
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

12-11-2023

Exploring the utility-privacy trade-off in social media data mining Exploring the utility-privacy trade-off in social media data mining

Guangxi Lu

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

Recommended Citation Recommended Citation
Lu, Guangxi, "Exploring the utility-privacy trade-off in social media data mining." Dissertation, Georgia
State University, 2023.
doi: https://doi.org/10.57709/36369964

This Dissertation is brought to you for free and open access by the Department of Computer Science at
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Computer Science Dissertations by
an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_diss
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F209&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/36369964
mailto:scholarworks@gsu.edu

Exploring the utility-privacy trade-off in social media data mining

by

Guangxi Lu

Under the Direction of Zhipeng Cai, Ph.D.

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy of Science

in the College of Arts and Sciences

Georgia State University

2023

ABSTRACT

Social media data has become an invaluable source of information for data mining. How-

ever, developing a high-utility social media model requires a significant amount of training

data, which can pose significant privacy challenges. The collection and use of social media

data can lead to privacy rights violations and the misuse of personal information, making

the trade-off between utility and privacy a complex issue. This dissertation examines the

trade-off between utility and privacy in social media data mining from several perspectives.

Firstly, it explores how to balance the robustness and fidelity of the social media data min-

ing model in the design of the model structure. Specifically, the study analyzes the use

of a pairwise graph convolutional network structure to enhance the model’s resistance to

adversarial attacks while maintaining accuracy. Secondly, the study examines the trade-off

between privacy and utility of social media data in the training framework. To do this, it

uses a federated learning framework to investigate the impact of centralizing or decentraliz-

ing training on privacy protection and model performance. Finally, the dissertation focuses

solely on graph de-anonymization and presents a neural network-based approach to this is-

sue. It explores ways to improve the efficiency and performance of graph de-anonymization

through graph embedding vectors. The dissertation also includes a significant number of ex-

periments to validate the feasibility of the proposed framework from both utility and privacy

perspectives. The results demonstrate that an appropriate model or framework design can

reasonably balance the privacy and utility of social media data mining.

INDEX WORDS: Social Media, Utility-Privacy Trade-off, Adversarial Attacks,
Federated Learning

Copyright by
Guangxi Lu

2023

Exploring the utility-privacy trade-off in social media data mining

by

Guangxi Lu

Committee Chair:

Committee:

Zhipeng Cai

Yingshu Li

Wei Li

Yan Huang

Electronic Version Approved:

Office of Graduate Services

College of Arts and Sciences

Georgia State University

December 2023

iv

CHAPTER 0

DEDICATION

This dissertation is dedicated to my parents, Ming Guo and Jianchuan Lu, who have

always supported and encouraged me throughout my academic journey, thanks for their love,

guidance and unwavering support. Their sacrifices and hard work have made it possible for

me to pursue my dreams. Thanks for my advisor, Zhipeng Cai, for his invaluable guidance,

support and mentorship throughout my research. I am grateful for the opportunity to work

under his supervision and for the wealth of knowledge he has shared with me. Thanks for

my colleagues and friends, for their camaraderie and support throughout the years. And

lastly, Thanks for all those who have helped me in one way or another, I am deeply grateful.

This thesis is dedicated to all of you.

v

CHAPTER 0

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to the following individuals and organiza-

tions who have contributed to the completion of this thesis. My advisor, Dr. Zhipeng Cai ,

for his unwavering support, guidance and mentorship throughout my research journey. I am

grateful for the opportunity to work under his supervision and for the wealth of knowledge

he has imparted to me. Dr. Wei Li. I am deeply grateful to her. Without her expert

supervision and support, I would not have been able to complete this thesis. Her patience

and guidance were invaluable and have played a critical role in my academic journey. My

colleagues, friends and fellow graduate students, Zuobin Xiong, Honghui Xu, Kainan Zhang,

Peng Wang, Kaiyang Li, and Yuchen Wang for their camaraderie, support and helped me

a lot in study and live. The computer science department at georgia state university, for

providing the resources, support and facilities that were essential to my research. Thanks to

Dr. Xu Zheng and Dr. Ling Tian for their assistance and support. And lastly, to all those

who have helped me in one way or another, I am deeply grateful.

vi

CHAPTER 0

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

LIST OF TABLES . ix

LIST OF FIGURES . x

1 INTRODUCTION . 1

2 BACKGROUND . 3

2.1 Graph Convolutional Networks . 3

2.2 Federated Learning . 5

2.3 Graph De-anonymisation . 8

3 DATA MINING MODEL . 10

3.1 Introduction . 10

3.2 Related Work . 13

3.2.1 Graph Adversarial Attack . 13

3.2.2 Graph Adversarial Defense . 14

3.3 Preliminaries . 15

3.4 Methodologys . 20

3.4.1 Gaussian-based Graph Convolution Network 21

3.4.2 Pairwise Framework . 24

3.5 Performance Evaluation . 26

3.5.1 Datasets . 27

3.5.2 Experiment Setting . 27

3.5.3 Experiment Analysis . 28

3.5.4 Fidelity-Robustness Analysis . 31

3.6 Conclusion . 32

vii

4 DATA TRAINING FRAMEWORK . 33

4.1 Introduction . 33

4.2 Related Work . 35

4.2.1 Gradient Attacks . 36

4.2.2 Decentralized Federated Learning 37

4.3 Preliminaries . 38

4.4 Methodology . 40

4.4.1 Peer to Peer Network . 41

4.4.2 Decentralized Federated Learning Algorithm 42

4.4.3 Training Schema . 44

4.4.4 Security Analysis . 48

4.5 Performance Evaluation . 49

4.5.1 Datasets . 49

4.5.2 Experiment Setting . 50

4.5.3 Experiment Analysis . 51

4.5.4 Convergence Speed and Training Efficiency 55

4.6 Conclusion . 58

5 DATA LEVEL RESEARCH . 60

5.1 Introduction . 60

5.2 Related Work . 63

5.2.1 Traditional graph de-anonymisation algorithm 63

5.2.2 Graph de-anonymization based on neural networks 65

5.3 Preliminaries . 66

5.3.1 GraphSAGA . 68

5.3.2 Neural Tensor Network . 71

5.4 Methodology . 72

5.4.1 Embedding Phase . 73

5.4.2 Comparison Phase . 74

viii

5.4.3 Matching Procedure . 76

5.4.4 Runtime Complexity . 77

5.5 Experiments Result . 77

5.5.1 Datasets . 77

5.5.2 Experiment Setting . 79

5.5.3 Performance Evaluation . 80

5.6 Conclusion . 85

6 FUTURE RESEARCH DIRECTIONS . 86

6.1 Federated continual learning . 86

6.2 Personalised Decentralised Federated Learning 88

6.3 Client selection in federated learning 89

7 CONCLUSION . 90

REFERENCES . 92

ix

CHAPTER 0

LIST OF TABLES

Table 3.1 Basic information of the datasets . 27

Table 3.2 Prediction accuracy of all models in each dataset 28

Table 4.1 The accuracy for image classification in the Fashin-MNIST datasets. . 51

Table 4.2 The label restoration accuracy. 52

Table 4.3 The image restoration result. 53

Table 4.4 Training round of each model. 56

Table 4.5 Communication round of each model. 57

Table 5.1 Accuracy of graph de-anonymization on different datasets 81

Table 5.2 Precision, Recall, and F1 values for graph de-anonymization 81

Table 5.3 Accuracy of graph de-anonymization at different query graph sizes . . 82

x

CHAPTER 0

LIST OF FIGURES

Figure 3.1 Adversarial attack in graph structure data 18

Figure 3.2 The framework of Pairwise Gaussian Graph Convolutional Network . 20

Figure 3.3 The pairwise differential structure . 24

Figure 3.4 Prediction accuracy for all models under various adversarial attack . . 29

Figure 3.5 Impact of hyper-parameter λ on prediction accuracy 31

Figure 4.1 Federated Learning Framework Structure 38

Figure 4.2 Decentrilized Federated Learning Framework Structure 42

Figure 4.3 Topology of peer to peer network for decentralized federated learning 46

Figure 4.4 Different number communication rounds D in each DEFEAT training
round . 47

Figure 4.5 Case study of CFL result . 54

Figure 4.6 Case study of DEFEAT result . 55

Figure 5.1 Original Graph . 68

Figure 5.2 Anonymized Graph . 69

Figure 5.3 Query Graph . 69

Figure 5.4 The GraphSAGE structure. 70

Figure 5.5 Neural tensor network structure . 71

Figure 5.6 An overview illustration of Graph Neural De-anonymization 72

Figure 5.7 Running time of different models at different query graph sizes 84

Figure 6.1 Federated Continual Learning Framework Structure 86

1

CHAPTER 1

INTRODUCTION

With the rapid development of the internet, social media platforms such as Facebook, Twit-

ter, and Instagram have changed the way people communicate [107]. These platforms gen-

erate a huge amount of data every day. Through data mining technology, these information

can be effectively extracted and used for user behavior [27], emotion [102], and public opin-

ion analysis [87]. As a result, many organizations have recognized the importance of data

mining,[93] as it not only helps them better understand user needs, but also enables them

to make more informed decisions and improve operational efficiency.

However, the growing use of social media data mining has raised privacy concerns [37][90].

The massive amount of personal information collected by social media platforms makes it

vulnerable to exploitation by third-party organizations. This raises the alarm for users

about the privacy of their personal information and the potential abuse of their data. [11]

Unfortunately, ensuring user privacy and the utility of social media data mining is a trade-

off. [14] The need to protect personal information often conflicts with the need to extract

valuable insights from the data, making it difficult to strike a balance between privacy and

utility [98][10].

Balancing privacy and utility in social media data mining presents two key challenges. [21][17]

Firstly, models used to mine the graph structure of social media data often lack robustness,

making them susceptible to attacks by malicious user. On the other hand, designing a high

robustness model can introduce noise or redundant structures, undermining the accuracy

2

and fidelity of the model. Secondly, the selection of a training framework also presents dif-

ficulties. Centralized training increases the risk of data being leaked to third parties, while

decentralized training requires a significant amount of communication and may result in a

decline in model accuracy.

This dissertation aims to analyze the trade-off between model utility and privacy from

both the data mining model and training framework perspectives. Specifically, at the model

level, the dissertation proposes a pairwise graph convolutional network that maintains ro-

bustness while ensuring model fidelity. [60] At the training framework level, the paper in-

troduces a decentralized federated learning approach and compares its privacy protection

against gradient attacks with other centralized training methods. [59][58]

To further explore social media data privacy, this study delves into data-level privacy

protection by proposing a neural network-based graph de-anonymization algorithm. The aim

is to achieve a more efficient and accurate implementation of social data de-anonymization,

providing valuable insights into the privacy protection of social media data and informing

future research in this field.

The remaining parts of this dissertation are organized as follows. Chapter 2 summarizes

relevant literature. Chapter 3 investigates the trade-off between privacy protection and

utility at the model level. Chapter 4 examines the trade-off between privacy protection

and utility at the training framework level. Chapter 5 introduces the data level graph de-

anonymization research. Chapter 6 introduce the future work. Chapter 7 is the conclusions

of this dissertation.

3

CHAPTER 2

BACKGROUND

Social media data has become an indispensable resource in today’s society. It captures

the information people post on social media platforms, including text, images, audio, and

video[57], providing valuable insights into people’s lifestyles, interests, values, and infor-

mation consumption habits. Utilizing this data allows us to better understand people’s

behavior and psychology, population characteristics and consumption trends, as well as to

express ourselves and communicate with others.

One of the main aspect of social media data is that it is presented in the form of a graph.

A graph is a mathematical representation of a set of objects and their relationships. In social

media, objects can be users, and relationships can be the connections between users, such

as friendships or followings. The graph structure of social media data allows for capturing

complex relationships between users. Therefore, graph convolutional networks are commonly

used for analyzing these social media data. Another aspect of social media data is that it is

large in scale and widely dispersed with heterogeneous sources[65]. To achieve joint training

across different data sources while preserving privacy, federated learning frameworks are often

used. Therefore, this dissertation focuses on exploring the trade-off between performance

and privacy in graph convolutional networks and federated learning frameworks.

2.1 Graph Convolutional Networks

Graph Convolutional Networks(GCN) is a graph embedding technique that maps graph

structures into vectors by combining convolutional neural networks and exploiting the struc-

4

tural information of the graph. The main idea of GCN is to extract the spatial features of

the graph structure data. Graph convolutional networks follow a ”message-passing” frame-

works. Specifically, each node in the network aggregates information from its neighbors

nodes through convolution layer. The information in the graph structure is continuously ag-

gregated until all the information converges. Essentially, GCN is the study of the properties

of a graph with the help of the eigenvalues and eigenvectors of the laplace matrix. Bruna et

al.[5] first introduce the idea of use convolutional in graph data. It generalized CNN to graph

structure data based on the spectrum of the graph laplacian. Defferrard et al[22] present

a formulation of CNNs in the context of spectral graph theory and design a fast localized

convolutional filters on graphs. Kipf and Welling[45] propose graph convolutional networks.

It is a graph neural networks used for semi-supervised classification in graph structured data,

and it is actually a first-order approximation of spectral graph convolution.

In addition, GCN also has several vertex variants. Li et al.[53] use gated recurrent

units extend to output sequence, and then aggregate graph structure information. Peter et

al.[77] introduces an attention mechanism to GCN. By assigning different learning weights

to different node, makes it more reasonable in dealing with the directional graph tasks.

However, all of these works do not consider the robustness of the GCN models. so they are

vulnerable to adversarial attacks.

Anyway, GCN stands out in the realm of graph mining. It effectively compresses the

rich, high-dimensional neighborhood data of nodes into concise vector representations, en-

abling deeper pattern recognition than traditional techniques. This capability, rooted in

5

deep learning, permits GCNs to discern intricate relationships and dynamics within graphs.

However, GCNs are not without challenges. Their impressive performance is offset by a

marked vulnerability to adversarial attacks [20]. Adversaries can subtly manipulate graph

data, such as tweaking edges or node attributes, compromising the integrity of GCN outputs.

These perturbations can lead to significant misclassifications, posing potential security and

privacy risks.

The inherent messaging-passing framework of GCN amplifies this concern. A slight

alteration in one node can propagate, influencing neighboring nodes and, by extension, the

entire graph. This interdependency complicates the defense against adversarial attacks.

Current defensive strategies are still maturing. One approach involves detecting and

rectifying perturbations, but given the interconnected nature of GCNs, identifying these

with precision is challenging. Furthermore, removing all perturbed features might impair

the model’s efficacy. Another proposition is to encapsulate node feature values within a

Gaussian distribution. While this might dampen the impact of perturbations, it introduces

noise, potentially affecting the model’s accuracy on clean datasets.

In essence, the journey to harmonize the robustness and performance of GCNs remains

a topical research challenge.

2.2 Federated Learning

In the evolving landscape of machine learning, the role of large datasets for effective model

training is pivotal. However, many organizations grapple with the issue of data residing in

6

isolated silos, a consequence of pressing privacy concerns, competitive barriers, and other

regulatory constraints.

Addressing this challenge, Federated Learning (FL) has emerged as a potent framework.

FL offers a collaborative mechanism for multiple entities to jointly train models without

compromising the sanctity of individual data points. By circumventing direct data shar-

ing, FL presents a solution to the data silo problem, and its applications span sectors like

electronic finance, recommendation systems, and biomedicine.

Consider a scenario involving N distinct entities or enterprises, each possessing its own

localized data. Direct data interchange among them is hindered by privacy and security

protocols. Here, the FL system fills the gap. Each entity, termed a client, leverages its data

to train localized models, subsequently transmitting the trained parameters to a central

server. This server amalgamates the inputs from all clients, updating a global model. The

process is iterated until satisfactory training of the global model is achieved.

Drawing a parallel, when companies aim to develop a collective machine learning model,

each initially focuses on localized model training. Instead of dispatching raw data, periodic

interactions with a central server occur. In these interactions, local model parameters are

shared, with the server reciprocating by dispatching an updated global model. Iterations

ensue until a convergence criterion is met. Crucially, FL ensures that the local data remains

confined, obviating direct data transfers and thereby ensuring robust data security.

Google first introduced the concept of federated learning in 2016 as a means of updating

machine learning models locally for Android users. The federated averaging proposed by

7

[63] follows a synchronous training approach in which each client trains a local model and

sends it to a centralized server, which computes the average of all models. The server sends

the average model back to the clients. Numerous approaches have been proposed to enhance

privacy and security in a federated learning environment[86] applied differential privacy to

provide the necessary privacy guarantees whereas proposed a secure aggregation protocol for

privacy-preserving machine learning in a federated environment.[4] built a production system,

the first of its kind, for federated learning in the field of mobile devices using TensorFlow.

Nonetheless, FL is not without its vulnerabilities. Despite its design, which promotes

model training sans direct data sharing, recent inquiries highlight potential risks. These

risks manifest when servers, possessing model gradients, deploy targeted attacks to infer

aspects of the client’s private data. For instance, through membership inference attacks, it’s

possible to identify specific data points involved in the local model’s training. Similarly, label

inference attacks and model inversion attacks can deduce particular labels and regenerate

supposedly private local data samples, respectively.

A proactive approach to mitigate such risks involves the elimination of the central server

from the FL framework. A nascent concept, Decentralized Federated Learning (DFL), cham-

pions this shift. In DFL, there’s an absence of a central data aggregation point. Instead,

a peer-to-peer (P2P) structure is adopted, wherein clients directly liaise with neighboring

peers. Here, individual clients train their models, relay parameters across the P2P network,

and update their models based on received feedback. This decentralized approach curtails

the consistent extraction of gradient information by potentially malicious clients, fortifying

8

data privacy. Concurrently, to maintain the efficacy of DFL, novel training strategies have

been proposed to harmonize model accuracy with convergence efficiency.

In summation, while Federated Learning represents a significant advance towards recon-

ciling data utility with privacy, the pathway presents both challenges and prospects. This

underscores the imperative for ongoing research and innovation in decentralized learning

paradigms.

2.3 Graph De-anonymisation

To further explore the privacy protection of social network data, a pivotal idea is delving

into the privacy of graph data itself. Graph data structures have become the backbone of

a multitude of applications, ranging from social networks to biological systems. As these

applications often involve sensitive information, ensuring the privacy of individuals and en-

tities represented in these graphs has become a critical concern. To protect the identities

and relationships of individuals in a graph, various anonymisation techniques have been de-

veloped. These techniques aim to obscure specific node and edge details while retaining the

overall graph’s structural information. Methods like k-anonymity [72] ensure that each node

in the graph cannot be distinguished from at least k-1 other nodes based on their attributes.

Similarly, techniques like l-diversity [62] aim to ensure that sensitive label information is

obscured among l distinct entities. Despite the advancement of these anonymisation meth-

ods, several graph de-anonymisation techniques have emerged. These techniques attempt to

unveil the original identities of nodes in a graph by leveraging structural information and

9

external data. For instance, if an adversary possesses a fraction of the original graph or

some auxiliary information, they might be able to align the anonymised graph’s nodes to

the original nodes based on specific patterns or similarities [42]. The effectiveness of graph

de-anonymisation attacks highlights the vulnerabilities inherent in relying solely on graph

modification as a means of preserving privacy. Successful de-anonymisation can lead to

significant privacy breaches, where sensitive information about individuals or organizations

is exposed. Such revelations have implications not just for personal privacy but also for

business confidentiality, national security, and other domains. The constant tug-of-war be-

tween anonymisation and de-anonymisation has led to a dynamic landscape. Researchers are

continuously developing more robust anonymisation techniques while also uncovering new

vulnerabilities. This has led to a growing awareness of the need for a multi-faceted approach

to graph data privacy, which combines structural modifications, noise addition, and possibly

differential privacy guarantees.

10

CHAPTER 3

DATA MINING MODEL

3.1 Introduction

With the help of graph representation, the topology of wireless networks and the attributes

of nodes (e.g., locations, mobile users, and sensors) can be comprehensively and accurately

depicted for data analysis using graph mining, such as node classification, clustering, link

prediction, and recommendation. These mining results play a critical role in many real-

world applications, including transmission schedule in wireless networks [104][6], offloading

decisions in edge computing [75][9], behavior forecasting from sensor data [15][97], traffic

monitoring [16][89], epidemic forecast [81], etc.

As a promising technique of graph mining, GCN can capture the graph global informa-

tion by downscaling nodes’ high-dimensional neighborhood information to low-dimensional

vector representations, where notably, deep learning mechanisms can learn and discover more

complex patterns in graphs than traditional graph mining algorithms.

Despite the remarkable performance of GCN, it is vulnerable to adversarial attack [20][94][52]

due to the lack of robustness [19]. Through imperceptible modifications on graph data via

adding edges, deleting edges, or changing node attributes, attackers intend to mislead clas-

sification/prediction results so as to reduce the performance of GCN. What’s worse, such

mis-classified results will cause serious security and privacy threats towards downstream

applications.

Even though the consequence of adversarial attack on GCN has caught the attention

11

of researchers, the study on defense strategies is still at its early stage. The difficulty of

adversarial defense on GCN is that GCN is a messaging-passing framework [110]. Therefore,

a perturbation of one node affects his neighboring nodes, thus affecting all nodes in the graph

during the messaging-passing process.

Among the current works, one pioneer approach to resist adversarial attacks on GCN is

to detect and eliminate perturbations [25]. However, due to the messaging-passing property

of GCN, a slight perturbation can alter many node features in a graph. Therefore, it is chal-

lenging to detect perturbations on a graph accurately. On the other hand, eliminating all

the altered features would significantly reduce the model’s classification accuracy. Another

approach is to represent the feature values of nodes by gaussian distribution [110], so that

the effects from perturbations are passively absorbed in this gaussian structure. But, due to

the additional noise introduced by Gaussian distribution, the Gaussian framework inevitably

leads to a decrease in the classification accuracy of GCN models when dealing with unper-

turbed datasets. Therefore, how to minimize the impact of perturbations under adversarial

attacks while ensuring the classification accuracy of GCN models remains an open problem.

In order to improve model robustness while simultaneously ensuring model accuracy,

this paper develops a novel GCN-based framework named Pairwise Gaussian Graph Con-

volutional Network (PGGCN). Such a pairwise structure comprises a Gaussian GCN and

a Perturbed GCN. The Gaussian GCN takes Gaussian distribution as the hidden represen-

tations of node features/attributes to sample the original node features, and the Perturbed

GCN employs the perturbed data as the input to obtain the perturbed node features. Based

12

on these outputs, the loss of difference between the original node features and the perturbed

node features is formulated to improve the model robustness, and the loss of classification

on the original node features is formulated to enhance the model accuracy.

For performance evaluation, we conduct extensive real-data experiments and find that

our PGGCN outperforms state-of-the-art GCN under various adversarial attack strategies.

The main contributions of this paper are summarized as follows.

� To the best of our knowledge, we are the first to propose the idea of pairwise structure

to design GCN models for the defense against graph adversarial attack.

� In our proposed PGGCN framework, graph features are shared between the Gaus-

sian GCN and the Perturbed GCN to estimate classification loss and differential loss,

which is used in the training process for enhancing model robustness and ensuring

classification accuracy.

� Various real datasets, state-of-the-art models, and graph adversarial attacks are utilized

to carry out experiments, which validates the advantages of our PGGCN framework

in model robustness and classification accuracy.

The rest of this paper is organized as follows. The existing works in related fields are sum-

marized in Section 3.2. The preliminaries are introduced in Section 3.3. Section 3.4 presents

our PGGCN model. Experiments are conducted and analyzed in Section 3.5. Finally, this

paper is concluded in Section 3.6.

13

3.2 Related Work

This section reviews current trends and main achievements on adversarial attacks and defense

in GCN.

3.2.1 Graph Adversarial Attack

Graph adversarial attack is the process of applying a slight perturbation to the graph data

to generate adversarial samples. Such adversarial samples can mislead the victim model

like Graph Convolutional Networks(GCN) to produce incorrect classification results. Graph

adversarial attack can add perturbations in various ways, such as modifying node features,

adding/deleting edges, and adding fake nodes. The perturbation should be less than a certain

threshold when attacking. Otherwise, it would be easily detected.

Gradients are commonly exploited to attack victim models, where the most commonly

used gradient methods are the Fast Gradient Notation Method (FGSM)[28] and the Jacobian-

based Salinity Map Method (JSMA)[67]. FGSM generates adversarial examples by perform-

ing gradient updates along with the sign of gradients of the loss function. JSMA exploiting

the forward derivative of GCN, one can find the adversarial perturbations that force the

model to misclassify the test point into a specific target class. In addition, many of the

adversarial attack methods used in the image domain can also be applied to graph data.[96]

Dai et al.[19] propose a reinforcement learning-based graph adversarial attack method, which

treats the adversarial attack as a finite layer Markov decision process and uses Q-learning to

learn this process. Daniel et al.[114] propose an optimization-based algorithm named Net-

14

tack. This algorithm takes into account the dependencies between instances and generates

adversarial perturbations by searching the perturbation space. Daniel et al.[115] also pro-

pose an attack method named Meta-attack, which first gets the target label from the victim

model by self-learning and then makes the prediction of the post-attack model as different

as possible from that target label. Yao et al.[61] propose the ReWatt framework based on

the idea of RL-S2V and rewiring. Rewiring does not change the number of nodes and edges

in the graph, further reducing perturbations.

Graph adversarial attacks have posed great challenges to the robustness of GCN, which

severely limits the applicability of GCN in real world applications. How to ensure both GCN

accuracy and robustness is the focus of this paper.

3.2.2 Graph Adversarial Defense

Currently, GCN-based adversarial defense methods are still in their early stage. Wang et

al. [83] proposed an adversarial training algorithm called GraphDefense that injects adver-

sarial samples into the training dataset so as to help victim models correctly classify future

adversarial samples, in which iterative training is required, and there is only a slight improve-

ment in robustness. Xu et al. [100] stated that adversarial attack can be resisted by detecting

adversarial perturbations. They predicted the probability of two nodes being linked by the

link prediction. If this probability is low, it means attackers add the corresponding edge.

This approach can filter out the perturbed data but does not improve model robustness.

Shen et al. [82] investigated the latent vulnerabilities in every layer of GCN. The GCN ro-

bustness is improved by using a two-stage aggregation structure and adding a bottleneck

15

aggregator. However, the change in structure also leads to a decrease in the classification

accuracy of GCN. Zhu et al. [110] proposed Robust Graph Convolutional Networks by intro-

ducing an attention mechanism with the Gaussian based structure. RGCN are trained by

penalizing the weights on adversarial edges or nodes, where the introduced additional noise

can enhance the GCN robustness while reducing prediction accuracy.

Wei et al. [43] found that adversarial attack usually increases the singular value and rank

of the adjacency matrix or tends to connect two nodes with different features. Therefore,

a Pro-GNN network is proposed to reconstruct the Poisoned Graph to maintain the graph

data with low rank, sparsity, and smoothness of features. Entezari et al. [23] pointed out that

Nettack [114], a state-of-the-art adversarial attack method, only affects high-rank singular

components of a graph. Based on this observation, the low-rank approximation can be

used to filter the noise brought by Nettack. However, there is no reliable evidence that the

high-rank phenomenon is prevalent in all graph adversarial attacks.

Nevertheless, few of the current graph adversarial defense methods can improve the

robustness of GCNs with the guarantee of model accuracy.

3.3 Preliminaries

Graph Convolutional Network (GCN) is a well-designed method for extracting features from

graph data to perform node classification [35]. A graph can be represented as G = (V,E),

where V is the set of nodes, and E is the set of edges. For all the nodes in G, X ∈ Rm×n is

the node feature matrix, D ∈ Rn×n is the node degree matrix, and A ∈ Rn×n is a adjacency

16

matrix, where n denotes the number of nodes, and m denotes the dimensionality of the node

feature.

The simplest form of GCN can be described as

H l+1 = σ
(
AH lW l

)
, (3.1)

where the H l ∈ Rm×n represents the feature map of layer l, and H0 = X. W l is the

trainable parameters. σ is any nonlinear activation function, such as sigmoid or RELU.

When the feature map H l multiplies the adjacency matrix A, the feature vector of each

node is added to their adjacent vectors. This operation causes the feature of each node to

pass to all one-hop neighborhoods and thus deliver the message. One limitation of this model

is the lack of self-deliver of node information at each GCN iteration because the diagonal

values of the adjacency matrix are all 0. This problem can be solved by adding the identity

matrix to A, which is Â = I + A.

According to Kipf [45], GCN can be normalized to the most common form:

H l+1 = σ
(
D−

1
2 ÂD−

1
2H lW l

)
, (3.2)

where H l ∈ Rm×n represents the feature map at layer l (especially, H0 = X), W l is the

trainable parameters, σ is any nonlinear activation function (such as sigmoid and RELU),

and Â = I + A.

After the input data has gone through several GCN layers, the graph achieves adequate

node information transfer. The predicted classification probability can be directly calculated

17

as

Z = fθ(A,X) = softmax(H t), (3.3)

where fθ(A,X) represents a GCN model,θ denotes the set of all parameters in GCN. H t is

the node feature in the last GCN layer t. This feature passed through a softmax function

to finally obtain the predicted classification results Z. The cross-entropy loss is taken to

calculate the difference between the predicted classification result and the true value, such

as:

L(θ;A,X) = −
∑
v∈Vl

C∑
c=1

Yvc lnZvc, (3.4)

where Vl is the set of labeled node, C is the number of classes, Yvc is the ground truth of

labeled nodes v, and Zvc denotes the probability of node v to label c.

Adversarial attack on GCN aims to cause an incorrect prediction for node classification

by adding perturbation, such as adding/deleting edges and changing node features. Among

the existing works, Nettack [114] is the state-of-the-art adversarial attack method. The

attack of Nettack is shown in Fig. 3.1. The attacker causes the classification result of target

node V4 change from Y4 to Y ′4 by adding the edges < V2, V3 >. Nettack assume the original

graph is represented by a binary group (A,X), which X is the feature map and A is the

adjacency matrix. The modified graph is G′ = (A′, X ′). The nodes modified by the attacker

form the attacking nodes set Va which Vm = {V2, V3} in Fig. 3.1. The perturbations are hold

that[114]:

X ′ui 6= Xui ⇒ u ∈ Vm , A′uv 6= Auv ⇒ u ∈ Vm ∨ v ∈ Vm, (3.5)

18

V2

V4

V1

V3

V2

V4

V1

V3

Y2

Y4

Y1

Y3

Y2

Y4

Y1

Y3

V2

V4

V1

V3

V2

V4

V1

V3

Y2

Y'4

Y1

Y3

Y2

Y'4

Y1

Y3

NETTACK

Input

Perturbed

graph

GCNθ

GCNθ*

Figure 3.1: Adversarial attack in graph structure data

where i is the element of feature vector. The prerequisite for the attack is that the pertur-

bation is undetected, So there is a budget constraint ∆ on the attack model, which is[114]:

n∑
u=1

m∑
i=1

|Xui −X ′ui|+
n∑
u=1

u∑
v=1

|Auv − A′uv| ≤ ∆. (3.6)

For the input graph G, there exists a perturbation space PG
∆,Vm

containing all possible per-

turbations. For any target node is v, the original GCN classifies v with the label cold, while

the modified GCN classifies v as the label cnew. The idea of Nettack is to maximize the

GCN classification loss (i.e., the classification distance between the original and the modi-

fied GCN models) on the target node through perturbations in PG
∆,Vm

, which can be expressed

19

below [114]:

arg max
(A′,X′)∈PG∆,Vm

maxcnew 6=cold
lnZ∗vcnew

− lnZ∗vcold
,

s.t., Z∗ = fθ∗ (A′, X ′) with θ∗ = arg minθ L (θ;A′, X ′) ,

(3.7)

where θ∗ is the optimal parameters trained from the modified graph G′ = (A′, X ′). To

measure the distance between these two labels, Nettack has built a simple proxy GCN

model. Specifically, Nettack builds a two-layer GCN that:

Z = fθ(A,X) = softmax
(
Âσ
(
ÂXW 1

)
W 2
)
. (3.8)

By removing the nonlinearity σ and the softmax function, the classification result of this

two-layer GCN can be simplified to:

lnZ = [Â2XW]. (3.9)

Thus, Nettack can score the perturbations present in perturbation space PG
∆,Vm

, and this scor-

ing function is the maximum classification distance generated by that perturbation as[114]:

S = L (A,X;W, v) = max
cnew 6=cold

[
Â2XW

]
vcnew

−
[
Â2XW

]
vcold

. (3.10)

Nettack uses a greedy algorithm to select the perturbations that need to be added. The

distance caused by each perturbation is calculated through Eq. (3.10). Each time, the

perturbation with the largest distance is selected for addition and the process is repeated

until the budget is exceeded.

20

3.4 Methodologys

In order to enhance the robustness of GCNs against adversarial attacks, we propose a novel

model, termed Pairwise Gaussian Graph Convolutional Network (PGGCN) as shown in

Fig. 3.2. Our proposed PGGCN is a pairwise structure consisting of a Gaussian GCN and

Raw Data
Gaussian GCN

Perturbation

Data

Nettack

FCN

...

...

...

Perturbed GCN

Sampling

Differential

Loss

Share

Parameters

Mean GCN

Variance GCN

Initial mean

feature map

Initial variance

feature map

Final mean

feature map

Final variance

feature map

Final classification

feature map

Initial Perturbation

feature map

Final Perturbation

feature map

Figure 3.2: The framework of Pairwise Gaussian Graph Convolutional Network

a Perturbed GCN. The Gaussian GCN, which contains a mean GCN and a variance GCN,

first maps the feature of raw data into the initial mean feature map and the initial variance

feature map through two fully connected layers (i.e., FCN). These two feature maps are

passed through the mean GCN and the variance GCN to obtain the final mean feature map

21

and final variance feature map, respectively, and then sampled to get the final classification

feature map. The Perturbed GCN shares the model parameters with the mean GCN, In

the Perturbed GCN, the input is the perturbed data obtained by performing Nettack on

the raw data, and the output the final perturbed feature map. This pairwise structure

enhances model robustness by minimizing the difference between the perturbed features and

the classification features. In the following, we will introduce how to realize our models in

detail.

3.4.1 Gaussian-based Graph Convolution Network

The core idea of the Gaussian GCN is to represent the feature values by gaussian distribution;

that is, the raw data feature is represented by the mean feature map and the variance

feature map. The raw data feature map is denoted as H0 = [h0
1, . . . , h

0
n] ∈ Rm×n, where

h0
i is an m-dimension feature vector of node i. Assume that the feature vectors of the raw

data follow gaussian distribution, i.e., h0
i ∼ N (µ0

i , diag (τ 0
i)), where µ0

i ∈ Rm is the mean

vector, and τ 0
i ∈ Rm is the variance vector. Accordingly, E0

i = [µ0
1, . . . , µ

0
n] ∈ Rm×n and

S0
i = [τ 0

1 , . . . , τ
0
n] ∈ Rm×n are the means and variances feature maps. Therefore, the first

layer of Gaussian GCN can convert the raw data feature maps into mean and variance feature

maps via two fully connected layers (FCN).

E0 = σ
(
H0W 0

µ

)
, (3.11)

S0 = σ
(
H0W 0

τ

)
, (3.12)

22

where W 0
µ is the trainable parameters of the mean FCN, and W 0

τ is the trainable parameters

of the variance FCN.

The Gaussian GCN aggregates mean and variance feature based on Eq. (3.2) by applying

learnable filters and non-linear activation functions, which directly imposes layer-specific

parameters and non-linear activation functions to mean feature E and variance feature S.

Formally, in PGGCN, Gaussian-based graph convolution is defended as follows:

El+1 = σ
(
D−

1
2 ÂD−

1
2ElW l

µ

)
, (3.13)

Sl+1 = σ
(
D−

1
2 ÂD−

1
2SlW l

τ

)
, (3.14)

where W l
µ is the trainable parameters of the mean GCN in layer l, and W l

τ is the trainable

parameters of the variance GCN in layer l.

From Eq. (3.2), we have the following expression for GCN:

hl+1
i =

n∑
j=1

D
−1/2
ii ÂijD

−1/2
jj hljW

l,

=
n∑
j=1

Âij

D
1/2
ii

hlj

D
1/2
jj

W l,

(3.15)

where j and i are two nodes in the graph G, and n is the number of node. Therefore, the

essence of GCN is a weighted sum process. which can be rewritten as:

hl+1
i =

n∑
j=1

wjh
l
j, (3.16)

where wj =
Âij

D
1/2
ii

W l

D
1/2
jj

is the weight.

23

Theorem 1. If α ∼ N (µα, τ
2
α) and β ∼ N

(
µβ, τ

2
β

)
are two statistically independent random

variables following gaussian distribution, the weighted sum of these two variables also satisfies

gaussian distribution:

Wαα +Wββ ∼ N
(
Wαµα +Wβµβ,W

2
ατ

2
α +W 2

β τ
2
β

)
. (3.17)

Proof. As α ∼ N (µα, τ
2
α) and β ∼ N

(
µβ, τ

2
β

)
, the moment-generating functions of α and β

should be:

Mα(t) = e

(
µαt+

τ2
αt

2

2

)
. (3.18)

Mβ(t) = e

(
µβt+

τ2
βt

2

2

)
. (3.19)

The moment-generating function of Wαα +Wββ can be computed as follows.

MSum(t) = Mα (Wαt) ∗Mβ (Wβt) ,

= eµαWαt ∗ eµβWβt ∗ e
W2
ατ

2
αt

2

2 ∗ e
W2
βτ

2
βt

2

2 ,

= e(µαWα+µβWβ)t+
(W2
ατ

2
α+W2

βτ
2
β)t2

2 .

(3.20)

Eq. (3.20) shows that the moment-generating function of Wαα + Wββ is the same as

the moment-generating function of a normal random variable with Wαµα +Wβµβ being the

mean and W 2
ατ

2
α +W 2

β τ
2
β being the variance.

Since the first layer feature h0
i follows gaussian distribution, the final layer feature hfi

should also satisfy gaussian distribution according to Theorem 1. Finally, the final classi-

fication feature map can be obtained through the mean feature map and variance feature

24

map, and the sampling method will be used to get the classification features.

hfi ∼ N
(
µfi , diag

(
τ fi

))
. (3.21)

However, the sampling operation makes µfi and τ fi integrable. In order to back-propagate

their gradients, Kingma et al. [44] proposed reparameterize trick to rewrite hfi as hfi =

τ fi ε + µfi , where ε ∼ N(0, 1). The random quantities can be sampled from the standard

gaussian distribution and then introduced into µfi and τ fi .

3.4.2 Pairwise Framework

The main idea of our pairwise framework comes from adversarial training – the robustness

of GCN can be improved by minimizing the distance between the original and perturbed

graph features. As shown in Fig. 3.3, the PG-GCN forms a conjoined structure with a

Gaussian-based GCN as the trunk and shares weight with a branching GCN. The trunk

Original

Graph

Perturbed

Graph
Branch GCN

Trunk GCN
Original

Feature

Perturbed

Feature

NETTACK
Weight

Share

Detecting

Differences

Figure 3.3: The pairwise differential structure

GCN designed to extract the original feature for the original graph data. Meanwhile, a

perturbated graph is formed after adversarial attacks on the original data. The branch GCN

25

extracts the perturbated features from this perturbation graph. For the gaussian-based GCN,

the variance component represents the perturbation that the model can tolerate. The larger

the variance, the more uncertain the feature values are, and the greater the robustness of the

model. The mean component represents the most likely classification result of the model.

Therefore, the branching GCN shares the model parameters from the mean component Wµ.

In order to detect the difference of graph features before and after attack, the raw data

is first subjected to Nettack to obtain the perturbed data G′ = (V ′, E ′), where V ′ is the set

of nodes after attack, and E ′ is the set of edges after attack. To minimize the differences

in the feature maps before and after perturbation, the model parameters of the Perturbed

GCN should be equal to those of the Gaussian GCN. On the other hand, the Gaussian

GCN structure introduces additional randomness by using the variance GCN, which may

reduce the model accuracy of the Perturbed GCN. Thus, the Perturbed GCN only shares

parameters with the mean GCN and then obtains the final perturbed feature map H ′f as:

H ′f = σ
(
D′−

1
2 Â′D′−

1
2H ′f−1W f−1

µ

)
, (3.22)

where D′ ∈ Rn×n is the node degree matrix after attack, A′ ∈ Rn×n is the adjacency matrix

after attack, W f−1
µ is the mean GCN parameters in the layer f − 1. Especially, H ′0 = X ′,

where X ′ ∈ Rm×n is the node feature matrix after attack,

Our PGGCN mechanism aims at minimizing the feature distance to mitigating the effect

of perturbation so as to improve model robustness. In this paper, we use L1 distance to

calculate this difference:

Ldiff(θ;G′, G) =
∥∥Hf −H ′f

∥∥
1
. (3.23)

26

where θ denotes the set of all trainable parameters in PGGCN, i.e., θ = (Wτ ,Wµ). Moreover,

to ensure the accuracy of the GCN model, PGGCN also needs to measure the classification

loss that is defined as:

Lcls(θ;G) = −
∑
v∈Vl

C∑
c=1

Yvc lnZvc, (3.24)

where Vl is the set of labeled nodes, C is the number of classes, Yvc is the ground truth of

labeled nodes v. Zvc = softmax(Hf) denotes the probability of node v being classified to

label c.

Finally, by taking into account both the feature distance and the classification loss, the

total loss function of PGGCN can be obtained:

Lθ = λLdiff(θ;G′, G) + (1− λ)Lcls(θ;G). (3.25)

In Eq. (3.25), Ldiff assesses how far an adversarial feature is away from its original value,

which is used to ensure the model robustness; Lcls evaluates the importance of each feature

element for classification, which helps guarantee the model accuracy; and λ ∈ [0, 1] is a

hyper-parameter to balance the trade-off between Ldiff and Lcls.

3.5 Performance Evaluation

This section presents real-data experiments to evaluate the performance of our PGGCN

framework.

27

Table 3.1: Basic information of the datasets

Cora Citeseer Pubmed
of Nodes 2708 3327 19717
of Edges 5429 4732 44338
Feature Dimension 1433 3703 500

3.5.1 Datasets

For node classification, three different datasets are adopted, including Cora, Citeseer, and

Pubmed as detailed in Table 3.1. Each dataset is divided into a labeled set (containing 95%

of the entire dataset) and an unlabeled set (containing 5% of the entire dataset). In order

to simulate an actual adversarial attack, unlabeled sets or victim nodes tend to have higher

degrees, for which we select the nodes with degrees greater than 10.

3.5.2 Experiment Setting

To verify the model accuracy and robustness, we compare our PGGCN framework with the

state-of-the-art models in clean and attacked graph data. These four baseline GCN models

includes:

� The original GCN model (GCN) [45].

� Deepcloak model (DC) that aims at minimize the feature differential [25].

� Gaussian-based Robust GCN model (RGCN) without the pairwise differential [110].

� Adversarial training model (AT) that injects the adversarial samples into the training

set to classify future adversarial examples correctly [83] .

We also conduct three types of widespread adversarial attacks:

28

Table 3.2: Prediction accuracy of all models in each dataset

Raw Data Nettack
GCN DC RGCN AT PGGCN GCN DC RGCN AT PGGCN

Accuracy
(%)

Cora 80.3 78.6 77.3 80.1 78.4 6 43.1 63.2 45.1 67.1
Citeseer 74.3 72.2 68.6 74.1 73.1 16.6 45.3 57.2 42.2 60.5
Pubmed 78.2 75.4 75.4 78.4 77.8 22 40.6 63.4 51.2 66.8

RL-S2V Random Attack
GCN DC RGCN AT PGGCN GCN DC RGCN AT PGGCN

Accuracy
(%)

Cora 21.1 45.3 65.1 50.1 70.2 49.6 47.3 69.3 57.7 73.5
Citeseer 25.2 46.2 58.2 51.2 64.2 45.5 44.6 60.6 54.2 66.2
Pubmed 23.4 44.2 64.2 50.2 65.2 50.8 49.2 68.2 52.5 71.3

� Nettack that generates adversarial perturbations by searching the perturbation space [114].

� RL-S2V that is a reinforcement approach of implementing adversarial graph attack [19].

� Random attack that randomly adds/deletes edges among nodes.

We used ReLU as non-linear activation for all GCN and Adam as optimizer. The learning

rate is 0.01, and the hyperparameter λ is set as 0.07. The analysis of hyperparameter can

be found in Section 3.5.4.

3.5.3 Experiment Analysis

Table 3.2 shows the prediction accuracy of all models. On the raw data without an attack,

the classification accuracy of PGGCN is slightly lower than GCN and Adversarial Training,

around 2%, due to the use of Gaussian GCN as the main framework that improves robust-

ness but introduces random noise from sampling, which affects the classification accuracy.

However, PGGCN’s classification accuracy is higher than that of RGCN. This is because

PGGCN adopts a pairwise structure where the difference loss ensures robustness while lim-

29

Figure 3.4: Prediction accuracy for all models under various adversarial attack

iting the randomness of the Gaussian GCN features. Therefore, PGGCN can maintain a

high classification accuracy on the raw datasets.

As shown in Table 3.2, our PGGCN model outperforms all the baseline models under

three different types of adversarial attacks on all datasets. PGGCN’s classification accuracy

30

is significantly better than that of the original GCN, indicating its better robustness against

adversarial attacks. Additionally, as graph data usually shares some intrinsic properties

(such as features of two neighboring nodes tend to be similar), masking these key features

in Deepcloak (DC) or minimizing the difference feature distance in Adversarial Learning

(AT) may destroy these intrinsic properties and reduce classification accuracy. PGGCN,

on the other hand, uses Gaussian distribution to absorb the noise caused by the adversarial

attack and preserve these intrinsic properties. As a result, PGGCN’s classification accuracy is

much better than Deepcloak and Adversarial Training. Compared to RGCN, PGGCN uses a

pairwise structure to reduce the randomness of classification caused by Gaussian distribution

sampling, making PGGCN better than RGCN in terms of classification accuracy.

Fig. 3.4 illustrates the impact of perturbations on the classification accuracy of our

PGGCN under Nettack, RL-S2V, and Random Attack. As the number of perturbations

increases, the noise from the adversarial attacks becomes more significant, leading to a

decrease in the model’s classification accuracy. The slope of the curves in Fig. 3.4 can repre-

sent the robustness of each model. RGCN and PGGCN exhibit stronger robustness than the

other models as the model accuracy of RGCN and PGGCN decreases less with increasing

perturbations. This experimental result suggests that the Gaussian structure can improve

model robustness better than directly masking key features in Deepcloak (DC) or minimiz-

ing the difference features in Adversarial Learning (AT). Therefore, we can conclude that

the pairwise structure of our PGGCN can help reduce the classification error, improve the

classification accuracy, and ensure the model robustness.

31

3.5.4 Fidelity-Robustness Analysis

(a) λ from 0 to 0.2 (b) λ from 0 to 1

Figure 3.5: Impact of hyper-parameter λ on prediction accuracy

In order to demonstrate the trade-off between fidelity and robustness of thIS model, we

design experiments to verify the effect of hyper-parametric λ ∈ [0, 1] on the classification

accuracy of PGGCN, where it classifies the data received after Nettack. According to the

Eq. (3.25), the hyperparameter λ is used to balance the classification loss and distance loss.

When λ is 0, the model only calculates the classfication loss, in which case the model has

the greatest fidelity. When λ is 1, the model only calculates the distance loss, in which case

the model has the greatest robustness.

According to Fig. 3.5, with the growth of λ, the classification accuracy increases to an

appropriate value first and then decreases. In particular, when λ = 0, PGGCN model

only considers classification loss and is essentially a Gaussian GCN in this case. As the

value of λ increases, the weight of differential loss in the PGGCN model increases, and the

32

weight of the difference loss decrease, which can enhance the robustness and the classification

accuracy of PGGCN. When λ is higher than such an appropriate value, PGGCN considers

the mode robustness more than the overall classification accuracy, so that the classification

error becomes more significant.

3.6 Conclusion

In this part, to resist adversarial attack, we propose a novel graph convolution model, PG-

GCN, to enhance the robustness of GCN. In PGGCN, by using Gaussian distribution in

hidden layers of the Gaussian GCN to obtain graph features and perturbed graph data in

the Perturbed GCN to get adversarial graph features, our proposed method PGGCN can

effectively alleviate the impact of adversarial attack on node classification performance. The

balance between robustness and fdelity is also ensured by analyzing the lambda values in

the loss function. Experimental results demonstrate that our proposed method can improve

the robustness of GCN while maintaining classification accuracy under various adversarial

attack strategies.

33

CHAPTER 4

DATA TRAINING FRAMEWORK

4.1 Introduction

Maching learning training requires a large amount of data collected by many institutions.

When those insitutions cooperate and share data, users’s privacy can be seriously violated

[8][7][10][105][12]. Researchers have proposed a distributed machine learning framework

called federated learning (FL) to solve the privacy protection problem in this scenario[55][91].

FL framework uses a central server to help multiple devices collaborate to train a global

model. Specifically, the client of FL is responsible for data storage and local model train-

ing, while the server is responsible for collecting the local model and aggregating a global

model. The FL framework allows joint training without data sharing to meet the re-

quirements of privacy protection. In recent years, federated learning has been applied to

many fields, such as autonomous vehicles [38][95], recommendation systems [74][108], health-

care [99][30],Blockchain [79][78], and IOT [92][32].

Although FL significantly increases privacy protection in machine learning training, pri-

vacy leakage is still possible to malicious attackers who can obtain the model parameters

transmitted by the clients. For example, by using the membership inference attack [36],

attackers can determine whether a data point exists in the client; by applying the the model

inversion attack [101], attackers can restore the training data of a trained model through

the model gradient. Furthermore, malicious servers are able to launch a gradient attack

to restore privacy clients data via their access to the client models, which fudamentally

34

undermines the privacy protction capability of federated learning.

An intuitive way to defend against the gradiant attacks is to remove the central server that

is able to obtain parameters and gradients from the clients. [105][66] Following this idea,

we propose the Decentralized Federated Learning Framework (DEFEAT). The DEFEAT

framework does not rely on clients sharing privacy data or aggregating client parameters

with a central server. Instead, DEFEAT framework uses a peer-to-peer (P2P) network

structure where each independent client interconnects with neighboring clients. Therefore,

during the training process, the clients will only communicate their parameters with one-

hop neighbors. Specifically, clients train the local model with their own data in the model

training phase. Then, in the communication phase, the clients send the local model to their

neighboring clients within one hop through the peer-to-peer network. Finally, during the

aggregation phase, clients update their new local models by aggregating the received model

from their neighbors. Thus, each client trains and aggregates a personalized model due to

the difference in neighbors owned by the client. Furthermore, the DEFEAT framework does

not have a global model, which means that a malicious attacker cannot infer the training

gradients of other models from the global model parameters, and protecting the data privacy.

To balance the communication cost of P2P and the training accuracy of the model, we

design several training schemes to ensure that DEFEAT achieves proper model training

with communication efficiency.

The contributions of the paper are as follows:

� We propose a novel framework for Decentralized Federated Learning called DEFEAT

35

to resist gradient attacks. The DEFEAT framework relies on a P2P network to transfer

model parameters among clients and jointly train client personalized models without

a global model.

� We investigate the gradient attacks in FL and study how to resist gradient attacks

by analyzing the training process of centralized and decentralized federated learning

frameworks. We further discuss why our DEFEAT model can prevent client side data

leakage.

� We design a series of experiments to evaluate the DEFEAT framework proposed in this

paper. We compare the DEFEAT framework with other state-of-the-art frameworks

for model training accuracy and measure the privacy-preserving ability of DEFEAT

for different gradient attacks.

The rest of this paper is organized as follows. The current studies in related fields are

introduced in Sec 4.2. The preliminary is introduced in Sec. 4.3, following which we propose

our DEFEAT framework in Sec. 4.4. The experimental results and analysis are provided in

Sec. 4.5. Finally, we summarize this article in Sec. 4.6.

4.2 Related Work

In this section, we present the background of gradient attacks, and introduce the development

of decentralized federated learning at current stage.

36

4.2.1 Gradient Attacks

The federated learning framework enables individual clients to train a deep model jointly

without the data leaving the local area. The clients train the local model parameters with

their own data, and a central server collects and aggregates these local parameters to generate

a new model. This process is considered to be secure privacy-preserving training. However,

recent studies have shown that a malicious server can effectively restore the local dataset

through the local and global parameters, which significantly affects the privacy-preserving

capability of federated learning. Le et al. [49] were the first to find that clients’ private

data can be restored by the gradient information, e.g. the training gradient can be used to

determine whether a sample or label exist in the training dataset. Hitaj et al. [33] proposed

a GAN-based data restored network, which uses the global model as the parameters of the

discriminator and merges the generated samples into the training set to train the classifier

to efficiently generates private data. Zhu et al. [111] proposed the deep leakage of gradient

(DLG) framework. The DLG method generated dummy gradients by inputting dummy

data and dummy labels, and restored the private data and labels by optimizing the dummy

gradients. Zhao et al. [103] added a label restore module to DLG, which significantly improves

data restore speed by predicting the labels presented in the data. In the work of [26], the

authors stated that even the multi-image federated learning does not guarantee the privacy of

all user data. The images can be restored in each batch of one hundred images. Yin et al. [101]

proposed the GradInversion method to recover the private image by converting the given

batch average gradient. These attacks significantly compromise the security of federated

37

learning. Although gradients can be protected by certain methods such as differential privacy

or homomorphic encryption, they cannot essentially solve the problem of privacy leakage.

4.2.2 Decentralized Federated Learning

Currently, there are two research directions in decentralized federated learning. One relies

on election mechanisms to select a node from the peerto-peer (P2P) network as a temporary

central server to ensure the fairness and security of the network. Behera et al. [3] proposed

a decentralized federated learning framework based on RAFT selector, which has no cen-

tral server but achieves aggregation of models by continuously selecting temporary nodes

as central servers. Wang et al. [84] proposed a novel federated framework called “swarm

learning”, that combined edge computing and blockchain-based peer-to-peer networks. Dur-

ing each iteration of model training, a node is dynamically selected as the server to avoid

centralization of power and ensuring a fair distribution of control. The other direction is to

obtain global consensus through the communications among clients. Lalitha et al. [48] pro-

pose a fully decentralized federated learning framework in which users train the framework

using a Bayesian-like approach and introduce beliefs on the model parameter space. Based

on this work, Lalitha et al. [47] futher proposed an improvement framework, where nodes

learn models by aggregating one-hop neighbor data of their local data and by continuously

updating the global beliefs of the models. Hu et al. [34] proposed a gossip-based decentral-

ized federated learning method. In this framework, the model parameters are transmitted

through the peer-to-peer network in segments using the gossip protocol. However, each client

in this framework accumulates the same model parameters, resulting in the entire framework

38

training the same model. Therefore, the proposed model is vulnerable to gradient attacks,

as an attacker can obtain this model from any client. For the above framework, federated

learning still exists temporal central server or global model, and the attacker can still infer

the training gradient of the victim client through the global model to achieve the gradient

reversal attack.

4.3 Preliminaries

Federated learning is a distributed machine learning framework. This framework solves the

problem of data silos by jointly training machine learning models through server aggregation

of client model parameters without relying on private data sharing. The most popular

federated learning algorithm is FedAvg [63], shown in Fig. 4.1. Suppose there are K clients

Central

Parameter

Server

Client 1 ...Client 2 Client K

Local

Data P1

Local

Data P2

Local

Data Pk

Client i

Local

Data Pi

wglobalwi

...

Figure 4.1: Federated Learning Framework Structure

training a machine learning model together. FedAvg distributes the global model ωtglobal to

each client i ∈ {1, 2, · · · , K} at each training round t. The client sets the initial state of the

39

local model to the obtained global model ωt0i = ωtglobal In each epoch e of local training, the

model picks data points (xi, yi) to obtainthe model gradient:

∇ωtei =
∂`
(
F
(
xi, ω

te
i

)
, yi
)

∂ωtei
, (4.1)

where F (·) is the predicted result of the model for the input data xi, ω
te
i is the local model

in e-th epoch and t-th training round, and `(·) is the loss function.

At each epoch e, the model updates the local model using stochastic gradient descent

(SGD) as:

ω
te+1

i = ωtei − η∇ω
te
i , (4.2)

where η is the learning rate. The local training will eventually go through E epochs, and

the final local model is ωt+1
i = ωtEi . The central parameter server obtains the final model

parameters ωt+1
i for client i and aggregates all client parameters based on the data to obtain

the global model ωt+1
global for this training round:

ωt+1
global =

K∑
i=1

ni
n
ωt+1
i . (4.3)

where ni is the amount of data for the client i and n is the amount of data for all clients.

During the FedAvg process, only the local model and global model parameters are trans-

mitted between the server and clients, achieving the joint training of multiple clients without

sharing local data. However, recent research has shown local private data can be leaked by

the gradients sent from clients to the server. Among many gradient attacks, Zhu et al.

proposed that the Deep Leakage from Gradients(DLG) model [111] can significantly com-

promise federated learning security.

40

The core idea of DLG is to invert the training data by obtaining the model gradient

from each update. Specifically, DLG assumes a fake data point (x′i, y
′
i) in the beginning. By

feeding the data point into the global model ωtglobal in training round t, attackers can obtain

a fake model gradient∇ω′ti :

∇ω′ti =
∂`
(
F
(
x′i, ω

t
global

)
, y′i
)

∂ωtglobal
. (4.4)

According to Eq. (4.2), relying on the global model ωt0i = ωtglobal and the updated local model

ωtEi , the true model gradient can be calculated as:

∇ωti =
ωt0i − ω

tE
i

η
(4.5)

Then, DLG updates the fake data point (x′i, y
′
i) closer to the true data point (xi, yi) by

minimizing the distance between the spurious model gradients and the true model gradient.

Thus the target equation of DLG is:

x′∗i , y
′∗
i = arg min

x′i,y
′
i

∥∥∇ω′ti −∇ωti∥∥2

= arg min
x′i,y

′
i

∥∥∥∥∥∂`
(
F
(
x′i, ω

t
global

)
, y′i
)

∂ωtglobal
− ωt0i − ω

tE
i

η

∥∥∥∥∥
2 (4.6)

where x′∗i , y
′∗
i are the recovered data and label. It should be noted that this gradient descent

algorithm requires the computation of the second-order gradient. Therefore this algorithm

requires the prediction function F (·) to be second-order derivable, which is achievable for

most machine learning models.

4.4 Methodology

41

4.4.1 Peer to Peer Network

DEFEAT relies on peer-to-peer (P2P) networks for communication between clients and en-

ables fully decentralized federated learning framework. This P2P network is represented by

the graph G = (V,E), where V represents the set of all clients and E represents the set

of all communications between clients. For any client i ∈ V , N(i) is defined to be the set

of neighboring clients, that is, the set of all clients for which there exists communication

(i, j) ∈ E.

In DEFEAT, client i communicates periodically with its neighbor node N(i). For each

communication round, i can obtain the model parameters of one hop client in the P2P

network, and at least q rounds of communication are required to obtain the parameters of the

farthest q-hop client. At the same time, the average number of neighbors R = N(i) of each

node affects the amount of communication data in each communication round. Therefore,

balancing the average path length Q and the average number of neighbors R of each node

is a key focus when building a P2P network. The relationship between the Q and R can

be calculated using the theory of six degrees of separation [85], which is calculated as the

following equation:

Q =
log(K)

log(R)
, (4.7)

where K is the number of clients, R is the average of neighbors, and Q is the average path

length. According to Eq. (4.7), the number of neighboring nodes R needs to be adjusted

depending on the total number of clients K. When the number of neighbor nodes R is

too high, the cost of communication goes up and can lead to a communication overheating.

42

When the average number of hops Q is too high, the client needs more communication rounds

to engage enough training data for training and reduces the speed of model convergence.

4.4.2 Decentralized Federated Learning Algorithm

Client 1
Local

Data P1
Client 2

Local

Data P2

Client 4
Local

Data P4
Client 3

Local

Data P3

w1

w1

w2

w4

w3

w4 w2 w3P2P Network

Figure 4.2: Decentrilized Federated Learning Framework Structure

The decentralized federated learning framework only has clients, as shown in Fig. 4.2.

Each client i has an independent database storing local privacy data Pi. The client i are

connected to their neighboring nodes and form a P2P network to transmit model parameters

ωi.

When the DEFEAT framework performs model training, it goes through three states:

initialization, local training, and parameter aggregation. The initialization state is responsi-

ble for building the P2P network structure and initializing the parameters of each model. In

the local training state, each client trains with the local dataset Pi. In the parameter aggre-

gation state, each client transmits the locally trained model parameters to its neighboring

43

client and then aggregates the models with the received model parameters. The operation of

two states: local training and parameter aggregation, are integrated and termed as a training

round. In the DEFEAT framework, multiple training rounds are are used to obtain trained

models. Hereafter, we introduce the three states in more details.

Initialization. The purpose of the initialization state is to build a P2P network and to

initialize the model parameters. DEFEAT needs a server to assist in this state. Specifically,

the server builds a suitable P2P network structure according to the number of participat-

ing clients, and the clients communicate with their assigned clients according to the P2P

structure. Then the server sends the initialization model parameters to all clients to ensure

the uniformity of the model initialization. Finally, the server and clients are disconnected

and then clients enter the model training phase. Note that the server is only involved in

the initialization state and not in the model training state, so the whole framework is a

decentralized federated learning framework.

Local Training. The goal of the local training state is to update the local model

based on the local dataset. For example, for client i in the framework, its local model in

the t-th training round is ωti . Local training assigns minibatch B as input from the local

dataset Pi and performs E epochs of training. When the model is fed with local data to

obtain the training gradient, stochastic gradient descent (SGD) is used to optimize the local

model parameters as shown in Eq. (4.1) and Eq. (4.2). When E epochs of local training are

completed, the final local model parameters are ωt0i = ωtEi .

Parameter Aggregation. The parameter aggregation state performs parameter com-

44

munication amongst clients. Specifically, there are D, (D ≥ 1) communication rounds in

each parameter aggregation. In each communication round d ∈ {1, 2, ..., D}, client i trans-

mits the locally model parameters ωtdi to all neighbors and receives all neighboring model

parameters. After the transmission, client i aggregates all received parameters with the local

parameter, this process can be expressed as:

ω
td+1

i ← 1

|N(i)|

|N(i)|∑
j=1

ωtdj , (4.8)

where j ∈ N(i) represent the neighboring client of client i, d is the current communication

round.

When D communication rounds are completed, the model moves to the next training

round. The last aggregated model parameters ωtDi are set to the local model parameters for

the next training round, where ωt+1
i = ωtDi .

The DEFEAT algorithm is also shown in Algorithm 1.

4.4.3 Training Schema

Since decentralized federated learning does not have a central server and a global model,

different topologies and training schema can affect the convergence speed and training effect

of DEFEAT. Therefore, we design a series of training schemes to ensure the balance of

training efficiency and speed. Specifically, we design different P2P network topologies and

values of communication rounds D.

For a P2P network topology with 100 clients, we divide the network into DEFEAT-3,

DEFEAT-5, and DEFEAT-7 based on the number of neighboring nodes |N(i)| each node

45

Algorithm 1 Decentralized Federated Learning Algorithm.

Inputs: Dataset Pi from each client i ∈ V .
Outputs: K well trained models ωTi for each client i ∈ V .
Initialization:
The server forms a P2P network and initialize the model parameters of each client ω0

i .
for DEFEAT training round t from 0 to T do
Local Training:
β ←(split Pi into batches of size B)
for each local epoch e from 0 to E do
for batch b ∈ β do
ω
te+1

i = ωtei − η∇ω
te
i

end for
end for
ωt0i = ωtEi

Parameter Aggregation:
for Communication round d from 1 to D do

Send ωtdi to all neighborhood node j ∈ N(i)
Receive M = |N(i)| data parameters
Updata local model:
ω
td+1

i ← 1
M

∑M
j=1 ω

td
j

end for
ωt+1
i = ωtDi

end for

has. As shown in Fig. 4.3, More neighboring nodes in the graph represent the tighter the

P2P network and the smaller the farthest distance in the network. The advantage of more

neighbors is that the model converges faster with more clients involved in each training

round. The disadvantage is that each training round requires passing more parameters

and increasing the communication cost. Therefore, choosing an appropriate neighbor value

can balance the convergence speed and the communication cost. According to Eq. (4.7),

each node of DEFEAT-3 needs to send the parameters three times each communication

round, and the maximum length of the graph L is 5. For DEFEAT-5, the parameters

46

(a) DEFEAT-3 (b) DEFEAT-5 (c) DEFEAT-7

Figure 4.3: Topology of peer to peer network for decentralized federated learning

must be sent five times per communication round, and the maximum length of the graph

L is 3. For DEFEAT-7, the number of communication and maximum length is 7 and 2,

respectively. The denser the graph of P2P, the higher the communication cost, and the

model will converge relatively faster. In contrast, the sparser the graph of P2P, the lower

the communication cost, and the model will converge relatively slower. To simulate a realistic

scenario of federated learning applications, we also design a DEFEAT training schema in a

random topology framework DEFEAT-R. In DEFEAT-R, clients are not required to connect

to adjacent clients as instructed by the server but spontaneously connect to possible clients

based on the reliability of the communication. In this case, the server no longer designs the

P2P topology in advance. Instead, the average path length Q and the average number of

neighbors R are calculated based on the randomly generated network.

For communication rounds D, we design two different training schema, as shown in

Fig. 4.4. In the first training schema, the communication rounds D equals to 1. In this

47

wa

wb

wc

wa

wb

wc

Local Client Local Training

wab

wabc

wbc

D= 1

(a) schema1

wa

wb

wc

wa

wb

wc

Local Client

wab

wabc

wbc

D= 1Local Training

wabc

wabc

wabc

D=

...

...

...

(b) schema2

Figure 4.4: Different number communication rounds D in each DEFEAT training round

case, the model only communicates with nodes in one-hop. As a result, it is more difficult to

obtain a global consensus. Therefore, the model is prone to oscillations, and they converge

relatively slowly. However, the advantage of this schema is that the communication cost for

each node is relatively small. In the second training schema, the communication rounds D

equals to L. The value of L is equal to the farthest distance of the graph structure. In

this case, the model prioritizes the global consensus in each training round. As a result, the

model requires fewer training rounds for a single client to reach convergence, and all clients

tend to train the same model. However, for each training round, the model requires more

communication rounds.

48

4.4.4 Security Analysis

This section analyzes the attacks of Deep Leakage from Gradients (DLG) against the cen-

tralized federated learning framework and the decentralized federated learning frameworks.

For the centralized federated learning framework, the central parameter server can act as

the attacker and restore the local training data Pi of target client i. Whereas, for the de-

centralized federated learning in Fig. 4.2, any client j can act as an attacker to restore the

private training data Pi of neighboring nodes i ∈ N(j). In centralized federation learning

(e.g., FedAvg), the gradient ∇ωti can be obtained from the inverse derivation of Eq. (4.2). To

simplify the calculation, we assume that the epoch value E = 1, thus the gradient obtained

by attacker in FedAvg is:

∇ωti =
ωtglobal − ωt+1

i

η
. (4.9)

Since the server controls the global model ωtglobal and all the local model ωt+1
i , it is possible

that the malicious server can perform data restoration to attack target clients.

In our DEFEAT framework, the core idea of resisting DLG is to hide the model gradient.

According to Eq. (4.2), the gradient ∇ωti in DEFEAT can be calculated from the difference

between model parameters:

∇ωti =
ωti − ω

t0
i

η
. (4.10)

However, the attacker only receive the updated model ωt0i in communication round. There

is no way for an attacker j to get the local model ωti of client i, which makes it impossible for

49

the attacker to obtain the exact model gradient. In a more detailed analysis, DLG works for

other federated learning because all clients tend to train the same global model ωtglobal. In

DEFEAT, each client trains a different local model independently, which leads to the model

being unable to obtain the corresponding gradient by model parameter calculation.

4.5 Performance Evaluation

4.5.1 Datasets

In this paper, the Fashion-MNIST dataset [88] is selected as the experimental dataset, which

covers 70,000 images of different garments from 10 categories. Fashion-MNIST was divided

into training dataset with 60000 image data and testing dataset with 1000 image data, and

each image has the dimension of 28×28×1. To represent the differences in data distribution

among clients, we divided Fashion-MNIST in three different ways:

� Average division: Dividing the dataset randomly into K equal size parts, and assigning

each part to a client as a local dataset.

� Non-I.I.D and balanced division: The dataset is divided into K parts, where each part

has the same amount of data but different labels. This dataset division simulates a

scenario where the data distribution is different across different clients.

� Non-I.I.D and imbalanced division: The dataset is divided into K parts, where each

part has a different amount of data and labels. This dataset simulates the scenarios of

federated learning in real-world applications [91].

50

4.5.2 Experiment Setting

In order to verify the performance of the decentralized federated learning framework, we

compare our proposed DEFEAT and four baselines in terms of accuracy and convergence

efficiency of model training.

� Centralized machine learning framework (CML): This framework combines all image

data in a central server and classifies the images by a simple four-layer CNN model.

� Centralized Federated Learning framework(CFL): In this paper, the FedAvg [63] model

is used as a baseline to measure the difference between centralized and decentralized

federated learning.

� Decentralized federated learning baseline: In this paper, two different decentralized

federated learning frameworks are chosen. The Gossip-based decentralized federated

learning framework (SGossip) [34] communicates with neighboring clients multiple

times in a training round, and Global Belief-based decentralized federated learning

framework (GB) [47] communicates with neighboring clients only once in a training

round. These two frameworks correspond to our proposed schema 1 and schema 2

training in our proposed DEFEAT.

For every framework, we selected a four-layer CNN as our classification model, featuring

the following structure: (1*28*28-32*28*28-32*14*14-64*14*14-64*7*7). We employed the

cross-entropy loss as our loss function. In our simulation, we had a total of 100 clients, set

the learning rate to 0.01, and established 500 training rounds for all frameworks. We utilized

51

Table 4.1: The accuracy for image classification in the Fashin-MNIST datasets.

Average
Division

Non-I.I.D
Balanced

Non-I.I.D
Imbalanced

CML 92.98%
CFL 90.54% 88.56% 88.32%

SGossip 89.21% 88.18% 87.62%
GB 87.44% 86.36% 86.19%

Schema1
(D=1)

DEFEAT-3 82.56% 76.62% 74.43%
DEFEAT-5 85.61% 83.57% 82.19%
DEFEAT-7 86.21% 84.32% 84.23%
DEFEAT-R 84.67% 82.54% 80.66%

Schema2
(D=dQe)

DEFEAT-3 85.41% 82.31% 80.12%
DEFEAT-5 87.31% 86.62% 86.32%
DEFEAT-7 88.41% 87.64% 87.22%
DEFEAT-R 85.55% 84.48% 82.26%

a local batch size of 8 and 10 local epochs. As for the training approach, we set the SGD

momentum to 0.5.

4.5.3 Experiment Analysis

First, we evaluate the classification accuracy of the trained classification models for images

under different frameworks, and Table 4.1 shows the classification results. It can be found

that the centralized machine learning (CML) framework has the most accurate classification

accuracy, because the centralized framework tends to obtain better training results. Simi-

larly, centralized federated learning (CFL) also yields good classification accuracy. For all

decentralized federated learning, the gossip-based framework (SGossip) has the highest clas-

sification accuracy. This is because the SGossip framework consumes high communication

costs to enable all clients to train a model jointly. In essence, the training effect of the

SGossip framework is similar to that of CFL. As for our proposed DEFEAT framework, the

52

Table 4.2: The label restoration accuracy.

Batchsize 1 5 10 16 32
CFL 100% 97.42% 95.74% 94.32% 88.53%

SGossip 100% 95.33% 92.31% 90.76% 85.44%
GB 100% 87.48% 84.55% 81.82% 74.64%

Schema1
(D=1)

DEFEAT-3 100% 61.24% 55.44% 52.35% 42.34%
DEFEAT-5 100% 57.63% 54.32% 50.12% 35.43%
DEFEAT-7 100% 55.32% 50.12% 42.62% 30.22%
DEFEAT-R 100% 54.42% 48.78% 41.71% 27.54%

Schema2
(D=dQe)

DEFEAT-3 100% 73.11% 67.23% 64.12% 55.46%
DEFEAT-5 100% 71.41% 66.82% 62.11% 50.88%
DEFEAT-7 100% 68.62% 63.42% 55.19% 48.33%
DEFEAT-R 100% 64.88% 60.14% 53.87% 45.67%

accuracy of DEFEAT-7 is higher than that of DEFEAT-5, and DEFEAT-5 is higher than

that of DEFEAT-3. This may be caused by the fact that the network becomes denser as

the R value rises. The denser the network structure, the more clients participate in the

training each round, and the better classification results of the model training. Similarly,

considering the same P2P structure, the model accuracy of schema 2 is generally higher than

that of schema 1. This is because each node in schema 2 is given priority to obtain a global

consensus.

Then, we attack all federated learning frameworks using DLG and examine the restoration

accuracy for private labels under each framework. Table 4.2 demonstrates this accuracy. We

can see that as the batch size of training increases, the label restoration accuracy keeps

dropping. This is because data with batch size N has N ! different permutations [111],

and more permutations decreases the label inference accuracy. For all federated learning,

DLG can restore privacy labels more accurately for the SGossip and CFL frameworks, with

relatively poor label restoration accuracy for the GB framework and the worst restoration

53

Table 4.3: The image restoration result.

FFT PSNR
CFL 0.165 12.82

SGossip 0.276 12.02
GB 0.506 9.96

Schema1
(D=1)

DEFEAT-3 1.043 4.23
DEFEAT-5 1.132 3.76
DEFEAT-7 1.243 3.56
DEFEAT-R 1.301 3.22

Schema2
(D=dQe)

DEFEAT-3 0.854 6.56
DEFEAT-5 0.887 6.34
DEFEAT-7 0.932 5.42
DEFEAT-R 0.952 4.98

accuracy for our DEFEAT framework. This is because for the DEFEAT framework, the

attacker cannot obtain accurate training gradients with a unified global model and thus

generates errors in optimizing the false labels in Eq. (4.6). Furthermore, for DEFEAT,

the label restoration accuracy is downgraded as R increases. As the number of neighboring

nodes increases, the parameters of the local client are aggregated with the parameters of more

neighbor clients and lead to a significant deviation of the local model from the aggregation

model, which affects the gradient calculation. Moreover, the label inference attacks perform

worse when schema 1 is used than schema 2. In schema 2, a client communicates multiple

rounds with its neighbors so that each client tends to train the same model. Therefore,

the attacker’s model parameters can approximate the victim’s model parameters to obtain

a more accurate gradient, which increases the accuracy of the label restoration.

Meanwhile, we compare the differences between restored and original images under dif-

ferent federated learning frameworks using two-dimensional Fast Fourier Transform (FFT)

and Peak Signal to Noise Ratio (PSNR). A higher FFT value means that the difference

54

Figure 4.5: Case study of CFL result

between the restored image and the original image is larger, which means the framework is

less able to protect privacy. A higher PSNR value means that the restored image by DLG

is closer to the original image, representing that the framework is weaker to defend against

the DLG attack. Based on the results of Table 4.3, the performance of each model on image

restoration are consistent with their results on label restoration. Our DEFEAT model has

higher FFT and lowers PSNR values, which means that DEFEAT is more effective against

DLG attacks. This is because the attacker does not have access to the local model of the

target client in the DEFEAT framework and thus cannot obtain an accurate restored image.

As R increases, the privacy-preserving ability of DEFEAT is also improved because as the

number of neighbor nodes increases, local parameters are aggregated with more neighboring

model parameters. Thus, local parameters can be hidden better, making it more difficult for

an attacker to determine the exact gradient.

55

Figure 4.6: Case study of DEFEAT result

Fig. 4.54.6 shows a case study of DLG image restoration for CFL and DEFEAT frame-

works. The attacker separately restores four images of T-shirts, bags, sneakers, and sandals

to the target client. The first column in the figure is the target image, and the subsequent

columns are the images restored by the DLG model as the number of DLG training rounds

increases. We find that DLG can restore the target privacy data well after 30 training rounds

for the CFL framework. In comparison, for the DEFEAT framework, DLG still cannot re-

store the privacy data after 80 training rounds.

4.5.4 Convergence Speed and Training Efficiency

Decentralized federation learning relies on many communication rounds to enable joint client

training. Therefore, we also measure the required number of communication rounds and

the convergence speed in different frameworks. Table 4.4 shows the convergence speed of

56

Table 4.4: Training round of each model.

Average
Division

Non-I.I.D
Balanced

Non-I.I.D
Imbalanced

CML 18
CFL 62 82 93

SGossip 162 184 192
GB 193 231 241

Schema1
(D=1)

DEFEAT-3 434 NC NC
DEFEAT-5 314 378 392
DEFEAT-7 301 321 342
DEFEAT-R 437 477 492

Schema2
(D=dQe)

DEFEAT-3 323 413 451
DEFEAT-5 265 282 292
DEFEAT-7 164 191 202
DEFEAT-R 391 422 440

each training framework. This experiment measures the number of training rounds when

the model has converged. The results show that centralized machine learning model can

converge quickly. For example, centralized federated learning (CML) can obtain a converged

model in less than 100 training rounds. Decentralized learning requires more training rounds

to achieve convergence of the model. Among them, the gossip-based decentralized framework

(SGossip) can achieve faster model convergence. The SGossip framework communicates the

parameters multiple rounds in each training round through the gossip protocol to reach

a consensus of the whole network for the training model, which reduces the parameter

oscillations during the model training. The global-belief-based decentralized framework (GB)

guides the local model training through the global beliefs, which can also reduce model

oscillations to some extent. For DEFEAT, since each client trains a local model based on

local data, the model will inevitably oscillate and thus converging relatively slowly. However,

as R increases, the network becomes denser, thus allowing more clients to participate in the

57

Table 4.5: Communication round of each model.

Average
Division

Non-I.I.D
Balanced

Non-I.I.D
Imbalanced

CML 18
CFL 62 82 93

SGossip 972 1104 1152
GB 193 231 241

Schema1
(D=1)

DEFEAT-3 434 NC NC
DEFEAT-5 314 378 392
DEFEAT-7 301 321 342
DEFEAT-R 437 477 492

Schema2
(D=dQe)

DEFEAT-3 1615 2065 2255
DEFEAT-5 795 846 876
DEFEAT-7 492 573 606
DEFEAT-R 1173 1266 1320

training of DEFEAT. So, the convergence speed of DEFEAT is increasing with the increase

of R. Similarly, when DEFEAT uses schema 2 for training, the local model aggregates more

model parameters from non-neighboring clients in each training round. More clients are

involved in the training process, and thus reducing oscillations during training and achieving

fast model convergence.

In addition, Table 4.5 indicates the required communication rounds for each training

framework. For federated learning, the primary time cost of training lies in communication,

and the increase of communication rounds imply a decrease in the training efficiency of the

model. For CFL, GB, and DEFEAT with schema 1, the number of communication rounds is

equal to the number of training rounds. For SGossip framework and DEFEAT with schema

2, the frameworks employ multiple communication rounds in a training round to achieve

global consensus. So, the communication rounds of SGossip framework roughly equal to

the maximum value of the shortest path in the network structure multiplied by the number

58

of training rounds, and the communication rounds of DEFEAT in schema 2 is equal to D

multiplied by the number of training rounds. In SGossip and DEFEAT with schema 2, large

communication cost achieves a consensus of the decentralized framework at each training

round. Furthermore, it leads to more clients participating in each training round, thus

speeding up the convergence of the model and output a more accurate model. Therefore,

a suitable training schema should be chosen according to the practical situation to balance

the training cost and model performance.

4.6 Conclusion

This section presents DEFAT, a decentralized federated learning framework against gradi-

ent attacks. The framework abandons the central server and uses a peer-to-peer network

to transmit model parameters, training a personalized model in collaboration with multi-

ple connected clients. The DEFAT framework effectively defends against gradient attacks

by preventing attackers from obtaining accurate training gradients. To balance the trade-

off between training cost and model performance, we have also established various training

modes to train the DEFAT framework. Finally, we compare our DEFAT with several baseline

models through extensive experiments and case studies on real-world datasets. The results

show that the decentralized DEFAT framework can effectively defend against gradient at-

tacks, although it comes at the cost of increased training time and reduced model accuracy.

Through the performance analysis of DEFAT framework under different modes, it can be

concluded that the more decentralized the framework is, the harder it is to be attacked by

59

gradient, at the cost of sacrificing training time and model performance.

60

CHAPTER 5

DATA LEVEL RESEARCH

5.1 Introduction

Graph data is widely used in various fields, such as social networks [24], communication

networks [69], and biological networks [1]. Due to privacy concerns, sensitive information

in these graphs is often anonymized before being released or shared, which entails removing

and/or obfuscating personal identifiers and other sensitive information [52][8][7]. But, this

safeguard is not infallible. Malicious attackers can correlate anonymized graph data with

external sources using sophisticated techniques, potentially leading to the unmasking of

individual identities and exposure of confidential information [105]. In response, graph de-

anonymization techniques have been developed to study these potential vulnerabilities as

well as to improve the privacy preservation mechanisms employed in graph data sharing.

However, graph de-anonymization is fraught with challenges, particularly due to the

massive scale of graph data. Traditional approaches tend to lean on exhaustive search

methods to pinpoint potential matches between anonymized and query graphs. Such tech-

niques, although comprehensive, come with computationally expensive and time-consuming,

especially for large-scale graphs with millions or billions of nodes and edges [13]. Moreover,

graph structures may be highly dynamic, with nodes and edges constantly added or removed.

This dynamism further increases the computational complexity of the de-anonymization pro-

cess. [112] Furthermore, in real-world scenarios, it is a rarity to source query graph data that

perfectly mirrors its target, ushering in the need for inexact graph de-anonymization where

61

the query and target graphs exhibit discrepancies. These problems have become a significant

roadblock for researchers and practitioners working on graph de-anonymization, limiting the

applicability of these techniques to smaller graphs or necessitating the use of significant

computational resources [11].

In light of the above analysis, we introduce an innovative neural-based technique specif-

ically tailored for inexact graph de-anonymization named Graph Neural De-anonymization

(GND). By acknowledging the capacity of graph vectors to maintain integral structural in-

formation, our strategy streamlines the de-anonymization process. This is achieved by trans-

forming intricate high-dimensional graph structures into more manageable low-dimensional

vector formats. Our approach is structured into three phases: the embedding phase, the

comparative phase, and the matching procedure. In the embedding phase, a Graph Con-

volutional Network (GCN) generates embedding vectors for query and anonymized graphs,

effectively capturing local and global structural information while reducing their dimension-

ality. The comparison phase utilizes a neural tensor network (NTN) to compare the similarity

between nodes in the query and anonymized graphs. The proposed method can efficiently

measure the similarity between the low-dimensional graph embeddings, identifying potential

node matches based on structural and attribute similarities. Finally, the matching procedure

implements a greed-based algorithm, specifically designed to identify the most suitable node

pairs. By continually highlighting the most analogous node pairs and updating the similar-

ity metrics for the yet unmatched nodes, the greedy algorithm ensures a computationally

efficient approach to identifying the true correspondence between nodes in the query and

62

anonymized graphs. To further enhance the accuracy of the inexact matching, the proposed

framework also incorporates side information as an additional source of knowledge. This side

information can encompass aspects such as node attributes, properties of edges, or other per-

tinent contextual data, all of which can furnish invaluable insights into the intricacies of node

relationships. While the graph embeddings derived from the graph convolutional network

capture the structural similarity of the graphs, the side information is utilized to preserve

their semantic similarity. To sum up, this paper has three major contributions:

� To the best of our knowledge, our method stands as the pioneering approach to in-

exact graph de-anonymization that explores the comparison of embedding vectors.

By utilizing this innovative technique, we introduce a new perspective on graph de-

anonymization that can lead to improved efficiency and performance compared to

traditional approaches.

� We develop a novel algorithm to rapidly filter out node matches between query and

anonymized graphs. This algorithm streamlines the matching process by efficiently

identifying candidate node pairs with high similarity scores, significantly reducing the

computational complexity associated with traditional exhaustive search techniques.

� We conduct extensive experiments to demonstrate that our neural network-based GND

method is highly competitive with state-of-the-art graph de-anonymization techniques.

The results shows that our neural network-based method not only achieves high accu-

racy but also maintains high efficiency in the graph de-anonymization process.

63

The rest of this paper is organized as follows. The current studies in related fields are

introduced in Section 5.2. The preliminary is introduced in Section 5.3, following which

we propose our GND framework in Section 5.4. The experimental results and analysis are

provided in Section 5.5. Finally, we summarize this paper in Section 5.6.

5.2 Related Work

This section will introduce the traditional graph deanonymization algorithms and the neural

network-based graph deanonymization methods as follow.

5.2.1 Traditional graph de-anonymisation algorithm

Graph de-anonymization is the process of correlating anonymous network structures with

public datasets to determine node identities. It can be classified into two methods: seed-

based and seed-free, depending on initial node information. This technique has the potential

to expose confidential data. Narayanan et al. [64] first introduced a seed-based approach

to de-anonymize large-scale networks. They observed that k-clique patterns are commonly

found in both anoymized and query networks [80], with nodes exhibiting these patterns often

representing the same entities. Given this insight, attacks can use these patterns to identify

the seed nodes. Based on this apporach, Korula et al. [46] further proposed a method where

the threshold is set dynamically based on the features, the threshold ensures that nodes

with a higher degree have a higher likelihood of accurate identification. In this method,

only nodes that exceed the threshold value in degree are considered for matching. Beyond

methods based on k-clique patterns, Ji et al. [41] introduced a similarity-based matching

64

algorithm. In their approach, nodes are chosen from the already matched set during each

iteration. The similarity between all pairs of nodes within a one-hop distance is then calcu-

lated. These nodes are subsequently incorporated into the matched set based on their results

and play a role in the similarity computation for unmatched nodes. In summary, seed-based

techniques offer accurate and efficient graph de-anonymization. However, obtaining seeds

from anonymized graphs in real-world applications proves challenging, which constrains the

use of these methods. Therefore, the seed-free method addresses the inherent challenges of

extracting seeds from anonymized graphs. Pedarsani et al. [68] first use the Bayesian frame-

work in evaluating the likelihood of accurate node mapping. By employing node features like

degree and distances to neighboring nodes as fingerprints, they facilitated seed-free graph

de-anonymization. Additionally, Ji et al. [39] introduced the single-phase cold start opti-

mization based de-anonymisation (ODA) algorithm by quantifying the differences between

perfect and(1-ε) perfect graph data. Ji et al. [40] futher introduced an innovative algorithm

specifically designed to compute the similarity between any two node pairs. This method

uses metrics such as node degrees, k-referenced distances, and proximity centrality, among

other structural factors. Regardless, these seed-free methods aim to compensate for the

reduced accuracy due to the absence of seeds by assessing node similarity from a broader

perspective. While these approaches substantially have a high model complexity and often

struggle to achieve a high accuracy.

65

5.2.2 Graph de-anonymization based on neural networks

Compared to traditional graph de-anonymization techniques, neural-based Graph de-anonymization

significantly reduces the model complexity. Li et al. [51] first utilize a combination of deep

neural networks and adversarial frameworks to achieve node matching. The method first

anchoring the most congruent node pairs within the latent space, and activate a propagation

mechanism to de-anonymize the entirety of remaining nodes. This method transitioning from

local to global perspectives, echoes traditional graph de-anonymization approaches. While it

decrease the model complexity, but has a low accuracy. Lou et al. [56] first proposed trans-

forming graph structures into vector representations using graph neural networks. Through

vector feature comparisons, their approach aimed at effective graph de-anonymization. How-

ever, while their method excels with identical graph structures, it exhibits limitations in

inexact graph de-anonymization scenarios. Tu et al. [76] introduced the Inexact Attribute

Subgraph Matching technique. This approach seeks inexact subgraph matches on attributed

graphs through the optimization of graph edit distance. A key component of their method

is a heuristic that employs a backtracking tree search, designed to identify optimal solu-

tions.However, the method falls short in terms of accuracy due to its limited consideration

of graph structural information. Jie et al.[70] proposed I2BGNN, a model work for identity

inference in blockchains. It utilizes subgraphs as inputs and correlates transaction subgraph

patterns with account identities to enhance de-anonymization processes. Similarly, Zhou

et al.[109] developed Ethident, a graph neural network for Ethereum blockchain, with its

design centered on a hierarchical graph attention encoder complemented by contrastive self-

66

supervision. While both methods achieve good results, their applicability is constrained to

the blockchain, making them less suitable for scenarios such as social networks and other

inexactly structured graphs.

5.3 Preliminaries

Graph de-anonymization is a process that aims to reveal the true identities of nodes and

their connections in anonymized graph data. In many applications, such as social networks,

communication networks, and biological networks, graph data is used to represent complex

relationships between entities. To protect the privacy of individuals and sensitive informa-

tion, these graphs are often anonymized before being released or shared. Anonymization

techniques typically involve removing or obfuscating personal identifiers and other infor-

mation that may be exposed in the graph. However, malicious attackers may attempt to

compromise the privacy of individuals by linking the anonymized graph data to external

information, leading to the re-identification of individuals and the disclosure of sensitive

information. Graph de-anonymization techniques are developed to study these potential

vulnerabilities so as to improve the privacy preservation mechanisms employed in graph

data sharing.

As shown in Fig. 5.1 5.2 5.3, there is an original graph G = (V,E), where V is the node

set and E is the edge set. In order to hide private information, anonymization methods are

used to hide the identity information of the nodes as well as to remove or add some edges

in the original graph to form an anonymized graph GA = (VA, EA). In addition, there is a

67

query graph GQ = (VQ, EQ) obtained from other sources, which has the identity information

of the nodes. Graph de-anonymization refers to bringing the identity information of the

query graph to the anonymized graph by matching as many nodes from the query graph to

the anonymized graph as possible.

Depending on the input provided and the information used, the graph de-anonymization

problem can be grouped into two main categories. The first one requires matching point

pairs with known identity information as seed information, which we call seed-based graph

de-anonymization. Since some matching seeds are already available, obtaining high-quality

matching pairs is easier if the initial centers are correct. However, this type of method

is often dependent on the reliability of the seed pairs that are very hard to be obtained.

The second method does not require seed information and is called seed-free graph de-

anonymization. This type of method tends to match by structural feature information of

nodes (e.g., degree, subgraph, node similarity, and descriptive information). However, those

features only capture local structural information of nodes. Thus, the de-anonymization

performance is greatly affected, if both graphs have similar local substructures.

However, a significant issue in graph de-anonymization lies in acquiring a query graph

that perfectly matches the target graph. Consider a situation where an attacker is attempt-

ing to de-anonymize Facebook’s anonymized social network graph. The target graph might

be immense, encompassing billions of nodes and edges. However, the attacker can typi-

cally only access a much smaller query graph, and the node and edge information between

the query graph and the target graph may not be congruent. Therefore, we propose the

68

concept of Inexact Graph De-anonymization to address such challenges. Inexact Graph De-

anonymization embraces the fact that the query and target graphs may not be perfectly

aligned and aims at finding the best possible node mappings despite these discrepancies. It

offers a robust and adaptable solution that can identify similarities between nodes based on

structural and attribute information, even when the query graph is a partial, distorted, or

otherwise imperfect representation of the target graph.

To address the complexities of Inexact Graph De-anonymization, we develop a novel

method that relies heavily on the use of GraphSAGA and Neural Tensor Networks. The

choice of these models forms the backbone of our proposed method, aiding us to confront the

challenges posed by the discrepancies and inconsistencies between query and target graphs.

Alice,

Beijing

Bob,

Tokyo

Carol,

Sydney

Eve,

Paris

Dave,

London

Figure 5.1: Original Graph

5.3.1 GraphSAGA

A major drawback of the traditional graph de-anonymization methods is matching ineffi-

ciency when dealing with large-scale graph as the complexity of the algorithms makes it

difficult to process massive graphs in a reasonable time period. Therefore, an intuitive ap-

69

Alice Bob Carol

Eve Dave

Figure 5.2: Anonymized Graph

Beijing Tokyo Sydney

London

Figure 5.3: Query Graph

proach to address this issue is to adopt graph convolutional networks (GCNs) to transform

the high-dimensional graph data into low-dimensional vector representations. In our pro-

posed method, we utilize GraphSAGE, a powerful and scalable GCN, to generate graph

embeddings. The core idea of GraphSAGE is to learn how to aggregate feature information

from a node’s neighbors and then generate a new node representation by combining the

aggregated information with the node’s own features.

The GraphSAGE algorithm operates through a series of steps that work together to

generate graph embeddings as shown in Fig. 5.4. Initially, given a node v, a fixed-size

neighborhood N(v) is sampled with the size of the neighborhood determined by a parameter

K that controls the number of neighbors sampled at each layer of the GCN. Following the

70

Anchor

Figure 5.4: The GraphSAGE structure.

neighborhood sampling, features of the sampled neighbors are aggregated via an aggregation

function as shown below:

hagg = AGGREGATE ({hu : u ∈ N(v)}) , (5.1)

where AGGREGATE is a common aggregation function, such as mean, max, and LSTM,

and outputs a single vector hagg that represents the aggregated features of the neighbors.

Subsequently, the node update step combines the aggregated neighborhood feature vector

hagg with the node’s own feature vector hv to generate a new node representation h′v, i.e.,

h′v = UPDATE(hv, hagg), (5.2)

where the update function is referred to UPDATE, is a neural network layer such as a fully

connected layer or a graph convolutional layer.

71

5.3.2 Neural Tensor Network

After acquiring the graph embeddings, it is crucial to find a method that measures the

similarity or dissimilarity between the generated embedding vectors, which is essential for

determining the correspondence between nodes in the query and anonymized graphs. Here,

we introduce the Neural Tensor Network (NTN) as an efficient and powerful mechanism to

compare the obtained embedding vectors. Neural Tensor Networks is presented in Fig. 5.5.

+ +

Figure 5.5: Neural tensor network structure

It is devised to capture intricate relationships between pairs of entities, such as nodes in our

context. The main purpose of NTN is to learn a tensor-based scoring function that quantifies

the similarity or relatedness between two input vectors. This scoring function encompasses

a bilinear tensor product involving the input vectors, followed by a non-linear activation

function and a linear combination of the tensor product with the input vectors as shown

below:

f (hi, hj) = g
(
hTi Wkhj + V [hi : hj] + b

)
, (5.3)

72

in which Wk denotes a tensor of weights, V signifies a matrix of weights, [hi : hj] represents

the concatenation of the input vectors, b is a bias vector, and g is a non-linear activation

function, such as the tanh or ReLU.

5.4 Methodology

Anonymized

Subgraph

(Ga)

Query

 Subgraph

(Gq)

GCN

GCN

Neural Tensor Network

+ ++ +

+ ++ +
Side Information

Structure

Vector

Feature

Vector

FCNFCN Score

Figure 5.6: An overview illustration of Graph Neural De-anonymization

The essence of our model is the combination of node structure and side information to

compute the overall node similarity, which aids in de-anonymization. This process, referred

to as Graph Neural De-anonymization (GND), is illustrated in Fig. 5.6. For the structural

information, our model employs a Breadth-First Search (BFS) traversal to obtain adjacent

subgraphs for each node in both the anonymized graph and the query graph. Subsequently,

Graph Neural Networks (GNN) are used to embed these subgraphs, which vectorize the

73

graph structural data. The model then compares these embedded vectors to calculate the

structural similarity between every pair of nodes across the anonymized and query graphs.

For node information, we compare the side information (defined as the node feature vectors)

between the anonymized graph and the query graph, revealing the inherent similarity of the

nodes in the two graphs.

Our graph neural de-anonymization utilizes a three-phase approach for de-anonymizing

graphs:

� Embedding Phase: This is where the anonymized and query graphs are broken down

into smaller overlapping subgraphs. These subgraphs are then processed and embedded

using Graph Neural Networks.

� Comparison Phase: The embedded subgraphs are compared with the query subgraphs

in the structural domain. while the anonymized features are matched with the query

features in the feature domain.

� Matching Phase: The final phase employs a voting mechanism. Nodes with the highest

frequency of matches, as informed by both structural and side information comparisons,

are selected as the potential matches.

The details of our approaches are presented in the following.

5.4.1 Embedding Phase

In the embedding phase, GND decomposes the anonymous graph and the query graph into

many small overlapping subgraphs and embeds them using a graph neural network. For each

74

node a in anonymous graph GA and node node q in query graph GQ, we extract a k-hop

subgraph Ga around a and Gu around u via the breadth-first traversal. To ensure that we are

operating within the same structural feature space, all subgraphs have an identical number of

nodes. Then, the GCN maps the nodes to the embedding vectors, Za and Zq. It is important

to note that by using a GCN with k layers to embed the nodes, we can effectively embed

the network structure of the k-hop neighborhood surrounding the central node. Therefore,

embedding nodes is equivalent to embedding the whole subgraph. Accordingly, instead of

comparing the embeddings of two individual nodes a and q, we are actually comparing the

structure of their corresponding subgraphs vector Za and Zq. During this phase, we utilize

GraphSAGE [29] to perform embedding. GraphSAGE is built on the concepts of neighbor

sampling and feature aggregation as shown in Fig. 5.4. It takes an input node as the anchor

and samples its neighbor nodes (i.e., first-order neighbors). For each of those neighbors,

we sample their neighbors (i.e., second-order neighbors) until k-order neighbor sampling is

finished. In this paper, we use mean aggregator:

Zk
v ← σ

(
W ·MEAN

(
Zk−1
v ∪ Zk−1

u ,∀u ∈ N(v)
))
, (5.4)

where Zk
v is vector for node v in the k-th layer, W is trainable weights, and σ is activation

function.

5.4.2 Comparison Phase

The main idea of the comparison phase is to compute the structural distance and feature

distance between the nodes in the anonymous graph and the query graph and then identifies

75

the nodes with the closest distance as the model outputs. After obtaining the embedding

vectors of two graphs from the previous phase, a straightforward approach to model their

relationship is to calculate their inner product. However, this simplistic utilization of data

representations may result in inadequate or feeble interaction between the two graphs. To

avoid this issue, we employ NTN [71] to measure the distance between the two graphs instead,

i.e.,

g (Za, Zq) = f

ZT
aW

[1:K]Zq + V

 Za

Zq

+ b

 , (5.5)

in which W is the weight tensor, [] denotes the concatenation operation, V is the weight

vector, b is a bias vector, and f is an activation function. K is the hyperparameter controlling

the number of interaction scores produced by the model for each graph embedding pair.

In addition to the structural distance, we also compute the feature distance of the nodes

based on the additional information provided by the data. We also adopt an NTN structure

to measure the distance of node features.

g (Fa, Fq) = f

F T
a W

[1:K]Fq + V

 Fa

Fq

+ b

 , (5.6)

where Fa and Fq are feature information of node a and q, respectively. After obtaining

the structure similarity and feature similarity vectors, we use the concatenation operation

to combine these two feature vectors. Then, we use a standard multilayer fully connected

neural network to gradually reduce the dimension of the similarity score vector.

To train this model, we adopt the max margin loss method, in which the output of

76

positive samples should be as high as possible, while the output of negative samples should

be as low as possible. Therefore, the following loss function is obtained:

L (Gq, Ga) =
∑

(Gq ,Ga)∈P

S (Gq, Ga) +
∑

(Gq ,Ga)∈N

max {0, α− S (Gq, Ga)}+ λ‖Ω‖2
2. (5.7)

Here, node q and a are matching pair, P denotes the set of positive sample, N denotes the

set of negative sample, Gq and Ga are two input graphs, S(·, ·) denotes the output similarity

score vector after our GND model, and Ω is a regularization term used to limit the size of

the parameters.

5.4.3 Matching Procedure

The matching procedure is used to increase the confidence of matched pairs by taking into

account the presence of other matched pairs in the vicinity of the current matched pairs. The

pseudocode of matching algorithm is presented in Algorithm 1. The basic concept behind

this mechanism is to initially eliminate potential node pairs based on structural features, and

then to further narrow down the remaining candidates by utilizing additional features. This

approach reduces the amount of computation required by the model, and only nodes that

pass through this two-fold screening process are successfully de-anonymized. This mechanism

allows the model to effectively eliminate a majority of mismatched node pairs, only retaining

those that are a match.

77

Algorithm 2 Graph Matching Algorithm.

Inputs: anonymous graph GA, query graph GQ, and threshold t for violation below which
we predict candidates matching node pairs
Outputs: all matching node pairs (a,q)
For each node a in GA and each node q in GQ, the K-hop subgraphs Ga and Gq are
obtained via breadth-first traversal and embedding Z is computed for all nodes.
for Node a ∈ GA do
L = min {g (Za, Zq) | ∀q ∈ GQ}
if L < t do
return pair (a, q)

end for

5.4.4 Runtime Complexity

Our graph neural de-anonymization model primarily employs two phase to calculate the

similarity scores between target and query nodes. Firstly, during the embedding phase, we

utilize a GCN model to derive the embedding vectors for each node. The time complexity

for this phase should be O (K (|ET |+ |EQ|)), where K represents the layers of the GCN

and O (|ET |+ |EQ|) signifies the total number of edges in all the graphs. Secondly, in the

comparison phase, we need to calculate the similarity of every pair of nodes within the target

graph and the query graph, for which the time complexity is O (|VT | |VQ|).

5.5 Experiments Result

5.5.1 Datasets

In this section, we evaluate our proposed graph de-anonymization method using multiple

datasets, each of which offers unique characteristics and challenges that allow for compre-

hensive assessment.

� LastFM Asia Social Network Dataset [50]: This dataset, provided by Stanford Uni-

78

versity, comprises a social network of LastFM users collected from the public API in

March 2020. The LastFM Asia Social Network dataset offers a real-world example of

a complex and large-scale social network, with users and their interactions providing a

rich set of features and structural information. Evaluating our method on this dataset

allows us to demonstrate the performance and applicability of our approach in handling

real-world graph data with inherent noise and complex structures.

� AIDA Knowledge Graph Dataset [2]: The AIDA dataset is a knowledge graph dataset

that consists of entities and their relationships extracted from various sources, such

as documents and web pages. The AIDA knowledge graph dataset provides a diverse

and challenging testbed for our method, as it features a wide range of entity types and

relationships as well as varying levels of sparsity and density. Evaluating our approach

on this dataset helps us demonstrate the robustness and flexibility of our method in

handling different types of graphs with varying characteristics.

� Randomly Generated Graph Dataset (On-The-Fly): In addition to the aforementioned

real-world datasets, we also use randomly generated graph data in our evaluation. This

synthetic dataset offers controlled environments where specific graph properties, such

as size, density, and connectivity, can be manipulated to create a range of testing

scenarios. By evaluating our method on randomly generated graphs, we can assess

its performance and scalability under various conditions, as well as identify potential

limitations or areas for improvement.

For above dataset, we initially possess a set of anonymous graphs serving as target graphs

79

and extract a set of query graphs using sampling and breath first search methods. Then

we generate a set of positive samples by introducing a small amount of noise (including

deleting/adding edges and adding noise to node features) and a set of negative samples by

random generated. In the experiments, we set 60% of the query graphs as the training

set, 15% as the validation set, and 25% as the test set. Once the model has been properly

trained, we de-anonymize the nodes in the test dataset according to the model and obtain

the de-anonymization accuracy. Subsequently, based on the match degree for the nodes of

positive and negative samples, we can calculate the model precision, recall, and F1 score.

5.5.2 Experiment Setting

Given the lack of models concerning imprecise de-anonymization in previous research, we

select five baseline models for evaluation.

� NeuroMatch [56] is a widely recognized GNN-based graph de-anonymization model by

leveraging GNNs to capture structural information, the model then computes similarity

scores by directly comparing these embedded vectors.

� IASM [76] is a method for graph de-anonymization that uses node features. It applies a

backtracking tree search technique to find the best matches. When graphs have special

attributes on their nodes or edges, IASM searches for parts in the larger graph that

closely resemble the desired pattern, even if they aren’t a perfect fit.

� GNDNF is one of the models derived by omitting modules from our GND model to

test its de-anonymization capability in isolation. GNDNF deletes the structural part of

80

the GND. It solely relies on node features to compute similarity. Specifically, instead

of combining g (Fa, Fq) with g (Za, Zq) using the concatenation operation, GNDNF

directly employs g (Fa, Fq) to calculate the similarity score vector.

� GNDSF similar to GNDNF and excludes the node information component, focusing

exclusively on structural information to compute similarity. Specifically, GNDSF em-

ploys g (Za, Zq) to determine the similarity score vector.

� GND/threshold model aims for a stricter evaluation of the similarities between struc-

tural and node vectors by negating the threshold. While this approach can enhance

the accuracy of node matching, but also makes it more challenging to de-anonymize

nodes with partial matches. Specifically, the model sets the comparison threshold of

the GND to zero, where α = 0 in GND model.

All models were trained on a single GeForce RTX 2080 GPU, while the heuristic models

operated on an Intel Core i5-9400F CPU. The platform utilized for training across all models

was Python 3.6.6 with PyTorch 1.2.0.

5.5.3 Performance Evaluation

Table 5.1 illustrates the accuracy of different graph de-anonymization models on three differ-

ent datasets. Overall, our GND model gains the highest accuracy on all datasets with 0.7013

on LastFM, 0.6855 on AIDA, and 0.7623 on On-The-Fly. This indicates that our model per-

forms excellently on the task of graph de-anonymization in the context of social networks

(LastFM), knowledge graphs (AIDA), or randomly generated graphs (On-The-Fly). The

81

Table 5.1: Accuracy of graph de-anonymization on different datasets

LastFM AIDA On-The-Fly
NeuroMatch 0.5434 0.5219 0.5968

IASM 0.5986 0.5453 0.6712
GNDNF 0.4575 0.3987 0.5442
GNDSF 0.5644 0.5652 0.6152

GND/threshold 0.6111 0.6043 0.6635
GND 0.7013 0.6855 0.7623

Table 5.2: Precision, Recall, and F1 values for graph de-anonymization

LastFM AIDA On-The-Fly
P R F1 P R F1 P R F1

NeuroMatch 0.59 0.45 0.51 0.58 0.42 0.48 0.62 0.51 0.56
IASM 0.60 0.54 0.57 0.59 0.55 0.57 0.73 0.58 0.65

GNDNF 0.41 0.22 0.29 0.40 0.21 0.28 0.54 0.32 0.40
GNDSF 0.57 0.49 0.53 0.54 0.48 0.51 0.66 0.54 0.59

GND/threshold 0.67 0.54 0.60 0.65 0.52 0.58 0.74 0.55 0.63
GND 0.70 0.64 0.67 0.68 0.63 0.65 0.77 0.74 0.75

accuracies of NeuroMatch and IASM are lower than our GND model on all three datasets.

This might be due to the GND model’s consideration of both node features and structural

features when computing node similarities. We can also observe that the models derived by

omitting certain features from the GND model (i.e., GNDNF, GNDSF, and GND/threshold)

obtain less accuracies than the complete GND model. This further verifies the importance

of both node and structural features in graph de-anonymization tasks and their interplay

within the GND model. In summary, these results validate the superiority of our GND model

when handling graph data.

Table 5.2 reports the precision (P), recall (R), and F1 scores of different graph de-

anonymization models on three datasets (LastFM, AIDA, and On-The-Fly). These metrics

are used to evaluate the performance of a model from different aspects. Especially, the F1

82

Table 5.3: Accuracy of graph de-anonymization at different query graph sizes

OTF-30 OTF-50 OTF-100
NeuroMatch 0.5968 0.5831 0.5648

IASM 0.6712 0.6598 0.6012
GNDNF 0.5442 0.5312 0.4879
GNDSF 0.6152 0.5988 0.5490

GND/threshold 0.6635 0.6586 0.6122
GND 0.7623 0.7588 0.7457

score is the harmonic mean of precision and recall, thus providing a balanced measure. Our

GND model shows superiority in all datasets and metrics, which aligns with the results from

the accuracy analysis. This further confirms the efficacy of our model. Specifically, on the

LastFM dataset, the GND model reaches a precision of 0.70, a recall of 0.64, and an F1 score

of 0.67. Similar trends are observed on the AIDA and On-The-Fly datasets. The importance

of considering both node and structural features is highlighted by comparing GND to the

simplified models. For instance, GNDNF, which only uses node features, demonstrates the

lowest scores in terms of all performance metrics, implying that node features alone are insuf-

ficient for the graph de-anonymization. NeuroMatch and IASM perform subpar compared to

GND. Despite their acceptable performance, it is clear that incorporating both node features

and structural features in GND provides a more powerful approach. The results strongly

support the effectiveness of the GND model in performing graph de-anonymization tasks

across different datasets and metrics, further emphasizing the importance of both node and

structural features in graph analysis.

Table 5.3 presents the accuracy of all compared graph de-anonymization models with

different query graph sizes (including OTF-30, OTF-50, and OTF-100). One clear trend

83

across all models is that the accuracy generally decreases as the size of the query graph

increases. This is an expected outcome because the complexity of the de-anonymization

task is directly proportional to the size of the graph. Larger graphs imply more nodes and

more connections, which increases the difficulty of correctly identifying and mapping nodes

to their original identities. Our model, GND, again performs the best with all query graph

sizes. Notably, even with the largest graph size (OTF-100), the GND model maintains a high

accuracy of 0.7457, which indicates its strong capacity to handle large-scale graphs. IASM

and NeuroMatch models also exhibit decreasing accuracy with larger graph sizes but perform

worse than GND. This suggests that our model is not only more accurate but also more

robust against variations in graph size. The three derived models (i.e., GNDNF, GNDSF,

and GND/threshold) show similar trends, while GND/threshold outperforms GNDNF and

GNDSF across all graph sizes. This is consistent with our earlier analysis on the importance

of both node and structural features. These results highlight the robustness of the GND

model with increased graph size, further verifying its effectiveness and scalability in graph

de-anonymization tasks.

Fig. 5.7 demonstrates the running time of different graph de-anonymization models with

different query graph sizes (including OTF-30, OTF-50, and OTF-100). Running time is

an important factor to be considered, especially when dealing with large-scale graph. From

the results, we can observe that our GND model requires more time to process graphs

compared to the simplified models (i.e., GNDNF, GNDSF, GND/threshold) but less time

than the traditional models (i.e., NeuroMatch and IASM). The GND model uses both node

84

Figure 5.7: Running time of different models at different query graph sizes

and structural features, which adds complexity and hence requires additional computational

time. However, its running time is relatively reasonable given its superior accuracy as ob-

served from previous results. When comparing GND with NeuroMatch and IASM, the GND

model is significantly faster. This can be attributed to the more efficient feature extraction

and comparison processes implemented in GND. The substantial reduction in running time

demonstrates the efficiency of our model. In terms of the simplified models, GNDNF appears

to be the fastest. This is expected because GNDNF only uses node features, which reduces

the complexity and hence speeds up the process. However, as shown in the previous results,

the accuracy of GNDNF is much lower than the other models, indicating a trade-off be-

tween speed and performance. Therefore, our GND model achieves a good balance between

performance (i.e., accuracy) and efficiency (i.e., running time).

85

5.6 Conclusion

This section presents DEFAT, a decentralized federated learning framework against gradi-

ent attacks. The framework abandons the central server and uses a peer-to-peer network

to transmit model parameters, training a personalized model in collaboration with multi-

ple connected clients. The DEFAT framework effectively defends against gradient attacks

by preventing attackers from obtaining accurate training gradients. To balance the trade-

off between training cost and model performance, we have also established various training

modes to train the DEFAT framework. Finally, we compare our DEFAT with several baseline

models through extensive experiments and case studies on real-world datasets. The results

show that the decentralized DEFAT framework can effectively defend against gradient at-

tacks, although it comes at the cost of increased training time and reduced model accuracy.

Through the performance analysis of DEFAT framework under different modes, it can be

concluded that the more decentralized the framework is, the harder it is to be attacked by

gradient, at the cost of sacrificing training time and model performance.

86

CHAPTER 6

FUTURE RESEARCH DIRECTIONS

6.1 Federated continual learning

Social media platforms are a rich source of data. However, leveraging this data introduces

significant challenges in balancing utility and privacy. Federated Continual Learning (FCL)

offers a novel solution to this dilemma. FCL integrates Federated Learning and Continual

Learning, presenting an approach that addresses both these concerns.

Social media data is constantly evolving. Therefore, to enhance the utility of models, we

need models that can learn from new data. FCL is well-suited for this purpose. It allows

for continual learning across different users, enhancing the model’s utility while ensuring

that user data remains private. The FCL is work as Fig. 6.1. It starts with multiple users

Parameter

Server

Local

Data D1
1

Task T1

Local

Data D1
2

Task T2

...

Local

Data D1
1

Task T1

Local

Data D1
2

Task T2

...

Client 1

Local

Data D1
1

Task T1

Local

Data D1
2

Task T2

...

Client 1

Local

Data D2
1

Task T1

Local

Data D2
2

Task T2

...

Local

Data D2
1

Task T1

Local

Data D2
2

Task T2

...

Client 2

Local

Data D2
1

Task T1

Local

Data D2
2

Task T2

...

Client 2

Local

Data D3
1

Task T1

Local

Data D3
2

Task T2

...

Local

Data D3
1

Task T1

Local

Data D3
2

Task T2

...

Client 3

Figure 6.1: Federated Continual Learning Framework Structure

(or clients). Each client trains a model on its own specific tasks. These models then share

certain information with a central server, which combines it all into a global model. For

87

each client, it’s like a continuous learning process - they use the global model and their new

data to train. But when we look at all clients together, it’s a group effort, where they all

contribute to the learning process without sharing their raw data. Imagine many hospitals

wanting to create a shared medical model. Each hospital’s data alone might not be enough.

But by using FCL, they can all contribute to the model without sharing sensitive patient

details. This is especially useful when medical conditions change quickly. Each hospital only

keeps data for a short time, but they can still use it to update the main model.

However, FCL does face challenges. One major challenge is that data can be very different

across time and places. For example, one client’s data might look different from month to

month. A method called Elastic Weight Consolidation (EWC) helps by tweaking only certain

parts of the model while keeping the main parts stable. Another challenge is when clients

can’t talk to each other directly. Here, the solution is to pick the best client for a specific

task based on the data they have.

Finally, it’s crucial to check how well FCL is doing. We look at things like accuracy (how

correct the model is), stability (how consistent it is), and plasticity (how adaptable it is).

By looking at these metrics, we can understand the model’s performance over various tasks.

In conclusion, as we dive deeper into using social media data, Federated Continual Learn-

ing stands out as a promising tool. It points towards a future where we can make the most

of the data while keeping user privacy intact.

88

6.2 Personalised Decentralised Federated Learning

According to Chapter 4, we can see that the privacy and utility of the training framework

for social network data is a trade-off. A decentralized federated learning ensures that each

individual client has equal rights and makes it difficult for malicious attackers to target a

specific victim. However, decentralized federated learning also incurs a high communication

cost and may result in a loss of model accuracy.

In a decentralized approach, there is no single global model, but rather, each client trains

together with a few neighboring clients. In order to train with more datas, the model requires

more training rounds and more communication rounds to communicate with more clients.

This is actually based on a local optimum that is centered around a portion of the data from

each client. However, in real-world environments, the data from each client is non-I.I.D,

which leads to a deviation between the model trained by each client and the theoretically

globally optimal model. Furthermore, each training session may have a tendency to train

in the opposite direction of the global optimum, resulting in the oscillation in the model

training. These factors can result in the need for more training rounds in decentralized

federated learning, and a high likelihood of getting stuck in a local optimum.

However, from another perspective, do we really need all participating clients to train

the same globally optimal model? For example, if several hospitals are jointly training a

model to diagnose the novel coronavirus, the data from a hospital in Africa will certainly

be different from that in the United States. This is due to various factors such as race,

geography, temperature, and so on. If a globally optimal model is jointly trained, it may not

89

be as effective as two different personalized models[73]. This is the personalization issue in

federated learning.

The decentralized federated learning approach well satisfies the personalization charac-

teristics of federated learning, which opens up a new direction. Perhaps a personalized

decentralized federated learning framework can be designed that trains more locally suitable

models with fewer training rounds, without pursuing global optimality. In this way, privacy

can be ensured while further improving the utility of the model, achieving a simultaneous

improvement in privacy and utility.

6.3 Client selection in federated learning

During the training process in centralized federated learning, only a portion of the clients

participate in model training due to the large number of participating clients. Currently, most

training approaches randomly select several clients to participate. This randomness leading

to oscillation in the training process as it only trains in the direction of the local optimum.

Therefore, is it possible to design a client selection algorithm to plan the participating

clients in each training session to achieve the fastest model convergence?[18] Of course, this

inevitably requires each client to contribute its own data distribution, which results in a

certain degree of privacy leakage, and it is also a trade-off between privacy and utility.

90

CHAPTER 7

CONCLUSION

In the current digital era, the widespread presence of social media platforms and their cor-

responding data repositories provide deep insights into individual behaviors, societal trends,

and global movements. This data has immense potential, offering insights for tailored

marketing, emergency responses, trend predictions, political campaigns, and customer feed-

back. [113]

The vast potential of data brings an equal measure of ethical responsibility. Privacy is

not just a regulatory requirement but a foundational element of trust between users and

platforms. Without trust, data loses its reliability and value. [8] Thus, maintaining users’

anonymity is vital to ensure data collection exercises respect individual choices.

Ethics go beyond business or user needs; they are morally binding, emphasizing that

valuing privacy is not just strategic but inherently correct. [106] Striking the right balance

between data utility and privacy is a delicate task.

Our research dives deep into this balance and focuses on the trade-off between privacy

and utility in social media data mining [31]. Specifically, the paper analyzes how to balance

privacy and utility in the model by examining two aspects: the trade-off between robustness

and fidelity of the mining model and the trade-off between privacy and performance in the

training framework. [54]

In terms of data mining model, this paper proposes a new structure called PGGCN,

which improves the robustness of graph neural networks by introducing Gaussian noise and

91

pairwise structure and thus resists graph adversarial attacks. The model also guarantees the

model’s fidelity through a pairwise structure. Through loss function design, the model can

freely choose the optimal balance between robustness and fidelity that best suits the current

situation by adjusting the hyperparameters.

In terms of training framework, this paper studies the difference in privacy protection

ability between centralized and decentralized federated learning frameworks when faced with

gradient attacks. Specificly, this paper proposes a decentralized federated learning framework

in which local clients transmit model parameters to their neighboring clients through a

peer-to-peer network, jointly training a model without a central server. The decentralized

framework can effectively defend against gradient attacks by removing the central parameter

server, but it requires a large amount of communication cost and results in a decrease in

model classification accuracy. Thus, selecting the training framework reasonably based on

the scenario is an ideal solution.

This paper further investigates the privacy of social media data itself, specifically, it

studies how to effectively use graph neural networks for graph anonymization of social net-

works. By studying privacy at the data level, it aims to find data mining models with high

performance and good privacy protection.

Through the above research, we know that it is currently difficult to ensure data privacy

without sacrificing any utility, but how to do so with a smaller cost or how to find a more

reasonable balance is still an open question.

92

CHAPTER 7

REFERENCES

[1] Eric Alm and Adam P Arkin. Biological networks. Current opinion in structural

biology, 13(2):193–202, 2003.

[2] Simone Angioni, Angelo Salatino, Francesco Osborne, Diego Reforgiato Recupero, and

Enrico Motta. Aida: A knowledge graph about research dynamics in academia and

industry. Quantitative Science Studies, 2(4):1356–1398, 2021.

[3] Monik Raj Behera, Suresh Shetty, Robert Otter, et al. Federated learning using peer-

to-peer network for decentralized orchestration of model weights. 2021.

[4] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Inger-

man, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, Brendan

McMahan, et al. Towards federated learning at scale: System design. Proceedings of

Machine Learning and Systems, 1:374–388, 2019.

[5] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks

and locally connected networks on graphs, 2014.

[6] Zhipeng Cai, Zhuojun Duan, and Wei Li. Exploiting multi-dimensional task diver-

sity in distributed auctions for mobile crowdsensing. IEEE Transactions on Mobile

Computing, 20(8):2576–2591, 2020.

93

[7] Zhipeng Cai and Zaobo He. Trading private range counting over big iot data. In 2019

IEEE 39th international conference on distributed computing systems (ICDCS), pages

144–153. IEEE, 2019.

[8] Zhipeng Cai, Zaobo He, Xin Guan, and Yingshu Li. Collective data-sanitization for

preventing sensitive information inference attacks in social networks. IEEE Transac-

tions on Dependable and Secure Computing, 15(4):577–590, 2016.

[9] Zhipeng Cai and Tuo Shi. Distributed query processing in the edge-assisted iot data

monitoring system. IEEE Internet of Things Journal, 8(16):12679–12693, 2020.

[10] Zhipeng Cai, Zuobin Xiong, Honghui Xu, Peng Wang, Wei Li, and Yi Pan. Gener-

ative adversarial networks: A survey toward private and secure applications. ACM

Computing Surveys (CSUR), 54(6):1–38, 2021.

[11] Zhipeng Cai and Xu Zheng. A private and efficient mechanism for data uploading in

smart cyber-physical systems. IEEE Transactions on Network Science and Engineer-

ing, 7(2):766–775, 2018.

[12] Zhipeng Cai, Xu Zheng, and Jinbao Wang. Efficient data trading for stable and privacy

preserving histograms in internet of things. In 2021 IEEE International Performance,

Computing, and Communications Conference (IPCCC), pages 1–10. IEEE, 2021.

[13] Zhipeng Cai, Xu Zheng, Jinbao Wang, and Zaobo He. Private data trading towards

range counting queries in internet of things. IEEE Transactions on Mobile Computing,

2022.

94

[14] Zhipeng Cai, Xu Zheng, and Jiguo Yu. A differential-private framework for urban traf-

fic flows estimation via taxi companies. IEEE Transactions on Industrial Informatics,

15(12):6492–6499, 2019.

[15] S. Casas, C. Gulino, R. Liao, and R. Urtasun. Spagnn: Spatially-aware graph neural

networks for relational behavior forecasting from sensor data. In 2020 IEEE Interna-

tional Conference on Robotics and Automation (ICRA), 2020.

[16] C. Chen, K. Li, S. G. Teo, X. Zou, and Z. Zeng. Gated residual recurrent graph

neural networks for traffic prediction. P AAAI Conference on Artificial Intelligence,

33:485–492, 2019.

[17] Chuanxiu Chi, Yingjie Wang, Xiangrong Tong, Madhuri Siddula, and Zhipeng Cai.

Game theory in internet of things: A survey. IEEE Internet of Things Journal,

9(14):12125–12146, 2021.

[18] Yae Jee Cho, Jianyu Wang, and Gauri Joshi. Client selection in federated learn-

ing: Convergence analysis and power-of-choice selection strategies. arXiv preprint

arXiv:2010.01243, 2020.

[19] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Ad-

versarial attack on graph structured data. In International conference on machine

learning, pages 1115–1124. PMLR, 2018.

95

[20] Nilesh Dalvi, Pedro Domingos, Sumit Sanghai, and Deepak Verma. Adversarial clas-

sification. In Proceedings of the tenth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 99–108, 2004.

[21] Suparna De, Maria Bermudez-Edo, Honghui Xu, and Zhipeng Cai. Deep generative

models in the industrial internet of things: a survey. IEEE Transactions on Industrial

Informatics, 18(9):5728–5737, 2022.

[22] Michal Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural

networks on graphs with fast localized spectral filtering, 2017.

[23] Negin Entezari, Saba A Al-Sayouri, Amirali Darvishzadeh, and Evangelos E Papalex-

akis. All you need is low (rank) defending against adversarial attacks on graphs. In

International Conference on Web Search and Data Mining, pages 169–177, 2020.

[24] Luoyi Fu, Jiapeng Zhang, Shuaiqi Wang, Xinyu Wu, Xinbing Wang, and Guihai Chen.

De-anonymizing social networks with overlapping community structure. IEEE/ACM

Transactions on Networking, 28(1):360–375, 2020.

[25] Ji Gao, Beilun Wang, Zeming Lin, Weilin Xu, and Yanjun Qi. Deepcloak: Masking

deep neural network models for robustness against adversarial samples. International

Conference on Learning Representations 2017, 2017.

[26] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting

gradients-how easy is it to break privacy in federated learning? Advances in Neural

Information Processing Systems, 33:16937–16947, 2020.

96

[27] Norjihan Abdul Ghani, Suraya Hamid, Ibrahim Abaker Targio Hashem, and Ejaz

Ahmed. Social media big data analytics: A survey. Computers in Human Behavior,

101:417–428, 2019.

[28] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing

adversarial examples. International Conference on Learning Representations 2015,

2015.

[29] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on

large graphs. Advances in neural information processing systems, 30, 2017.

[30] Zaobo He and Zhipeng Cai. Quantifying the effect of quarantine control and optimizing

its cost in covid-19 pandemic. IEEE/ACM Transactions on Computational Biology and

Bioinformatics, 2022.

[31] Zaobo He, Zhipeng Cai, and Jiguo Yu. Latent-data privacy preserving with customized

data utility for social network data. IEEE Transactions on Vehicular Technology,

67(1):665–673, 2017.

[32] Zaobo He, Lintao Wang, and Zhipeng Cai. Clustered federated learning with adaptive

local differential privacy on heterogeneous iot data. IEEE Internet of Things Journal,

2023.

[33] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep models under the

gan: information leakage from collaborative deep learning. In Proceedings of the 2017

97

ACM SIGSAC conference on computer and communications security, pages 603–618,

2017.

[34] Chenghao Hu, Jingyan Jiang, and Zhi Wang. Decentralized federated learning: A

segmented gossip approach. arXiv preprint arXiv:1908.07782, 2019.

[35] Fenyu Hu, Yanqiao Zhu, Shu Wu, Liang Wang, and Tieniu Tan. Hierarchical graph

convolutional networks for semi-supervised node classification. International Joint

Conference on Artificial Intelligence 2019, 2019.

[36] Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S Yu, and Xuyun

Zhang. Membership inference attacks on machine learning: A survey. ACM Computing

Surveys (CSUR), 2021.

[37] Yan Huang, Yi Joy Li, and Zhipeng Cai. Security and privacy in metaverse: A com-

prehensive survey. Big Data Mining and Analytics, 6(2):234–247, 2023.

[38] Deepthi Jallepalli, Navya Chennagiri Ravikumar, Poojitha Vurtur Badarinath,

Shravya Uchil, and Mahima Agumbe Suresh. Federated learning for object detection

in autonomous vehicles. In 2021 IEEE Seventh International Conference on Big Data

Computing Service and Applications (BigDataService), pages 107–114. IEEE, 2021.

[39] Shouling Ji, Weiqing Li, Mudhakar Srivatsa, and Raheem Beyah. Structural data de-

anonymization: Quantification, practice, and implications. In Proceedings of the 2014

ACM SIGSAC conference on computer and communications security, pages 1040–1053,

2014.

98

[40] Shouling Ji, Weiqing Li, Mudhakar Srivatsa, and Raheem Beyah. Structural data

de-anonymization: Theory and practice. IEEE/ACM Transactions on Networking,

24(6):3523–3536, 2016.

[41] Shouling Ji, Weiqing Li, Mudhakar Srivatsa, Jing Selena He, and Raheem Beyah.

General graph data de-anonymization: From mobility traces to social networks. ACM

Transactions on Information and System Security (TISSEC), 18(4):1–29, 2016.

[42] Shouling Ji, Prateek Mittal, and Raheem Beyah. Graph data anonymization, de-

anonymization attacks, and de-anonymizability quantification: A survey. IEEE Com-

munications Surveys & Tutorials, 19(2):1305–1326, 2016.

[43] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph

structure learning for robust graph neural networks. In ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, pages 66–74, 2020.

[44] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. International

Conference on Learning Representations 2014, 2014.

[45] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolu-

tional networks, 2017.

[46] Nitish Korula and Silvio Lattanzi. An efficient reconciliation algorithm for social net-

works. arXiv preprint arXiv:1307.1690, 2013.

99

[47] Anusha Lalitha, Osman Cihan Kilinc, Tara Javidi, and Farinaz Koushanfar. Peer-to-

peer federated learning on graphs. arXiv preprint arXiv:1901.11173, 2019.

[48] Anusha Lalitha, Shubhanshu Shekhar, Tara Javidi, and Farinaz Koushanfar. Fully

decentralized federated learning. In Third workshop on Bayesian Deep Learning

(NeurIPS), 2018.

[49] T. P. Le, Y. Aono, T. Hayashi, L. Wang, and S. Moriai. Privacy-preserving deep

learning: Revisited and enhanced. In International Conference on Applications and

Techniques in Information Security, 2017.

[50] Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-

mining library. ACM Transactions on Intelligent Systems and Technology (TIST),

8(1):1–20, 2016.

[51] Kaiyang Li, Guoming Lu, Guangchun Luo, and Zhipeng Cai. Seed-free graph de-

anonymiztiation with adversarial learning. In Proceedings of the 29th ACM Interna-

tional Conference on Information & Knowledge Management, pages 745–754, 2020.

[52] Kaiyang Li, Guangchun Luo, Yang Ye, Wei Li, Shihao Ji, and Zhipeng Cai. Adversarial

privacy-preserving graph embedding against inference attack. IEEE Internet of Things

Journal, 8(8):6904–6915, 2020.

[53] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph se-

quence neural networks, 2017.

100

[54] Yi Liang, Zhipeng Cai, Jiguo Yu, Qilong Han, and Yingshu Li. Deep learning based in-

ference of private information using embedded sensors in smart devices. IEEE Network,

32(4):8–14, 2018.

[55] Yaguang Lin, Xiaoming Wang, Hongguang Ma, Liang Wang, Fei Hao, and Zhipeng

Cai. An efficient approach to sharing edge knowledge in 5g-enabled industrial internet

of things. IEEE Transactions on Industrial Informatics, 19(1):930–939, 2022.

[56] Zhaoyu Lou, Jiaxuan You, Chengtao Wen, Arquimedes Canedo, Jure Leskovec, et al.

Neural subgraph matching. arXiv preprint arXiv:2007.03092, 2020.

[57] Guangxi Lu, Ling Tian, Xu Zheng, and Bei Hui. Integrating knowledge-based sparse

representation for image detection. Neurocomputing, 442:173–183, 2021.

[58] Guangxi Lu, Zuobin Xiong, Ruinian Li, and Wei Li. Decentralized federated learn-

ing: A defense against gradient inversion attack. In International Wireless Internet

Conference, pages 44–56. Springer, 2022.

[59] Guangxi Lu, Zuobin Xiong, Ruinian Li, Nael Mohammad, Yingshu Li, and Wei Li.

Defeat: A decentralized federated learning against gradient attacks. High-Confidence

Computing, page 100128, 2023.

[60] Guangxi Lu, Zuobin Xiong, Jing Meng, and Wei Li. Pairwise gaussian graph convolu-

tional networks: Defense against graph adversarial attack. In GLOBECOM 2022-2022

IEEE Global Communications Conference, pages 4371–4376. IEEE, 2022.

101

[61] Yao Ma, Suhang Wang, Tyler Derr, Lingfei Wu, and Jiliang Tang. Attacking graph

convolutional networks via rewiring. arXiv preprint arXiv:1906.03750, 2019.

[62] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan

Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. ACM Transactions

on Knowledge Discovery from Data (TKDD), 1(1):3–es, 2007.

[63] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera

y Arcas. Communication-efficient learning of deep networks from decentralized data.

In Artificial intelligence and statistics, pages 1273–1282. PMLR, 2017.

[64] Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social networks. In 2009

30th IEEE symposium on security and privacy, pages 173–187. IEEE, 2009.

[65] Maxence Noble, Aurélien Bellet, and Aymeric Dieuleveut. Differentially private feder-

ated learning on heterogeneous data. In International Conference on Artificial Intelli-

gence and Statistics, pages 10110–10145. PMLR, 2022.

[66] Junjie Pang, Yan Huang, Zhenzhen Xie, Qilong Han, and Zhipeng Cai. Realizing the

heterogeneity: A self-organized federated learning framework for iot. IEEE Internet

of Things Journal, 8(5):3088–3098, 2020.

[67] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,

and Ananthram Swami. The limitations of deep learning in adversarial settings. In

2016 IEEE European symposium on security and privacy (EuroS&P), pages 372–387.

IEEE, 2016.

102

[68] Pedram Pedarsani, Daniel R Figueiredo, and Matthias Grossglauser. A bayesian

method for matching two similar graphs without seeds. In 2013 51st Annual Allerton

Conference on Communication, Control, and Computing (Allerton), pages 1598–1607.

IEEE, 2013.

[69] Marvin E Shaw. Communication networks. In Advances in experimental social psy-

chology, volume 1, pages 111–147. Elsevier, 1964.

[70] Jie Shen, Jiajun Zhou, Yunyi Xie, Shanqing Yu, and Qi Xuan. Identity inference

on blockchain using graph neural network. In Blockchain and Trustworthy Systems:

Third International Conference, BlockSys 2021, Guangzhou, China, August 5–6, 2021,

Revised Selected Papers 3, pages 3–17. Springer, 2021.

[71] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning with

neural tensor networks for knowledge base completion. Advances in neural information

processing systems, 26, 2013.

[72] Latanya Sweeney. k-anonymity: A model for protecting privacy. International journal

of uncertainty, fuzziness and knowledge-based systems, 10(05):557–570, 2002.

[73] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized feder-

ated learning. IEEE Transactions on Neural Networks and Learning Systems, 2022.

[74] Ben Tan, Bo Liu, Vincent Zheng, and Qiang Yang. A federated recommender system

for online services. In Fourteenth ACM Conference on Recommender Systems, pages

579–581, 2020.

103

[75] Zhiqing Tang, Jiong Lou, Fuming Zhang, and Weijia Jia. Dependent task offload-

ing for multiple jobs in edge computing. In International Conference on Computer

Communications and Networks (ICCCN), pages 1–9. IEEE, 2020.

[76] Thomas K Tu, Jacob D Moorman, Dominic Yang, Qinyi Chen, and Andrea L Bertozzi.

Inexact attributed subgraph matching. In 2020 IEEE international conference on big

data (big data), pages 2575–2582. IEEE, 2020.

[77] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio,

and Yoshua Bengio. Graph attention networks, 2018.

[78] Chenyu Wang, Zhipeng Cai, and Yingshu Li. Sustainable blockchain-based digital twin

management architecture for iot devices. IEEE Internet of Things Journal, 10(8):6535–

6548, 2022.

[79] Chenyu Wang, Zhipeng Cai, Daehee Seo, and Yingshu Li. Tmeta: Trust management

for the cold start of iot services with digital-twin-aided blockchain. IEEE Internet of

Things Journal, 2023.

[80] Jinbao Wang, Zhipeng Cai, and Jiguo Yu. Achieving personalized k-anonymity-based

content privacy for autonomous vehicles in cps. IEEE Transactions on Industrial

Informatics, 16(6):4242–4251, 2019.

[81] Lijing Wang, Aniruddha Adiga, Jiangzhuo Chen, Adam Sadilek, Srinivasan Venkatra-

manan, and Madhav Marathe. Causalgnn: Causal-based graph neural networks for

spatio-temporal epidemic forecasting. AAAI, 2022.

104

[82] Shen Wang, Zhengzhang Chen, Jingchao Ni, Xiao Yu, Zhichun Li, Haifeng Chen, and

Philip S Yu. Adversarial defense framework for graph neural network. arXiv preprint

arXiv:1905.03679, 2019.

[83] Xiaoyun Wang, Xuanqing Liu, and Cho-Jui Hsieh. Graphdefense: Towards robust

graph convolutional networks. CoRR, 2019.

[84] Stefanie Warnat-Herresthal, Hartmut Schultze, Krishnaprasad Lingadahalli Shastry,

Sathyanarayanan Manamohan, Saikat Mukherjee, Vishesh Garg, Ravi Sarveswara,

Kristian Händler, Peter Pickkers, N Ahmad Aziz, et al. Swarm learning for decen-

tralized and confidential clinical machine learning. Nature, 594(7862):265–270, 2021.

[85] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks.

nature, 393(6684):440–442, 1998.

[86] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin,

Tony QS Quek, and H Vincent Poor. Federated learning with differential privacy:

Algorithms and performance analysis. IEEE Transactions on Information Forensics

and Security, 15:3454–3469, 2020.

[87] WenNing Wu and ZhengHong Deng. The analysis of public opinion in colleges and uni-

versities oriented to wireless networks under the application of intelligent data mining.

Wireless Communications and Mobile Computing, 2022:1–11, 2022.

[88] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

105

[89] Zuobin Xiong, Zhipeng Cai, Qilong Han, Arwa Alrawais, and Wei Li. Adgan: Protect

your location privacy in camera data of auto-driving vehicles. IEEE Transactions on

Industrial Informatics, 17(9):6200–6210, 2020.

[90] Zuobin Xiong, Zhipeng Cai, Chunqiang Hu, Daniel Takabi, and Wei Li. Towards

neural network-based communication system: Attack and defense. IEEE Transactions

on Dependable and Secure Computing, 2022.

[91] Zuobin Xiong, Zhipeng Cai, Daniel Takabi, and Wei Li. Privacy threat and defense

for federated learning with non-iid data in aiot. IEEE Transactions on Industrial

Informatics, 18(2):1310–1321, 2021.

[92] Zuobin Xiong, Wei Li, and Zhipeng Cai. Federated generative model on multi-source

heterogeneous data in iot. Accepted by AAAI Conference on Artificial Intelligence,

2023.

[93] Zuobin Xiong, Wei Li, Qilong Han, and Zhipeng Cai. Privacy-preserving auto-driving:

a gan-based approach to protect vehicular camera data. In 2019 IEEE International

Conference on Data Mining (ICDM), pages 668–677. IEEE, 2019.

[94] Zuobin Xiong, Honghui Xu, Wei Li, and Zhipeng Cai. Multi-source adversarial sam-

ple attack on autonomous vehicles. IEEE Transactions on Vehicular Technology,

70(3):2822–2835, 2021.

106

[95] Honghui Xu, Zhipeng Cai, Ruinian Li, and Wei Li. Efficient citycam-to-edge coopera-

tive learning for vehicle counting in its. IEEE Transactions on Intelligent Transporta-

tion Systems, 23(9):16600–16611, 2022.

[96] Honghui Xu, Zhipeng Cai, and Wei Li. Privacy-preserving mechanisms for multi-label

image recognition. ACM Transactions on Knowledge Discovery from Data (TKDD),

16(4):1–21, 2022.

[97] Honghui Xu, Zhipeng Cai, Daniel Takabi, and Wei Li. Audio-visual autoencoding for

privacy-preserving video streaming. IEEE Internet of Things Journal, 9(3):1749–1761,

2021.

[98] Honghui Xu, Wei Li, and Zhipeng Cai. Analysis on methods to effectively improve

transfer learning performance. Theoretical Computer Science, 940:90–107, 2023.

[99] Jie Xu, Benjamin S Glicksberg, Chang Su, Peter Walker, Jiang Bian, and Fei Wang.

Federated learning for healthcare informatics. Journal of Healthcare Informatics Re-

search, 5(1):1–19, 2021.

[100] Xiaojun Xu, Yue Yu, Bo Li, Le Song, Chengfeng Liu, and Carl Gunter. Characteriz-

ing malicious edges targeting on graph neural networks. International Conference on

Learning Representations 2019, 2019.

[101] Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo

Molchanov. See through gradients: Image batch recovery via gradinversion. In Pro-

107

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 16337–16346, 2021.

[102] Lei Zhang, Shuai Wang, and Bing Liu. Deep learning for sentiment analysis: A survey.

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4):e1253,

2018.

[103] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from

gradients. arXiv preprint arXiv:2001.02610, 2020.

[104] Zhongyuan Zhao, Gunjan Verma, Chirag Rao, Ananthram Swami, and Santiago

Segarra. Distributed scheduling using graph neural networks. In IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4720–4724.

IEEE, 2021.

[105] Xu Zheng and Zhipeng Cai. Privacy-preserved data sharing towards multiple parties

in industrial iots. IEEE Journal on Selected Areas in Communications, 38(5):968–979,

2020.

[106] Xu Zheng, Zhipeng Cai, and Yingshu Li. Data linkage in smart internet of things

systems: a consideration from a privacy perspective. IEEE Communications Magazine,

56(9):55–61, 2018.

[107] Xu Zheng, Guangchun Luo, and Zhipeng Cai. A fair mechanism for private data

publication in online social networks. IEEE Transactions on Network Science and

Engineering, 7(2):880–891, 2018.

108

[108] Xu Zheng, Ling Tian, Guangchun Luo, and Zhipeng Cai. A collaborative mecha-

nism for private data publication in smart cities. IEEE Internet of Things Journal,

7(9):7883–7891, 2020.

[109] Jiajun Zhou, Chenkai Hu, Jianlei Chi, Jiajing Wu, Meng Shen, and Qi Xuan. Behavior-

aware account de-anonymization on ethereum interaction graph. IEEE Transactions

on Information Forensics and Security, 17:3433–3448, 2022.

[110] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. Robust graph convolutional

networks against adversarial attacks. In Proceedings of the 25th ACM SIGKDD Inter-

national Conference on Knowledge Discovery & Data Mining, pages 1399–1407, 2019.

[111] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in

Neural Information Processing Systems, 32, 2019.

[112] Saide Zhu, Zhipeng Cai, Huafu Hu, Yingshu Li, and Wei Li. zkcrowd: a hybrid

blockchain-based crowdsourcing platform. IEEE Transactions on Industrial Informat-

ics, 16(6):4196–4205, 2019.

[113] Saide Zhu, Wei Li, Hong Li, Ling Tian, Guangchun Luo, and Zhipeng Cai. Coin

hopping attack in blockchain-based iot. IEEE Internet of Things Journal, 6(3):4614–

4626, 2018.

[114] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on

neural networks for graph data. In Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, pages 2847–2856, 2018.

109

[115] Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks

via meta learning. arXiv preprint arXiv:1902.08412, 2019.

	Exploring the utility-privacy trade-off in social media data mining
	Recommended Citation

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND
	Graph Convolutional Networks
	Federated Learning
	Graph De-anonymisation

	DATA MINING MODEL
	Introduction
	Related Work
	Graph Adversarial Attack
	Graph Adversarial Defense

	Preliminaries
	Methodologys
	Gaussian-based Graph Convolution Network
	Pairwise Framework

	Performance Evaluation
	Datasets
	Experiment Setting
	Experiment Analysis
	Fidelity-Robustness Analysis

	Conclusion

	DATA TRAINING FRAMEWORK
	Introduction
	Related Work
	Gradient Attacks
	Decentralized Federated Learning

	Preliminaries
	Methodology
	Peer to Peer Network
	Decentralized Federated Learning Algorithm
	Training Schema
	Security Analysis

	Performance Evaluation
	Datasets
	Experiment Setting
	Experiment Analysis
	Convergence Speed and Training Efficiency

	Conclusion

	DATA LEVEL RESEARCH
	Introduction
	Related Work
	Traditional graph de-anonymisation algorithm
	Graph de-anonymization based on neural networks

	Preliminaries
	GraphSAGA
	Neural Tensor Network

	Methodology
	Embedding Phase
	Comparison Phase
	Matching Procedure
	Runtime Complexity

	Experiments Result
	Datasets
	Experiment Setting
	Performance Evaluation

	Conclusion

	FUTURE RESEARCH DIRECTIONS
	Federated continual learning
	Personalised Decentralised Federated Learning
	Client selection in federated learning

	CONCLUSION
	REFERENCES

