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ABSTRACT

Two problems have plagued artificial neural networks since their birth in the mid-20th

century. The first is a tendency to lose previously acquired knowledge when there is a large

shift in the underlying data-distribution, a phenomenon provocatively known as catastrophic

forgetting. The second is an inability to know-what-they-don’t-know, resulting in excessively

confident behavior, even in uncertain or novel conditions. This text provides an in-depth

history of these obstacles, complete with formal problem definitions and literature reviews.

Most importantly, the proposed solutions herein demonstrate that these challenges can be

overcome with the right architectures and training objectives. As this text will show, a

thorough investigation of these topics necessitated several distinct approaches. Each of

which, when considered in isolation, offers evidence that these problems are likely temporary

obstacles on the path to true human-level intelligence. Lastly, we present a new learning

framework called Hyper-Learning, which might allow both of these problems to be mitigated

by a single architecture when coupled with the right training algorithm.

INDEX WORDS: Continual Learning, Active Learning, Open-Set Recognition,
Meta-Learning, Neural Networks, Deep Artificial Neurons,
Hyper-Learning, Deep Learning
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CHAPTER 1

Introduction

Lifelong or Continual Learning (CL) is one of the most formidable challenges in machine

learning, and it remains a significant hurdle in the quest for artificial general intelligence

(AGI). Within this intricate algorithmic landscape, a single system must constantly acquire

the capability to tackle novel tasks while preserving its existing knowledge—a quest fraught

with the specter of forgetting. These tasks can range from diverse data types - like images and

text - to distinct ways of processing the same data, such as classification and segmentation.

The relentless demand for continuous adaptation blurs the boundaries between training and

inference, obliging a system to perpetually adjust its parameters.

CL is particularly challenging for deep neural networks because they are trained end-to-

end. In standard deep learning we tune all of the network’s parameters based on training

data, usually via Backpropagation. While this paradigm has proven highly successful for

individual tasks, it is not suitable for continual learning because it overwrites existing weights,

a phenomenon evocatively dubbed catastrophic forgetting. For example, if we first train a

network on task A, and then on a subsequent task B, the latter training will modify the

weights learned for A, thus likely reducing the network’s performance on this task. There

are several approaches that can achieve some degree of continual learning in deep networks.

However, existing methods suffer from various limitations. As this work will show, our

collective understanding of the true challenges inherent to continual learning have evolved

over time, as indicated by the various problem formulations and underlying objectives in
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each forthcoming chapter.

Parallel to the complexities of CL, we encounter an entwined challenge, one that has

echoed through the annals of artificial intelligence research for decades: Active Learning

(AL). While supervised deep learning has achieved remarkable feats across diverse domains,

the chasm between our capacity to amass data and our ability to label it remains glar-

ingly evident [Lecun et al. 1998]. This discrepancy is most pronounced in domains requiring

specialized expertise, like the world of medical imaging, where the need for ground truth an-

notations outpaces the availability of domain experts. Furthermore, considerations like time

constraints, financial limitations, and environmental impact weigh heavily on the decisions

inherent to training data acquisition and annotation.

The history of AL is rooted in this conundrum. It dates back to an era where computa-

tional resources were scarce, data labeling was labor-intensive, and the quest to harness the

power of machine learning was in its infancy. As we embarked on the journey of automating

the selection of data samples for annotation, a pivotal question emerged: How can we max-

imize the efficiency of data acquisition while minimizing the human labeling effort? This

question catalyzed the birth of active learning, where the selection of informative samples

for labeling became a core pursuit. The fundamental premise underlying AL is that not all

data samples are equally informative. Rather, there exists a select subset—often relatively

small—that can furnish the majority of information needed for effective model training. This

subset represents the crux of AL’s historical mission: to optimize model performance within

predefined constraints.
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In the next sections, we delve deeper into the evolving landscape of active learning,

illuminating its transformative impact on artificial intelligence research and revealing its

intricate relationship with the continual learning paradigm. Through our exploration, we

aim to capture the essence of this historical continuum, highlighting its enduring relevance

in our quest for AGI.

Chapter 2 introduces Self-Net, a groundbreaking framework that confronts the contin-

ual learning challenge head-on. Leveraging autoencoders, Self-Net learns low-dimensional

representations of network weights, facilitating the seamless integration of new tasks with

minimal retraining and without the need for extensive data storage. This innovation opens

doors to efficient and adaptive continual learning, boasting superior storage performance

across diverse learning paradigms.

Chapter 3 begins our exploration into the domain of active learning, redefining it as

an open-set recognition challenge. Harnessing the power of variational neural networks,

this paper quantifies uncertainty and selectively identifies informative samples for labeling,

effectively addressing the challenge of resource-efficient data acquisition. Through a proba-

bilistic approach, it attains state-of-the-art results across a range of datasets, underscoring

its capacity to manage uncertainty for informed active learning.

In Chapter 4, the fusion of active learning with self-supervised learning results in Deep

Active Learning with Barlow Twins (DALBT)—a novel methodology that leverages self-

supervised learning alongside a simple classifier. This innovation offers a scalable and efficient

approach, amd the introduction of Weibull sampling enhances the sample selection’s diversity
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and utility. DALBT’s versatility is substantiated by its exceptional performance across

datasets like MNIST, Fashion-MNIST, and CIFAR-10.

Chapter 5 ventures into uncharted territory with the introduction of Deep Artificial

Neurons (DANs). Inspired by the intricate dynamics of biological neurons, DANs operate

as vector-valued filters, mitigating catastrophic forgetting and enabling seamless continual

learning. This non-linear, vector-valued filtering demonstrates the potential of complex

neural dynamics in the pursuit of lifelong learning.

Our odyssey culminates in Chapter 6, where we delve into the realm of Hyper-Learning—a

paradigm that redefines the role of individual neurons, challenging traditional notions of

neural simplicity. DANs embedded within larger networks serve as the nucleus of Hyper-

Learning, self-supervising synaptic updates to address challenges like catastrophic forgetting

and suboptimal generalization. Through population-based self-supervised meta-learning,

Hyper-Learning emerges as a transformative paradigm poised to unlock the boundless po-

tential of deep nueral networks.

This narrative of innovation and exploration weaves together these milestones, revealing

a journey marked by transformative insights as we strive to unlock the limitless horizons of

artificial intelligence.

1.1 Special Acknowledgement of Collaboration

On a final note, I would like to express my heartfelt gratitude to my research partner, Jaya

Krishna Mandivarapu, for his unwavering friendship and invaluable research collaboration
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throughout our journey as PhD students. The cornerstone of our collaboration was the

groundbreaking paper ”Self-Net: Lifelong Learning via Continual Self-Modeling”, which we

co-authored as the first of our joint endeavors. In this project, Jaya and I stood as co-

first authors, reflecting the harmonious collaboration that defined our academic journey.

Jaya’s contributions to the dual fields of Continual Learning and Active Learning have been

exceptional, further demonstrated by his role as the first author on two additional pivotal

papers: ”Deep Active Learning via Open-Set Recognition” and ”Deep Active Learning with

Barlow Twins.” In these works, I take immense pride in having played a significant, yet

assisting role in the conceptual design of ideas, the development of targeted code, as well as

assistance in writing the papers themselves, all of which enabled the successful realization of

these innovative projects. Jaya’s dedication and our collaborative efforts have significantly

enriched my academic experience, and for that, I am truly grateful.
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CHAPTER 2

Self-Net: Lifelong Learning via Continual Self-Modeling

2.1 Problem Formulation

Continual learning is not a single problem, but a family of related problems, each of which

imposes a different set of constraints on the learning process (e.g., fixed architecture, no

access to prior training data, etc.). Here, we consider the setting in which (1) the system

learns one new task at a time, (2) each task can be solved independently of other tasks,

(3) tasks have labels (i.e., the system knows which task to solve at any point), and (4) the

system has no access to old training data. In particular, our problem differs from settings in

which a single task grows more difficult over time [e.g., class-incremental learning (CIL)].

More concretely, each task Ti is specified by a training set, Di = {Xi, Yi}, consisting of ni

different {x, y} training pairs. The system is sequentially trained on each Di dataset, using

either a supervised or reinforcement learning paradigm, as applicable. That is, the system

is first exposed to D1 (and thus must learn T1), then D2, D3, up to Dk, where k is the total

number of tasks encountered during its lifetime. Note that, in this paradigm, datasets are

not required to be disjoint, i.e., any two datasets Di and Dj many contain some common

{x, y} pairs.

Critically, the system is trained on each Di only once during its lifetime. The system is

not allowed to store any exemplars from previous tasks or revisit old data when training on

new tasks. We do, however, allow multiple passes over the data when first learning the task,

as is standard in machine learning. We also assume that task labels are known; inferring the
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desired task from the input data is important but is outside the scope of this work.

There are two common types of solutions for this CL problem. Regularization methods

estimate a single set of parameters θ∗ for all tasks, while growth-based approaches learn (and

store) a new set of weights θi for each new task. The former uses constant storage (w.r.t to

the number of tasks) but has bad performance, while the latter achieves good performance

but is asymptotically equivalent to storing independent networks. Below, we detail our

proposed approach, which has nearly the same performance as growth-based methods, but

uses significantly less storage.

2.2 Methodology

Figure 2.1 provides a high-level overview of our proposed approach which we call Self-Net.

Self-Net is instantiated as a single Autoencoder (AE) and is charged with modeling the

independent Task networks (TN) that are used to learn each subsequent task encountered by

the system. At any given time step after solving the first task the proposed system utilizes an

m-dimensional Buffer for storing newly learned tasks, an O(n) lifelong autoencoder (AE) for

storing older tasks, and single s-dimensional latent vector for each task. This s-dimensional

latent vector for each task is saved, where s << n which means that the size of the latent

vector is far smaller than the size of the task network which was used to solve the task.

Assuming that c and m are constants, our space complexity is O(n + ks), where k is the

number of learned tasks. In particular, the proposed approach achieves asymptotic space

savings compared to storing kn independent networks if s is sub-linear w.r.t. n, (i.e., s = ω(n)
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in asymptotic notation).

One of the main advantages of the proposed approach is that each task network (TN) is

just an independent and standard neural network, which can learn regression, classification,

or reinforcement learning (RL) tasks (or some combination of the three as shown in the

experimental section). For ease of discussion, we will focus on the case where there is a

single TN and the Buffer can hold only one network; this can be easily extended to multiple

networks. The AE is made up of an encoder that compresses an input vector into a lower-

dimensional, latent vector e, and a decoder that maps e back to the higher-dimensional

space. Our system can produce high-fidelity recollections of the learned weights, despite this

intermediate compression. In our experiments, we used a contractive autoencoder (CAE)

due to its ability to quickly incorporate new values into its latent space.

In CL, we must learn k different tasks sequentially. To learn these tasks independently,

one would need to train and save k networks, with O(n) parameters each, for a total of O(kn)

space. In contrast, we propose using our AE to encode each of these k networks as an s-

dimensional latent vector, with s << n. Thus, our method uses only O(n+ks) space, where

the O(n) term accounts for the TNs and the fixed-size Buffer. Despite this compression,

our experiments show that we can obtain a high-quality approximation of previously learned

weights, even when the number of tasks exceeds the number of parameters in the AE. Below,

we first describe how to encode a single task-network before discussing how to encode multiple

tasks in continual fashion.
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Figure 2.1 Framework overview: Our proposed system has a set of reusable task-specific
networks (TN), a Buffer for storing the latest m tasks, and a lifelong, auto-encoder (AE) for
long-term storage. Given new tasks {tk+1, ..., tk+m}, where k is the number of tasks previously
encountered, we first train m task-networks independently to learn {θk+1, ..., θk+m} optimal
parameters for these tasks. These networks are temporarily stored in the Buffer. When
the Buffer fills up, we incorporate the new networks into our long-term representation by
retraining the AE on both its approximations of previously learned networks and the new
batch of networks. When an old network is needed (e.g., when a task is revisited), we
reconstruct its weights and load them onto the corresponding TN (solid arrow). Even when
the latent representation ei is asymptotically smaller than θi, the reconstructed network
closely approximates the performance of the original.

2.2.1 Single-network encoding

Without loss of generality, we will now explain the protocol for encoding a single skill (task-

network), and in the coming sections we will show that it can be easily applied to multiple

skills in continual fashion. Let t be a task (e.g., classifying digits) and let f(θt) be the

network used to solve that task. Once solved, the task-network f(θt) can be flattened into

an O(n)-dimensional vector of parameters. That is, using a task-network with parameters

θ, we can achieve performance p on t (e.g., a classification accuracy of 95%). Now, let θ̂
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be the approximate reconstruction of θ by our autoencoder and let p̂ be the performance

that we obtain by using these reconstructed weights for task t. Our goal is to minimize any

performance loss w.r.t. the original weights. If the performance of the reconstructed weights

is acceptable, then we can simply store the O(s) latent vector e, instead of the O(n) original

vector θ.

If we had access to the test data for t, we could assess this difference in performance

directly and train our AE until we achieved an acceptable margin ϵ:

p− p̂ ≤ ϵ. (2.1)

For example, for a classification task we could stop training our AE if the drop in accuracy

is less than 1%.

In a continual learning setting, though, the above scheme requires storing validation data

for each old task. Instead, we measure a distance between the original and reconstructed

weights and stop training when we achieve a suitably close approximation. Empirically, we

determined that the cosine similarity,

cos (θ, θ̂) =
θ · θ̂
∥θ∥∥θ̂∥

=

∑n
i=1 θiθ̂i√∑n

i=1 θ
2
i

√∑n
i=1 θ̂

2
i

, (2.2)

is an excellent proxy for a network’s performance. Unlike the mean-squared error, this

distance metric is scale-invariant, so it is equally suitable for weights of different scales, which

may be the case for separate networks trained on distinct tasks. As detailed in Section 2.4,
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cosine similarity close to 0.99 yielded excellent performance for a wide variety of tasks and

architectures.

2.2.2 Continual encoding

In this section, we will now detail how to use our Self-Net to encode a sequence of trained

networks in a continual fashion, thereby obviating the need to continually retrain on all

historical data. Let m be the size of the Buffer, and let k be the number of tasks which have

been previously encountered. As noted above, we train each of these m task-networks using

conventional backpropagation, one per task. Now, assume that our AE has already learned

to encode the first k task-networks. We will now show how to encode the most recent batch

of m task-networks corresponding to tasks {tk+1, ..., tk+m} into compressed representations

{ek+1, ..., ek+m} while still remembering all previously trained networks.

Let E be the set of latent vectors for the first k networks. In order to integrate m

new networks {θk+1, ..., θk+m} into the latent space, we first recollect all previously trained

networks by feeding each e ∈ E as input to the decoder of the AE. We thus generate a set R

of recollections, or approximations, of the original networks (see Fig. 2.1). We then append

each θi in the Buffer to R and retrain the AE on all k+m networks until it can reconstruct

them, i.e., until the average of their respective cosine similarities is above the predefined

threshold. Algorithm 1 summarizes our CL strategy.

As our experiments show, our compressed representations achieve excellent performance

compared to the original parameters. Since each θ̂ ∈ R is simply a vector of network
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Algorithm 1 Lifelong Learning via Continual Self-Modeling

Let T be the set of all Tasks encountered during the lifetime of the system
Let m be the size of the Buffer
Set E = []
Initialize AE
Set cosine threshold
for idx,curr task in enumerate(T) do

if Buffer is not full then
Initialize the Task Network (TN)
Train the TN for curr task until optimized
Buffer.append(TN)
if Buffer is full then

R = []
for encoded-network in E do

r = AE.Decoder(encoded-network)
R.append(r)

for network in Buffer do
flat network = extract and flatten parameters from network
R.append(flat network)

average cosine similarity = 0.0
E = []
while average cosine similarity < cosine threshold do

for r idx,r ∈ enumerate(R) do
calculate AE loss using Equation 4
back-propagate AE
update average cosine similarity using
cos(r,AE(r))
E [r idx] = AE.Encoder(r)

empty Buffer

parameters, it can easily be loaded back onto a task-network with the correct architecture.

We can thus discard the original networks and store k networks using only O(n+ks) space. In

addition, our framework can encode many different types and sizes of networks in a continual

fashion. In particular, we can encode a network of arbitrary size q using a constant-size AE
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(that takes inputs of size n) by splitting the input network into r subvectors1, such that

(n = q/r). As we verify in Section 2.4, we can effectively reconstruct a large network from

its subvectors and still achieve a suitable performance threshold.

As Fig. 2.2 illustrates, we empirically found a strong correlation between a reconstructed

network’s performance and its cosine similarity w.r.t. to the original network. Intuitively,

this implies that vectors of network parameters that have a cosine similarity approaching 1

will exhibit near-identical performance on the underlying task. Thus, the cosine similarity

can be used as a terminating condition during retraining of the AE. In practice, we found a

threshold of .997 to be sufficient for most experiments.

2.2.3 Autoencoder details

Our proposed framework is agnostic to the choice of autoencoder. However, in our exper-

iments we used contractive autoencoders (CAE) because we empirically found them to be

more robust than other types of AEs, including variational autoencoders. CAEs are identi-

cal to standard AEs, except that their loss function penalizes changes to the latent vector’s

values:

CAEloss(θ) = cos (θ, θ̂) + λ∥Jf (θ)∥2F . (2.3)

1We pad with zeros whenever q and n are not multiples of each other.
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The first term is the cosine similarity discussed above (see Eq. 2.2), while the regularization

term is given by the Frobenius norm of the Jacobian w.r.t to each training input xi:

∥Jf (x)∥2F =
∑
ij

(
∂hj(θ)

∂xi

)2

. (2.4)

where hj(θ) are the parameters for the j-th hidden unit. In our experiments, we used a value

of 0.0001 for lambda.

2.3 Task network fine-tuning

As an additional optimization, one can improve the speed with which the AE learns a new

task by encouraging the parameters of new task-networks to be as similar as possible to pre-

viously learned ones. This can be accomplished by fine-tuning all networks from a common

source and penalizing large deviations from this initial configuration with a regularization

term. Note that training new task networks in this manner differs from standard regular-

ization methods (e.g., EWC ) because the weights learned for older tasks are not modified

(and hence their performance does not degrade).

Formally, let θ∗ be the source parameters, ideally optimized for some highly-related task.

Without loss of generality, we can define the loss function of task-network θi for task ti as:

TaskNetLossi = TaskLoss+ λMSE(θ∗, θi) (2.5)

where λ is a regularization coefficient that determines the importance of remaining close to
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the source parameters vs. optimizing for the current task. By encouraging the parameters for

all task-networks to remain close to one another, we make it easier for the AE to learn a low-

dimensional representation of the original space. We employ this scheme for the experiments

section with λ = 0.001.

2.4 Results

We carried out a range of CL experiments on a variety of datasets in both supervised and

reinforcement-learning (RL) settings. First, we performed a robustness analysis in order to

empirically establish how precise an approximation of a network must be in order to retain

comparable performance on a task. Then, we analyzed our system’s ability to encode a very

large number of tasks, thus validating that the AE does simply memorize the TNs. We then

evaluated the performance of our approach on the following CL datasets: Permuted MNIST

[Kirkpatrick et al. 2017], Split MNIST [Nguyen et al. 2018], Split CIFAR-10 [Zenke et al.

2017], Split CIFAR-100 [Zenke et al. 2017], and successive Atari games [Mnih et al. 2013]

(we describe each dataset below). Finally, we also analyzed our system’s performance when

using (2) different sizes of AEs, and (3) different TN architectures.

2.4.1 Robustness Analysis

In our initial experiments, we added different levels of i.i.d, zero-mean Gaussian noise to

the weights of a trained network. Our goal was twofold: (1) to verify that approximate

weights can differ from their original values while still retaining good performance and (2)

to establish a threshold at which to stop training our AE. Since we assume no access to data
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Figure 2.2 Robustness analysis of network performance as a function of cosine
similarity: Each dot represents the accuracy of a reconstructed network and the dotted
lines are the baseline performances of the original networks. The above values for three
datasets (Permuted MNIST (in pink), MNIST (in cyan), and CIFAR-10 (in blue), show that
cosine similarity values above 0.997 guarantee nearly optimal performance for these datasets.

from previously learned tasks, we need a way to estimate the performance of a reconstructed

network without testing on a validation set.

Figure 2.2 shows performance as a function of deviations from the original parameters as

measured by cosine similarity, for three datasets (described below). Under this metric, there

is a clear correlation between the amount of parameter dissimilarity and the probability of a

decrease in performance. The red line indicates a cosine similarity of 0.997. Weights above

this value had nearly identical performance to the original values. Thus, unless otherwise

noted, we used this threshold as a terminating condition in our subsequent experiments.
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2.4.2 Performance and Scalability

In the next set of experiments, we verified that our method retains excellent performance

even when the number of TN parameters exceeds the number of parameters in the AE.

In other words, here we confirmed that our AE is compressing previously learned weights,

not simply memorizing them. More generally, there is a trade-off in CL between storage

and performance. Using different networks for k tasks yields optimal performance but uses

O(kn) space, while regularized methods such as Online EWC [Huszár 2018] only require

O(n) space but suffer a steep drop in performance as the number of tasks grows. For any

method, we can quantify performance as a compression factor, i.e., the number of additional

parameters it stores per task; in our case, our compression factor is k/s because we store an

s-dimensional vector per task.

Here, our experimental paradigm was as described in Sec. 2.2.2: we first trained the TN

on m tasks independently, storing each set of learned weights in the Buffer. Once the Buffer

became full, we trained the AE to encode these weights into its latent space, only storing the

latent vectors after training. We then continued to train the TN on new batches of m tasks

(saving the new weights to the Buffer). Every time the Buffer became full, we trained the AE

on all tasks, using the stored latent vectors and the new m weights. After the initial batch,

we fine-tuned all networks from the mean of the initial set of m networks and penalized

deviations from this source vector (using λ = 0.001), as described in Section 2.2.

For these experiments, we used the Split MNIST dataset [Nguyen et al. 2018], which

consists of different binary subsets of the MNIST dataset [LeCun et al. 1998], drawn ran-
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Figure 2.3 10X Compression for Split-MNIST:Orange lines denote the average accuracy
achieved by individual networks, one per task. Green lines denote the average accuracy when
training the AE to encode all networks as a single batch. Blue lines indicate the average
accuracy obtained by Self-Net at each CL Stage. Top: 50 tasks with latent vectors of size
5 and a Buffer of size 5. Middle: 100 tasks with latent vectors of size 10 and Buffer of size
10. The x-axis (top and middle) denotes the compression factor achieved at each learning
stage. Bottom: the training epochs required by the 5-dimensional AE to incorporate new
networks decreases rapidly over time.
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domly. In other words, tasks were defined by tuples comprised of the positive and negative

digit class(es), e.g., ([pos={1}, neg={6,7,8,9}], [pos={6}, neg={1,2,3,4}], etc.). Here, the

training and test sets consisted of approximately 40% positive examples and 60% negative

examples. For this experiment, we trained a deep convolutional task network with 2 con-

volution layers (kernels of size 5x5 and stride 1x1), 1 hidden layer (320x50), and 1 output

layer (50x10)—21,840 parameters in total. Our task network used ReLU activation units.

Our AE, on the other hand, had one fully connected hidden layer with either 5 or 10 units.

We used a Buffer of the same size as the latent vector, i.e., either 5 or 10. These values

were chosen so that each new batch of networks yielded an integer compression factor, e.g.,

encoding 15 networks with a latent vector of size 5 gives 3X compression (k/s = 3). We

used decreasing thresholds to stop training our AE: 0.9996 for the initial batch, 0.987 for

the second batch, and 0.986 for subsequent batches.

The top two plots of Fig. 2.3 show the mean performance for up to 50 and 100 Split-

MNIST tasks, given latent vectors of size 5 and 10, resp. All figures show the average

accuracy across all tasks learned up to that point. For comparison, we also plotted the

original networks’ performance and the performance of the reconstructions when the AE

learned all the tasks in a single batch (green and orange lines, resp.). The line with dots

represents the CL system; each dot indicates the point where the AE had to encode a

new set of m networks. For 10X compression, the Self-Net with a latent vector of size 5

retained ∼95.7% average performance across 50 Split-MNIST tasks, while the Self-Net with

10-dimensional latent vectors retained ∼95.2% across 100 tasks. This represents a relative
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change of only ∼3.3% compared to the original performance of ∼99%. In other words, our

approach is able to compress 21,840 parameters into 5 or 10 values with little performance

loss, even when trained in a continual fashion. In contrast, existing methods dropped to

∼50% performance after learning only 10 tasks on this dataset (see Fig. 2.4 below). Finally,

we note that by initializing each new network from the mean of the initial batch, our AE

was able to incorporate subsequent networks with very little additional training (see stages

4-10 in bottom image of Fig. 2.3).

2.4.3 Permuted MNIST

In the next set of experiments, we compared our approach to state-of-the-art methods across

multiple datasets. First, we trained convolutional feed-forward neural networks with 21,840

parameters on successive tasks, each defined by distinct permutations of the MNIST dataset

[LeCun et al. 1998], for 10-digit classification. We used networks with 2 convolution layers

(kernels of size 5x5, and stride 1x1), 1 hidden layer (320x50), and 1 output layer (50x10).

Our AE had three, fully connected layers with 21,840, 2000, and 20 parameters, resp. Thus,

our latent vectors were of size 20. For this experiment, we used a Buffer of size 1. Each task

network was encoded by our AE in sequential fashion, and the accuracies of all reconstructed

networks were examined at the end of each learning stage (i.e., after learning a new task).

Figure 2.4 (top) shows the mean performance after each stage for all tasks learned up to

that point. Our technique almost perfectly matched the performances achieved by indepen-

dently trained networks, and it dramatically outperformed other state-of-the-art approaches

including EWC [Kirkpatrick et al. 2017], Online EWC (the correction to EWC proposed in
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[Huszár 2018]), and Progress & Compress [Schwarz et al. 2018]. As a baseline, we also show

the results for SGD (no regularization), L2-based regularization in which we compare new

weights to all the previous weights, and Online L2, which only measures deviations from

the weights learned in the previous iteration. Our technique remembers old tasks without

inhibiting new learning.

2.4.4 Split MNIST

We the compared our method to the same set of prior approaches on Split MNIST (described

above). Our task-networks, CAE, and Buffer size remained the same as what was used

for our Permuted MNIST experiments (except that the outputs of the task-networks were

binary, instead of 10 classes). In this domain, too, our technique dramatically outperformed

competing approaches, as seen in Figure 2.4 (middle).

2.4.5 Split CIFAR-10

We then verified that our proposed approach could reconstruct larger, more sophisticated

networks. Similar to the Split MNIST experiments above, we divided the CIFAR-10 dataset

[Krizhevsky 2009] into multiple training and test sets, yielding 10 binary classification tasks

(one per class). We then trained a task-specific network on each class. Here, we used

TNs having an architecture which consisted of 2 convolutional layers, followed by 3 fully

connected hidden layers, and a final layer having 2 output units. In all, these task networks

consisted of more than 60K parameters. Again, for this experiment we used a Buffer of size

1. Our AE had three, fully connected layers with 20442, 1000, and 50 parameters, resp. As
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Figure 2.4 CL performance comparisons with average test set accuracy on all observed tasks
at each stage for (top) Permuted MNIST, (middle) Split MNIST, and (bottom) Split
CIFAR-10.
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described in Sec. 2.2, we split the 60K networks into three subvectors to encode them with

our autoencoder; by splitting a larger input vector into smaller subvectors, we can encode

networks of arbitrary sizes. The individual task-networks achieved accuracies ranging from

78% to 84%, and a mean accuracy of approximate 81%. Importantly, we encoded these larger

networks using almost the same AE architecture as the one used in the MNIST experiments.

As seen in Figure 2.4 (bottom), the accuracies of the reconstructed CIFAR networks also

nearly matched the performances of their original counterparts, while also outperforming all

other techniques.

2.4.6 Split CIFAR-100

We applied a similar approach for the CIFAR-100 dataset [Krizhevsky 2009]. That is, we

split the dataset into 10 distinct batches comprised of 10 classes of images each. We used the

same task-network architecture and Buffer size as in our CIFAR-10 experiments, modified

slightly to accommodate a 10-class classification objective. The trained networks achieved

accuracies ranging from 46% to 49%. We then encoded these networks using the same

AE architecture described in the previous experiments, again accounting for the input size

discrepancy by splitting the task-networks into smaller subvectors. As seen in Figure 2.5,

our technique almost perfectly matched the performances achieved by independently trained

networks.
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Figure 2.5 CL performance comparisons with average test set accuracy on all observed tasks
at each stage for CIFAR-100.

2.4.7 Incremental Atari

To evaluate the CL performance of Self-Net in the challenging context of reinforcement

learning, we used the code available at [Greydanus 2017] to implement a modified Async

Advantage Actor-Critic (A3C) framework; this architecture, originally introduced in [Mnih

et al. 2016], can learn successive Atari games while retaining good performance across all

games. The model we used had 4 convolutional layers (kernals of size 3x3, and strides of

size 2x2), a GRU layer (800x256), and two ouput layers: an Actor (256xNum Actions),

and Critic (256x1), resulting in a complex model architecture and over 800K parameters.

Critically, this entire model can be flattened and encoded by the single AE in our Self-Net

framework having three, fully connected layers with 76863, 2000, and 200 parameters, resp.

For these experiments we also used a Buffer of size 1.

Similar to previous experiments, we trained our system on successive tasks, specifically
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Figure 2.6 CL on five Atari games with Self-Net: To evaluate the reconstruction score
at each stage, we ran the reconstructed networks for 80 full game episodes. The colored lines
and bands represent the running mean and standard deviation in game score per episode.
The cumulative mean score is nearly identical to the original TN at each stage.

the following Atari games: Boxing, Star Gunner, Kangaroo, Pong, and Space Invaders.

Figure 2.6 shows the near-perfect retention of performance on each of the 5 games over the

lifetime of the system. This was accomplished by training on each game only once, never

revisiting the game for training purposes. The dashed, vertical lines demarcate the different

stages of continual learning. That is, each stage indicates that a new network was trained

for a new game, over 40M frames. Afterwards, the mean (dashed, horizontal black lines)

and standard-deviation (solid, horizontal black lines) of the network’s performance were

computed by allowing it to play the game, unrestricted, for 80 episodes. After each stage,
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the performances of all reconstructed networks were examined by re-playing each game with

the appropriate reconstructed network. As Figure 2.6 shows, the cumulative means and SD’s

of the reconstructed networks closely mimic those achieved by their original counterparts.

2.4.8 Split Networks and Multiple Architectures

Finally, we verified that (1) a smaller AE can encode multiple network splits in substantially

less time than a larger one can learn the entire network and (2) that the same AE can be used

to encode trained networks of different sizes and architectures. Figure 2.7 (left) shows the

respective training rates of an AE with 20,000 input units (blue line)—trained to reconstruct

3 sub-vectors of length 20,000—compared to that of a larger one, with 61,000 input units

(yellow line), trained on a single 60K CIFAR-10 network. Clearly, using more inputs for a

smaller AE enables us to more quickly encode larger networks. Finally, Figure 2.7 (right)

shows that the same AE can simultaneously reconstruct 5 MNIST networks and 1 CIFAR

network so that all networks approach their original accuracies.

Figure 2.7 Additional analyses: Left: the AE training efficiency is improved when large
networks are split into smaller subvectors. Right: a single AE can encode networks of
different architectures and sizes.
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2.5 Self-Net Summary

2.5.1 Initial Conclusions

In this paper, we introduced a scalable approach for multi-context continual learning that

decouples how to learn a set of parameters from how to store them for future use. Our

proposed framework uses state-of-the-art autoencoders to facilitate lifelong learning via con-

tinual self-modeling. Our empirical results confirm that our method can efficiently acquire

and retain large numbers of tasks in continual fashion. In future work, we plan to further

improve our autoencoder’s capacity and explore how to use the latent space to extrapolate to

new tasks using little or no training data. We also intend to compress the latent space even

further (e.g., using only log (k) latent vectors for k tasks). Promising approaches include

clustering the latent vectors into sets of related tasks or using sparse latent representations.

Finally, we will also investigate how to infer the current task automatically.
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2.5.2 Hindsight Observations & Future Work

Keen observers may notice some inherent flaws in the way that Self-Net operates. This is

expected and welcomed. For instance, The method, as originally proposed, does not allow

for automatic task inference, and therefore does not provide a protocol for deciding which

task-network to retrieve in the event that there may be underlying task overlap between

networks. There are other, more subtle oversights that would also need to be addressed in

realistic deployment settings. For example, an astute reader may have notice that the Atari

experiments do not actually employ any form of compression. This is because the size of the

underlying Autoencoder is significantly larger than the aggregate total of all independently

trained Atari Task-Networks. As a result, it should be intuitive that there is little-to-no drop

in performance across any of the games after continual learning. It is this author’s opinion

that the reader should accept those experiments as a compelling proof of concept. Without

additional, explicit evidence to the contrary, we would expect the observed performance

trends to hold, once compression starts to occur as the number of games and task-networks

grows.

The true measure of a paper’s contribution may not be seen until well-after its publication,

and it is encouraging that Self-Net has played a leading role in influencing several other works

that were published later. Specifically, The paper ’Continual Learning with HyperNetworks’

built upon many of the same ideas and proposed potential solutions to some of problems

acknowledged in the original Self-Net paper [von Oswald et al. 2019a]. In the paper, Oswald

Et al. trained a Hyper-Network [Ha et al. 2016] to map environment input data to weights
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capable of solving the underlying problem, thereby providing a solution to the problem of

task-inference mentioned in our original work. We applaud this contribution, and believe

our investigative research into continual learning compression ratios may be of considerable

assistance in determining optimal model capacity for specific task sequences.



30

CHAPTER 3

Deep Active Learning via Open-Set Recognition

3.1 Introduction

The goal of active learning is to infer the informativeness of unlabeled samples so as to

minimize the number of requests to the oracle. Here, we formulate active learning as an open-

set recognition problem. In this paradigm, only some of the inputs belong to known classes;

the classifier must identify the rest as unknown. More specifically, we leverage variational

neural networks (VNNs), which produce high-confidence (i.e., low-entropy) predictions only

for inputs that closely resemble the training data. We use the inverse of this confidence

measure to select the samples that the oracle should label. Intuitively, unlabeled samples

that the VNN is uncertain about contain features that the network has not been exposed to;

thus they are more informative for future training. We carried out an extensive evaluation

of our novel, probabilistic formulation of active learning, achieving state-of-the-art results

on MNIST, CIFAR-10, CIFAR-100, and Fashion-MNIST. Additionally, unlike current active

learning methods, our algorithm can learn even in the presence of out-of-distribution outliers.

As our experiments show, when the unlabeled pool consists of a mixture of samples from

multiple datasets, our approach can automatically distinguish between samples from all seen

vs. unseen datasets. Overall, our results show that high-quality uncertainty measures are

key for pool-based active learning.

Supervised deep learning has achieved remarkable results across a variety of domains by

leveraging large, labeled datasets [Lecun et al. 1998]. However, our ability to collect data
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far outstrips our ability to label it, and this difference only continues to grow. This problem

is especially stark in domains where acquiring the ground truth requires a highly trained

specialist, e.g., medical imaging. Even in cases where labeled data is sufficient, there may be

reasons to limit the amount of data used to train a model, e.g., time, financial constraints,

or to minimize the model’s carbon footprint.

Fortunately, the relationship between a model’s performance and the amount of training

data is not linear. There often exists a small subset of highly informative samples that can

provide most of the information needed to learn to solve a task. In this case, we can achieve

nearly the same performance by labeling (and training on) only those informative samples,

rather than the entire dataset. The challenge, of course, is that the true usefulness of a

sample can only be established a posteriori, after we have used it to train our model.

The growing field of active learning (AL) is concerned with automatically predicting

which samples from an unlabeled dataset are most worth labeling [Sinha et al. 2019]. In the

standard AL framework, a selector identifies an initial set of promising samples; these are

then labeled by an oracle (e.g., a human expert) and used to train a task network [Gal et al.

2017]. The selector then progressively requests labels for additional batches of samples, up

to either a percentage threshold (e.g., 40% of the total data) or until a performance target

is met. In short, an active learning system seeks to construct the smallest possible training

set which will produce the highest possible performance on the underlying task/s.

In this paper, we formulated active learning as an open-set recognition (OSR) problem,

a generalization of the standard classification paradigm. In OSR, only some of the test
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inputs are from the trained-upon distribution; the classifier must label the remaining inputs

as out-of-distribution (OOD), meaning that they do not match the types of inputs it was

trained on. For example, if a network was trained on digit recognition, e.g., using MNIST,

then Images of animals or vehicles, such as those of CIFAR-10, would be OOD. Here, we

view the labeled pool as the training distribution. The unlabeled samples which are similar

to the labeled pool are deemed as in-distribution, while the unlabeled samples that are very

different from the labeled pool are marked as OOD. Our hypothesis is that the samples most

worth labeling are those that are most different from the currently labeled pool (i.e., those

deemed OOD) because they contain features which the network has not yet been exposed

to. Thus, training on these samples will allow the network to learn these features that are

underrepresented in the existing training data. In short, our AL selection mechanism consists

of picking unlabeled samples that are OOD relative to the labeled pool.

Figure 3.1 illustrates our proposed approach. In more detail, our classifier is a varia-

tional neural network (VNN) [Mundt et al. 2019b], which produces high-confidence (i.e.,

low-entropy) outputs only for inputs that are highly similar to the training set. VNNs are

explicitly trained to maximize the entropy of their outputs for inputs that differ from the

training set; thus, entropy-based confidence measures are more reliable for VNNs than for

regular neural networks. Specifically, we use the inverse of this entropy-based confidence

measure to select which unlabeled samples to query next. In other words, our selector re-

quests labels for the samples that the classifier is least confident about because this implies

that the existing training set does not contain items with similar features to them. As we
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detail in section 4, our OSR-based approach achieved state-of-the-art results in a number of

datasets and AL variations, far surpassing existing methods.

3.2 Prior Work

3.2.1 Pool-Based Active Learning

It has been shown that training samples do not contain equal amounts of useful information

[Settles 2010]. Thus, the goal of sampling-based active learning is to learn an acquisition

function that chooses the best data points for which a label should be requested from a

large, unlabeled pool of data [Gal et al. 2017]. There have been numerous efforts to learn

an optimal sampling strategy, and they can be broadly grouped into three major categories

[Sinha et al. 2019].

3.2.1.1 Uncertainty-based Techniques

Uncertainty-based techniques aim to select samples from the unlabeled distribution about

which the current classifier is highly uncertain. Different metrics have been proposed for

quantifying how uncertain a model about a sample. Some methods such as Settles (2012)

[Settles 2012], Settles and Craven (2008) [Settles and Craven 2008], and Luo et al. (2013)

[Luo et al. 2013] used the entropy of the posterior probability of the model, whereas methods

such as Joshi et al. (2009) and Roth and Small (2006) [Roth and Small 2006] use difference

margin between the first and second predicted class to select the samples. Some approaches

(Lewis and Catlett, 1994 [Lewis and Catlett 1994]; Lewis and Gale, 1994 [Lewis and Gale

1994]; Wang et al., 2016 [Wang et al. 2016]) directly use the probability outputs to select
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the samples. Other methods map the network’s outputs to a probability distribution to

achieve better sample selection from the unlabeled pool. For example, Yoo and Kweon

(2019) [Yoo and Kweon 2019] proposed a loss-learning module along with regular classifier

which can predict the loss for given unlabeled pool image; Images with high prediction loss

are selected to be labeled by the oracle. Similarly, Gal and Ghahramani (2016) [Gal and

Ghahramani 2016] used a Monte Carlo dropout methods to obtain an uncertainty estimate

for each sample.

3.2.1.2 Diversity and Hybrid-Based Methods

Representations-based models aim to maximize the diversity in training batches [Sener and

Savarese 2017]. For example, Kirsch et al. (2019) [Kirsch et al. 2019] used a Bayesian

formulation to determine sample diversity, while used gradient embeddings for assessing the

similarity between samples. The approach in Shui et al. (2019) [Shui et al. 2020], on the

other hand, formulate sample selection as distribution matching. Hybrid approaches attempt

to combine quantifiable uncertainty and diversity in order to select training samples [Li and

Guo 2013]. VAAL [Sinha et al. 2019] proposed an adversarial learning based method in

which a discriminator is trained along with the task network to discriminate whether an

example belongs to the labeled or unlabeled set. In Sener and Savarese (2017) [Sener and

Savarese 2017], the authors considered active learning as a set-cover problem, one in which a

task network is trained using a core-set loss, which is the difference between a task-network’s

classification error over the labeled set vs. the core-set. DBAL [Gal et al. 2017] approached

the active learning problem using Bayesian convolutional neural networks, wherein confidence
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is measured using variation ratios. In MC-Dropout [Gal and Ghahramani 2016], the authors

proposed to model the uncertainty present in deep networks by interpreting dropout as a

type of Bayesian inference in deep Gaussian processes.

3.2.2 Open-Set Recognition

Open-Set Recognition (OSR) refers to the ability of a system to distinguish between types of

data it has already seen (the training distribution) from types to which it has not yet been

exposed (out-of-distribution (OOD) data). Standard deep neural networks are not suitable

for OSR because they often yield high confidence values for inputs which are significantly

different from the training classes. This vulnerability has been exploited for adversarial

attacks on deep networks, specifically to change a classifier’s labels based on imperceptible

changes to the input image (Goodfellow et al., 2014). VNNs, on the other hand, are explicitly

trained to maximize the entropy of their outputs for samples that differ from those it was

trained on, so they achieve OSR results.

More generally, as noted by Geng et al. (2020), existing OSR methods can be subdivided

into discriminative-based and generative-based approaches. Discriminative methods modify

traditional ML and deep neural networks to tackle the OSR problem. For example, Scheirer

et al. (2012) used traditional SVMs with an additional open space risk term, while (Zhang

and Patel, 2016) extended sparse classifiers to OSR by modeling the error distribution using

Extreme Value Theory (EVT) (Vignotto and Engelke, 2018). Some other discriminative

methods use nearest neighbors (Júnior et al., 2017), probability models (Jain et al., 2014;

Scheirer et al., 2014; Scherreik and Rigling, 2016), or outlier detection (Bendale and Boult,
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2015).

Generative methods primarily use generative adversarial networks (GANs) (Goodfellow,

2016) for OSR. For example, Neal et al. (2018) proposed G-OpenMax by adopting an

encoder-decoder GAN architecture for generating samples which are highly similar to training

samples yet do not belong to any of the training classes. Following a similar approach, Yang

et al. (2019) investigated the open-set human activity recognition problem based on micro-

Doppler signatures by using a GAN to generate samples which were highly similar to the

target class and forming a negative set out of it. Not all generative approaches use GANs,

though. For example, Geng and Chen (2018) proposed a collective, decision-based OSR

model by slightly modifying the hierarchical Dirichlet process.

3.3 Methodology

As noted above, our active learning approach iteratively selects samples from an unlabeled

pool based on the confidence level of its OSR classifier. Below, we first formalize the active

learning paradigm we are tackling, then detail our proposed system. In particular, we provide

an overview of VNNs and explain how we use their outputs to select new samples to label.

3.3.1 Formal problem definition

Formally, an active learning problem is denoted as P = (C,Dtrain, Deval), where C indicates

the number of classes, Dtrain is the training set, and Deval is the evaluation set, s.t. Dtrain ∩

Deval = ∅.

Let Dtrain = {(xi, yi)}Ni=1 be a dataset consisting of N i.i.d. data points where only
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Figure 3.1 Framework overview: Our proposed active learning system uses open-set recogni-
tion to identify which samples from the unlabeled pool to label. Our classifier is a variational
neural network (VNN) [Mundt et al. 2019b], which simultaneously reconstructs an input us-
ing a probabilistic autoencoder (AE) and classifies it by feeding the AE’s latent vector z
to a linear classifier. We use the VNN’s loss function to determine which samples to select
from the unlabeled pool (Sample Selection). As in [Mundt et al. 2019b], we tested two VNN
variants: M1 is trained using only the loss on the latent vector qΦ(z|x) and the classifier
p(y|z), while M2 also includes the loss on the reconstructed input pΦ(x|z). Figure based on
similar diagrams in [Mundt et al. 2019a] and [Sinha et al. 2019].

m of them are labeled (m<<N). Each sample xi ∈ Rd is a d-dimensional feature vector,

and yi ∈ {1, 2, . . . , C} represents the target label. At the start, Dtrain is partitioned into

two disjoint subsets: a labeled set L which consists of the m labeled data points, and an

unlabeled set U which consists of the remaining N − m data points with unknown target

labels. We will update both L and U after each iteration of our algorithm. We denote the

state of a subset at a given timestep as Lt and Ut, respectively, for t ∈ {0, 1, . . .}.

In active learning, we first train a classifier f , with parameters θ, on L0. Afterwards we

select b data points from U0 using our OSR criterion (see Sec. 3.3.2). These b data points
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are then sent to the oracle for annotation. The annotated samples are removed from the

unlabeled pool and added to the labeled pool, along with their newly acquired target labels.

The updated labeled and unlabeled data pools become L1, of size m+b, and U1, respectively.

Thus, the labeled pool grows in size as training progresses. We continue this process until

the size of the labeled pool reaches a predefined limit (40% of Dtrain in our experiments).

Importantly, unlike other formulations of AL, we allow for the unlabeled pool U to contain

training data from multiple datasets. As we show in our experiments, our OSR-based AL

method can automatically ignore samples that do not belong to the target classes.

Algorithm 2 Active Learning

Input: Unlabeled pool U0, labeled pool L0 for t ∈ {0, 1, . . .} where size of L0 = m0.
Require: Active Learning Model, Optimizer, Sampling Strategy
Require: initialize b (budget), θ (Model parameters), Epochs
repeat

Train Active Learning Model on Labeled Pool (Lt) using selected optimizer.
Give trained model fθ on Labeled Pool (Lt), Sampling Strategy (3.3.3 or 3.3.4) selects
the uncertain data points according to budget size b.
Send the selected data points to Oracle for annotation.
Add the annotated data points to the Labeled Pool (Lt)

until stopping criterion (size of Labeled Pool (Lt) equals 40% of Dtrain);

3.3.2 Active learning system

Algorithm 2 summarizes our AL approach, which has two main components: a variational

neural network (VNN) [Mundt et al. 2019b] that serves as our classifier and an OSR selection

mechanism based on the loss function of the VNN. We discuss each component below.
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3.3.2.1 Variational Neural Networks (VNNs)

Variational neural networks (VNNs) [Mundt et al. 2019b] are a supervised variant of β-

variational autoencoders (β-VAE) [Higgins et al. 2017]. The latter is itself a variant of VAEs

[Doersch 2016] but with a regularized cost function. That is, the cost function for a β-VAE

consists of two terms: the reconstruction error, as with a regular VAE, and an entanglement

penalty on the latent vector. This penalty forces the dimensions of the latent space to be as

uncorrelated as possible, making them easier to interpret.

A VNN combines the encoder-decoder architecture of a β-VAE with a probabilistic linear

classifier (see Fig. 2.1 for a visual representation). As such, its loss function includes a clas-

sification error, i.e., a supervised signal, in addition to the reconstruction and entanglement

terms:

L(θ, ϕ, ξ) = Eqθ(z|x) [log pϕ(x|z) + log pξ(y|z)]

− βKL (qθ(z|x)∥p(z))
(3.1)

As detailed in [Mundt et al. 2019b], θ, ϕ, and ξ are the parameters of the encoder, decoder,

and classifier, resp., while pϕ(x|z) and pξ(y|z) are the reconstruction and classification terms.

The last term is the entanglement penalty, which is given by the Kullback-Leibler divergence

between the latent vector distribution and an isotropic Gaussian distribution.

As in [Mundt et al. 2019b], we evaluated both the full framework discussed above (dubbed

M2 in our experiments), which uses the loss function in Eq. 3.1, and a simplified version (M1)
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without the reconstruction error:

L(θ, ξ) = Eqθ(z|x) [log pξ(y|z)]− βKL (qθ(z|x)∥p(z)) (3.2)

As our experiments show, both versions outperform the state of the art, but M2 achieves

better results overall.

3.3.2.2 Sample Selection

We wish to leverage the class disentanglement penalty defined in Eq. 3.1. Specifically, our

aim is to select b data points from the unlabeled pool U that the VNN is highly uncertain

about. Following [Mundt et al. 2019a], in our experiments we investigated two sampling

algorithms for OSR: uncertainty sampling and Weibull distribution sampling. The former is

simpler, but the latter allows one to better reject outliers. We briefly describe each sampling

strategy below.

3.3.3 Uncertainty sampling

Here, we select a data point xi based directly on how uncertain the VNN is about it.

Specifically, we rank all unlabeled samples by the value of the most likely class label and

select the b samples with the lowest maximum values. Since the sum of class likelihoods is

normalized, the value of the maximum class probability will approach one for highly certain

samples and approach 1
|C| , where |C| is the number of classes, for highly uncertain samples.

In other words, the class likelihoods of uncertain samples have higher entropy than those for

which the VNN is certain about.
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3.3.4 Wiebull distribution sampling

As our experiments show, uncertainty sampling is suitable for active learning problems in

which all unlabeled samples belong to known classes. However, for the case where the

unlabeled pool also contains samples from unknown classes, we need a more robust way to

exclude outliers. For this latter case, we employed the sampling procedure defined in [Mundt

et al. 2019a], which leverages a Wiebull distribution to estimate the model’s uncertainty w.r.t

a specific sample.

For completeness, here we will briefly outline the methodology proposed in [Mundt et al.

2019a]. Intuitively, it can be shown that it is useful to quantify the probability that a given

data sample is an outlier, herein defined as a sample which is not sufficiently similar to those

which have already been correctly classified. [Mundt et al. 2019a] show that this can be

accomplished as follows. First, for each class, we compute the mean of the latent vectors

of all samples that have been correctly predicted by the model. Second, we compute the

distances from each class mean for all latent vectors, which [Mundt et al. 2019a] showed

can be modeled with a Wiebull distribution. As such, a sample’s likelihood under this

distribution constitutes the minimum probability that the sample does not belong to any

previously known class. In other words, the lower this value, the more likely that the sample

is an outlier.
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3.4 Experimental Results

We performed experiments on three image classification datasets—MNIST, CIFAR-10, and

CIFAR-100—following the methodology defined in Section 3.3. Below, we first present our

implementation details, then discuss our results.

(a) (b)

Figure 3.2 Performance on MNIST classification tasks using different query sizes for model
M1. (a) Query batch size of 100; (b) Query batch size of 1000 compared to Core-set [Sener
and Savarese 2017], DBAL [Gal et al. 2017], Random Sampling and Uncertainty Sampling.
M1 indicates our model with Encoder and Classifier. Best visible in color. Prior results
adapted from [Sinha et al. 2019].

3.4.1 Implementation Details

Budget: For CIFAR-10 and CIFAR-100, we used a max budget of 40%, and stage budgets

b of 10%, 15%, 20%, 25%, 30%, 35%, and 40%. For MNIST, we used stage budgets of 100

and 1000 Images.

Runs: For all three datasets, we measured performance by computing the average accu-

racy across 5 independent runs.

State of the art comparison: We compared our method against several recent AL
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Figure 3.3 Performance on classification tasks for CIFAR-10 (left) and CIFAR-100 (right)
compared to VAAL [Sinha et al. 2019], Core-set [Sener and Savarese 2017], Ensembles w.
VarR [Beluch et al. 2018], MC-Dropout [Gal and Ghahramani 2016], DBAL [Gal et al. 2017],
and Random Sampling. M1 indicates our model (3.2) and M2 indicates our model (3.1).
All the legend names are in descending order of final accuracies. Best visible in color. Prior
results adapted from [Sinha et al. 2019].

approaches including Variational Adversarial Active Learning (VAAL) [Sinha et al. 2019],

Core-Set [Sener and Savarese 2017], Monte-Carlo Dropout [Gal and Ghahramani 2016], En-

sembles using Variation Ratios (Ensembles w. VarR ) [Beluch et al. 2018; Freeman 1965],

and Deep Bayesian AL (DBAL) [Gal et al. 2017]. As a baseline, we also included uniform

random sampling (Random) since it remains a competitive strategy in the field of active

learning.

Architectures: For experiments on CIFAR-10 and CIFAR-100 we used a VGG16 net-

work [Simonyan and Zisserman 2014] as the encoder for both models, M1 and M2, and a

decoder based on 14-layer residual networks [Higgins et al. 2017; Zagoruyko and Komodakis

2016]. We used latent vectors of size 60. As noted in Sec. 3.3, the classifier consists of a
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single linear layer. For MNIST, we used a LeNET network [Lecun et al. 1998] as our encoder

and a latent vector of size 60.

Optimization: We optimized all models using a mini-batch size of 128, a learning rate

of 0.001, and a weight decay of 10−5. We tested two different optimizer, SGD and ADAM

[Kingma and Ba 2014], for both M1 and M2, for a total of four combinations:

• M sgd
1 - Model M1 as shown in Eq. 3.2 with SGD optimizer.

• Madam
1 - Model M1 as shown in Eq. 3.2 with Adam optimizer.

• M sgd
2 - Model M2 as shown in Eq.3.1, with SGD optimizer.

• Madam
2 - Model M2 as shown in Eq.3.1 with Adam optimizer.

Oracle queries: We defined a learning stage (i.e., a period of training between queries

to the oracle) as lasting 150 epochs on CIFAR-10 and CIFAR-100 and 10 epochs on MNIST.

At the completion of a stage, we requested labels for b Images from the unlabeled pool.

These were added to the labeled pool and used in the subsequent learning stages.

3.4.2 Image classification results

MNIST: Our results were comparable with the state of the art on MNIST. However, as

Figs. 3.2(a) and Fig. 3.2(b) show, random sampling is already a highly successful strategy

on MNIST, leaving little room for improvement on this dataset. In particular, as illustrated

in Fig. 3.2(b), all methods obtained statistically similar results as the batch size increased.

However, as shown in Fig. 3.2(a) methods such as DBAL or Coreset have lower accuracies

at the initial stages when using smaller batch sizes.
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(a) (b)

Figure 3.4 Robustness of our approach on CIFAR-100 given (a) biased initial labeled pool or
(b) different budget sizes compared to VAAL [Sinha et al. 2019], Core-set [Sener and Savarese
2017] , Ensembles w. VarR [Beluch et al. 2018], MC-Dropout [Gal and Ghahramani 2016],
DBAL [Gal et al. 2017], and Random Sampling. M1 indicates our model (3.2) and M2
indicates our model (3.1). Best visible in color. Prior results adapted from [Sinha et al.
2019].

CIFAR-10 & CIFAR-100: As Fig. 3.3 clearly shows, we achieved state-of-the-art perfor-

mance by a considerable margin on both CIFAR-10 (left) and CIFAR-100 (right).

On CIFAR-10, models [M sgd
1 ,Madam

1 ,M sgd
2 ,Madam

2 ] achieved mean accuracies of [84.4%,

89.24%, 89.97%, 91.4%], respectively. To put this in perspective, the original accuracy for

this VNN using the entire CIFAR-10 dataset was 92.63%. VAAL came in second, with an

accuracy of only 80.71% , followed by Core-Set with an accuracy of 80.37%, and then Ensem-

ble w VarR at 79.465%. Random sampling, DBAL and MC-Dropout all trailed significantly

behind other methods. Finally, we found that our models trained with ADAM, on average,

outperform those trained with SGD.
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On CIFAR-100, models [M sgd
1 ,Madam

1 ,M sgd
2 ,Madam

2 ] achieved mean accuracies of [54.47%,

60.68%, 61.25%, 61.93%], resp. The original accuracy with the entire CIFAR-100 dataset

was 63.14%. VAAL once again came in second, with an accuracy of 54.47 %, followed by

Core-Set, and Ensemble w VarR.

3.4.3 Additional experiments

In addition to our classification experiments, we replicated and extended the experiments

of the same name put forth in [Sinha et al. 2019] in order to investigate the robustness of

our approach. Unless otherwise stated, we used CIFAR-100 for these experiments. Finally,

we also tested our methods’ ability to learn when the unlabeled pool contained out-of-

distribution samples, a case which, to the best of our knowledge, cannot be handled by any

existing methods.

Effect of Biased Initial Pool: We first investigated the effect of bias that may be present

in the initial labeled pool, L0. As stated in [Sinha et al. 2019], bias can negatively impact

the training of an active learner because it means that the initial labeled pool may not be

representative of the true underlying data distribution. Unless explicitly accounted for, this

will cause a system to learn an incomplete, or biased, model of the latent space. Following

the protocol defined in [Sinha et al. 2019], we removed all data points for c classes from

L0, thereby unbalancing the dataset and thus introducing bias. As shown in Fig. 3.4(a),

our method outperformed VAAL, Core-set, and random sampling w.r.t selecting useful

data points from classes that were underrepresented in the initial labeled pool. Models

[M sgd
1 ,Madam

1 ,M sgd
2 ,Madam

2 ] achieved accuracies of [53.35%, 60.54%, 61.36%, 61.55%], re-
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spectively, when c = 20 and [54.72%, 60.79%, 61.53%, 61.57] when c = 10 (as noted above,

c is the number of classes from which to exclude data). VAAL, by comparison, came in

second, followed by Core-set, exhibiting accuracies [46.91%, 46.55%] for c=20 and [47.10%,

47.63%] for c=20, respectively. Random sampling achieved an accuracy of 45.33% for c =

10 and 45.87% for c = 20.

Effect of Budget Size on Performance: In this section, we tested the effect of different

budget sizes b on performance. Specifically, we investigated the effect of budgets of size b

= 5% and b = 10%, referring to percentage of samples taken from Dtrain at each stage of

learning. As shown in Fig. 3.4(b), our model outperformed VAAL, Core-Set, Ensemble, and

random sampling over both the budget sizes. VAAL comes in second followed by Core-set

and Ensemble. Models [M sgd
1 ,Madam

1 ,M sgd
2 ,Madam

2 ] achieve accuracies of [61.52%, 61.57%,

61.07%, 61.82%] for b = 10 and [54.32%, 60.68%, 61.29%, 61.9%] for b = 20.

Noisy Oracle: Next, we investigated the performance of our approach in the presence of

noisy data caused by an inaccurate, or noisy oracle. As in [Sinha et al. 2019], we assumed

that incorrect labels can be caused by the natural ambiguity which exists between examples

drawn from 2 separate classes, rather than adversarial attacks. CIFAR-100 has both classes

and super-classes, so, following [Sinha et al. 2019], we randomly modified the labels of either

10%, 20% or 30% of the samples by replacing them with a label from another class within

the same super-class. As shown in Fig. 3.5, our models consistently outperformed existing

approaches across all noise levels. In other words, our M1 model with 30% noise was more

accurate than VAAL, etc. with 10% noise.
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Figure 3.5 Robustness of our approach on CIFAR-100 given a noisy oracle. M1 indicates
our model (3.2) and M2 indicates our model (3.1). All legend names are in descending order
of final accuracies.

Sampling Time Analysis We also replicated the sampling time analysis put forth in

[Sinha et al. 2019]. Table 3.1 shows that our method is competitive with other state-of-

the-art techniques w.r.t. execution time, thereby offering strong empirical evidence that our

method offers large performance advantages with minimal additional computation.

Out-of-distribution samples in unlabeled pool: Finally, we also tested an extreme

case of active learning in which data samples from other datasets are mixed into the current

unlabeled pool. We used CIFAR-10 for these experiments. Here, we intentionally added

20% data (10,000 Images) from other datasets to the unlabeled pool; thus, the network must
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Table 3.1 Sampling Time Analysis: Mean time to select a sample from the unlabeled pool
of CIFAR-100.

Method Time (Seconds)

VAAL 10.69
Uncertainty sampling 10.89
DBAL 11.05
Weibull sampling 20.41
Ensembles w. VarR 20.48
Core-set 75.33
MC-Dropout 83.65

Figure 3.6 Robustness of our approach on CIFAR10 classification tasks when the unlabeled
pool includes samples from either the SVHN, KMNIST, or FashionMNIST datasets. The first
three curves used the M2 classifier, while the ones with the ’Random’ subscript used random
sampling. Our results confirm that our approach significantly outperforms this baseline.

distinguish not only between informative and non-informative samples but also distinguish

in-distribution data samples from out-of-distribution samples. Whenever our model selected

an OOD sample, the oracle discarded the sample, thus reducing the overall budget size. The

discarded samples were placed back in the unlabeled pool (so the total number of OOD

samples remained at 10,000).

Figure 3.6 shows our M2 method’s performance on CIFAR-10 when the unlabeled pool
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contained Images from either SVHN, KMNIST, or FashionMNIST. Here, we used Weibull

sampling (Sec. 3.3.4) due to its better outlier rejection compared to uncertainty sampling.

For comparison, we also tested random sampling as a baseline. Impressively, despite the

presence of 20% OOD samples, our method significantly outperformed existing state-of-the-

art methods trained on the regular unlabeled pool (Fig. 3.3). And its performance, regardless

of the second dataset, was only slightly below the standard M2 method.

3.5 Conclusions and Future work

We have presented a novel approach for deep active learning using open-set recognition.

To the best of our knowledge, we are the first to merge AL with OSR. Extensive exper-

iments conducted over several image classification datasets have verified the effectiveness

of our approach and established new state-of-the-art benchmarks. Specifically, we empiri-

cally demonstrated that the samples most worth labeling are those which are most different

from the current labeled pool. Training on such samples allows the model to learn fea-

tures underrepresented in the existing training data. We extensively tested the robustness of

our approach using different budget sizes, a noisy oracle, and an unlabeled pool comprised

of multiple datasets. In future work, we plan to test our approach on continual learning

problems, in which the system must learn to solve different problems over time. We also

plan to test our method on other problems, including image segmentation and document

classification.
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CHAPTER 4

Deep Active Learning with Barlow Twins

4.1 Introduction

The generalization performance of a Deep Neural Network is heavily influenced by the quan-

tity, quality, and diversity of the data upon which it is trained. The acquisition of this data

is often straightforward, but labeling can be expensive and time-consuming. As such, the

goal of Active Learning is to select the most informative training samples from an unla-

beled dataset for subsequent annotation. Concurrently, Self-Supervised Learning (SSL) has

gained significant popularity by narrowing the performance gap with supervised methods

on large-scale computer vision benchmarks. SSL has demonstrated the ability to generate

low-level representations that remain invariant to various input distortions, such as rota-

tion, solarization, cropping, and more. Interestingly, SSL approaches often rely on simpler

and more scalable learning frameworks. In this paper, we propose Deep Active Learning

with Barlow Twins (DALBT), a novel Active Learning method that leverages the power

of SSL. We achieve this by training a simple classifier alongside a Self-Supervised learner,

called Barlow Twins, to create an encoder that is invariant to artificially created distortions.

DALBT stands out for its simplicity, ease of implementation, and broad applicability. Ad-

ditionally, building off our prior work, we employ Weibull sampling to select samples for

labeling. We conduct extensive evaluations of our novel approach, achieving state-of-the-art

results on MNIST, Fashion-MNIST, and CIFAR-10 datasets. Furthermore, we demonstrate

the model’s robustness by evaluating it on a mixed pool of samples from multiple datasets,
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successfully detecting and quantifying the novelty of entire datasets.

While Deep Neural Networks (DNNs) have demonstrated state-of-the-art accuracy in su-

pervised learning tasks like classification, object detection, and semantic segmentation, they

typically require large labeled datasets. The challenges of labeling massive datasets in real-

world scenarios are numerous and include high costs, limited time availability from domain

experts, lengthy labeling requirements for large-scale data such as videos and time-series

data, financial constraints, and the desire to minimize carbon footprints. These limitations

restrict the application of DNNs to various research areas and organizations. To address

these challenges, Active Learning (AL) systems aim to maximize model performance under

a fixed training budget. It therefore highlights a nonlinear relationship between a model’s

performance and the amount of training data it needs, thus emphasizing the importance of

selecting a good subset of unlabeled data for future annotation.

In contrast, Self-Supervised Learning (SSL) learns useful information from datasets with-

out relying on human annotations. SSL focuses on obtaining high-quality low-level represen-

tations of input data without access to target labels. In fact, recent advancements in SSL have

brought it closer to supervised learning methods in terms of performance on large datasets

and computer vision tasks. At a high level, both Active Learning and Self-Supervised Learn-

ing share the goal of reducing the labeling requirements. To merge these approaches, our

method incorporates both Self-Supervised Learning and Supervised Learning at each step

of the Active Learning process. This differs from previous approaches that first pre-train

on the entire unlabeled dataset using Self-Supervised Learning and then proceed with Ac-
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tive Learning using Supervised Learning, a process that can be time-consuming for large

unlabeled datasets.

Figure 4.1 DALBT Framework overview: Our proposed active learning system. It con-
sists of an encoeder(E), a Projector(P ), and a Classifer(C). The Encoder consumes two
distorted versions of same input sample. The output of the Encoder is then fed into the
Projector network, which projects both distorted versions into lower dimensional represen-
tations. The Classifier then takes the latent vector(z), produced by passing the raw input
(non-distored) image through the Encoder(E). The system is trained end-to-end using a
joint loss, simple the cross-corelation loss and the classification loss. Lastly, Wiebull Sam-
pling is employed to identify which samples to label.

4.2 Related Work

Here we detail previous work done in each of these directions.

4.2.1 Active Learning

Active learning methodologies have recently been comprehensively reviewed by Dasgupta

[2011]; Hanneke et al. [2014]; Settles [2010]. As these works explain, sufficiently informative
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data-points contribute more to model performance than other less-informative training sam-

ples. Therefore, the primary objective of active learning is to learn an acquisition function

to select the best unlabeled data points for which labels should be requested.

Existing active learning approaches can be divided into two categories: Pool-based meth-

ods and Query Synthesizing methods. Pool-based methods aim to identify the most informa-

tive samples from the unlabeled data using various sampling strategies, which are discussed

in more detail in this section. In contrast, Query Synthesizing methods [Mahapatra et al.

[2021]; McCallum and Nigam [1998]; Zhu and Bento [2017]] employ generative models to

generate informative samples.

Active learning sampling strategies can be further subdivided into the following cate-

gories: (a) Uncertainty Sampling: This is one of the popular sampling methodologies whereby

the model queries data points about which it is most uncertain. Recent research has shown

that uncertainty sampling approaches have proven effective for deep learning models such

as CNNs [Beluch et al. [2018]; Gorriz et al. [2017]; Scheffer et al. [2001]; Wang et al. [2017]];

(b) Diversity Sampling: This sampling method aims to select samples that are sufficiently

diverse when compered to existing labeled samples. (c) Representative Sampling: This sam-

pling method aims to choose samples from the unlabeled pool that are most representative

of the entire dataset. Some research combines features from these three distinct groups to

enhance the performance of active learning systems.

Schohn and Cohn [2000] presented an active learning algorithm using support vector

machines. The key idea is to select informative unlabeled examples to label that are close to
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the decision boundary. This is done by using the version space, which represents the set of

possible hypotheses consistent with the labeled data. The algorithm selects unlabeled exam-

ples that minimize the version space, meaning they rule out the most possible hypotheses.

Experiments on real-world datasets show SVMActive needs significantly less labeled data

than uncertainty sampling to achieve the same accuracy.

Tong and Koller [2001] applied active learning to text classification. They used SVMs to

implicitly project the training data into a different (often higher dimensional) feature space

that is linearly separable. They then formulated the query selection problem as a version

space optimization problem, optimizing the version space as quickly as possible while still

adhering to SVM constraints, thereby finding informative samples quickly.

Tur et al. [2005] combines active and semi-supervised learning methods in the domain of

spoken language understanding.

Wang et al. [2017] combines an uncertainty-based active learning algorithm with a di-

versity constraint using sparse selection, whereby sample selection is represented as a sparse

modeling problem.

Sener and Savarese [2017] reformulated the problem of active learning as a core-set se-

lection problem, whereby a set of points is chosen so that the selected points are dissimilar

from each other and the labeled set.

Zhu et al. [2009] combined uncertainty and density (SUD) along with density-based re-

ranking to address the problem of outlier selection. This approach selects samples that are

not only the most informative (with respect to uncertainty) but also the most representative
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with respect to density.

Similar to the core-set approach of selecting batches of images in a pool-based setting,

Geifman and El-Yaniv [2017] selects points for each class using the farthest-first (FF) traver-

sal principle, also known as the Gonzalez algorithm [[Gonzalez 1985]]. The FF principle

involves selecting the first point ’x’ randomly and then selecting the next point, which is

farthest from the previously chosen point ’x,’ by greedily choosing the point farthest from

any of the points already selected. A set of points is obtained using neural activation over

a representation layer by forward-passing all the unlabeled data. The farthest-first (FF)

traversal principle is similar to constructing a long-tail Weibull distribution.

Gissin and Shalev-Shwartz [2019] is motivated by selecting samples for which the prob-

ability of distinguishing between the unlabeled pool and the labeled pool is the highest.

Selecting such samples for labeling should be informative and improve the model’s perfor-

mance.

Beluch et al. [2018] demonstrated that ensembles perform better and lead to more cali-

brated predictive uncertainties, which can be used for Active Learning Uncertainty strategies.

The authors also showed that this method outperforms Monte-Carlo Dropout and geometric

approaches.

4.2.2 Self-Supervised Learning

In recent years, self-supervised learning has attained performance levels comparable to su-

pervised learning. Most self-supervised learning methods aim to learn representations that

remain invariant despite distortions present in the input data. These distorted inputs are
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generated by applying various data augmentations randomly to the input. Different research

methodologies strive to achieve this objective through a variety of approaches. For instance,

in SIMCLR [Chen et al. 2020], this is accomplished by forming ’positive’ and ’negative’

sample pairs from the input data and treating each pair differently within the loss function.

BarlowTwins [Zbontar et al. 2021] achieves this by utilizing variance and invariance terms,

where two distorted versions of a single sample should produce a low-level representation.

This is achieved using a custom loss function comprising variance and redundancy reduction

terms.

Previous studies of the intersection between active learning and self-supervised learning

have been explored in various domains. In the graphical domain, researchers applied self-

supervised learning alongside active learning to Graph Neural Networks [Zhu et al. 2020].

They considered the information propagation scheme of a Graph Neural Network (GNN)

and selected central nodes from homophilous ego networks . In another study, autoencoder

architectures and the SSL technique SIMCLR were used to create positive and negative

pairs [Bengar et al. 2021]. In NLP, for text classification tasks, self-supervised learning

served as a pre-training step for training language models [Yuan et al. 2020]. In that work,

samples for which the language model exhibited uncertainty were sent for labeling, enabling

efficient fine-tuning. This work was followed by Wang et al. [2021] which employed disfluency

detection, relying heavily on human-annotated data for sentence classification. In Bengar

et al. [2021], the model was trained on the entire dataset to obtain a frozen backbone.

Subsequently, a linear classifier or an SVM decoder was fine-tuned on top of the features
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in a supervised manner. Inference was then executed on the entire unlabeled data, and the

top-k samples were selected via an acquisition function. In the medical domain, researchers

collected saliency maps of medical images and framed it as a self-supervised learning problem

[Mahapatra et al. 2021]. An autoencoder was used to reconstruct the saliency maps, followed

by clustering the latent space to collect the top-k samples and query labels of the most

representative sample per cluster.

Our work stands out in the field due to its distinctive approach. Unlike previous research

that heavily focuses on extensive pre-training on all the data, our method is pragmatic,

especially given the substantial size of the unlabeled pool, which would normally introduce

a significant training overhead. Additionally, creating ”positive” and ”negative” pairs for

training becomes impractical when dealing with large overall dataset sizes.

4.3 Methodology

In this section, we will provide a concise overview of the setup for pool-based active learning

in computer vision classification tasks. Additionally, we will delve into the self-supervised

learning approach, Barlow Twins, and the underlying rationale for its utilization. Subse-

quently, we will introduce our novel approach, Deep Active Learning using Barlow Twins

(DALBT). Throughout the following sections, we will consistently refer to the model under

training as f , with its associated weights and parameters denoted as θ. Within each sam-

pling iteration, our sampling method will carefully choose a diverse selection of examples

from an unlabeled pool (U) consisting of unlabeled examples denoted as XU. These selected
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examples are chosen based on the model’s uncertainty, ensuring their utility for training in

the subsequent active learning iteration.

4.3.1 Problem Definition

Formally, the pool-based active learning problem can be defined in the following way. Let

P = (Dtrain,Dtest), where Dtrain represents the training set from which the initial pool of

samples is drawn. Dtrain can be further divided into two subsets, namely (DL,DU). Here,

DL denotes the labeled pool, where each sample is represented as a pair of input and label,

denoted as (xL, yL). On the other hand, DU represents a considerably larger pool of samples

which are yet to be labeled.

The primary objective of the active learning model is to train on the labeled pool DL and,

in conjunction with a sampling method, iteratively select the most useful samples from the

unlabeled pool DU for annotation by an oracle. This process aims to minimize the expected

loss within a fixed sampling budget b, where b represents the total number of informative

samples that can be chosen from the unlabeled pool at each stage of the active learning setup.

These selected b samples are subsequently forwarded to the oracle for annotation. We denote

the state of a subset at a given timestep as Lt and Ut, respectively, for t ∈ 0, 1, . . ., where t

signifies the current stage within the active learning process.

In the standard pool-based active learning setup, we initially train our active learning

model (f) with parameters θ using the labeled pool at stage t = 0, denoted as L0. Fol-

lowing this initial stage (t = 0), we select b data points from the unlabeled pool (U0) using

a predefined sampling method, such as the uncertainty measures or confidence estimates
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describe above. These chosen b data points are then removed from the unlabeled pool (U0)

and forwarded to the oracle (O) for annotation. Subsequently, these annotated data points

are added to the labeled pool (L0), which transforms into the labeled pool (L1), while the

unlabeled pool (U0) transitions into (U1).

The model is then retrained on the new labeled pool (L1) in the subsequent stage,

marked as t = 1. In the current experimental setup, we explore two scenarios: one where the

unlabeled pool (U) consists of samples from the same dataset, and another where it contains

a mixture of samples from multiple datasets.

4.3.2 Active Learning System

Our aim is to employ self-supervised learning during active learning. The system is composed

of an encoder (E) followed by a projector (P ), and subsequently a classifier (C), as depicted

in Figure 4.1. The overarching objective is to train an encoder to be invariant to artificially

induced distortions, such as rotation, solarization, cropping, and more. The proposed model

takes as input two distorted versions of an input vector, x ∈ RD, and produces a compressed

latent vector, z = fθ(x) ∈ Rd, where d is significantly smaller than D. Let L0 be the

initial labeled pool, which constitutes a training set of data points in RD, representing the

D-dimensional input space. Here, x ∈ RD signifies a vector belonging to X.

4.3.2.1 Barlow Twins

As stated in the introduction, we have employed Barlow Twins to extract low-level repre-

sentations of our inputs. Here, we provide a more detailed explanation of the Barlow Twins
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approach. A Barlow Twins network consists of an encoder (E) followed by a projector net-

work (P ), as illustrated in Figure 4.1, excluding the classifier component. To simplify the

explanation, let’s consider the scenario where the batch size is 1.

For each input image, two distorted versions, denoted as d1 and d2, are generated through

different random data augmentations applied during training. These two distorted inputs

are then passed through the encoder (E) and subsequently through a projector network (P ),

both equipped with trainable parameters. Consequently, the model produces two distinct

low-level representations for the same input image, namely zd1 and zd2, corresponding to the

distorted versions d1 and d2.

It’s worth noting that Barlow Twins employs a unique loss function that differentiates it

from other self-supervised learning (SSL) methods, as elaborated below:

LBT≜
∑
i

(1− Cii)
2

︸ ︷︷ ︸
invariance term

+λ
∑
i

∑
j ̸=i

C2
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redundancy reduction term

(4.1)

Here, C represents the cross-correlation matrix computed between two identical networks,

as defined below. Additionally, λ serves as a hyperparameter that defines the relative im-

portance between the first and second terms of the loss.
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Here, b indexes batch samples, and i and j index the vector dimensions of the networks’

outputs. The matrix C is square and has a size equal to the dimensionality of the network’s

output. Its values range from -1 to 1, where -1 indicates no correlation between zd
1

b,i and zd
2

b,i,

while 1 signifies a perfect correlation between zd
1

b,i and zd
2

b,i.

4.3.2.2 Active Learning using Barlow Twins

With the aim of integrating both the self-supervised learning method Barlow Twins and

active learning, we have introduced novel modifications to the existing Barlow Twins archi-

tecture, as illustrated in Figure 4.1, and elaborated further below. We have extended the

current model, comprising an encoder (E) and a projector (P ), by adding an additional

classifier (C).

The entire system is trained using a modified and innovative loss function defined as

follows:

LBT≜ log pξ(y|z)︸ ︷︷ ︸
Classifer term

+γ ∗ (
∑
i

(1− Cii)
2

︸ ︷︷ ︸
invariance term

+ λ
∑
i

∑
j ̸=i

C2
ij︸ ︷︷ ︸

redundancy reduction term

) (4.2)

Here, γ represents the weight assigned to the Barlow Twins loss, while the first term

denotes the classifier loss. The optimization of the entire system is achieved by utilizing

the joint loss, as demonstrated in Equation 4.2. Notably, it’s important to highlight that

the input to the classifier is the latent vector generated by directly passing the input image

without distortions through the model (f).
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4.3.3 Sampling technique

With the goal of selecting the b most informative data points from the unlabeled pool in

conjunction with the trained model, let’s delve deeper into the objective of the loss function

outlined in Equation 4.2.

The primary aim of this loss function is to identify low-level representations that can

capture as much information as possible about the inputs while minimizing their sensitivity

to the applied distortions. To accomplish this, we have employed the Weibull sampling

technique, initially introduced by Weibull [1951]. This technique serves the purpose of

quantifying whether a sample can be considered an outlier or not. In our context, if a latent

representation significantly differs from the latent representations in the labeled pool, it is

classified as an outlier, as demonstrated by Gonzalez [1985] and utilized by Mandivarapu

et al. [2020a].

The process begins by collecting all the latent vectors of images that have been correctly

classified by the model at any stage of active learning. These latent vectors are then sub-

divided into respective clusters based on their class labels. Subsequently, the mean of each

cluster is calculated, and the distances between the mean of each class and the remaining

points are computed. We model the Weibull distribution using these distances for each class

cluster.

Finally, when new unlabeled images are encountered, they are passed through the Weibull

model to determine the extent to which each image is considered an outlier among all images.

The top-ranked outlier images are then selected for labeling or annotation by the oracle.
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Algorithm 3 Deep Active Learning using Barlow-Twins

Require: Unlabeled pool U0, labeled pool L0,number of labeling iterations t, initialize b
(budget)
Require: Active Learning Model( fθ), Optimizer
for k = 1 to t do

Train fθ on Labeled Pool (Lk)
Z ← Collect the latent vectors of all correctly classified samples in Labeled Pool (Lt)
Ci ← Mapping of Zi onto separate cluster per class Ci

i ← Calculate the distance of each point to its cluster Ci

Wi ← Map the distances by fitting them to a wiebull model
Z ← Collect the latent vectors of all the samples Unlabeled Pool (Uk)
for Z = 1 to n do

Collect the outlier probability score using previously fitted wiebull model.

Request labels for top b samples
Lk+1 ← Lk ∪ b samples.

Train f on Lk+1.

4.4 Experimental Results

We performed experiments on four image classification datasets: MNIST [Deng 2012], CIFAR-

10 [Krizhevsky 2009], and FashionMNIST [Xiao et al. 2017]—following the methodology

defined in Sec. 4.3. Below, we first present our implementation details, then discuss our

results.

4.4.1 Implementation Details

Hardware: We carried out our experiments on a Dell Precision 7920R server with two Intel

Xeon Silver 4110 CPUs, two GeForce GTX 1080 Ti graphics cards, and 128 GBs of RAM.

Dataset sizes and budgets: As previously detailed in the methodology section, the

term ”budget” pertains to the number of samples labeled by the oracle during each round of

active learning. The budget for each experiment is indicated in the legend accompanying the
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respective results. The MNIST dataset comprises 50,000 images in its training set, which

is further divided as follows: 100 images are allocated to the initial labeled pool, 5,000

images form a validation set, and the remaining 44,900 images constitute the unlabeled

pool. Additionally, the MNIST dataset includes a test set comprising 10,000 images, which

we employ to assess our model’s performance after each stage of our active learning setup.

In the experiments depicted in Figure 4.2, we utilized budgets of 100 and 1,000 samples.

For the FashionMNIST dataset, we employed a similar setup. As for CIFAR-10, it bears

similarities to MNIST in terms of the total number of images in the training and test sets.

Within the CIFAR-10 training set, 5,000 images are designated for the initial labeled pool,

5,000 images are reserved for validation, and the remaining images are part of the unlabeled

pool. In this case, we used a budget of 2,500 images per round of active learning, which

amounts to 40% of the training data. The CIFAR-10 test set encompasses 10,000 images,

serving as a benchmark to evaluate our model’s performance after each stage of the active

learning setup.

Runs: For all the experiments, we measured performance by computing the average

accuracy across 5 independent runs.

State of the art comparison: We compared our method against several recent AL ap-

proaches including Variational Adversarial Active Learning (VAAL) [Sinha et al. 2019], Core-

Set [Sener and Savarese 2017], Monte-Carlo Dropout [Gal and Ghahramani 2016], Ensembles

using Variation Ratios (Ensembles w. VarR ) [Freeman 1965] [Beluch et al. 2018], Deep

Bayesian AL (DBAL) [Gal et al. 2017], BatchBALD [Kirsch et al. 2019], and WAAL([Shui



66

et al. 2020]). As a baseline, we also included uniform random sampling (Random) since it

remains a competitive strategy in the field of active learning.

Architectures: For experiments on MNIST and Fashion-MNIST we used a LeNET

network [Lecun et al. 1998] as the encoder, a projector network, followed by a classifier. We

used latent vectors of size 60. As noted in Sec. 2.2, the classifier consists of a single linear

layer. For CIFAR-10, we used a VGG16 network [Simonyan and Zisserman 2014] as our

encoder and a latent vector of size 512 followed by classifier with single layer.

Optimization: We optimized the entire system using a mini-batch size of 64, a learning

rate set to 0.001, a Barlow Twins constant of 0.001, and a weight decay of 10−5. Our

optimization process spanned 150 epochs at each stage of training. Upon completing a

stage, we employed the Weibull sampling method to request labels for b images from the

unlabeled pool. Once we received the labels for these images from the oracle, they were

incorporated into the labeled pool and utilized in the subsequent stages of learning.

Image Augmentations

We employ augmentations similar to those used in Barlow Twins and other SSL ap-

proaches. As illustrated in Figure 4.1, two distorted images are generated from a single

input image by applying various transformations. The image augmentation pipeline initi-

ates with random cropping and resizing, which are applied to all images. Subsequently, it

includes Gaussian blurring, color jittering, conversion to grayscale, horizontal flipping, and

solarization. Notably, the last five augmentations are applied randomly during the process.

Computer Vision Task results: To evaluate the effectiveness of our method we tested
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Figure 4.2 Robustness of our approach on MNIST classification . Our results confirm that
our approach significantly outperforms this baseline.

our method on MNIST,CIFAR-10, Fashion MNSIT and mixture of multiple datasets in the

unlabeled pool.

MNIST: We conducted experiments on the MNIST dataset with an initial labeled pool

size of 100 and a budget size of 100 at each stage of active learning. As illustrated in Figure

4.2, our method performed on par with the existing methods. Given that this is a relatively

straightforward computer vision task, all methods performed within a similar range.
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Figure 4.3 Robustness of our approach on CIFAR10 classification . Our results confirm
that our approach significantly outperforms this baseline. Note, our approach is marked as
Barlow-Twins Active Learning (BTAL).

CIFAR-10:

We conducted experiments on the MNIST dataset with an initial labeled pool size of

100 and a budget size of 100 at every stage of active learning. As depicted in Figure 4.2,

our method performed comparably to existing methods. Given that this is a relatively

straightforward computer vision task, all methods performed within a similar range.

Moving on to CIFAR-10, we conducted two separate experiments with different budget

sizes. In the first experiment, the initial labeled pool consisted of 5,000 images, and the

budget (b) was set to 2,500 at each stage. As shown in Figure 4.3, our proposed method

performed on par with the existing state-of-the-art method DAL-OSR. VAAL ranked third
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Figure 4.4 Robustness of our approach on CIFAR10 classification . Our results confirm
that our approach significantly outperforms this baseline. Note, our approach is marked as
Barlow-Twins Active Learning (BTAL).

with an accuracy of 80.71%, followed by Core-Set with an accuracy of 80.37%, and Ensemble

with VarR at 79.465%. Random sampling, DBAL, and MC-Dropout lagged significantly

behind other methods.

To assess the effectiveness of the proposed model compared to other methods with small

budgets, we designed experiments where the initial labeled pool contained 5,000 images, and

the budget (b) was limited to 1,000 at each stage of active learning. As shown in Figure

4.4, the proposed method outperformed all existing methods by a substantial margin, with

DAL-OSR ranking second, followed by BatchBALD, while the remaining methods performed

within a similar range. This demonstrates the efficacy of the proposed method, especially
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Figure 4.5 Robustness of our approach on FashionMNIST classification . Our results confirm
that our approach significantly outperforms this baseline.

when the budget size is relatively low. The original accuracy achievable using the entire

CIFAR-10 dataset was 92.63%.

FashionMNIST:

To assess the robustness of our approach across different datasets, we conducted exper-

iments on another standard benchmark dataset, FashionMNIST. Similar to our previous

experiments, we compared our method with other existing state-of-the-art methods such as

DAL-OSR, Core-Set [Sener and Savarese 2017], Deep Bayesian AL (DBAL) [Gal et al. 2017],

BatchBALD [Kirsch et al. 2019], and WAAL [Shui et al. 2020].

As demonstrated in Figure 4.5, our method outperforms all other methods and achieves

performance on par with DAL-OSR.
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Figure 4.6 Robustness of our approach on CIFAR10 classification tasks when the unlabeled
pool includes samples from either the SVHN, KMNIST, or FashionMNIST datasets. The first
three curves used the M2 classifier, while the ones with the ’Random’ subscript used random
sampling. Our results confirm that our approach significantly outperforms this baseline.

Mixed UnLabeled Pool: Lastly, we conducted tests to assess the extreme case of

active learning, as proposed in DAL-OSR. We adopted a similar setup to DAL-OSR, where

10,000 images from other datasets such as SVHN, KMNIST, and KMNIST were mixed into

the source dataset of CIFAR-10. Consequently, the proposed method needed to distinguish

not only between informative and non-informative samples but also between in-distribution

data samples (CIFAR-10) and out-of-distribution samples (SVHN, KMNIST, KMNIST).

A superior model effectively allocates the budget, selecting informative in-dataset sam-

ples. For example, when the budget is set at 1,000, if the model chooses 1,000 samples,

out of which 400 belong to the out-of-distribution dataset, only 600 samples are sent for
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annotation and added to the labeled pool dataset. The remaining 400 samples are returned

to the unlabeled pool, resulting in a total of 10,000 out-of-distribution data samples in the

unlabeled pool at every stage of active learning. As active learning progresses through stages,

it becomes increasingly challenging for the model to select in-label samples, given the di-

minishing proportion of in-label samples and the increasing presence of out-of-distribution

samples in the unlabeled pool.

4.5 Conclusions and Future work

In this study, we introduced a novel approach for active learning in the presence of both

iid and non-iid shifts within unlabeled pools for computer vision tasks. Our method com-

bines self-supervised learning techniques with the Weibull sampling method. We conducted

a comprehensive evaluation of our approach through comparisons with existing methods us-

ing three open-source datasets. We conducted rigorous benchmarks against state-of-the-art

active learning models in computer vision tasks. Additionally, we presented studies involving

different budget allocations and mixed unlabeled pool setups to demonstrate the effective-

ness of our method compared to other approaches. The results consistently showed that our

method performed at par or even outperformed existing baselines in computer vision tasks.

For future work, we aim to further explore more effective self-supervised methods to handle

active learning at scale.
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CHAPTER 5

Continual Learning with Deep Artificial Neurons

5.1 Introduction

Humans and other organisms are capable of acquiring new knowledge over time without com-

pletely forgetting the past, an ability commonly referred to as continual learning or learning

without forgetting [Beaulieu et al. 2020; Flennerhag et al. 2020; Javed and White 2019;

Kirkpatrick et al. 2016; Li and Hoiem 2016]. Unfortunately, this ability has largely eluded

artificial learning systems. Deep neural networks, in particular, are prone to catastrophic

forgetting because backpropagation updates all the weights in the network during learning,

which causes old features to be overwritten by new ones. Despite this drawback, backprop-

agation is a powerful technique because it directly correlates weight updates to their impact

on the loss function. As noted by [Guerguiev et al. 2019], ”any learning system that makes

small changes to its parameters will only improve if the changes are correlated to the gradient

of the loss function.” This insight suggests that any architectural or algorithmic change to

enable continual learning must (1) either be compatible with backpropagation or (2) offer

an alternative way of assessing the impact of a given weight on performance.

In this paper, we propose Deep Artificial Neurons (DANs), a novel, backpropagation-

compatible neural architecture that facilitates continual learning. As we detail below, net-

works with DAN units can learn over time with minimal forgetting using standard back-

propagation and without the need for an experience replay buffer or sleep/wake cycles. Our

DAN architecture is inspired by biological neurons, which, unlike their simple artificial coun-
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terparts, are extraordinarily complex [Beniaguev et al. 2020; Guergiuev et al. 2017; Hawkins

and Blakeslee 2004; Izhikevich 2007; Jones and Kording 2020; Kandel et al. 2000; Palavalli

et al. 2020]. In particular, the strength of connections between biological neurons is best

modeled as a vector-valued function between the pre- and post-synaptic neurons. This vector

represents the state of chemical concentrations, electrical potentials, proximity, and other

temporal and spatial dynamics that affect how strongly a cell responds to its inputs. As

we detail below, DANs perform a similar function in our networks; namely, they filter the

output signals of neurons in one layer before passing it on to the subsequent layer. As our

experiments show, this non-linear, vector-valued filtering allows a network with DAN units

to learn over time, using only standard backpropagation, with minimal forgetting.

5.2 Related Work: Neurons, Meta-Learning, Continual Learning

Many have begun to acknowledge that efficient learning in real brains results from innate

priors which have arisen through evolution, and which are generally kept fixed during intra-

life deployment [Zador 2019]. It is unsurprising, therefore, that there have been some very

recent attempts to embed more powerful priors in artificial neural networks [Aguera y Arcas

2302; Beniaguev et al. 2020; Gregor 2020; Guergiuev et al. 2017; Hawkins and Ahmad 2016;

Jones and Kording 2020; Trabelsi et al. 2017]. In a highly original work, [Mordvintsev

et al. 2020] showed that it may be beneficial to think of individual cells, themselves, as

networks with self-organizing properties. However, little work has been done to investigate

whether this increase in computational power at the cellular level might improve performance
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specifically in continual learning settings.

Machine learning algorithms generally rely upon the iid assumption, which asserts that

the training samples are independent of each other (i.e., no correlation between successive

samples), and that the training and test distributions need to be (approximately) the same.

For this reason, the most reliable technique to date for overcoming catastrophic forgetting

(CF) given non-iid data is one which explicitly enforces this assumption, often referred to

as experience replay (ER) [Mnih et al. 2013]. A severe limitation of ER, however, is that

it requires a system to retain all (or most) of the data that it encounters. This necessi-

tates additional hardware, increases training time, and can even worsen learning efficiency.

Therefore, three categories of alternative techniques have emerged to combat CF in settings

where all data cannot be retained: (1) regularization-based approaches [Farajtabar et al.

2019; Kirkpatrick et al. 2016; Lesort et al. 2019], (2) knowledge-compression, or capacity

expansion [Joseph and Balasubramanian 2020; Mandivarapu et al. 2020b; von Oswald et al.

2019b; Yoon et al. 2018], and (3) meta-learned representations and update rules [Beaulieu

et al. 2020; Flennerhag et al. 2020; Gregor 2020; Javed and White 2019; Lindsey and Litwin-

Kumar 2020].

For this paper, we draw strongest inspiration from a promising approach known as

Warped Gradient Descent (WGD) [Flennerhag et al. 2020]. WGD mitigates catastrophic for-

getting by meta-learning warp parameters ω, realized as warp-layers, which are interleaved

between the standard layers of a neural network. These warp parameters are held fixed dur-

ing deployment, allowing the rest of the network to learn, without forgetting, using standard
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backpropagation. As the name implies, parameters ω warp activations in the forward pass,

and the gradients in the backwards pass. However, in contrast to WGD, which uses dense

fully connected warp layers, we show that it is possible to learn small, common networks φ,

constituting shared neuronal phenotypes (DANs) that can be distributed throughout larger

networks of plastic Synapses, thereby influencing their learning trajectories.

5.3 Problem Formulation

In this work, we propose to meta-learn a single parameter vector φ, shared by all DANs in the

model, which can mitigate catastrophic forgetting in a network that learns during deployment

by updating its Synapses with standard backpropagation. We call this parameter vector a

neuronal phenotype, since it defines the behavior of each DAN in the network, and it is

kept fixed during intra-lifetime deployment. Specifically, we consider Continual Learning

Trajectories (e.g. [T0,T1, ...,Tk]) which are comprised of sequences of tasks T. These task

sequences are drawn uniformly from some underlying task distribution p(T). We add a

single-context stipulation stating that within a sequence of tasks, each data sample x ∈ Ti is

mapped to one and only one target value y, and each sample x belongs to one and only one

task Ti. In our experiments, we assume that tasks are disjoint, and therefore our model must

learn one task before moving on to the next, though we anticipate that we can relax this

assumption to handle overlapping or evolving task distributions in future work. The model is

therefore allowed to perform a fixed number of updates on data from each task, where tasks

are encountered one after the other. We seek a model which retains good performance over
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the whole task trajectory, without being allowed to revisit data from previously encountered

tasks in the sequence.

We formulated an experiment similar to the one proposed in Flennerhag et al. [2020],

and originally in Finn et al. [2017]. More specifically, we consider the problem of sequential

non-linear regression, wherein a model must try to fit to a complete function, when exposed

to data from only part of that function in distinct time-intervals. In other words, it must

learn the complete function in a piece-wise, or incremental manner, since it cannot revisit

data to which it was exposed during previous intervals. As in Flennerhag et al. [2020], we

split the input domain [−5, 5] ⊂ R into 5 consecutive sub-intervals, which correspond to

5 distinct tasks. Task 1 therefore corresponds to the sub-function falling within [−5,−3);

Task 2 corresponds to the sub-function within [−3,−1), and so on. The model is exposed

to Tasks 1 through 5 in sequential manner. During each sub-task, the network is exposed

to 100 data points, drawn uniformly from the current task window. That is, during Task 1

the model performs 100 updates on data sampled from [−5,−3). In our experiments, we

perform 1 update on every sample, equating to a batch size of 1. Sub-tasks are thus defined

by their respective windows in the input domain.

We slightly modify the target functions used in Flennerhag et al. [2020]. We define

a task sequence by a target function that is a mixture of two sine functions with varying

amplitudes, phases, and x-offsets. At the beginning of each meta-epoch, we randomly sample

two amplitudes α(0,1) ∈ (0,2), phases ρ(0,1) ∈ (0, π/3), and x-offsets ϕ(0,1) ∈ [−5, 5]. Summing

two such sine functions yields a target function of the form:
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y = α0sin((ρ0x) + ϕ0) + α1sin((ρ1x) + ϕ1) (5.1)

Afterwards, we discard any target functions from the training distribution meeting the

following criteria: ymax > .8; ymin > −.8; ymax − ymin < .4. This yields a final input domain

of [−5, 5] and output range of [−.8, .8].

5.4 Model Architecture

Deep Artificial Neurons, or DANs, are themselves realized as multi-layer neural networks.

For the purposes of demonstration, consider a DAN instantiated as a 2-layer neural network,

with a single layer of hidden nodes, and a single output node (i.e. the output activation

of the neuron). In practice, we apply a tanh non-linear activation to the output of the

hidden layer, as well as to the output layer of each DAN. See the bottom of Fig. 5.3 for

an illustration. Let n channels denote both (1) the size of the input vector to this network,

and (2) as we will see, the number of connections between pairs of DANs. Conceptually,

we can distribute this single DAN amongst all nodes of a traditional neural network. Fig.

5.1 offers an illustration of how to convert a standard ANN into a network of DANs with

n channels=3.

More generally, consider the topology of a standard, fully-connected, feed-forward neural

network with l layers of nodes, and let nl denote the number of nodes in layer l. Let l0 be

a special case, denoting the layer of input nodes, which are not DANs. We can convert this

topology to a network of DANs in the following way. For each layer of nodes, up to but
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Figure 5.1 A Network of Deep Artificial Neurons (DANs). DANs are connected to one
another by parameters θ, which can be regarded as Vectorized Synapses, or VECs. All
DANs may share parameters φ, which we dub a neuronal phenotype. Synapses in a Network
of DANs are vectors. The strength of the connection between 2 DANs is therefore an non-
linear function of the magnitude and orientation of this synaptic vector.

not including the layer of output nodes, we instantiate a layer of Synapses as a standard,

fully-connected weight-matrix θl with dimensions nl×(nl+1×n channels). Synapses connect

layers of DANs to one another. Feed-forward propagation of a signal along these connections

is therefore facilitated in the standard way, by computing the dot product of the activation

vector σl out from the previous layer and this layer of Synapses θl. This yields a large input

vector σ(l+1) in, to be processed by the DANs in the next layer:

σ(l+1) in = σl out · θl =
nl+1∑
i

θjiσ
j
l out + bi, (5.2)
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where j denotes the index of nodes in layer l, and i is the index of nodes in layer l + 1.

Note that in practice we do not apply a non-linear activation function to this vector. Rather,

n slices of the raw dot product σ(l+1) in are fed as input to the n DANs in the next layer.

That is, since all DANs share parameters φ, the same DAN model processes each slice of

σ(l+1) in. Said another way, the input vector to the layer of DANs is sliced into nl+1 equally

sized sub-vectors, where n is the number of DANs in layer l + 1. The output vector of a

layer of DANs is obtained by passing each of these separate slices through the DAN, and

concatenating the resulting activations. This can be done very efficiently by simply reshaping

the inbound synaptic activations σ(l+1) in and using our single DAN phenotype to process all

slices as a batch. This results results in σ(l+1) out which constitute the output activations of

the DANs in layer l + 1.

In practice, we also use skip connections, inspired by Deep Residual Networks He et al.

[2015] and Flennerhag et al. [2020], in order to facilitate efficient learning. Skip connections

are realized as additional layers of Synapses θskip(j,k), with dimensions nj×(nk×n channels),

which bypass layers of DANs by providing a direct pathway from nodes in layer j to layer k,

where k = j+2. This allows some information to be sent directly downstream, without being

subjected to processing by the intermediate layer of DANs. When using skip conenctions,

the input vector to a layer of DANs in layer k is obtained by summing the vector computed

in Equation 5.2 with the vector signal traveling along θskip(j,k):

σ′
k in = σk in + (σj out · θskip(j,k)) (5.3)



81

Figure 5.2 Continual Learning during Deployment on 4 non-linear functions, each divided
into 5 sub-tasks, using a meta-learned neuronal phenotype which is held fixed. Synapses
are updated with standard Backpropagation. In each of the 4 plots, each color in the plot
depicts the predictions of the model over the whole function after performing 100 updates on
data from the current sub-task only. In other words, the darkest plot represents the model’s
predictions over the whole function after training only on task 1 [−5,−3) . During the next
stage of learning, the model performs 100 updates on data from task 2 only [−3,−1). The
lightest plot (cyan) depicts the model’s predictions after the last round of learning: 100
updates on data from task 5 [3, 5]. As shown, the model retains a good fit over the whole
function even when it learns these sub-tasks in a sequential manner.

The result is a complete model, comprised of 2 distinct sets of parameters: Synapses,

parameterized by θ, and DANs parameterized by φ. As we will show in coming sections,

Synapses are intended to be fully plastic at all times. The parameters of our DANs, our
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so-called neuronal phenotype, are meta-learned and then held fixed during deployment.

Figure 5.3 In traditional artificial networks, synapses are represented as single scalar values.
In contrast, within a network of DANs, synapses are n-dimensional vectors. This distinction
allows the strength between two DANs to be expressed as a non-linear function, dependent
on both the magnitude and orientation of the synaptic vector.

As in Flennerhag et al. [2020], we leverage the benefits of a unique set of parameters φ

which can be shown to warp the gradients applied to another set of parameters θ in order to

prevent catastrophic forgetting. In contrast to WGD Flennerhag et al. [2020], however, we

show that a single, small network, parameterized by φ, is sufficient to facilitate our meta-

objective, rather than unique, separate layers of warp parameters. Additionally, we feel that

our approach offers an additional layer of biological plausibility, and might help to explain

some of the behavior and responsibilities of real neurons.
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5.5 Methodology

Meta-Learning is generally concerned with optimizing some meta-objective over a distribu-

tion of tasks in order to attain some innate proficiency at comparable tasks likely to be

encountered during a separate, deployment phase. To accomplish this, most meta-learning

algorithms employ an inner-loop/out-loop framework, wherein optimization over several spe-

cific tasks occurs in the inner-loop, and proficiency at the meta-objective is evaluated and

optimized in the outer-loop. Inspired by Warped Gradient Descent (WGD) Flennerhag

et al. [2020], we adopt such an approach, and wish to meta-learn parameters which facilitate

continual learning during deployment.

During meta-training, we randomly sample target functions of the form defined in Equa-

tion 5.1. These target functions are split into 5 sub-tasks, as explained in Section 5.3. We

deploy our model on each target function, and sub-tasks are encountered sequentially. Op-

timization over a single sub-task is done by performing backpropagation on both sets of

parameters, θ and φ, using the loss over the current sub-task. This is known as an inner-

loop epoch. At the end of each inner-loop epoch, we quantify the Meta-Loss over subtasks

[0,...,cur ], where cur is the current sub-task. Meta-Optimization is done by performing back-

propagation on parameters φ only , using the Meta-Loss. Repetition of this process over a

sequence of 5 sub-tasks, given the current target function, is known as a meta, or outer-loop

epoch. At the end of each outer-loop epoch, we sample a new target function, and repeat

the process.

More formally, let the Historical Learning Trajectory Ht represent the dataset [x0, x1,
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. . . , xt] comprised of all data encountered by the system, prior to and including timestep

t. Note that Ht therefore contains data from one or more sub-tasks T. We have Synapses,

parameterized by θ, and DANs, parameterized by φ, which together define the complete

Model.

Note that since DANs are distributed throughout the network, the gradients for Synapses

∇θ depend on parameters φ, and that the meta-gradient ∇φ depends on parameters θ. This

is true, since each set of parameters θ and φ are factors of both gradients.

We can define a Model State at timestep t as θtφt. Given a new sample at timestep

t+ 1, this Model State will result in a measurable Task Loss LT, for which we can compute

a gradient ∇θtφtL
t+1
T . Note that we can factor this gradient into its distinct components:

∇θtφtL
t+1
T = ∇θt∇φtL

t+1
T (5.4)

This is desirable since we may want to assign separate learning rates to each set of

parameters. For instance, let α denote the learning rate for parameters θ, and let γ denote

the learning rate for parameters φ. Since we update both θ and φ in the inner loop, when

learning individual sub-tasks, performing an inner-loop update on data from the current task

at timestep t+ 1, like so:

θt+1φt+1 ←− θtφt − α∇θtγ∇φtL
t+1
T (5.5)

...results in the new Model State θt+1φt+1. Note that this update, θt+1φt+1 ←− θtφt, may
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have caused forgetting over Ht+1, which now includes the latest data sample xt+1.

We can quantify the Memory Loss overHt+1, defined as L
Ht+1

M . This constitutes the meta-

loss, which we wish to minimize in order to facilitate our meta-objective during inner-loop

deployment.

Specifically, we seek an optimal neuronal phenotype, defined by a single parameter vector

φ∗, shared by all DANs, which would have resulted in the least amount of forgetting over

Ht+1. Said another way, had the original state of the model been θtφ
∗
t , instead of θtφt, then

the inner loop update would have been:

θ∗t+1φ
∗
t+1 ←− θtφ

∗
t − α∇θtγ∇φ∗

t
Lt+1

T (5.6)

This would have resulted in an alternative Model State θ∗t+1φ
∗
t+1, ideally resulting in less

forgetting than that originally induced by θtφt.

Therefore, we calculate the Memory Loss across Ht+1, using the current model state

θt+1φt+1, and compute the gradient w.r.t. this quantity. By taking a step towards φ∗
t , we

update the phenotype φ, and in the process attempt to minimize the meta-loss. We can do

this by factoring the gradient and isolating the update to φ only:

φ′
t+1 = φt+1 − γ∇φt+1L

Ht+1

M s.t. φ′
t+1 ≈ φ∗

t (5.7)

The full meta-training procedure is outlined in Algorithm 5.5.

After meta-training is completed, the model is deployed. DAN parameters φ are held



86

Meta-Learning a Neuronal Phenotype for Continual Learning

fixed , and the model is obligated to learn continually, without forgetting, using standard

backpropagation. That is, θ update normally, while DANs remain fixed. We offer empirical

validation of our approach in the next section.

5.6 Experiments and Results

For all experiments, we used a network topology of 1 input node, 2 hidden layers of 40

nodes each, and a single output node. Recall that, apart from the single node in the input

layer, each node represents a DAN, and the topology is therefore converted to a network

of DANs. To this topology, we added 2 skip layers, as described in Section 5.4: from layer

0 to layer 2, and also from layer 1 to layer 3. The DAN itself is a 3 layer neural network

with n channels input nodes, followed by a hidden layer with 15 nodes, another hidden layer

with 8 nodes, and a single output node, parameterized by φ. We applied tanh activations

to the hidden and output layers of the DAN. For all experiments except that depicted in
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Fig.5.4, we set n channels = 40. For Meta-Training, we set the learning rate for Synaptic

parameters θ = .001, and the learning rate for DAN parameters φ = .0001.

(a) (b)

Figure 5.4 Model definitions: net0 uses a single, shared phenotype (cell-type); net1 uses
one phenotype for each layer; net2 does not enforce parameter sharing among any DANs.
(left) Minimization of the Memory-Loss during Meta-Training. (right) Avg Memory Loss
during Deployment is nearly equal for all models, and nearly identical to the loss achieved
near the end of meta-training, ≈ .03 (mean squared error) across the full task-trajectory
after learning 5 sub-tasks in sequence.

Fig.5.2 shows the ability of a meta-trained model to learn continually during deploy-

ment ; when it encounters tasks in a sequential manner, and is obligated to retain a good

fit over previous sub-tasks, even though it is exposed to data from each task only once.

During this experiment, DAN parameters φ were held fixed, and the network learns by using

standard backpropagation to update Synapses θ.

Fig.5.5 depicts minimization of the Memory-Loss, our meta-objective, during meta-

training. We found that the model converges relatively quickly, requiring only 200-300

meta-epochs to find a suitable phenotype, though this is likely due to task simplicity. Addi-

tionally, as the Figure shows, we sought to isolate the effect of using a single set of parameters

for DANs in the whole network. To do this, we compared 3 models: one which used a single
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parameter vector for all DANs (net0: a single phenotype throughout the network), another

which used a separate parameter vector for each layer of DANs (net1: phenotypes unique to

each layer), and a third which did not enforce any parameter sharing amongst DANs (net2;

81 unique DANs in the network).

In above fig we compare the abilities of various models during deployment, when they are

confronted with tasks in a sequential manner, and obligated to learn continually. Specifically,

we sought to verify whether the meta-learning procedure was indeed endowing the DANs

with an innate ability to assist in learning without forgetting. These plots confirm that

hypothesis, showing that a meta-learned phenotype outperforms random parameter vectors,

regardless of whether they are fully plastic during deployment, or fixed.

Finally, we investigated the effect of the size of n channels on the ability of the model

to minimize Memory-Loss during meta-training. Specifically, we asked, is there indeed a

benefit to vectorizing the connections between pairs of DANs, and in the process increasing

the size of the input to each DAN? Above figure shows that the answer to that question was

also yes. The plot shows that as the number of (1) connections between pairs of neurons

and (2) the size of the input to each DAN grows, the speed, or efficiency, with which the

Memory-Loss is minimized is increased. In other words, vectorized connections accelerated

optimization of our meta-objective [Camp et al. 2020].
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(a) (b)

Figure 5.5 a) Model definitions: net0 uses a single, meta-learned phenotype, shared by all
DANs, fixed during deployment; net1 uses the same meta-learned single phenotype as net0,
but it is fully plastic during deployment (updates to the φ are allowed); net2 uses a random,
shared phenotype, fixed during deployment; net3 uses a random, shared phenotype, fully
plastic during deployment; net4 uses random, but completely unique DANs (no parameter
sharing), fixed during deployment; net5 uses random, but unique DANs, fully plastic during
deployment. Once before learning begins, and after training on each successive task, the
Total-Loss over the complete function is calculated. Clearly, the meta-learned phenotype
outperforms random DANs. b)Total amount of Memory-Loss experienced by different models
during deployment. Clearly, the meta-learned phenotype outperforms random DANs

5.7 Conclusions and Future Work

In this work, we offered a framework for thinking about artificial neurons as much more

powerful functions, realized as deep artificial networks, which can be embedded inside larger

plastic networks. We showed that it is possible to meta-learn a single parameter vector for

such a model that, when held fixed, can facilitate a meta-objective during deployment. In the

process, we hope to inspire a deeper understanding about the responsibilities of neurons in

both artificial neural networks, as well as real brains. In future work, we plan to investigate

the potential of DANs in real-world vision and reinforcement-learning settings, as well as the

possibility of optimizing several meta-objectives at once.
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CHAPTER 6

Hyper-Learning with Deep Artificial Neurons

6.1 Introduction

Neurons in real brains are enormously complex computational units. For a long time, the

AI community has dismissed the prospect that this complexity can be leveraged in order

to endow artificial networks with new capabilities that are not already achievable with tra-

ditional architectures that employ simple sum-and-fire neurons. Here, we offer evidence to

the contrary, and demonstrate the benefits of dramatically increasing the power of individ-

ual neurons. We build upon prior work with Deep Artificial Neurons (DANs), which are

themselves realized as deep neural networks. Networks of DANs are therefore composed of

learned networks (computers) which are embedded within, and distributed throughout larger

networks of randomly initialized plastic synapses. Like real neurons, DANs of the same type

share common parameters that govern their behavior. In this work, we demonstrate that

they can be explicitly trained to minimize some of the shortcomings of off-the-shelf opti-

mizers and Backpropagation, such as catastrophic forgetting and poor OOD generalization

in few-shot settings. DANs can therefore be said to regularize, or self-supervise, synaptic

updates by warping the gradients flowing backwards through the network. We also intro-

duce an end-to-end algorithmic framework for training and deploying networks of this type,

called Hyper-Learning. In short, Hyper-Learning leverages population-based self-supervised

meta-learning in order to teach DANs how to facilitate multiple meta-objectives during

deployment. We offer empirical results which demonstrate near perfect memory retention
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and competitive generalization on several non-iid, few-shot data-streams, under a variety

of replay-free continual learning paradigms; including fully supervised incremental classifi-

cation, fully unsupervised incremental learning, semi-supervised incremental learning, and

incremental regression tasks.

6.2 Prior Work

It has been argued ”that much of an animal’s behavioral repertoire is not the result of

clever learning algorithms...but arises instead from behavior programs already present at

birth...(and that) these programs arise through evolution, are encoded in the genome, and

emerge as a consequence of wiring up the brain” [Zador 2019]. However, this intuition, apt

as it may be, might raise more questions than it answers. Which priors, for example, need

to be encoded in the genome? How are those priors realized in the organism? Since most

contemporary AI research is concerned with how to best go about finding good synaptic

weights and architectures for specific tasks, it makes sense that this bias would be reflected

in recent literature [Beaulieu et al. 2020; Finn et al. 2017; Flennerhag et al. 2020; Javed and

White 2019]. On the other hand, very little work has been done to investigate the potential

of learning powerful priors for neurons.

Real neurons are really complex [Beniaguev et al. 2020; Guergiuev et al. 2017; Hawkins

and Blakeslee 2004; Izhikevich 2007; Jones and Kording 2020; Kandel et al. 2000; Palavalli

et al. 2020]. They transform electro-chemical vectors into outbound action potentials and

synaptic updates. The strengths of their connections are defined not by single scalar values,
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but by high-dimensional vectors representing the state of chemical concentrations, electrical

potentials, and proximity. They grow new appendages (dendrites), and some cells even

physically migrate in the brain [Rahimi-Balaei et al. 2018]. Conversely, artificial neurons,

with few exceptions, are extraordinarily simple models which reduce this enormous biological

complexity to an elementary sum and fire operation. We ask, might there be some benefit

to dramatically increasing the computational power of individual neurons in artificial neural

networks? Is it possible that the cause of a lot of innate behavior has been hiding in plain

sight; not in the connectome, but inside the neurons themselves?

There is at least some consensus that memories and knowledge are stored in the connec-

tions (synapses) between neurons [Izhikevich 2007; Kandel et al. 2000]. The malleability of

these connections is known as synaptic plasticity, and the rules governing how the strengths

are updated is known as learning. ANNs have excelled largely because Backpropagation is

good at learning configurations of synaptic weights for immediate, well-defined tasks [Wang

and Raj 2017]. However, the algorithm has historically failed in non-iid settings where the

training distribution evolves over time [Kirkpatrick et al. 2016].

On the other hand, the plasticity dynamics of real neurons, even on short time frames,

are much more complex than many in the machine learning community like to acknowledge.

Even more biologically faithful attempts to explain the underlying update rules have failed

to adequately model the dynamics required for long-term knowledge preservation [Payeur

et al. 2020].

Let us further review some material in 4 areas crucial to our interpretation of the problem:
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Complex Neurons and Synapses, Innate Structural Priors and Meta-Learning, Continual

Learning and Memory, and Learned Optimizers.

There have been some very recent attempts to model more complex neurons and synapses.

However, suffice it to say, it has still not been fully explored in the artificial intelligence lit-

erature. Some have sought to manually enforce dendritic segregation as a means to facilitate

multi-plexing of feed-forward and feed-back signals in deep artificial networks [Guergiuev

et al. 2017; Hawkins and Ahmad 2016]. Deep Complex Networks aimed to increase the

complexity of the signals being propagated by introducing complex-valued connections and

activations [Trabelsi et al. 2017]. In [Ba et al. 2016], the authors also investigated the poten-

tial benefits of 2 sets of synaptic weights; one for fast retention of knowledge, and another

for memory over longer time horizons. Beniaguev et al. showed that a multi-layer ANN can

mimic much of the functionality of real neurons [Beniaguev et al. 2020]. Aguera y Arcas et

al. advocated for learning complex priors for neurons and synapses [Aguera y Arcas 2302],

and a similar approach was advocated in [Gregor 2020] specifically for continual learning.

Jones et al. demonstrated that single neurons may be computationally capable of solving

sophisticated vision tasks [Jones and Kording 2020]. Mordvintsev et al. showed that it

may be beneficial to think of individual cells as networks with self-organizing properties

and high-dimensional message passing capabilities [Mordvintsev et al. 2020]. In [Randazzo

et al. 2020], the authors expanded on this notion by formalizing a Message Passing Learning

Protocol, whereby learning is facilitated through the communication of messages, realized

as vectors, passed amongst nodes.
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6.2.1 Innate Structural Priors and Meta-Learning

Many in the machine learning community have begun to at least acknowledge that efficient

learning in real brains may result, not from clever learning algorithms, but from innate priors

which have arisen through evolution, and which are generally kept fixed during intra-life

deployment [Zador 2019]. Weight-Agnostic Neural Networks demonstrated that there exist

architectures, not specific weight configurations, which exhibit out-of-the-box propensity for

certain tasks [Gaier and Ha 2019]. The Lottery Ticket Hypothesis has shown that there

often exist smaller, easily optimizable networks embedded in the weight matrices of much

larger networks [Frankle and Carbin 2018], again hinting at the existence of optimal structure

for specific tasks. As such, here have been numerous attempts to meta-learn a good prior

over the weight distributions and architectures of ANNs. MAML aims to find parameters

suitable for fast adaptation and few-shot learning [Finn et al. 2017]. In [Huang et al. 2020],

the authors propose a technique to meta-learn a single, shared policy network which is

distributed throughout the anatomy of a robot, allowing one network to control the behavior

of multiple body-parts via message-passing.

6.2.2 Continual Learning: Memory Retention, Transfer, and Generalization

Generally speaking, machine learning optimization algorithms rely upon the iid assumption,

which asserts that the training and test distributions need to be (approximately) the same.

For this reason, the traditional, and most antiquated, technique for overcoming catastrophic

forgetting is one which explicitly enforces this assumption, often referred to as experience
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replay (ER). ER aims to ensure that the system is exposed to data drawn uniformly from

the underlying task distribution/s. Continual Learning, however, requires memory retention

even in settings where the current training distribution may not be representative of the

total, historical data distribution; thus requiring a non-iid assumption. Thus, experience

replay mitigates catastophic forgetting by ignoring the problem altogether, by converting a

non-iid data-stream into a randomly shuffled dataset, which can be sampled from under the

iid assumption. In the following sections, we argue that this is likely extremely misguided,

and advocate for more research on replay-free continual learning.

Memory and Generalization are more strongly related than many would first presume. If

one accepts that historical, previously encountered data is discarded, and not retained in a

buffer, then the dual objectives of strong generalization and memory retention are actually

quite similar. In this scenario, there exists a dataset DH of all previously encountered data,

as well as another dataset DG, comprised of all unseen instances of previously seen classes

(or tasks). Under the continual learning paradigm, as the data distribution evolves over

time, historical data in DH is likely to move further and further away from the current

training distribution, to which the model is presently being exposed. Thus, the historical

data is itself OOD, and the retention of memory requires generalization to this unavailable

dataset DH . Fortunately, prior work has shown that it is possible to explicitly optimize for

memory retention in scenarios where previously encountered data is discarded. In fact, as we

further demonstrate in the coming sections, it is remarkably easy to explicitly train a model

to retain memory in replay-free settings. This is because the OOD dataset DH is known,
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and we can therefore teach a model how to recognize what knowledge it needs to preserve.

This is exciting because it shows that, while its challenging, strong generalization can be

incentivized and facilitated with the right training objective, and access to the right data

distributions. In the coming sections, we present an algorithmic framework called Hyper-

Learning that unifies and explicitly optimizes for the dual objectives of replay-free memory

retention and strong few-shot generalization in non-iid settings.

Broadly speaking, 4 categories of techniques have emerged to combat catastrophic for-

getting: (1) regularization-based approaches [Farajtabar et al. 2019; Kirkpatrick et al. 2016;

Lesort et al. 2019], (2) knowledge-compression, or capacity expansion [Joseph and Bala-

subramanian 2020; Mandivarapu et al. 2020b; von Oswald et al. 2019b; Yoon et al. 2018],

(3) experience replay and/or external memory slots [Graves et al. 2014; Mnih et al. 2013;

Rolnick et al. 2019; Weston et al. 2015], and (4) meta-learned representations and update

rules [Beaulieu et al. 2020; Flennerhag et al. 2020; Gregor 2020; Javed and White 2019;

Lindsey and Litwin-Kumar 2020]. We build upon prior work that draws strong inspiration

from a promising approach known as Warped Gradient Descent (WGD). WGD mitigates

catastrophic forgetting by learning warp parameters ω, realized as warp-layers, which are in-

terleaved between the standard layers of a neural network. These warp parameters are meta-

trained and held fixed during deployment, allowing the rest of the network to learn, without

forgetting, using standard Back-propagation. As the name implies, parameters ω warp ac-

tivations in the forward pass, and the gradients in the backwards pass. The technique is

promising because it offers guarantees of convergence, and a path towards continual-learning
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at scale. In contrast to WGD, we show in our initial experiments that it is possible to learn

a single, small network φ, constituting a single neuronal phenotype, that can be distributed

throughout a larger plastic network, and which also mitigates catastrophic forgetting.

6.3 Hyper-learning Explained

Hyper-Learning is a population-based meta-learning framework for explicitly training DANs

to facilitate the dual objectives of replay-free memory retention and strong OOD general-

ization on non-iid few-shot data-streams. Unlike the traditional machine learning paradigm,

wherein parameters are learned and then held fixed during inference, we wish to learn pa-

rameters (of DANs) which can be fixed during learning in order to regulate the updates to

another set of parameters (Synapses).

One of the key insights leveraged by Hyper-Learning is that even though we wish our

models to be able to learn on non-iid data-streams, DANs must be trained under the iid

assumption, since we still rely upon stochastic gradient-based optimization to learn their

parameters. In other words, we seek DANs which, when held fixed, negate the necessity

for the iid assumption when the model is deployed. To accomplish this, we train a popu-

lation of M unique models on M non-iid data-streams. All models share common DANs,

parameterized by φ, but each has unique synapses, defined by θ, which together define the

complete state of each model at any given time-step. Note that since DANs are distributed

throughout each model, the gradients for Synapses ∇θ depend on DAN parameters φ, and

the Hyper-gradients for DANs ∇φ depend on the Synapses of all models θM . This is true,
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Figure 6.1 Two Hyper-Streams. Hyper Streams are comprised of sequences of tasks that
must be learned in sequential fashion.

since each set of parameters θ and φ are factors of both sets of gradients. This distinction

will come in handy w.r.t. notation when we quantify the losses used to update each set of

parameters.

We begin by defining a large Hyper-Task distribution p(TH), and several hyper-parameters

(d, hH , and hCL) governing how p(TH) is partitioned into M Hyper-Streams, as outlined

in Algorithm 1. Under this framework, we assume the maximum number of tasks d that

the model is expected to encounter when it is deployed, after Hyper-Training. This can be

regarded as the deployment capacity of the model. Critically, the number of tasks on each

Hyper-Stream is significantly larger than d, s.t. d << hCL << hH , where hCL is the amount

of tasks that the model must try to learn continually during each Hyper-Training epoch, and

hH is the total number of tasks on the Hyper-Stream. We refer to this as over-training ,
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Figure 6.2 Hyper-Learning: A population of n=2 models is trained on 2 non-iid data-streams.
Synapses are only ever exposed to the non-iid data on their respective streams, but DANs
are shared across all n models, and are therefore trained under the iid assumption. This
is critical since both the data and the Synapses on each stream evolve in a non-iid way.
During Hyper-Training, gradients for DANs are computed and averaged across all models
after each and every Synaptic update. Thus, DANs are explicitly trained to facilitate one or
more meta-objectives during deployment. They are held fixed, while Synapses update using
standard Back-propagation. In essence, Hyper-Training uses experience replay to teach a
model how to learn efficiently and continually without it.

and it is crucial for achieving strong generalization during deployment. Each Hyper-Stream

Hm (Figure 6.1) for each model m ∈M , is therefore partitioned into a sequence of continual

learning tasks, held out instances of tasks in the CL sequence, and a large batch of held-out

tasks that Synapses are never exposed to, but which are used to quantify a generalization

loss, as we explain in the coming sections.

At the outset of Hyper-Training, all models are randomly initialized to the same initial

state, with Synapses θ0 and DANs φ0. Then, for each outer-loop epoch, we proceed by

sampling a Hyper-Stream (Hm ⊂ HM) ∼ p(TH), of length (d×hH), for each model m in the

population M (Figure 6.1). As mentioned above, each Hyper-Stream contains a sequence
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of Continual Learning Tasks which the associated model must try to learn in succession,

without revisiting or forgetting tasks previously encountered on the stream. Here, a task is

defined defined as a small few-shot batch of images from a single class i. The models are

allowed to take k steps on each task in their continual learning sequence HCL
m ⊂ Hm, and at

each step t attempts to output the correct class label ŷ. Upon generating a class prediction

ŷ, a Task-Loss is computed, and used to update the Synapses of each model independently.

In the case of Supervised Learning, the Negative Log-Liklihood can be used, for example; or

in the case of Unsupervised Learning, the mean squared error:

LTi
m = NLL((θmt φt)(Ti)) (6.1)

LTi
m = MSE((θmt φt)(Ti), Ti) (6.2)

Given the current Task-Loss Li
m, Synaptic gradients are computed, and each model is

updated independently:

θmt+1 ←− θmt − α∇θmt Li
m ∀m ∈M (6.3)

This results in new model states θmt+1φt. Note that this update may have caused forgetting

over HCL
m , and, more generally, poor generalization over all of Hm. Therefore, we wish to

quantify and minimize a generalization loss, and a memory loss, simultaneously, by sampling

a batch of tasks uniformly from the full Hyper-Stream: HG
m ⊂ Hm. This Hyper-Loss can be
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computed by measuring the associated model’s predictions over this batch of tasks, which

likely includes some tasks already encountered in the Continual Learning sequence:

LG
m = NLL((θmt+1φt(H

G
m))) ∀m ∈M (6.4)

Or, for Unsupervised Class Incremental Learning:
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LG
m = MSE((θmt+1φt(H

G
m)),H

G
m) ∀m ∈M (6.5)

This loss can be minimized by computing and averaging the gradients for DANs, across

all models:

φt+1 ←− φt − γ(
1

m
)

M∑
∇φtL

G
m ∀m ∈M (6.6)

At the end of each Outer-Loop epoch, the synapses of each model are reset, and new

Hyper-Streams are sampled, before repeating the process described above.

After Hyper-Training is completed, the model is deployed. DAN parameters φ are held

fixed , and the model is obligated to learn efficiently and continually, without forgetting,

using standard backpropagation. We offer empirical validation of our approach in the next

section.

6.4 Hyper-Learning Results

Formally, for both the Supervised and Unsupervised Class Incremental settings, we define

a task sequence as i instances from c ordered classes. When working with static image

datasets, We can convert this task (or class) sequence to something more analogous to a

video stream by duplicating the i instances for k frames. Consider, for example, an image of

the digit 1, as might be sampled from the MNIST dataset. We can construct a video-stream

by duplicating this image k times, resulting in a stream of length k. If we repeat this step for

all c classes, we can therefore create video-streams of length (c× k). In practice, we assume
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all instances of a class i are consumed as a batch, as if the model is being exposed to i

separate instances of the full hyper-stream, where the underlying order of the task-sequence

remains unchanged. Additionally, recall that d is the assumed number of deployment tasks,

hCL is the number of Continual Learning tasks in a sequence, and hH is the total number of

tasks on each Hyper-Stream. For this experiment. We set k = 25, i = 5, d = 10, hH = 25,

and hCL = 20. Thus, d << hCL << hH . That is, each Continual-Learning task sequence on

a Hyper-stream is of length hCL×k = 20×25 = 625. In other words, during Hyper-Training,

the models are explicitly optimized to retain memory and converge to strongly generalizing

parameter configurations over 625 synaptic updates.

6.4.1 Supervised Class Incremental Learning

For the experiments depicted in Figure 6.3, the model is Hyper-Trained on a subset of

Omniglot, and then deployed for evaluation on (a) a held-out subset of Omniglot (Meta-

Test), and (b) MNIST (Meta-Eval), During deployment, the model is obligated to learn a

sequence of tasks in an online, or replay-free manner. That is, the data from each task

is encountered once, and only once. The Omnigot dataset is divided into two subsets.

One is used as the Hyper-Training distribution, and the other is used for Meta-Testing. A

population of 3 models is Hyper-Trained the distribution which is constructed according to

the Hyper-Learning Algorithm defined in Section 6.3.

For this experiment, we used a model size of 10 million parameters, and learning rates of

.001 for both sets of parameters θ and φ. As Figure 6.3 shows, both memory retention and

generalization after continual learning on a sequence of 10 tasks steadily improves as Hyper-
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Figure 6.3 Results: Supervised Class Incremental Learning. Meta-Test = Held-Out Om-
niglot; Meta-Eval = MNIST. (Top) As Hyper-Training proceeds, the models’s memory w.r.t
to each task in the CL sequence is improved (pulled up), and is maintained for the entire
task-learning sequence. (Bottom) The average memory and generalization accuracies are
averaged computed and averaged over all tasks after the model has learned all 10 tasks.

Training progresses, though generalization improves at a much slower rate, and does not

appear to converge. These results served as promising baselines upon which to improve the

models and their training protocols. As the coming sections will show, we hypothesized that

some of the usual techniques would allow us to smoothly improve the overall performance:

more data, and bigger models.
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6.4.2 Unsupervised Class Incremental Learning

We then used the same pre-processing and algorithmic framework to evaluate the ability

of our models to perform Unsupervised Class Incremental Learning on the same task dis-

tributions as those defined in the previous section on Supervised Learning. As Figure 6.4,

Hyper-Training effectively endows networks of this type to be able to perform unsupervised

learning on a sequence of tasks in an online manner. For this experiment. We used the

MSE variant of the Hyper-Loss defined in Equation 6.5. Additionally, we doubled the size

of the model to 20 million parameters by introducing a Decoder, resulting in a more tradi-

tional Auto-Encoder architecture, or more aptly, a DAN-Auto-Encoder. We posit that the

increased model size might account for how well this model is able to generalize. As Figure

6.4 clearly demonstrates, the Hyper-Trained model exhibits excellent memory retention and

forward transfer during online continual learning, as evidenced by the fact that reconstruc-

tions of unseen downstream classes improves dramatically after only performing learning

over the first 5 digits.

More clearly, after Hyper-Training, the model was deployed on MNIST, and was obligated

to learn to reconstruct s = 5 instances of all 10 digits, seen consecutively. That is, during

deployment, the model is allowed to learn 0’s, before moving on to 1’s, and then 2’s, and so

on. The model was allowed to perform 60 steps of gradient descent on the s samples from

each class, where each class is seen only once, and the model is not permitted to revisit any

old data. The middle image in Figure 6.4 shows that the model improves at reconstructing

unseen digits as it learns to reconstruct each current digit, i.e. it exhibits forward transfer.
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Figure 6.4 Results: Unsupervised Class Incrental Learning. Replay-free memory retention
and transfer during deployment on MNIST (after meta-training on Omniglot). (Left) The
model’s initial attempt to reconstruct it’s input (MNIST digits), after a single step of gradient
descent on 0’s. (Middle) The model has performed 60 steps of gradient descent on each digit
0-4, seen consecutively, 4’s most recently. (RIGHT) Reconstructions of all previously seen
digits (0-9) after training on all digits, 9’s most recently.

Note that our algorithm explicitly encourages transfer by quantifying it during computation

of the Hyper-Loss. By measuring the model’s performance over the full task sequence after

each and every inner-loop step, the model is trained to learn information at every step that

may improve its performance on future downstream tasks.

6.4.3 Improving Generalization with Over-Training

In this section, we offer initial results which demonstrate the benefits of over-training .

We proceed by first fixing our deployment task-sequence lengths d = 3 tasks, which must

be learned in succession. For the experiments depicted in Figures 6.5, 6.6, and 6.7 we use a

model size of 10 million parameters, learning rates of .001 for θ and φ, We then proceeded

to investigate the effect of increasing the amount of data seen during Hyper-Training on

downstream performance, as defined by memory retention and generalization after continual
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Figure 6.5 The benefits of Over-Training during Hyper-Training

learning. As Figure 6.5 clearly shows, performance smoothly improves as the amount of data

is increased. That is, in order to increase the amount of data used during Hyper-Training, we

can increase the total number of tasks on the Hyper-Stream hH , the length of the continual

learning task sequences on each Hyper-Stream hCL, or the number of class instances i on

each Hyper-Stream. We began by establishing a baseline performance; where i = 1, hCL = 3,

and hH = 5 (see Blue Bars in Figure 6.5). We then proceeded to scale the amount of data

used during Hyper-Training in the following way:

• Orange: i = 5, hCL = 6, and hH = 10

• Green: i = 10, hCL = 10, and hH = 15

• Red: i = 20, hCL = 20, and hH = 25
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Figure 6.6 shows the memory retention of the final over-trained model during Hyper-

Training. Near-perfect memory retention is quickly attained by over-training the models.

Figure 6.6 Over-Training Memory Accuracy during Hyper-Training

As the amount of instances for each class, the length of the continual-learning sequences,

and the total number of classes on a Hyper-Stream increase, the generalization performance

during deployment, and after continual-learning smoothly improves. Thus, when model size

is held as a constant, there is a clear benefit to increasing the amount of data used during

Hyper-Training. Further, this trend clearly hints at the more general relationship between
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Figure 6.7 Over-Training Generalization during Hyper-Training

model size (aka capacity), the amount of data available during Hyper-Training, and the

downstream continual-learning abilities of the model.

Figure 6.7 shows the generalization perormance of the final over-trained model during

Hyper-Training. Note that generalization accuracy is near 90% after continual-learning over

the 3 deployment tasks, for all 3 datasets (Meta-Train, Meta-Test, and Meta-Eval), which

are defined in the preceding sections.
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Figure 6.8 The modularity and parameter sharing enforced by DANs dramatically outper-
form Fully-Connected Linear Warp-Layers.

6.4.4 DANs vs Fully-Connected Warp-Layers

We next sought to establish whether the modularity and parameter-sharing enforced by

a Network of DANs actually improves performance when compared to the fully-connected

warp-layers used by Flennerhag et al. [2020]. Figure 6.8 clearly shows that DANs dramat-

ically fully-connected layers. To make sure the comparison was a fair one, we took care to

ensure that the total number of parameters in both models were roughly the same. Recall

that all DANs within a payer share parameters. Also, note that DANs themselves contain

several layers of non-linearities. Therefore, although fully-connected weight matrices may be
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significantly wider than DANs, DANs are several layers deeper than their fully-connected

counterparts. Consequently, it is relatively straightforward to enforce similar model sizes

across both variants.

The results shown in Figure 6.8 demonstrate that Hyper-Training with DANs is far more

efficient than using fully-connected warp layers. Clearly, the additional innate non-linearities

are endowing the networks with a strong inductive bias that can be leveraged to learn more

efficiently.

6.4.5 Improving Performance with Model Scale

In recent years, the artificial intelligence community has witnessed an explosive growth in

the capabilities of deep learning systems. This profound jump in performance can be at-

tributed, in large part, to a single variable: model size [Kaplan et al. 2020]. Consequently, we

hypothesized that we would see a predictable improvement in performance as we increased

the scale of our models. Figure 6.9 provides validation of that hypothesis.

We trained 3 populations, each comprised of 5 models, on the same underlying Hyper-

Training and Deployment distributions. The smallest models had 25 million parameters,

the next population contained models with 75 million parameters, and the largest models

contained approximately 200 million parameters. Note that a population of 5 models with

200 million parameters each results in over 1 Billion trainable parameters in the population.

For these experiments, the Hyper-Training distribution was composed of a mixture of

the following Datasets: Omniglot, FashionMNIST, CIFAR100, and mini-ImageNET. Hyper-

Streams were constructed by sampling sequences of tasks from these underlying datasets
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Figure 6.9 Scaling Trends

according to the protocol outlined in section 6.3. We then evaluated the performance of an

individual model after being deployed on several continual-learning sequences drawn from

(a) Meta-Train: the Hyper-Training distribution itself, (b) Meta-Eval: a heldout subset of

Omniglot, and (c) MNIST. Figure 6.9 shows the generalization performance of models of

various sizes after being obligated to learn all 10 MNIST digits in sequential fashion. The

largest models, containing 200 million parameters achieve a generalization of nearly 92%

after performing supervised learning on a video-stream of MNIST digits. The video-stream

itself contains 5 instances of each digit, which means that this is both a few-shot and a
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continual-learning problem.

Figure 6.10 Generalization after continual learning. Hyper-Training results in models that
are able to learn continually and in the process out-perform their randomly initialized coun-
terparts that use iid-replay.

For many problems, the iid-assumption and replay-based approaches can be leveraged

by artificial neural networks to obviate the necessity to learn in online manner. As such,

the most reliable technique for overcoming catastrophic forgetting has been to retain copies

of all data encountered by the system. Such a system is then able to sample uniformly

from the underlying historical data distribution. It therefore serves as reasonable baseline

against which to compare our models. The dark blue bar-plots in Figure 6.11 show the

performance of iid-sampling under a fixed-compute budget. For this experiment, we tested

the generalization of each model after being obligated to learn a sequence of tasks using a

fixed budget of 500 gradient updates, occurring over 500 video frames. That is, the models
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are only allowed 500 updates, 1 per frame of video. We tested several variants, as the legend

clearly describes. The raw baseline (dark blue) shows the performance of a Network of DANs

with 200M parameters that is randomly initialized and allowed 500 iid gradient updates.

Figure 6.11 At scale, there are continual learning sequences within the hyper-training distri-
bution for which: Memory Retention: 100% Generalization after CL: 100%.

Our results show that Hyper-Training, which is akin to clever pre-training, allows a

model to significantly outperform the iid baseline with respect to generalization despite

being obligated to learn the tasks in sequential (non-iid) fashion. Said another way, we can

train models to outperform their randomly initialized iid baselines, but it comes at the cost

of a lengthy Hyper-Training phase. As such, it is possible that this approach might be best
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suited for situations in which the systems are simply not allowed to retain copies of the full

evolving training distribution.

Furthermore, it is worth noting that there are indeed task-sequences within the Hyper-

Training distribution upon which the models attain 100% generalization performance, as

seen in Figure 6.11. This makes sense, since it ought to be possible to overfit to the Hyper-

Training distribution itself. It should therefore be possible to further reduce the variance in

generalization performance over the Hyper-Training distribution, but we leave this to future

work.

6.4.6 DANs Are Learned Activation Functions

The astute reader may have realized that the combination of distributed, common parameters

and Hyper-Training allows for an interpretation of DANs as learned action functions .

Our work shows that these learned activation functions play a critical role with respect to

both memory retention and few-shot generalization. In order to more closely inspect them,

we ran a continual regression experiment wherein the DANs took a single value as input

and produced a single value as output. This allowed us to visualize the shape of the learned

function itself. As Figure 6.12 shows, the learned activation function implemented by DANs

can take on interesting shapes that are wildly dissimilar from most other common nonlinear

activation functions used in deep networks (such ReLU, Leaky-RelU, Tanh, Sigmoid, etc...),

despite being constructed using those very functions. Futher, the gradient of these learned

functions also takes on interesting shapes.

While we leave a more thorough investigation to future work, we posit that these learned
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function embed a strong inductive bias into deep networks that can facilitate multiple desir-

able meta-objectives when Hyper-Trained with a suitable data distribution.

Figure 6.12 DANs are learned activation functions which have interesting derivatives. The
feed-forward function is displayed in red, and its derivative is in brown.

6.5 Concluding Remarks and Future Prospects

Hyper-Learning with Deep Artificial Neurons represents the zenith of all my research done

during my graduate program. It is this author’s humble opinion that it is a framework that

can be leveraged to tackle some of the most difficult open challenges in artificial intelligence.

The research laid forth in this text should serve as a demonstration that if we can properly
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define our problems of interest, we can either carefully design their solutions, whether they

be architectural, or algorithmic. The appeal of Hyper-Learning with DANs, is that it is

entirely compatible with all of the previous work outlined in this work, since DANs can

be embedded in any arbitrary computation graph that we normally refer to as an artificial

neural network. As such, several obvious options exist for promising future research. They

include, but are not limited to:

• Hyper-Training DANs to facilitate Continual Active Learning by converting the pro-

posed Barlow-Twins Active Learning Architecture to a Network of DANs.

• Converting open-source Large Language Models to Networks of DANs to allow of

replay-free fine-tuning.

• Continual Alignment: Endowing Large Language Models with an ability to retain their

alignment objectives through fine-tuning without open-sourcing the alignment data-set

itself.
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