Georgia State University

ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

12-11-2023

Privacy-Preserving Deep Learning with Homomorphic Encryption:
Addressing Challenges Related to Usability, Memory, and
Recurrent Neural Networks

Robert Podschwadt
Georgia State University

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

Recommended Citation

Podschwadt, Robert, "Privacy-Preserving Deep Learning with Homomorphic Encryption: Addressing
Challenges Related to Usability, Memory, and Recurrent Neural Networks." Dissertation, Georgia State
University, 2023.

doi: https://doi.org/10.57709/36355448

This Dissertation is brought to you for free and open access by the Department of Computer Science at
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Computer Science Dissertations by
an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.


https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_diss
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/36355448
mailto:scholarworks@gsu.edu

Privacy-Preserving Deep Learning with Homomorphic Encryption: Addressing Challenges
Related to Usability, Memory, and Recurrent Neural Networks

Robert Podschwadt

Under the Direction of Zhipeng Cai, Ph.D. and Daniel Takabi, Ph.D.

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy
in the College of Arts and Sciences
Georgia State University

2023



ABSTRACT

Neural networks enable many exciting technologies and products that analyze and process
our data. This data is often privacy-sensitive, and we grant companies access to it because
we want to use their services. We have little to no control over what happens to our data
after that. Privacy-preserving machine learning provides solutions that allow us to use these
services while maintaining the privacy of our data. Homomorphic encryption (HE) is one
of the techniques that powers privacy-preserving machine learning. It allows us to perform
computation on encrypted data without revealing the input, intermediate, or final results.
However, HE comes with several limitations and significant resource overhead.

The most important limitations are a reduced set of operations, HE only supports ad-
dition and multiplication, and a bound on the depth of the computation. The depth of
computation is the number of consecutive operations needed to complete it. This means
we cannot compute arbitrary neural networks over encrypted data since they often rely on
unsupported operations or are too deep. Recurrent neural networks (RNN) suffer especially
from depth limitation. Due to their structure, RNNs produce comparatively deep computa-
tion.

In this work, we focus on multiple challenges of neural networks on encrypted data. One
of the main challenges common to most architectures is the resource overhead introduced
by HE. Since encrypted data is often orders of magnitude larger than plain data memory
becomes a significant bottleneck. We analyze the computation of neural network layers and
develop a caching and swapping scheme that allows us to dynamically load and unload data
from memory while sacrificing as little time as possible. We further study the challenges
specific to RNNs, mainly the computational depth. We find that naive approaches for
RNN over encrypted data are too deep. To address this, we design and evaluate multiple

architectures that feature recurrent components to capture their strength in sequences but



have a lower depth. To evaluate these models, we design and implement an encrypted neural
network runtime based on Tensorflow’s XLA (accelerated linear algebra) compiler that allows

us to run neural networks over encrypted data with very few extra steps.

INDEX WORDS: privacy, machine learning, neural networks, recurrent neural net-
works, privacy-preserving machine learning, homomorphic en-
cryption
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CHAPTER 1
INTRODUCTION AND MOTIVATION

Parts of this dissertation are based on previously published work or work that is currently

under review:

e Parts of Chapter 2 and 3 are based on A survey of deep learning architectures for
privacy-preserving machine learning with fully homomorphic encryption
Robert Podschwadt, Daniel Takabi, Peizhao Hu, Mohammad H. Rafiei, and Zhipeng

Cai in IEEFE Access 10, Pages 117477-117500, 2022 [1]

e Chapter 4 is based on Memory Efficient Privacy-Preserving Machine Learning Based
on Homomorphic Encryption
Robert Podschwadt, Parsa Ghazvinian, Mohammad GhasemiGol, and Daniel Tak-
abi; currently under review at 22nd International Conference on Applied Cryptography

and Network Security, 5-8 March, 2024

e Chapter 5 is based on Classification of Encrypted Word Embeddings using Recurrent
Neural Networks
Robert Podschwadt and Daniel Takabi in Private NLP 2020: Workshop on Privacy

in Natural Language Processing, 2020 [2]

e Chapter 6 is based on Non-interactive Privacy Preserving Recurrent Neural Network

Prediction with Homomorphic Encryption



Robert Podschwadt and Daniel Takabi in IEEE 14th International Conference on

Cloud Computing (CLOUD), Pages 65-70, 2021 (3]

In reference to IEEE copyrighted material which is used with permission in this thesis,
the IEEE does not endorse any of Georgia State University’s products or services. Internal or
personal use of this material is permitted. If interested in reprinting/republishing IEEE copy-
righted material for advertising or promotional purposes or for creating new collective works
for resale or redistribution, please go to http://www.ieee.org/publications_standards/
publications/rights/rights_link.html to learn how to obtain a License from Right-
sLink. If applicable, University Microfilms and/or ProQuest Library, or the Archives of

Canada may supply single copies of the dissertation.

1.1 Motivation

Machine Learning (ML), neural networks (NN) in particular, require large amounts of data
and computational resources to train. This makes high-performing models a valuable asset.
If a provider (server) who owns the model wants to offer inference to other parties (clients),
it is not in its interest to give the model to them to use it. Giving the clients unrestricted
access to the model would reveal the server’s secret to them. Additionally, the client might
not possess the necessary computational resources to run the NN. On the other hand, the
client does not want to reveal its data to the server. The client has no control over what the

server does with the data. For example, services like Amazon Alexa! or Google Assitant?

lhttps://www.amazon.com/alexa-smart—home/
’https://assistant.google.com/


http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
https://www.amazon.com/alexa-smart-home/
https://assistant.google.com/

send the user voice commands to the server where they are processed and often stored, as
highlighted in this Washington Post article [4]. The server can sell the data to third parties
without any control of the user.

Or it can mine keywords to use in advertising. Even if the server acts ethically and does
not sell the data, it might be forced to reveal the data to law enforcement. For example,
this can become a problem for women who use online fitness and healthcare apps to track
their periods. With the recent ruling against Roe v. Wade by the U.S. Supreme Court, this
data can put them in legal jeopardy [5]. Access to this data might allow law enforcement to
determine if a woman terminated a pregnancy, which could have serious legal consequences
if she lives in a state that outlawed abortion. But not only period trackers are problematic.
Even location data and online search history can be incriminating [6]. Furthermore, it is
always possible that the server might not share the data for profit or because it is required by
law knowingly. There is always the possibility of a data breach, and highly privacy-sensitive
data can be stolen from the server.

These are only a few of many examples of how our data is collected and the consequences
of it falling into the wrong hands. With an increasing number of data collection devices and
services in our lives, we need to ensure that the data is adequately protected to avoid nega-
tive consequences. One way to protect the data is to encrypt it before it leaves our control.
However, encryption typically prevents the server from running analytics on the data. To
protect the privacy of the data and still benefit from ML models, researchers have inves-

tigated numerous techniques to address this problem. One technique that is promising is



homomorphic encryption (HE). HE schemes are encryption schemes that allow computation
on the encrypted data without decrypting it. The result of the computation and all interme-
diate values are also encrypted, making it ideal for outsourced computation. The server never
learns anything about the client’s data (Fig. 1.1). Researchers investigated other techniques
for privacy-preserving ML, such as Differential Privacy [7], Secure Multiparty Computation
8], and Functional Encryption [9, 10].

Differential Privacy adds random noise to the data, obscuring private information in the
data. Based on the amount of noise added, a probability bound on the information leakage
can be computed, indicating how likely an adversary can extract private information from
the data. The main application of Differential Privacy is to protect personal information in
the training data. The goal is to prevent an attacker from extracting private information
from the trained model by controlling how much each sample can influence the parameters
during training [11]. Multiple parties can also use it to train a shared model on distributed
data without disclosing private data to other participants [12]. The primary strength of
Differential Privacy is that it operates on standard numerical data types, meaning most ML
libraries and hardware accelerators are supported, making the implementation and run-time
overhead negligible.

On the other hand, using Differential Privacy reduces the quality of the model predictions.
Differential Privacy does not offer any cryptographic guarantees and only offers a probability
bound on possible information leakage. In contrast, HE relies on provably secure hardness

assumptions. Furthermore, Differential Privacy does not protect the data at inference time.



Secure Multiparty Computation (SMC) is a term for numerous algorithms and protocols,
like garbled circuits [13], secret sharing [14], and oblivious transfer [15], that allows two or
more parties to jointly evaluate a function without revealing their inputs to each other. With
these primitives, researchers have developed protocols to evaluate NNs while preserving the
privacy of the inputs [16, 17, 18]. However, these protocols often require a lot of communi-
cation during the computation, which can make network latency a problem. It is possible
to avoid some communication by performing expensive pre-computation in an offline phase
[19, 20]. In addition to the high bandwidth requirements, SMC protocols allow the client to
infer some of the model architecture. Since the client needs to be involved in most of the
computation, with HE, the computation can be performed without any client interaction.
However, neither technique protects against model inversion /stealing attacks, like Tramer et
al. [21].

Functional Encryption [9, 10] is a form of encryption that allows the evaluation of certain
functions over encrypted data. The results of these functions are “leaked” from the cipher-
texts, i.e., the result of the function is in plain data. This is beneficial for NN computation
since only the first layer needs to be run on encrypted data [22, 23], and the rest can be run
on plain data. However, this does leak some client data information to the server; the server
learns the model output and the intermediate results of the computation. A malicious server

could use this information to reverse the client’s inputs.
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Figure 1.1: Machine learning as a Service with homomorphic encryption for privacy-
preservation. (Image credit [1])

1.2 Challenges of Deep Learning with Homomorphic Encryption

While HE offers the best protection for both the client data and the server-side model, it
places restrictions on the computation on encrypted data. The most important restrictions
are (1) reduced supported operations, (2) often a limited number of layers in the network,
and (3) increased resource requirements. Getting neural networks to work within limited
operations has been well-studied for simple feed-forward networks. However, other network
architectures, like recurrent neural networks (RNNs), have received little attention. Fur-
thermore, running a neural network on encrypted data often requires implementing the ML
algorithms from scratch using HE primitives. On plain data, these implementations are

readily available and highly optimized, making them easy to use and highly performant.



1.2.1 Limaited Supported Operations

We can group current HE schemes into two categories. Schemes that work on numbers
and schemes that work on bits. Schemes that work on individual bits like TFHE [24] can
only evaluate boolean circuits. This makes them more expressive than schemes that work
on numbers since most computations can be broken down into a boolean circuit. It is
used, for example, in Google’s general-purpose HE transpiler [25]. However, they are slower
on numeric operations since these need to be broken down into individual binary gates as
well. The majority of computation in machine learning models is numeric. The layers in
neural networks consist mainly of matrix multiplication, which can be broken down into
addition and multiplication. Addition and multiplication are much faster in the numeric
schemes. However, these are the only operations they support, limiting the functions they
can evaluate to polynomials. This limitation poses problems for certain parts of the network.
In particular, activation functions can not typically be expressed as polynomials. However,
they are necessary for the network to learn non-linear functions. Throughout this work,
we refer to none polynomial activations that are frequently used on plain data, like ReLU,
Tanh, Sigomid, etc., as traditional activation functions. The most common approach is to
replace the activation functions with polynomial approximations [26, 27, 28]. There are two
main approaches for the use of polynomial activation functions. Note throughout this work,
when discussing polynomial activation functions, we exclude the cases of constant (degree
zero) and linear (degree one) polynomials unless specifically stated otherwise. (1) Find an

approximation that with so little error compared to the original activation function that it



can be used as a drop-in replacement. This way, the network is trained using the traditional
activation function, and the polynomial activation is used during private inference. The
advantage of this approach is that the model does not need to be retrained or fine-tuned to use
the polynomial activation. However, it typically requires a much more precise approximation
[28]. Any function can be approximated with arbitrary precision using a polynomial with
a large enough degree. However, to keep computational overhead low, we also want to
keep the degree of the polynomial low. The other approach (2) is to train the model from
scratch or retrain an already trained model using a polynomial approximation. In this
case, the approximation does not need to be as precise, typically allowing for a lower-degree
polynomial. Training a model with polynomial activation functions poses challenges. The
foremost challenge is that the absolute values of both the polynomial and the derivative tend
towards infinity. Like traditional activation functions, polynomial activations are also often
designed to work best in a small interval around zero. However, unlike traditional activation
functions, which typically have bounded derivates, polynomials do not. This can lead to
unstable training and easily leads to exploding gradients[29].

Other operations and layers are also affected by the reduced operations that HE supports.
For example, since comparison is not supported, Max-Pooling is often replaced with Average-

Pooling.

1.2.2 Limited Model Depth

Not only are we limited in the type of layers that we can use, but we are also limited in

the number of layers that we use, i.e., the depth of the network. The limiting factor is the



number of multiplications we can perform on ciphertexts. In HE, encryption adds some small
noise to the data. When we add two ciphertexts, the noise inside is also added, and when we
multiply two ciphertexts, the noise is also multiplied. If the noise reaches a certain threshold,
we can no longer decrypt the data correctly. This limits the number of multiplications we can
perform in a network. The limited depth is another reason we want to keep the polynomial

degree low.

1.2.3 Resource Overhead

In the homomorphic encryption scheme we use, ciphertexts and plaintext are represented as
multiple polynomials. These polynomials require several orders of magnitude more memory
than the values they represent. Additionally, the addition and multiplication algorithm for
these polynomials is more time-consuming than the addition of integers of floating point
numbers. So, even if we have a model that is not too deep and consists only of operations
supported by the scheme we use, it still might be too computationally expensive or require

too much memory for us to compute.

1.3 Contributions

In this dissertation, we investigate and propose solutions for several of the issues outlined
above. We focus on the resource requirements of batch-packed neural networks, convolutional
neural networks (CNN) specifically. We further investigate recurrent neural networks over
encrypted data. Here, the limited model depth poses additional challenges. Throughout this

dissertation, we make the following contributions:
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e We design and implement a system that allows us to run TensorFlow models over
encrypted data. The system is realized as an XLA compiler backend. It allows us to
perform privacy-preserving inference directly from Python with little code overhead

while providing us with a framework to implement low-level optimizations.

e We investigate the memory requirements of convolutional layers on batch-packed en-
crypted data and propose a schedule representation for them. The schedule allows us
to estimate the memory requirements, giving different caching schemes. We further
propose and evaluate strategies for recording the schedule to increase the caching po-
tential of a schedule, which reduces the memory requirements while limiting the time

overhead.

e We investigate recurrent neural networks and their applicability to encrypted data.
We find that their structure creates very deep computation. To address the depth, we

evaluate an interactive approach to reduce the noise during computation.

e We further propose and evaluate a new architecture, RNN blocks, that uses recurrent
elements but has a significantly lower depth than a purely recurrent neural network.
We evaluate three variants of the RNN blocks architecture with regard to their perfor-

mance, depth, time, and memory overhead.

1.4 Organization

This dissertation is organized as follows. In Chapter 2 we discuss the required theoretical

background and related prior work. In Chapter 3, we introduce our system for private in-
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ference and evaluate it against similar work. Chapter 4 presents our scheduling and caching
solution for convolutional neural networks. In Chapter 5, we investigate the computational
depth of RNNs and propose an interactive solution to reduce the noise during computation.
We expand upon this idea in Chapter 6 where we present and evaluate a novel architecture
that does not require interactive phases. Chapter 7 expands the analysis of the new architec-
ture by presenting and evaluating two variations of it. We discuss future research directions

and conclude in Chapter 8
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CHAPTER 2

BACKGROUND

Most work in PPML uses one of three main approaches: Differential Privacy, Secure Mul-
tiparty Computation, or Homomorphic Encryption. Here, we briefly describe approaches
to outsourced deep learning using Differential Privacy and Secure Multiparty Computation
before discussing Homomorphic Encryption in more detail. Differential Privacy [7] adds ran-
dom noise to the data, obscuring private information while still allowing statistical analysis
and machine learning algorithms to work on the data. The biggest strength of Differential
Privacy is that it can operate on standard numerical data types, making the integration into
existing ML frameworks comparatively easy. Differentially private algorithms are available
for TensorFlow in TensorFlow Privacy [30], and for PyTorch in Opacus [31].

Secure Multiparty Computation refers to a collection of algorithms and protocols, like
garbled circuits [13], secret sharing [14], and oblivious transfer [15], that enable multiple
parties to evaluate a function without revealing their data jointly. Previous work has shown
how to evaluate neural networks based on these algorithms and protocols. Works like Min-
iONN [18] have created privacy-preserving neural networks. Secure Multiparty Computation
solutions are communication-bound, making network latency and bandwidth potential bot-
tlenecks. Furthermore, these systems often require parties to be non-colluding to guarantee
privacy. Secure Multiparty Computation implementations are available for Tensorflow with

systems like CrypTFlow [32] and for PyTorch with CyrpTen [33].
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2.1 Homomorphic Encryption

The content of this section, apart from 2.1.2, was previously published in Podschwadt et al.
[1] and slightly edited.

Public-key (asymmetric) encryption schemes [34] use separate keys for encryption and
decryption. The key used for encryption is called the public key pk, and the key used for
decryption is called the private or secret key sk. The public key can be freely shared with
anyone and be used for encryption, but only the holder of the secret key can decrypt the
message. Public-key schemes are designed in such a way that having access to the public key
does not allow an attacker to extract the private key [35]. In addition to being public-key
schemes, HE schemes allow computation on encrypted data. The result of the computation
is also encrypted; the data does not need to be decrypted during the computation. Having
all the stages of the computation encrypted, from the inputs over the intermediate values
to the results, makes HE schemes ideal for outsourced computation. After decryption, the
result of the encrypted computation is the same as if the computation was performed on
plain data [36].

For encryption, we start with a message m € M. M is called the message space in this
paper. Common message spaces are integers M = Z, real numbers M = R, or single bits
M = {0,1}. To encrypt m, it needs to be encoded into a plaintext p, which comes from the
plaintext space P. The encoding of m into p is done by the encoding function encode and the
reverse operation decode. p can then be encrypted into a ciphertext c¢. The transformation

from a plaintext into a ciphertext is done by the encryption function Enc. It uses the public
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key to encrypt the plaintext p into the ciphertext c:

¢ = Enc(pk, p) (2.1)

The decryption operation is performed by the decryption function Dec, which uses the

secret key sk to turn a ciphertext ¢ back into a plaintext p:

p = Dec(sk, ¢) (2.2)

Where HE schemes differ from other public-key schemes is that they also have an eval-
uation function Eval that can evaluate a circuit C', a sequence of operations. E.g., a circuit
can be an ML model. Evaluating C' on plain data and on encrypted data gives us the same

result after decryption:

Dec(sk, Eval(pk, C, co, ..., cn)) = C(po, - -, Pn) (2.3)

where ¢y, ..., c, = Enc(pk, po, . .., p,) are the encryptions of the plaintexts pg, -+ , py-

We can categorize HE schemes by the operations that can be used in the circuit C' and
the depth of C'. The depth of a circuit is the number of consecutive operations that need to
be performed to evaluate the circuit. Here, we provide brief explanations of the HE schemes
categorization established by Armknecht et al. [37]:

Partially Homomorphic Encryption schemes are the “simplest” HE schemes; they

only support a limited set of circuits since they can only evaluate either addition or multi-
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plication on encrypted data [38, 39].

Somewhat Homomorphic Encryption schemes can support both multiplication and
addition on encrypted data. However, the size of the ciphertexts grows with every compu-
tation performed. The depth of the supported circuits can be controlled by the encryption
parameters [40].

Leveled Homomorphic Encryption schemes are very similar to somewhat homomor-
phic schemes in definition. However, their schemes require that the size of the ciphertexts
does not grow as operations are performed. The depth of the circuits that can be evaluated
using Leveled Homomorphic Encryption schemes can be controlled with a parameter L. The
size of the ciphertexts needs to be independent of L and only rely on the security level.
Leveled Homomorphic Encryption schemes that support both addition and multiplication
are sometimes called leveled fully homomorphic [41].

Fully Homomorphic Encryption (FHE) schemes have no restrictions on the circuits
they can evaluate. That means they need to be able to evaluate circuits of arbitrary depth
and have no restrictions regarding the operations required.

The limited circuit depth stems from the way encryption works. In simple terms, encryp-
tion adds noise to the plaintext, thereby obscuring it. The decryption process removes that
noise. Every operation that is performed on encrypted data increases the noise inside the
ciphertexts. If the noise passes a certain threshold, correct decryption becomes impossible
[42]. One solution is to decrypt a ciphertext ¢ and then encrypting it again, leading to a

fresh ciphertext ¢’ with a reset noise level. However, this requires access to the secret key sk.
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To address this issue, Gentry [43] describes how to build an FHE scheme out of a scheme
that can evaluate its decryption function on encrypted data by proposing a bootstrapping

method:

¢ = Eval(pk, Dec, Enc(sk), ¢) (2.4)

In Eq. 2.4, the decryption circuit, C' = Dec, is evaluated with an encryption of sk as
input. This does not completely reduce the noise inside the ciphertext but reduces the noise
level; hence, further computation can be performed. The bootstrapping operation can be
performed as often as necessary, allowing HE schemes to evaluate circuits of arbitrary depth.

However, bootstrapping relies on circular security, i.e., the secret key needs to be en-
crypted with its corresponding public key [44]. Circular security can be eliminated by using
keyswitching [45, 46]. Keyswitching uses a chain of different secret keys where each key is
encrypted with the following key in the chain. It evaluates the bootstrapping function using
one of the keys from the chain, resulting in the ciphertext ¢’ being encrypted with the next
key in the chain. However, once all keys in the chain have been used, no further computation
can be performed. Additionally, bootstrapping is computationally expensive, which is why it
is often not used in practice. We refer the reader to Brakerski [45] for a complete discussion
of FHE and to Armknecht et al. [37] for more in-depth information about the different HE

scheme types.
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2.1.1 Single Instruction Multiple Data

Single Instruction Multiple Data (SIMD) [47] is a form of parallel processing. It can be
applied to encrypted data in some HE schemes [48]. SIMD operations can reduce the com-
putational overhead introduced by encrypted computation. SIMD allows the user to encode
multiple messages into a single plaintext. Operations on the plaintext (or a ciphertext that
encrypts it) are performed on all messages encoded within it. The number of messages a
ciphertext can hold is called slots. The number of filled slots does affect the complexity of
the operations; they have the same complexity if one or all slots are filled. The encryption

parameters govern a ciphertext’s number of slots.

2.1.2 The CKKS Scheme

In this work, we use the CKKS scheme since its support for real numbers makes it ideal for
ML. In this section, we briefly summarize the fundamentals of the CKKS scheme, explained
in more detail by Cheon et al. [49]. We have three types of objects in CKKS: the message
m, the plaintext p, and the ciphertext c. The relationship between the three is as follows: by
using an encoding encode we can turn a message m into a plaintext p. Using the encryption
function Enc we can encrypt p into a ciphertext c¢. In reverse, we decrypt ¢ using the
decryption function Dec to turn it back into a plaintext, which in turn we can decode back
into a message using the decode function. Let N be an integer power of two and M = 2N.
Let ®,(X) = XV +1 be the M-th cyclotomic polynomial and &y, = €*™/M the M-th root of

unity. With this, we can define o as the canonical embedding C[X]/(X*" + 1) — CV, which



18

- &2N=1 This allows us

is given as the evaluation of the polynomial p at the N roots &, €2, -
to decode a polynomial into a vector. The reverse operation, encoding, o~! relies on solving
the system
N-1
> oY =myi=1,...,N (2.5)
=0
where a; are the polynomial coefficients and m; are the elements of the vector. The

message space is the space of complex vectors of length N/2, M = C™2. The plaintext

space P is the integer polynomial ring R = Z/(X” + 1). The encoding function is given as:

Encode(m) = o (| A7 (m)] o)) (2.6)

where 77! is the function that expands m from C? to CV, A is the scaling factor, and
|-] is coordinate-wise random rounding described by Lyubashevsky et al. [50]. The scaling
factor, A, prevents the rounding operation from impacting significant parts of the numbers.

The decoding function from the polynomial p to the vector m is

Decode(p) = m(a (A p)) (2.7)

Using this decoding and encoding, we can pack a complex vector into a polynomial
plaintext p. To encrypt the plaintext, we first need to choose a coefficient modulus q.
When then sample sample three polynomials a, sk, and e from the polynomial ring R, =

Z,X]/(XN +1). a is sampled uniformly and, e is typically Gaussian. sk is the secret key
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polynomial, and e is a small error polynomial. For details of sampling polynomials, we
refer the reader to [49] [51]. We now construct pairs of polynomials (a,a - sk + e). We can
informally state the (decision) ring learning with error problem [51] as follows: Given a list
of polynomial pairs, is the second part of the pair constructed as a - sk + e or randomly
generated. From this, we construct the public key pk = (—a - s+ e,a). Using pk we can

encrypt a plaintext using the following equation:

Enc(p) = (p,0)+pk=(p—a-s+e,a) = (co,c1) (2.8)

The decryption of a ciphertext c is given as:

Dec(c)=cy+c1-s=p—a-s+et+a-s=p+exm (2.9)

If the error is small enough, the output of the decryption will be close to the true value
p. The addition of ciphertexts is straightforward. Given two ciphertexts ¢ and d, which are

the encryptions of py and p;, respectively, that we want to add, we simply compute:

Add(C, d) = (Co + do, c1 + dl) (210)

By plugging this into Eq. 2.9 we can see that the result is pg + p; + 2e. Again, since
we require the error to be small, the result is approximately correct. Multiplication is more

complex since, during multiplication, the ciphertext expands from two to three polynomials.

Mult(c, d) = (Codo, COdl + doCl, Cldl) (211)
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To get it back down to two, we can use relinearization [52]. Relinearization requires a
relinearization key (sometimes called evaluation key), tk = (—ags + e + s%,a0)( mod vq).
eo is a small random polynomial, and a is polynomial uniformly sampled from R,, and v a

large integer. We perform relinearization of the product of two ciphertexts ¢ and d as:

Relin(Mult(c, d), rk) = (codo, cody + docy) + | (crdirk)/v] (2.12)

During multiplication, the scale A inside grows quadratically. To perform multiple oper-
ations without it becoming too large and overflowing, we use an operation called rescaling.
Let L be the number of multiplications we want to perform, called level. A ciphertext starts
at level L and moves down one level with each rescaling operation. Once we are at the low-
est level, we can not perform any more multiplications. Let py,...,pr, o be prime numbers
where each p; =~ A and ¢y > A, and ¢q;, = Hlel mqo- The rescaling operation of a ciphertext

¢ from level [ to [ — 1 is then defined as:

Res(c,l,l — 1) = |¢/pi] mod ¢4 (2.13)

The selection of N and ¢ has security implications. Simply speaking, the security relies
on the ratio N/q. We want ¢ to be large enough to handle the required number of multipli-
cations. However, to remain secure as g grows, so must N. The exact ratio relies on many
factors, such as the key and error distribution. Selecting appropriate values to instantiate

the scheme can be done by referring to the Homomorphic Encryption Security Standard
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[53], using tools like LWE Estimator [54], or it is often built into crypto libraries like SEAL
[55] or OpenFHE [56]. CKKS additionally supports rotations that can move the slots in a
ciphertext with roll semantics and bootstrapping as proposed by Cheon et al. [57]. However,

since we use neither operation in this dissertation, we omit them here.

2.2 What is an HE-friendly model?

In this work, we perform privacy-preserving computation of machine learning models using
HE. Since HE places restrictions on the operations we can feasibly perform, we use the term
HE-friendly to refer to the operations we can perform. Since our work uses the CKKS scheme,
we use its capabilities to define the term HE-friendly. We say an operation is HE-friendly if it
consists of only addition, multiplication, or division with a plaintext divisor. We can extend
this definition to an ML model. We call a model HE-friendly if it only consists of HE-friendly
operations. In addition to the supported operations, we also include a complexity component
in the term HE-friendly. Even if a network consists of only HE-friendly operations, it might
be too complex, e.g., consisting of too many layers, for us to consider it HE-friendly. Models

with too many layers require bootstrapping, further increasing the computational overhead.

2.2.1 What is required to make a model HE-friendly?

The fundamental building blocks of many models, neural networks especially, are already
HE-friendly. Most of these consist of matrix and vector multiplication and addition. These
are operations that can easily performed over encrypted data. In this dissertation, we work

with neural networks and limit the following discussion to the components of HE-friendly
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neural networks. There are two ways to create an HE-friendly network. The first way is to
design and train the model from scratch. However, this can be hard since HE-friendly models
often use polynomials as activation functions, and training with a model with polynomials
can quickly lead to exploding gradients and put the training in an unrecoverable state. The
second approach relies on training and a model that is not HE-friendly and transforming it
into an HE-friendly one.

The transformation gradually replaces unsupported operations and finetunes the model
after each replacement. We will now describe proposed approaches and techniques for HE-
friendly neural network components. The remainder of Section 2.2.1 was previously published

in Podschwadt et al. [1] and has been edited only slightly.

2.2.1.1 Fully Connected and Convolutional Layers

Fully Connected layers are the simplest forms of NN layers. The fundamental building block
is a neuron or unit. Given inputs x;, weights w;, a bias b and an activation function f,
an output, y = f(b+ >, w;z;), is computed. Instead of computing the output of every
neuron individually, for the neurons of a layer, the output values can be computed using
simple matrix multiplication.

Unlike fully connected networks, CNNs often include various NN layers, such as convo-
lution, pooling, and batch normalization. Fundamentally, fully connected and convolutional
layers are similar. In a convolutional layer, a window is moved across the input data. Each
cell in the window has a weight associated with a weight. The output of the window is the

weighted sum of all elements in the window. For multiple channels, the window is moved
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across all channels, and the output of each cell is summed up along the channel dimension .
Like fully connected layers, convolution layers can be expressed as matrix multiplications and
dot products. Matrix multiplication and dot products are HE-compatible since they only
consist of additions and multiplications. No work needs to be done to adapt them to HE.
However, a naive implementation can be costly; every element of a matrix/vector is a single
ciphertext. The naive implementation of d-dimensional matrix multiplication requires d*
multiplications, and the dot product of two d-dimensional vectors requires d multiplications.

One strategy for speeding up computation is to reduce the number of operations needed.
SHE [58] replace matrix multiplication and dot product with shift operation to reduce the
number of multiplications. When a number is represented in binary format, as in SHE,
multiplying it by two can be achieved by shifting the decimal point right by one. In fact,
multiplying by any power of two is simply shifting the decimal point. Shift operation re-
quires quantizing the NN’s weights to be a power of two and representing the NN’s inputs
as fixed-point numbers in their binary representation. Faster CryptoNets [59] uses a very
similar approach. The authors also quantize the NN’s weights to be a power of two, giving
them a sparse polynomial (mononomial) representation. Multiplication between ciphertexts
and these sparse plaintexts is much faster. Research on plaintext [60] suggests that weight
quantization does not sacrifice accuracy.

Another option is using the SIMD operations offered by many schemes. The goals are
to use fewer ciphertexts, decrease latency, and organize the data to speed up computation.

This organization is called ciphertext packing. It is essential to have efficiently packed ci-
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phertexts since it can drastically reduce the number of operations needed to evaluate specific
algorithms. For example, E2DM [61] includes an encoding map that allows packing one or
more matrices in a single ciphertext for efficient matrix multiplications. PrivFT [62] uses a
packing structure that encodes the input in a relatively small number of ciphertexts. For ef-
ficient dot products, the embedding matrix is packed vertically. Brutzkus et al. [63] propose
packing schemes for efficient convolutions and matrix multiplications. The packing schemes
are memory efficient since they use fewer ciphertexts. The authors propose algorithms for
switching between packing schemes depending on the operation, i.e., convolutions or ma-
trix multiplications. Lee et al. [28] propose a packing scheme for strided convolutions. In
contrast to E2DM and PrivFT, the CHET compiler [64] can automatically select packing
schemes depending on the input model, HE scheme, and data domain by introducing a cost
model. Mihara et al. [65] develop a diagonal ciphertext packing scheme for efficient matrix
transpose operation; it boosts the training backpropagation speed.

The primary challenge of ciphertext packing schemes is that they need to work efficiently
with data for operations such as convolutions or matrix multiplications; there is no unique
packing scheme for all data/operations. Besides, except for CHET [64], other techniques
such as E2DM and PrivFT require trial and error to identify efficient ciphertext packing
schemes. Furthermore, packing often requires rotations of the slots. Switching packing
schemes, which often requires rotations, impacts the overall NN runtime. Additionally, the
transformation from one representation to another needs to be considered when calculating

the noise budget.
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2.2.1.2 Pooling Layers

The output of the window is the pooling function, which is applied to all values in the window.
The most common pooling layer is max-pooling, where the pooling function is the maximum
of all values in the window. However, it is inefficient with HE schemes except SHE [58];
it benefits from the TFHE scheme. Some studies replace the max-pooling operation with
either average [66, 64, 67] or scaled (by a constant factor) average pooling [26, 68, 27, 59, 69].
The most common scaling factor is the number of input elements; it turns average pooling
into input summations without any multiplication (i.e., plaintext division) operation. The
advantage of using average pooling is the tighter control over the magnitude of the values.
The parameters of the HE scheme need to be chosen so that all values that occur during
computation fit into the plaintext space. With average pooling, the output of the pooling
operations is in the same range as the inputs. With scaled average pooling, the output
values can grow larger. The cost of using average pooling is an additional multiplication.
Al-Badawi et al. [67] show that pooling is not necessary on simple data sets such as MNIST,
but on more complex data sets such as CIFAR-10, it does improve performance. Usually,

studies that utilize MNIST do not implement pooling layers in their NNs.

2.2.1.8 Batch Normalization Layers

Batch normalization stabilizes the training process on plain data by reducing the internal
covariate shift. It forces the inputs to a layer to follow a zero-mean normal distribution.

This normalizing operation makes inputs with large absolute values less likely. Chabanne
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et al. [66] used batch normalization to stabilize NN training with polynomial activation
functions. Polynomial activations usually work well in a small interval around zero. Outside
of that interval, they are unbounded and have rapidly growing derivatives during training
(exploding gradient problem). By placing a batch normalization before a polynomial activa-
tion layer, the probability of encountering values outside the optimal polynomial activation
range decreases. In addition to stabilizing training, it helps prevent values from overflowing

the limits of the plaintext space. This approach is used in many studies [26, 68, 59, 58, 69].

2.2.1.4 Recurrent Layers

There is little work on PPML using recurrent layers. Simple recurrent layers (Fig. 2.1a) at
their core are similar to fully connected layers; they only consist of matrix multiplication.
The depth of recurrent layers depends on the number of elements in the input sequence
(Fig. 2.1b). Recurrent layers often have higher multiplicative depth (i.e., more noise), re-
quiring numerically larger crypto parameters than convolutional or fully connected layers.
Noise buildup prevents the network from completely processing the inputs. Large crypto
parameters require more computation and memory resources. To alleviate these challenges,
Podschwadt & Takabi [2] (discussed in greater detail in Chapter 5) and Bakshi & Last
[70] (CryptoRNN) propose to use the client to remove the built-up noise in the ciphertext.
CryptoRNN uses simple RNNs with client communication, too. They refresh noise at three
predefined points in the networks: 1) after every multiplication, 2) before every non-linear
activation function, and 3) after processing each sequence element. It should be noted that

at point (2), the client also computes the activation functions. Similarly, Podschwadt & Tak-
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abi [2] use naive matrix multiplication and a degree three polynomial Tanh approximation
in simple RNNs. The authors dynamically decide when to use the client for interactive noise
removal depending on the remaining noise budget (which prevents unnecessary communica-
tion) instead of at predefined points.

In a later study, Podschwadt & Takabi [3] (discussed in greater detail in Chapter 6)
propose RNN Blocks, an RNN architecture that does not need client interaction. It reduces
the multiplicative depth by splitting each instance into multiple shorter chunks across the
time dimension. Any recurrent operation on these chunks is parallelized, decreasing the
multiplication depth significantly due to shorter chunks. The RNN produces an output for
each chunk; they are then concatenated and fed to a fully connected layer.

Later recurrent layers such as long short-term memory [71] (LSTM) (Fig. 3.1), or gated
recurrent units [72] (GRU), impose even higher multiplicative depth due to their complex
structure. SHE [58] modified the LSTM structure to use the ReLLU function, which is compar-
atively easier to compute using TFHE than Tanh. Typically, RNNs use the Tanh function,
which requires at least a polynomial of degree three for an adequate approximation. The
authors also replace all the multiplications with shift operations, which they can perform at
no cost to the noise budget.

Jang et al. [73] implement GRUs on encrypted data using their proposed encryption
scheme MatHEAAN. The internal structure of a GRU is similar to that of an LSTM and
introduces high multiplicative depth. To address this issue, the authors rely on bootstrapping

during the computation of the network.
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RNN architectures are not well suited for execution over homomorphically encrypted
data [3]; they require either fundamental changes as seen in SHE [58], and RNN Blocks
[3], bootstrapping [73], or establishing client communication as seen in [70] and [2]. How-
ever, interactive communication takes away some HE key advantages over Secure Multiparty
Computation, such as the lower communication overhead and the ability to perform the com-
putation independently from the client.

The primary strength of RNNs is that they have some “memory” of previous states.
However, it is their downfall on encrypted data since this “memory” produces networks with

a large multiplicative depth.

2.2.1.5 Embedding Layers

Word embeddings are real-valued vector representations of words’ meaning in natural lan-
guage processing; they are useful tools since they turn words into real values (instead of
integers) to be later fed to NNs. There are different word embedding methods. PrivFT [62]
relies on the fasttext [74] architecture, where the words need to be encoded into ”one-hot”
vector representations. In a one-hot vector representation, all elements are zero except one.
In PrivFT, the client does the one-hot encoding. On plaintext, the translation from a word
to one-hot encoding would happen on the server. However, this operation is prohibitively
costly over encrypted data. The client sums up all the one-hot encodings, encrypts the re-
sults, and sends the ciphertext to the server alongside the number of encoded words. The
client transmits this number of words in plain. The server multiplies the vector with the

embedding matrix and scales the results with the number of encoded words. Podschwadt &
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Takabi [2, 3] also work with textual data. In their work, they outsource the embedding to
the client. The client performs the embedding operation (a simple table lookup) and sends
the encrypted result to the server for computation.

In all approaches above, the server needs to share some information about the model and
the data with the client. They all need to provide the client with an enumerated vocabulary
of all the words known to the model. This only leaks very little information. In Podschwadt &
Takabi [2, 3] studies, the client also needs to access the learned embeddings in plaintext. This
plaintext access is not a problem in their later work RNN Blocks[3], where they use publicly
available, pretrained embeddings. However, using publicly available embeddings prevents
the server from using fine-tuned or self-learned embeddings and keeping them secret from
the client. Besides, embeddings further increase the size of the data. Embeddings often turn

a single word into a vector of 100+ real values, increasing size during encryption.

2.2.1.6 Activation Functions

PPML approaches are often different from standard ML in their choice of activation func-
tions. The choice of activation often depends on the scheme. With some HE schemes, one
can use popular NN activation functions. For example, SHE [58] uses the TFHE scheme,
enabling the user to implement ReLU on encrypted data using binary gates. Bourse et al.
[75] use a step function that outputs either 1 or —1 based on the sign of the input value.
This sign function can be evaluated using a custom bootstrapping operation in TFHE.
Every activation function evaluation is also a bootstrapping operation, allowing unlimited

deep networks. However, training a network with the step function is difficult since it does
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not provide gradient information. Another option for using standard activation functions
is client-side computation. CryptoRNN [70] outsources the computation of the activation
function to the client, allowing the authors to use arbitrary activation functions.

In other schemes, low-degree polynomials are popular choices for activation functions
since most schemes can easily evaluate polynomials. The simplest non-linear polynomial,
the square function f(z) = 22, is often used as a replacement for ReLU [27, 68, 70, 67,
61, 65, 69, 63, 26]. The square function is relatively fast and adds little overhead to the
computation. However, it does not perform well in all problem domains. For example, using
it in RNNs is infeasible due to its rapidly growing derivative [2]. The square function can not
be used to replace ReLU in an already trained network since their outputs are too different.

More complex polynomials can reduce the approximation error. The Stone-Weierstrass
theorem [76] states that any continuous function can be approximated with arbitrary pre-
cision over a closed interval using polynomials. However, accurate approximation requires
high-degree polynomials, which introduce large computational overhead and noise. One
needs to find a trade-off between approximation accuracy and polynomial degree for HE
solutions.

Chabanne et al. [66] study polynomials with even degrees two, four, and six as ap-
proximations of the Relu function. They find the approximations by applying the ”polyfit”
method of the numpy! package to the output of ReLU on the standard normal distribution.
The authors use this distribution since they put a batch normalization before every ReLLU

activation function. Combining polynomial activation functions with batch normalization

'https://numpy.org
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can also help during training; polynomial activation functions’ unbounded derivatives can
lead to exploding gradients, which are counteracted by batch normalization. Hesamifard
et al. [26] propose a method for finding approximations of common activation functions.
The authors find a polynomial approximation for the function’s derivative using Chebyshev
polynomials [77]. By integrating that function, they can find an approximation for the acti-
vation function. The intuition behind their approach is that the derivative of the activation
function plays a large role in training the NN, and approximating it more closely leads to
better results. Their approximation approach is used by Podschwadt & Takabi [2], and RNN
Blocks [3] to approximate the Tanh function, with degree three polynomials, for the use in
RNNs.

Lee et al. 28] approximate the ReLU functions as ReLU(z) = 3z(1+sign(z)). They use a
composition of polynomials [78] to approximate the sign function. In their experiments, they
use three polynomials of degrees 7, 15, and 27. This allows for a very accurate approximation
of ReLLU that can replace the activation in a trained NN without the need for further fine-
tuning. However, the high degree of the polynomials requires bootstrapping to control the
noise. The authors further propose a method for approximating the softmax function:

T4

e .
;foreach 7 =10,1,...,n
Tj

Z;'L:1 €

softmax(z) =

Using the least-squares method, the authors use a degree 12 polynomial to approximate
the exponential function. To compute the inverse function, the authors use Goldschmidt

division [79], allowing them to approximate the division as a series of multiplications. Al
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Badawi et al. [62], use minimax approximation [80] to find a polynomial approximation for
the softmax function. Minimax approximation is to minimize the maximum error. Using
this approach, the authors find 1/82% + 1/2x + 1/4 as an approximation of the softmax
function. Since the softmax function is usually the last operation in an NN, most studies
leave its evaluation to the client. However, this poses a risk since directly exposing the logits
of the NN to the client makes it more vulnerable to adversarial and model inversion attacks.
CHET [64], nGraph-HE [69], and Jang et al. [73] use a different approach to finding poly-
nomial approximations. Rather than numerically finding an approximation, in polynomials
of the form f(x) = a ™ + ap_ 12" 1+ -+ - + a9x® + a1z, the coefficients a; are learned during
the NN’s training. CHET and nGraph-HE learn polynomials of degree two while Jang et al.
[73] train polynomials with degree seven, which requires bootstrapping during inference.
Nandakumar et al. [81] do not use polynomial approximations for the sigmoid activation
function; they use a lookup table instead [82]. The client needs to precompute the table

before running the network.

2.2.2 Polynomial Approximation: Theoretical Foundation

One of the major limitations of homomorphic encryption is the limited set of operations
that can be performed. CKKS supports addition and multiplication. Division is supported
only for plaintext divisors. Basically, this allows us to evaluate only polynomials. Tanh, a
popular activation function in RNNs, can not be expressed as a polynomial. This means we
can not evaluate it over encrypted data. A way to circumvent this is to find a polynomial

approximation.
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Hesamifard et al. [83] use an approach that is based on Chebyshev polynomials. Given
the family of all continuous real-valued functions X on a non-empty compact space C(X)
and let pu be a finite measure on X. The authors define f, g € C(X) as (f,g) = [, fgdu. To

generate Chebyshev polynomials they use du = \/flf? as the measure on [—1,1]. For better

computational performance we want to stick to low-degree polynomials.

2.3 Compiler-based approaches to running neural network with HE

Running an HE-friendly neural network poses a new challenge. All operations in the network
need to be implemented using HE primitives, in our case, addition, multiplication, and
division by plaintext. While this is certainly feasible, it makes a fast turnaround from model
training to execution on encrypted data difficult for individual experiments. To address
this issue, prior work proposes privacy-preserving neural network compilers. Their goal is to
transform neural networks, provided by popular frameworks like TensorFlow or PyTorch, into
HE computation. This transformation often includes optimizations to make the execution
more efficient. Podschwadt et al. [1] identify two such compilers: “Boehmer et al. [69]
develop nGraph-HE, a backend for Intel’s nGraph graph compiler. nGraph-HE takes existing
HE-friendly NNs from popular ML frameworks like TensorFlow or PyTorch and translates
them into HE operations. The goal is to require as little knowledge about HE as possible.
nGraph-HE can perform several optimizations that speed up the NN inference. CHET is an
optimizing compiler for tensor circuits over HE by Datathri et al. [64]. CHET’s optimizations

are encryption parameter selection, data layout selection, rotation key selection, and fixed-
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point scaling factor selection. The compiler uses a cost model to find the most efficient
operations and crypto parameters.“ Since then, a new framework, HElayers by Aharoni et
al. [84], was released. Similar to CHET, HELayers also performs layout optimization. It
analyzes the neural network and splits the computation into so-called tiles. Tiles represent
ciphertexts and plaintexts. The layout optimizer aims to find the best tiling given the model
and the input data. It does so by simulating the computation first and using heuristics
to find the configuration with the lowest latency. For transforming models from multiple
frameworks, the authors rely on Open Neural Network (ONNX) 2/ an interchange format
for neural networks. However, some of these compilers are closed source, like HELayers or
CHET, which prevents us from making modifications during our experiments. For a more
in-depth discussion of HE compilers, which is not limited to machine learning workloads, we

refer the reader to Viand et al. [85].

2.4 Recurrent Neural Networks

Recurrent neural networks excel at processing sequential information. They do this by
processing one sequence element after another and feeding prior internal states back into
themselves (Fig. 2.1a). This recurrent behavior updates the internal with each new element.
However, on encrypted data, this design causes problems. Conceptually, we can “unroll” any
RNN layer along the temporal dimension. (Note: It is common in RNNs to consider one of
the data dimensions as time. This is the dimension along which the sequence elements are

ordered. E.g., if we consider the input, “This is a test input” the time dimension would go

’https://onnx.ai/
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from “This” to “input”. It establishes a relationship from the first to the last element in the
sequence.) The unrolling creates a network that does not have any recurrent connections
but a new input from the input sequence at every layer (Fig. 2.1b). Computationally, the
unrolled RNN is identical to the normal representation, it is just a different visualization.
In a Simple RNN [86], the computation of the hidden state h; at time ¢ is computed as (for

simplicity, we ignore the biases here):

ht = f($tW + htfl‘/) (214)

Where f is the activation function, z; is the sequence element at ¢, W the input weights,

and V the recurrent weights. We can expand h;_; by substituting the equation at ¢t — 1:

he = f(@W + f(xeaW + hy2V)V) (2.15)

We can repeat this expansion until we reach x:

he = f(aiW + fxe s W+ f(o.. f(xgW + R V)V) .. V) (2.16)

2.5 Convolutional Layers

Here, we consider two-dimensional convolutions commonly used in neural networks; however,
other dimensionalities work fundamentally the same. Goodfellow et al. [87] define the

operation as follows: given the inputs X,WW, and the output Y, which are all tensors, we can
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(a)
Figure 2.1: A simple overview of an RNN layer 2.1a and the “unrolled” RNN layer 2.1b

along the time dimension t. The red dotted line shows the initial input value passing xg
through every unrolled layer. (Image credit [3])

define the two-dimensional convolution as:

n:mznvcout - E : E : : :vam_jvn_kycinijkvcinycout (217)
7 k

Cin
We use the subscript to indicate a single element in the tensor, where b is the batch
index, ¢, the input channel index, and ¢y, the output channel index. Eq 2.17 needs to be

computed for all values in Y.

2.5.1 Lock-free multi-threaded Convolution

The most straightforward way to compute a convolution with multiple threads is to have
each y computed by a thread; Eq. 2.17 is computed by a separated thread for each unique
(b,m,n, cou). For s = |Y|, we can use at most s parallel threads without requiring some
synchronization between the threads since all threads read from the shared resources X and

W but do not modify them; every Y} ;e s only modified by one thread, ruling out any
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race conditions that could lead to lost updates. With fewer than s threads, threads can
compute multiple Y3, e, With more than s threads, we either need synchronization or
can not use these threads. Generally, given n; threads where each thread is assigned a unique

integer ¢ € [1,n,], we can use Algorithm 1.

Algorithm 1 Lock-free multi-threaded Convolution
Inputs: input tensor X, weight tensor W, output tensor Y, number of threads n,
Outpus: output tensor Y containing the result of the convolution

1: whilet <n;, and ¢t < |Y| do

2 Start Thread ¢ and execute:

3 q:=1

4 while ¢ < |Y| do

5: convert ¢ to multi-dimensional index b, m, n, Cout
6 Yo mon,co 1= Zj Zk Zci Xbm—jn—tke, Wikieico

7 q:=q+mn

8 end while

9 End Thread
10: end while

We assume that inputs are stored on a disk (the term disk refers to any persistent
storage, i.e., a hard disk drive or solid-state drive) and must be loaded into memory. With
the Algorithm 1, we have two options to keep it lock-free. 1.) Load X and Y before we start
the computation, or 2.) Each thread loads the x and y as needed. 1.) has the upside in that
we only need to load each value once and can reuse them at no additional cost. However,
the downside is that we need to keep them in memory for the entirety of the computation.
2.) On the other hand, it needs to keep much fewer objects in memory. Each thread has
only three objects in memory: one X, one weight w, and the output y. However, each
thread must perform two loads for each iteration of the nested sums in line 6. Furthermore,

multiple threads may load the same x and w, causing redundant loads. A further issue with
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this algorithm arises when |Y| is not divisible by n;. In this case, |[Y|— Y| mod n; threads
finish one iteration, line 4, early and are idle for the rest of the computation, leading to
unused computational resources. However, this impact is small if |Y]| is large compared to
n;. Performing the second option on plain data will lead to slower results since arithmetic
operations are much faster than data loading. Additionally, single x and w are so small that
we can not save significant memory by loading them on demand.

Running Algorithm 1 on encrypted data is straightforward using batch-packing described
earlier. To do this, we replace X with X', W with W', and Y with Y’. This replacement sets
the batch dimension to one, allowing us to remove it from consideration. For the algorithm,
it does not matter if W’ is encoded HE plaintexts or ciphertexts if the model is encrypted.
In the case of the plaintext model, we assume that unencoded weights W are loaded into
memory before the computation starts and are encoded when needed; therefore, we don’t
need to load them strictly speaking. However, we call this operation loading for simplicity

in this context.
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CHAPTER 3

PRIVATE INFERENCE

This chapter will identify the challenges of running a trained model on encrypted data. We
assume the model is trained on plain data and has already been transformed into an HE-
friendly model. We identify numerous challenges, such as resource overhead, the depth of a
model, issues stemming from unsupported operations, and usability issues. We then present
and evaluate Aluminium Shark, a tool to run neural networks over encrypted data with little

code overhead.

3.1 Challenges of running a trained model on encrypted data

Based on our initial implementation, CryptoDL[88], we identify design considerations for
a tool to run neural networks over encrypted data. CryptoDL taught us valuable lessons
regarding design and usability. It supports fully connected, convolutional, and vanilla RNN
layers. Other than the limited number of layers, CryptoDL has other limitations. Many of
the limitations are around usability. Running a model requires the user to implement it in
C++. A rudimentary model importer can convert and import Keras models saved in the
h5 file format. CryptoDL extracts the model configuration from this format and exports
the weights into a file format it can read. It is very strongly coupled to the layer format,
as Kears specifies it. Despite this strong coupling, it only supports a small subset of the
specification. For example, to use CNNs and image data, the model and the data need to be
formatted to have the channel information as the first dimension after the batch dimension.

Other formats are not supported. Any new additions or changes to the format need to be
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implemented in C++-. This strong coupling makes us very inflexible. Keras is not the only
strongly coupled dependencies. CryptoDL uses HELib[89] as its computational backend and
lacks an abstraction layer to support other libraries.

One of the major problems of running neural networks on encrypted data is the time
overhead. Plaintext models can typically run in a few seconds on today’s systems; models
over encrypted data can take hours. Even models are considered simple, for plain data can
take a long time. For example, LeNet5 [90] for MNIST digit classification can take 1,272
seconds. These values are with batch-packing, so the amortized per instance cost is much
lower at 0.08s per instance. While this might be sufficient for big batch jobs, classifying a
few instances carries a large overhead. Ciphertext packing strategies like Brutzkus [63] can
alleviate that problem only to some extent. In a recently published paper, Lee et al. [28], run
the ResNet-20 model on a single encrypted instance in a little under three hours. Because
of the depth of their model, they need to employ bootstrapping, which further increases the
time overhead.

But time is not the only resource that has a significant overhead. Running neural net-
works on encrypted data comes with large memory requirements. This becomes apparent
when we compare the sizes of plain data and ciphertexts. Let us assume that on plain data,
a single number requires 64 bits of memory. A vector of 16,384 numbers then requires 128
KB of memory. The size of a ciphertext depends on the crypto parameters; however, if
we assume parameters that can encode 16,384 values into a single ciphertext, then a single

encryption of this vector can take up to 10 MB of memory. The size of a ciphertext is not
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only dependent on the security parameters but also on the number of levels. As the number
of levels increases, so does the size of the ciphertext. To go back to our LeNet5 example from
earlier, running this model takes over 300 GB of memory without optimizations. The input
data on MNIST that is 28 = 784 ciphertexts, is 7840 MB alone. Or take Lee et al. [2§],
who require 172 GB to run inference on a single instance. Requiring machines that have
hundreds of GB of memory is not uncommon for private inference using neural networks [1].

We can see that the depth of a network influences its resource requirements on encrypted
differently than on plain data. On plain data, adding an additional layer only adds the
time and memory requirements for that layer. It does not change the computation time
and memory requirements of the other layers. This is not the same on encrypted data;
here, adding a layer has an impact on all the other layers. The ciphertext size needs to
increase to accommodate the multiplications added by the new layer. If the new level is
not secure enough with the current polynomial degree, we need to increase that as well, and
operations with a larger polynomial degree are also slower. However, we cannot add levels
indefinitely; eventually, the computation becomes so slow due to the polynomial degree that
bootstrapping is faster. To keep execution time and memory requirements low, we want to
keep the model as shallow as possible.

There are more challenges and open issues to running a neural network over encrypted
data. The following analysis, until Section 3.1.1, was previously published in Podschwadt et
al. [1] and has been slightly edited.

A handful of libraries are available that support one or more encryption schemes. How-
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ever, even if libraries support the same scheme, they are not interoperable. For instance,
ciphertexts or keys do not have a standardized format. The same is true for the encryption
parameters. The interpretation of what a parameter means can differ between libraries.
In the past few years, there has been an effort to standardize HE by the community [91].
This standardization effort [53] includes an overview of the security and secure parameter
recommendations, potential applications, and design considerations. It is a good start, but
at the moment, developing solutions locks one into using a particular library. HELayers [84]
addresses these issues by incorporating parameter selection.

Choosing a library is usually difficult; developing a well-performing secure PPML solution
without in-depth knowledge about HE is hard, if not impossible. PPML developers need
to have expertise in both ML and security. PPML, using HE, has not been widely adopted
by the ML community, likely due to the high barrier of entry that is HE and the lack of
user-friendly tools. On the other hand, security researchers often lack ML knowledge. The
ML community has developed user-friendly tools allowing fast plaintext ML development
(92, 93, 94]. These tools hide much of the complexity from the user; such complexity is
necessary to understand when implementing solutions based on HE.

There should be an effort to develop HE-based PPML libraries by a shared community
of ML specialists and crypto experts. Some work has been done on easing the entry from
both sides by using compilers [69, 64, 84]. Compilers not only make it easier to get started,
but they can also significantly improve performance by applying optimizations. Compilation

can help speed up the execution of encrypted data. However, the models are designed with
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plaintext execution assumptions.

Fast and efficient techniques on plaintext are not always the best solution for encrypted
data [27, 26]. Researchers should take a more holistic approach that considers the entire ML
pipeline. Much of the work focuses on running existing model architectures on encrypted
data [27, 64, 28]. This work is often done by making small changes to the model architecture
to make it HE-compliant and training the model from scratch [59, 58]. Ideally, the compiler
suite would be able to perform all these transformations automatically while optimizing the
process end-to-end. Most ML techniques in the field are minor adaptions of strategies that
work on the plaintext [62, 27, 58]. However, developing solutions specifically for encrypted
execution might require new types of networks, activation functions, or optimizers.

Activation functions are a bottleneck in NNs using HE. These non-linear functions are
necessary for the network to perform well. However, on encrypted data they significantly
impact the noise budget [28, 59]. Multiple alternatives have been proposed, but most of
them make training the model harder, often due to their unbounded and non-monotonic
derivatives [66, 3]. Other solutions that do not impact training, such as replacement after
training or lookup tables, suffer from a loss in model performance [28]. Polynomials are
an adequate replacement for traditional activation functions [28, 27, 26]. The question of
whether there are activation functions that perform well, both on encrypted and plain data,
is still open and worth investigating.

The need for HE-specific algorithms and adaptions is especially apparent in training.

Work investigating training on encrypted data is minimal [81, 62, 65]. One of the big
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reasons is the noise build-up and the resulting need for bootstrapping or interactive noise
removal. Solutions that use neither are limited to using training hyperparameters, such
as batch size and the number of epochs, that are sub-optimal [62]. Approaches that do
use bootstrapping are very slow and computationally expensive [95, 73, 81]. On the one
hand, faster bootstrapping would remove some of the computational overhead of training on
encrypted data, and we could use standard training parameters. On the other hand, having
a training algorithm that works with the parameters required by HE would eliminate the
need for bootstrapping or interactive noise removal and make training much more feasible.

Performance is not only an issue during training but also during testing. Researchers
can evaluate models on the CIFAR-10 dataset within a reasonable time [67, 64]. However,
larger models and larger inputs still take hours to compute [58, 28]. Hence, scaling up to
larger, real-world datasets is costly. Improvements in latency and memory consumption
have been due to ciphertext packing [63, 61, 18]. Without it, scaling up to real-world data is
impractical. Packing can reduce the memory requirement by an order of magnitude. Models
on the CIFAR-10 dataset that do not use packing require hundreds of GB of memory [64,
59, 58], making scaling up to datasets like ImageNet near impossible.

Another potential source of increased performance is hardware accelerators like GPUs or
FPGAs (Field Programmable Gate Arrays). Al Badawi et al. [67] ran models using HE on
GPUs, but memory constraints were severe. High-end GPUs do not have more than 50GB
of memory. The memory limitation of GPUs calls for new encoding and packing schemes

for efficient execution. Research on GPU-aided HE is not limited to ML applications. For
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example, Geraldo et al. [96] propose an implementation of BEV accelerated by GPUs. Their
results show an up to 5 times speedup in homomorphic operations. Increasing the efficiency
of NNs can also help reduce the memory and runtime requirements of PPML. Much work has
been done on running plaintext ML applications on resource-constrained devices like phones
(97, 98]. Techniques used in that area, such as pruning and quantization, can be implemented
in PPML [99]. Chou et al. [59] investigated reducing the number of computations in the
network through pruning. Helbitz & Avidan [100] tackled the computational overhead of
PPML by reducing the ReLU count in the network. They show that activations can be
grouped, and one activation output can be used for all in the group. The accuracy impact
on this grouping is low, while it can provide about 30% speedup. They test their system
using two and three-party computation. If a similar speedup can be observed on HE systems
or if it is even applicable to other activations, then ReLU still needs to be investigated.

Most PPML solutions focus on client data privacy; it is guaranteed if the underlying
schemes remain secure. However, if these systems are to be adopted in practice, model
providers likely need more assurance that their models are secure; server-side model infor-
mation can be leaked using HE.

Information leakage can occur in various directions. For example, either information
about the client’s data can leak to the server, or the server’s model can leak to the client.
All approaches in this survey focus on protecting the privacy of the client’s data; however,
the model’s privacy can also be a concern. While the client does not have direct access to

the model’s parameters, Tramer et al. [21] show that an attacker can reverse engineer a
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model with access only to the model’s predictions. Interestingly, there is more information
leakage about the model to the client on encrypted data. One reason is that it is common
practice to leave the decoding of the results to the client (usually softmax or beam search
[68]). These raw values make it easier for the client to learn the network’s weights. Another
reason is that the client can infer some of the network architecture through the crypto
parameters. Especially when using leveled HE, the client gains information about the depth
of the computation because the multiplicative depth is directly correlated to the number
of layers in NNs. The server can obfuscate this information by choosing larger parameters
than the network requires, increasing running time and memory consumption. Alternatively,
bootstrapping can deny this information to the client. However, this also increases resource
requirements. Additionally, the encoding methods used with ciphertext packing can reveal
the model’s information.

The information leakage becomes even more severe when the client needs to participate
in the computation. CryptoRNN[70] and Podschwadt & Takabi [2] face the problem of
revealing internal states (e.g., layer’s outputs) to the client during noise removal. Knowing
the internal state could allow the client to learn the model’s parameters since the client
learns the exact number of units used in the hidden layers. Furthermore, with access to the
intermediate states, the client gains more information than assumed by most model stealing
attacks [101]. It can potentially use this additional information to improve the attack. The
server can prevent the client from learning the actual internal state by adding randomness

to the data before sending it to the client for noise removal. The server can remove the
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randomness once the client returns the encrypted ciphertext to the server. This obfuscation
becomes more complicated when the client computes nonlinear functions, as in CryptoRNN
[70].

Multiple approaches need to share additional information with the client for preprocess-
ing. Podschwadt & Takabi [2], RNN Blocks [3], and PrivFT [62] need to share all the words
known to the model. Unless the model operates in a very specific domain with a very spe-
cific vocabulary, the client does not gain valuable information. Podschwadt & Takabi [2] and
RNN Blocks [3] additionally need to share the embedding matrix. However, this does not
leak any information to the client since there are plenty of pretrained embeddings [102] that

are publicly available. So, the client does not learn anything new about the model.

3.1.1 RNNs on encrypted data

On encrypted data, RNNs typically exhibit much higher multiplicative depth than feed-
forward networks. One of their greatest strengths, internal memory, is responsible for the
increase in multiplicative depth. Fig. 2.1b helps highlighting the problems of RNNs on
encrypted data. It shows the first sequence element x( passing through every layer in the
network. The problem on encrypted data is the multiplicative depth. In an RNN, the
multiplicative depth is tied to the number of elements in the input sequence. Simply put,
each element adds a layer to the unrolled network. The formula shows this more clearly (Eq.
2.16). Here we can see that the multiplicative depth of a network with ¢ sequence elements is
the multiplicative depth of f times t. If we consider polynomial activations, a popular class

of activation functions for encrypted data, we can establish an estimate of the multiplicative
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Figure 3.1: Internals of a long-short term memory (LSTM) cell with noise-increasing opera-
tions highlighted. (Image credit [1])

depth. For a polynomial with coefficients a; and degree n:

f(2) = an2™ + an 12"+ an 2" 4 -+ agt® + arx + ag;a €Rn € ZF (3.1)

we can estimate the multiplicative depth as n. For a monomial, the multiplicative depth
isn—1. For higher-degree polynomials and monomials, this gives us an upper bound since we
can compute the exponentiation in each term with a multiplicative depth of less than n — 1
by successive squaring of the intermediate results. This gives us a best multiplicative depth

of loga(n) and an estimated worst-case multiplicative depth of |[logs(n + 1)|. Therefore we
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can estimate the multiplicative depth of the entire RNN to between ¢ xlogs(n) and ¢ % n; with
n the degree of the activation function and t the length of the input sequence. For example,
assuming the simplest non-linear polynomial, 2, and an input length of 20, we can estimate
the multiplicative depth to be 20. These noise estimates are only for simple recurrent neural
networks; other recurrent layers, such as long short-term memory [71] (LSTM), or gated
recurrent units [72] (GRU), impose even higher multiplicative depth due to their complex
structure. We can see the difference in depth if we compare the computation in a vanilla
RNN cell to that in an LSTM. The import part is h;_; since that contains the ciphertext
that has already undergone computation and, therefore, is at a lower level, as shown in Fig.
2.1b. From Equation 2.15 we can see that the vanilla RNN cell requires one multiplication
of h;_; with V and an application of the non-linear function f. In an LSTM cell we have

(we omit the input from the current step z; and the biases for better readability):

hy = tanh(o(Wgphy_1) X ¢;_1 + A) X o(Wohy_1) (3.2)

With x being element-wise multiplication and A = o(Wyhs—1) X tanh(Wrh;—1). However,
A has no impact on the multiplicative depth since it is “parallel“ to o(Wghy_1) X ¢;_1. Here,
we have one multiplication with the weights Wg, two non-linear actuation functions, one
multiplication with ¢;_;, and one multiplication with o(Wph;—1). Assuming that the model
is in plain, the total is one ciphertext x plaintext multiplication, two ciphertext x ciphertext
multiplications, and two activation functions. The vanilla RNN has one ciphertext x plaintext

and one activation function. This means the LSTM is two levels plus the depth of one
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activation function deeper than a vanilla RNN.

Most work on neural networks with HE (e.g., [27, 26, 67]), work with networks that have
at most half the multiplicative depth. Furthermore, it is unclear if the square function is
suitable for use in RNNs. Typically, RNNs use the Tanh function. Tanh produces outputs
in [—1,1]. If the negative values are needed in the recurrent state or if we can make do with

positive values, it only needs to be investigated.

3.1.1.1 Previous work

There is little work on PPML using recurrent layers. Bakshi & Last [70] propose CryptoRNN
for RNN privacy-preserving classification. However, this approach requires client-server in-
teractions for noise removal, although it only uses small datasets. CryptoRNN uses simple
RNNs with client communication too. They refresh noise at three predefined points in the
networks: 1) after every multiplication, 2) before every non-linear activation function, and
3) after processing each sequence element. It should be noted that at point (2), the client
also computes the activation functions.

Lou et al. [58] propose a solution called SHE for Shift-accumulation-based leveled-HE-
enabled deep NN, based on TFHE, which allows the implementation of the ReLU function
and max-pooling layers. This solution increases the performance since there is no need for
function approximation. However, TFHE performs matrix operations slower than the other
HE schemes. SHE [58] modified the LSTM structure to use the ReLU function, which is
comparatively easier to compute using TFHE than Tanh. Typically, RNNs use the Tanh

function, which requires at least a polynomial of degree three for an adequate approximation.
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The authors also replace all the multiplications with shift operations, which they can perform
at no cost to the noise budget.

Jang et al. [73] propose a variation of the CKKS scheme, MatHEAAN (Matrix HEEAN),
that specializes in matrix operations. Based on this scheme, the authors Gated Recurrent
Units (GRU) [72], to handle sequential data. Since recurrent NNs (RNNs) typically have
high multiplicative depth, the authors use their custom bootstrapping algorithm to refresh

the noise during computation.

3.1.2 Addressing Challenges

Throughout the remaining parts of this work, we will take a more in-depth look at several of
the challenges above. We will first describe and evaluate Aluminium Shark in the remainder
of this chapter. Afterward, we present caching techniques to reduce the memory require-
ments of batch-packed convolutions in Chapter 4. We then go on to investigate RNNs over
encrypted data and present an interactive approach in Chapter 5 and a new architecture in

Chapter 6, which expand upon in Chapter 7.

3.2 Related Work

In recent years a number of HE compilers have been proposed. Most of them are general-
purpose compilers that do not specifically target machine learning. ALCHEMY is a general-
purpose compiler by Crocket et al. [103]. It uses its own domain-specific input language,
which is implemented in Haskell. ALCHEMY uses the BGV crypto scheme. Cingulata, by

Carpov et al. [104] use BFV or TFHE internally. It compiles C++ code into boolean circuits.
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It also offers some optimizations that reduce the depth of the circuit. Encrypt-Everything-
Everywhere by Chielle et al. [105] also uses C++ as its input language. It supports the
BGV, BFV, and THFE schemes and supports multiple crypto libraries. Internally it uses a
propriety hardware design software to reduce the depth of the compiled circuits. Marble by
Viand et al. [106] is another compiler that uses C++. However, it does not compile C++
code directly but allows users to write their own C++ code with easy-to-use HE primitives.
It uses the BFV and BGV crypto schemes. By Archer et al. [107], Ramparts is built on
the PALISADE crypto library and uses the BFV scheme. It uses a symbolic simulator to
simplify the circuit. We refer the reader to Viand et al. [85] for a more in-depth comparison
of the compilers.

In theory, some of these compilers could directly translate the code used by machine
learning frameworks. However, these frameworks include thousands of lines of code that are
not strictly necessary for pure neural network inference. Additionally, by being aware of the
compiler’s domain, we can rule out irrelevant scenarios and make optimizations based on the
narrower range of target uses.

Multiple HE compilers geared towards neural network inference have been proposed to
harness the strength of domain-specific compilers. CHET [64] takes a so-called tensor circuit
that describes the computation. However, these tensor circuits, similar to HLO graphs, need
to be written by hand. There does not seem to be a way to generate them from TensorFlow or
PyTorch automatically. A strength of CHET is its support of different ciphertext layouts and

the ability to select the best layout for a given tensor circuit. According to the authors, this
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drastically reduces the inference time and even beats hand-crafted solutions done by experts.
nGraph-HE [69], similarly to Aluminium Shark, directly extracts the computational graph
from TensorFlow. In nGraph-HE, the graph is processed by the external nGraph graph
compiler. This compiler is an optimizing compiler for multiple different hardware backends.
nGraph-HE implements homomorphic encryption as a virtual hardware backend for which
the graph can be compiled. In their second release [108], the authors add secure multiparty
computation to evaluate activation functions incompatible with the underlying HE scheme
interactively. Their overall goal is similar to ours: making encrypted machine learning more
accessible by providing integration into tools that machine learning practitioners are already
familiar with. However, we offer a more extendable framework that allows us to integrate
new cryptosystems and libraries easily. SEALion [109] builds on top of TensorFlow. It uses
TensorFlow for its plaintext operations. The trained model can be executed over encrypted
data. However, due to their design, all layers and activation functions used in the model
need to be specifically implemented for encrypted execution. Our approach has the advantage
that we only need to implement a small set of basic operations used by TensorFlow to build
its models. This means that as long as future models are built on these basic operations,
Aluminium Shark can support them.

Other approaches to integrating privacy preservation into machine learning frameworks
are either not based on HE or do not use a compiler. CrypTFlow [32] and CyrpTen [33] both
integrate PPML into popular machine learning frameworks. CryptTFlow into TensorFlow

and CrypTen in PyTorch. However, they do not use homomorphic encryption for privacy
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preservation but rather guarantee the privacy of the data with secure multiparty compu-
tation. TenSEAL [110] is a tensor library for computation on homomorphically encrypted
tensors. It provides basic tensor operations and can convert tensors from popular frameworks
into encrypted tensors. However, a downside is that network structures, like layers and acti-
vation functions, need to be built using the basic tensor operations. There is no translation
from high-level objects, as, for example, defined Keras !, into the supported low-level tensor
operations. HElayers by Aharoni et al. [84], was released. Similar to CHET, HELayers also
performs layout optimization. It analyzes the neural network and splits the computation
into so-called tiles. Tiles represent ciphertexts and plaintexts. The layout optimizer aims
to find the best tiling given the model and the input data. It does so by simulating the
computation first and using heuristics to find the configuration with the lowest latency. For
transforming models from multiple frameworks, the authors rely on Open Neural Network
(ONNX) 2, an interchange format for neural networks. However, some of these compilers are
closed source, like HELayers or CHET, which prevents us from making modifications during

our experiments.

3.3 System Description

We now present Aluminium Shark, a privacy-preserving backend for TensorFlow’s XLA
(Accelerated Linear Algebra) compiler. This system provides a foundation for running deep

learning models that make predictions on data encrypted using homomorphic encryption

'https://www.tensorflow.org/api_docs/python/tf/keras
’https://onnx.ai/
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(HE), integrated into one of the most widely-used deep learning libraries. Users of our
system can run existing neural network models over data without ever exposing the data in
its non-encrypted form.

Running neural networks on plain data has become increasingly simple, thanks to frame-
works like TensorFlow [93] and PyTorch [94]. These frameworks allow the user to run
neural networks with little implementation work. The picture is quite different for PPML.
While there are some frameworks available, like CrypTFlow [32] and CyrpTen [33], which
are based on secure multiparty-computation and therefore require server-client interaction
during evaluation. TenSEAL [110] and nGraph-HE [69] are based on homomorphic encryp-
tion. However, these libraries are locked into a crypto library and scheme. Further, they
require much manual work to run neural networks on encrypted data. The latest version of
nGraph-HE [108] does not only support HE but also uses interactive phases based on secure
multiparty-computation to compute the non-linear activation functions.

Aluminium Shark is an an integrated backend that compiles or interprets the XLA [111]
intermediate representation (IR) for encrypted execution. XLA, which stands for accelerated
linear algebra, is an optimizing domain-specific compiler for machine learning models. XLA
is integrated into TensorFlow, one of the most popular deep-learning frameworks currently
in use. In September 2023 alone, TensorFlow was installed over 17 million times using the
PyPI package manager, according to PyPistats.org®. It is precisely this wide adoption and
the already integrated compiler infrastructure that led us to choose TensorFlow as the basis

of Aluminium Shark. Furthermore, PyTorch, another very popular deep learning framework,

3https://pypistats.org/packages/tensorflow
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can also be used as an XLA frontend, making Aluminium Shark useful for both TensorFlow
and PyTorch users.

Our goal with this platform is to make HE-based PPML more accessible to the machine
learning community, making the integration as simple as possible for the user. Aluminium
Shark supports the most common operations required for neural network inference. It per-
forms various optimizations to speed up computation and supports multiple data layouts.
Aluminium Shark is not locked into a single HE library or scheme. The design allows it
to add a new HE library easily. By default, Aluminium Shark uses Microsoft SEAL [112];

however, OpenFHE [56] is also supported.

3.3.1 Compiler

A compiler takes code written in one language and translates it into another language. Often
this is the translation from a high-level programming language into machine code, creating
an executable. For HE compilers, this definition is often relaxed to include interpreters. An
interpreter does not produce an executable but executes the input code directly. Interpreters
and compilers can be combined. For example, the input code can first be compiled into
a different representation which an interpreter then executes. HE compilers often act as
interpreters. Their input can be coded in a common programming language like C++,
their own language, or some domain-specific language. The compiler takes these inputs and
produces a circuit that can be run over encrypted data. Often the compiler also estimates
the crypto parameters and handles the key management so that the user does not need to

interact with the low-level crypto objects. Some compilers can also select the best data
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packing scheme that reduces the execution time and memory requirements.

Deep learning frameworks also use compilation and interpretation to execute neural net-
works. In particular, TensorFlow used to only work in compiled mode. Here the entire
computation graph needed to be defined before it could be executed. Recently, the so-called
eager mode has gained popularity. In eager mode, the graph does not need to be defined
before execution. Each node is executed as soon as it is called. Eager mode is popular
because it is intuitive and easy to debug. However, the compiled mode offers more oppor-
tunities for optimizations. Knowing the entire computational graph before execution allows
the compiler to determine which intermediate results are needed for future computation.
With this knowledge, the compiler can reorder or parallelize computation, reduce memory
usage by freeing unused intermediate results, and fuse operations together. Fusing opera-
tions is especially helpful on hardware accelerators. When multiple operations are fused, the
intermediate results are not written back into main memory but can remain in the acceler-
ator’s memory. It is then used directly as the input for the following operation. Aluminium
Shark uses the output of the TensorFlow internal XLA optimizer and interprets the HLOs

on encrypted data.

3.3.2 XLA

XLA compiles the TensorFlow graph into an intermediate representation, called the high-
level operations intermediate representation (HLO). XLA analyzes the computational HLO
graph and performs some analyses and optimizations, resulting in an optimized HLO graph.

These operations are target-independent. The optimized HLO is then passed to a target-
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XLA HLO

Target-independent
Optimizations & Analyses

Target-dependent
Optimizations & Analyses

Target-specific
Code Generation

! XLA Backend

Figure 3.2: The XLA architecture. Image credit https://www.tensorflow.org/xla/
architecture licensed under Creative Commons Attribution 4.0 License https://
creativecommons.org/licenses/by/4.0/

specific XLA backend. The backend can perform more optimizations that are specific to
the target platform. After that, the backend creates target-specific code to execute the
graph on the given platform. Tensorflow provides backends for X64, ARM64, and NVIDIA
GPUs. These backends are based on LLVM* [113], a compiler toolchain. An overview of the
architecture is shown in Figure

HLO defines over 100 operations®. However, only a small subset of these is required to
perform inference on the most common model architectures. We impose some restrictions
on the supported architectures and HLO operations based on the operations supported by
the HE schemes.

The goal of Aluminium Shark is to make running machine learning models on encrypted

data as easy as possible. The user should need as little knowledge about HE as possible.

‘https://11vm.org/
Shttps://www.tensorflow.org/xla/operation_semantics
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Aluminium Shark is an XLA backend that allows users to run TensorFlow on encrypted data
easily. Execution on encrypted data only requires a few lines of extra code and is entirely
done in Python, with no C++ necessary. We use SIMD to speed up the computation and
have designed a serializable representation for the encoding scheme that can easily be shared
between data and model owner.

We build our backend on top of XLA. The backend takes the target-independent opti-
mized HLO graph from TensorFlow as input and executes it on encrypted data. To make the
execution as simple as possible for the end user, Aluminium Shark is directly integrated into
TensorFlow and can be used directly from Python. One of the design goals of Aluminium
Shark is that the user should be able to use it with as little effort as possible.

As an example, Figure 3.3 shows a simple piece of Aluminium Shark code that loads and
runs a model on encrypted MNIST data. The user only has to take a few extra steps. First,
the user loads the HE backend and creates a context. By default, SEAL is loaded as the
HE backend. The context instantiates the scheme. The parameters that are passed rely on
the type of scheme used. The scheme in the example code is CKKS, and the passed values
are a coefficient modulus degree of 8192, a list of bit-lengths that will go into creating the
coefficient modulus, and an initial scaling factor of 40 bits. Second, just as when running
on plaintext, the user needs to create a batch of samples to feed to the model. To run
on encrypted data, the batch needs to be encrypted first. Here the user selects as many
instances as the HE scheme provides slots. By using the context object’s encrypt function

and specifying the batch layout, the context will lay out the data correctly and encrypt
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it. Third, to execute the model on encrypted data, the model needs to be wrapped in an
EncryptedExecution object. This object requires a function that creates (or loads) the model
and the context. Fourth, passing the encrypted data to the EncryptedExecution instance
triggers just-in-time compilation and execution of the model on the data. Finally, the result
of the execution is encrypted as well and can be decrypted using the context, provided the

context has access to the private key.

3.3.3 Connecting HE and Tensorflow

6. However, there is no

TensorFlow allows developers to extend it with custom operations
official API that provides the registration of custom datatypes, and while the development
of custom XLA backends is supported, it appears that their dynamic loading at runtime is
not supported at the moment. For these reasons, we integrate Aluminium Shark directly
into TensorFlow. This integration does come with a few downsides as well. We need to rely
on non-public APIs, which makes maintenance harder. Furthermore, the integration into
TensorFlow requires a custom-built TensorFlow rather than just a plugin.

Aluminium Shark consists of four main components—the Python layer, HE Backend,
XLA compiler and interpreter, and C API. The Python layer provides easy-to-use functions
to allow the user to encrypt data and run models on encrypted data. The compiler analyzes
and transforms the HLO graph so that it can be run on encrypted data. The interpreter

executes the operations in this transformed graph on encrypted data. The HE backend

provides an API that abstracts different HE libraries and provides a unified way of interacting

Shttps://www.tensorflow.org/guide/create_op


https://www.tensorflow.org/guide/create_op

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

61

import tensorflow as tf
import aluminum_shark as shark
from tensorflow.keras.datasets import mnist

# load model

def create_model():
model = tf.keras.models.load_model('mnist.h5")
return model

# load the MNIST data
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# First: load the HE backend and create the context

backend = shark.HEBackend()

context = backend.createContextCKKS(8192, [40, 20, 20, 40], 20)
context.create_keys()

# Second: create a batch and encrypt it

n_slots = context.n_slots

x_in = x_test[:n_slots]

ctxt = context.encrypt(x_in, layout='batch')

# Third: wrap the model for encrypted execution

enc_model = shark.EncryptedExecution(create_model, context=context)
# Fourth: comptile graph and run computation

result_ctxt = enc_model (ctxt)

# Finally: decrypt the result
decrypted = context.decrypt_double(result_ctxt)

Figure 3.3: Python example for simple encrypted execution

with them. To use a new HE library, the backend API needs to be implemented for that
library.

A big problem that needs solving is that we need to transport encrypted data from
Python into the TensorFlow runtime. The TensorFlow runtime is written in C+4 and

can be controlled from Python. On plain data, data is transported between Python and
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Figure 3.4: Interaction of the components of TensorFlow and Aluminium Shark

TensorFlow using Google’s protocol buffers. Since most ML practitioners use TensorFlow
from Python, we want to make Aluminium Shark usable from Python too. However, most
crypto libraries are written in C++4-. It would be a significant overhead to transfer ciphertext
from C++ to Python and from Python into the TensorFlow runtime.

We solve this problem by never explicitly passing the ciphertext to the Python layer. We
only ever pass a handle to a ciphertext from the C-API to Python. These handles can be
used to decrypt ciphertexts or to use them in computation.

We define a (virtual) platform and device to integrate with TensorFlow. A platform

and device are TensorFlow internal abstractions for execution environments such as CPU,
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GPU, and TPU. Our backend does not provide access to hardware like the other platforms
but rather to a different type of data. We register this virtual device with the TensorFlow
runtime, which provides us with an HLO graph when a function is placed on our virtual
device. Here we pass the graph to our compiler. The compiler can analyze and optimize the
HLO graph, after which it instantiates an executor. The executor visits all the nodes in the
HLO graph and performs the represented operations. Operations that have only plaintext
inputs are executed on plaintext. For operations on ciphertexts and plaintext, the plaintext
values are laid out and encoded right before the evaluation of the node.

Operations on ciphertexts are performed on HE-Tensors. HE-Tensors are objects that,
similar to plaintext tensors, have a shape that defines how the values are organized along
the dimensions. They consist of multiple ciphertexts or encoded plaintext objects holding
actual values. They additionally have a so-called layout. The layout describes how the slots
of one or more ciphertexts or plaintexts (all of this is true for both plain and ciphertext
but for ease of use, we only talk about the ciphertexts from here on out) map to a message
tensor. The difference between messages and ciphertexts is that ciphertexts are encoded into
polynomials, and a message is not. An HE-Tensor consists of multiple ciphtertexts, which
in turn consists of multiple values. We can create an HE-Tensor by encrypting a message
tensor. Before the values in the message tensor can be encrypted the need to be encoded.
Since multiple values can go into a single ciphertext we need a mapping between values and
ciphertexts. We also need the reverse mapping during decryption to map the multiple values

in a ciphertext to a message tensor. To understand how the mapping works it is important to
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understand how shapes are handled internally. Consider that we have a tensor 7" with shape
S and n dimensions. S; denotes the i-th element of the shape S. The number of elements
or the size of T can be calculated as []}_, S;. Every value in T' can be addressed by using a
multidimensional index I where I contains as many elements as .S and Vi(S; > [;);0 < i < n.
The values of T' can be saved in a continuous memory block, also called a flat block, since
it only has one dimension. Given a multidimensional index I, the value [ indicates which

element in the block of memory is referenced by I. I can be converted into [ using Eq. 3.3.

[ = IZ'X

- S; (3.3)

i=0 j=n—i
This allows access to tensors like NumPy arrays, e.g., x[1,2,3]|, where the list (1,2,3) is
translated into a single index into the storage memory block. Mapping a message onto one
or multiple ciphertexts can change the order of elements as they appear in the ciphertext.
For example, with batch encoding, the message x with the shape (10,10) would be encoded
into ten ciphertexts where the i-th ciphertext contains the values x; ; with 0 < j < 10. The
layout tells us how to create the mapping from a message to a ciphertext and vice versa.
The mapping from message to ciphertext tells us how we need to arrange the values prior
to encoding. It maps from N — N2. The value at index 4 in the flat storage block of the
message goes into the kth slot of the jth ciphertext according to the mapping. This mapping
is serializable as a list of triples, wherein for each triple, the first element is ¢, followed by &

and j. This way, the model owner can easily transmit encoding instructions to a client in a

machine and human-readable format, which is also easy to implement.
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An HE-Tensor holds multiple HE Backend objects that represent the actual crypto ob-
jects. Since these objects can be large, creating copies would quickly fill up memory. An HE
Tensor does not exclusively own the crypto object; it only holds references, making copies
cheap. Since we have access to the entire computational graph, we can determine when an
actual copy of the underlying crypto objects is needed.

The computation on encrypted data has two inputs: an HE-Tensor that holds the input
data and the computational graph consisting of HLOs. The executor visits every HLO in
the graph and performs the computation the HLO represents. It traverses the graph in such
a way that it only visits nodes where all inputs are known, meaning if node B relies on the

output of node A, the evaluator will visit A first.

3.3.4 Supported Operations

Out of the over 100 operations defined by the HLO specification, we only support a subset on
encrypted data. Aluminium Shark supports all the HLOs on plaintexts. On ciphertext, we
currently only support the operations required for neural network inference. These operations
are: reshape, copy, convolution, broadcast, convert, multiply, add, transpose, and dot. We
can group them into categories based on what they do and the restrictions they share. The
first group is the binary element-wise operations. These HLOs take exactly two inputs
and need to have the same shape; this way, the operation can be performed between each
element of both operands. For neural network inference, we need the add operation to add
the bias to the result of a layer. On encrypted data, we often use polynomials as activation

functions, and to evaluate these, we also need multiplication. Another group of operations
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concerns shape manipulation. These three operations are: reshape, transpose, and broadcast.
Reshape changes the shape vector. It requires that the number of elements in the tensor
stays the same. Reshaping is a very low-cost operation in most cases since it only requires
setting a new shape vector and does not require any actual data movement. This is not the
case when using batch layout, and the batch dimension of the shape changes. This requires
more expensive computation and is not supported at the moment. Transposition is similar
to reshaping, but it requires actually moving data. A transposition is a permutation of
the shape vector, and the underlying data needs to be moved to reflect the shape vector.
However, like reshaping, transposition is not supported when using the batch layout and
moving the batch axis of the data.

The last operation of this group is broadcasting. Broadcasting adds another dimension
to the shape vector and fills it by repeating data from other dimensions. For example, a
scalar can be broadcast to an n-dimensional vector by repeating it n times, and a vector can
be broadcast to a matrix by repeating it numerous times and stacking it horizontally. For
example, the broadcasting operation is used to expand the bias vector of a layer so that it
matches the shape of the resulting matrix, and an element-wise operation can be used. In
most cases, the input to broadcasting is a plaintext, and when using the batch layout and
when broadcasting is performed along the batch axis, the expansion of the plaintext prior
to the encoding can be omitted.

The two most time and memory-consuming operations are convolution and dot. The

dot HLO combines all contracting products between matrices and vectors, such as vector
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dot products, matrix dot products, and the more general tensor product. Similarly, the
convolution HLO is a general convolution and includes 1D, 2D, and higher dimensional
convolutions. For both HLOs, we adapt the TensorFlow implementation so that they can
handle HE-Tensors and different data layouts.

Supporting these HLOs allows us to run a variety of layers on encrypted data. We support
fully connected layers, convolutional layers, and simple recursive layers. Many neural network
architectures rely on only these layers. While Aluminium Shark supports recurrent layers, it
is worth noting that they are very impractical due to their quickly increasing multiplicative

depth, as highlighted by Podschwadt and Takabi [2, 3].

3.3.5 Supported Layouts

Aluminium Shark can use SIMD operations to make processing more efficient. The At the
moment, we support two ciphertext data layouts.

Simple Layout is the easiest and most straightforward layout. In the simple layout,
every ciphertext contains only one value. The number of ciphertexts is equal to the size of
the tensor. Reshaping is trivial. However, for schemes that support SIMD, encoding only
one value per ciphertext is highly inefficient. Mathematical operations in this layout are
almost identical to plaintext in terms of algorithms. However, schemes supporting SIMD
operations waste a significant amount of processing time. However, in these schemes, the
simple layout can be helpful for debugging.

Batch Layout speeds up computation by encrypting multiple values into a single cipher-

text. The batch layout packs the same feature from every instance into the same ciphertext.
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Reshaping is trivial as long as the batch dimension is not part of the reshaping. The number
of ciphertexts is equal to the number of features. If there are more instances in a batch then
there are slots in a ciphertext, we need to split the data along the batch axis. Mathematical
operations in this layout are almost identical to plaintext in terms of algorithms, as long as

they do not perform computation along the batch dimension.

3.3.6 Optimization

We make several optimizations to improve the execution time and memory requirements of
models run with Aluminium Shark. In XLA, all values are immutable. This has the benefit
that we can compute operations in any other, as long as all the inputs are available and
we adhere to the correct order of operations. We never need to worry that a required value
might have changed in the meantime. However, this is a significant downside on encrypted
data. Here, keeping intermediate results alive and treating them as immutable requires large
amounts of memory. Therefore, we introduce two techniques to combat this problem. 1.)
T o free up memory, we detect no longer-needed values that can be unloaded. Every HLO
maintains a list of HLOs that require it as input as well as a list of HLOs that are inputs for
it. After evaluating an HLO a we check all HLOs b that are inputs to a if they are used as
input to any HLOs that have not yet been evaluated. If all HLOs that require b have been
evaluated, we can unload b from memory; see Algorithm 2. 2.) Some operations we can
perform in-place instead of creating and returning an intermediate result. These operations
are element-wise tensor operations, like addition, multiplication, or negation. In the case of

operations with two operands, we then need to decide which operator we want to contract
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the operation into. If only one operand is a ciphertext, we choose that; otherwise, we choose
the first eligible one. An operator is eligible for in-place operation if all the HLOs, besides
the current one, that take it as input have been evaluated. In other words, we could unload it
after evaluating the current HLO. Both of these techniques reduce the memory requirements

of running a model on encrypted data.

Algorithm 2 Decide if an HLO can be unloaded from memory
Inputs: HLO a that was just evaluated Outpus: List d of HLOs that can be unloaded

1: a.inputs := all HLO that are an input to a

2: d:= [ ]

3: for each b € a.inputs do

4: b.users := all HLOs that b is an input to
5: for each c € b.users do

6: if ¢ has not been evaluated then
7: continue loop in line 3

8: end if

9: end for

10: append b to d

11: end for

12: return d

We implement an analyzer that detects polynomials in the computational graph to prop-
erly support polynomial activation functions. The subgraph representing the polynomial
can then be fused into a single operation and evaluated efficiently. Algorithm 3 shows an
algorithm that can be used to determine if an HLO is the input to a polynomial. The al-
gorithm explicitly does not detect monomials of degree two or lower. Once we identify a
polynomial subgraph, we can execute it more efficiently. Normally, a polynomial is repre-
sented as a sequence of exponentiation, addition, and multiplication. We compute exponents

5

by repeated multiplication, e.g., x° = rzxxx, which requires five multiplications. We can
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222z, We only need to com-

reduce the depth to two multiplications by computing 2° = x
pute 22 once and can reuse it. Furthermore, we can reuse intermediate results in other

terms of the polynomial, which would not be possible if we treated the terms as individual

exponentiations.

Algorithm 3 Determine if a subgraph is a polynomial
Inputs:  HLO that we want to determine if the represents the variable of a polynomial
Outpus: If x is the variable of a polynomial subgraph

x.users := HLOs that x is an input to
xr.nusers := number of users of z
if x.nusers <1 then
return False
end if
1spoly = False
for each h € x.users do
if h.op = multiplication then
if h.operand[0] = h.operand[1] or h.op = exponent then
wspoly = True
end if
else if h.op # addition or h.op # subtraction then
return False
end if
. end for
: return ispoly

[ S v S o S S S SRSt
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3.4 Evaluation and Experimental Results

To evaluate Aluminium Shark, we compare it to nGraph-HE. nGraph-HE is very similar to
Aluminium Shark as it is another system that integrates into TensorFlow and allows the user
run the model on encrypted data. We only use the homomorphic encryption component of

nGraph-HE and do not enable the multiparty computation activation functions.
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3.4.1 Data

As evaluation data we use the MNIST handwritten digit dataset [114] and the CIFAR-10
image dataset [115] and train multiple models on each dataset. On the MNIST dataset, we
train a model with the Cyrptonets architecture [27] consisting of a convolutional layer and a
fully connected layer before the output layer. It uses the square function as activation. The
exact model architecture can be seen in Table 3.1. We further train two models with two
convolutional layers on the MNIST data. The model we call ‘small’ uses 4 and 8 filters, and
our ‘large’ model uses 40 and 80 filters. Both models use a square activation layer after each
convolutional layer. For the full configuration see Table 3.2 for the small model and Table
3.3 for the large model. Finally, we train two models on the CIFAR-10 dataset. We also
use the square activation in these models since Aluminium Shark does not support other
polynomials at the moment. The first model, which we call CIFAR-10 model, consists of
convolution layers, each followed by an activation layer (see Table 3.4). To evaluate our
system on deeper models, we take the architecture of the CIFAR-10 model and add another
fully connected layer followed by an activation layer. We also add a Batch Normalization

layer before each activation. The detailed configuration is shown in Table 3.5.

3.4.2 Plaintext Performance

We train all models using TensorFlow 2.7 using the adam optimizer with standard parame-
ters. The MNIST models we train for 32 epochs. The Cyrptonets model performs slightly

worse on the plain test data (with 97.41% accuracy) than the small and large models (with
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98.19% and 98.39% accuracy). On CIFAR-10, we take a random 10% (6000 instances) of
the training data as validation data and train the models for 512 epochs. If the loss on the
validation data does not improve for 10 epochs, we reduce the learning rate by a factor of
0.1; if the loss does not improve for 25 epochs, we end training. Both models achieve simi-
lar accuracy on the plain test data. The Model with Batch normalization achieves 72.67%

accuracy compared to the model without, which achieves 71.26% accuracy.

3.4.3 Results on Encrypted Data

We run the experiments for both systems on a machine with two Intel(R) Xeon(R) Gold
6230R processors and 755GB of RAM. For nGraph-HE we use the latest version available
on GitHub . We use the same crypto parameters for each system and ensure the security
level is at least 128-bit. For all models except the CIFAR-10 with Batch Normalization,
we use a polynomial modulus degree of 8192 and a coefficient modulus with 180 bits. For
The CIFAR-10 model with Batch Normalization, we need larger parameters and choose a
polynomial modulus degree of 16384 and coefficient modulus with 396 bits. The accuracy of
all models on plaintext and encrypted data is nearly identical. There are slight variations in
accuracy due to the approximate nature of CKKS, but these are less than 0.1% percentage
points.

More interesting is the inference delay. We run all models five times on each system and
average the execution time. Both systems can evaluate the small Cryptonets model in under

10 seconds, 4.95 seconds on a nGraph-HE, and 6.6s on Aluminium Shark. A batch size of

Shttps://github.com/IntelAl/he-transformer commit:
3babe51ah9ee552685180c745b6d204d4bf2b64f
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4096 leads to an amortized time per instance of 0.0012s and 0.0016s, respectively. Aluminium
Shark is 25% slower than nGraph-HE. This slowdown remains constant for the more complex
MNIST small model with 20.16s and 26.83s. However, as models grow more complex with
the CIFAR-10 and MNIST large model, nGraph-HE becomes 31-32.5% faster. nGraph-HE
can evaluate the CIFAR-10 model in 168.9 seconds and the large MNIST model in 372.8
seconds, whereas Aluminium Shark needs 244.7 seconds and 552.7 seconds. With the larger
crypto parameters, on the CIFAR-10 with Batch Normalization model, this gap widens even
further to 58%, with 479.8 seconds for nGraph-HE and 1153.7 seconds for Aluminium Shark.
A full side-by-side comparison is shown in Table 3.6

This clearly shows that nGraph-HE is better optimized than Aluminium Shark, and
we have more work to do in that area. However, the main focus of our system’s design
is usability. Moreover, in this area, we have an advantage over nGraph-HE. One of the
main drawbacks of nGraph-HE is that it requires TensorFlow 1.15, which is at this point
almost three years old and lacks several features that have been added to TensorFlow in
the meantime. The most obvious is eager mode and support for cloud TPUs. Additionally,
models trained in newer versions cannot always be loaded in older TensorFlow versions,
requiring tedious manual conversion. Aluminium Shark is built on TensorFlow 2.7 with an
easy path to update to newer versions. Part of the problem for nGraph-HE is that concepts
in TensorFlow fundamentally changed between versions 1 and 2. The significant change was
the redesign of graph mode and the switch to eager mode as the default execution. However,

nGraph-HE relies heavily on graph mode, whereas Aluminium Shark relies on XLA, which is
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| Layer

| Configuration

2D Convolutional Layer 1

filters: 5, kernel size: 5 x 5, stride: 2 x 2, padding: valid
p

Activation

T

Fully Connected Layer units: 100
Activation x>
Fully Connected Layer units: 10

Table 3.2: Architecture of the MNIST small Model

[ Layer

[ Configuration

2D Convolutional Layer 1

Activation

filters: 4, kernel size: 5 x 5, stride: 1 x 1, padding: valid
p
x

2D Convolutional Layer 2

Activation

ﬁgters: 8, kernel size: 5 x 5, stride: 1 x 1, padding: valid
x

Fully Connected Layer

units: 10

not only integrated into TensorFlow but can also be used with other systems like PyTorch or

JAX.” Further, to work with nGraph-HE, the computational graph must be frozen manually,

and the output and input tensors need to be extracted manually. Aluminium Shark, on the

other hand, can work with any TensorFlow or Keras model. There is no need to extract or

freeze a graph manually. All the user needs to do is put the code that should be run inside

a python function.

"https://github.com/google/jax

Table 3.3: Architecture of the MNIST large Model

| Layer

| Configuration

2D Convolutional Layer 1

filters: 32, kernel size: 3 x 3, stride: 1 x 1, padding: valid
2

Activation

X

2D Convolutional Layer 2

filters: 64, kernel size: 3 x 3, stride: 1 x 1, padding: valid
p

Activation

T

Fully Connected Layer

units: 10



https://github.com/google/jax

75

Table 3.4: Architecture of the CIFAR-10 Model

| Layer

| Configuration |

2D Convolutional Layer 1

filters: 40, kernel size: 5 x 5, stride: 2 x 2, padding: valid
p

Activation

X

2D Convolutional Layer 2

filters: 80, kernel size: 3 x 3, stride: 2 x 2, padding: valid
p

Activation

Xz

Fully Connected Layer

units: 10

Table 3.5: Architecture of the CIFAR-10 Model with Batch Normalization

[ Layer

[ Configuration |

2D Convolutional Layer 1

Batch Normalization

filters: 40, kernel size: 5 x 5, stride: 2 x 2, padding: valid

Activation

2

2D Convolutional Layer 2

x
filters: 80, kernel size: 3 x 3, stride: 2 x 2, padding: valid

Batch Normalization

2

Activation x

Fully Connected Layer units: 100
Batch Normalization -
Activation 22

Fully Connected Layer units: 10

3.5 Limitations

Aluminium Shark comes with a few limitations. Some restrictions are rooted in the encryp-

tion schemes used, while others come from not yet having implemented desirable function-

alities. The most significant restriction is that we do not support arbitrary neural networks.

This includes networks that follow state-of-the-art practices on the plaintext. The following

Table 3.6: Latency and accuracy of all tested models

[ Model [ System | Latency [ Latency Increase [ Accuracy [ Accuracy plain |
Aluminium Shark 6.60s 97.41%

Cryptonet MNIST nGraph-HE 4950 24.93% 97 417, 97.41%
Aluminium Shark| 26.83s 98.19%

MNIST Small nGraph-HE 20 165 24.84% 98.19? 98.19%
Aluminium Shark| 552.70s 98.39%

MNIST Large nGraph-HE 379 Q1 32.55% 98.34? 98.34%
Aluminium Shark| 244.77s 71.19%

CIFAR-10 nGraph-HE 168.90s 3L.00%| 71997, 71.26%

CIFAR-10 with Aluminium Shark | 1153.68s 58.41% 72.67% 79.67%

Batch normalization | nGraph-HE 479.86s S 72.50% R
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subsections describe some of these limitations in more detail.

3.5.1 Activation Functions

We cannot run networks that use comparison operations, like <,>, or ==. This dis-

qualifies networks that use ReLU max(0,x) activations. We further cannot compute en-

crypted exponents, which eliminates popular activation functions like, tanh(x) = ?f::z,
sigmoid(x) = H%’ or softmax(x); = ﬁ for x € R and i = 1,...,n. These, how-
j=1

ever, are known issues in the PPML community and numerous solutions have been proposed.
Softmax, when it is the last operation in the network, is often omitted and left to the client.
Other activation functions are often replaced with polynomial approximations. At the mo-
ment the support for polynomial activations is limited to monomials of the form az™+0b. The
optimizer cannot detect polynomials yet and too aggressively replaces them with in-place
operations, breaking the output.

To address the issue of the ReLLU function, we will implement TFHE as a backend. With
TFHE, it is possible to implement efficient comparison, and therefore, the ReLLU function,

as shown by Lou et al. [58].

3.5.2 Optimization

As we can see from the experiments Aluminium Shark, there is still room for further op-
timizing secure inference. One of the issues is the naive application of ciphertext main-
tenance operations. At the moment, Aluminium Shark uses relinearization and rescaling

rather naively after every ciphertext multiplication. nGraph-HE uses these operations more
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sparsely, thereby reducing execution time. Right now, we also do not use any depth-reducing
optimizations. Improvements like constant folding can further bring down the runtime.
One of the most considerable improvements in inference latency has been the introduction
of sophisticated ciphertext packing strategies like the ones presented by Brutzkus et al. [63]
and Jiang et al. [61]. These packing strategies reduce the number of ciphertexts, and
thereby ciphertext operations, drastically speeding up the inference process. One of the next

milestones in our development is the support of these packing strategies.

3.6 Summary and Discussion

In this chapter, we presented Aluminium Shark, an XLA backend that allows users to run
machine learning models on encrypted data easily with TensorFlow. Execution on encrypted
data only requires a few lines of extra code and is entirely done in Python, with no C++ nec-
essary. We use SIMD to speed up the computation and have designed a serial representation
for the encoding scheme that can easily be shared between data and model owner. Cur-
rently, Aluminium Shark supports batch encoding, but we aim to implement more efficient
encodings in the future. With more encodings, we also plan to introduce an optimizer that
finds the scheme and compilation time. We further aim to reduce the HE knowledge required
by providing support for automatically analyzing the computational graph and generating

suitable crypto parameters, which is a task that currently needs to be performed manually.
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CHAPTER 4

MEMORY EFFICIENT PRIVACY-PRESERVING MACHINE LEARNING
BASED ON HOMOMORPHIC ENCRYPTION

In Section 3.3.6, we presented a strategy for unloading data from graph nodes we no longer
need. This memory management happens after the computation of one layer is complete and
before the computation of the next layer starts. We now extend the memory management
to take place during the computation of a layer, reducing the resource requirements of the
layer itself. This is not possible with the approach in Section 3.3.6. It only “cleans up“ once
a layer has been entirely computed.

This chapter is currently under review at 22nd International Conference on Applied
Cryptography and Network Security, 5-8 March, 2024. Further discussion that is not part of

the submission starts in Section 4.6.

4.1 Introduction

Machine learning (ML) and neural networks specifically are widely deployed in many different
scenarios, from voice assistants like Siri[116], Alexa[117], and Google Assistant[118] over
writing assistants like Grammarly[119], and chatbots like Bard[120] and ChatGPT[121], to
medical diagnostic systems [122, 123]. Many of these systems deal with privacy-sensitive
data, some of which enjoy special legal protections, e.g., medical data. These systems send
the data to a server, which runs it through its model and returns the result to the client.
Since the server needs access to the unencrypted client data to perform the computation, the

client’s privacy is at risk. The server might use the data to train further ML models, which
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could expose the data to privacy attacks, or the server itself could be breached and the data
stolen. Researchers have recently proposed solutions to protect user data privacy in ML
applications using different methods. Differential Privacy [7] solutions preserve the privacy
of the training data in the trained model [11, 12]. To protect the data during inference,
solutions commonly use Secure Multiparty Computation (SMC)[16, 17, 18], Homomorphic
Encryption [124, 95, 28] or a mixture between the two [108]. SMC allows multiple parties
to jointly evaluate a function without revealing their private inputs; however, it requires
all parties to stay online during the computation. HE, on the other hand, can be used
entirely offline. HE is a type of encryption that allows computation on encrypted data
without exposing any inputs, intermediate, or final results. Neural networks are a popular
choice for privacy-preserving ML models since most operations, like fully connected layers or
convolutions, can be performed easily using HE. Additionally, neural networks perform very
well on a wide range of tasks. However, HE introduces significant time and memory overhead.
Some HE schemes support single instruction multiple data (SIMD) processing, which can
offset some time and memory overhead. HE ciphertexts can be thought of as fixed-sized
encrypted vectors containing thousands of elements, called slots. Two approaches for filling
the slots have been used for ML. 1.) Pack all the features of an instance into as few ciphertexts
as possible and perform convolutions and dot products with the help of rotations [63, 28, 84],
called inter-axis packing. This has the advantage that the number of ciphertexts and total
operations is relatively small, making it fast for a small number of instances. However, this

approach often requires large rotation keys, and the rotations require additional time. 2.)
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Pack multiple instances’ features into a single ciphertext[27, 125, 3|, called batch-packing.
This produces as many ciphertexts as the data has features. Batch-packing allows us to
simultaneously compute results for many instances, leading to low amortized per-instance
cost and high throughput. However, it suffers from high latency and memory requirements.
Batch-packing is beneficial when many instances need to be processed, and low latency is
not essential. For example, in a medical image diagnostic system, where images are collected
throughout the day, and an ML system analyzes them overnight. This work focuses on
convolutional neural networks (CNN), specifically. We address the memory requirements for
convolutional layers by trading disc space for main memory. Disc space is typically orders
of magnitude cheaper. However, it is also slower. We dynamically load ciphertexts and
plaintexts and clear them from memory when no longer needed. We present and compare
different strategies and their impact on memory and runtime. Prior work focuses primarily
on latency reduction; reduction in memory is often a side effect of inter-axis packing. To the
best of our knowledge, this is the first study that performs an in-depth analysis of caching
strategies and memory reduction for batch-packed inference. Brutzkus et al. [63] or Lee et al.
[28] propose input packing techniques, which reduce the number of ciphertexts and thereby
memory requirements. However, these approaches require additional operations like masking
and rotation, which lower the overall throughput. Boemer et al. [108] present a complex
encoding, allowing them to fit more values into a ciphertext. This can reduce the number of
ciphertexts and plaintext when using inter-axis packing. However, for batch-packing, it only

affects the batch size. Approaches that use client interaction, such as Boemer et al. [108],
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Podschwadt et al. [2], and Cai et al.[126] can often use smaller crypto parameters, since the
client interaction resets the noise level, allowing for further computation. However, these
approaches require the client to be online during the computation. We make the following

main contributions:

e We propose a schedule representation for convolutions that allows us to reorder its

fundamental operations to achieve increased caching performance.

e We propose a memory estimation algorithm for schedules.

e We propose an algorithm for executing a schedule using multiple threads.

e We propose multiple strategies for creating schedules, which we analyze and experi-

mentally evaluate with regard to their time and memory requirements.

4.2 Related Work

Akavia et al.[127] focus on reducing the storage footprint of HE ciphertext rather than
the in-memory size during computation. They design a protocol that allows multiple data
producers to upload and store data in the cloud with no overhead compared to storing AES
(Advanced Encryption Standard) encrypted data. Storing AES encrypted on an untrusted
server and using secret sharing, a computing server can use the data for HE computation
with the help of an auxiliary server. In contrast, our proposed solution reduces the memory
footprint at computation rather than the encrypted storage size.

Jiang et al. [61], Brutzukus et al. [63], Lee et al. [28], Dathathri et al. [64], and Lee et

al. [95] are conceptually similar works, who all reduce the number of ciphertexts required
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by using inter-axis packing. While all these approaches reduce the inference latency, they
require expensive rotations, lowering the throughput compared to batch-packed solutions.
Additionally, they often rely on designing the packing strategy for the specific network
architecture.

Other studies rely on interactive solutions for privacy preservation. Hao et al. [128] and
Huang et al. [129] both propose efficient matrix multiplications in a two-party setting. Both
studies propose rotation-free matrix multiplication over polynomial encoded ciphertexts.
However, both require interactive phases where one party must extract specific polynomial
coefficients and mask the result. Zheng et al. [130] propose a method for fast private inference
using transformers and SMC. The authors use a similar protocol to the one proposed by
Juvekar et al. [131], where the server performs much of the expensive matrix multiplication
computation in an offline phase. Zheng et al. [130] reduce the number of ciphertext rotations
required by packing the same feature of different tokens into the same ciphertext, similar to
the batch-packing we use in our approach. However, we compute the intermediate terms in
a less memory-consuming way.

Prior work on batch-packed PPML using HE [27, 66, 26, 69] does not explicitly state how
they perform matrix multiplication or convolutions. They focus on other improvements like
better polynomial approximation [26, 66], or parameter fusion and special value bypass [69].
We believe most of these solutions could decrease memory requirements using our proposed
algorithm. Another work that addresses memory limitations is Badawi et al. [67], which

implements a CNN over HE data using GPU acceleration for the basic ciphertext operation.
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To fit the input to the convolution into GPU memory, they split it into multiple blocks of
the same size as the filter. The filter and as many of these blocks as possible are loaded into
GPU memory, where the convolution is performed. Compared to our proposed approach,
this process only reduces the memory requirement on the GPU. The input and weights still
need to be present in the main memory. Shivdikar et al. [132] also present techniques aimed
at GPUs. They aim to reduce the repeated memory reads inside the GPU when performing
polynomial multiplication for HE primitives. While this speeds up the low-level operations
underpinning most HE schemes, unlike our work, it does not address the issue of requiring

a large number of plaintexts or ciphertexts in memory.

4.3 Our Proposed Approach

To address the issues of memory consumption and unused resources, we model the convolu-
tional layer as a schedule, which determines the order of operations. We present and compare
multiple schedule construction strategies based on the computation and available resources.
We further present an algorithm to execute a schedule. From now on, we assume that all

tensors are flattened.

4.3.1 Batch Packing

We consider ng to be the number of slots in a ciphertext. For simplicity, we assume that the
batch size is equal to ng. Otherwise, we would need to split the data into multiple batches or
pad it. We partially flatten all dimensions in X except the batch dimension to encrypt the

inputs. We take each column from the resulting two-dimensional matrix and encrypt that



84

into a ciphertext, leaving us with a vector of ciphertexts. We need to encode the weights as
well. Each weight value in W is encoded into its own plaintext. Before encoding, we turn
each value into a vector by repeating it ng times. This produces |X|/n, ciphertexts and |W|
plaintexts. If the model needs to be encrypted as well, we can encrypt the encoded plaintext
weights. Similarly, the encoding of W contains |W|/n, ciphertexts. We can think of the
encoding as setting the batch axis to one. The issue that arises is that HE ciphertexts and
plaintexts require a substantial amount of memory. A single ciphertext can be between a few
hundred kilobytes to multiple megabytes, depending on the crypto parameters; a plaintext
is half the size of a ciphertext. We refer to the encoded and/or encrypted inputs, weights,

and outputs as X', W/, and Y, respectively, and values taken from them as x’, w’ and y’.

4.3.2 Modeling the Problem as a Schedule

We can write each element y as a sum of products of x and w. We denote a product of two
elements of x and w as the triple ¢ = (x,w,y), where y is the result that holds the sum
that the product xw is a part of. To refer to an element in a triple ¢, we use the following
notation t';4i € {z, w,y}.

Definition: Schedule Let f be a convolutional layer; we say t; € f iff the sum to

compute t! contains the product ¢7

. A schedule is an ordered list of triples ¢; that contains
all t; € f exactly once.
In other words, we represent f as a sequence of all its element-wise products. To compute

the function f, we need to compute all products given in the schedule. Additionally, we must

sum all products with the same value for y. We call the number of triples in a schedule the
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Algorithm 4 Generating a schedule from a 2D Convolution
Inputs: Output shape hout, Wout, Cout, Input shape hi,, wincin, Filter size wy, w,,
Output: The schedule S
: S =]
for each i € [1,. .., howtWoutCout) dO
convert ¢ to multi-dimensional index (m,n, t¥)
for each j € [1,..., wywy,cin] do
convert j to multi-dimensional index (p, ¢, )
t*:=m—p+ ((n — Quwin + (rhinwy)
t" = p+ (qup) + (rw,wp) + (rwywyen))
append (t*,t",tY) to S
9: end for
10: end for

length or steps of a schedule, denoted by |S|. Algorithm 4 shows how to generate a schedule
for two-dimensional convolutions. Higher dimensional convolutions work analogously by
expanding the iteration bounds in lines 2 and 4, the decomposition of ¢ and j in lines 3 and
5, and the formula for t* and t* by the extra dimensions. In addition to the computation
steps, we also insert load instructions into the schedule. Load instructions specify which
elements to load into memory, discard from memory, or write back to disk in case they were

updated.

4.3.3 Ezxecuting a Schedule

To execute a schedule, we evaluate all triples in order. To evaluate a triple ¢ we multiply
the input X;= with the weight W;w and add the result to Y; Yi = Y + XpaWiw. We
assume that all y are 0 at the beginning. We parallelize the execution of the schedule across
multiple threads. FEach repeatedly evaluates the first unevaluated triple. This requires

synchronization at two points. 1.) We must ensure that every triple is evaluated exactly
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once. 2.) Unlike in Algorithm 1, we cannot guarantee that multiple threads do not write to
the same output; therefore, we need locking to prevent race conditions. We use the following
algorithm to ensure all values are correctly summed into the output value. We show our
proposed algorithm in Algorithm 5. The parts that must be protected from concurrent access

are marked as Critical Section.

Algorithm 5 Executing a schedule
Inputs: inputs X, weights W, output Y, number of threads n;, schedule §
Outputs: Y containing the result of the convolution

1: ensure Y; = &; Vi € [1, Y]]

21, :=1
3: while i <n; and i < |S| do
4: Start Thread i and execute:
5: while i, <|S| do .
6: ji=1i, } grltl_cal
! i ection
7: lg = 1s+ 1
8: perform load instructions
9: t:= Sj
10: ri= X Wp > HE multiplication
11: if Yo = @ then
12: Yo :=r .
B el b g
14: v = Yo
15: Yio =@
16: ri=v4r > HE addition
17: goto line 11
18: end if
19: end while

20: End Thread
21: end while

We indicate where in the algorithm process load instructions in line 8. A load instruction
has three attributes: 1.) the step that is executed on, 2.) the type of instruction, load

or unload, and 3.) the object to load. Every iteration, each thread checks if there is



87

an unprocessed load instruction with a step equal to or lower than the step the thread
is executing. If there is, the thread marks it complete and executes it. Again, we must
ensure that only one thread updates the load instructions at any time. Each thread tries to
execute any outstanding load instructions before moving on. Objects loaded through load
instructions stay cached until explicitly unloaded through another load instruction or until
the computation is complete. If a thread requires values not loaded by any load instructions,

it loads them on demand and does not cache them.

4.3.4 Cost of a Schedule

We can use the schedule to estimate the maximum memory required on encrypted data.
Maximum memory is important since we cannot execute the schedule if it requires more
than the available memory. Most of the memory required during execution stems from the
ciphertexts and plaintexts; therefore, we ignore additional objects like keys, the schedule,
and other data in our estimation. To estimate the cost, we look at the load instructions,
the number of threads, and the objects loaded on demand. We first examine the simpler
case with only one thread and extend it to multiple threads later. Let s, be the size of a
single X, s,, the size of a single w’, and s, the size of a single y’. To estimate the memory

requirement of a schedule, we need to perform the following steps:

1. Split the schedule into parts at the load instructions so that each part begins with load
instructions and contains no other load instructions except those at the beginning. A

part must not only contain load instructions.
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2. For each part, count how many x’, w’, and y’ are loaded and unloaded.

3. Weight the count of X', w’, and y’ by s,, s, and s, respectively.

4. For every step, weigh the on-demand loaded objects and add them.

5. For each part, add the weighted counts from step 2 and the maximum from step 4.

The maximum of all the parts is our estimate for the schedule.

We now extend the estimation to multiple threads. The estimate for multiple threads
is less precise than that for a single thread since we can only make assumptions about how
multiple threads will interact. We make the following simplifying assumptions: 1.) threads
execute schedule steps at the same speed, and 2.) a continuous block of load instructions
is executed simultaneously, no matter how many instructions are in that block. We start
as we did in the single thread case above. Next, we look at the number of steps in each
part. If the part has fewer steps than the number of threads n;, we combine it with the
next part to form a new part by adding the cost of the load instructions. We repeat this
until the new combined part has more steps than threads. We repeat this for all parts of the
schedule. To estimate the cost of the on-demand loaded objects, we assume that n, schedule
steps are executed at the same time. In the final step, we handle the cost of the schedule
steps. We compute the on-demand cost for all steps in the schedule parts created in the
previous step. The computation happens the same way as described in the single-threaded

case above. However, now we not only add the step with the highest cost; we add the n;,
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Figure 4.1: Breaking an example base schedule down into multiple sub-schedules. This
schedule is executed row-wise.

steps with the highest costs. This method provides a reasonable estimate for the memory

cost of a schedule with multi-threaded execution.

4.4 Reduced memory schedules

In this section, we propose different ways to construct schedules. These schedules provide
trade-offs between runtime and memory. The fastest we can execute a schedule is by loading
all data at the beginning of the computation and then using the lock-free algorithm 1.
However, this requires a large amount of memory. We can reduce the memory footprint by
loading everything on demand. However, this increases runtime significantly.

We can transform the computation performed by Algorithm 1 into a schedule. Again,
consider n; to be the number of threads, n, the number of outputs of the computation, and
ny the number of products that sum up into a single output. In algorithm 1, every thread
executes a subschedule where all t¥ mod ¢ = 0;t € S, where 7 is the thread id. We can

obtain the combined schedule by taking all subschedules and interleaving them elementwise.
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Figure 4.2: Example of how to turn a lock-free execution with three threads into a schedule

See Fig. 4.2 for an example with three threads.

The lock-free algorithm computes and needs to keep in memory n; outputs simultane-
ously. The base schedule, on the other hand, fully computes a single output before moving
on to the next one. This allows us to keep fewer outputs in memory. This is the lowest
amount of memory we can achieve. However, we need to load objects from disk frequently
and are not using any caching. Caching aims to reduce the number of loading operations
as much as possible. We can exploit the regular structure of convolutions to find the best
values for caching. We can split a schedule into a regular, repeating pattern defined by the
size and number of filters and input channels. In two-dimensional convolutions, as used in
neural networks, we have a four-dimensional filter volume, W, where the dimensions are in
order: i, j the position in the filter, ¢;, the input channel, and ¢, the output channel. We
move W across the entire input, creating c.,; outputs at every position. Note how far W
we move the filter is given by the stride, which we assume to be one here. However, our
method remains applicable to other stride values. Each output, at a given position of W,
uses the same values from X. We call each unique position of the filter on the inputs the

filter position or window.
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We need to keep three kinds of objects in memory during the computation. Inputs x,
weights w and, outputs y. We design multiple caching strategies based on the memory
available. We will not go over the trivial case that we can fit all values of x and w into

memory.

4.4.1 Caching by Object Type

The simplest caching strategy, is to load either all values from X’ or W’ at the beginning of
the computation and load the other values on demand as needed. This strategy creates very
simple schedules; however, it underutilizes caching. If we preload all x’, we load too many
values much earlier than needed in the computation, and if we preload all y’ we need to load

x' values frequently.

4.4.2 Full Window Caching

We can improve the caching by object type strategy by utilizing the underlying structure
of the convolution operation. Each position of W requires only |W’|/cow X'. If we can fit
these objects and all y’ into memory, we only load W’ once. Since W’ usually moves over
the inputs with some overlap, i.e., the stride is smaller than the width and height of the
filter, we can reuse many x’ and only need to unload and reload a small amount. We start
at the top left and move W from left to right. Once we reach the end on the right, we move
down and start over on the right, repeating until we reach the bottom right. If the filter
size or stride is not symmetrical, it is beneficial to change the behavior to first move in the

direction that has the most overlap, reducing the number of values that need to be loaded
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Figure 4.3: Load instructions that are necessary when moving from the first window to the
second using window caching with a 5x5x2 input and a 3x3x2x2 kernel.
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Figure 4.4: Weights W; only in Sub-Schedules that correspond to individual filter positions
and how they can be reordered to increase caching potential.

and increasing the number of values that can be reused.

4.4.3 Partial Window Caching

If we can fit |W'|/cout X' but not all of W’ into memory, we can modify the full window
caching strategy to reduce the number of loads. Let n be the number of w’ that we can fit
into memory in addition to all the x” in the window. We then split the schedule into sub-
schedules for every position of W. To reorder the sub-schedules to increase caching potential
we reverse every second sub-schedule; see Fig. 4.4. This reordering makes it so that ¢ values
to the left and right of the sub-schedule boundary are the same for all ¢ € [1,|W|]. This
allows us to cache n values before the sub-schedule boundary and reuse them in the next

one.
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Figure 4.5: Transforming the base schedule into a column-wise caching schedule

4.4.4 Column-wise caching

If we cannot fit |W|/coue X’ or W' into memory, we cannot use any of the caching methods
described above. However, we can construct a different schedule that allows us to cache x’
values. For this schedule, we need to be able to fit ¢, y' into memory. By taking each
window sub schedule and reordering it column-major instead of row-major, see Fig. 4.5, we
can reuse the same x’ multiple times before we unload it. This ordering requires us to keep
Cout Y in memory. This ordering is most beneficial when the number of input channels is
much larger than the output channels or the filter is relatively large. Both scenarios lead
to a large number of X' in a window. Depending on how much memory is available, we
can cache multiple columns. Additionally, we can combine this with the idea from partial
window caching of reordering the computation to generate adjacent window subschedules

that end and start with the same X values.

4.5 Evaluation and Experimental Results

4.5.1 Data

We evaluate our proposed solution on the layers of a convolutional neural network (CNN)

trained on the CIFAR-10 [115] dataset. Table 4.1 shows the model’s architecture. We have
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Table 4.1: Architecture of the evaluation model with the layer parameters showing the filter
size (FS), stride (S), number of filters (NF), and the activation or pooling function used on
plain text (PT) and on encrypted data (HE).

Layer Input Shape|Output Shape|[Parameters

Conv 2D (1)| 32x32x3 30x30x32 |FS: 3x3, S: 1x1, NF: 32, PT: ReLU, HE: 22
Pooling 30x30x32 15x15x32  |FS: 2x2, S: 2x2, PT: Max, HE: Average
Conv 2D (2)| 15x15x32 13x13x64 |FS: 3x3, S: 1x1, NF: 64, PT: ReLU, HE: 22
Pooling 13x13x64 6x6x64 FS: 2x2, S: 2x2, PT: Max, HE: Average
Conv 2D (3)| 6x6x64 4x4x64 FS: 3x3, S: 1x1, NF: 64, PT: ReLU, HE: 22
Flatten Ax4x64 1024 -

Dense 1024 64 Units: 64, PT: ReLU, HE: 2

Dense 64 10 Units: 10

two different models. One for plain data and one adapted to be HE-friendly, meaning it
only contains operations that are easy to compute on encrypted data. Both models achieve
very similar accuracies on the test data, 70.9% for the original model and 69.7% for the HE-
friendly model. The main interest of this chapter is not to propose new models or techniques
that increase the accuracy of models on encrypted data but to analyze and reduce the
memory consumption of these models.

We define three sets of crypto parameters: small, medium, and large. The small param-
eters have a ring dimension of 2'* and a multiplicative depth of 2. The medium parameters
have a ring dimension of 2'* and a multiplicative depth of 8. And the large parameters have
a ring dimension of 2! and a multiplicative depth of 19. This results in a ciphertext size of
0.75 MB, 2.225 MB, and 10 MB for the small, medium, and large parameters respectively.
A plaintext is always half the size of a ciphertext. We have two machines. One with 16
cores, 20 GB of memory, and 32 GB of operating system (OS) swap space, and another
with 104 cores and 768 GB of memory. Both machines have two TB solid-state drives. We

define different schedules, then estimate the required memory using the technique described
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in section 4.3.4, and finally execute the schedules to obtain real measurements.

We define several schedules that we estimate and measure the memory requirements for.
The names of the schedules are given italicized. We use the Lock-free algorithm (Algorithm
1) as our baselines once we load all values on demand (Lock-free on demand) and once we
preload all values before execution Lock-free Preload. We compare these baselines to their
direct equivalent using our proposed algorithm (Algorithm 5), where we preload all values
(Preload everything). Next, we investigate the behavior when we either preload all of X,
Preload X', or all W' values Preload W', x' on demand. Finally, we look closer at the
window, partial window, and column-wise caching. For (partial) window caching, we always

load all of x" in the window and investigate the following strategies for loading w’'s:

e load all of W', Load X' window W'

e load w's on demand, Load X' window, w' on demand

e load half of W’ values, Load X' window, W' /2

e load a quarter of W', Load X' window, W' /4

We only cache one x’' X, Column Major for column-wise caching. For all schedules, we

cache the y's from their first appearance in the schedule to their last.

4.5.2 Memory Estimate

To demonstrate that our proposed solution is scalable from large servers to consumer hard-

ware, we run the selected schedules on two different machines. A desktop PC with a 16-core
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AMD Ryzen CPU, 20 GB of RAM, 32 GB of swap space, and a large server with two Intel
54-core CPUs and 756 GB of RAM. Both machines have a 2 TB solid-state drive and run
Ubuntu Linux 20.04 LTS. In the tables and figures throughout this chapter, we refer to the
server and PC by their number of threads: 104 and 16, respectively.

We use the algorithm described in Section 4.3.4 to estimate the cost of all convolutional
layers for small, medium, and large parameters and 16 and 104 threads. We need to estimate
the memory requirements based on the number of threads that are used during execution
since that can influence the number of objects in memory. The estimate column in Table 4.8,
4.9, and 4.10 shows the estimates for each layer and schedule for large parameters (for the
small parameters see the appendix). We can see that, especially for the large parameters,
the estimate frequently goes beyond the 20 GB of the PC. The estimate also often exceeds
the 52 GB of memory and swap space combined. The estimate never exceeds the 756 GB of
the server. For the estimate and following experiments, we assume the input X’ is encrypted
while the model W' is in plain.

Unsurprisingly, the schedules that preload all objects, Preload everything and Lock-free
Preload, have the highest memory estimate. On the other hand, schedules that load most
objects on demand and cache very little, Lock-Free on demand and Column Major have
the lowest memory estimate. For the Conv 2d (1) layer, the estimates range from 380 MB
to about 35 GB. Schedules that do not load all of X’ are significantly below that value,
estimated at most 6193 MB. For the second layer, Conv 2D (2), both the number of x’

and w’ is significantly larger. This, however, does not significantly change the estimate for
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the Lock-Free on demand schedule. This observation also holds for the next layer, Conv
2D (3). The estimation aligns with the insights of a theoretical analysis of the execution.
As discussed earlier, during runtime, this schedule has at most n of each x/, w', and y’
in memory, where n is the number of threads. Therefore, the memory consumption of the
schedule is only influenced by the number of threads and independent of the layer. For the
Conv 2D (2) layer, we also encounter values outside the PC’s available memory, ranging
from 400 MB to 164 GB. We see a similar picture for the last convolutional layer, Conv 2d

3). Large estimates of up to 208 GB, especially for layers that load and cache W’ values.
(3) g p , especially y

4.5.3 Measurements

After obtaining the estimates, we execute the schedules on both the server and the PC. We
measure the time it takes to execute the schedules, and the memory the process requires.
For the memory measurement, it is important to note that it does include swap memory and
only measures actual main memory usage. The PC has 20 GB of memory, about 1.5 GB
of which the OS uses, leaving about 18.5 GB for the execution of the schedule. Therefore,
measurements in the range of 18.5 GB on the PC will likely have used the OS’s swapping
mechanism, especially if the estimated value is much larger. As mentioned in the previous
section, for some schedules, the memory available is insufficient, even with swapping. In
these cases, the execution is terminated by the OS, yielding no result. We deliberately leave
the OS swapping mechanism on to test if our implementation is faster than simply relying
on the in-built OS methods. We further assign each schedule a score combining time and

memory requirements. To calculate the score, we compute the geometric mean of the time
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Figure 4.6: Time and Memory requirements schedules, run with large parameters, on the 104
threads servers and the 16 threads PC. The memory graphs also include the PC’s memory
limit of 18000 MB.

t and m as v/tm. The lower the score, the better. However, the schedule with the lowest
score is automatically the best schedule on a given machine. The best schedule is typically
the schedule that executes the fastest on the machine. It is possible for a slower schedule

to achieve a lower score due to it requiring less memory. This, however, indicates that we
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Figure 4.7: Comparison of the fastest schedule for each layer with 16 and 104 threads. For
each layer, the Figure shows the increase factor in runtime from 104 to 16 threads and the
increase factor in memory from 16 to 104 threads for the fastest schedule

Table 4.2: Measurements for Time in seconds, Memory (Mem) in MB, for all Schedules
on Conv 2d (1) with small parameters on the PC wiht 16 and the server with 104 Threads.
Additionally, the table shows the memory Estimate in MB and Score.

Schedule Threads | Time | Memory (MB) | Estimate | Score
16 136 3084 20645] 648

Lock-free Preload 104 42 3319 2711 372
Lock-free on demand {84 %‘f égg 18% 383
Preload everything %84 1% 3%% 583% gg?
16 184 2993 2316 0691

Preload X 104 52 2872 2409| 385
Preload W', 2’ on demand i84 fgg 185% Zgg %gil),
: 16 143 771 347 332

Load X" window W’ 104 46 1186 408 234
Load X’ window w" on demand %84 1%% ?f? 153 fgg
: 10 201 813 1801 400

Load X" window, W'/2 104 57 1197 246| 261
Load X' window, W' /4 o 7 0% 203 268
: 16 233 099 31 373

Colum Major 104 131 891 190] 342

could perform the computation on a machine with less memory.
Tables 4.8, 4.9, and 4.10 list the time and memory requirements and the score, using the
large crypto parameters (for medium and small, see the Appendix). The first important ob-

servation is the accuracy of the estimation algorithm. We expect the memory measurements
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Table 4.3: Measurements for Time in seconds, Memory (Mem) in MB, for all Schedules
on Conv 2d (2) with small parameters on the PC wiht 16 and the server with 104 Threads.
Additionally, the table shows the memory Estimate in MB and Score.

Schedule Threads | Time | Memory (MB) [ Estimate[Score
16 o83 15327 123461 2990

Lock-free Preload 104 161 15570  12412] 1583
Lock-free on demand %84 1?2)2 55363 13(5) gg%
: 16 081 15165 123351 2968

Preload everything 104 187 15446 | 12335 1700
16 27 9930 o417 2076

Preload X’ 104 205 6187 5450 1127
Preload W’, 2’ on demand %84 122% 18(%2 9882 3?%%
: 16 609 10180 714371 2490

Load X’ window W’ 104 194 10427 7143| 1423
Load X’ window w’ on demand %84 561)8 1?%1 éég ig?
: 16 3106 10281 3681 2896

Load X" window, W'/2 %84 %Sg 15;% Ql),ggé %258
Load X’ window, W'/4 %84 ggg ;1),658 19%&53 8(1);
Colum Major 104 492 1434 172] 840

Table 4.4: Measurements for Time in seconds, Memory (Mem) in MB, for all Schedules
on Conv 2d (3) with small parameters on the PC wiht 16 and the server with 104 Threads.
Additionally, the table shows the memory Estimate in MB and Score.

Schedule Threads| Time [ Memory (MB) | Estimate [ Score

16 117 18700 15591 1477

Lock-free Preload 104 31 20728 15657 800

Lock-free on demand %84 ?6% é?i 18% 528

: 16 132 19362 155811 1601

Preload everything %84 13? 2%%8 1?%& gzg

Preload X’ 104 39 2221 1772] 292

Preload W', 2" on demand %84 Zgg %gg% %38% féié

: 16 134 192776 142831 1605

Load X" window W’ 104 48 19769 14283 972

Load X’ window w’ on demand %84 12% %gg% 3%411 338

: 16 167 19254 73091 1792

Load X’ window, W'/2 104 56 Qg%% 3383 18?;
, I 152 390 ‘

Load X" window, W’/4 %§4 1%8 62{% 39%% ggg

Colum Major 104 04 787 172 272
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Table 4.5: Measurements for Time in seconds, Memory (Mem) in MB, for all Schedules on
Conv 2d (1) with medium parameters on the PC wiht 16 and the server with 104 Threads.
Additionally, the table shows the memory Estimate in MB and Score.

Schedule Threads| Time | Memory (MB) [ Estimate[Score

16 859 8448 79281 2695

Lock-free Preload 104 160 9142 8126 | 1208

Lock-free on demand %84 %ég 1333 5%% g;g

: 16 873 3422 7897 2712

Preload everything 104 171 9286 8079 | 1258

16 1014 7304 69421 2721

Preload X’ 104 215 8182  7223| 1327

Preload W’, 2’ on demand %84 %gg %%% %ggl)ill 1(1325

: 16 891 1600 10411 1194

Load X’ window W’ 104 174 2634 1223| 677

Load X’ window w’ on demand %84 1%% 1(53(1)8 32(7) gig
: 1 1601 47 12

Load X" window, W'/2 %§4 Zgzl Q%% E% géé

Load X’ window, W'/4 %84 1%?? 1%% 68&3 828

Colum Major 104 242 1726 570| 646

Table 4.6: Measurements for Time in seconds, Memory (Mem) in MB, for all Schedules on
Conv 2d (2) with medium parameters on the PC wiht 16 and the server with 104 Threads.
Additionally, the table shows the memory Estimate in MB and Score.

Schedule Threads| Time[Memory (MB) [Estimate | Score
Lock-free Preload %84 17}3%% 411(8)%(13 g;%gla 1%%8
Lock-free on demand %84 4822 18%% 5%8 g})g
Preload everything %84 1657)28 41185% ggg% 1%8%%
Preload X’ 101 | st 17736 16339 303
Preload W', 2’ on demand %84 128?% %282(1) 58582 1?15%8
Load X' window V" 101|803 23807 1413|4501
Load X’ window w’ on demand %84 dggg %ggi (7)% fg%g
Load X" window, 11"/2 104 | 1069 20330 11031 5598
Load X" window, W'/ 101 | 11 10083 5960| 3071
Colum Major 104 | 1750 2758|516 2203
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Table 4.7: Measurements for Time in seconds, Memory (Mem) in MB, for all Schedules on
Conv 2d (3) with medium parameters on the PC wiht 16 and the server with 104 Threads.
Additionally, the table shows the memory Estimate in MB and Score.* values are unavailable
because the execution ran out of memory.

Schedule Threads | Time | Memory (MB) |Estimate[Score
Lock-free Preload %84 21; %g?ﬁlg ﬁggé%) 3331
Lock-free on demand %84 g%g 138(73 5%% 8%
Preload everything %84 322 %3%:13 32;88 4131
Preload X’ 101 | 9% 6396 2311|1336
Preload W', 2’ on demand %84 5?31; 111%4513 iﬁ?gg g%gg
Load X’ window W 104 347 15530 45810 4159
Load X’ window w’ on demand %84 %gg éi?g ﬁéf 13?(13
Load X' window, W'/2 104 44T 59804 33000 4826
Load X' window, W'/4 01| 3 17400| 11798 513
Colum Major 104 | 42 1715 516|745

Table 4.8: Time in s, Memory in MB requirements, for all Schedules on Conv 2d (1) with
large parameters on the PC with 16 and the server with 104 Threads. Additionally, shown
are memory Estimate in MB and Score.

Schedule Threads | Time [ Memory [ Estimate | Score
Lock-free Preload 104 | 1600 38830 36093 7%
Lock-free on demand %84 (2)88(1) }Lég% 2%8&) é?%g
Preload everything 104 | 73| 38365  338%s| 6100
Preload X' 104 | 3370 33806 32084] 10601
Preload W', o' on demand 1164 | 3095 7965 6193|5801
Load X" window W’ 104 | 1183 S036|  5139| 3083
Load X’ window w’ on demand %84 56% ié?ﬁ 182(1) fgg(l)
Load X' window, /2 104 | 1141) 7012 30m1| 301
Load X" window, /4 100 | ’s09| 5501 2701] 2995
Colum Major 104 | 1455|4863 2531| Dy
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Table 4.9: textbfTime in s, Memory in MB requirements, for all Schedules on Conv 2d (2)
with large parameters on the PC with 16 and the server with 104 Threads. Additionally,
shown are memory Estimate in MB and Score.* indicate out of memory.

Schedule Threads| Time[Memory (MB) [ Estimate | Score
Lock-free Preload 104 325; 1%% %2%%%8 23787
Lock-free on demand %84 Zﬁggg (158?(15 2%8&) gggg
Preload everything %84 3361 1%%% %23328 24146
Preload X' 104 413§ 76300] 1359117792
Preload W', 2’ on demand %84 5412 1%%%%(25 8%%(738 23419
Load X" window W 104 3662 106545, 02110| 19735
Load X’ window w’ on demand %84 Zgéﬁ 1858? éig% 1%%?8
Load X' window, W’/2 104 400;, 13113 49011 29379
Load X' window, W’/4 %84 384§ zlag% %gg% 11385
Colum Major 104 |57 6316 2501 402

Table 4.10: Time in s, Memory in MB requirements, for all Schedules on Conv 2d (3) with
large parameters on the PC with 16 and the server with 104 Threads. Additionally, shown
are memory Estimate in MB and Score.* indicate out of memory.

Schedule Threads | Time | Memory (MB) |Estimate| Score
Lock-free Preload %84 7071 2%8:?133 %8;2%8 39479
Lock-free on demand %84 ?91?3@1 }é% 2%8(1) 5823
Preload everything %84 852 Q%Sg?g %8%2% 13709
Preload X' 104 | 815 2310 23500, 4631
Preload W’, 2’ on demand 104 1935 100849 | 185150 31168
Load X' window W’ 104 83>1k 207509 100101 | 13134
Load X’ window w’ on demand %84 58{% %iﬁ%% gg% ggg%
Load X" window, W'/2 %84 1021 zg)éggg 8;88% 14539
Load X' window, W' /4 %84 95? %g%% %285 7788
Colum Major %84 dg%g éllg(l)é 253(1) fgg%
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to be larger than the estimate since there is runtime overhead, like the schedule itself, key
material, and other data structures that the estimation does not take into account. However,
in some cases, the estimate is off by a factor of 4-5. This is especially true for smaller values.
An explanation for the discrepancy in estimate and measurements most likely lies in how
we process cache instructions that drop data from memory. To ensure that we do not delete
data that other threads still need, we only execute the delete instructions once all threads
have passed the point for which the instructions are scheduled. During execution, we have
little control over how fast threads advance. It is certainly possible for some threads to fall
far behind, waiting for locks or input/output operations, thereby preventing the deletion
of objects from memory. We have no way of predicting how the threads will interact at
runtime and, therefore, need to make simplifying assumptions that can cause the differences
in estimated and measured values. Overall, the estimate can still provide us with a useful
tool to understand the schedule’s memory requirements without running it.

The most important metric is time. The schedule that executes the fastest is typically
the schedule that uses the available resources the most efficiently. Fig 4.6 shows the time and
memory requirement for large parameters and all schedules. Note that the OS terminated
schedules that do not display a time for 16 Threads (the PC) for running out of memory.
For Conv 2d (2) and Conv 2d (3) we can see multiple schedules that reach the critical limit
of 18000 GB memory, after which the OS’s swapping system kicks in. On the medium
parameters and Conv 2d (2) (complete Figures and Table in the Appendix), we observe that

Load X' window W' schedule reaches the swapping limit and takes 10675 seconds. The Load
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X" window w' on demand schedule does not reach that limit needing 2GB. However, despite
needing to encode data more often, it is faster at 3885s. This strongly suggests that our
algorithm is more efficient than relying on the OS’s swapping mechanism.

Table 4.11 and Fig. 4.7 compare the fastest schedule for each layer and set of parameters.
We are most interested in the increase in runtime and the reduction in memory when run-
ning on the 16-thread PC as compared to running on the 104-thread server. For the small
parameters, the fastest schedule is either the Lock-free Preload or Preload everything sched-
ule. Since these schedules have very similar memory requirements, there is no significant
reduction in memory. The time, however, increases by a factor of 3.3-3.8. We start to see a
much bigger difference when moving to the medium parameters. For the Conv 2d (1) layer,
the time increases by a factor of 5.4 while the memory usage stays almost the same between
PC and server. For this layer, both systems can still use the Lock-free Preload schedule,
which explains the negligible reduction in memory. The time increase for the next two layers
is 5.9 and 3.5, respectively; however, the memory reduction is significant and a factor of 21
and 83.3. While the server still uses the Lock-free Preload schedule the PC is forced to use
window caching and column-wise window caching to fit the objects into memory. The picture
repeats for the large parameters. Except that now the server uses a more memory-efficient
schedule for Conv 2d (3), which leads to only 15.3 times memory reduction and an increase
in runtime by 4.7. An interesting observation: on the small parameters, the PC seems to
have a higher per-thread performance as the time increase is only around 3.5 for all layers

despite the number of threads on the server being 6.5 more. As the parameters get larger,
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Table 4.11: Fastest Schedule for each layer and parameter size (Param.) on the server, 104
Threads (T), and PC, 16 Threads. As well as the increase (Inc.) in time and reduction
(Red.) of memory.

small

Param. [Layer T] Time[Inc.[Memory [Red.[Schedule
Conv 2d (1) 16] 135 33 3084 11 Lock-free Preload
16] 580 15164 Preload everything
(2) 104 160 3.6 15570 1.0 Lock-free Preload
Conv 2d (3) 16 116 3.8 18699 11 Lock-free Preload
16] &59 8447 Lock-free Preload
o |Conv2d (D) 14| Tro| 54| 9141| 11|Tock-frec Preload
medium Conv 2d (2) 16| 3885 59 1939 21.0 Load X7 window w” on demand
16 743 629 Colum Major
Conv2d (3)104| 217| 35| 52415| 833 | Lock-free Preload
Conv 2d (1) 16| 4457 50 H&H7 0.9 Load X7 window W
(2)
(3)

3
1

104 41 3319 Lock-free Preload
Conv 2d (2

104 30 20727 Lock-free Preload

104| 653 40775 Lock-free Preload

104| 899 5504 Load X’ window, W'/4

large 1620246 ¢ 5| __6887| o5 5| Load X" window w” on demand

104 | 3257 173712 Lock-free Preload
16| 3834 4.7 1714 15.3 Colum Major
104| &15| ™ )

Conv 2d
Conv 2d

2
3

26309 Preload X

the time increase seems to approach 6.5 as expected.

Additionally, we compare the time and memory of the different schedules run on the large
crypto parameters executed on the server. For the Conv 2d (1) layer the fastest schedule
is Load X' window, W'/4. 1t is T4s, 8%, faster than the Preload everything schedule. The
Preload everything schedule, in turn, is much faster, 627s (64%), than the Lock-free Preload
schedule. However, both preload schedules require 38 GB of memory, compared to the 5.4
GB of the Load X" window, W’ /4 schedule. For the second layer, Conv 2d (2), the Lock-
free Preload schedule is the fastest at 3257s. The Preload every is marginally slower at
3364s. Both schedules require 170 GB of memory. Schedules that require significantly less
memory Load X' window, W'/4 (33 GB) and Column Major (6.3 GB) are only slightly
slower at 3662s and 3843s. For the Conv 2d (3) layer the Lock-free Preload schedule is

the slowest and consumes the most memory at 7074s and 215 GB. The comparable Preload
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everything schedule requires approximately the same amount of memory, but only 12.5% of
the time, 855s. Interestingly, schedules that cache very little Preload X' and Column Major
are faster than the Preload everything at 815s and 825s. Both of these schedules also require
significantly less memory, at 25.7 GB and 4.5 GB. This is a reduction factor of 47.8 between
Lock-free Preload and Column Magjor.

Interestingly, schedules with minimal caching of w’s are often faster than schedules that
substantially cache these values. A potential explanation could be the cache locality inside
the CPU. Values that are not cached by our method and are loaded on demand could be
accessed faster because they are placed inside the CPU cache. Alternatively, locking that is
required for processing the load instructions could introduce additional slowdowns that are
not present when values are loaded on demand. Another interesting observation is the poor
performance of the Lock-free Preload schedule in the Conv 2d (3) layer. It is eight times
slower than Preload everything schedule. Both schedules load all the required data at the
start of the computation and do not need to load any values during. Where they differ is
the the points at which they write the results to disk. If we assume that all threads advance
in lockstep, in the Lock-free Preload schedule, all threads want to write to disk at once. In
Preload everything schedule, the write operations are more spaced out. It could be that the

large number of simultaneous writes slows the schedule down significantly.
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4.6 Summary and Discussion

In this chapter, we present ways of reordering the computation to tailor the memory re-
quirements to the hardware available while executing as fast as possible. We further present
a technique to estimate the required memory of convolutions over batch-packed, encrypted
data. We show that our proposed caching mechanism is faster than relying on the OS’s swap-
ping mechanism. The method proposed in this chapter is especially suited for ML workloads
with thousands of instances that can run longer, i.e., overnight or over the weekend, and
don’t need a fast turnaround. Since our method can reduce the memory requirements for
inference, it opens up the potential to save on hardware costs.

The memory optimization presented above only works for convolutional layers and relies
on loading data from disk, which can introduce additional slowdown. We will now discuss
the challenges of applying this approach to other layers and present and possible extension of

our coaching approach that reduces memory uses while eliminating reading data from disk.

4.6.1 Application to other layers

Our proposed method heavily relies on the repeating structure of convolutional layers. In
fully connected layers, we have no such structures. When we use batch-packing the input
matrix becomes a vector. On plain data, the input matrix is n, x ny where ny is the batch
size and ny the number of features. Encrypting the data turns into a vector X of length ny
ciphertexts. We need to multiply the vector with the weight matrix W, which is ny x n,,

with n, as the number of neurons. The result is a vector Y of length n,,. Every value of x
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is used in every iteration, and every value from W is used exactly once, as we can see from
the following equation:
ny
Yi=) X;W, (4.1)
j=1
This does not allow us to reuse any values from W. However, we design a schedule
that could be useful in certain configurations. The schedule S is ordered so that all steps
containing a specific X; are all grouped together. This means we compute all products that
contain one input feature before moving to the next one. This order can be useful when we
have significantly more inputs than we have neurons in the layer because the downside of this
schedule is that we need to keep all the outputs Y; in memory for the entire computation and

can not write them disk early. Since vanilla RNNs share the same computational structure

as fully connected layers, this schedule could be helpful here as well.

4.6.2 Optimizing schedules for peak memory usage

The technique presented above relies on swapping data in and out of memory, which can
significantly reduce maximum memory requirements. However, this requires we read data
from disk and or encode data frequently. Essentially, we sacrifice some latency for a smaller
memory footprint. Ideally, we want to reduce the memory requirement without sacrificing
latency. We now outline an approach that could help us achieve this. We now assume that
the data is in memory as long as we need it and only unloaded once we are completely

done with it. We again use the schedule introduced in Chapter 4. We assume that at the
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beginning of the computation, all X’ are in memory, and all W’ and Y’ are not in memory.

Additionally, we impose the following constraints:

1. any 2/, w’ or ¢/ can be unloaded once no further step in the schedule relies on it

2. any w' and y' is loaded at the first step that relies on it

Based on these constraints and s,/, s, and s, as the size of 2/, w’, and y’ we can estimate
the memory of the schedule. We show the algorithm in Algorithm 6. It is an extension of
the maximum overlap algorithm to multiple inputs. We set the first occurrence of every
to 0, the start, and the last occurrence of every i’ to the last step of the schedule. This
models or constraints from earlier that the computation starts with every 2’ in memory and

that every 3/ is in memory at the end of the computation.

Algorithm 6 Estimating the maximum memory requirements of an completely in-memory
schedule

Inputs: Schedule S; xf, x;, wy, wy, yyr, yi as first and last occurrence of every 2, w', and y';
xy is all 0 and y; is all |S|; f a function that returns the size of an object

Outputs: Cost of a Schedule

1 ¢:=[0]

2: start := combine and sort x¢, wy, y;
3: end := combine and sort x;, w;, y;

4: while True do

5: if end[i] < start[i] then

6: if end[i] > |S| then

7 return max(c)

8: end if

9: clend[i]] := clend[i]] — f(end[i])
10: else
11: c[start[i]] := c[start[i]] + f(end]:])
12: end if
13: 1:=1+1
14: end while
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With this estimation function C, define our optimization problem. We want to find a
permutation S’ of the schedule S so that C'(S’) is minimal. A permutation of a schedule is
the reordering of its steps. We call the default, or base schedule, output priority because it
prioritizes computing individual output values. The ordering rules for this schedule are: For
all tuples/steps in the t;,¢; in the schedule the following conditions must hold, (1) ¢ <,
(2) t7 < t5|t] =t} and, (3) ¢} < t¥[t] =t Atf = t7. In other words, we order it by y, with
x as a first tiebreaker and w as a second tiebreaker. Further, we also define two additional
schedules, the left-hand side priority schedule, and the right-hand side priority schedule, The
ordering rules for the left-hand side priority schedule are (1) tf < %, (2) ¢} < Y[t} = 1]
and, (3) t] < t[t7 = t7 At} = t¥; and for the right-hand side priority schedule: (1) ¢} <Y,
(2) t7 <3|ty =t} and, (3) ¢ <7 =t Nty = 1.

We apply the estimation algorithm to the same three convolutional layers, Conv 2D (1),
Conv 2D (2), and Conv 2D (3), which we used earlier in this section, with the large crypto
parameters parameters. Fig. 4.8 shows the estimated memory usage at each schedule step.
We can see that the output priority schedule is in fact the one with the lowest memory
requirement at 286 GB. The left-hand side priority schedule only requires a little more
memory with 287 GB, and the right-hand side priority uses 311 GB. The output priority
schedule requires about 7.5x more memory than the most memory-hungry schedule discussed
in Section 4.5. This is because the execution in 4.5 writes each output to disk and clears it
from memory once it is done. However, this requires loading data from disk when computing

the next layer. This loading and unloading is what we want to avoid here.
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Figure 4.8: Comparison of the memory requirements at each step for three schedule permu-
tations of the Conv 2D (1) layer.

For the second layer, Conv 2D (2), shown in Fig. 4.9, the right-hand side priority schedule
requires the least memory at 176 GB compared to the 203 GB of the output priority schedule,
206 of the left-hand side priority schedule. This is slightly more than the worst case of 169
GB in Section 4.5.

We see the most significant difference with the Conv 2D (3) layer, Fig. 4.10. The right-
hand side priority schedule requires only 33 GB, compared to the 203 GB of the output
priority and 201 GB of the left-hand side priority schedule. We measure 215 GB for the
worst case in Section 4.5. Our worst-case estimate is still better than the measured worst-

case.
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Figure 4.9: Comparison of the memory requirements at each step for three schedule permu-
tations of the Conv 2D (2) layer.

However, we can not simply choose the "best” schedule for each layer and run the network
that way. We are bound by the maximum memory of the most expensive layer. There is no
benefit to choosing the right-hand side priority for the second and third layers since the first
layer requires more memory already. We can switch the first layer to one of the schedules
presented earlier in this chapter; however, this creates the issue that these schedules do not
have their results in memory, while the schedules in this section rely on that. Finding the
optimal combinations of layers most likely requires some trial and error. However, we provide
the tools and heuristics here to narrow down the possible candidates.

We are also not limited to the three schedules, output, right-hand side, and left-hand
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Figure 4.10: Comparison of the memory requirements at each step for three schedule per-
mutations of the Conv 2D (1) layer.

side priority, presented in this section. More optimal permutations with a lower memory
requirement might exist. However, finding better permutations is not trivial. In initial
experiments, we had some limited success using a genetic algorithm. However, we are only
able to find a better schedule for a small schedule with less than 400 steps, and the result
is only better by the size of one weight. For large schedules, the genetic algorithm did not
find any solution with millions of iterations. This problem requires further investigation in

the future.



115
CHAPTER 5

CLASSIFICATION OF ENCRYPTED WORD EMBEDDINGS USING
RECURRENT NEURAL NETWORKS

In this chapter, we present and evaluate an interactive approach for RNNs over encrypted
data. RNNs excel at sequence processing, by taking the sequential relation of the data into
account. However, when using homomorphic encryption the sequential processing becomes
an issue. In a client-server setting where the client owns the data and the server owns the
model, we can use interactive phases to reset the noise level. The content of this chapter
was previously published as: Classification of Encrypted Word Embeddings using Recurrent
Neural Networks

Robert Podschwadt and Daniel Takabi in PrivateNLP 2020: Workshop on Privacy in

Natural Language Processing, 2020 [2]

5.1 Introduction

Artificial neural networks have been very successful and popular over the last few years in a
variety of domains. CNNs have shown better than human performance in image classification
tasks [133, 134] and have also been applied to language processing tasks [135]. RNNs, another
type of neural networks, are specifically designed to work with sequences. Unlike other types
of networks, RNNs take the output of the previous sequence step into consideration. There
are different types of RNN architectures such as Long Short Term Memory (LSTM), Gated
Recurrent Unit (GRU) and a simple fully connected variant or Elman Network [86]. Here,

we work with Elman Networks and unless specified otherwise will use the term RNN instead
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of Elman Network. Recurrent architectures are very popular in natural language processing
(NLP) due to the sequential nature of language. There are many different sub-fields in NLP.
Here, we investigate the task of sentiment classification.

Many companies have built a business around offering MLaaS. In MLaaS the model is
hosted in the cloud. The service provider has the infrastructure and know-how to build
the models. The client owns the data and sends it to the provider (also called server) for
processing.

A concern for the client of MLaaS is the privacy of the data. To process the data the
server needs access to the data. This is often unwanted or unacceptable depending on the
sensitivity of the data. There are three main techniques for preserving the privacy of the
data while still allowing for ML algorithms to work: 1) Secure Multiparty Computation
(SMC), 2) Differential Privacy (DP) and 3) Homomorphic Encryption (HE).

In previous work, a variety of different machine learning algorithms have been adapted
for privacy-preserving processing such as linear regression [136], linear classifiers [137, 138],
decision trees [139, 138] or neural networks [27, 136, 140]. Solutions based on SMC [136,
140] come with a huge communication overhead.

We propose an approach that is based on homomorphic encryption and recurrent neural
networks. It does not require interactive communication between client and server like SMC
approaches but in the case of longer sequences, we use interactive communication to control
the noise introduced by HE. Very little prior work deals with recurrent neural networks.

Much of the work is done on CNNs in the image domain [27, 125, 59] and more. [68]
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perform encrypted speech recognition which is an NLP task but the model used is also a
CNN. Badwai et al. [62] research privacy-preserving text classification which is the task that
we also use as well but the authors do not use an RNN. To the best of our knowledge, there is
only one prior paper working with a recurrent architecture. Qian and Lei propose a system
[58] that is capable of implementing LSTM networks based on TFHE [24]. Their LSTM
model suffers from a small drop in accuracy though when running on encrypted data. Our
solution is able to maintain the same accuracy as the plain text model. We present a solution
that can process RNNs with arbitrary length input sequences in a privacy-preserving manner
and introduce a way of using word embeddings with encrypted data. To ensure the privacy
of the data we rely on the CKKS [49] crypto scheme. We evaluate our system on a text
classification task. The basic idea of our proposed approach is running RNNs on encrypted
data by taking advantage of HE schemes. The server hosts the trained model, and the client
transmits the encrypted data for processing and receives an encrypted result. The training

of the model is done on plaintext. In this work, we make the following main contributions:

e We propose an approach that combines RNNs, specifically ElIman Networks, and ho-
momorphic encryption to perform inference over encrypted data in natural language

processing tasks.

e We present an innovative approach to work with word embeddings for encrypted data.

e We perform thorough benchmarking of our system both with respect to run time per-

formance and communication cost. Our results demonstrate that we are able to run
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RNNs over encrypted data without sacrificing accuracy and with reasonable perfor-

mance and communication cost.

5.1.1 Threat Model and Problem Statement

In this chapter, we apply privacy-preserving machine learning techniques based on HE to
RNNs. We focus on a client server setting such as MLaaS in which the client has full control
over the data and the server has full control over the model. We assume that the model has
been trained on plaintext data and the server offers inference as a service to the clients. The
clients want to use the inference service and wish to keep their data private while the server
wishes to keep its model private .

Threat Model: We assume that all parties are honest but curios. They will not deviate
from the protocol but will attempt to learn any information possible in the process. The
server does not share information about the architecture of the model with the client. The
client encrypts the data and sends it to the server for processing. If it is possible, the server
will process the data and send back the final result in encrypted format. In some cases data
will be sent back to the client where it is decrypted, encrypted again to remove the built-up
noise and sent back to the server to continue processing. In addition to the privacy of the
data we have the goal to achieve accurate predictions. This means the predictions made on

encrypted data should be as close as possible to predictions made on plaintext data.

5.1.2 NLP with Neural Networks

Recurrent neural networks are widely used for addressing challenges in Natural Language

Processing. Recurrent neural network reached state-of-the-art performance for different tasks
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such as: Speech Recognition, [141] and [142], Generating Image Descriptions, [143] and [144],
Machine Translation, [145] and [146], Language Modeling, [147] and [148]. The implementa-
tion of an NLP pipeline using RNNs can be broken done into four major parts: 1) Designing
the network, 2) Encoding the data, 3) Training the model, and 4) Inference of new instances.

In the next section we will look at the individual steps in detail and describe the changes

that are necessary for computation in a privacy preserving setting.

5.2 Related Work

Badwai et al. [149] presented PrivFT a system for privacy-preserving text classification built
on Facebook’s fasttext [150] (Joulin et al. [150]). The main difference to our work is that we
use a recurrent architecture. In PrivFT, the embedding operation is also not outsourced to
the client. The client needs to one-hot encode each word, encrypt it, and send it to the server
where the embedding operation is performed as a matrix multiplication. The message size
is similar. The inference time for a single instance on the IMDDb is higher in our scenario but
using larger batch sizes allows us to get a lower per instance time. In contrast to our work,
PrivFT features schemes for training on encrypted data and a CKKS implementation with
GPU acceleration. Lou and Jiang created SHE [151] a privacy-preserving neural network
framework based on TFHE. It offers support for LSTM cells. The authors replace the
computationally expensive and high noise-introducing matrix operations normally required
by LSTMs with much cheaper shift operations. Zhang et al. [152] perform a different NLP

task namely encrypted speech recognition based on a CNN. The last step of the network
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that matches the output to actual text is performed on the client side.

5.3 The Proposed Privacy-preserving Classification for Recurrent Neural
Networks

Looking at the components of the RNN pipeline described in Section 5.1.2 we determine
what changes need to be made to adhere to the constraints of homomorphic encryption.

Network Design. As long as we only use fully connected and recurrent layers the only
consideration we need to make are the activation functions that are being used. All other
operations inside an RNN can be performed over encrypted data using HE schemes. However,
it is not possible to implement common activation functions within current HE schemes. We
aim to find the best low degree polynomial approximation to replace the activation functions
within the RNN.

Data Encoding. Here, we use word embeddings as an encoding scheme for textual
data. We describe our approach to handling embeddings in more detail in Section 5.3.1.

Model Training. We assume that the training of the model is performed by the server
on plain training data.

Inference. This is the part of the pipeline in our system that is run on encrypted data.
At no point during this process is the data decrypted on the server thus ensuring its privacy
is protected. During processing by the model, the encrypted data accumulates noise. We
describe a way of circumventing the problem of the noise crossing the threshold after which
correct decryption is no longer possible in Section 5.3.2. Once the data has been processed

by the entire network, the result of the classification is sent back to the client. The result of
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the classification is still encrypted and needs to be decrypted by the client.

A variety of activation functions have been proposed as replacements for common activa-
tion functions used in NNs. Dowlin et al. [153] use polynomials of degree 2 to substitute the
Sigmoid function in CNNs, and Shortell and Shokoufandeh [154] use a polynomial of degree
3 to approximate the natural logarithm function. Hesamifard et. al [83] use Chebyshev
polynomials to approximate activation functions such as ReLLU, Sigmoid and Tanh. We will
be using the approach of [83] to approximate Tanh which is the most popular activation
function in RNNs. The Softmax function can not be performed over encrypted data but
since it is typically used as the very last function of neural network, we move it to the client
side. The server computes the neural network all the way to the inputs of the Softmax
function. The Softmax function is performed by the client after decryption to obtain the

classification results.

5.3.1 Encrypted word embeddings

Word embeddings are a way to turn words into real valued vectors. The embedding layer
basically is a lookup table that maps any word in a dictionary to a real valued vector. The
lookup of an embedding for a given word cannot be performed efficiently in HE schemes.
We address this problem by moving the embedding layer out of the RNN and to the client
where it can be performed in plaintext. After performing the embedding lookup, the client
encrypts the embeddings and sends the result to the server. To enhance the privacy of the
model, the model owner can use one of the many pretrained embeddings such as GloVe [155],

Elmo [156], Bert [157] or XLNet [158] and share those with the client .
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5.3.2 Noise growth in HE

In an RNN architecture, a sequence is processed by feeding its entries into a fully connected
layer which also takes the output of that layer produced for the previous sequence entry. The
current output and the previous output are combined into the new output. Due to the noise
build-up in HE we need to keep track of the number of operations performed on ciphertexts.
To process a sequence of length n with an RNN layer the resulting ciphertext needs to pass
the layer n times. That means n dot products and activation functions are applied. It is not
always possible to process all of the sequence entries due to the noise that is accumulated.
Our approach is to send the encrypted data back to the client where it is decrypted and

re-encrypted thereby removing the built up noise.

5.3.3 Implementation

We use CKKS to protect the privacy of the client data. The server trains a plaintext
model and shares the embedding matrix with the client. The activation in the model needs
to be compatible with HE. This is achieved by approximating Tanh using the method by
Hesamifard et al. [83]. The client performs the embedding process and encrypts the result.
The encrypted embeddings are sent to the server where it is processed. When the noise,
built up during computation, reaches the limit it the data is sent back to client where it
is decrypted, thereby removing all noise, rencrypted and sent back to the server. Once the
model is completed processed the server sends the still encrypted resutl back to the client

where it can be decrypted. We implement our proposed solution in C++11. We train the
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model using Keras [159] and the homomorphic encryption primitives are provided by HElib
[160]. On the plaintext, we tried different activation functions and found out that Tahn and
Tanh approximations work best. Other activation functions such as 22 or the linear function
cause the model not to train properly. We find that best replacement for our purposes is:

—0.00163574303018748x3 + 0.2494763656280362.

5.4 Evaluation and Experimental Results

5.4.1 Data and Preprocessing

The IMDD [161] dataset contains 50,000 movie reviews labeled as either positive or negative,
of which 25,000 are used as training and 25,000 as test data. The tokenization is performed
by Keras. We train a model to perform sentiment classification, which is classifying a review
as either positive or negative. Out of the 25,000 training instances, we use 2,000 as validation
data for hyperparameter tuning. We use a vocabulary of the top 20,000 words. We pad or
truncate the reviews to be 200 words long. Our model consists of an embedding layer that
turns words in the reviews into real-valued vectors of dimension 128. The embedding matrix
is randomly initialized and updated during the training process. The embedding layer is
followed by an RNN layer with 128 units. We use the Tanh approximation from Section
5.3.3 as an activation function. The last layer is a fully connected layer with two units and
Softmax activation. The training is performed on the plain data using Keras and yields
86.47% accuracy on the unseen test data. We achieve the same accuracy on the encrypted

data.
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5.4.2 Results on Encrypted Data

The experiments were performed on a Ubuntu 18.04 64bit machine with an AMD Ryzen
5 2600 @ 3.5GHz processor and 32GB of RAM. We extract the learned weights and run
experiments with different batch sizes. In our experiments the noise growth exceeds the
workable threshold after 27 timesteps. This means we need to add communication between
the client and server seven times to refresh the noise in order to classify the IMDb sequences
of length 200.

The amount of data that needs to be transmitted depends on the batch size. The en-
crypted embeddings are larger than the plaintext data by a factor of 1,280. See Table 5.1
for different batch sizes. The Embeddings column is the amount of data that is initially
transferred from the client to server. Noisy ciphertext gives the size of the data the server
sends to the client to be refreshed and Refreshed ciphertext is the reencrypted answer. These
are the values for only one refresh operation. The Batch column is the total amount of data
transferred between client and server during classification of one batch which requires seven
refresh rounds.

The amount of data that needs to be transmitted initially makes up the largest portion
of the transfer. To run our network seven noise removal communications are required. At a
batch size of 256 the server sends 106MB to the client and the client responds with 70MB.
One round of noise removal therefore requires 176 MB to be transferred. All seven rounds
take 1,232MB. Which is less than 10% of the initial transfer. The increase in size of the

ciphertexts is nearly linear. Smaller ciphertexts sizes carry more overhead per instance than



Table 5.1: Data transferred during encrypted classification

Batchsize [ Embeddings Noisy | Refreshed Batch
ciphertext | ciphertext
1 125MB| 0.939MB| 0.623MB 135MB
4 287TMDB 2.2MB 1.5MB 312MDB
32 1,843MB 14MB 9MB| 2,004MB
64 3,548MB 27TMB ISMB| 3,863MB
128 7,066MB 54MB 35MB| 7,869MB
256 14,336 MB 106MB 70MB[15,568MB
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larger ones.

Table 5.2 lists the execution time for different batch sizes. The times are given for
encrypted, plain data and for the actual time it takes to processes the batch as well as
the resulting time per instance. The noise removal is not performed by the client though.
It is simulated on the server. The measurements also do not include the encryption and
transfer of the embeddings. We can see that increasing the batch size leads to lower per
instance classification time. The effect is lost when increasing the batch size from 128 to
256. On the plain data we still can see improvement after that point. To get an accurate
comparison the plain text measurements are performed on the same implementation as the
encrypted experiments. It looks like the growth in execution time for the encrypted values is
exponential while the plain version appears to be logarithmic. Our implementation performs
best on encrypted data with a batch size of 128 and worst with a batch size of one if we look
at the time per sample. The overhead is smallest though for one instance per batch. Here
the encrypted version is 40 times slower than the plain version. For our optimal batch size

of 128 the encrypted version is 92 times slower. This is due to the different growth rates of

execution time for the encrypted and plain data.



Table 5.2: Run times of inference on IMDD test set.

Batch| Encrypted Plain
Size |(sample/batch) | (sample/batch)
1 70.6s / 70.6s 1.83s / 1.8s
4 20.2s / 80.7s | 0.496s / 1.99s
32 | 5.85 / 184.6s | 0.072s / 2.305
64 4.3s / 272.7s | 0.055s / 3.52s
128 4.2s / 547.6s | 0.046s / 5.89s
256 6.5s / 1658.7s | 0.039s / 9.96s

Execution Time
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Figure 5.1: Inference time per batch on the IMDb data
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5.5 Summary and Discussion

In this chapter, we present an approach that allows the use of recurrent neural networks
on homomorphically encrypted data based on the CKKS scheme. We present a solution
to perform NLP tasks over encrypted data using recurrent neural networks, in our case
sentiment analysis on the IMDb dataset. We can achieve this with no loss in accuracy
compared to the plaintext model. This is made possible by introducing communication
between client and server to refresh the noise. We trade network traffic for the ability to
efficiently use word embeddings.

The approach for privacy-preserving RNNs presented in this chapter suffers from several
drawbacks. (1) The approach relies on communication between the server and client, re-
quiring the client to stay online during computation and introducing network latency as a
bottleneck. (2) The crypto parameters we use during evaluation are not secure. We chose
them as a proof of concept. Secure parameters would increase the size of ciphertexts, reduce
the number of steps we can evaluate before requiring client interaction, and generally in-
crease resource requirements. (3) The interactive phases expose the internal of the network
to the client. The client could use the information to learn the weights of the network. This
puts the privacy of the server-side model at risk.

We will address these issues in the next chapter by evaluating the approach on secure
parameters and proposing an architecture that eliminates the need for interactive phases
by reducing the depth of the network. We can use an alternative approach to preserving

the server model’s privacy. We can mask the internal state of the network by adding some
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randomness to the data before sending it to the client and removing it once the client sends
the data back. This adds two homomorphic additions, one to add the randomness and one
to remove it, to each interactive phase. We can do this in our approach since the client
does not alter the data; the client only decrypts and re-encrypts the data. Bakshi and
Last [70] evaluate an approach where the client computes the evaluation function during the
interactive phase. This allows the authors to use a wide range of activations and does not
limit them to HE-friendly functions. However, the use of non-HE-friendly functions requires
interaction after every time step. This increases the communication overhead However, it
also allows the use of smaller crypto parameters, since there is an interactive phase after
every dot product. This means that the authors only need parameters that support a
single multiplication, substantially reducing the size of objects that need to be transferred.
However, these advantages come at the cost of model privacy. Here, the client receives the
internal state after every time step and prior to the activation, providing them with more
detailed and frequent information than in our proposed approach. Furthermore, in this
setting, we can not add randomness to the data sent to the client. The non-linear activation

function changes the value so we can no longer simply remove it on the server side.
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CHAPTER 6

NON-INTERACTIVE PRIVACY PRESERVING RECURRENT NEURAL
NETWORK PREDICTION WITH HOMOMORPHIC ENCRYPTION

In the previous chapter, we present an interactive approach for privacy-preserving RNNs.
There, we also outline some issues with the interactive approach. In this chapter, we present a
new architecture that reduces the depth of the network while retaining some of the recurrent
properties. A lower multiplicative depth allows us to still use leveled homomorphic encryp-
tion and not rely on interactive phases or bootstrapping. For example, Jiang et al. [162]
propose an approach for running Gated Running Units (GRU) over homomorphic encryp-
tion. Their approach relies on a custom bootstrapping procedure, which takes 2.8 minutes
with 48 threads and needs to be applied every 4th timestep. Assuming a sequence length
of 64, the approach requires roughly 45 minutes of bootstrapping. The authors report an
additional 90 seconds per timestep, not considering bootstrapping, for a GRU layer with 64
hidden units, totaling 8,448 seconds for the 64 time steps. However, their ciphertext packing
scheme only packs a single instance into a run.

The content of this chapter was previously published as Non-interactive Privacy Preserv-
ing Recurrent Neural Network Prediction with Homomorphic Encryption
Robert Podschwadt and Daniel Takabi in IEEE 14th International Conference on Cloud
Computing (CLOUD), Pages 65-70, 2021 [3], and has been slightly edited here. (©)2022

IEEE. Reprinted, with permission.
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6.1 Introduction

Machine learning (ML) is often performed in the Cloud, using machine learning as service
(MLaaS) like Amazon Web Services [163], Google Cloud [164], and Microsoft Azure [165].
In MLaaS the client owns the data and computation is performed in the Cloud. The down-
side of MLaaS is it requires access to the clients’ data. This creates security and privacy
concerns making it unacceptable in many situations. E.g., medical data enjoys strong legal
protections and can not easily be shared. In such a scenario, using MLaaS is nearly im-
possible. Even without legal issues, privacy concerns still exist. Many privacy preserving
machine learning (PPML) approaches, based on differential privacy (DP), secure multiparty
computation (SMC), Homomorphic Encryption (HE), and hybrid approaches, have been
proposed to address this. HE allows mathematical operations on encrypted data without
the need for decryption. Although many HE-based approaches have been studied, most
of them focus on CNNs [27, 125, 61, 67], with RNNs largely being ignored due to their
more complex nature. Different types of RNNs exist, such as Long Short Term Memory
(LSTM) [71], Gated Recurrent Unit (GRU) [166] and a fully connected variant [86] often
called simple RNNs. Here, we focus on simple RNNs. In prior work, Lou and Jiang pro-
posed a system [58] that implements an LSTM based on TFHE [167]. They used fixed point
encoding, which leads to a drop in accuracy. Podschwadt and Takabi [2] and Bakshi and
Last [70] proposed systems for simple RNNs, based on CKKS [49]. Both require interactive
phases. The particular challenge of running RNNs over HE lies in their multiplicative depth

(MD). MD is the number of multiplications required to evaluate an algorithm and is the
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main limiting factor of HE-based solutions. The MD of RNNs is often much larger than
the MD of feed forward networks with the same number layers. RNNs require polynomial
activation functions (PAF) of at least degree 3, which further increases the MD. We present
an approach for privacy-preserving RNN inference based on HE, in which the data owner
encrypts the data and sends it to the Cloud for processing. The Cloud performs inference on
the encrypted data and sends the encrypted result back to the client. Our approach follows
the ideas presented in [2]. Unlike [2], we do not require any interaction during computation,
allowing for offline processing. Our proposed RNN architecture, called parallel RNN blocks
(PRB), reduces the dimensionality of the inputs to the RNN by splitting them into smaller
chunks which are processed by an RNN layer. This reduces MD of the network. We show
that our architecture can perform well on plain and encrypted data on sentiment analysis

tasks. We make the following contributions:

e we present an approach for privacy-preserving, non-interactive RNN inference scalable

to real-world datasets.

e we introduce a new architecture which reduces the MD of the RNNs by splitting
inputs into evenly sized chunks that can be processed by less deep RNN blocks and
recombined later. This new architecture allows for non-interactive privacy preserving

RNN inference using HE.

e we evaluate the proposed approach on two different data sets, one large real word
dataset and a commonly used benchmark dataset, to show the feasibility of our pro-

posed approach.
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e we experimentally compare our approach with previous interactive approaches

e we investigate how training RNNs, on plaintext, with PAFs impacts performance

6.2 Related Work

CryptoNets [27] was one of the earliest work on privacy-preserving neural networks based
on HE, further improved by Chou et al. [59] by pruning the network parameters. Hesam-
ifard et al. [168] focus on training and evaluating polynomial CNNs over plaintext, and
HE encrypted data. Zhang et al. [68] perform encrypted speech recognition using a CNN.
The last part of the network that matches the output to actual text is performed on the
client side. However, most of these approaches are focused on CNNs only and do not work
for RNNs. Feng et al. [169] perform sequence to sequence transformation based on LSTM
models, using SMC to protect the privacy of the data. This approach might be less attrac-
tive to Cloud providers since it requires them to share part of the model with the client.
Most other work on privacy preserving RNNs require communication between the server
and the client. Bakshi and Last [70] have the client compute the activations on plaintext.
Unlike our work the authors considers only small networks with few units and short input
sequences. Liu et al. [18] transform a regular LSTM into a privacy preserving LSTM by
replacing activation functions with approximations, which are evaluated by the client. This
leaks some information about the model to client. In Podschwadt and Takabi [2] the client
does not perform computation but is involved for noise removal. While using the client for
computation reduces the computational load on the server, it increases communication and

can also reveal information about model to the client. Using the client only for noise removal
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reduces the amount of communication required and information leaking, but it increases the
computational cost on the server side. Our proposed approach removes all the communica-
tions between client and server during the computation. Lou and Jiang [58] also created a
non-interactive, privacy-preserving neural network framework based on TFHE [167]. This
allows for the evaluation of LSTM cells over encrypted data. They achieve this by replacing
the expensive matrix operations required by LSTMs with much cheaper shift operations.
Unlike our approach their work loses accuracy over a plaintext model due to the use of fixed

point encoding.

6.3 The Proposed Approach

Our goal is to enable privacy preserving inference using RNNs in a non-interactive manner.
The main concern is the privacy of the user’s data. The Cloud should not be able to learn
anything about the client’s data. In turn the client should learn as little as possible of
the Cloud’s model. The system should be as efficient as possible and deliver high quality
predictions. The last two requirements are more flexible. We are not willing to trade privacy
for either performance or efficiency but we can trade off between prediction quality and

efficiency.

6.3.1 Threat Model

Our system preserves the privacy of the data assuming all parties are honest but curios. They
will execute the protocol and not deviate from it but they will try learn any information

they can. The client owns the data and private key. The Cloud has a trained model that
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can be run on encrypted data. The word embedding lookup can not be performed efficiently
on encrypted data. As in [2] the client performs the embedding operation and sends the
encrypted embeddings to the Cloud. By using pretrained embeddings this does not leak
information to the client, since the embeddings are publicly available and are not a secret
of the model provider. They are trained independently from the Cloud model, and do not
contain any information about the model or the training data. Therefore, they can be shared

without revealing any information.

6.3.2 Multiplicative Depth and Noise growth

The MD of an HE algorithm is the number of sequential multiplications that are necessary
to complete it. In a simplified way of looking at an RNN, it can be expressed as the repeated
application of the activation function f to the internal state s;=f(z; - w + s;_1 - v) of a
neuron. The inputs z; are fresh ciphertexts that no computation has been performed on
yet. We can ignore them for this analysis, giving us: s;=f(s;_1 - v). We can expand s;_; to
si—1=f(s4_o - v). Repeatedly applying this expansion yields s;=f(... f(f(zo-w)-v)...) v).
The inner product - and the activation function f are applied ¢ times to xy. Our activation
has an MD of three and the inner product has an MD of one. An input sequence with ¢ time
steps has an MD of 4¢t. A feed forward network with the same PAF would need t layers to
have the same MD as the RNN. This is often too deep to run with HE. In [2] the authors
solve the problem by sending the data to client to reset the noise level. Our proposed system
is able to perform the computation without client interaction. Further, we use stronger

CKKS parameters than [2], to give us 128-bit security. Due to the noise growth, the training
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Figure 6.1: A standard RNN

of the model is done on plaintext data. Training on encrypted data has been shown to be

computationally expensive [81].

6.3.3 Parallel RNN Blocks

As discussed in Section 6.3.2, the MD of RNNs grows with the number of elements in the
input sequence. Reducing the depth of an RNN by reducing the length of the input sequence
will result in the loss of information. We propose an alternative solution for running RNNs
over encrypted data, based on the observation that shorter sequences reduce the MD of
RNNs. We want to keep the strengths of RNNs and not discard information. To achieve this
we split the input sequence into shorter sub-sequences of equal length. The sub-sequences
are fed into an RNN layer. The outputs of the RNN layer is concatenated and fed into a fully
connected layer, see Fig. 6.2. We refer to the RNN layers processing the sub-sequences as

parallel blocks since they are completely independent from each other and can be computed
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Figure 6.2: Parallel RNN blocks

Figure 6.3: Architecture diagram

at the same time. A traditional RNN (Fig. 6.1) can not be executed in parallel since every
step requires input from the previous one. This is true for our architecture as well but this
interdependence is limited to within a block. There are at least two ways of setting up
the RNNs within the blocks. 1) every RNN has its own independent weights. The weights
within that block would only be trained on the particular sub-sequence of the training data
associated with this block. 2) the weights are shared between all the blocks. In this case, all
blocks would train on every sub-sequence of the training data. While no data is discarded
from the input sequence there is some loss of information at the block boundaries. In a
regular RNN the network has the entirety of the input sequence in its internal state. In our

architecture the blocks have no input from the other blocks. However, our experiments show
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that the fully connected layer following the concatenation layer mitigates the effect. The
number of blocks depends on the length of the input sequence and the desired MD of the
network. The splitting has not impact on the security of the system. It is performed on the

ciphertexts in the Cloud and reveals no further information.

6.4 Evaluation and Experimental Results

6.4.1 Training with polynomaial approximations

Using PAFs in neural networks presents a problem during training as they have different
properties than standard activation functions. Some activation functions, e.g Sigmoid and
Tanh, are bounded. Most activation functions are monotonic increasing. This not true for
polynomials. Polynomials can not be bounded. They can only be bounded from either above
or below. A function f(z) is bounded from above if Vz3B(f(x) < B) and bounded from
below if Va3B(f(z) > B). Non-monotonic increasing and unbounded functions are harder to
optimize due to exploding/vanishing gradients [170] and a none smooth error surface. In our
experiments training RNNs with functions such as 22 or ReLU lead to the network not con-
verging at all. Therefore, we choose a degree 3 polynomial f(z)=—0.00163574303018748z3 +
0.249476365628036x as our activation, derived using the method described in [26]. To pre-
vent exploding gradients we keep the input values of f between the local extremes of f. We
do this by applying Ls regularization with A=0.02 to the weights of the RNN. We found a

good heuristic for \ is 2 x 10~* times the number of units in the recurrent layer.
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6.4.2 Data and Preprocessing

We evaluate our proposed solution on a sentiment analysis task. The goal is to predict if
a given text is negative or positive. We use a data set of user reviews of movies and TV
shows taken from the Amazon online store [171]. The dataset contains 1,697,533 reviews
with ratings. A one star rating is the lowest possible and a five star rating the best possible
rating. We use the review text as the input to our system and the star rating as the labels.
We simplify the task by grouping ratings into two larger groups. One and two star reviews
are combined into a negative class and four and five star reviews form the positive class. We
drop reviews with three stars. We use the 20k most frequent words as our dictionary. As a
word vector representation we choose pretrained 100-D GloVe [102] embeddings. The length
of an instance is 64 tokens and we truncate or pad as necessary. As evaluation metrics, we
use balanced accuracy and F1 score. We evaluate each model architecture’s performance
using 5 fold cross validation. Additionally we evaluate our models on the IMDb [172] test
data, containing 25k movie reviews, labeled as either positive or negative. We perform the
same preprocessing steps and use the same vocabulary that we use on the Amazon data.
Performance on IMDDb is expected to be lower, since the data is not from the same distribution

as the training data. But it can be useful as an indicator of the model’s generalizability.

6.4.3 Plaintext Performance

We do all the training and plaintext evaluation using TensorFlow 2.4. As a baseline we

train a simple RNN model consisting of an embedding layer with 128 and Tanh activation,
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a fully connected layer with 630 units and ReLU activation, and a fully connected layer
with 1 unit and Sigmoid activation. We use the Adam optimizer with default parameters
and binary cross entropy as the loss function and train for 32 epochs. This gives us a
baseline against which we can compare our proposed solution. To make a fair comparison
we try to keep the number of trainable parameters as similar as possible. All models have
a similar number of parameters unless stated otherwise. The baseline model achieves a
median balanced accuracy of 81.86% and a median F1 of 91.85%. It is not possible to run
the baseline model over encrypted data in its original form. Neither the Tanh function nor
the ReLLU function can be applied to encrypted data. We use the same model architecture
but replace the Tanh function with f and the ReLU function with the square function.
Additionally, we add Ly weight regularization with a factor of 0.02 to prevent the training
from collapsing. The regularization factor is experimentally determined. After 32 epochs
the model achieves 87.36% median F1 (see Table 6.1 for more details). The model suffers
a 5% drop over the baseline. This shows nonetheless that RNNs can be trained on larger
data sets with PAFs. However, it is necessary to make the correct adjustments in order to
prevent exploding gradients. We found the level of regularization needs to increase with the
number of neurons of in the simple RNN. A RNN model with 512 neurons in the RNN layer
needs an Ly regularization factor of at least 0.1 to prevent a training collapse. The number
of neurons isn’t the only component that factors into the amount of regularization that is
required. It also depends on the PAF used.

Although all components are HE friendly, the model can not be run on encrypted data
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due to its MD, as shown in [2, 70]. These approaches require communication to remove
the noise during computation. Our proposed architecture does not require communication.
For the first experiment we choose ten blocks, leading to sub-sequences of length 6.4. By
using length 14 sub-sequences and an overlap of two between the blocks we can make sub-
sequences integer length and the same size. To evaluate the feasibility of this architecture,
we first train models with Tanh and ReLU activation. We find 128 neurons in the RNN
layers works best. We run experiments with shared weights and individual weights. Since
models with individual weights have more trainable parameters, they have theoretically the
capacity to learn more. We use parameters for both architectures that give the models a
similar number of parameters to the baseline model. Additionally we also train models with
individual weights that have the same number of neurons in the RNN blocks and the fully
connected layer as the models with shared weights, resulting in roughly 3x the number of
parameters. We refer to these models as large. The model with shared weights consists of
10 blocks with 128 units and an overlap of two. The following fully connected layer has 64
units. The model with individual weights has 65 units in the RNN blocks and 6 units in the
fully connected layer. To run on encrypted data we replace the activation functions with HE
friendly polynomials. We train more models with the same parameters using PAFs. The
RNN blocks models with PAFs perform similarly to the RNN blocks with Tanh.

Table 6.1 shows that the F1 scores of the models without PAFs are within 1 percentage
point of each other at 87.08%, 87.96% and 87.73%. On IMDb the large model with the

individual weights has a slight advantage, with 74.83%, over the other models, at 73.51%
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Table 6.1: Median F1 score and median balanced accuracy (BA) of the different architectures
on different data sets

Model Amazon IMDDb Test
F1(%) [BA(%) [F1(%) [BA (%)
Simple RNN (base line) 91.85| 81.86| 77.65 78.53
Simple RNN f 87.36] 77.91| 7229 73.94
PRB 87.08] 79.80] 73.51 75.89
PRB individual weights 87.96] 77.56| 66.67] 69.75
PRB individual weights (large) 87.73| 82.18| 74.83| 77.64
PRB f 86.31] 78.36] 72.99] T74.79
PRB individual weights f 86.02] 78.05] 68.10] 72.52
PRB individual weights f (large)| 85.90] 78.51] 70.33[ 73.99

and 66.67%. These results are 5% below the baseline and on par with RNNs with PAFs.
This shows that our architecture can achieve similar results to a traditional architecture.
Using PAF's (f) reduces the performance slightly. The model with shared weights and PAFs
performs closest to the baseline at 86.31% on the Amazon test data and 74.79 % on the
IMDb data. Models with individual weights suffer a greater drop on IMDb. When using
individual weights a specific block is only ever trained on a specific section of the input texts.
It is unlikely that text from other distributions have the same information in that specific
section. Going forward, we will focus on models with shared weights.

To assess the impact of the number of blocks we create 6 model architectures with a
different number of splits. The RNN block consists of 128 units. We once again control for

number of trainable parameters in the network, by adjusting the number of units in the fully

1280

Taplils We use 5 fold crossvalidation

connected layer. The number of units is calculated as

and train the models for 32 epochs on the Amazon move reviews. Additionally we compare
impact of Tanh activation and PAFs in conjunction with the number of splits. The results are

depicted in Fig. 6.4. There are a number of noteworthy observations. 1) Models using Tanh
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Figure 6.4: Impact of the number of splits on model performance

vary widely in terms of performance compared to PAFs, and the variance in performance is
often greater than that of PAFs models. 2) The performance gets lower as the number of
splits increases. This seems intuitive since the greater the number of splits the shallower the
models becomes. 3) The sweet-spot, for performance on polynomial models, is 16 splits. All
experiments show that it is crucial with PAFs to keep the input values into the activation

functions in a very specific interval, which can be achieved using Ly regularization.

6.4.4 Results on Encrypted Data

To test the performance of our framework on encrypted data, we implement the above-
mentioned networks in C++17. We use the CKKS implementation of HElib [173] with 32
bit of precision for all our networks. Our solution is designed to process large batches of
data, using SIMD batching to, offset the overhead of HE. The data owner needs to create

6400 ciphertexts and encodes multiple instances, up to the batchsize, in the ciphertexts.
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Each ciphertext holds one dimension of all instances in the batch as described in [27]. The
batchsize depends on the crypto parameters. To guarantee privacy, we choose the crypto
parameters that provide a security level of at least 128 bit. We use: L=300, M=2'6 for 64
splits; L=450, M=2'6 for 32 splits; and L=900, M=2'7 for 16 splits, resulting in a security
level of 218, 153 and 157 bits respectively. The batch size is %. Fewer splits require too
much memory. The experiments are preformed on a Microsoft Azure Standard E32-16s_v3
VM running Ubuntu 18.04 with 16 CPU cores and 256 GB of RAM. Truncating and the
embedding operation are performed by the data owner prior to encryption. The encrypted

embeddings are sent to the Cloud where the privacy preserving inference is performed. After

the computation is complete the encrypted result is sent back to the client. The model

4 instances

with 64 splits runs for 19.5 minutes, processing 16,384 instance at once, almost 14 #> 2=,

The model with 32 splits can uses the same batch size but takes almost 35 minutes, or 7.88

instances

sl The model with 16 splits needs 2 hours and 55 minutes to process 32768 instances,

or 3.1 %.

Over 90% of the execution time is spent in the RNN blocks. Our system is highly parallel.
With enough cores available we could run every neuron in every block in parallel. In this
particular architecture we could make use of up to 2048 cores. In a distributed setting each
block could be run on it’s own node. With communication about 2 GB per block, this could
be transferred easily in a data center. Memory is more limiting. The 16 split model takes

up to 215 GB of RAM during processing. Models with fewer splits can not be run on our

machine due to memory limitations. Even the smaller 64 splits model requires over a 100
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Table 6.2: Resource requirements for encrypted (Ctxt) and plain text (Ptxt) execution

Splits| Running-time (s) RAM (GB)
Ptxt| Ctxt |increase | Ptxt| Ctxt |increase
64 25 | 1179 4'7x 3.2 [120.5 37x
32 40 | 2080 H2x 2.5 1106.2 42x
16 97 110527 109x | 3.3 [2I5.6|] ©Obx

GB of RAM. The crypto parameters influence the size of the data transferred. The client
needs to upload 18.75 GB, 25 GB and 100 GB for 64, 32 and 16 splits model respectively.
The response from the Cloud is comparatively small with 3, 4 and 16 MB respectively. The
computational and memory overhead is shown in Table 6.2. Running on encrypted data

introduces 37-109 times overhead.

6.4.5 Comparison with interactive approaches

Prior works on privacy-preserving RNN inference using CKKS [70, 2|, in contrast to our
work, rely on interactive phases for noise removal. We implement the interactive approach
described in [2, 70]. For comparison we use the Simple RNN f model (Table 6.1) and crypto
parameters discussed earlier. The model performance (87.36%) is close to our model using
parallel RNN blocks (86.32%). The number of interactive refresh rounds, for a given set
of crypto parameters, is the same as the number of splits. We do not use an actual client
and simulate the interactive phase by performing the decryption and reencryption on the
same machine. This eliminates any network latency, leading to a lower running time of
the interactive approach than it would be in practice. Table 6.3 shows that our approach
performs faster, even in this ideal setting. On the same batch of data, on the same hardware,

our non-interactive approach performs 1.3 to 2.6 times faster. However, this improvement
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Table 6.3: Resource requirements for RNNs using an interactive phase (ia) and our non-
interactive approach (nia)

Splits/ Running-time (s) RAM (GB)
ia Phases| ia nia |increase| ia nia |increase
64 3076 | 1179 | 0.38x | 24.1 [120.5 HX
32 3895 [ 2080 | 0.53x | 32.8 [106.2] 3.2x
16 14036 [ 10527 0.75x |[145.3]215.6] 1.bx

in running time comes at a cost of 1.5 to 5 times increase in memory consumption, which
could likely be narrowed with optimization. The most important difference of interactive
approaches and our approach is the need to transfer data during the computation. Client
and server need to transfer an extra 64, 42, 94 GB when using 64, 32 and 16 refresh rounds
respectively. The transfer from the Cloud to the client accounts for roughly 60%. Data

transfer using interactive phases increases by a factor of 2 to 3.

6.5 Summary and Discussion

In this chapter, we presented and evaluated a new architecture, parallel RNN blocks, that
allows us to run RNNs over HE data in a non-interactive manner. Previous solutions have
not been able to achieve this. There is a small loss in performance compared to the baseline.
The memory requirements could be reduced using different ciphertext packing techniques.
In this chapter, we propose an architecture for RNNs over encrypted that does not require
interactive phases or bootstrapping. We achieve this by splitting the input sequence into
shorter subsequences and processing these by an individual RNN, called a block. We combine
the outputs of the blocks and feed them into a fully connected layer. In this chapter, we use
concatenation to combine the block outputs. There are two issues with concatenation. First,

as the number of splits increases, so does the dimension of the concatenation. In this chapter,
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we use a maximum of 64 splits, each producing 128 output values. The concatenation has
8,192 values, resulting in a following fully connected layer with a large number of weights.
While a large number of weights in a fully connected layer does not increase the depth, it
does increase the computation time. Secondly, on plain data, RNNs can be run on inputs of
varying lengths. The block architecture, in itself, permits this. Particularly when the blocks
share the weights, we can split a sequence of any length into subsequences and process them
using a block. The issue arises in the concatenation layer and the subsequent fully connected
layer. The fully connected layer expects an input of fixed dimension. This can be produced
by the concatenation layer only if it has a fixed number of inputs, making it incompatible
with varying-length inputs. In the following chapter, we investigate two other approaches

for combining the block outputs.

6.5.1 Statistical significance Test

To establish if the difference in performance between the various models with different ac-
tivation functions and different numbers of splits is statistically significant, we perform a
Mann-Whitney U test. We compute the pairwise p value for all model combinations on the
results of the 5-fold cross-validation. In this case, the null hypothesis is that two models
have different performances, which we can reject at p < 0.05. Fig. 6.5 shows the pair-wise
p-values for the models with Tanh and polynomial activation. Using the model Tanh model
with 0 splits, a vanilla RNN, as the baseline, we can conclude that most models employing
splits have a statistically different performance. However, the performance difference for all

models against the polynomial baseline is statistically significant. The same is true when we
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compare the models with the same number of splits but different activations. We do not find
a significant difference here either. This leads us to conclude the approach of RNN blocks
with concatenation, presented in this chapter, achieves comparable results to the polynomial

baseline RNN and performs slightly worse than the Tanh baseline.

6.5.2 Relation to Truncated Backpropagation Through Time

Truncated Backpropagation Through Time (TBPTT)[174] is a technique for training RNNs
that can make training efficient for long input sequences. The idea behind TBPTT is to run
a gradient computation and weight update after a fixed number of steps k; instead of just
at the end of the sequences. Additionally, the gradient is not computed all the way to the
beginning of the sequence but only for ks steps and is truncated there, hence the name. Our
approach is similar in that we also truncate the gradient computation. However, we truncate
the computation by explicitly splitting the sequence into subsequences. This splitting breaks
apart some of the temporal dependencies at block boundaries. TBPTT can control this
by choosing the values of k; and ks, which control how far back temporal dependencies
should be considered. During inference, TBPTT does not impact the computation; it only
influences training. Therefore, it does not impact how many previous steps have gone into
the current state during inference. However, this is exactly what our approach seeks to
limit. The number of steps that go into a state impacts the multiplicative depth of the
evaluation. We, therefore, need to truncate the forward pass, and we need to truncate it
to short subsequences. Due to the constraints of HE, we can not handle long subsequences.

Because of this truncation, we lose inter-block temporal dependencies.
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Figure 6.5: P-values computed by the Mann-Whitney U test on the F1 scores of 5-fold

cross-validation. Computed for all model pairs using the concatenation strategy and the two
baselines PA None 0 and Tanh None 0.
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CHAPTER 7

ADDITIONAL RNN-BLOCKS ARCHITECTURES

As discussed in the last chapter, the use of concatenation to combine the results of the
RNN blocks comes with some drawbacks. Fig 7.1 shows the architecture without the fully
connected layer following the concatenation layers. The advantage of using concatenation is
that it does not require any computation on encrypted data since we use batch packing. It
only requires a rearranging of the data structure that holds the ciphertext objects. However,
as discussed previously, it creates a large vector of data, which is needed in its entirety for
computing the next layer. If we assume that we are limited in the number of time steps a
block can process due to the multiplicative depth, the contamination vector will grow longer

as the input sequences to the networks grow longer.

‘ Yo, Y1 - Vi ’

Vi v V|
w

w

Figure 7.1: The RNN Blocks architecture. The input sequence xg, x1,...x; is split into ¢
chunks of length n. We process each chunk with an RNN and combine the outputs yo, y1, ..., ¥;
for further processing.
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Figure 7.2: Averaging the outputs yo,...,y; of i +1 RNNs blocks. The input to each block
is a subsequence of length n.

7.1 Averaging block output

An approach to addressing the issues mentioned earlier is to average the output of all the
blocks. To do so we add all the outputs of blocks yq, ..., y; elementwise and divide it by the
number of blocks ¢, shown in Fig. 7.2. Averaging the outputs has several advantages. It
requires little additional computation: only 7 additions and one multiplication. Additionally,
we can perform the additions successively, allowing us to keep the number of objects we
need to keep in memory small. With concatenation, we need to keep all yo, .. ., y; for further
computation. Averaging also allows us to use an arbitrary number of input blocks, placing no
limitations on the length of the sequences that we want to process while also not increasing

the multiplicative depth. However, it could be the case that averaging loses us information.
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7.1.1 FEvaluation

We use the same data set and evaluation strategy as in Section 6.4. We use the Amazon
Movie Review Data [171], which we transform into a binary classification problem from five
classes. We again run 5-fold cross-validation for 64 epochs but stop early if the loss validation
loss does not improve for 12 epochs. We use ten percent of the training data for validation.
We use 128 units in the RNNs and share weights across the blocks. The averaging layer
feeds into a fully connected layer with 630 units, followed by a single output neuron. We
build a set of none HE-friendly models using Tanh as the activation function inside the
RNNs and ReLU in the fully connected layer. The HE-friendly model uses a degree three
polynomial activation (Eq. 7.1) inside the RNNs and z? in the fully connected layer. To
prevent exploding gradients, especially with the polynomial activations, we use Lo, weight

regularization with a strength of 0.02 for the recurrent layer.

—0.001635743030187482° 4 0.2494763656280362 (7.1)

Table 7.1 and Fig. 7.3 show the results of the experiments. As expected, as the number
of splits increases, the performance decreases slightly. The drop is expected since we lose
some temporal dependency at the block boundaries. Considering the RNN using Tanh as
the baseline, we lose a maximum of 8.7% average F1 score between the baseline and the 64
split model using polynomial activation. Based on a Mann-Whitney U test, we conclude
that the difference in performance between these two models is statically significant, with

p = 0.0079 < 0.05. Fig. 7.4 shows the pairwise p values for all averaging models and the
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Figure 7.3: Result of 5-fold cross-validation for RNN blocks with averaging using different
numbers of splits and comparing the HE-friendly model (PA) to the non-HE-friendly model
(Tanh).

baselines computed on the F1 scores of the 5-fold cross-validation. Using the same criteria,
we can conclude the difference in performance between the baseline and the Tanh models
with two and four splits is not statically significant; the difference between the Tanh model
with eight splits and the baseline probably might be statically significant p = 0.056, and the
difference for 16, 32, 64 splits Tanh models is statically significant. When comparing the HE-
friendly models (polynomial activation) to the Tanh baseline, the difference in performance
is significant for all models but the HE-friendly baseline. Comparing the averaging models
with Tanh to the averaging models with polynomial activation, we can conclude that the
difference in performance is probably significant for 2 and 4 splits and not significant for a
larger number of splits.

While there is a significant drop in performance between the baseline and models with a

larger number of splits, models with a larger number of splits are attractive to us. A larger
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Figure 7.4: P-values computed by the Mann-Whitney U test on the F1 scores of 5-fold cross-

validation. Computed for all model pairs using the averaging strategy and the two baselines
PA None 0 and Tanh None 0.
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Table 7.1: Average F1 score for 5-fold cross-validation of the averaging models with Poly-
nomial Activation and Tanh activation, and a varying number of splits. The length of a
subsequence is 64/#Splits. Performed on the Amazon Movie Review Data. 0 splits indicate
the baseline RNN model that is not using blocks.

# Splits | Activation F1
0 Polynomial Activation |0.874
Tanh 0.912
9 Polynomial Activation |0.868
Tanh 0.899
4 Polynomial Activation|0.848
Tanh 0.888
3 Polynomial Activation|0.859
Tanh 0.863
16 Polynomial Activation|0.850
Tanh 0.812
39 Polynomial Activation|0.851
Tanh 0.828
64 Polynomial Activation|0.839
Tanh 0.861

number of splits reduces the multiplicative depth and, thereby, the resource requirements.
The performance difference of models with 8 or more splits is not statistically significant,
even down to one split, which is technicity, not an RNN block, since it only processes one
sequence element. This could suggest that we lose too many temporal dependencies when
the number of splits gets too large. However, it does provide us with an HE-friendly way
for sequence processing. In the next section, we will evaluate an alternative approach to

combining RNN blocks that aims to preserve the recurrent structure more.

7.2 Hierarchical Blocks

In the previous section, we evaluated averaging as a strategy for combining the outputs
of blocks. While it features some desirable properties, the evaluation suggests that we
might lose too many temporal dependencies when we split the input sequence into too many

subsequences. To address this, we now present an architecture that uses hierarchical RNNs
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SN NN

Figure 7.5: Hierarchical RNN Blocks architecture. We stack the output of multiple blocks
(2 in this figure) and run them through another block.

to perform the combination of block outputs. Let n be the length of subsequences and [
the length of the input sequence. In this architecture, we gather the output of up to n
adjacent blocks and stack them together, forming a new sequence. An RNN block once
again processes this new sequence; see Fig. 7.5. This arranges the blocks into layers. Each
layer contains blocks at the same depth of computation. The number of blocks in each layer
decreases until we reach a single block, giving the network a funnel-like shape. The first
layer consists of [/n blocks, and the second layer consists of [1/n?] blocks. We can generalize
this to the number of blocks in the k-th layer is [I/n*]. For simplicity, we constrain [ and n
to be powers of 2. This constraint is not strictly required; however, it simplifies the shape
and split computation.

On encrypted data, the most essential characteristic of the network is the multiplicative

depth. To analyze the depth of an RNN or an RNN block, we can unroll it. Once unrolled, it
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essentially becomes a stack of fully connected layers. A vanilla RNN, on sequence of length
[, turns into a stack of [ fully connected layers. When using blocks with a subsequence
length of n, each block unrolls into n fully connected layers. Let d,. be the depth of one of
the unrolled layers, including activation functions. The depth of a vanilla RNN is then d,.[.
The approaches presented in Chapter 6 and Section 7.1 have a depth of d,n + dy + 1 and
d,n + dy + 2, respectively, where d; is the depth is of a fully connected layer with square
activation. In the hierarchical model, each layer of blocks has a depth of at most d,n. We

can compute the depth of the hierarchical model using the Algorithm 7.

Algorithm 7 Computing the depth of a hierarchical RNN blocks model
Inputs: Input sequence length [, subsequence length n, depth of a timestep in a block d,
Outputs: Depth of the RNN blocks model dj,
1: dp =1 > 1 for the output neuron
2: while [ > 1 do
3: if [ > n then

4 dy, = dp, + nd,
5 else

6: dy = dy + ld,
7 end if

8 l:=1/n

9: end while

We can easily see that the depth of the hierarchical models is higher than the depth of
models with averaging or contamination. However, it is also lower than the depth of a vanilla

RNN by at least a factor of two.

7.2.1 FEvaluation

We now evaluate the performance of hierarchical RNN blocks. We use the same setup as in

Section 7.1.1 for the averaging models. The length of the input sequence is 64. And we use
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Figure 7.6: Result of 5-fold cross-validation for hierarchical RNN blocks using different
numbers of splits and comparing the HE-friendly model (PA) to the non-HE-friendly model
(Tanh).

128 units in the RNN blocks. The blocks in the first layer share the weights with each other,
and the blocks we use for combining the outputs share their weights. However, we leave out
64 splits since this results in a subsequence length of one. The architecture needs at least a
subsequence length of two to combine the outputs of at least two blocks as the input for the
next layer. We use subsequence lengths of 2, 4, 8, 16, and 32, which results in 32, 16, 8, 4,
and 2 splits respectively. We again use the same 5-fold cross-validation we used earlier, with
the same folds.

Table 7.2 and Fig. 7.6 show the result of the experiments. We observe that the mod-
els using polynomial activations consistently have a higher average F1 score than the Tanh
models with the same number of splits. We again perform a Mann-Whitney U test to es-
tablish the statistical significance of the performance differences. The results are shown in

Fig. 7.7. We can see that there is no statistically significant difference in the performance of
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Table 7.2: Average F'1 score for 5-fold cross-validation of the hierarchical models with Poly-
nomial Activation and Tanh activation, and a varying number of splits. The length of a
subsequence is 64/#Splits. Performed on the Amazon Movie Review Data. 0 splits indicate
the baseline RNN model that is not using blocks.

# Splits | Activation F1
0 Polynomial Activation|0.874
Tanh 0.912
9 Polynomial Activation |0.902
Tanh 0.833
4 Polynomial Activation |0.894
Tanh 0.899
3 Polynomial Activation |0.894
Tanh 0.864
16 Polynomial Activation|0.873
Tanh 0.871
39 Polynomial Activation|0.849
Tanh 0.840

the models using polynomial activation with 2, 4, and 8 splits compared to the Tanh base-
line. The models with 16 splits perform similarly to each other regardless of the activation
function, and so do the models with 32 splits. The polynomial activation models with 2 and
8 splits show a significant performance improvement over their Tanh counterparts. At the
same time, the models with 4 splits perform very similarly. This shows that this architecture
can compensate for some of the temporal dependency loss we saw earlier and achieve close
to baseline performance. Additionally, the results suggest that using polynomial activations
does not harm the performance of the model since polynomials perform at least as well as
Tanh with the same number of splits. However, we still need to compare all three strategies
to each other, which we will do in the next section.

The hierarchical architecture shows near baseline performance; however, it exhibits higher
multiplicative depths. Using Algorithm 7, we can compute the depth factors d to be 13, 13,

17, 21, and 34. To get the actual multiplicative depth of the model, we calculate dd,.
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We again use the activation function shown in Eq. 7.1. This gives us d, = 3, leading
to a total multiplicative of the models between 39 and 66. These depths are too high
to be practical without bootstrapping; however, it would reduce the number of required
bootstrapping operations. If we take Jang et al. [73] as a guideline and estimate that we
need to perform bootstrapping every four layers (note: these are unrolled layers, not blocks).
This gives between 2 and 8 bootstrapping operations depending on the split length. In a
vanilla RNN with the same activation function and input sequence of length 64, we would

need 16 bootstrapping operations.

7.3 Comparing Architectures

In this and the previous chapter, we presented three variants of the RNN blocks architec-
ture: concatenation, averaging, and hierarchical. Each one has its strengths and drawbacks.
Assuming the same number of splits, concatenation has the lowest multiplicative depth, av-
eraging requires one more multiplication than concatenation, and the hierarchical structure
requires the most multiplications. Theoretically, averaging should be faster and require less
memory than concatenation since the last hidden layer has fewer connections, and the num-
ber of objects we need to keep in memory is significantly reduced. The hierarchical approach
is, in all likelihood, the slowest since we need to incorporate bootstrapping. In terms of
memory, it has a similar profile to concatenation if implemented naively. We can theoreti-
cally reduce the memory footprint by computing the network in a dept first approach. This

should lead to a lower number of ciphertexts that we need to keep since each block reduces
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validation. Computed for all model pairs using the hierarchical blocks strategy and the two
baselines PA None 0 and Tanh None 0.
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Figure 7.8: Performance comparison of all three RNN block architectures, concatenation
(concat), average, and hierarchal. None indicates the baseline vanilla RNN with 0 splits.
Tanh and Polynomial Activation (PA) indicate the activation function used. Dotted lines
are purely visual dividers for clarity.
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a subsequence into a single output.

The resource requirements of the model are not the only important factor when selecting
a model. Perhaps more important is the model performance. We now compare the models
presented in Chapter 6 and Sections 7.1 and 7.2 with each other in terms of performance.
For all models, we perform 5-fold cross-validation on the Amazon Movie Review dataset
[171], and use the same preprocessing described in Chapter 6. Table 7.3 and Fig. 7.8 show
the results of the experiments.

We again perform a Mann-Whintey U test to establish the statistical significance of the
difference in performance. We perform pairwise for all models with polynomial activation
and the baseline models. Fig. 7.9, 7.10, and 7.11 show the result of the tests. By average

F1 score, the best-performing model is the vanilla RNN with Tanh activation. However,
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Table 7.3: Performance comparison of all combination strategies depending on the number
of splits. F1 is the average F'1 score on the test fold for 5-fold cross-validation. The highest
average F'1 score of a given number of splits is bold.

# Splits | Combination Acltivaution1 X F1

Polynomial Activation| 0.874

0 None Tanh 0.912

Polynomial Activation| 0.868

) average Tanh 0.899

Polynomial Activation| 0.867

concat Tanh 0.846

hierarchical %giyﬁlomlal Activation 0098?33

Polynomial Activation| 0.848

A average Tanh 0.888

Polynomial Activation| 0.877

concat Tanh 0.883

hierarchical ggilyﬁlomlal Activation 00&%1

Polynomial Activation| 0.859

s s 0870
olynomial Activation| 0.

concat Tanh 0.862

hierarchical %gily}?omlal Activation 00885();1l

Polynomial Activation| 0.850

I 0:880
olynomial Activation |0.

concat Tanh 0.851

hierarchical %giyﬁomlal Activation 82;?

Polynomial Activation| 0.851

2 average Tanh 0.828

Polynomial Activation|0.864

concat Tanh 0.855

hierarchical %gilyﬁlomlal Activation 8238

Polynomial Activation| 0.839

o4 o ga{lh A 00§61

olynomial Activation|0.865

concat Tanh 0.857

as shown earlier, the hierarchical models with polynomial activation with 2, 4, and 8 splits

show no statistically significant difference in performance. When we compare the difference

between the hierarchical models and the averaging models, we find that the hierarchical

models perform significantly better, up to 16 splits. At 32 splits, there is no significant

difference between the performance. We further find that averaging with 2 splits performs
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Figure 7.9: P-values computed by the Mann-Whitney U test on the F1 scores of 5-fold cross-
validation. Computed for all model pairs using the concatenation and averaging strategy
and the two baselines PA None 0 and Tanh None 0.

as well as the hierarchical model with 16 splits.

When comparing the hierarchical models with the concatenation models, we see a slightly
different picture. The hierarchical model performs significantly better only with 2 splits. In
all other cases, with the same number of splits, there is no significant difference in perfor-

mance. In comparison, the hierarchical models outperform the averaging model in more

cases.
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Lastly, we compare the averaging and concatenation models. Interestingly, there is no
significant difference in performance with the same number of splits, except for 16 splits.
Here, the concatenation performs better. As the number of splits increases, the concatenation
models can retain performance the best. The hierarchical models outperform them when the
number of splits is low; however, they cannot keep this performance as the splits increase.
We hypothesize that the concatenation layer retains the most temporal dependencies of the

architecture presented here.

7.4 Summary and Discussion

In this chapter, we presented two additional architectures that use the RNN blocks idea. We
analyzed their performance, advantages, and drawbacks and compared them with each other.
If computational cost is not essential, hierarchical RNN blocks can offer a good theoretical
trade-off of depth and performance. They outperform other architecture at a small number
of splits and have no significant drop in performance compared to the baseline. However,
they require significantly fewer bootstrapping operations than simply using a vanilla RNN.
They might prove to be more beneficial on longer input sequences. When we can not use
bootstrapping, concatenation offers a decent performance-depth tradeoff at a larger number
of splits.

While we evaluate the architectures presented here on vanilla RNNs, they are not limited
to those. In fact, we could substitute those for other layers like LSTMs, GRUs, or one-

dimensional convolutions. It would be reasonable to suspect that we can see similar depth
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Figure 7.10: P-values computed by the Mann-Whitney U test on the F1 scores of 5-fold
cross-validation. Computed for all model pairs using the concatenation and hierarchical
strategy and the two baselines PA None 0 and Tanh None 0.

reduction using those layers.
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Figure 7.11: P-values computed by the Mann-Whitney U test on the F1 scores of 5-fold
cross-validation. Computed for all model pairs using the averaging and hierarchical strategy

and the two baselines PA None 0 and Tanh None 0.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

In this dissertation, we investigate issues of privacy-preserving neural networks with HE. To
facilitate our experiments, we implement an optimizing compiler based on XLA that trans-
forms TensorFlow models into HE operations. The compiler performs various optimizations
on the graph, such as polynomial detection, efficient polynomial evaluation, and precom-
putation of operations with known inputs. However, foremost, it reduces the programming
overhead of running models on encrypted data by providing a simple Python interface. Ad-
ditionally, it provides us the access we need to the low-level functions and implementations
we need to implement our research. Other closed-source tools, like HELayer, do not provide
their source code, making it impossible for us to extend them.

One of the issues we investigate in-depth is the memory overhead of batch-packed convo-
lutions on encrypted data. We introduce a schedule representation that allows us to analyze
the convolution on a basic operation level. Along with the representation, we present an
algorithm to execute a schedule in parallel using multiple execution threads. We propose
multiple schedules that swap ciphertexts and plaintexts in and out of memory to optimize
memory usage while minimizing execution time. Using these optimized schedules, we can
greatly reduce the memory requirements at little runtime cost.

The other issue we investigate is RNNs over encrypted data. When using HE, the depth

of RNNs poses a problem. We present and evaluate multiple strategies for dealing with
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the depth. Omne of the strategies relies on communication between the client and server
to reset the noise level during computation; however, this can expose the internals of the
server-side network to the client. A malicious client could use this information to steal the
model weights. To mitigate this, we present an architecture that uses recurrent elements,
which we call RNN blocks, to eliminate communication. It does this by reducing the depth
of the network. We can reduce the network depth by splitting the input sequence into
subsequences and processing the subsequences with RNN blocks. We need to combine the
output of the blocks for further processing by the network. We analyze three combining
approaches: concatenation, averaging, and a hierarchical approach. In our experiments,
we find that concatenation works best for a large number of splits and short subsequences,
and the hierarchical approach works best for very few splits. However, the hierarchical
approach produces deeper models than concatenation and averaging and, therefore, needs
bootstrapping on encrypted data. Despite this, the hierarchical models are only half as deep
as vanilla RNN would be. The averaging approach likely performs better when we work with
input sequences of varying lengths since its structure does not rely on the exact number of

splits.

8.2 Future Work

In the future, we want to continue the research problems addressed in this dissertation.
Focusing on addressing the resource requirements of HE-based PPML and privacy-preserving

neural networks for sequence processing.
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8.2.1 Future work 1: Addressing the resource overhead

The work presented here relies on batch-packed SIMD processing. However, other ciphertext-
packing approaches can reduce latency and memory overhead further by introducing im-
proved algorithms that rely on rotation. During graph analysis, we can also determine the
best ciphertext-packing. The naive and batched packing suffers from large computational
overhead and high inference latency but offers excellent throughput. More efficient packing
techniques like the ones proposed by Jiang et al. [61] and Brutzkus et al. [63] use fewer
ciphertexts, reducing the inference latency. However, selecting the most efficient packing de-
pends on the model. Determining the best layout for a given model is still an open problem.
Furthermore, it is possible that for a given model, none of the published layouts is the most
efficient. An exhaustive search of the space of proposed layouts can be feasible. However,
searching all possible layouts is probably intractable. We need to investigate strategies for
searching the layout space. A possible avenue is inspired by the recent success of deep re-
inforcement learning for circuit design [175] and improved matrix multiplication [176]. We

want to investigate their potential application to cipher-packing design for HE.

8.2.2 Future work 2: Privacy-preserving Neural Networks for Sequence
Processing

In this dissertation, we exclusively use vanilla RNNs for sequence processing. However,
vanilla RNNs have been replaced mainly by other recurrent layers like LSTMs or GRUs.
These do not suffer from vanishing gradients during training the same way vanilla RNNs

do. However, they are computationally more complex. With improvements in ciphertext-
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packing and bootstrapping, some prior work realizes GRUs over encrypted data [162]. It
seems likely the number of bootstrapping operations can be reduced by combining the RNN
block architecture presented here with layers like LSTMs or GRUs. We want to investigate
how RNN blocks interact with LSTMs and GRUs.

Furthermore, especially in language processing, RNNs are often replaced with Trans-
formers[177] nowadays. Little work is dedicated to privacy-preserving transformers using
HE [178]. Here, the authors make extensive modifications to the transformer architecture by
dropping some parts of the model and replacing others with approximations. An additional
issue is that the inference relies on server-client interaction. We want to investigate strategies

for eliminating this interaction and making inference non-interactive.
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