>
</tr>
<tr>
<td>SNV</td>
<td>7265 C:T</td>
<td>L</td>
<td>Pro565Ser</td>
<td>96 (8)</td>
</tr>
<tr>
<td>SNV</td>
<td>6157 T:A</td>
<td>L</td>
<td>His195Gln</td>
<td>25 (4)</td>
</tr>
<tr>
<td>SNV</td>
<td>7863 A:G</td>
<td>L</td>
<td>Asp764Gly</td>
<td>8-12 (2-4; 6-12)</td>
</tr>
<tr>
<td>SNV</td>
<td>5654 G:T</td>
<td>L</td>
<td>Asp28Qln</td>
<td>3-5 (1-4;6-12)</td>
</tr>
<tr>
<td>SNV</td>
<td>6837 T:A</td>
<td>L</td>
<td>Phe422Tyr</td>
<td>2-5 (4,6,8-12)</td>
</tr>
<tr>
<td>SNV</td>
<td>6872 G:T</td>
<td>L</td>
<td>Ala434Ser</td>
<td>8 (7)</td>
</tr>
<tr>
<td>SNV</td>
<td>11850 C:A</td>
<td>L</td>
<td>Ser2093Tyr</td>
<td>2 (4)</td>
</tr>
<tr>
<td>SNV</td>
<td>10934 G:T</td>
<td>L</td>
<td>Glu1788STOP</td>
<td>2 (2, 4)</td>
</tr>
<tr>
<td>SNV</td>
<td>11870 G:T</td>
<td>L</td>
<td>Asp2100Tyr</td>
<td>2 (2)</td>
</tr>
<tr>
<td>SNV</td>
<td>3084 T:C</td>
<td>G</td>
<td>Cys3Arg</td>
<td>97 (2); 37 (4) 7 (5); 97 (8); 6 (11)</td>
</tr>
<tr>
<td>SNV</td>
<td>5039 C:A</td>
<td>GFP</td>
<td>Asn106Lys</td>
<td>100 (1) 4 (2)</td>
</tr>
<tr>
<td>SNV</td>
<td>4723 T:G</td>
<td>GFP</td>
<td>Met1Arg</td>
<td>81 (5)</td>
</tr>
<tr>
<td>SNV</td>
<td>4737 G:T</td>
<td>GFP</td>
<td>Glu6STOP</td>
<td>25 (6);10 (5)</td>
</tr>
<tr>
<td>SNV</td>
<td>5406 G:A</td>
<td>GFP</td>
<td>Gly229Arg</td>
<td>20 (7)</td>
</tr>
<tr>
<td>Del</td>
<td>7865 G</td>
<td>L</td>
<td>Asp765fs</td>
<td>8-12 (2-4; 6-12)</td>
</tr>
<tr>
<td>Del</td>
<td>8635 T</td>
<td>L</td>
<td>Leu1023fs</td>
<td>2 (1,3,6,9-11)</td>
</tr>
<tr>
<td>Ins</td>
<td>11974^11975</td>
<td>L</td>
<td>NCR</td>
<td>12 (4); 5 (5)</td>
</tr>
<tr>
<td>Ins</td>
<td>11935^11936A</td>
<td>L</td>
<td>NCR -TT</td>
<td>2-4 (1-5; 7-12)</td>
</tr>
<tr>
<td>Ins</td>
<td>8479^8480A</td>
<td>L</td>
<td>Cys972fs</td>
<td>3-8 (1-4; 6-12)</td>
</tr>
<tr>
<td>Ins</td>
<td>7494^7493T</td>
<td>L</td>
<td>Glu643fs</td>
<td>2-3 (1-4, 6-12)</td>
</tr>
<tr>
<td>Ins</td>
<td>4633^4634A</td>
<td>G</td>
<td>NCR- TT</td>
<td>4-9 (1-12)</td>
</tr>
<tr>
<td>Ins</td>
<td>3039^3040A</td>
<td>M</td>
<td>NCR- TT</td>
<td>2-3 (1-8, 10)</td>
</tr>
<tr>
<td>Ins</td>
<td>5538^5539T</td>
<td>GFP</td>
<td>NCR</td>
<td>73 (12); 5 (10)</td>
</tr>
<tr>
<td>Ins</td>
<td>5553^5554A</td>
<td>GFP</td>
<td>NCR- TT</td>
<td>2-4 (1-4; 6-12)</td>
</tr>
<tr>
<td>SNV</td>
<td>717 T:A</td>
<td>N</td>
<td>Silent</td>
<td>82 (5)</td>
</tr>
<tr>
<td>SNV</td>
<td>2112 A:C</td>
<td>P</td>
<td>Silent</td>
<td>82 (5)</td>
</tr>
<tr>
<td>SNV</td>
<td>3824 A:T</td>
<td>G</td>
<td>Silent</td>
<td>3 (5)</td>
</tr>
<tr>
<td>SNV</td>
<td>7687 T:C</td>
<td>L</td>
<td>Silent</td>
<td>80 (10); 18 (11); 3 (9)</td>
</tr>
<tr>
<td>SNV</td>
<td>9289 C:T</td>
<td>L</td>
<td>Silent</td>
<td>78 (9)</td>
</tr>
<tr>
<td>SNV</td>
<td>10219 A:G</td>
<td>L</td>
<td>Silent</td>
<td>77 (12)</td>
</tr>
<tr>
<td>SNV</td>
<td>10321 T:G</td>
<td>L</td>
<td>Silent</td>
<td>79 (5)</td>
</tr>
<tr>
<td>SNV</td>
<td>10669 G:A</td>
<td>L</td>
<td>Silent</td>
<td>79 (5); 4 (6); 3 (12)</td>
</tr>
<tr>
<td>SNV</td>
<td>11981 A:T</td>
<td>L</td>
<td>Silent</td>
<td>67 (12)</td>
</tr>
<tr>
<td>SNV</td>
<td>11797 A:G</td>
<td>L</td>
<td>Silent</td>
<td>25 (7)</td>
</tr>
<tr>
<td>SNV</td>
<td>9574 T:G</td>
<td>L</td>
<td>Silent</td>
<td>11 (5)</td>
</tr>
<tr>
<td>SNV</td>
<td>8017 T:G</td>
<td>L</td>
<td>Silent</td>
<td>5 (4)</td>
</tr>
<tr>
<td>Type&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Nucleotide&lt;sup&gt;b&lt;/sup&gt;</td>
<td>Gene</td>
<td>Protein</td>
<td>% SNP Frequency (Clone)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>SNV</td>
<td>8224 T:A</td>
<td>L</td>
<td>Silent</td>
<td>4 (2)</td>
</tr>
</tbody>
</table>

<sup>a</sup> SNV - single nucleotide variants; Del - deletion; Ins - insertion; <sup>b</sup> Nucleotide numbering is based off of the de novo assembly of our WT-VSV-GFP; fs - frameshift; NCR-TT- non-coding region- transcription terminator sequence.

3.5.4 Neplanocin congeners modestly impact VSV transcription.

We next sought to address whether the neplanocin congeners might impact viral RNA and protein synthesis. For these studies, infections were performed at MOI=10 to ensure a robust signal and to ensure robust shutoff of host protein synthesis. Under these conditions, inhibition by the less potent L-isomer CL4053 was not readily achieved. Therefore, CL4053 was not included in these studies.

A point of consideration is that DMSO-treated mutant and parental VSV have differences in viral mRNA levels at each assessed timepoint. Viral mRNAs for DMSO-treated VSV<sup>R</sup> as compared to DMSO-treated WT-VSV-GFP were 10-18 fold less at one hpi and 3-5 fold less at six hpi, depending on the viral gene. This is consistent with the impairment seen for VSV<sup>R</sup> as compared to parental VSV in the viral kinetics and protein synthesis (Figure 21 and 24).

At 1 hpi, for each of the WT-VSV-GFP viral genes tested, moderate decreases in viral mRNA levels (5-10 fold, depending on the viral gene) were observed in the presence of 1 µM of the compounds as compared to the DMSO control (Figure 23A). This inhibition at early times post-infection was not observed with VSV<sup>R</sup> (Figure 23A). At 6 hpi, viral mRNA levels were significantly enhanced in the presence of the analogs for WT-VSV-GFP and to a much less extent for VSV<sup>R</sup> (Figure 23B).
Figure 23  Analogs have a minor impact on transcription.  
The effect of the indicated compounds on viral mRNA was determined at one hpi (A) or six hpi (B) for WT-VSV-GFP and VSVR.  Monolayers were pre-treated with 1 µM of each indicated compound and infected with each virus at MOI=10.  Total RNA was harvested at the indicated timepoints and reverse transcription-qPCR, was performed with gene specific primers.  Viral mRNA levels were normalized to β-actin mRNA levels and are presented as fold-change relative to the DMSO treated control for each virus.  The experiment was performed in triplicate and the error bars represent the SEM for the triplicate.  Statistical significance was determined by performing a student t-test as compared to DMSO virus-infected control (light grey bar); ** p < 0.0021, * p < 0.0332.
3.5.5 VSV protein expression is impaired in the presence of neplanocin like compounds.

To determine any effects of our compounds on viral protein synthesis, we conducted $^{35}$S metabolic labeling experiments. In the presence of DMSO, WT-VSV-GFP protein levels increased throughout the course of the infection (Figure 24). VSV L was weakly expressed, as expected [170, 427-429]. For each of the analogs, WT-VSV-GFP viral protein synthesis was impeded. This was most notable at earlier timepoints during infection. As the infection progressed, the inhibitory effect of the analogs began to diminish, particularly for the N and P genes. In contrast, expression of GFP and M, which co-migrate, and of G was still clearly inhibited at 6 hpi. This pattern of inhibition correlates with the VSV transcription gradient, where N and P genes are transcribed at higher levels than other genes [170, 427-429]. DMSO-treated VSV$^R$ proteins also increased throughout the course of infection. When treated with the neplanocin analogs, expression of VSV$^R$ proteins was less impaired as compared to WT-VSV-GFP (Figure 24) demonstrating that resistance correlates with sustained viral protein synthesis.
Figure 24 Each of the compounds inhibits WT-VSV-GFP protein expression. The effect of the indicated compounds at 1 µM on viral protein synthesis was evaluated for both WT-VSV-GFP and VSV^R (MOI=10). At the indicated timepoints post-infection, the cells were starved of methionine and cysteine for thirty minutes and then labeled with \(^{35}S\) methionine and cysteine for 30 minutes. Whole cell lysates were prepared for the indicated timepoints and then separated on 4-12% gradient gels. Gels were fixed for thirty minutes, dried for two hours, and visualized using a phosphorimager.

3.5.6 CL123 diminishes parental VSV mRNA cap methylation and RNA association with polysomes.

Since our neplanocin derivatives are known to inhibit SAHase [228, 229], we directly assessed the effect of CL123 on viral mRNA cap methylation and on viral mRNA
association with polysomes. We focused only on CL123 for these experiments as our mutant VSV\(^R\) was generated using this analog.

To directly assess the impact of CL123 on mRNA cap methylation, we performed RNA immunoprecipitations (IPs) with an anti-m\(^7\)G cap monoclonal antibody and quantified mRNA levels by reverse-transcription-quantitative PCR (qPCR). The DMSO-treated WT-VSV-GFP infection produced more mRNA with methylated cap than other conditions, and levels of mRNA with methylated caps decreased in the presence of CL123 (Figure 25A). For VSV\(^R\) in DMSO-treated cells, levels of mRNA with methylated caps were reduced relative to the DMSO-treated WT-VSV-GFP condition and more similar to WT-VSV-GFP in CL123-treated cells. However, CL123 had less impact on absolute levels of mRNA with methylated caps for VSV\(^R\) (Figure 25A). When levels of mRNA with methylated cap were compared to total levels of mRNA, CL123 was found to have a greater impact on the ratio of methylated capped to total mRNA for WT-VSV-GFP as compared to VSV\(^R\). However, some inhibition of cap methylation was present for VSV\(^R\), as well (Figure 25B).

Next, the effect of CL123 on translation of viral mRNAs was evaluated by polysome analysis. DMSO-treated WT-VSV-GFP infected cells actively translated more mRNA relative to CL123-treated, infected cells, as is seen by the higher absorbance in the polysome fractions (Figure 26A and 26B). For VSV\(^R\) both the DMSO and CL123-treated cells had near equivalent amounts of mRNA associated with polysomes (Figure 26A and 26B). Examination of the distribution of viral mRNAs revealed greater association with polysomes for WT-VSV-GFP N mRNA in the presence of DMSO as compared to the WT-VSV-GFP infected, CL123-treated samples (Figure 26C). In the CL123-treated samples,
there was also a shift of N mRNA towards the monosome fractions. In contrast, differences between DMSO and CL123 treatments were nearly absent when VSV\textsuperscript{R} was used (Figure 26C). The overall polysome profiles for both the DMSO and CL123-treated VSV\textsuperscript{R} samples were more similar to the CL123-treated WT-VSV-GFP profile. For both the DMSO and CL123-treated VSV\textsuperscript{R} samples, a larger 80S monosome peak was apparent, as compared to the DMSO-treated WT-VSV-GFP samples (Figure 26A). The viral genes, P, M and G mRNAs were also measured and behaved in a similar fashion as the N gene (data not shown). Overall, these data demonstrate that CL123 impairs WT-VSV-GFP mRNA cap methylation and protein synthesis while, VSV\textsuperscript{R} mRNA cap methylation and translation are somewhat resistant to the effects of CL123 but that, even in the absence of CL123, cap methylation and translation are reduced for VSV\textsuperscript{R}. 

A

![Bar graph showing m\textsuperscript{7}G cap mRNA relative copies for different treatments and viral genes](image-url)
Figure 25 CL123 decreases levels of VSV mRNA cap methylation. m^7G cap mRNA relative copies (A), and ratios of m^7G capped mRNA to input mRNA (B) were calculated. The ratios of each DMSO-treated virus was averaged and the DMSO and CL123-virus-infected ratios were compared to these averages for each respective virus. The concentration of CL123 was 1 µM. Total RNA was harvested at three hpi (MOI 10) and samples were incubated with either an IgG control antibody or a monoclonal anti-m^7G cap antibody. Reverse transcription-qPCR was performed, and viral mRNA levels were normalized to β-actin mRNA levels to determine relative copies of mRNAs. The experiment was performed in sextuplicate and the error bars represent the SEM for the sextuplicate. Statistical significance was determined by performing a student t-test as compared to each DMSO-virus-infected sample (black or red bar) (A), or CL123 virus-infected sample (black hash or red hash bar) (B); *** p < 0.0002, ** p < 0.0021, * p < 0.0332.
Figure 26 CL123 diminishes the amount of WT-VSV-GFP RNA associated with polysomes.

Changes in viral RNA association with monosome and polysome fractions was determined. Both WT-VSV-GFP and VSV^R infections were performed at MOI 10 in the presence of DMSO or 1 µM CL123. Three hours post infection, translating RNA was immobilized on the ribosomes using cycloheximide. Whole cell lysates were harvested and centrifuged at 200,000 x g for two hours through a 10-50% sucrose gradient. Fractions were collected using the BR-188 Density Gradient Fractionation System, RNA was extracted with Trizol and reverse transcription qPCR was performed with primers specific to viral genes. (A) Ribosome traces of all tested conditions. (B) Ribosome traces with x axis cut at 450 sec. (C) Relative copy numbers of VSV N were determined by reverse transcription q-PCR. The experiment was performed two independent times and the data shown is representative of both experiments.

3.6 Discussion

This study characterized the mechanisms by which DzNep, CL123 and the enantiomeric pair CL4033 and CL4053 inhibit VSV. It has been proposed that neplanocin and derivatives thereof lead to a block in 5’ methylation of viral mRNA due to their inhibition of SAHase [218, 270, 280]. This would result in impaired translation of viral mRNAs. Because CL4053 has decreased inhibitory activity towards SAHase, it has been suggested that it might have alternate antiviral mechanisms. Our data indicate that VSV is inhibited primarily by decreased mRNA cap methylation and protein synthesis, with only
modest effects of the compounds on viral RNA synthesis. Based on the cross resistance observed with VSV\textsuperscript{R} against both the D- and L-enantiomers, these compounds may inhibit by similar mechanisms.

All analogs strongly inhibited WT-VSV-GFP without causing significant cell toxicity at the tested concentrations. Our IC\textsubscript{50} results are analogous to antiviral activity obtained for previously described SAHase inhibitors [218, 228, 229, 430, 431]. For the enantiomeric pair, the IC\textsubscript{50}s against WT-VSV-GFP are less different (85-fold) than those IC\textsubscript{50}s obtained against SAHase \textit{in vitro} (approximately 770-fold) [228]. What accounts for this difference remains to be determined.

The selection of VSV\textsuperscript{R} allowed additional discernment into the mechanism of the different compounds tested. For each of the compounds, the IC\textsubscript{50} for VSV\textsuperscript{R} was shifted more than 1,000-fold when compared to parental VSV IC\textsubscript{50}s. These data suggest that all of our compounds are working through a similar mechanism of inhibition, although we cannot definitively rule out additional mechanisms. To ensure specificity of selection of VSV\textsuperscript{R}, we evaluated BCX4430, in parallel. BCX4430, similar to the neplanocin analogs, is an adenosine analog; however, its mechanism of inhibition is as a non-obligate RNA chain-terminator [191, 192]. Our results indicate that BCX4430 inhibited VSV\textsuperscript{R} to a similar extent as parental VSV, thereby further confirming the specificity of resistance of VSV\textsuperscript{R} against CL123.

We did observe differences between WT-VSV-GFP and VSV\textsuperscript{R} in their growth kinetics. At early times post-infection, VSV\textsuperscript{R} lags in growth as compared to WT-VSV-GFP; however, as the infections progress these differences abate. Consistent with these data, impairment of VSV\textsuperscript{R} protein synthesis was also observed at early times post-
infection as compared to WT-VSV-GFP. The reduced protein synthesis is also reflected in the cap methylation and polysome analyses where the VSV\textsuperscript{R} more closely resembled that of CL123-treated WT-VSV-GFP samples than the DMSO-treated WT-VSV-GFP samples. These data suggest that the CL123 resistant virus is compromised in its replication, perhaps due to less efficient mRNA cap methylation.

The neplanocin analogs caused a modest inhibition of viral transcription for WT-VSV-GFP at early times post-infection. The early time point was chosen such that measurements could be made before significant viral protein synthesis had occurred, thus isolating effects on viral RNA synthesis. This inhibition suggests some effect of the analogs on viral transcription. Curiously, at later time points, the compounds significantly enhanced the total WT-VSV-GFP mRNA levels but not for VSV\textsuperscript{R}. This phenotype may be driven by increased lengths of the poly A tails on viral mRNAs because increased levels of SAH have previously been shown to lead to lengthening of VSV poly A tails [432-434]. Eukaryotic mRNAs with longer poly A tails have longer half-lives [435-438]. The increased viral mRNA levels may therefore be due to diminished viral mRNA turnover.

A significant reduction in m\textsuperscript{7}G viral mRNA levels was found in parental VSV infected and CL123-treated cells. m\textsuperscript{7}G mRNA contributes to efficient translation of viral mRNAs [263, 439-441] and inhibiting VSV 5' cap methylation can attenuate pathogenesis \textit{in vivo} [442]. Interestingly, our polysome profiling shows that in CL123-treated and WT-VSV-GFP infected cells, the viral mRNA is shifted into the 80S fraction (\textbf{Figure 26A and C, Fraction 4}). This would suggest that the viral mRNA is able to associate with the 80S ribosome and translational initiation stalling may be occurring in CL123-treated cells. This effect is also observed for both DMSO and CL123-treated VSV\textsuperscript{R} (\textbf{Figure 26A}). Additional
work would need to be done to confirm this hypothesis. A consideration for interpretation of both the cap methylation and the polysome analyses, as well as the metabolic labeling studies, is that the infections were performed at much higher multiplicities of infection as compared to the assays that directly measured virus growth. This approach was taken because it facilitates the detection of viral RNAs and proteins. An outcome of this experimental approach is that the effects of the compounds may be less dramatic than if less virus was used.

Finally, the I1905R mutation in VSV<sup>R</sup>, which was the highest frequency mutation found in all resistant purified virus isolates, may contribute to resistance by impacting viral methyltransferase activity. In the available VSV L cryoEM structures [131, 132, 375], I1905R lies within the CTD and is approximately 20 Å from critical amino acids involved in SAM binding and methyl transfer (Figure 22C) during VSV mRNA methylation [138, 139, 367, 372, 443, 444]. There are examples from VSV, paramyxovirus and filovirus studies where amino acid residues in non-MTase domains of NNSV L proteins affect the methylation status of viral mRNA [133, 137, 372, 445]. In a VSV minigenome system, exchanging the CTD of the two different species of VSV (Indiana and New Jersey), abrogated minigenome activity, and the MT with its respective CTD had to be co-exchanged to maintain polymerase activity [446]. Further, deletion of the CTD of the Sudan ebolavirus L protein abolished methyltransferase activity [133, 445]. Finally, within the paramyxoviruses, human metapneumovirus (hMPV) was found to contain residues within the CTD that were required for MTase activity [137]. Additional non-synonymous mutations were found in the L protein (Table 3.1.1); however, since these were not present throughout all clones that demonstrated CL123 resistance or were present at low
SNP frequency we do not believe these mutations were contributing to virus resistance. Additional work would need to be done to confirm this hypothesis.

In summary, our data points to inhibition of mRNA cap methylation and subsequently impaired viral protein synthesis as the primary mechanism of action of the compounds tested, consistent with the prevailing model of action for the D-like neplanocin derivatives. It also demonstrates the capacity of VSV to develop resistance to such compounds. However, for VSV\textsuperscript{R}, resistance is associated with decreased viral fitness, likely due to less efficient mRNA cap methylation.

3.7 Acknowledgments

This work was supported in part by NIH grants AI125453 and P01AI120943 (Amarasinghe) to C.F.B.

4 DISCUSSION AND FUTURE DIRECTIONS

4.1 Characterizing novel Filovirus proteins

Filoviruses are lethal zoonotic RNA viruses and depending on the virus species can have a case fatality rate upward of 90% in humans [13]. In addition to loss of life, the economic burden associated with outbreaks can be devastating to affected countries. The 2014-2016 West African EBOV outbreak had an estimated economic impact of $2.8 billion to Guinea, Liberia, and Sierra Leone [447].

In the last decade alone, the Filoviridae family has tripled in size, growing from the two founding members (Ebolavirus and Marburgvirus) each classified in a separate genus to six genera today, 2011 Cuevavirus (LLOV), 2018 Striavirus (XILV) and Thanmovirus (HUJV), and 2019 Dianlovirus (MLAV) [2, 6, 8, 10]. A salient health concern is the emergence and the potential for a spillover transmission event of a new filovirus resulting
in infection and disease in humans [49, 448]. A facet that needs to be considered in a “successful” zoonotic spillover occurrence is the innate immune response of a potential host. If the innate immunity of the prospective host is capable of shutting down any part of the virus’ life cycle to the point where the virus cannot establish a successful replication and transmission cycle, then the zoonotic spillover event will be unfruitful for the virus [449]. For filoviruses, one factor that contributes to host virulence and species virus replication restriction is the ability to subvert the innate immune pathway [128]. Recently, it was determined that disruptions in VP35’s ability to suppress the RIG-I signaling pathway produced a severely attenuated infection, relative to wild-type VP35, in cynomolgus macaques (Macaca fascicularis) [450]. These results are consistent with previous literature showing that mutations in VP35 that impair its dsRNA binding and thereby its IFN antagonism function, resulted in reduced levels of virulence in mice and avirulence in guinea pigs [332, 412]. Finally, filoviruses have to be mouse-adapted to adult immunocompetent mice to render the mice susceptible to infection. This mouse-adapted virus is accomplished by continually passaging the virus until a lethal infection is obtained in the mouse [451, 452]. Sequencing of these mouse-adapted virus genomes revealed that MARV VP40, RAVV VP40 and EBOV VP24, which are all capable of inhibiting the type I IFN pathway, were implicated in virulence and mouse virus replication restriction [322-324, 453-455].

Chapter 2 of this dissertation characterizes the type I IFN antagonism of MLAV VP35, VP40 and VP24 in comparison to their EBOV and MARV equivalents. MLAV VP35 behaves very similarly to the previously described antagonism functions of EBOV and MARV VP35 [128]. In a dose dependent manner, MLAV VP35 can potently suppress 1)
the SeV-induced activation of an IFNβ promoter, and 2) phosphorylation of IRF3 and PKR. It can also co-precipitate with the cellular protein PACT (Figure 10 and Figure 11). Based on these data, presumably, MLAV VP35’s main mode of IFN inhibition is interaction and sequestration of dsRNA and functioning as a decoy receptor for TBK1 and IKKε [128]. Future studies demonstrating interaction between MLAV VP35 and dsRNA are warranted to confirm that this interaction is contributing to MLAV VP35’s inhibition of the type I IFN pathway. Interestingly, solved crystal structures of EBOV and MARV VP35 complexed with dsRNA show distinct binding interactions. MARV VP35 coats the sugar-phosphate backbone of the RNA whereas EBOV VP35 not only coats the sugar-phosphate backbone but caps the phosphate ends of the RNA [329, 336, 456-458]. This difference in dsRNA binding is thought to contribute to differences between EBOV and MARV VP35 in inhibitory efficiency of RIG-I signaling [327]. Determining how MLAV VP35 engages with dsRNA would further contribute to our understanding of its mechanisms of type I IFN inhibition.

We have also determined that MLAV VP40 strongly suppresses the activation of type I IFN signaling (Figure 12) and does so by abrogating phosphorylation of STAT1 induced either through treatment with UIFN or overexpression of Jak1 (Figure 13). MLAV VP40 abrogation of STAT1 phosphorylation is similar to that of MARV VP40 [324, 352]. The exact mechanism by which MARV VP40 inhibits STAT1 and Jak1 phosphorylation is not yet understood. We do know that the late domain motif (PPPY) that assists in the MARV VP40 budding process [173] is not required for the type I IFN antagonism [352]. MLAV VP40 and to a lesser extent MARV VP40 were also determined to inhibit the IFNβ production pathway. This inhibition is independent of its type I IFN signaling inhibition as
described above (Figure 10 and Figure 15). Previous literature has confirmed that MARV VP40 can indeed inhibit the IFNβ production pathway [459]. The mechanism of this inhibition is not understood and is currently being investigated. One approach to determining how MLAV and MARV VP40 inhibit the IFNβ production pathway is described below.

Curiously, transfected MARV VP40 can localize to the nucleus [460] and personal observation. Transfected MLAV VP40 can also localize to the nucleus and it does so more robustly than that of MARV VP40 (personal observation). If nuclear localization is a component of the mechanism of either, or both, the antagonism of type I IFN signaling and the IFNβ production pathway, MLAV VP40 could prove to be a useful research tool given that the nuclear localization phenotype is more robust than that of MARV VP40. Previously, the matrix (M) proteins of other NNS RNA viruses have been shown to localize to the nucleus. Of the mechanisms we understand, the biological ramifications of M protein nuclear localization can be diverse [461-475]. For VSV M, nuclear localization results in inhibition of the export of cellular mRNA transcripts through interaction with nucleoporin proteins [468, 469]. For respiratory syncytial virus (RSV), it is thought that nuclear localization of its M protein may be involved in regulation of cellular transcription, similar to VSV M [463, 465, 466, 476]. In the Paramyxoviridae family, several viral M proteins have been found in the nucleus, including the relevant animal and human pathogens, Newcastle disease virus (NDV), Hendra virus and Nipah virus (NiV) [477, 478]. For the NiV M protein it has been shown that cytoplasmic-nuclear trafficking correlates with efficient budding of Nipah VLPs. M protein sequence alignment of several virus species within the Paramyxoviridae family identified a highly conserved lysine
residue (K258) that was found to be critical for NiV M nuclear import, export and VLP budding. Specifically, the ubiquitination of the M protein within the nucleus is thought to aid in NiV VLP budding [462]. In a separate study, NiV M was also shown to be capable of inhibiting the type I IFN response. Specifically, antagonism of the type I IFN pathway by NiV M is mediated by degradation of TRIM6, an E-3-ubiquitin ligase that helps with the activation of IKKε, a kinase involved in type I IFN induction. Curiously, the same K258 residue described above, was found to be critical for NiV M’s subversion of the type I IFN [479]. The functional significance of MARV and MLAV VP40’s nuclear localization could be determined several ways experimentally. As described above, for NiV M, the identification, and the subsequent mutation of the K258 residue involved in nuclear shuttling helped generate a mutant phenotype (diminished Nipah VLP budding), thereby allowing determination of its functional relevance [462]. The K258 residue was readily identified as part of the NiV M putative bipartite nuclear localization signal (NLS) [480, 481]. Neither MLAV nor MARV VP40 contain putative NLSs. However, nuclear trafficking could be mediated by non-classical NLSs, which has been found in DNA virus proteins and several host proteins [482-485]. Basic residue patches tend to be involved in nuclear transport [480] and MLAV and MARV’s VP40s C-terminal domain does contain several conserved lysine and arginine residues (personal determination). Systematically mutating these basic residues and determining VP40s’ cellular localization as well as any effects on MLAV and MARV VLPs could help identify the functional significance of the VP40 within the nucleus. Additionally, if the identification of residues involved in the nuclear shuttling of VP40 proves unfruitful, leptomycin B, a compound that inhibits protein nuclear export [486], could also be employed. The biological consequences of both MARV and
MLAV VP40’s nuclear trafficking would warrant future studies as it may aid in the identification of potential therapeutic targets for MARV infections. Finally, it is worth noting that nuclear localization may very well not be involved in the type I IFN antagonism of MLAV and MARV VP40. If this is the case then systematically assessing the different components of the RIG-I signaling pathway (RIG-I, MAVS, TBK1, IKKε, etc.) should be performed to help further identify the mechanism of inhibition.

The MLAV VP24 protein did not detectably interact with any tested KPNAs or human and bat Keap1 (Figure 12, 13, 16 and 17). Given that both EBOV and MARV VP24s interfere with distinct cellular processes, type I IFN signaling inhibition and antioxidant response activation, respectively [128], MLAV VP24 could be interacting with different cellular pathways. Previously, for EBOV and MARV VP24, affinity purification coupled with mass spectrometry and bioinformatics helped identify several known and novel host protein interactors of EBOV and MARV VP24 [487, 488]. Using a similar approach for MLAV VP24, we could determine cellular protein interactors and ultimately if these interactors can be implicated in important cellular processes such as host restriction.

4.2 DzNep derivatives as antivirals against NNS RNA viruses

Currently, there are no pan-filovirus antivirals [185]. An antiviral that targets a common functionality of filovirus infections would be of interest as a therapeutic strategy. Nucleotide analogs are attractive therapeutic candidates for their ability to inhibit both EBOV and MARV infections in vitro and in vivo [185, 186]. Recently, GS-5734 and T-705 were approved for emergency and compassionate care use during the 2014-2016 West African and the 2018-2020 DRC EBOV outbreaks [199-201, 210-215]. During the 2018-
2020 DRC outbreak, use of GS-5734 was halted due to the better results obtained with treatment by Ebanga (Ridgeback Biotherapeutics’ monoclonal EBOV antibody) and Inmazeb (Regeneron’s cocktail of three monoclonal EBOV antibodies) [199]. GS-5734 is currently in phase 2 clinical trials to determine its safety profile and antiviral efficacy in male EBOV survivors with persistent EBOV in their semen [489]. As mentioned previously, a concrete resolution of the efficacy of T-705 during the 2014-2016 outbreak was unattainable, primarily due to the trials not being randomized and issues with administration of the correct dosages [210-215].

C-nucleoside adenosine analogs are also of particular interest given their broad-spectrum antiviral activities against a number of NNS RNA viruses [185, 218]. DzNep has shown very good antiviral activity in an in vivo mouse model for lethal mouse-adapted EBOV infections [227] and recently, in cell culture, halogenated derivatives of DzNep inhibited the replication of both EBOV and MARV with low micromolar 50 percent effective concentrations (EC50s) [490].

In Chapter 3 of this dissertation, we investigated the antiviral mechanisms of DzNep and three of its brominated analogs - CL123, CL4033 and CL4053. Working with EBOV or MARV to determine antiviral mechanisms can be quite burdensome given they are biosafety level 4 (BSL-4) pathogens, and so we opted to use the common surrogate for NNS RNA viruses, VSV. Our results indicate that DzNep, CL123, CL4033 and CL4053 inhibit VSV replication and appear to derive their antiviral effects through impaired methylation of viral mRNA caps (Figure 25A-B). The generation and subsequent sequencing of our VSV CL123 resistant mutant (VSV\textsuperscript{R}) suggested mechanisms of inhibition of our analogs (Figure 20 and Figure 22). Strikingly, DzNep, CL123, CL4033
and CL4053 showed shifted IC50s (>1000 fold) against VSV\textsuperscript{R} and this is suggestive of a common mechanism of virus inhibition for all these compounds, particularly since BCX4430 could inhibit both parental and mutant VSV (Figure 19 and Figure 20). This conclusion is of particular interest for our isomers, CL4033 and CL4053.

As described previously, CL4033 and CL4053 are identical in all chemical aspects except the direction of rotation of plane polarized light (Figure 5). Mechanistically it was thought that these isomers may have different antiviral activities due to discrepancies between antiviral activity against EBOV and the hypothesized cellular target, SAHase [228]. Our data also shows a large difference between VSV and SAHase IC50s – CL4053 has a \~85 fold higher VSV IC50 and a \~800 fold higher SAHase IC50, both relative to CL4033 (Figure 16) [228]. This large discrepancy between the two IC50s is intriguing and may be driven by the type of inhibition of SAHase. It is known that two different modes of SAHase inhibitors exist. A type I mechanism inhibitor reduces the hydrolases’ required co-factor, NAD\textsuperscript{+}, to NADH and in the process becomes oxidized at the 3’ position of the sugar moiety. A type II mechanism inhibitor also reduces NAD\textsuperscript{+} to NADH but can covalently attach itself to the hydrolase. Type I inhibition is reversible, whereas type II inhibition, due to the covalent modification of the SAHase, is irreversible [218]. Differences in how the enantiomers are engaging with the SAHase may be driving the observable effects in their antiviral activities. To date, there are numerous crystal structures of SAHase complexed with various SAHase inhibitors [491-501]. Co-crystallization of each isomer with the SAHase would provide valuable insight into any differences in SAHase binding modes and may also help answer the discrepancy between antiviral and SAHase IC50s. Additionally, structural knowledge of how the
compounds are interacting with their cellular targets is useful in 1) determining modes of inhibition and 2) allowing for more rational structure-activity relationship (SAR) development.

The I1905R mutation found in VSV\textsuperscript{R} may contribute to the viruses’ resistance to CL123. The change from a non-polar moiety (isoleucine) to a charged, bulky guanidino group (arginine) could potentially alter the I1905 microenvironment. Residue 1905 is located in the VSV CTD [131, 132, 375]. In the published cryoEM structure, the I1905R is approximately 10-20 Å from residues involved either directly (SAM binding and methyltransferase activity) or indirectly in VSV mRNA methylation [133, 137-139, 367, 372, 443-446]. Note that the point of comparison for the above calculations was performed using a VSV L cryo-EM that was co-crystalized with the P co-factor [131] and does not contain the SAM or SAH substrates. Binding of these substrates to the MTD may significantly alter the VSV L configuration. Recently, amino acids that contribute to the methylation status of viral mRNA in non-MT domains have been identified [133, 137, 372, 445, 446]. In chapter 3, we described previously identified CTD residues for VSV, EBOV and hMPV that contribute to viral mRNA methylation [133, 137, 445, 446]. Additionally, residues within the connector domain (CD) of VSV have also been identified in contributing to VSV mRNA methylation. For G1481R, a mutation responsible for the phenotype of heat resistant (hr)\textsuperscript{8}, the viral mRNA was near devoid of methylation. Notably our I1905R residue is located within 10 Å of G1481R (personal calculation) [372]. Finally, contributions of the viruses’ polymerase mode (replicase versus transcriptase) should be considered [136]. Since the polymerase both transcribes and replicates the viral genome, it presumably adopts different conformations for the transcription and replication
functions. The cryo-EM structure of the complexed L-P for parainfluenza virus 5 (PIV5) suggests that the solved L-P structure may be that of a transcriptase polymerase. It is suggested that the orientation of the MT-CTD could potentially function as a switching mechanism between the two different modes of the polymerase [136]. Alternatively, if the VSV L cryo-EM is a replicase versus a transcriptase polymerase, the orientation of methyltransferase residues involved in SAM binding and catalysis could be very different. For future studies, a VSV infectious clone system could be employed to further build on our above findings. The VSV infectious clone system has been well established and contains all the necessary components to rescue a live recombinant VSV [424, 502, 503]. A recombinant VSV containing the I1905R mutation could be generated to further confirm the contribution of this residue in the development of the VSVR resistance against CL123, CL4033, CL4053 and DzNep. Additionally, in vitro assays for VSV RNA transcription and assessment of VSV methylated cap structures are available [285, 504]. Both of these techniques could be utilized to determine if the I1905R disrupts the methylation status of the VSV 5’cap structure.

The viability of SAHase inhibitors as antivirals requires further assessment, particularly for efficacy in in vivo studies. These class of inhibitors are advantageous in that they are quite potent against numerous RNA viruses, both in cell culture and in mouse-models [185, 227, 271]. They also indirectly target a common function of NNS RNA viruses [218], which lends itself to the possibility of a pan-antiviral. However, our data for VSV show that DzNep and its brominated analogs are not sterilizing inhibitors (Figure 19 and Figure 21). Under our conditions, our compounds were incapable of completely abrogating the production of infectious virus particles. This non-sterilizing
characteristic in conjunction with our ability to generate a CL123-VSV resistant mutant, would not bode well in the context of developing drug resistant viruses. However, this assessment is in the context of a cell culture system. We cannot rule out that in vivo models evaluating SAHase inhibitors could prove useful in determining additional contributing components that aid in SAHase inhibitors’ antiviral efficacy. As previously described, contributions by in vivo factors were best demonstrated by the 2002 study showing a single dose of DzNep, administered after infection with a lethal mouse-adapted EBOV, fully protected mice from EBOV lethality while simultaneously producing large amounts of IFNα. [227].

4.3 Concluding remarks

In conclusion, this dissertation has determined that the newest addition to the filovirus family, MLAV, has the ability to modulate type I IFN responses in human and bat cells. These results suggest that MLAV has the capacity to become a human pathogen. Mechanistic knowledge of the basis of this antagonism could lead to the identification and development of filovirus therapeutics, and the discovery of novel host restriction factors. We have also determined antiviral mechanisms of DzNep analogs against VSV, addressing an important gap in knowledge regarding this class of compounds. Our results with the CL4033 and CL4053 enantiomers strongly suggest that both compounds are inhibiting VSV through a shared mechanism. Ideally, these results could prove useful in guiding the direction of the design of future enantiomers as broad-spectrum therapeutics against NNS RNA viruses.
REFERENCES


130


