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ABSTRACT

Graph Neural Networks (GNNs) are essential for handling graph-structured data, often

containing sensitive information. It’s vital to maintain a balance between data privacy and

usability. To address this, this dissertation introduces three studies aimed at enhancing pri-

vacy and utility in GNN applications, particularly in node classification, link prediction, and

graph classification. The first work tackles celebrity privacy in social networks. We develop

a novel framework using adversarial learning for link-privacy preserved graph embedding,

which effectively safeguards sensitive links without compromising the graph’s structure and

node attributes. This approach is validated using real social network data. In the second

work, we confront challenges in federated graph learning with non-independent and identi-

cally distributed (non-IID) data. We introduce PPFL-GNN, a privacy-preserving federated

graph neural network framework that mitigates overfitting on the client side and inefficient

aggregation on the server side. It leverages local graph data for embeddings and employs

embedding alignment techniques for enhanced privacy, addressing the hurdles in federated

learning on non-IID graph data. The third work explores Few-Shot graph classification,

which aims to classify novel graph types with limited labeled data. We propose a unique

framework combining Meta-learning and contrastive learning to better utilize graph struc-

tures in molecular and social network datasets. Additionally, we offer benchmark graph

datasets with extensive node-attribute dimensions for future research. These studies collec-

tively advance the field of graph-based machine learning by addressing critical issues of data

privacy and utility in GNN applications.

INDEX WORDS: Machine Learning, Graph Neural Networks, Privacy Preserva-
tion
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CHAPTER 1

INTRODUCTION

1.1 Background of Graph Learning

Graphs are a powerful and versatile tool for modeling complex systems and relationships,

which can represent a wide variety of data types, including social networks, biological net-

works, and physical systems. Graph learning, also known as graph-based machine learning, is

a subfield of machine learning that deals with the analysis and prediction of graph-structured

data, which has its roots in graph theory and combinatorial optimization. Although these

topics have been studied for many decades in mathematics and computer science, there

has been a growing interest in applying these techniques to problems with the increasing

availability of large-scale graph-structured data and advances in machine learning.

Recent developments in graph representation learning and graph neural networks (GNNs)

have significantly contributed to the advancement of graph learning. Representation learning

methods aim to learn a low-dimensional embedding of nodes in a graph that captures the

underlying structure and properties of the graph. GNNs, on the other hand, are neural

network architectures designed to operate on graph-structured data in various tasks such as

node classification, link prediction, and graph classification.

In conclusion, graph learning is a rapidly growing field that has the potential to enable

the development of intelligent systems that can analyze and reason complex graph-structured

data. The field continues to evolve with new advancements in graph theory, machine learning,

and computer science, making it an exciting area of research.
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1.2 Privacy Issues in Graph Neural Networks

Graph Neural Networks (GNNs), known for their effectiveness in tasks like node classifica-

tion and link prediction, raise notable privacy concerns [1]. Among these concerns is the risk

of inferring sensitive information about individual nodes or edges within a graph, even when

such information is not explicitly provided as input to the model, resembling the inference

attack [2, 3]. In the context of autonomous driving systems, both graph data and image

data introduce unique privacy challenges. Graph data, employed in systems analyzing traf-

fic patterns and road infrastructure, presents significant concerns regarding privacy leakage.

For instance, an inference attack within a Graph Neural Network (GNN) could potentially

unveil sensitive information about a specific vehicle, like its location history or driving be-

havior, by discerning patterns within publicly available traffic data. This privacy issue arises

because GNNs inherently encode personal data into their structural representations, mak-

ing users susceptible to privacy breaches and linkage attacks. Conversely, image data used

in autonomous vehicles, encompassing camera footage of road scenes and nearby objects,

introduces its own privacy challenges [4, 5]. Although the raw image data may not overtly

disclose personal information, privacy concerns may arise when images inadvertently capture

identifiable details such as license plates, faces, or unique vehicle features [6]. These concerns

relate more to the potential for privacy breaches through unintentional data collection and

storage.

These privacy challenges contrast with those encountered in image and video recogni-

tion [7], as GNNs inherently encode personal data into their structural representations, thus
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exposing users to privacy breaches and linkage attacks. In contrast, image recognition pri-

marily deals with anonymized pixel-level data [6], presenting distinct yet equally important

privacy challenges. Both domains stand to gain from privacy-preserving techniques like dif-

ferential privacy [8], though their application complexities vary, and they share the intricate

dynamics of managing data owned by multiple parties.

To address these privacy concerns, researchers [9] are exploring methods for privacy-

preserving GNNs. These methods include differential privacy [10], which adds noise to

the inputs or outputs of a model to prevent the inference of sensitive information, and

homomorphic encryption, which allows computation on encrypted data without revealing

the underlying plain text. In addition to these methods, there are recent works in the field

of federated learning, which allow multiple parties to train a model on their data while

keeping it private. While these techniques can help protect privacy, they may suffer from

reduced model performance or increased computational complexity. Therefore, it is critical

to consider the trade-offs between data privacy protection and model utility.

1.3 Federated Graph Learning on Non-IID Graph Data

Federated learning (FL) is a learning strategy for training the model on decentralized data. In

federated learning, the goal is to train a global model with better scalability while preserving

local clients’ data privacy.

One of the challenges in federated graph learning is dealing with non-IID (non-identically

and independently distributed) graph data. It usually happens because the graph data of
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different clients may have different properties or structures when collected under different

conditions.

To address this privacy issue and enhance the performance of federated graph learn-

ing, several strategies can be employed. One approach is to leverage domain adaptation

techniques that aim to align the distributions of data across different client nodes, thereby

mitigating domain shift issues. Techniques like adversarial training can be employed to learn

a shared feature space for all clients, promoting alignment and reducing disparities among

data distributions. Transfer learning is another avenue to explore, allowing knowledge from

one node to improve the performance of another. Additionally, research into embedding

alignment methods is promising, focusing on aligning the node representations in a graph

across various clients, ultimately enhancing both privacy and model effectiveness.

1.4 Few-Shot Graph Learning

Few-shot graph learning focuses on developing algorithms that can learn from a small number

of samples or ”shots” of graph-structured data. The goal of few-shot graph learning is to

enable the model to generalize to new graphs or new classes of nodes or edges based on the

limited number of training data.

The main challenge of few-shot graph learning is learning a generalizable graph repre-

sentation from a small number of training samples. To overcome this challenge, researchers

have proposed various methods: (i) Meta-learning algorithms aim to learn the generalizable

knowledge from the few-shot examples, which can be used to adapt to new tasks quickly; (ii)
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Transfer learning leverages knowledge from one task or domain to improve performance on

another task or domain [11]; (iii) Graph similarity methods aim to find similar graphs be-

tween the training set and the test graph, then use the knowledge from these similar graphs

to make predictions on the test graph.

In this dissertation, we focus on research on the above topics. By investigating practical

problems in each domain, we propose effective methods that can provide better data privacy

protection and usability in the applications of GNNs, respectively.

First, aiming at the privacy protection of graph learning, we propose a link-privacy

preserved graph embedding framework using adversarial learning, which can reduce the

adversary’s prediction accuracy on sensitive links while persevering sufficient non-sensitive

information such as graph topology and node attributes in graph embedding.

Second, we design a federated graph learning framework combined with the embedding

alignment technique. Because the server only needs to integrate client-preferred public infor-

mation, it can significantly reduce the risk of privacy disclosure during the learning process.

The embedding alignment technique ensures that the clients holding non-IID data can change

information. Furthermore, we find that injecting aligned information into the local model

has regularization effects empirically and thus avoids model overfitting.

Third, by investigating a general scenario for few-shot graph classification tasks, we

propose a learning framework that integrates both Meta-learning and contrastive learning

techniques into an end-to-end process to obtain accurate graph classification results. We

also construct two general multi-class benchmark graph datasets with large node-attribute
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dimensions to facilitate future research on few-shot graph classification.

We organized the dissertation as follows: Related works on the above topics in graph

learning are introduced in Chapter 2. Then, we present the details of each research in

Chapter 3, Chapter 4, and Chapter 5, respectively. Finally, we make a conclusion about this

dissertation in Chapter 6.
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CHAPTER 2

RELATED WORKS

2.1 Graph Neural Networks

2.1.1 Graph Embedding Methods

DeepWalk [12] marks a significant step in unsupervised graph representation learning by

using random walks across a network and applying the skip-gram technique [13] to identify

underlying vertex patterns. Following the same architectural principle, Node2Vec [14] refines

vertex sampling using an enhanced random walk strategy, effectively capturing the graph’s

structural similarities and connections. Meanwhile, LINE [15] emphasizes the preservation

of both local and global network features through two specific objectives—first-order and

second-order proximities. This approach proves effective for networks with directionality or

weight attributes. Building on LINE’s foundation, SDNE [16] employs an autoencoder to

concurrently optimize the two proximity objectives, offering a solution especially effective

for networks with sparse connections. Moving beyond merely focusing on graph structures,

GAE [17] harnesses graph convolutional networks (GCNs) to encode node information, en-

hancing its capability by factoring in node features. Subsequent studies [18, 19] validate

GAE’s efficacy, especially in tasks like link prediction and recommendation systems. While

substantial progress has been made in graph embedding techniques, the aspect of privacy in

embedding outputs has received insufficient attention, akin to the growing concern surround-

ing the popularity of backdoor attacks in image models, highlighting significant security and

privacy risks in both graph-based and image-based machine learning applications.
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2.1.2 Embedding Space Alignment

Embedding techniques have gained significant traction in the realms of machine learning and

graph analysis [20]. In this context, aligning various embedding spaces is crucial, drawing

parallels to language translation in bridging communication gaps between different languages.

Leading the charge in alignment methodologies, cross-lingual word embedding alignments

have seen a surge in interest and development over recent years [21]. Notable frameworks

like MUSE [22] and VecMap [23] offer cutting-edge toolkits tailored for Bilingual Lexical

Induction (BLI) datasets. As applications rooted in knowledge extraction such as question

answering and knowledge graph completion evolve, there’s been a marked increase in research

focusing on knowledge graph embedding alignments [24, 25]. These comprehensive investi-

gations underscore the potential of harnessing alignment techniques not merely as training

objectives but as pivotal instruments for information extraction and integration throughout

the training phase.

2.1.3 Graph Contrastive Learning

Graph Contrastive Learning (GCL) aptly derives its name from its primary function: con-

trasting graph samples. It ensures that samples with similar distributions are drawn closer

in the embedding space, while those from distinct distributions are pushed apart. With

contrastive learning [26] serving as the foundation of GCL, recent studies have delved into

the intricacies of graph augmentation strategies. GraphCL [27] examines four distinct graph

augmentations, integrating various priors for the unsupervised representation of graph data.
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Building on this, the authors [28] introduce JOint Augmentation Optimization, an encom-

passing bi-level optimization structure that automates data augmentations. GCA [29], in a

similar vein, offers an adaptive augmentation technique that takes into account the topolog-

ical and semantic nuances of a graph.

Several initiatives aim to generate enriched graph views. GRACE [30] devises a dual-

layered approach, amalgamating structure, and attribute levels to ensure a variety of node

contexts. InfoGCL [31] adopts the Information Bottleneck principle, aiming to trim down

the mutual information among contrastive segments. Meanwhile, AD-GCL [32] sidesteps

redundancy by honing adversarial graph augmentation strategies.

Sampling bias presents a recurring challenge in GCL. To counter this, Lin et al. [33] cham-

pion a prototype-centric clustering method, and Yu et al. [34] forgo graph augmentations,

opting instead to infuse uniform noises to bolster the evenness of the resulting representa-

tions. Recognizing the escalating interest in GCL, PyGCL [35] emerges as a bench-marking

tool, furnishing empirical insights into prevailing GCL algorithms and illuminating pathways

for future exploration.

GCL can be also practically applied in blockchain-based IoT systems to enhance secu-

rity, privacy, and insights. For instance, in a large-scale IoT network utilizing blockchain,

this technique can be employed to learn meaningful representations of IoT devices, transac-

tions, and interactions [36, 37]. These representations aid in device identification, anomaly

detection, and tracking within the network, bolstering security and fraud detection [38].

Graph representations learned through contrastive learning also enable network visualiza-
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tion, helping administrators understand network topology and data flows intuitively. Fur-

thermore, this approach allows for privacy-preserving analysis while facilitating knowledge

transfer between similar IoT networks, ultimately improving the efficiency and effectiveness

of blockchain-based IoT applications.

2.2 Link Privacy Preservation in Social Networks

The deepening exploration of Online Social Networks (OSNs) has magnified concerns sur-

rounding user privacy. Korolova et al. [39] demonstrate how attackers, with minimal infor-

mation from a few users, can reconstruct the link structure of an entire network. Ying and

Wu [40] assess the efficacy of edge randomization in safeguarding sensitive link privacy and

highlight potential risks—attackers can improve link prediction accuracy using node prox-

imity measures. In another study, Fire et al. [41] show that by utilizing minimal training

data, one can reconstruct links removed for privacy reasons using a link prediction classifier.

Fard and Wang [42] introduce a structure-sensitive randomization approach that conceals

sensitive links in directed graphs with minimal data distortion. Acknowledging the intricate

relationship between utility/public attributes, private/public attributes, and link data, Cai

et al. [43] fashion a comprehensive strategy to cleanse social networks, protecting against

inference attacks on user profiles and their interrelations.

While these studies [44, 45] present a balance between data utility and privacy, they

overlook the potential of integrating their approaches with graph embedding—a potent tool

in graph analysis. Relevantly, DPNE [46] emerges as a pioneering effort to ensure differential
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privacy in network embedding. PPGD [47] further introduces a differentially private gradient

descent technique tailored for matrix factorization (MF)-based graph embedding matrix

sharing. However, it’s worth noting that even though differential privacy is often viewed as a

pinnacle in privacy standards, it isn’t foolproof against all privacy threats. The performances

of both DPNE and PPGD in graph representation are, additionally, constrained by their

reliance on matrix factorization methods.

2.3 Federated Learning

2.3.1 Federated Learning with Non-IID Dataset

Non-IID local data introduces statistical challenges to federated learning, impacting train-

ing convergence and markedly reducing accuracy. Addressing this, Zhao et al. [48] present

a strategy to enhance the training of non-IID data by establishing a globally shared data

fraction across all edge devices. Wang et al. [49], recognizing the bias induced by non-IID

data, introduce Favor, an experience-driven control framework. This framework intelligently

selects client devices for each federated learning round to balance the bias and hasten con-

vergence.

Several federated learning algorithms aim to optimize learning efficiency in non-IID data

scenarios. FedProx [50] emerges as a re-parametrized iteration of FedAvg, breaking ground in

managing federated network heterogeneity. FedPD [51] investigates the non-convex behavior

of the FedAvg algorithm, leading to a federated learning framework that boasts optimal rates

and adaptivity to non-IID data. Similarly, Li et al. [52] unveil FedBN, incorporating local
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batch normalization to counteract feature shifts prior to model averaging, thereby expediting

convergence rates.

Despite these advances, Li et al. [53] demonstrate that no single state-of-the-art FL

algorithm consistently outperforms others across diverse data partitioning strategies, which

encompass typical non-IID data scenarios. For preserving differential privacy in non-IID

federated learning contexts, Xiong et al. [54] craft the 2DP-FL algorithm, which employs

adaptable noise to align with varied privacy benchmarks. However, while these methods

make strides across various domains, they overlook the potential of leveraging graphs that

inherently display non-IID characteristics as experimental datasets.

To further optimize federated graph learning, game theory can also be integrated into the

framework [55]. Game-theoretical models can help analyze and design incentive mechanisms

that encourage clients to actively participate while preserving their data privacy. By aligning

the interests of clients and the global model, game theory can contribute to more efficient

and privacy-conscious federated graph learning systems.

2.3.2 Federated Learning on Graph Neural Networks

In contrast to the extensive advancements in the vision and language domains, research

on federated learning in graphs remains somewhat underrepresented. For instance, SGNN

[56] employs a similarity-based graph neural network to grasp the structural information

of nodes. Still, it primarily adopts the concept of federated learning to conceal original

data from varying sources. In a similar vein, Lalitha et al. [57] introduce a distributed

learning algorithm where nodes refine their beliefs through information aggregation from
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neighbors, aiming to understand the optimal model for the entire network. The emergence of

FedGraphNN [58] propels GNN-based federated learning research, positioning it as a pivotal

federated learning system and benchmark. Yet, their findings underscore significant hurdles

in federated GNN training. Notably, federated GNNs often underperform in datasets with

a non-IID split compared to centralized GNNs, highlighting the need for intensified research

in this sector.

Furthermore, federated GNN encounters fundamental challenges inherent to traditional

federated settings, such as Expensive Communication [59], Systems Heterogeneity, Statisti-

cal Heterogeneity [60], and Privacy Concerns [50]. In response to the statistical heterogeneity

of data, He et al. [61] unveil SpreadGNN, an innovative multi-task federated training frame-

work. This approach operates even with partial labels and without a central server, lever-

aging Decentralized Periodic Averaging SGD for decentralized multi-task learning issues.

Addressing privacy considerations, Sajadmanesh et al. [62] craft an architecture-agnostic

GNN learning algorithm that boasts formal privacy assurances rooted in Local Differential

Privacy. This mechanism also integrates features from multi-hop nodes to clarify noisy labels.

Beyond foundational models and theoretical insights, the practical application of federated

GNN warrants exploration. As a case in point, FedGNN [63] presents a federated structure

for the GNN-centric recommendation system. This model facilitates the collective training

of GNN models from dispersed user data while employing elevated user-item interaction data

to fortify privacy. In this article’s subsequent sections, we delve into these four challenges

within our work and elaborate on the framework’s versatility.
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2.4 Few-Shot Learning

2.4.1 Few-Shot Learning and Meta-learning

Wang et al. [64] notably define FSL as a machine learning problem characterized by E, T,

and P. In this context, the machine draws from experience E with limited supervised data to

address task T, aiming to enhance the performance measure P. Meta-learning, often termed

”learning-to-learn”, emerges as the prevailing framework for FSL in contemporary research

[65]. This approach is perceived to offer a vital advantage: it identifies the coherence between

training and testing objectives, equipping the model to derive insights directly from few-shot

classification tasks [66]. The Matching Network [67] and the Prototypical Network [68] are

two meta-learners that both incorporate a memory component via neural networks. While

the Matching Network crafts shared representations for labeled examples and associate a

new test instance with stored examples using cosine similarity, the Prototypical Network

establishes a prototype vector space for individual classes. It then links the test instance to

the prototype by determining the softmax likelihood based on a distance metric.

2.4.2 Few-Shot Learning on Graph Classification

Model-Agnostic Meta-learning (MAML) [69] is designed to identify an optimal model pa-

rameter initialization, enabling efficient generalization to new tasks using just a few gradient

steps and a limited dataset. Expanding on this concept, Ma et al. [70] introduce a graph

meta-learner that leverages GNN-based modules for swift adaptation to graph data. Addi-

tionally, they implement a step controller to ensure the robustness and generalizability of
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the meta-learner. Taking cues from the graph’s normalized Laplacian spectrum, Chauhan

et al. [71] suggest a few-shot graph classification approach. This method taps into latent

inter-class relationships constructed by a super-graph, where the Lp Wasserstein distance

functions as the metric, clustering the super graphs to prototype graphs. On another front,

SMF-GIN [72] offers a metric-based meta-learning framework for few-shot graph classifica-

tion tasks. This framework, anchored on the Graph Isomorphism Network [73], meticulously

incorporates both global and local structures of the input graph via an attention mechanism.

Recently, Hassani et al. [74] put forth an attention-focused graph encoder. This innovative

approach employs three coherent graph views to glean task-specific representations for rapid

adaptation and task-agnostic information for streamlined knowledge transfer.

Meta-learning proves highly practical for enhancing the effectiveness of Internet of Things

(IoT) applications, particularly those involving graph data, by providing heightened adapt-

ability and operational efficiency. In IoT networks characterized by intricate graph structures

depicting sensor relationships and data flows, meta-learning empowers models to swiftly ad-

just to shifts in sensor deployments, significantly improving system responsiveness. It plays a

pivotal role in anomaly detection, dynamically adapting to evolving network topologies, and

optimizing resource allocation, even in resource-constrained environments, thereby bolster-

ing overall system performance. Furthermore, meta-learning facilitates seamless integration

of heterogeneous data sources, streamlining knowledge transfer between different IoT de-

ployments [75]. Additionally, it effectively manages the challenges posed by ever-changing

network conditions. Moreover, meta-learning’s capacity to enhance adaptability in edge
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computing scenarios [76], enabling local data processing on IoT devices, solidifies its status

as a valuable tool for addressing the multifaceted complexities of IoT applications [77].
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CHAPTER 3

Link-privacy Preserving Graph Embedding Data Publication With Adversarial
Learning

3.1 Introduction

In recent years, social networks have transitioned from mere entertainment platforms to

being deeply interwoven into daily lives. As of January 2020, social media users numbered

around 3.80 billion, growing at a rate of 7 percent annually. These networks not only

facilitate interactions between users and their connections but also empower third parties to

leverage social network data for diverse purposes [78]. These purposes range from business

promotions to healthcare enhancements and even disaster prevention, all made possible

through advanced data mining and machine learning techniques [79, 80, 81, 82, 83].

However, the intricate combinatorial structures of graph data hinder the broad appli-

cation of many machine learning methods, which primarily accept vector representations.

Graph embedding techniques offer a compelling solution, converting graph data into low-

dimensional vectors, thus enabling the application of a broader array of statistical and ma-

chine learning tools [84]. It’s imperative that these vectors retain not only the graph topology

but also other pertinent graph information. Consequently, the release of graph embedding

data poses a similar challenge as publishing raw social network data: the significant risk to

user privacy. While it’s possible to sanitize a social network by subtly altering the original

graph to maintain utility and safeguard user privacy [85, 86], using graph embedding im-

mediately after traditional data anonymization might undermine model effectiveness. Given
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that dominant graph embedding techniques focus on both local neighborhood and global

graph structures, revealing details about a removed node/user becomes plausible through

the embedding vectors of adjacent nodes [87].

Recently, the concept of differential privacy entered the domain of graph embedding. This

approach ensures the output of the disclosed graph embedding matrix remains statistically

consistent, even when an edge in the original graph gets added or removed. However, the

multi-dimensional nature of graph data makes it highly sensitive, possibly resulting in di-

minished utility and heightened computational costs. As a result, striking a balance between

sharing social graph embeddings and maintaining user privacy becomes essential.

This work delves into the concept of ”celebrity privacy,” which alludes to the rights of

celebrities and public figures to control information disclosure [88]. Unlike the general pop-

ulace, celebrity privacy often faces scrutiny from the media for profit-driven motives or from

fans due to personal interest. Furthermore, celebrities, given their expansive social networks,

are more vulnerable to inference attacks [89]. A prime example would be deducing a relation-

ship between Chinese basketball player Yao Ming and English footballer David Beckham,

simply from their joint participation in a Wild-Aid campaign championed by Britain’s Prince

William [90]. This issue can be broadened to the challenge of preserving relationship data

among users possessing numerous strong connections within a social network graph. Even

though deleting a relationship link might obfuscate direct connections, higher-order data

(such as mutual friends and attributes) ensures that the embeddings of these ”sensitive”

users remain closely aligned, allowing adversaries to predict relationships with considerable
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accuracy [20]. Another challenge is privacy customization, wherein celebrities or data owners

may wish to shield only specific relationship links.

To address these concerns and minimize privacy exposure risks in social network data

release, we introduce the Link Privacy Preserved Graph Embedding (LPPGE) framework.

This framework, rooted in adversarial learning, incorporates two preprocessing methodolo-

gies. The key takeaways of our research include:

• We investigate a practical privacy issue named celebrity privacy based on some graph

embedding methods that are widely used for social network analysis, and our proposed

work can protect the specified links upon user requirements.

• Our framework integrates both graph embedding and social network privacy protection

into an end-to-end process flow through an adversarial training-based graph autoen-

coder.

• Extensive experiments on ground truth social network data demonstrate the perfor-

mance of our framework in privacy protection compared with other existing methods.

3.2 Problem statement

We first introduce the definitions to state our problem as follows:

Definition 1. Social network: We model a social network as an undirected graph

G = (V, E, X) consisting of a set of users V, friendship-link set E , and user-attribute set

X. A is the adjacency matrix corresponding to the structure of graph G. If e(i, j) ∈ E (i.e.,

users ui and uj are friends), then Aij = 1, otherwise Aij = 0.
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As we are interested in protecting the celebrity users, the sensitive user is defined as

follows.

Definition 2. Sensitive user: Given a social network G = (V, E, X) and λ, if user

ui ∈ V and the node degree of ui ≥ λ, ui is a sensitive user. The value of λ is pre-defined

by the data owner, which is usually larger than the average degree of graph G.

Definition 3. Sensitive link: Any pair of sensitive users ui and uj in social network

G where e(i, j) ∈ E is a candidate sensitive link. The candidate-sensitive link set is defined

as CS. The data owner can customize the set of actual sensitive links S ⊆ CS. Links in

E \ CS are considered as non-sensitive links.

Graph embedding is generally used for a variety of machine-learning tasks, such as node

classification and link prediction. The ultimate goal of our method is to publish link-privacy

preserved graph embedding vectors without sacrificing data utility/usability. In the follow-

ing, we define data utility and link privacy in our LPPGE.

Definition 4. Privacy: We define privacy as the prediction accuracy for the set of

sensitive links S by a classifier C1 which is trained by graph embedding to predict links in a

social network graph.

Definition 5. Utility: We define utility as the amount of information to be preserved

in the graph embedding from an original graph G, which is measured by the non-sensitive

link classification accuracy using classifier C1, and the node classification accuracy using

classifier C2.

Thus, our proposed method is expected to derive a privacy-preserving graph embedding
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that can achieve a desired privacy-utility trade-off between privacy and utility.

3.3 Proposed Work

We design the Link-Privacy Preserved Graph Embedding (LPPGE) framework based on

Graph Auto-Encoder (GAE) [17] shown as Figure 3.1 which makes use of graph structure

A and node content X to learn a latent representation Z, and then reconstructs Â from Z.

Figure 3.1 Graph Auto-Encoder with Graph Convolutional Networks.

We also utilize a supervised learning mechanism in Adversarial Auto-Encoder (AAE) [91]

to achieve privacy protection. Classical AAE forces the latent code to match the previous

distribution through the adversarial training module, which distinguishes whether the current

latent code zi ∈ Z comes from the encoder or the previous distribution. While in supervised

AAE shown as Figure 3.2, a label vector zp is provided to the decoder along with the latent

code zi to reconstruct the information. The encoder must disentangle some information

from zi to make zi to obey the previous distribution, while the decoder can gain the label

information from Zp, so that the label information can be disentangled from zi during the
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reconstruction.

Figure 3.2 Supervised Adversarial Auto-Encoders.

3.3.1 Prepossessing

As shown in Figure 3.3, there are two prepossessing steps before applying the adversarial

learning scheme.

First, we delete all the sensitive links in the original graph G to obtain a modified graph

Gtrain as the input of Algorithm 2 to avoid computing sensitive link prediction loss during

reconstruction, which can remove the first-order sensitive link information from the graph

embedding.

Second, a privacy embedding is generated via another privacy graph Gpriv. Because

we want to exclude the private information in the graph embedding, a privacy label that

represents that information explicitly should be provided to the decoder. However, each

embedding vector is a representation of each node, not each link, then how can we add
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Figure 3.3 Graph Prepossessing. The red nodes are sensitive users (λ = 4) and the blue ones
are non-sensitive users. In the original graph, the dotted line is the sensitive link which is
deleted in the training graph. In the privacy graph (1) two links out of radius (R = 1) are
deleted. In the privacy graph (2) two links are added between sensitive and non-sensitive
users. The privacy embedding will be generated from either privacy graph.

a privacy label on each node to include the link information is a challenge. Here, different

from the independent one-hot label information in supervised AAE, our private information is

located in a pair of nodes’ embedding vectors (i.e., a link is determined by two nodes’ labels).

Note that the private information is not only the direct sensitive link between sensitive users

but also includes the high-order information of the sensitive users (e.g., mutual friends and

user profiles) which can be used to infer the first-order friendship. Therefore, instead of

deleting all the non-sensitive links in G, we develop two methods to generate the privacy

graph Gpriv separately:

(i) Trimming method: we define a radius R for a sensitive user and only keep the links

within R in Gpriv (e.g. when R = 1, only the links that connect sensitive users will be kept;
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when R = 2, only the links that connect sensitive users or their neighbors will be kept).

Algorithm 1 Generate Privacy Graph by Addition Method

Input: G = (V, E, X): the original graph
SE: the sensitive links in G
N : the number of SE
M : the number of links to be added
D: the average node degree of sensitive users
d(i): the node degree of user ui ∈ V
se(i, j): the sensitive link between users ui and uj

Output: the privacy graph Gpriv

1: for se(i, j) ∈ SE do

2: Compute the upper-bound U = M
N
× d(i)+d(j)

2D

3: if ∃ ui’s friend ux who is 2 hops away from uj without passing ui then
4: link ux to uj if the number of new links added for se(i, j) ≤ U
5: end if
6: end for
7: return the modified G as the privacy graph Gpriv

(ii) Addition method: to enhance relationship between sensitive users, we add M

links in G by Algorithm 1. In Step 2 of Algorithm 1, We set an upper-bound U for the

number of links to be distributed near each sensitive link se(i, j) based on the node degrees

of its associated sensitive users ui and uj. Because we consider higher-degree users as more

sensitive, a stronger relationship needs to be built between them. In Step 3 and Step 4 of

Algorithm 1, we connect uj with ui’s friends conditionally, so that more private information

can be embedded into the privacy graph embedding.

At last, we compute the privacy graph embedding Zp of Gpriv generated from either

method and use it as a privacy label which describes the relationships of sensitive users

precisely.
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3.3.2 The Encoder Model

Based on the design of GAE and AAE, LPPGE consists of an encoder, a decoder, and a

discriminator which are shown in Figure 3.4. The encoder involves GCNs which extends

the operation of convolution to graph data in the spectral domain, and learns a layer-wise

transformation by spectral convolution function:

Z(l+1) = f(Z(l),A|W(l)), (3.1)

where Z(l) is the input for convolution and Z(l+1) is the output after convolution. We have

Z0 = X ∈ Rn×m (n nodes and m features) for our problem. The symmetrically normalized

graph Laplacian is applied in f(·) as:

f(Z(l),A|W(l)) = ϕ(D̃
− 1

2 ÃD̃
− 1

2Z(l)W(l)), (3.2)

where Ã = A+ I (I is the identity matrix of A) and D̃ii =
∑

j Ãij (i.e., the diagonal node

degree matrix of Ã), and ϕ is an activation function.

In LPPGE, we use a 2-layer GCN to extract latent code Z′ from graph Gtrain. The acti-

vation function of the first layer is Relu(·) and the second layer is a linear function. In order

to disentangle the private information from latent code Z′, we apply a privacy embedding

on Z′ before feeding it to the decoder. In this way, the encoder learns a compressed Z′,

which excludes the private information but is sufficient for the decoder to reconstruct the

graph data because of merging privacy label encoding. Although a lower dimensional Z′ can



26

extrude more private information, it will also lose some utility information to reconstruct

the graph. To moderate the performance decrements, we use the method presented in this

paper [92], which is to map the low dimensional representation Z′ to a higher dimensional Z

via a fully connected layer to restore the utility information. Then we can concatenate the

privacy embedding with Z to obtain Z+ as the input of the decoder.

Figure 3.4 The architecture of the adversarial learning in LPPGE.

3.3.3 The Decoder Model

Because the final embedding result should be able to reconstruct Gtrain with adjacency

matrix (structure) A and content information X, there are two modules in the decoder. The

first module reconstructs an adjacency matrix Â via the inner product of embedding matrix

Z+ as
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Â = σ((Z+)(Z+)T ) (3.3)

where σ(·) is the logistic sigmoid function.

The cross-entropy loss between Â and A would be minimized as the loss for link predic-

tion:

Llink = −
1

N2

n∑
i=1

n∑
j=1

Aijlog(Âij), (3.4)

where Aij and Âij are the corresponding elements of A and Â.

The second module is a category classifier which decodes Z+ using a soft-max function

ŷi = softmax(z+i ) and computes the cross-entropy loss between the one-hot label yi of each

user. The loss function is defined as:

Llabel = −
1

N

n∑
i=1

yilog(ŷi) (3.5)

Thus the total loss of LPPGE is the combination of the link prediction loss and the

category classification loss:

Lrecon = Llink + αLlabel, (3.6)

where α is a trade-off parameter between the link prediction loss and the category classifi-

cation loss.
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3.3.4 The Discriminator Model

The discriminator consists of two fully connected layers. It will be trained to distinguish

whether a latent code is from the Gaussian distribution (positive) or from the encoder of

LPPGE (negative). We optimize the discriminator by minimizing the following loss:

Ldc = −log(D(x))− log(1−D(z′i)), (3.7)

where D(x) is the discriminator’s estimation of the probability that real sample x is from

the Gaussian distribution, and D(z′i) is the discriminator’s estimation of the probability that

a latent code z′i is real. During the optimization, the graph embedding Z is regularized to

Gaussian distribution.

Algorithm 2 Link-privacy Preserved Graph Embedding

Input: G = (V, E, X): the original graph
T : the number of training iterations
d: the dimension of the final graph embedding Z

Output: Z ∈ Rn×d

1: Generate the training graph Gtrain and the privacy graph Gpriv from G
2: Generate the privacy embedding Zp from Gtrain

3: for iteration = 0 to T do
4: Generate the latent code Z′ of Gtrain by Eq. 3.2
5: Map Z′ to the higher dimensional Z
6: Concatenate Zp with Z as the input of the decoder
7: Update the encoder and decoder by minimizing Eq. 3.6
8: Update the discriminator by minimizing Eq. 3.7
9: Update the encoder by maximizing Eq. 3.7
10: end for
11: return Z ∈ Rn×d
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3.3.5 Algorithm Explanation

We summarize the proposed framework in Algorithm 2. The framework has two stages:

prepossessing (Step 1 and Step 2) and training (Step 3 to Step 10). In Step 8, we update

the discriminator to tell if the input is from a positive sample or the graph encoder. In Step

9, the encoder is updated to confuse the discriminator. These two steps can be integrated as

minmaxLdc in Eq. 3.7. After T epochs’ training, we return the final link-privacy preserved

graph embedding Z ∈ Rn×d in Step 11.

3.4 Experiments

In our experiments, we employ four different datasets summarized in Table 3.1. The first two

datasets are Cora and Citeseer used in the GAE paper [17], and both of them consist of

scientific publications as nodes and citation relationships as edges. The features are unique

words in each document. The other two datasets are two ground truth social network

datasets: Yale and Rochester, which are composed of Facebook users from Yale University

and Rochester University.

By default, we assume the number of sensitive links is around 1% of the total links, then

we find the corresponding λ to define the sensitive users and sensitive links in each dataset.

For the addition method, we set the target number M to be 10% of the total links and the

actual number is around 9%.

We compare LPPGE with the following baselines:

1. GAE is an autoencoder-based model for unsupervised learning on graph-structured
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Parameters Cora Citeseer Yale Rochester
Nodes 2,708 3,327 8,758 4,563
Links 5,429 4,732 405,450 167,653

Features 1,433 3,703 7 7
λ 13 16 320 220

Sen Links 53 62 2,800 1,446
Per* 0.97% 1.31% 0.69% 0.86%

Radius R 2 1 2 2
α 3 3 2 2
M 540 470 40,000 16,000

Added Links 405 434 39,200 15,906

Table 3.1 The employed graph datasets and the parameters of each dataset. Per∗ is the
percentage of the sensitive links in the graph. The actual number of added links (Addition
method) is less than M because of the graph structure and upper-bound U round-down for
each sensitive link.

data.

2. GAE RM uses the same framework as GAE but deletes the defined sensitive links.

3. DPNE is a differentially private network embedding method based on DeepWalk as

matrix factorization. It applies the objective perturbation approach by adding noise

in the objective function of matrix factorization to learn a representation satisfying

differential privacy.

Approaches Cora Citeseer
Non-sen Sensitive Non-sen Sensitive

GAE 81.8 ± 1.0 85.6 ± 3.5 83.7 ± 1.4 92.1 ± 3.4
GAE RM 84.6 ± 0.7 83.3 ± 3.0 87.5 ± 1.2 91.8 ± 3.3
DPNE 55.3 ± 1.3 67.3 ± 4.2 52.7 ± 1.3 67.5 ± 5.2
NPGE 85.1 ± 1.4 89.2 ± 2.8 88.9 ± 1.5 92.6 ± 2.6

LPPGE(T) 81.5 ± 1.1 75.8 ± 3.9 85.6 ± 1.6 81.0 ± 3.9
LPPGE(A) 80.5 ± 1.2 72.3 ± 3.1 84.1 ± 1.2 77.0 ± 3.5

Approaches Yale Rochester
Non-sen Sensitive Non-sen Sensitive

GAE 84.4 ± 1.4 90.0 ± 1.2 85.1 ± 0.4 90.7 ± 1.1
GAE RM 84.2 ± 0.2 89.6 ± 0.8 84.7 ± 0.3 88.5 ± 0.7
DPNE 48.8 ± 10 52.5 ± 10 60.6 ± 1.2 75.9 ± 3.9
NPGE 81.7 ± 0.1 85.2 ± 0.6 83.5 ± 0.4 88.0 ± 1.2

LPPGE(T) 81.2 ± 0.2 83.1 ± 0.5 82.2 ± 0.3 83.1 ± 0.7
LPPGE(A) 80.2 ± 0.2 80.7 ± 1.0 80.4 ± 0.3 81.3 ± 1.2

Table 3.2 Results of link prediction.
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Approaches Cora(7) Citeseer(6) Yale(6) Rochester(2)
MLP SVM MLP SVM MLP SVM MLP SVM

GAE 74.0 71.5 58.6 54.0 85.8 87.0 84.8 84.1
GAE RM 75.1 71.3 63.5 55.5 85.1 86.3 85.8 84.4
DPNE 14.5 6.63 18.6 8.32 24.2 4.66 50.2 44.7
NPGE 72.4 68.0 69.0 64.1 78.9 77.6 84.1 80.0

LPPGE(T) 79.2 70.8 56.4 47.7 84.8 83.5 86.2 82.8
LPPGE(A) 73.9 71.8 66.9 62.3 84.0 83.3 86.4 83.6

Table 3.3 Results of node classification. Dataset(∗) indicates the number of the categories
in each dataset.

4. Non-privacy Graph Embedding (NPGE) uses the same architecture as LPPGE,

but the privacy embedding of NPGE is generated from the graph that only has sensitive

links.

For LPPGE, we implement LPPGE(T) using the trimming method to generate the

privacy graph and LPPGE(A) using the addition method. We set the embedding size

of DPNE as 64 dimensions with a relatively large privacy budget ϵ = 1 to maximize the

defined utility for all the datasets. For the rest of the methods, we embed a graph into a 16-

dimensional space for the Cora and Citeseer datasets, while a 32-dimensional space for the

Yale and Rochester datasets. In LPPGE, we also set hidden code z′ to be a 4-dimensional

vector for all the datasets. The performance of LPPGE is evaluated on two aspects which

are link prediction and node classification.

3.4.1 Link Prediction

We train a multi-layer perceptron (MLP) classifier as the attacker, which tries to predict

the sensitive links in a social network by graph embedding. The input of the MLP is the

embedding vectors of two users in the social network and the output is the relationship
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between these two users. We assume 10% of non-sensitive links are exposed to the attacker

as the positive samples in the training set, and the same number of negative samples are

collected by randomly selecting unconnected users. We present the results in the Macro

F1-score of the non-sensitive links and the sensitive links separately. We conduct each

experiment 10 times and show the mean values with standard errors as the final scores. The

details of the experiment results on link prediction are shown in Table 3.2.

The performance of GAE RM shows that even if the sensitive links are deleted, the at-

tacker is still able to predict its existence precisely according to the high-order information.

Although DPNE has the lowest prediction accuracy for sensitive links, its prediction accu-

racy of non-sensitive links is much lower than other methods. It can be seen DPNE costs a

significant amount of utility information in its embedding to preserve privacy, and differential

privacy is susceptible to inference attacks. The result of NPGE shows that merely extruding

sensitive links in graph embedding is not enough to protect sensitive information. Moreover,

it should be noted that as sensitive users have large degrees, in the traditional graph em-

bedding methods, sensitive links are easier to predict than non-sensitive links, which can be

observed in Table 3.2. It is also worth mentioning that LPPGE(T) and LPPGE(A) both

can reduce sensitive accuracy much lower than non-sensitive ones on the Cora and Citeseer

datasets. For the Yale and Rochester datasets, LPPGE(A) can reduce sensitive accuracy by

about 10% with only losing 5% utility accuracy on non-sensitive links. These facts prove

that LPPGE is capable of reducing the attacker’s prediction accuracy of sensitive links while

slightly sacrificing the utility of embedding to reconstruct the non-sensitive part of a graph.



33

3.4.2 Node Classification

We apply two classifiers, MLP and Support Vector Machine (SVM), to predict user category

labels through graph embedding. For all the datasets, 5-fold cross-validation is used to

ensure the model’s reliability and effectiveness, and the results are given as Macro F1-score

in Table 3.3.

Because DPNE only embeds graph structure information without node attributes in the

embedding, even though with a higher dimensional embedding space, the performance is still

poor on the classification task and the graph embedding utility is low. Comparing LPPGE

with GAE and GAE RM, the classifiers have similar accuracy in predicting node’s class labels

on all the datasets, which indicates LPPGE can maintain accurate cluster information at

the same level as privacy protection.

3.4.3 Trade-off Between Utility and Privacy

To demonstrate the trade-off between utility and privacy, we compute the ratio of utility (i.e.,

the sum of the prediction accuracy of non-sensitive links and node classification) to privacy

(i.e., the prediction accuracy of sensitive links). As shown in Figure 3.5, both LPPGE(T)

and LPPGE(A) can achieve better performance on the aspects of privacy protection and data

usability preservation. Due to space limitations, the experiment results for link prediction

and node classification are presented in the Appendix.
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Figure 3.5 Evaluation of trade-off between utility and privacy.

3.4.4 Customization

In real-world situations, data owners may only need to protect some specified relationships

between sensitive users based on their demands. Hence, we randomly select 25%, 50%,

and 75% links from pre-defined sensitive links as the new sensitive links and conduct the

same Utility/Privacy evaluation to testify to the scalability of our model. The results for

different scales shown in Figure 3.6 demonstrate that LPPGE can fulfill customized requests

for privacy protection.

3.4.5 Graph Visualization

We visualize the Cora and Yale datasets in 2-dimensional space by applying the t-SNE

algorithm to the learned embedding. The Cora dataset is partitioned by the publication

subject and the Yale dataset is partitioned by the user’s class year. Each subgroup is

represented in a different color. The results shown in Figure 3.7 and Figure 3.8 validate our
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Figure 3.6 Evaluation of trade-off between utility and privacy for different scales. The X-axis
is the percentage of sensitive links.

assertions in the node classification section through a meaningful layout.

3.5 Conclusions

In this study, we investigate a pertinent privacy issue associated with social graph embedding

and introduce an innovative graph embedding framework. Through the combined use of a

graph autoencoder and adversarial learning, our method regularizes the latent representation

to align with a predetermined distribution, effectively eliminating sensitive information from

the graph embedding. Experimental outcomes show that our approach successfully balances

privacy protection with data utility, outperforming alternatives that do not prioritize pri-
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Figure 3.7 Visualization comparison for the Cora dataset. Methods from left to right, top
to bottom are GAE, GAE RM, LPPGE(T), and LPPGE(A).

vacy. Looking ahead, our interest lies in exploring dynamic graph embedding’s potential

applications, a burgeoning research avenue. The dynamic nature of graph sequences allows

adversaries to potentially deduce or reconstruct sensitive details, posing significant challenges

in the realm of data privacy and security.
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C

Figure 3.8 Visualization comparison for the Yale dataset. Methods from left to right, top to
bottom are GAE, GAE RM, LPPGE(T), and LPPGE(A).



38

CHAPTER 4

Privacy-Preserving Federated Graph Neural Network Learning on Non-IID
Graph Data

4.1 Introduction

Data providers often share data to bolster the analytical performance across participants.

However, this collaboration can inadvertently compromise the privacy of data owners. Simply

put, insecure data sharing combined with inadequate de-anonymization is akin to freely

handing out the owner’s information [93]. Federated Learning (FL) [94] offers an alternative

learning approach that sidesteps centralized data collection. Traditional server models might

inadvertently expose sensitive user information, an issue FL circumvents by training deep

neural networks across localized datasets without sharing data samples with the central

server or other clients [95, 96].

Graph data proves invaluable in tasks that deal with intricate relationships and dynamic

schematics, such as in block chain management [97] or recommendation systems. While

graph neural networks have made strides using representation learning for tasks like node

classification and link prediction [98], multiple barriers inhibit FL’s widespread application

within the realm of graph neural networks. Notably, the non-IID nature of graphs [99] sug-

gests that, in the context of expansive and noisy real-world graphs, FL might underperform

compared to centralized methods. There is a potential for GNNs to overfit extensive train-

ing datasets unless they undergo proper regularization [100]. Additionally, FL’s aggregation

mechanism might stumble on sparse graphs where local neighborhood nodes contribute more
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noise than useful data for feature aggregation [101]. The wide-ranging diversity in GNN mod-

els results in a lack of uniformity in current federated GNN definitions [102]. Many existing

FL algorithms, including the FedAvg [103], primarily cater to IID datasets, making the fu-

sion of information across diverse clients in federated GNNs challenging [104]. Especially in

scenarios where clients possess distinct sample nodes and can’t share comprehensive topol-

ogy data due to privacy concerns, deploying traditional averaging strategies in the federated

framework becomes ill-suited, given the non-uniform input nodes in graph neural networks.

To address these challenges, we introduce a unique federated learning framework tailored

for graph neural networks, incorporating an embedding alignment technique. As the frame-

work only amalgamates client-approved public data, it substantially curtails privacy risks

during the learning process. This alignment technique ensures that clients with non-IID

data can effectively exchange information. Moreover, our empirical findings indicate that

infusing aligned information into local models acts as a form of regularization, mitigating

the potential for overfitting. The main contributions of our work are summarized as follows:

• We investigate a general training scenario of the federated GNNs setting in which

multiple clients hold non-IID graph datasets sharing partial structural equivalence.

• We propose a novel framework to integrate federated learning and embedding align-

ment techniques into an end-to-end process flow to obtain accurate embedding results for

individual clients.

• We conduct extensive experiments on ground truth datasets to prove the effective-

ness of the proposed method with the embedding alignment technique and demonstrate the
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competitive performance of PPFL-GNN framework with respective to noise resistance.

4.2 Proposed Work

In this section, we first introduce the problem formulation of our work, and then explain the

details of our approach to learning graph representation in a privacy-preserving way based

on two state-of-the-art models.

4.2.1 Problem Statement

Denote C = {c1, c2, ...cn} as the sets of clients participating in federated learning, and client

ci holds a local undirected graph G = (U, E, F) including node set U, edge set E, and

node-feature set F. We assume all the local graphs share a certain amount of nodes defined

as a public node set Uk = U1 ∩ U2 ∩ ... ∩ Un. To protect privacy, each client saves the

original data locally, including the edge and attribute information of non-public nodes. Only

the processed public node information, which is generated as public node embedding by the

client’s local model, will be uploaded to the server. Our goal is to generate accurate node

representation for each client by utilizing federated learning without building and storing

the entire graph on the server or client.

4.2.2 Federated DeepWalk

DeepWalk extends the idea of language modeling to network topology [12], which forms the

embryo of graph embedding. Given a random walk sequence composed of network nodes:
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Figure 4.1 Overview of the Federated DeepWalk framework. The red nodes are private, and
the blue nodes are public. Local training is highlighted in grey, and server aggregation is
highlighted in yellow.

V n
1 = (v0, v1, ..., vn) (4.1)

where vi ∈ U. The goal so far is to retrieve the likelihood of observing vi given the previous

i− 1 nodes in the random walk:

Pr(vi|(v1, v2, ..., vi−1)) (4.2)

To learn the latent representation, instead of only a probability distribution of node co-

occurrence, DeepWalk introduces a mapping function Φ : v ∈ V 7→ R|V |×d, which actually is

a |V |×d matrix of free weights serving as the low-dimensional representations of all network
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nodes in the graph.

However, the computation is not efficient depending on the length of the random walks.

Thus, the SkipGram method in Word2vec [13] is applied to solve the computational prob-

lem. Rather than predicting the occurrence of a missing node in the walk, we compute the

likelihood of a node appearing as a neighbor in a given window, and the new optimization

goal is summarized as follows:

min
Φ
− logPr({(vi−w, ..., vi−1, vi+1, ..., vi+w)}|Φ(vi)) (4.3)

where w is the window size for iterating the possible collocation of the given node vi. Sup-

pose we deploy DeepWalk as the neural network model in the federated learning setting,

then the local client ci can train a low-dimensional latent representation R|V |×d
i of his local

graph Gi. After all clients have generated their local graph embeddings, the challenge of a

federated learning setting is how all clients collaborate to improve the training results with

less disclosure of sensitive information.

In traditional federated learning, each client uploads all weights of the local model to a

central server. The central server aggregates these weights to update the global model and

then distributes the global model back to the clients. However, in our problem definition,

we cannot aggregate all weights directly because each client holds a different subgraph of

the global network, which means the trained latent representations only share commonality

on the public nodes partially. Because the potential relationship between public and private

nodes are stored in the public nodes’ latent representations, as shown in Figure 4.1, instead
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of uploading all weights (i.e., the latent representations of all the nodes in the local graph), a

client can only upload the weights related to the public nodes (i.e., the latent representations

of public nodes), which also carry some sensitive information of the private nodes.

Since the latent representations of public nodes are generated from different training

graphs, simple aggregation and distribution will break their connections with the unpro-

cessed latent representations of private nodes on the local client. Thus, we apply an em-

bedding alignment technique in the weight aggregation on the central server to convert

the latent representations from other clients into a form that the local client understands.

For example, there are two local clients cx and cy sharing k nodes in the graph. Let

X = {Φx(u1), ...,Φx(uk)} and Y = {Φy(u1), ...,Φy(uk)}, uk ∈ Uk be two sets of k public

node embeddings coming from cx and cy respectively. For cy to understand the information

of X, we need to align/translate X into the space of cy, which technically is using a linear

mapping matrix W that maps X from the source space cx to the target space cy. Further-

more, we can encapsulate the problem to the Procrustes problem [105] and solve it via the

Singular Value Decomposition (SVD) of Y XT :

W ∗ = argminW∈Md(R)||WX − Y ||F = UV T ,

with U
∑

V T = SVD(Y XT )

(4.4)

where Md(R) is the d×d matrix space of real numbers. We denote Xy = WX as the aligned

embeddings from source space cx to target space cy and Yx in the opposite way. The server

aggregates Xy and Y to obtain a merged weight Y ′ and returns Y ′ to cy for substituting
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the current public node embedding vector Φ(yk). For multiple clients C = {c1, c2, ...cn}, the

server aligns the embeddings from any pair of clients ∀ci, cj ∈ C and applies the average

aggregation on all the aligned embeddings in the same client’s space to get the returning

updates for each client. The local clients use the updates as the initial weights to train in a

new round. Algorithm 3 summarizes the complete training procedure.

4.2.3 Federated GAT Framework

GAT [106] introduces an attention mechanism to replace the statically normalized convolu-

tion operation in GCN [107]. The input to a single attentional layer is a set of node features,

h = {
−→
h1,
−→
h2, ...,

−→
hn},
−→
hi ∈ F , where n is the number of nodes, and F is the node feature set.

A linear transformation is firstly applied to every node feature for higher-level expression:

z
(l)
i = W (l)h

(l)
i (4.5)

where W (l) is a learn-able weight matrix.

Different from the dot-product attention mechanism in GCN, GAT applies the additive

attention mechanism, which concatenates the z embeddings of two neighbors i and j to

compute a pair-wise unnormalized attention score e
(l)
ij between them. The additive attention

mechanism takes the dot product of the concatenation and a weight vector −→a , then applies

a LeakyReLU activation function. In order to compare the attention scores with different

nodes, a normalized coefficient α
(l)
ij is computed by the softmax function in the end:
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Algorithm 3 The Federated DeepWalk Framework

Input: C = {c1, c2, ...cn}: the set of clients
Gi: the local subgraph hold by ci
Uk: the public nodes shared among C

Output: the matrix of node representation Φi ∈ R|V |×d of Gi

1: Local Clients:
2: for each client ci ∈ C do
3: Compute the DeepWalk model weights Φi

4: Generate the public nodes’ embeddings Xi of Uk from Φi:
5: Xi = {Φi(u1), ...,Φi(uk)}
6: Upload Xi to the server
7: end for
8:

9: while not converge do
10: Server:
11: for each i ∈ k do
12: for each j ∈ k(i ̸= j) do
13: Align Xj into ci’s space: Xji = WjiXj

14: end for
15: Aggregate all the aligned embeddings with Xi

16: X ′
i =

1
k
(
∑k

j Xji +Xi)
17: distribute X ′

i to client ci for local update
18: end for
19:

20: Local Clients:
21: for each client ci ∈ C do
22: Substitute the public nodes’ embeddings in Φi by X ′

i

23: Φ′
i ← (Φi, X

′
i)

24: Initial the DeepWalk model with Φ′
i

25: Compute the model weights Φi

26: end for
27: end while
28: return the matrix of node representation Φi ∈ R|V |×d of Gi

α
(l)
ij = softmaxj(e

(l)
ij )

=
exp

(
LeakyReLU(−→a T [z

(l)
i ||z

(l)
j ])

)∑
k∈Ni

exp
(
LeakyReLU(−→a T [z

(l)
i ||z

(l)
k ])

) (4.6)

where Ni is some neighbor of node i in the graph, || denotes the concatenation operation, and
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Figure 4.2 Overview of the Federated GAT Framework. The red nodes are private, and
the blue nodes are public. Local training is highlighted in grey, and server aggregation is
highlighted in yellow.

·T represents transposition. Having the normalized attention coefficients calculated, GAT

generates the next-level embedding of node i by aggregating its neighbors’ embeddings,

scaled by the attention coefficients.

h
(l+1)
i = σ

(∑
j∈Ni

α
(l)
ij z

(l)
j

)
(4.7)

Once we obtain the local embeddings, we have to face the similar challenge of collab-

orating with different clients in federated learning as the Federated DeepWalk framework.

Although in DeepWalk model, we can extract the public nodes’ embeddings from the model

weights directly, the weights of GAT integrate both public and private information and can-

not be split directly by node’s category. Therefore, as shown in Figure 4.2, we upload the

public nodes’ embeddings X coming from the model’s intermediate layer (i.e., h
(l)
i , i ∈ Uk)
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to the server without exposing the model weights. Then, the server executes the same pro-

cesses in the Federated DeepWalk framework to align, aggregate, and distribute the updates

X ′ to clients. As we cannot use the aligned embedding to manipulate GAT’s model weights

directly, another cosine-embedding loss Lemb is added beside the original cross-entropy loss

Llabel to integrate the information of X ′ back into the model.

Lemb = 1− cos(X,X ′) (4.8)

Llabel = −
1

N

n∑
i=1

yi log(ŷi) (4.9)

where yi is the one-hot label of each node and ŷi = softmax(h
(l+1)
i ). Thus, the new loss of

local training is the combination of the cosine-embedding loss and the cross-entropy loss:

Lnew = Llabel + βLemb, (4.10)

where β is a model hyper-parameter to balance the local information preservation and the

external information integration. During the experiment, we observe that the last attention

layer is so powerful that it overwhelms the cosine-embedding loss of the final output h
(l+1)
i .

Hence, based on Two-stage CNN training introduced [108] and Federated Split learning

[109], we inject the external information via the intermediate layer h
(l)
i at an earlier stage.

Algorithm 4 summarizes the complete procedure of the Federated GAT Framework.



48

Algorithm 4 The Federated GAT Framework

Input: C = {c1, c2, ...cn}: the set of clients
Gi: the local subgraph hold by ci
Uk: the public nodes shared among C

Output: the node embeddings H ′
i of Gi

1: Local Clients:
2: for each client ci ∈ C do
3: Compute the GAT model embedding H ′

i

4: Generate the public nodes’ embeddings Xi of Uk from the intermediate Hi:
5: Xi = {Hi(u1), ..., Hi(uk)}
6: Upload Xi to the server
7: end for
8:

9: while not converge do
10: Server:
11: for each i ∈ k do
12: for each j ∈ k(i ̸= j) do
13: Align Xj into ci’s space: Xji = WjiXj

14: end for
15: Aggregate all the aligned embeddings with Xi

16: X ′
i =

1
k
(
∑k

j Xji +Xi)
17: distribute X ′

i to client ci for local update
18: end for
19:

20: Local Clients:
21: for each client ci ∈ C do
22: Take X ′

i as new input weights
23: Compute the GAT-model embedding H ′

i with loss Lnew

24: end for
25: end while
26: return the node embeddings H ′

i of Gi

4.3 Experiments

In this section, we present the experiments developed by Pytorch and conducted on a work-

station with an Intel Core i7 2.80GHz CPU and an NVIDIA GeForce GTX 1070 GPU.
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4.3.1 Datasets

In our experiments, we employ two datasets, Cora [110] and Citeseer [111], which are com-

monly used in GNNs research. The Cora dataset includes 2,708 publications as nodes classi-

fied into seven classes, and its citation network consists of 5429 links. The Citeseer dataset

includes 3,327 nodes classified into six classes, and its citation network consists of 4,732

links. Both datasets use unique words in each document as the node features. We set up

four clients participating in the federated learning, so each dataset is split into four subgraphs

with an equal number of nodes and assigned to each client. By default, each Cora subgraph

has 1,489 (55%) nodes in total with 1,083 (40%) public nodes and 406 (15%) private nodes,

while each Citeseer subgraph has 1,829 (55%) nodes in total with 1,330 (40%) public nodes

and 499 (15%) private nodes. (%) shows the percentage of the nodes in the original graph.

4.3.2 Baselines and Metrics

We use the client’s local training as the baseline to verify whether our framework can improve

each client’s graph embedding result through collaborative training. In the DeepWalk-based

training, all clients use the same model architecture with randomly initialized weights for

local training or federated training. While in the GAT-based training, clients use the original

GAT model for the local training and the modified GAT model with embedding loss for the

federated training. Other architecture and parameters are fixed in a controlled experiment.

For all the implementations, we embed each graph into a 16-dimensional space and run

the experiments on the classification tasks to evaluate the quality of the embedding by
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applying one Multi-layer Perceptron (MLP) classifier and another Support Vector classifier

(SVC) implemented in the Python module Scikit-learn to predict the label of a node. For all

the experiments, we use 5-fold cross-validation to ensure models’ reliability and effectiveness,

and the classification results of the two frameworks are given as Micro F1-scores.

Dataset (Classifier) Client1 Client2 Client3 Client4 GLOBALLOC FED LOC FED LOC FED LOC FED
Cora(MLP) 79.1 80.1 76.0 76.0 74.3 76.1 75.0 76.6 +4.41
Cora(SVC) 79.3 81.4 77.5 78.7 75.5 77.9 75.0 78.0 +8.72

Citeseer(MLP) 48.1 51.4 46.4 50.4 48.9 51.6 49.2 51.7 +12.5
Citeseer(SVC) 56.3 60.6 53.5 58.6 57.3 61.6 55,3 60.4 +18.8
Cora(Full) MLP 79.9 SVC 82.0

Citeseer(Full) MLP 58.6 SVC 65.4

Table 4.1 The Results of the Federated DeepWalk Framework. Loc indicates the result of lo-
cal training, Fed indicates the result of federated learning, Global indicates the cumulative
improvement of all clients.

Dataset (Classifier) Client1 Client2 Client3 Client4 GLOBALLOC FED LOC FED LOC FED LOC FED
Cora(MLP) 84.4 86.3 85.7 85.8 83.1 83.8 85.7 86.0 +3.01
Cora(SVC) 86.1 86.7 86.5 86.0 85.6 85.0 85.4 86.0 +0.1

Cora Noise(MLP) 81.4 81.0 79.0 79.5 72.2 75.9 70.6 77.3 +10.4
Cora Noise(SVC) 82.0 82.4 80.0 80.8 74.5 77.4 72.3 78.3 +10.1
Citeseer(MLP) 72.3 74.7 72.8 74.1 72.8 74.3 72.7 75.0 +7.51
Citeseer(SVC) 72.8 74.5 72.3 74.3 72.1 74.3 72.1 74.1 +7.82
Cora(Full) MLP 86.2 SVC 86.1

Citeseer(Full) MLP 74.7 SVC 74.8

Table 4.2 The Results of the Federated GAT Framework. Cora Noise is the Cora dataset
with noisy labels.

4.3.3 Performance Evaluation

The Federated DeepWalk framework results are presented in Table 4.1. We can observe that

in contrast to the embeddings generated by limited local information, both classifiers can

achieve higher classification accuracy on the embeddings trained by full use of the graph
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data. Under this precondition, the proposed FL methodology can improve the global results

by 4.41%(MLP) and 8.72%(SVC) on the Cora dataset, while 12.5%(MLP) and 18.8%(SVC)

on the Citeseer dataset, respectively. Specifically, every client in the Citeseer experiment

receives steady improvement compared with the local baseline.

For the Federated GAT framework, we set the hyper-parameter β=1 for the Cora dataset

and β=0.75 for the Citeseer dataset. As shown in Table 4.2, we obtain similar results on the

Citeseer dataset with 7.51%(MLP) and 7.82%(SVC) accuracy improvements. Because GAT

uses weighting neighbor features with feature-dependent and structure-free normalization,

which does not rely on knowing the entire graph structure in advance, the local client can

generate favorable embedding by partial information of a denser Cora dataset. Thus, our

method is subject to further refining the embedding in this case. In addition to cleaning the

Cora dataset, we randomly modify 15% labels as noisy (incorrect) labels during the training,

leading to a considerable performance loss for clients such as Client3 and Client4. However,

our proposed method can effectively mitigate the influence of noisy labels by integrating

information from other clients. Consequently, the poor performance of Client3 or Client4

receives a significant improvement.

4.3.4 Impact of Alignment on Performance

To demonstrate the effectiveness of applying alignment during the FL aggregation, we plot

the alignment precision of the public latent representations and the SVC classification accu-

racy of the graph embeddings corresponding to each training iteration of both frameworks

in Figure 4.3 to Figure 4.6. We use k-nearest neighbors with k =1, 5, and 10 to measure the
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Figure 4.3 The KNN alignment precision and SVC classification accuracy corresponding to
each iteration of the Federated DeepWalk Framework on the Cora dataset.

alignment precision between any pair of the public latent representations. Because we need

to align each local representation to the dimension of the other clients, there are 12 pairs in

the four clients’ settings, and we only show the average value of 12 alignments in the figures

as the variance is slight.

For the Federated DeepWalk framework in Figure 4.3 and Figure 4.4, although the classifi-

cation accuracy of locally trained graph embedding is acceptable in the initial iteration, their
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Figure 4.4 The KNN alignment precision and SVC classification accuracy corresponding to
each iteration of the Federated DeepWalk Framework on the Citeseer dataset.

alignment results are inferior because of the random initialization. Consequently, we can-

not integrate the information of different clients effectively, which leads to the performance

diving in the second iteration. However, the rough integration in the first two iterations

helps in the united initialization by setting the tone for the subsequent training. Thus, we

observe that the quality of graph embedding improves with the promotion of the alignment

effect, which can achieve above 90% precision of k = 1 at the convergence stage. For the
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Federated GAT framework in Figure 4.5 and Figure 4.6, the initial representation alignment

results are satisfactory with a fair classification accuracy of graph embedding. Moreover, we

observe both alignment precision and classification accuracy surge in the second iteration

after the federated learning process. Nevertheless, as we only use cosine-embedding loss at

the intermediate layer, partial integrated information is squeezed out when the federated

procedure converges within ten iterations. In general, there is a positive correlation between

the alignment precision and classification accuracy, which confirms the effectiveness of our

method.

4.4 Discussion

Through previous experiments, we find that our method performs better when applied to

the Citeseer dataset, which is more sparse than the Cora dataset relatively. Because denser

subgraphs mean the local clients have more information, limiting the improvement effect

of federated learning. However, if the degrees of the shared nodes are low, they cannot

comprehensively transmit the local information during the integration. Therefore, we design

the supplemental experiments to further study the suitable application scenarios. Instead

of randomly generating the subgraphs and selecting 40% public nodes to share, we compose

the subgraphs with different percentages of top high-degree nodes from the original graph

as the public nodes. We conduct the same embedding classification experiment and render

the average accuracy of four clients in Table 4.3.

Under the DeepWalk framework, the classification accuracy of locally generated graph
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Figure 4.5 The KNN alignment precision and SVC classification accuracy corresponding to
each iteration of the Federated GAT Framework on the Cora Noisy dataset.

embeddings increases as the degree of nodes in the subgraph increases. Although federated

learning can still improve the overall classification effect, the magnitude of improvement

diminishes. With a simpler model DeepWalk, the local clients are more likely to get an

underfit model with inferior prediction accuracy below 70%. Federated learning tackles

the underfitting issue more by sharing public information between clients and indirectly

increasing the local training dataset’s size. In the experimental group of GAT, we notice

that the higher subgraph density reduces the accuracy of local graph embedding. One
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Percent DeepWalk GAT
LOC FED Diff LOC FED Diff

5% 57.1 61.8 +4.7 74.4 75.1 +0.7
10% 57.3 62.3 +5.0 73.9 75.1 +1.2
20% 61.8 65.0 +3.2 71.8 73.5 +1.9
30% 63.4 65.8 +2.4 70.5 72.6 +2.1
40% 67.8 69.2 +1.4 70.5 73.0 +2.5

Table 4.3 Results of the different shared public nodes.

reason is that the subgraphs generated by our method are disassortative, and the local

aggregation mechanism of GAT may fail on disassortative graphs, where nodes within local

neighborhoods provide more noise than helpful feature information. Another reason is that

the local model is overfitting the denser training subgraph. However, the federated learning

setting prevents the local model from focusing on the training data, and the embedding

alignment technique has regularization effects empirically to avoid overfitting. Overall, our

approach is suitable for general application scenarios, and the improvement effect is more

prominent when the local embedding effect is unsatisfied.

4.5 Conclusions

This study investigates the practical challenges associated with federated graph neural net-

works, particularly when dealing with non-IID datasets. We present a cutting-edge federated

learning framework that employs embedding alignment to achieve a uniform latent repre-

sentation across clients, facilitating effective information integration in a federated context.

Our experimental results showcase the framework’s ability to outperform local training in

terms of data usability while still ensuring privacy. Future work might benefit from exam-

ining more sophisticated embedding alignment techniques for even more precise information
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Figure 4.6 The KNN alignment precision and SVC classification accuracy corresponding to
each iteration of the Federated GAT Framework on the Citeseer dataset.

integration. The study of shared public nodes remains a valuable avenue. As we look ahead,

determining an optimal selection of public nodes to minimize sharing could offer a more

nuanced equilibrium between privacy and data accessibility.
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CHAPTER 5

Few-Shot Graph Classification with Structural-Enhanced Contrastive Learning

5.1 Introduction

The surge of big data has propelled machine learning to unprecedented heights. However,

the efficacy of machine learning is often constrained by the quantity of input samples [112].

Drawing inspiration from the remarkable cognitive speed of humans, the concept of Few-

Shot Learning (FSL) has emerged. As the name suggests, FSL seeks to learn from a limited

set of samples. Distinct from traditional supervised learning, FSL, in the face of limited

training data, aspires to learn a similarity metric to discern samples rather than classify

them directly, enabling a wider application range.

The success of FSL in image processing has encouraged its extension into diverse areas,

including graph analytics. While humans can readily differentiate between images, discerning

complex graphs remains challenging, underscoring the importance of graph learning. Graph

Neural Networks (GNNs), potent tools in the machine learning arsenal, leverage both graph

structure and node information to execute an array of graph analytics tasks. These tasks

span from edge-level to node-level and graph-level [98]. In particular, graph classification

aligns with GNNs producing graph-level outputs, typically involving pooling and readout

operations. The pooling layer [113, 114] condenses the graph, ensuring node representations

on this compacted graph embody broader graph-level insights. Subsequently, the readout

layer aggregates the hidden representations of these subgraphs to attain a succinct graph

representation, which is then employed as the classification label for the entire graph.
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Recently, researchers [115] compare GNNs methods for graph classification in a stan-

dardized and uniform evaluation framework. The findings highlight the potential under-

utilization of structural information, especially in chemical and social datasets. Two probable

explanations surface: either an effective task solution can circumvent topological information,

or GNNs must harness the graph structure more effectively. Given that structural features

are intricately tied to molecular properties in chemistry, if endowed with ample molecular

data (meaning large node-attribute dimensions), standard binary classification tasks (e.g.,

categorizing chemical compounds as active or inactive) might bypass the need for GNNs.

Such an approach also clashes with FSL, given its intrinsic novelty of classes. Hence, our

investigation gravitates towards the FSL challenges in social graphs, characterized by their

intricate topologies and ambiguous relationships with node attributes. Figure 5.1 suggests

that a mere focus on node attributes might impede classification accuracy without the ap-

propriate structural context. A real-world implication of this issue manifests in challenges

like the ”cold start” problem seen in recommendation systems due to limited sample sizes

[116].

Introducing a novel learning framework, SE-GCL, we aim to enhance the capabilities

of GNNs in leveraging graph structure and addressing the challenges mentioned above. By

utilizing meta-learning and contrastive learning techniques, our proposed framework achieves

accurate graph classification results in an end-to-end process. The contributions of our work

can be summarized as follows:

• We investigate a general scenario for few-shot graph classification tasks and present a
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Figure 5.1 A simple example that shows node attributes may hurt classification accuracy
without adequately considering the graph structure.

learning framework that integrates meta-learning and contrastive learning techniques. This

integration allows us to achieve accurate graph classification results while ensuring the pro-

tection of data copyright.

• We construct two benchmark graph datasets with large node-attribute dimensions,

designed for multi-class classification tasks. These datasets serve as valuable resources for

future research in the field of few-shot graph classification. They enable researchers to

evaluate and compare various algorithms and techniques within a context that respects data

copyright protection.

• Through extensive experiments on ground truth datasets, we demonstrate the effective-

ness of using contrastive learning techniques to enhance the utilization of graph topological

information. Our framework achieves competitive performance when compared to other

state-of-the-art methods.



61

5.2 Proposed Work

5.2.1 Problem Definition

FSL is usually applied in supervised learning for the task of object classification, also consid-

ered as N-way-K-shot classification. During the few-shot training phase, N categories (ways)

with K samples (shots) per category are constructed as the support set first. Second, another

batch of samples in N categories, named query set, is selected from the remaining data as

the model’s prediction object. Then the task is to distinguish these query set samples from

the N*K support set.

We formulate our few-shot graph classification problem as a standard N-way-K-shot

classification task, where a set of graph {G1, G2, ..., Gm} and their labels {y1, y2, ..., ym} are

given. Let G = (U,E,A, y) denote an undirected unweighted graph, where U is the set of

nodes, E is the set of edges, A is the set of node-attributes, and y is the label associated

with each graph. According to label y, {G1, G2, ..., Gm} is split into {(Gtrain, ytrain)} and

{(Gtest, ytest)} as the training set and test set respectively. Notice that ytrain and ytest must

have no common classes for the Meta-learning setting. In the Meta-training phase, we

construct the support dataset DS(Gtrain, ytrain) by randomly selecting K samples from each

of the N classes and the query dataset DQ(Gtrain, ytrain) containing other M samples from

the same N classes. The goal is to predict the label of each graph in the query dataset by

giving a limited number of support graphs (i.e., N << M). At the Meta-testing stage, the

same classification task is performed on the DS(Gtest, ytest) and DQ(Gtest, ytest) dataset with

the disjoint label ytest, which verifies the result of knowledge transfer and adaptation.
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Figure 5.2 The overview of SE-GCL. The framework consists of two main processes: graph
Meta-learning and contrastive learning. Given a support set of input graphs, we use a
graph encoder to extract robust feature representation and derive reliable prototypes for
each class. The Wasserstein metric measures the similarity between the query graph and
the prototype. Further, we impose the contrastive loss on the query set to improve the
model’s generalizability. The complete workflow of all modules is an end-to-end solution.
More details could be in the section of the proposed framework.

5.2.2 Proposed Framework

Figure 5.2 illustrates the framework of our proposed method. Two complementary clas-

sification tasks are performed simultaneously to learn the main encoder Fθ(·), which is a

GNN for projecting a graph into an embedding. The first learning module is metric-based

Meta-learning, which utilizes explicit label information to generate the graph embedding and

compute the similarity between the support set and query set. The second learning module

is contrastive learning, which is a self-supervised instance-level classification task to improve

the representation result. For self-supervised learning, we design a strategy to generate a
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pair of positive and negative augmentation views of the input graph automatically.

During Meta-learning, the main encoder Fθ(·) maps each graph into a latent represen-

tation as its graph embedding hGi
= Fθ(Gi). Specifically, GNNs compute graph embedding

via a message-passing framework:

h(l+1)
u = COM

(
h(l)
u ,

[
AGG

({
h
(l)
u′ |∀u′ ∈ U′})]), (5.1)

h
(l)
G = READOUT

(
h(l)
u |∀u ∈ U

)
, (5.2)

where h(l)
u denotes the embedding of node u at l-th GNN layer; U′ is the neighbor set of node

u; AGG(·) is neighbor aggregation function; COM(·) is combination function; READOUT(·)

is graph-level pooling function. Then all support graph embedding in the same class yn ag-

gregate into one prototype representation zn by computing the average, which is formulated

as:

zn =
1

K

K∑
i=1

hGi
(Gi ∈ DS(G, yn), n ∈ [1, N ]), (5.3)

To predict the label of the query graph, the similarity between query graph embedding

and the prototype representation is measured by the p-th Wasserstein distance following

[117], which is the optional cost of moving mass between two graph embeddings. The

classification loss LMeta is defined as the average cross entropy between true labels and

predictions based on the similarity, which can be formulated as:
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LMeta(DS,DQ, θ) = −
1

M

∑
(G,y)∈DQ

log
esim(Fθ(G),zy)∑N
i=1 e

sim(Fθ(G),zi)
, (5.4)

where sim denotes the Wasserstein similarity metric.

Because contrastive learning can maximize the agreement between the input data and

its positive view while minimizing the agreement with the negative view, two augmentation

operations are employed to generate a pair of differentiable views for the respective goals.

Expressly, the positive augmentation operation preserves the original topology of the sample

graph Gi and masks all the node features to form a positive view Gmask
i , which aims to

mediate the overwhelming of the node features over the graph structure information in the

representation learning. On the other hand, the negative augmentation operation generates a

negative view Gneg
i by random node dropping and edge perturbation. Both operations follow

an i.i.d. uniform distribution with node-dropping ratio η and edge-perturbation ratio 1− η.

For edge-perturbation, it randomly drops 1−η existing edges, then adds the same amount of

random edges back into Gi. To form Gneg
i as a small subgraph from Gi with a few noisy edges,

η is set at 0.8 by default. Moreover, the paper [72] states that the structural information of

graph data consists of both local and global dimensions, which means some attributes of a

graph depend on the substructure of the graph while some consider the global structure more.

As generalization is the main challenge for Meta-learning to test novel domains, randomly

treating a small subgraph as the negative example helps predictive models generalize beyond

the limited training data. It should be noted that the negative view of one sample graph

is also treated as the negative view of the rest samples (i.e., for a query set containing M
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samples, there are M negative views for each sample graph). Introduced in this paper [118],

we apply a momentum encoder Fω(·) for projecting the contrastive views, which behaves

similarly as the main encoder as its parameter ω is a moving average of θ. Given Fθ(Gi),

the contrastive loss aims to maximize its agreement with Fω(G
mask
i ) while minimizing the

agreement with all the negative views Fω(G
neg
j ), j ∈M , which can be formulated as:

Lcon(DS,DQ, θ, ω, η)

= − 1

M

∑
G∈DQ

log
esim(Fθ(G),Fω(Gmask))∑M
j=1 e

sim(Fθ(G),Fω(G
neg
j ))

,
(5.5)

where M denotes the size of the query set, and η is the perturbation ratio. By minimizing

Lcon w.r.t θ, we force the main encoder Fθ(·) to maintain the complete structural information

in the embedding and produce more generalized prototypical networks. Thus, the overall

loss is the combination of the classification loss and the contrastive loss:

Ltotal = LMeta(DS,DQ, θ) + βLcon(DS,DQ, θ, ω, η), (5.6)

where β is a hyper-parameter that balances two terms. The detailed learning process is

described in Algorithm 5.

5.3 Experiments

In this section, we present the experiments developed by PyTorch Geometric and conducted

on a workstation with an Intel Core i7 2.80GHz CPU and an NVIDIA GeForce GTX 1070

GPU. Our proposed method is evaluated on standard few-shot learning benchmarks with

real-world datasets. We also conduct an ablative study about the effectiveness of the con-
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Algorithm 5 Learning process of SE-GCL

Input: Graph dataset: {G1, G2, ..., Gm},
Graphs’ labels: {y1, y2, ..., ym},
Task: Ttest={DS(Gtest, ytest),DQ(Gtest, ytest)},
Training episodes: T, Perturbation ratio: η,
Learning rate: α, Momentum coefficient: ϵ.

Output: : Predicted labels of Gtest in DQ

1: while i < T do
2: //Meta-training process
3: Sample a Meta-training task:

Ti
train={DS(Gtrain, ytrain),DQ(Gtrain, ytrain)};

4: Compute the prototype representations ztrain of support set DS(Gtrain) according to
Eq. 5.3;

5: //contrastive process
6: Generate the augmentation views Gmask and Gneg of DQ(Gtrain) with η;
7: Update the main encoder by minimizing loss in Eq. 5.6:

θi+1 = θi − α∇θiLtotal;
8: Update the momentum encoder with ϵ:

ωi+1 = ϵωi + (1− ϵ)θi+1;
9: //Meta-testing process
10: Compute the prototype representations ztest of support set DS(Gtest) from Ttest ac-

cording to Eq. 5.3;
11: Predict the labels of DQ(Gtest) from Ttest using the prototypical networks.
12: end while
13: return Predicted labels of Gtest in DQ

trastive learning module in our framework.

5.3.1 Datasets

In the experiments, we use a variety of large and small attributed networks that are collected

from different domains, including e-commerce networks, citation networks, and morpholog-

ical networks. It is worth noting that meta-learning tasks often demand a considerable

number of classes, whereas some commonly employed graph datasets [119] have limited

classes or small node-attribute dimensions. Therefore, to validate the effectiveness of the
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Symbol Description
G undirected unweighted graph
U set of nodes
U′ set of node’s neighbors
E set of edges
A set of node attributes
y graph label
DS support dataset
DQ query dataset
Fθ(·) main graph encoder
Fω(·) momentum graph encoder
hG graph embedding

h(l+1)
u node embedding at l-th GNN layer
zn graph prototype representation

Gmask graph positive augmentation view
Gneg graph negative augmentation view
η perturbation ratio of Gneg

β regularization hyperparameter

Table 5.1 List of notations used in this work.

proposed framework, we construct graph datasets from two large attributed networks with

lots of node classes, Amazon-Clothing and DBLP, and use the node-label distribution as the

label of the new graph. Meanwhile, we adapt two small attributed networks Letter-High and

TRIANGLES, which are used in GSM [71] for a fair comparison. To ensure that appropriate

data usage agreements are in place with the data owners or providers, we specify the scope

and limitations of data usage. The detailed descriptions of these datasets are as follows:

Datasets |G| Avg.|U | Avg.|E| |A| |ytrain||ytest|
Amazon-Clothing 2000 32.15 192.50 9034 10/10

DBLP 2000 47.25 318.45 7202 10/10
Letter-High 2250 4.67 4.50 2 11/4
TRIANGLES 2000 20.85 35.50 1 7/3

Table 5.2 Statistics of the datasets. We show each dataset with the number of graphs |G|,
the average number of nodes Avg.|U |, the average number of edges Avg.|E|, the dimensions
of node attributes |A|, and the number of classes for training over testing |ytrain|/|ytest|.

Amazon-Clothing . The dataset was originally collected by [120] and has been pre-



68

processed by [115] for the FSL study. In our constructed dataset, each graph represents a

customer’s shopping history, where each node corresponds to a product, and different prod-

ucts are connected if the same customer browses them. The product descriptions are used as

node attributes. We customize 2000 graphs with 20 types of shopping habits from 77 kinds

of products for FSL.

DBLP . The citation network is extracted from [121] with node features generated by

[122] using the Bag-of-Words model. For this dataset, we follow the same construction

method to customize 2000 graphs with 20 graph classes, where each node represents a paper

and edges represent citations.

Letter-High . Each graph is a distorted alphabetic prototype graph with undirected

edges and vertices representing lines and ending points of lines [123]. More specifically,

Letter-High contains 15 categories from the English alphabet: A, E, F, H, I, K, L, M, N, T,

V, W, X, Y, and Z.

TRIANGLES . This dataset contains 10 different graph classes numbered from 1 to 10,

corresponding to the number of triangles in the graphs of each class. The partial version is

used in the experiments in [71] that reduces the graph sample size from 45,000 to 2,000.

5.3.2 Baselines and Implementation

We compare our method with the following five types of baselines:

Weisfeiler-Lehman Graph Kernels [124], based on the Weisfeiler-Lehman (WL)

test of graph isomorphism, is considered as the state-of-the-art in graph classification. We

skip the unsuitable Meta-training phase for this method and perform N -way-K-shot graph
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Methods Amazon-Clothing
5-way 5-shot 5-way 10-shot 8-way 5-shot

WL kernel 56.40 ± 2.23 65.24 ± 1.37 49.47 ± 2.64
GIN 63.25 ± 1.63 71.24 ± 1.57 55.47 ± 3.34

MAML (GCN) 70.72 ± 3.88 76.62 ± 2.35 60.70 ± 4.53
MAML (GAT) 70.66 ± 3.53 76.68 ± 2.51 60.27 ± 4.49
PN (GCN) 70.18 ± 1.19 77.43 ± 1.87 63.17 ± 2.14
PN (GAT) 71.22 ± 2.43 77.06 ± 2.15 63.89 ± 2.94

SE-GCL (GCN) 74.98 ± 2.01 80.22 ± 1.55 66.37 ± 1.99
SE-GCL (GAT) 75.02 ± 2.90 81.76 ± 2.36 66.92 ± 2.43

Methods DBLP
5-way 5-shot 5-way 10-shot 8-way 5-shot

WL kernel 57.12 ± 2.44 65.52 ± 1.71 50.35 ± 2.39
GIN 66.10 ± 2.41 72.38 ± 1.44 57.13 ± 2.88

MAML (GCN) 73.12 ± 4.65 77.69 ± 2.89 63.19 ± 5.12
MAML (GAT) 74.10 ± 4.19 78.03 ± 3.44 62.80 ± 3.99
PN (GCN) 74.32 ± 2.49 79.79 ± 2.19 64.49 ± 3.19
PN (GAT) 74.91 ± 3.29 80.29 ± 2.34 64.52 ± 3.52

SE-GCL (GCN) 77.31 ± 2.17 83.40 ± 1.14 67.59 ± 2.86
SE-GCL (GAT) 78.16 ± 3.09 84.75 ± 1.82 68.25 ± 3.20

Table 5.3 Accuracy with a standard deviation of baselines and our method. We tested 100
N -way-K-shot tasks on both Amazon-Clothing and DBLP datasets. The best results are
highlighted in bold.

Methods K-shot Letter-High TRIANGLES

GSM
5 69.91 ± 5.90 71.40 ± 4.34
10 73.28 ± 3.46 75.60 ± 3.67
20 77.38 ± 1.58 80.04 ± 2.20

SE-GCL
5 74.34 ± 1.03 77.36 ± 1.25
10 79.42 ± 0.84 83.14 ± 1.07
20 84.15 ± 0.77 89.17 ± 0.85

Table 5.4 Accuracy of GSM and our method. We tested 100 N -way-K-shot tasks on both
Letter-High (4-way) and TRIANGLES datasets (3-way).

classification directly on the testing dataset.

GIN [73] uses injective neighbor aggregation to approximately conceive through WL

test, which considers performing better than GCN and GraphSAGE by [125] in case of

graph classification. Thus, we train a naive GIN + MLP classifier directly on the testing

dataset to verify the knowledge transfer ability in Meta-learning.
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MAML [69] is an optimization-based Meta-learning method that tries to learn better

model initialization from a series of Meta-training tasks. For the few-shot graph classification

task, we extend it by the same graph encoder backbone in our framework.

GSM [71] clusters the graph classes based on the graph spectral measures into groups

named super-classes and uses the constructed super-classes for few-shot learning.

PN has the identical architecture of our framework but without the contrastive learning

module, which can be considered a variant of a Prototypical Network.

For either baselines or our framework, we implement the graph encoder consisting of

three GCN layers [126] or GAT layers [127] with dimension sizes 32, 32, and 16, respectively.

All the layers are activated with the ReLU function. We choose MinCUT Pooling from

[128] as the readout operation because it coarsens a graph by taking into account both the

connectivity structure and the node features. The loss is trained with Adam optimizer,

whose learning rate is set to 0.001 initially with a weight decay of 0.0001. We adjust the

dropout rate and the perturbation ratio η for each dataset to achieve the best performance

and train the model with an early-stopping strategy across 300 episodes. Moreover, we

set the regularization hyperparameter β to 1.0 and the momentum coefficient ϵ to 0.99 by

default.

5.3.3 Result Analysis

We evaluate the performance by 5-way-5-shot, 5-way-10-shot, and 8-way-5-shot tasks on both

Amazon-Clothing and DBLP datasets, whose metrics Accuracy (ACC) results are presented

in Table 5.3. For Letter-High and TRIANGLES containing few node information, we perform
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4-way and 3-way tasks, respectively, and only compare them with GSM’s best results in Table

5.4. From a comprehensive view, we have the following observations:

• For WL kernel and GIN baselines, we perform N -way-K-shot graph classification di-

rectly over the test classes. It is clear that the sample size restricts the accuracy of the

prediction results. When there are insufficient samples for training, the model is prone to

overfit, which leads to unsatisfactory test results. GIN incorporates node features while

generalizing the WL test, so the effect is better than the WL kernel, which shows that node

features play a vital role in graph learning.

• Both MAML and PN achieve superior performances on three types of graph classi-

fication tasks over GIN, indicating that for Amazon-Clothing and DBLP datasets, Meta-

learning can improve the learning process of new tasks using the experience gained from

solving predecessor problems. MAML and PN have similar performance on 5-way tasks, but

PN obtains about 3.5% performance gains on 8-way tasks. The reason is twofold: as an

optimization-based approach, the generalization ability of MAML is getting poor when the

number of classification labels increases and the difference in sample data becomes large. The

performance suffers from its fine-tuning process. As a metric-based approach, PN learns gen-

eralizable matching metrics by taking the mean vector of support examples, which is simple

but stable with favorable distance metrics.

• It is worth noting that SE-GCL extends the PN basis with the contrastive learning

method, further enhancing the model’s generalization ability. Forged by contrastive learning,

the positive and negative samples strengthen the graph structure learning and make up for
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the insufficient number of few-shot samples to a certain extent. Overall, SE-GCL outperforms

the baselines in all the tasks on both Amazon-Clothing and DBLP datasets. At the same

time, we also find that as the encoder backbone, the gap between GCN and GAT is not

apparent, which means that the aggregation function (i.e., the main difference in Message

Passing between GCN and GAT) has much less impact on the graph-level than the pooling

and readout operations.

Figure 5.3 t-SNE visualization comparison for the DBLP dataset. The methods from left to
right are WL kernel, GIN, MAML, PN, and our method (SE-GCL). Each class is represented
in a different color.

• As shown in Table 5.3, SE-GCL outperforms GSM by 5% for both datasets, though

both SE-GCL and GSM use metric-based approaches to solve the few-shot problem. This

is because GSM assumes the test classes could belong to the same super-classes built from

the training classes. However, training and test classes typically do not overlap in the few-

shot setting. On the other hand, we believe the ability of the GNN encoder to learn graph

representation in a top-down way is more critical when encountering unseen classes, where

the effectiveness of the MinCUT Pooling strategy on unsupervised node clustering helps

in the simple-graph dataset with few nodes information. Moreover, SE-GCL can alleviate

the overfitting problem caused by simple graph topology through contrastive learning; even

SE-GCL is more suitable for graph datasets with complex topology and excessive node



73

information. By incorporating such complexities into the graph data, it becomes more

challenging for unauthorized individuals to extract or identify specific sensitive information

from the copyrighted data.

•We visualize the DBLP dataset in 2-dimensional space by applying the t-SNE algorithm

to the graph embeddings, which are learned from 5-way-10-shot classification tasks using the

baselines and our method. The results shown in Figure 5.3 validate our assertions in the

previous section through a meaningful layout. We can see that our method creates better

clusters with low intra-cluster and high inter-cluster distances.

Figure 5.4 The influence of the perturbation ratio η. The range of η is set from 0.1 to 0.9.
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5.3.4 Parameter Analysis

In this section, extensive experiments are conducted to analyze the influence of the pertur-

bation ratio η to SE-GCL, whose results are shown in Figure 5.4. We review the negative

augmentation operation as a combination of node-dropping and edge-perturbation with ra-

tios η and 1-η, respectively. A small η renders a negative view having similar nodes in

the sample graph but connected by different edges, while a hefty η generates a subgraph

of the sample graph with a few random edges. According to Figure 5.4, the performances

are better with large values of η in datasets DBLP, TRIANGLES, and Amazon-Clothing,

while the performance deteriorates in dataset Letter-High with η increasing. There are two

main reasons behind this phenomenon: First, the graphs of Letter-High are sparse with a

moderately low number of nodes. With a large node-dropping ratio, the negative view may

only have 1 or 2 nodes, which cannot provide valuable information for contrastive learn-

ing. Moreover, these small attributed graphs are more sensitive to individual edges, leading

edge-perturbation to generate meaningful negative views. Second, the graphs of DBLP,

TRIANGLES, and Amazon-Clothing have a large number of nodes with complex topology.

Negative views generated by extensive edge-perturbation disturb the contrastive module due

to being incompatible with node attributes and are empirically unhelpful for downstream

performance. In contrast, node-dropping and subgraphs are beneficial across datasets by

enforcing the consistency and generality of local sample graphs and global prototypes.
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5.4 Conclusions

In this study, we address a practical issue in few-shot graph classification. We observe an

imbalance in the utilization of node attributes and graph structure during the learning pro-

cess and propose a novel Meta-learning framework with a contrastive learning module to

enhance the learning of graph structure. On the one hand, the prototype networks based

on the Wasserstein similarity metric allow the uncertainty distribution to encompass task

embeddings beyond the training set, which enables the model to generalize to unseen test

tasks after Meta-training. On the other hand, the contrastive module introduces meaningful

positive and negative views, which regularize the model to prioritize the global structure

of the graph over partial node attributes or subgraph features. The experimental results

demonstrate that our framework achieves outstanding performance compared to other base-

lines, whether applied to large or small attributed graph datasets. As a future direction,

we aim to develop automatic augmentation strategies within the contrastive learning mod-

ule to prevent unauthorized use of original works and copyright infringement. By defining

the objectives and parameters of data augmentation, organizations can exercise control over

synthetic data to ensure compliance with copyright and privacy regulations.
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CHAPTER 6

CONCLUSIONS

This dissertation delves deeply into the intricate world of Graph Neural Networks (GNNs),

highlighting the multifaceted interplay between data privacy and utility. Through meticu-

lous exploration of social graph embedding, non-IID challenges in federated learning, and

the subtleties of few-shot graph classification, we unearth pivotal insights that expand the

contemporary understanding of GNNs and suggest revolutionary shifts in prevailing method-

ologies.

In our initial inquiry into social graph embedding, we tackle an emerging privacy chal-

lenge and introduce a novel framework that harmonizes graph auto-encoders and adversarial

learning. This synergy allows for nuanced latent representation regularization and ensures

the effective removal of sensitive data. Empirical evaluations validate the superiority of our

model over conventional methods, both in privacy preservation and data usability. As the

horizon of GNNs widens, the burgeoning field of dynamic graph embedding surfaces as a

critical area, especially given the potential risks associated with adversaries exploiting graph

dynamism to extract sensitive information.

Progressing further, we confront the intricacies of federated graph neural networks, es-

pecially with non-IID datasets. Our innovative federated learning framework, anchored by

embedding alignment, emerges as a beacon. It fosters consistent latent representation among

clients, thereby enhancing federated information synthesis. The empirical analyses reflect

the prowess of this framework over localized training, balancing data usability and privacy.
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The future holds promise in refining embedding alignment technologies, and further improv-

ing information integration accuracy. Delving deeper into shared public nodes also presents

a valuable avenue, aiming for an optimal node composition that harmonizes data availability

with privacy.

Our final focus revolves around few-shot graph classification and addresses the evident

disproportion in the use of node attributes versus graph structures. Our groundbreaking

Meta-learning framework, augmented with a contrastive learning component, not only broad-

ens the model’s adaptability to new test scenarios but also underscores the significance of

holistic graph structures. This framework consistently demonstrates superior performance

metrics and overshadows standard baseline models across a spectrum of graph datasets. En-

visaging the future, integrating automated augmentation strategies within our contrastive

learning approach emerges as a pivotal step. Beyond mere performance optimization, this

also serves as a protection against potential copyright breaches, empowering organizations to

more stringently oversee data augmentation processes, and ensuring ethical and regulatory

alignment.

Despite the profound insights yielded, it’s imperative to acknowledge inherent research

limitations. The datasets might not reflect the comprehensive breadth of real-world scenarios,

which could affect on broader applicability. Our methods, processed under specific test

conditions, may vary in different settings. Evolving technological landscapes and third-

party dependencies could pose challenges for future replications and relevance. Additionally,

potential biases in qualitative elements and potential shortcomings in our chosen evaluation
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metrics necessitate careful interpretation of findings.

As GNNs forge ahead, dynamic graph embedding stands out as a crucial area, especially

with the challenges associated with safeguarding sensitive data from potential adversarial

threats. Expanding upon our accomplishments in embedding alignment promises more re-

fined methodologies in the future. Equally, the nuances of shared public nodes in federated

contexts beckon deeper exploration. The ever-present risk of copyright infringements in AI

propels the need for refined automated augmentation techniques, ensuring both model re-

silience and copyright protection. Given the successes of our few-shot graph classification

framework, its potential adaptability across diverse graph datasets remains a promising ven-

ture. In summation, this dissertation, while offering a comprehensive examination of GNNs

and charting new domains, emphasizes the dynamic, evolving landscape of graph learning,

marked by emerging challenges and untapped opportunities.
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Approaches 25% 50%
Non-sen Sensitive Non-sen Sensitive

GAE 82.2 ± 1.7 89.9 ± 4.6 82.0 ± 1.2 86.3 ± 3.4
GAE RM 80.8 ± 1.0 82.1 ± 6.9 84.5 ± 1.3 81.3 ± 4.8
DPNE 54.6 ± 1.3 65.7 ± 6.1 55.0 ± 1.7 63.7 ± 8.1
NPGE 86.4 ± 1.4 85.7 ± 5.2 86.3 ± 1.0 82.6 ± 3.9

LPPGE(T) 81.9 ± 1.8 81.1 ± 4.3 82.4 ± 1.1 77.7 ± 3.9
LPPGE(A) 80.7 ± 1.0 73.0 ± 5.1 80.7 ± 0.9 64.6 ± 4.7

Approaches 75% 100%
Non-sen Sensitive Non-sen Sensitive

GAE 82.4 ± 1.8 85.1 ± 4.0 81.8 ± 1.0 85.6 ± 3.5
GAE RM 85.0 ± 1.1 84.5 ± 4.1 84.6 ± 0.7 83.3 ± 3.0
DPNE 53.8 ± 1.7 65.9 ± 4.3 55.3 ± 1.3 67.3 ± 4.2
NPGE 84.3 ± 2.4 85.2 ± 3.4 85.1 ± 1.4 89.2 ± 2.8

LPPGE(T) 82.4 ± 1.3 78.1 ± 3.2 81.5 ± 1.1 75.8 ± 3.9
LPPGE(A) 81.2 ± 1.2 72.6 ± 3.4 80.5 ± 1.2 72.3 ± 3.1

Table A.1 Results of link prediction for the Cora dataset.

Approaches 25% 50%
Non-sen Sensitive Non-sen Sensitive

GAE 84.9 ± 1.2 94.3 ± 3.2 84.8 ± 2.6 93.7 ± 2.1
GAE RM 85.0 ± 1.6 97.0 ± 4.4 86.0 ± 1.8 87.2 ± 6.0
DPNE 52.9 ± 1.7 64.0 ± 6.4 52.2 ± 1.5 62.2 ± 6.0
NPGE 87.5 ± 0.9 89.3 ± 6.5 86.9 ± 1.0 87.1 ± 4.4

LPPGE(T) 87.9 ± 1.6 82.6 ± 6.1 85.8 ± 1.2 75.8 ± 4.9
LPPGE(A) 84.8 ± 1.2 86.0 ± 6.7 82.1 ± 3.6 80.3 ± 4.5

Approaches 75% 100%
Non-sen Sensitive Non-sen Sensitive

GAE 85.0 ± 1.7 91.3 ± 3.6 83.7 ± 1.4 92.1 ± 3.4
GAE RM 86.6 ± 0.9 92.6 ± 2.6 87.5 ± 1.2 91.8 ± 3.3
DPNE 53.4 ± 1.6 64.0 ± 4.4 52.7 ± 1.3 67.5 ± 5.2
NPGE 88.5 ± 0.6 88.7 ± 2.5 88.9 ± 1.5 92.6 ± 2.6

LPPGE(T) 84.0 ± 0.6 84.0 ± 4.3 85.6 ± 1.6 81.0 ± 3.9
LPPGE(A) 83.9 ± 1.4 77.1 ± 3.7 84.1 ± 1.2 77.0 ± 3.5

Table A.2 Results of link prediction for the Citeseer dataset.
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Approaches 25% 50%
Non-sen Sensitive Non-sen Sensitive

GAE 84.6 ± 0.3 89.7 ± 0.7 84.5 ± 0.4 89.1 ± 1.2
GAE RM 83.9 ± 0.3 88.1 ± 0.1 83.9 ± 0.3 86.9 ± 1.0
DPNE 39.9 ± 10.4 41.2 ± 12.9 45.7 ± 11.4 47.8 ± 13.5
NPGE 82.0 ± 0.3 85.8 ± 1.0 82.2 ± 0.3 86.4 ± 0.6

LPPGE(T) 81.5 ± 0.2 84.5 ± 0.5 80.9 ± 0.4 82.5 ± 0.1
LPPGE(A) 80.1 ± 0.2 83.6 ± 0.9 80.2 ± 0.2 82.4 ± 1.0

Approaches 75% 100%
Non-sen Sensitive Non-sen Sensitive

GAE 84.5 ± 0.5 89.9 ± 1.1 84.4 ± 1.4 90.0 ± 1.2
GAE RM 84.1 ± 0.3 87.7 ± 0.5 84.2 ± 0.2 89.6 ± 0.8
DPNE 44.3 ± 12.4 46.0 ± 14.6 48.8 ± 10 52.5 ± 10.2
NPGE 82.3 ± 0.4 86.5 ± 0.5 81.7 ± 0.1 85.2 ± 0.6

LPPGE(T) 81.4 ± 0.2 82.8 ± 0.6 81.2 ± 0.2 83.1 ± 0.5
LPPGE(A) 78.1 ± 0.2 78.4 ± 0.9 80.2 ± 0.2 80.7 ± 1.0

Table A.3 Results of link prediction for the Yale dataset.

Approaches 25% 50%
Non-sen Sensitive Non-sen Sensitive

GAE 84.9 ± 0.2 89.7 ± 1.0 85.2 ± 0.3 90.3 ± 1.1
GAE RM 84.7 ± 0.5 88.2 ± 1.6 84.8 ± 0.3 89.1 ± 1.2
DPNE 54.0 ± 12.7 65.2 ± 18.5 55.8 ± 11.9 67.9 ± 18.0
NPGE 83.5 ± 0.3 88.3 ± 1.1 83.4 ± 0.3 88.1 ± 0.7

LPPGE(T) 82.1 ± 0.3 81.9 ± 0.9 82.1 ± 0.2 84.4 ± 0.8
LPPGE(A) 79.2 ± 0.1 75.4 ± 1.5 78.7 ± 0.5 76.3 ± 1.4

Approaches 75% 100%
Non-sen Sensitive Non-sen Sensitive

GAE 85.1 ± 0.3 90.1 ± 1.0 85.1 ± 0.4 90.7 ± 1.1
GAE RM 84.6 ± 0.4 89.2 ± 1.3 84.7 ± 0.3 88.5 ± 0.7
DPNE 58.5 ± 8.9 71.2 ± 13.3 60.6 ± 1.2 75.9 ± 3.9
NPGE 83.1 ± 0.4 88.7 ± 1.1 83.5 ± 0.4 88.0 ± 1.2

LPPGE(T) 81.8 ± 0.4 83.2 ± 0.8 82.2 ± 0.3 83.1 ± 0.7
LPPGE(A) 78.4 ± 0.5 75.1 ± 1.4 80.4 ± 0.3 81.3 ± 1.2

Table A.4 Results of link prediction for the Rochester dataset.

Approaches 25% 50% 75% 100%
MLP SVM MLP SVM MLP SVM MLP SVM

GAE 73.7 71.5 74.3 71.5 73.1 71.5 74.0 71.5
GAE RM 72.7 70.1 78.2 73.6 76.3 75.1 75.1 71.3
DPNE 15.2 6.63 14.9 6.63 14.8 6.63 14.5 6.63
NPGE 69.3 60.2 73.0 61.6 73.9 63.9 72.4 68.0

LPPGE(T) 73.6 59.6 75.8 69.8 73.7 54.8 79.2 70.8
LPPGE(A) 72.0 66.9 71.0 61.7 70.7 62.1 73.9 71.8

Table A.5 Results of node classification for the Cora dataset (7 categories).
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Approaches 25% 50% 75% 100%
MLP SVM MLP SVM MLP SVM MLP SVM

GAE 59.2 54.1 61.2 54.0 58.9 54.1 58.6 54.0
GAE RM 58.2 51.9 58.7 54.1 51.9 48.4 63.5 55.5
DPNE 16.7 8.32 17.5 8.32 17.3 8.32 18.6 8.32
NPGE 64.7 56.0 67.3 60.5 67.9 62.6 69.0 64.1

LPPGE(T) 64.1 55.0 66.5 60.7 64.6 57.3 56.4 47.7
LPPGE(A) 60.3 54.7 59.2 57.7 59.6 55.6 66.9 62.3

Table A.6 Results of node classification for the Citeseer dataset (6 categories).

Approaches 25% 50% 75% 100%
MLP SVM MLP SVM MLP SVM MLP SVM

GAE 86.5 87.1 86.3 87.1 86.1 87.0 85.8 87.0
GAE RM 85.2 86.7 85.1 85.8 84.3 86.9 85.1 86.3
DPNE 24.5 4.66 24.6 4.66 24.2 4.66 24.2 4.66
NPGE 83.1 81.4 83.9 82.5 82.8 82.0 78.9 77.6

LPPGE(T) 83.8 82.8 83.8 81.8 84.6 82.8 84.8 83.5
LPPGE(A) 85.4 84.7 83.9 83.0 82.9 81.2 84.0 83.3

Table A.7 Results of node classification for the Yale dataset (6 categories).

Approaches 25% 50% 75% 100%
MLP SVM MLP SVM MLP SVM MLP SVM

GAE 84.6 84.1 85.0 84.1 84.6 84.1 84.4 84.1
GAE RM 85.4 83.4 84.1 83.6 85.1 83.5 85.2 84.2
DPNE 50.4 44.7 50.8 44.7 49.7 44.7 50.2 44.7
NPGE 83.7 81.6 85.0 79.9 85.3 82.6 84.1 80.0

LPPGE(T) 85.4 81.5 85.0 80.9 85.8 82.9 86.2 82.8
LPPGE(A) 83.7 79.7 85.1 79.0 85.1 82.0 86.4 83.6

Table A.8 Results of node classification for the Rochester dataset (3 categories).
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