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ABSTRACT 

Cognitive bias refers to the influence of affective state on the interpretation of ambiguous 

stimuli and has been used to assess emotional state in nonhuman animals. The current study 

assessed cognitive bias in 12 brown-tufted capuchin monkeys using three distinct computerized 

psychophysical tasks and a novel manipulation to affect that involved giving moneys gelatin 

foods that tasted either pleasant or unpleasant. In addition, monkeys were trained on several 

positive and negative training cues. Results showed that food type was not a factor in monkeys’ 

responses to ambiguous stimuli. Behavioral observation during test sessions revealed the 

unpleasant food may have acted as a form of enrichment, thereby providing the monkeys with 

two pleasant activities prior to assessments of their emotional states. Further, results indicated 

that monkeys displayed a preference for the positive response class when classifying the 

ambiguous probe, but that this preference was subject to both task and individual differences.  
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1 INTRODUCTION  

The study of emotion in humans and nonhuman animals has a long and checkered past. 

Despite questions regarding emotion dating back centuries, researchers still debate how to best 

study emotions and also what emotion truly is and whether it can be defined for scientific study. 

Distinguishing between terminology such as “affect,” “mood,” and “emotion” has been the 

source of much struggle in the field, with little agreement between and within the scientific and 

non-scientific communities (Alpert & Rosen, 1990; de Vere & Kuczaj, 2016; Izard, 2010; 

Kleinginna & Kleinginna, 1981). What is agreed upon, however, is that emotion is highly 

complex and multifaceted, meaning it is composed of multiple components (Izard, 2010; 

Kleinginna & Kleinginna, 1981; Russell, 2003). These components typically draw on 

neurological, cognitive, behavioral, and biological processes and include attributes such as 

duration, experience, cause, quality, intentionality, and intensity that serve to distinguish emotion 

from other processes as well as the terms used within emotion from one another (Alpert & 

Rosen, 1990; Beedie, Terry, & Lane, 2005; Cabanac, 2002; de Vere & Kuczaj, 2016; Izard, 

2010; Kleinginna & Kleinginna, 1981; Mulligan & Scherer, 2012). No one definition has entirely 

placated the field, but many definitions incorporate the above components of emotion. For 

current purposes, the following working definition of emotion is this: Emotion is an intense 

episode of either short- or long-term duration accompanied by changes to physiology, cognition, 

and behavior that is typically directed at either an internal or external stimulus and that functions 

to aid in the seeking out of rewards and the avoidance of harm (Kleinginna & Kleinginna, 1981; 

Mulligan & Scherer, 2012; de Vere & Kuczaj, 2016). With regard to terminology within the 

study of emotion and general agreement that “moods” are more sustained and internally focused, 

I will use “affect” and “affective state” to refer to short-term, externally focused (i.e., directed at 
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an object, person, or situation) emotion states as well as operate under the assumption that it is 

acceptable to use the terms “affect” and “emotion” synonymously (Alpert & Rosen, 1990; 

Beedie, Terry, & Lane, 2005; de Vere & Kuczaj, 2016; Mulligan & Scherer, 2012).  

Due to its multi-aspect nature, researchers have been forced to study emotion in a 

piecemeal fashion. As such, it is important to keep in mind the context of findings in emotion 

research, because they may not generalize to all animals, human or nonhuman, or to all 

situations. The complexity of emotion has made it a difficult area of study for many 

psychologists. For decades, emotions were considered the direct opposite of reason and logic, 

and emotion and cognitive researchers operated on competing sides, or at least rarely worked 

together (e.g., Peters, Västfjäll, Gärling, & Slovic, 2006). As a result, a problematic division 

between cognitive and emotion research arose, with arguments supporting the independence of 

emotional and cognitive processing (Baddeley, 2007; Storbeck & Clore, 2007). Eventually, after 

evidence accumulated of the inter-relatedness of cognition and emotion and the bi-directional 

relationship between emotions and the mind, researchers studying the emotions of human and 

nonhuman animals began to advocate for the inclusion of affect and emotion in other fields of 

psychology. Specifically, there was a great emphasis to understand the impact emotions can have 

on cognitive processes and vice versa (Bower, 1981; Bower, Gilligan, & Monteiro, 1981; 

Brosch, Scherer, Grandjean, & Sander, 2013; Clore, Schwarz, & Conway, 1994; Clore, Gasper, 

& Garvin, 2001; Forgas, 1995; Liu, Fu, & Fu, 2009; Loewenstein, Weber, Hsee, & Welch, 2001; 

Schwarz & Clore, 1996).  

 Research on emotion has to designate measurable and observable indicators. There are 

several indicators of emotions, including verbal, physiological, and behavioral, and these 

indicators are often studied in combination with one another. However, evidence has shown that 
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different measures do not always correlate with one another. For example, verbal reports do not 

always match physiological measures of affective states (Patrick, Bradley, & Lang, 1993; Stone 

& Nielson, 2001). Issues with correlations between the measures of emotion are especially 

problematic when attempting to measure emotional states in speech-impaired humans, pre-verbal 

children, and nonhuman animals. Whereas using multiple measures of affective state to combat 

these challenges is ideal, it is not always possible or practical. Along with several possible 

emotional indicators, emotion is generally assessed and measured along three dimensions: 

pleasure, arousal, and dominance (Liu et al., 2009). Pleasure, also known as valence, and arousal 

are most commonly used to assess affective states. However, many studies with animals tend to 

focus on negative valence or ignore valence in favor of arousal altogether (de Vere & Kuczaj, 

2016). Despite the challenges of measuring emotion, by using behavioral, physiological, and 

cognitive measures of emotion and pulling from areas of psychology, biology, and neuroscience, 

evidence has suggested that cognition can be influenced by emotional states. Further, this 

influence spans many cognitive processes, including attention, memory, information-processing, 

perception, and decision-making (Baddeley, 2007; Kensinger, 2004; Lerner, Li, Valdesolo, & 

Kassam, 2015; Schwarz & Clore, 1996). Finding that emotion can influence cognitive processes 

was only the beginning as further research was needed to determine just how emotion impacts 

cognition as well as its role and function in humans and nonhumans. 

With regards to how emotion operates on cognition and what function it serves, evidence 

has suggested that although emotions generally function to guide behavior toward survival goals 

such as attainment of resources and avoidance of harm (de Vere & Kuczaj, 2016; Mendl, 

Burman, Parker, & Paul, 2009) and to enable flexible responding to the environment (Brosch et 

al., 2013), they can both enhance and hinder cognition, and cognition can also positively or 
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negatively impact emotional states (Clore & Huntsinger, 2007; Liu et al., 2009). Emotion can 

guide our decision-making, attention, perception, and memory in ways that may result in either 

improved or impaired cognition depending on the situation (Blanchette & Richards, 2010). 

Emotional disorders, specifically, have generally harmful effects on cognition, such as biasing 

memory recollection of negative events in depressed individuals (Dalgleish & Watts, 1990) or 

biasing attention toward threatening stimuli in those with anxiety disorders (Bar-Haim, Lamy, 

Pergamin, Bakermans-Kranenburg, & Van Ijzendoorn, 2007; MacLeod, Matthews, & Tata, 

1986). However, it is generally accepted that emotional influences on cognition have adaptive 

benefits, such as directing attention to potentially dangerous situations, individuals, or objects, 

enhancing memory for emotional events to quicken action at a later time, or guiding decisions to 

enable efficient reaction to social or individual events (Clore & Huntsinger, 2007; de Vere & 

Kuczaj, 2016). This is evident not just through use of cognitive assessments but also through 

findings in neuroscience, which indicate that similar areas in the brain show corresponding 

patterns of activation during periods of cognitive processes and emotional behavior (Ghashghaei 

& Barbas, 2002; Liu et al., 2009; Storbeck & Clore, 2007). In some cases, brain damage to 

specific areas impaired the ability to use affective information and reduced performance in 

judgment and decision-making tasks (Damasio, 1994). The differential impact of emotional 

states on cognition is the center of much research in the field, as it can inform on the interaction 

between emotion and cognition in healthy and unhealthy individuals and in a variety of contexts 

(Baddeley, 2007; Bechara, H. Damasio, Tranel, & A. Damasio, 1997; Brosch et al., 2013; 

Damasio, 1994; Storbeck & Clore, 2007). 
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1.1 Emotional Influences on Memory 

Effects on memory have been found at various stages, including during encoding, 

consolidation, and recall (Brosch et al., 2013; Liu et al., 2009). The specific effect that emotion 

has on memory depends on the affective state at the time of recollection and encoding as well as 

the emotional charge of the memory itself. According to the mood congruency hypothesis, 

people are more likely to recall memories that are congruent with their current mood (Bower, 

1981; Buchanan, 2007; Schwarz, 2000). This differs from state-dependent learning in that the 

affective state at recall resembles the emotion of the recalled material itself rather than the 

emotion at the time of encoding.  

The influence of emotion on memory can be both beneficial and harmful. Eysenck, 

Mogg, May, Richards, and Mathews (1991) demonstrated that anxious individuals were more 

likely to interpret ambiguous sentences as threatening during a memory recognition test. 

Specifically, participants rated whether sentences at testing were similar in meaning to sentences 

presented at an earlier time, and anxious individuals rated remembered ambiguous sentences as 

similar in meaning to threatening sentences presented at testing. Along with interpretations and 

memory of ambiguous stimuli, extreme, intense emotions, such as fear, anxiety, and craving, can 

act to disrupt working memory by biasing attention away from the task at hand and occupying 

limited working memory capacities (Baddeley, 2007). For example, patients with emotional 

disorders, such as anxiety and depression, experience reduced memory performance when 

compared to healthy participants (Dalgleish & Cox, 2002). While threat does impair working 

memory in healthy individuals, individuals who struggle with anxiety disorders are even more 

susceptible to threat-related distractions and exhibit more pronounced working memory deficits 

as a result (Baddeley, 2007). In contrast, individuals with depression-related disorders do not 
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show the same attentional impairments as those with anxiety disorders, instead exhibiting 

impairments in learning, long-term memory, and prospective memory (Cronholm & Ottosson, 

1961; Rude, Hertel, Jarrold, Covich, & Hedlund, 1999). Although emotion can certainly bias 

memory recollections and confidence, some data suggest that there may be an adaptive benefit, 

such that increased confidence in memories resulting from emotional stimuli may enhance 

attention and improve reaction to potentially harmful stimuli or events (Phelps & Sharot, 2008). 

As described above, affective influences on memory are often tied to attention, which is also 

impacted by emotional state and stimuli. 

1.2 Emotional Influences on Attention 

Because attention impacts many other aspects of cognition, emotional influences on 

attention not only affect attention itself but also any further processing, and these interactions can 

operate in both directions (Kensinger, 2004). The emotional relevance of a stimulus can work to 

direct attention and selection, such as when emotional targets are detected more quickly than 

neutral targets among distractors (Brosch et al., 2013; Öhman, Flykt, & Esteves, 2001). 

Specifically, both adults and young children were found to detect fear-relevant images of spiders 

and snakes more quickly among fear-irrelevant distractor images such as flowers and caterpillars 

(LoBue & DeLoache, 2008; Öhman et al., 2001). The capture of attention by fear-relevant 

stimuli was suggested to stem from evolutionary survival adaptations in which potentially life-

threatening stimuli took attentional precedence over all other stimuli to facilitate enhanced 

detection, memory, and action.  

Enhanced attention to threatening stimuli is evident in both humans and nonhuman 

animals and is also further enhanced by negative affective states and emotional disorders. For 

example, anxious emotional states greatly influence the direction of attentional resources 



7 

(Öhman & Soares, 1994). MacLeod et al. (1986) suggested that this effect is indicative of 

differences in attention between anxious and non-anxious individuals when dealing with 

emotional material, such that anxious individuals tend to shift attention toward threats while non-

anxious individuals shift their attention away from such material.  

 Regardless of the seemingly negative impacts of the bias in attention that emotional 

stimuli and states can create, this relation may also have its origins in adaptive benefits 

(Baddeley, 2007; Paul, Harding, & Mendl, 2005). For example, Nairne, Pandeirada, and 

Thompson (2008) found that memory recall and recognition were best both for survival-related 

words and when participants engaged in survival-related processing when compared to other 

proven forms of retention enhancing processing strategies. This would seem to indicate that there 

are adaptive benefits for directing attention toward threatening stimuli. The interaction between 

emotion, attention, and memory can serve to increase defensive or offensive responses to threats, 

which surely is an invaluable process for self-preservation in many animals (Oatley & Johnson-

Laird, 1987).  

Along with enhancing attention to an emotional stimulus or when in an emotional state, 

affect can also influence how stimuli and situations are perceived. This is a particularly 

important relation, because perception of stimuli is largely outside of conscious cognitive 

control, unlike some of the earlier described cognitive processes that also are affected by 

emotion. This means that emotional influences on perception can “kick-start” the entire 

processing mechanism in a given ultimate memory recall or decision-making scenario.  How one 

perceives the world sets the stage for how one remembers or acts on the world, and if such 

perception is influenced by emotion, this helps account for the relation of emotion and cognition 

more broadly.  
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1.3 Emotional Influences on Perception 

Perception involves the sensory modalities and the interpretation of sensed stimuli. 

Emotion influences these interpretations in interesting ways, depending on the arousal and/or 

valence of either the individual or the stimuli. For example, the arousal and valence of both 

auditory and visual stimuli can differentially influence the perception of time by lengthening the 

perceived passage of time when stimuli are highly arousing and negatively valenced or by 

shortening the perceived passage of time when stimuli are highly arousing and positively 

valanced (e.g., Angrilli, Cherubini, Pavese, & Manfredini, 1997; Droit-Volet & Meck, 2007; 

Noulhiane, Mella, Samson, Ragot, & Pouthas, 2007). Alternatively, low arousal stimuli have an 

opposite effect on time perception, such that negatively valenced stimuli result in reports of 

shorter durations while positively valenced stimuli result in longer reported durations (Angrilli et 

al., 1997). Affective states can also have an impact on estimations of likelihoods and 

probabilities. For example, Johnson and Tversky (1983) found that positive affective states 

resulted in overestimations of the likelihood of positive events while negative affective states 

resulted in the overestimation of negative event likelihoods. In addition, participants who 

listened to sad music versus happy music tended to overestimate the incline of a hill (Riener, 

Stefanucci, & Proffitt, 2003). The exact mechanisms behind the general improvement in 

perception seen for emotional stimuli were investigated by Zeelenberg, Wagenmakers, and 

Rotteveel (2006), who sought to determine whether the impact of emotional stimuli on 

perceptual processing was due to enhanced encoding or to a bias toward emotional rather than 

neutral stimuli. Through a study constructed to parse these two explanations by differentially 

manipulating the valence of distractor and target stimuli during a perceptual task, Zeelenberg et 

al. (2006) determined that the enhancement in performance when perceiving emotional stimuli is 
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due to enhanced processing and not to bias. These and other findings suggest enhanced 

perceptual processing of emotional stimuli is likely an adaptation evolutionarily designed to 

improve detection of potentially threatening or rewarding environmental stimuli that must take 

precedence over neutral stimuli not related to survival or fitness (Stefanucci, Gagnon, & Lessard, 

2011; Zeelenberg et al., 2006). Differences in perceptual experiences resulting from emotional 

states can have a large influence on the decisions made and the resulting actions taken, such as 

not attempting to climb a perceptually inflated incline or to flee from a perceived predator. 

Indeed, differences in perception can lead to differences in interpretation, judgment, and eventual 

action. 

1.4 Emotional Influences on Decision-Making 

Lerner et al. (2015) stated that “Decisions can be viewed as a conduit through which 

emotions guide everyday attempts at avoiding negative feelings (e.g., guilt and regret) and 

increasing positive feelings (e.g., pride and happiness)” (p. 801). However, the way in which 

emotions influence decision-making depends on the specific emotions at play. Whether the 

emotions involved are related or unrelated to the decision itself can influence the eventual 

outcome in very different ways (Blanchette & Richards, 2010; Västfjäll et al., 2016) 

 Emotions that result from the decision itself can have a positive or negative impact on 

cognition. For example, brain damage in the ventromedial prefrontal cortex impairs the ability to 

feel emotion and to optimize decision-making when compared to healthy individuals (Bechara, 

Damasio, Damasio, & Lee, 1999; Damasio, 1994). A gambling task described by Bechara et al. 

(1997) was presented to brain-damaged and healthy participants to observe both their 

physiological and behavioral responses to decks of cards that varied in reward value and 

probability. Healthy participants exhibited skin conductance responses (SCRs) when choosing 
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between the two disadvantageous decks and, after several losses, began to avoid these decks. 

Further, after experiencing a number of losses, healthy participants verbalized awareness that the 

disadvantageous decks were, in fact, the sub-optimal choice, and their SCRs and behavior 

reflected this realization. However, participants with damage to their ventromedial prefrontal 

cortex exhibited no SCRs in response to the disadvantageous decks, expressed little awareness of 

the nature of the decks, and chose sub-optimally. Even in the rare cases where participants with 

brain damage verbalized some knowledge of the disadvantageous decks, they still continued to 

choose sub-optimally. These results suggested that emotional states driven by the decisions 

themselves can impact both behavioral responses and the efficiency of decision-making 

processes. 

 Emotions resulting from unrelated events that are then carried over into the current 

decision can also greatly influence decision-making, including both verbal reports and 

probability estimations (Blanchette & Richards, 2010; Clore & Huntsinger, 2007; DeSteno, 

Petty, Wegener, & Rucker, 2000; Johnson & Tversky, 1983; Lerner & Keltner, 2000; Schwarz & 

Clore, 1983; Wright & Bower, 1992). Emotions can have a great impact on decision-making, but 

the degree of influence exerted by emotions can be even more pronounced when the outcome of 

a decision is ambiguous or uncertain. 

1.4.1 Emotional Influences on Ambiguous Decision-Making 

Expected Utility theory holds that ambiguous decisions should be made according to 

expected value, which is defined as the positive or negative evaluation of potential outcomes, 

and to the probability of those outcomes occurring (Loewenstein, 2000; Mendl et al., 2009). In 

this model, emotion influences choice behavior by acting on the evaluations of outcomes in 

terms of their utility. Negative affective states, such as depression and anxiety, result in more 
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pessimistic judgments of ambiguous stimuli (MacLeod & Byrne, 1996), which impacts objective 

value determination due to the tendency for individuals in negative affective states to minimize 

the likelihood for disappointment or harm (Rolls, 2005; Schwarz, 2000). However, specific 

negative affect can influence the evaluation of value and outcome probability in different ways. 

For example, depressed individuals may experience a decrease in the perceived value of an 

outcome as well as in the probability of positive events, while anxious individuals may 

experience a perceived increase in the probability of negative events, suggesting that probability 

and value estimations may be encoded separately in the brain and may be independently subject 

to emotional influences (e.g., Mendl et al., 2009).  

 Negative affective states clearly influence judgments of ambiguous stimuli by making 

those judgments more negative. This hold true not only for object and location stimuli but also 

for faces. Brown, Raio, and Neta (2017) found that individuals experiencing high levels of stress 

were more likely to rate ambiguous facial expressions (e.g., surprise) as negative when compared 

to individuals with lower stress levels, demonstrating the impact negative affective states such as 

stress can have on the interpretation of and potential response to social situations. However, the 

influence of emotion on the judgment of ambiguous stimuli is not entirely negative. In fact, the 

reverse is true of positive affective states which tend to result in more positive judgments 

(Nygren, Isen, Taylor, & Dulin, 1996). Further, ambiguity is not the only factor that may 

enhance the effects of emotion on decision-making. The influences of affective state can also 

have an impact on other cognitive biases, such as risk and loss aversion. Ambiguous decisions 

involve a certain amount of risk and potential for loss, and aversions to risk and loss can impact 

how value and probability are evaluated. People are, in general, risk and loss averse when 

dealing with ambiguous situations (Ellsberg, 1961; Kahneman & Tversky, 1979; Tversky & 
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Kahneman, 1981). However, affective state may influence these aversions by either enhancing or 

diminishing them (Hsu, Bhatt, Adolphs, Tranel, & Camerer, 2005; Kliger & Levy, 2003; Maner 

et al., 2007; Mendl et al., 2009; Platt & Huettel, 2008; Rangel, Camerer, & Montague, 2008). 

Shiv, Loewenstein, Bechara, Damasio, and Damasio (2005) provided evidence of the impact 

emotion can have on risk aversion and decision-making. Participants with lesions in emotion-

related brain areas were less risk-averse than controls and responded more advantageously when 

making investment decisions. Anxiety disorders can serve to decrease the tolerance for 

uncertainty, resulting in an enhanced aversion to ambiguity (Dugas, Gagnon, Ladouceur, & 

Freeston, 1998). These influences interact with other processes involved in decision-making and 

further elucidate the multifaceted and highly complex relationship between decision-making and 

emotions. 

1.5 Relation of Emotion and Cognition for the Present Study 

Emotion acts on the perception, interpretation, processing, and memory of information. 

As stated above, negative emotions can alter emotional influences on cognition in ways that 

hinder or distract from efficient responding. Tasks that require discrimination at the perceptual 

level are of particular interest in studies of emotion and cognition, due to the potential for 

emotional influences on perception to go largely unnoticed by the individual. Perception is 

generally an automatic process, and emotion states can alter perceptive experiences without the 

conscious awareness of the individual. This allows for research in this area to filter out the 

potential impact of emotional awareness and other “higher order” emotional processes on 

cognition. In light of this advantage, studies involving perception and emotion in nonhuman 

animals present an opportunity to study the effects of emotion on cognition at a more basic level, 

such as in the absence of language, social influence, and complex emotional awareness. Other 
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cognitive processes such as memory and decision-making are highly complex and can be 

influenced by numerous factors, while perception is generally agreed to be a more basic process 

and less vulnerable to interpretive errors. Assessing the impact of emotion at this level of 

processing is a necessary foundation for further research, in that it sets the stage for further 

cognitive processing, and emotional influences on perception can often account for influences at 

“higher levels” of cognition.  

Nonhuman animal perception is often similar to that of humans, so employing perceptual 

tasks with nonhuman animals allows for a more direct comparison of performance and error. The 

potential for emotion to alter the perception of nonhuman animals suggests that emotions can act 

on nonhuman animal cognition in much the same way as it does in humans, and that may begin 

at the perceptual level. Further, changes to nonhuman animal perception as a function of their 

affective state can inform on their psychological welfare, as enacting positive changes to their 

environment may be perceived differently depending on their current emotional states.  

1.6 Emotion and Cognition in Nonhuman Animals 

As detailed above, cognition and emotion are highly intertwined and the impact of emotion 

on cognitive processes has been well-studied in humans. However, much of this research has 

either sprung from or led to research on emotions and nonhuman animal cognition. Many 

similarities exist in the cognitive and emotional processes of humans and nonhuman animals, and 

because animals do seem to experience suffering and pleasure, it stands to reason they may also 

exhibit emotional influences on their cognition (Roitblat, Bever, & Terrace, 1984; Shettleworth, 

2009; Zentall & Wasserman, 2012). Indeed, animals have been found to show similar emotion 

and cognition interactions in their behavior and psychology (Phelps, 2006). Although assessment 

of emotion in animals can be challenging, research has revealed that emotional states influence 
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memory, attention, perception, and decision-making in nonhuman animals in much the same way 

as they do in humans (Berridge & Robinson, 2003; Paul et al., 2005).   

 Research on nonhuman animal emotion and cognition serves to expand upon findings in 

the human literature, but also allows for unique methods and questions that research with 

humans does not permit. Because emotional expression and recognition have been observed as 

universal across human cultures as well as in some nonhuman species, questions regarding the 

evolutionary origins of emotions and their impact on cognitive processes are often studied in 

nonhuman animals (Darwin, 1872; Evans & Cruse, 2004; Shariff & Tracy, 2011). Studying the 

cognitive processes of animals when under various affective states and with a variety of 

emotional stimuli can elucidate the adaptive value of emotions (Shariff & Tracy, 2011). For 

example, mood states in animals can inform on their response to their environment and how 

persistent threat and the potential for reward impacts cognition and coping efficiency (Mendl, 

Burman, & Paul, 2010). Further, emotion-cognition research in nonhuman animals works to 

address what the function of emotion is, such as guiding behavior and decisions, directing 

attention, and engaging in social communication (Paul & Mendl, 2018). Lastly, studying 

cognition and emotion across species serves to provide a better account of the breadth of emotion 

in phylogeny, including how widespread it is and how it has evolved over time into the complex 

process that exists in humans.  

 We know that animals demonstrate emotion, and emotions influence their cognition and 

behavior in ways similar to humans (e.g., Darwin, 1872; Hess & Thibault, 2009). However, the 

breadth and complexity of emotion in animals is highly variable and still under much debate 

(Izard, 1992). Basic emotions that are generally described as primitive, innate, automatic, and 

universal, such as fear and pleasure, have been demonstrated widely across the animal kingdom, 
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while more complex emotions that are assumed to require a degree of self- awareness and higher 

order cognition, such as shame and pride, are generally reserved for the human emotional 

spectrum, with some exceptions in nonhuman primate species (Clark, 2013; Izard, 1992). In 

some nonhuman animal species, the absence of complex emotions provides a unique opportunity 

for researchers by allowing for the study of the relationship between basic emotions and 

cognition without the potential for more complex emotions to cloud results and interpretations. 

Indeed, when studying the influence of fear on cognition, researchers tend to study nonhuman 

animal participants due to the complexity of the human fear system and the potential for other 

emotions to influence humans’ behaviors and cognition (Mendl et al., 2009; Storbeck & Clore, 

2007).  

 Animal cognition and emotion research also has directly applicable benefits. Animal 

models have been used in pharmacology for studying the effectiveness of medications used to 

treat emotional disorders in humans and in neurology for studying the neural underpinnings of 

emotion and associated disorders (LeDoux, 2012; Panksepp, 2004; Paul & Mendl, 2018; 

Takamatsu et al., 2003; Willner, 1997). In addition to pharmacological and neurological 

research, cognitive and behavioral research on emotions in nonhuman animals requires a unique 

perspective on methodology. Nonhuman animals cannot voice their emotional states as humans 

can, so researchers must search for ways to study emotion in nonhuman animals using nonverbal 

assessments. These assessments are useful for nonhuman animal research and for research with 

humans who are either pre-verbal or speech impaired, as well as providing an additional measure 

of emotion in humans to assess the validity of verbal reports.  

 Apart from what research on emotion in nonhuman animals can achieve for humans, it is 

imperative for the welfare of the animals themselves. de Vere and Kuczaj (2016) addressed this 
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point by stating that human and animal emotions need not align perfectly for the study of animal 

emotion to be a valuable endeavor in its own right. Animals kept in captivity in laboratories, 

zoos, and farms for use in research, husbandry, or entertainment are a large part of society, and it 

has become apparent that enhancing the quality of life of these animals is necessary to reduce 

unnecessary suffering as well as to improve the research or businesses these animals contribute 

to. Assessing the welfare of captive animals must first begin with the determination of their 

current emotional states and what factors either improve or diminish their well-being. Assessing 

the neural underpinnings, behavioral expression, and function of emotion in animals works to 

inform on their overall psychological health. In turn, these assessments work to provide the 

necessary information to enact positive changes in animal care policy, regulation, and 

maintenance (Baciadonna & McElligott, 2015; Boissy & Lee, 2014; Mendl et al., 2009).   

When approached with care and caution, research with nonhuman animals allows for 

manipulations to cognition or emotion that would be considered unethical to perform with 

humans, such as lesion studies or the impact of negative environmental situations on welfare. 

Further, research involving the nonverbal aspects of emotion and cognition is a necessary 

consideration with animals and would be difficult to approach from a purely human perspective, 

such as with the speech-impaired or pre-verbal children. Human emotion is a vastly complex 

area of study that often overlaps with other factors, including socialization, education, and 

language, and while the emotional lives of animals may be subject to other factors as well, they 

are likely less complex, allowing for more basic assessment of the influences of emotion on 

cognition and vice versa. Work with nonhuman animals requires researchers to study basic 

mechanisms which can improve current research with humans by returning to the foundation of 

the questions involving emotion. Indeed, researchers had to begin their study of emotion in 
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nonhuman animals by first describing what they meant by emotion so as to define a starting point 

for further investigation.  

 Paul et al. (2005) described a componential view of emotion, suggesting that many 

components of emotion can be studied either simultaneously or independently. Because the 

aspects of emotion are so complex and varied, prescriptive definitions of terms used in emotion 

research with animals are a necessity. The key components of emotion discussed in relation to 

animals mirror those discussed above, including valence, scalability/ intensity, persistence, and  

generalization, and all four of these components of emotion have been found in animals 

(Anderson & Adolphs, 2014). Although much debate still exists over the nuances of animal 

emotion, such as whether conscious awareness is necessary, the general agreement is that 

animals do in fact possess emotions and that, at least in some species, they reflect emotions seen 

in humans (de Vere & Kuczaj, 2016). Further, studies with animals show similar effects on their 

cognition from their affective states to those seen in humans, such as emotional influences on 

memory acquisition, recall, and consolidation (McGaugh, 2004; Sandi, Loscertales, & Guaza, 

1997), on attention (Kawai & Koda, 2016; Treves, Drescher, & Ingrisano, 2001; van Rooijen, 

Ploeger, & Kret, 2017), and on decision-making and judgments (Davidson, 1994; Mendl et al., 

2010; Paul et al., 2005). For example, animals in negative affective states are more likely to 

direct their attention toward threatening stimuli (Kawai & Koda, 2016). In addition, nonhuman 

animals show amygdala activation patterns in response to emotional stimuli as well as 

connections between amygdala activation and memory consolidation that closely resemble those 

seen in humans (McGaugh, 2004). Emotion-cognition studies with nonhuman animals are an 

increasingly larger part of the literature on animal mental lives, providing evidence that animals 

resemble humans in the areas of stress (Koolhaas, B. De, A. De, Meerlo, & Sgoifo, 1997), fear 



18 

and learning (Davidson, 1992; Forkman, Boissy, Meunier-Salaün, Canali, & Jones, 2007; Maren, 

2001), risk-taking (Blanchard, Blanchard, & Rodgers, 1991) and facial expressions (Steiner, 

Glaser, Hawilo, & Berridge, 2001). Many tasks have been constructed to study emotion using 

innate and learned responses as well as responses resulting from induced emotional states in 

nonhuman animals (Paul et al., 2005). Because animals cannot verbalize their emotional states, 

these tasks relied on indirect measures as a hallmark of emotion in nonhuman animals. 

 Measures in animals are commonly behavioral or physiological and primarily focus on 

mammals and negative affective states (de Vere & Kuczaj, 2016; Paul et al., 2005). 

Physiological measures include changes in heart rate, skin conductance, hormone and 

neurotransmitter levels, blood pressure, and facial expressions and are often taken as indicators 

of affective state changes in nonhuman animals. Emotion researchers use changes in stress 

physiology as indicators of anxious affective states (Paul et al., 2005). However, several issues 

exist with measures of physiology, namely timing issues and a lack of valence and positive affect 

information (Boissy et al., 2007; Mendl et al., 2009). Specifically, physiological measures such 

as heart rate and blood pressure can occur in response to any number of environmental inputs 

and may not be directly related to the manipulation or object of study. Further, using 

physiological measures in studying the effects of long-term emotional states is not particularly 

efficient, considering they can be short-lived and impacted by a variety of factors. With regards 

to information on emotional valence, physiological measures are indicative of the occurrence of 

an emotion but are not informative about the nature of that emotional state. For example, 

increases in heart rate can result from both positive and negative affective states.  

 In contrast with physiological measures, behavioral measures do provide information on 

valence, frequently observed as approach and withdrawal responses. Further, vocal and facial 
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expressions in nonhuman animals have been found to be homologous with those of humans and 

have been used as an indirect measure of affect (Steiner et al., 2001). However, observer bias and 

misunderstanding as well as underlying motivations for the behavior create a challenge for 

interpreting the emotional state of the subject (Mendl et al., 2009). Even if researchers are 

cautious in their interpretations of observed behavior, there is still a measure of subjectivity. 

Behavioral expression can be indicative of a variety of underlying emotional states, and 

especially when it comes to animals, emotional state, intention, and motivation may not map on 

perfectly to overt behavior. 

 Verbal report is considered the ideal measure in human emotion research. However, these 

reports have been found to sometimes differ from the physiological and behavioral measures 

described above (Mendl et al., 2009). Due to this discrepancy, animal researchers expressed 

concerns with applying these physiological measures in animals, who cannot confirm or deny 

their accuracy as proxies for affect (Barnett & Hemsworth, 1990; Boissy et al., 2007; Mendl et 

al., 2009; Paul et al., 2005). These limitations can be partially addressed by using multiple 

measures simultaneously. However, interpretation accuracy remains a concern. Thus, cognitive 

measures were investigated as an alternative indicator of emotional state.  

1.7 Cognitive Bias 

Due to the fact that emotion and cognition are highly interconnected and that emotion can 

have a profound impact on cognitive processes, cognitive measures of emotional states in 

animals can be an alternative or supplemental assessment to behavioral and physiological 

measures. Cognitive bias is one such phenomena that has emerged from investigations into 

animals’ emotion and decision-making. Stemming from the finding that humans in a negative 

emotional state interpret ambiguous stimuli more negatively (Eysenck et al., 1991; Gotlib & 
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Krasnoperova, 1998; MacLeod & Byrne, 1996; Mayer, Gaschke, Braverman, & Evans, 1992; 

Nygren et al., 1996; Wright & Bower, 1992), research with nonhuman animals has shown that 

they too exhibit this cognitive bias in judgment when presented with ambiguous stimuli 

(Bateson, Desire, Gartside, & Wright, 2011; Bateson & Matheson, 2007, Brilot, Asher, & 

Bateson, 2010; Burman, Parker, Paul, & Mendl, 2008a; Burman, Parker, Paul, & Mendl, 2009; 

Douglas, Bateson, Walsh, Bédué, & Edwards, 2012; Doyle, Fisher, Hinch, Boissy, & Lee, 2010; 

Hales, Stuart, Anderson, & Robinson, 2014; Harding, Paul, & Mendl, 2004; Löckener, Reese, 

Erhard, & Wöhr, 2016; Matheson, Asher, & Bateson, 2008; Mendl et al., 2010; for review see 

Mendl et al., 2009).  

 The judgment bias paradigm (first used by Harding et al., 2004) has been used to assess 

cognitive bias in animals by employing both short- and long-term manipulations to emotional 

states (Mendl et al., 2009). This paradigm involves a manipulation to affective state and two 

distinct responses (or one response and one non-response) that are reinforced either positively or 

negatively. The general method used in the judgment bias paradigm first involves training 

animals to make a response following one cue (i.e., the “positive” cue) and to either make a 

different response or withhold a response following another cue (i.e., the “negative” cue). 

Depending on the specific study and the cue given, animals will receive a reward for a correct 

response to the positive cue, avoid an unpleasant stimulus for a correct response to the negative 

cue, experience an unpleasant stimulus for incorrect responses to a negative cue, and have 

reward withheld for incorrect responses to a positive cue. By the end of training, animals have 

one cue that is associated with a positive event and one that is associated with a negative event. 

Taking place between the training phase and the testing phase is a manipulation to emotional 

state, which can include changes to housing, veterinarian procedures, or access to enrichment, 
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and there is usually one group that acts as a control and undergoes no such manipulation. 

Following training is a testing phase in which animals are presented with ambiguous cues that 

are intermediaries of the positive and negative cues to see whether the subjects classify these 

cues using the positive response or the negative response. Many species have shown that 

negative affect manipulations often result in either a slowing response to ambiguous stimuli or an 

active classification of those stimuli as negative (see below for more details).  

 The judgment bias paradigm has been demonstrated to assess the impact of emotional 

states on nonhuman animals’ judgments of ambiguous stimuli in general, but it also has the 

potential to inform on specific types of bias that relate to human emotional disorders. For 

example, in cases where there are multiple ambiguous probes presented, a tendency to classify 

probes as negative that more closely resemble the positive training cue or the negative training 

cue (i.e., location bias) can be telling as to whether animals are experiencing a bias that more 

closely resembles anxiety or depression (Mendl et al., 2009). Biases that occur to probes closer 

to the positive training cue may be indicative of a reduced anticipation for positive events, 

similar to depressed humans, while biases occurring to probes closer to the negative training cue 

may predict an increased anticipation for negative events, similar to anxious humans (Mendl et 

al., 2009). For example, if an animal is presented with an ambiguous probe tone that is 

objectively more similar to the positive cue but the animal instead classifies the probe as 

negative, it could be indicative of a reduced expectation of positive events. However, an animal 

that classifies an ambiguous probe tone that more closely resembles the negative cue as negative 

is likely showing an increased expectation of negative events. Studies of cognitive bias in 

animals can serve to inform on the mechanisms underlying emotional disorders in humans as 
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well as on the welfare of the animals themselves (Hales et al., 2014; Roelofs, Boleij, Nordquist, 

& van der Staay, 2016). 

 Cognitive bias has been demonstrated in a multitude of species beginning with rats and 

moving to birds, livestock, and nonhuman primates. Harding et al. (2004) used a go/no-go task to 

assess cognitive bias, which involved training rats to press a lever upon hearing a specific tone to 

receive food and to avoid pressing the lever upon hearing a different tone to avoid exposure to 

aversive white noise. An affect manipulation of unpredictable versus predictable housing was 

also used, in which half of the rats were left in their standard housing environments while the 

remaining rats were subjected to unpredictable experiences (e.g., cage shaking) within their 

housing environments. The results indicated that rats placed in unpredictable housing responded 

less frequently and more slowly to ambiguous tones close to the positive training tone as well as 

to the training tone itself when compared with rats in predictable housing. Further assessments 

concluded that these results were not due to differences between treatments in feeding 

motivation, general activity, or response accuracy. Because the observed bias was at the tone 

closer to the positive training cue, Harding et al. (2004) concluded that the rats exhibited a 

reduced anticipation of positive events and suggested this demonstrated depressive-like effects.  

 Further studies on cognitive bias in rats sought to expand on this finding by introducing 

variants to the judgment bias paradigm. The use of visual or spatial cues, different manipulations 

to affect, and different positive and negative reinforcers are just a few examples of changes made 

to the methodology to assess various aspects of cognitive bias in rats. Burman et al. (2008a) 

employed a variety of these alterations including use of a spatial task and a different affect 

manipulation. Rats were given enrichment for seven weeks, which was then removed for half of 

the rats prior to training on the judgment bias task. Training involved running to one location for 
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food and avoiding another location without food. Following testing with ambiguous probe 

locations, Burman et al. (2008a) found that for the probe located closest to the unrewarded 

location, rats with removed enrichment were slower to reach it than rats with continued 

enrichment. In contrast to the Harding et al. (2004) findings, the rats were likely experiencing an 

increased expectation of negative events, which more closely mirrors anxiety than depression. In 

another variant on the judgment bias paradigm, Saito, Yuki, Seki, Kagawa, and Okanoya (2016) 

employed the use of positively or negatively associated conspecific vocalizations to manipulate 

affect in rats following training on an auditory cognitive bias task. They reported that rats 

responded positively to ambiguous tones when previously played positive conspecific 

vocalizations but responded negatively to ambiguous tones when played negative vocalizations. 

It was suggested this was evidence of emotional contagion brought about by attributions of 

valence to the vocalizations of conspecifics.  

 Other studies with rats have investigated contrast effects in cognitive bias. Burman et al. 

(2009) manipulated light intensity during training on a spatial location task that employed 

aversive punishers and pleasant reinforcers for different locations with rats, with half of them 

trained in high-intensity light and half of them trained in low intensity light. Following 

successful training and prior to testing with ambiguous probes, half of the rats in each group 

were switched to the other light intensity. Results indicated that rats who were switched from 

high to low intensity light ran faster to ambiguous probe locations than rats who were switched 

from low to high intensity. Further, rats who were in the high intensity group at outset and were 

not switched to the other light intensity prior to testing showed no differences in their responses 

to ambiguous locations, though overall rats tested in high intensity light were slower than rats 

tested in low intensity light. These findings suggested that rats who were switched from high to 



24 

low intensity experienced a reduction in anxiety rather than rats who were switched from low to 

high intensity experiencing an increase in anxiety.  

 While not the judgment bias paradigm specifically, Burman, Parker, Paul, and Mendl 

(2008b) used affect manipulations to test rats’ sensitivity to rewards and losses. Half of the rats 

were trained on a spatial location task with one pellet as a reward while the other half were 

trained with 12 pellets. Rats who were trained with 12 pellets ran faster to the reward than those 

trained with one pellet. When testing provided only one pellet for all the animals, rats who had 

originally received 12 pellets were slower to reach their goal than rats who had received one 

pellet from the outset. However, rats who had their enrichment removed and who also 

experienced the drop from 12 pellets to one pellet were more sensitive to the loss for a longer 

period of time when compared to rats who continued receiving enrichment but also experienced 

the reduction in pellet amount. This suggests that changes in affect, brought about by the 

removal of environmental enrichment, can influence the sensitivity of rats’ responses to loss, 

such that inducing a negative affective state resulted in an increase of sensitivity and the 

longevity of that sensitivity to reward loss.  

 The literature on cognitive bias in rats is by far the largest for all nonhuman species, and 

the findings are robust (also see Brydges, Leach, Nicol, Wright, & Bateson, 2011; Papciak, 

Popik, Fuchs, & Rygula, 2013; Richter et al., 2012). However, cognitive bias is not limited to 

rats or even to mammals. Several studies with starlings have provided evidence that birds also 

exhibit positive cognitive bias following enrichment as well as negative cognitive bias following 

removal of enrichment using both discrimination and go/ no-go tasks and a variety of reinforcers 

such as instant or delayed food and palatable or unpalatable food (Bateson & Matheson, 2007; 

Matheson et al., 2008). In addition, choosing the pessimistic response in a cognitive bias 



25 

assessment was found to correlate with stereotypic behavior in starlings, a behavioral measure of 

anxiety or stress (Brilot et al., 2010). Along with rats and birds, cognitive bias has also been 

demonstrated in many other species.  

 Cognitive bias tasks have been used to assess affective states in dogs (e.g., Burman et al., 

2011; Starling, Branson, Cody, Starling, & McGreevy, 2014). Mendl et al. (2010) sought to 

understand the underlying affective states of dogs exhibiting problematic behaviors when 

isolated from their owners, known as separation-related behaviors (SRBs). In a spatial location 

task, dogs were trained to discriminate between one side of a room containing a food reward and 

the other side of a room with no food reward. Once discrimination was deemed satisfactory, 

ambiguous probe locations were set up. Mendl et al. (2010) found that dogs who exhibited 

higher levels of SRBs, determined by a previous test, were slower to approach probes closest to 

the negative location and to the middle location. Dogs who displayed high levels of SRBs 

responded more pessimistically to the cognitive bias task, suggesting that SRBs may reflect an 

underlying anxious affective state in dogs.  

Following from these results, Karagiannis, Burman, and Mills (2015) employed cognitive 

bias testing as a method to verify potential treatments for SRBs in dogs. Dogs with SRBs, who 

had previously exhibited negative biases on a judgment bias task, were found to respond more 

similarly to control animals with no separation-related problems after receiving behavioral and 

pharmacological treatments. Further studies found that dogs treated with oxytocin were more 

optimistic in their expectations when compared to placebo-treated dogs (Kis, Hernádi, Kanizsár, 

Gácsi, & Topál, 2015). Another common household pet also exhibits cognitive bias. Hamsters 

that were provided with caging enrichment were found to be more likely to approach ambiguous 

stimuli in a spatial location task than hamsters who received no enrichment (Bethell & Koyama, 
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2015). Cognitive bias has also been used as a complementary assessment of affective state in 

dolphins, such that positive biases were found to correlate with higher frequencies of 

synchronous swimming (Clegg, Rödel, & Delfour, 2017) while pessimistic biases were found to 

correlate with higher frequencies of anticipatory behaviors prior to positive training sessions 

(Clegg & Delfour, 2018).  

Evidence of cognitive bias extends also to insects. Honeybees exhibit cognitive bias in 

response to simulated predatory attacks. Bateson et al. (2011) trained honeybees to discriminate 

between pleasant and aversive olfactory cues and then subjected them to shaking to simulate an 

attack from a predator. Bees who were shaken were more likely to classify ambiguous stimuli as 

negative. In addition, links between exploratory behaviors and cognitive biases in carpenter ants 

were found by d’Ettorre et al. (2017), such that fast-exploring ants tended toward negative biases 

while slow-exploring ants tended toward positive biases.  

 Cognitive bias assessments also have received much attention in research on the welfare 

of farm animals. Researchers recognized that to begin improving conditions for these animals, 

they must first assess their overall affective state and how that affective state may be influenced 

by their environment and human-induced procedures (Baciadonna & McElligott, 2015; Boissy & 

Lee, 2014). When horses were presented with a spatial location judgment bias task, those with 

access to an open field and conspecifics displayed a stronger positive cognitive bias when 

compared to horses who were housed alone with no open field access (Löckener et al. 2016). 

Further, horses living under naturalistic conditions showed optimistic cognitive biases while 

horses living under poorer riding conditions exhibited pessimism as well as correlated behavioral 

and health-related problems (Henry, Fureix, Rowberry, Bateson, & Hausberger, 2017). While 

results have been mixed, cognitive bias has also been assessed in goats. Female goats that were 



27 

recently rescued from neglectful conditions and moved to a sanctuary showed an optimistic bias 

compared to control females and to males in the same rescue group (Briefer & McElligott, 

2013). These authors suggested that the assessment may have revealed affective states of relief in 

the rescued females rather than lingering negative effects from their previous living situation. 

Other findings suggested that grooming sessions with human caretakers had no impact on 

cognitive bias assessments in goats, which were optimistic overall, potentially due to the healthy 

welfare environment that often included positive human interactions (Baciadonna, Nawroth, & 

McElligott, 2016). 

 The importance of improving living conditions for captive animals has resulted in an 

increased interest in cognitive bias assessments that can provide effective measures of animals’ 

affective states along with what aspects of their environment can influence those states positively 

or negatively. For instance, Douglas et al. (2012) looked at the impact of enrichment on pigs 

using a go/ no-go task, finding that enriched pigs were faster to respond to ambiguous auditory 

probes while pigs that were moved from an enriched to a barren environment were slower and 

less likely to respond to the same probes. Negative judgment bias in pigs has also been found to 

correlate with fearful responses to novel objects (Carreras et al., 2016). Work with dairy calves 

has shown that pessimistic cognitive biases are suggestive of negative affect states following 

separation from maternal care (Daros, Costa, von Keyserlingk, Hötzel, & Weary, 2014) as well 

as dehorning procedures (Neave, Daros, Costa, von Keyserlingk, & Weary, 2013). Cognitive 

bias assessments have also been performed with laying hens (Hernandez, Hinch, Lea, Ferguson, 

& Lee, 2015; Wichman, Keeling, & Forkman, 2012) and chicks (Salmeto et al., 2011). The study 

involving chicks sought to provide comparisons for both anxious- and depressive-like states by 

isolating chicks for either a short time to induce anxious affect or for a long time to induce 
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depressive affect. Salmeto et al. (2011) found that chicks in an anxious state were slower to 

approach ambiguous cues in a spatial location task that were close to the negative cue while 

chicks in a depressive state were slower to approach ambiguous cues that were either close to the 

negative cue or to the positive cue. These findings further demonstrated that anxious states may 

reflect an increased expectation of negative events while depressive states may reflect a decrease 

in expectation of positive events. 

 There has been much work done on cognitive bias in sheep, generally finding that 

affective states and responses on cognitive bias assessments reflect changes to the environment, 

such as access to enrichment or restraint, in similar ways to other animals as noted above. For 

example, sheep under chronic stress, induced by subjecting the sheep to unpredictable and 

aversive events, took significantly longer to approach ambiguous probe locations in a spatial 

location task when compared to unstressed sheep (Destrez et al., 2013). Further, sheep under 

stress resulting from production systems were also less likely to approach ambiguous stimuli 

(Doyle et al., 2011).  

Pharmacological approaches to judgment bias in sheep have revealed the impact of 

various drugs on the cognitive biases of sheep. Lambs who were not treated with diazepam, a 

drug commonly used to reduce negative affect states, were slower to approach one of the 

ambiguous locations in a spatial location task when compared to treated lambs, suggesting that 

treated lambs were less fearful of ambiguous stimuli than untreated lambs (Destrez, Deiss, 

Belzung, Lee, & Boissy, 2012). In contrast, when administered a serotonin-depleting drug, which 

could increase depressive symptoms, sheep displayed a negative cognitive bias (Doyle et al., 

2011). While unpredictable environments and chronic stress negatively impact affective states in 

sheep, other studies have found evidence of positive biases in a variety of situations, including 
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following release from restraints (Doyle et al. 2010), release from shearing (Sanger, Doyle, 

Hinch, & Lee, 2011), and access to enrichment after previous stress (Destrez, Deiss, Leterrier, 

Calandreau, & Boissy, 2014).  

As the studies above illustrate, the scope of cognitive bias extends throughout the animal 

kingdom and researchers have understood that using cognitive bias in animals as a model for 

emotional disorders in humans and as a measure of laboratory, zoo, and farm animal welfare is a 

valid and lucrative endeavor (Baciadonna & McElligott, 2015; Boissy & Lee, 2014; Mendl et al., 

2009). Given the potential value of animal models of emotional disorders in humans, nonhuman 

primates are of particular interest to researchers of emotion. Nonhuman primates share many 

cognitive similarities to humans, including their systems for memory, perception, and decision-

making (Maestripieri, 2003; Roitblat, Bever, & Terrace, 1984; Shettleworth, 2009; Tomasello & 

Call, 1997; Zentall & Wasserman, 2012). In addition, nonhuman primates present an opportunity 

to test cognitive bias effects in a nonhuman species that also has complex cognition, offering an 

additional perspective that other nonhuman animals with less advanced cognitive processes 

cannot provide. Further, nonhuman primate welfare in laboratories and zoos is of great concern 

to those charged with the ethical care of those animals and researching new ways to assess their 

psychological and emotional states aids not only the well-being of the animals themselves but 

also offers possible models for human mental health and wellbeing assessments. Finally, 

assurances of nonhuman primate well-being in research environments enables investigations in 

all fields to continue working respectfully and humanely with these animals in pursuit of other 

important scientific goals.  

 Behavioral and physiological indicators of emotional states in nonhuman primates are 

common, including displacement activities such as self-grooming and scratching (e.g., 
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Maestripieri, Schino, Aureli, & Troisi, 1992). Behavioral indicators of emotion have been used 

in assessing responses to differing levels of enrichment in squirrel monkeys (Izzo, Bashaw, & 

Campbell, 2011) as well as risky decision-making in capuchin monkeys (De Petrillo, Tonachella, 

& Addessi, 2017). However, such measures still suffer from the same issues of interpretation and 

lack of information on positive affective states and valence that plague emotion research on the 

rest of the animal kingdom (Boissy et al., 2007; Mendl et al., 2009; Pomerantz, Terkel, Suomi, & 

Paukner, 2012; Schino, Massimei, Pinzaglia, & Addessi, 2016). As a result, focus turned to the 

use of cognitive measures of emotion and to the influences of emotion on cognition and vice 

versa in nonhuman primates. Indeed, work on the link between emotion and cognition has been 

done with many species of primates, including chimpanzees (Allritz, Call, & Borkenau, 2016), 

Japanese macaques (Kawai & Koda, 2016), rhesus macaques (Bethell, Holmes, MacLarnon, & 

Semple, 2012a; Cronin et al., 2018), marmosets (Gordon & Rogers, 2015), and baboons 

(Blanchette, Marzouki, Claidière, Gullstrand, & Fagot, 2017).  Research on attentional bias in 

nonhuman primates has revealed that negative affective states do influence where attention is 

directed and how quickly threatening stimuli are attended to. For example, Allritz et al. (2016) 

found that chimpanzees’ responses on an adapted emotional Stroop task were similar to those 

found in humans, such that chimpanzees were slower to respond to emotional stimuli than to 

neutral stimuli. Further, Kawai and Koda (2016) found attentional biases in rhesus macaques 

toward snakes such as those also found in humans, suggesting an evolutionary basis of enhanced 

attention to fearful stimuli. Cronin et al. (2018) demonstrated that when under stress from loud 

noises, macaques displayed a slowing of response times to threatening face stimuli. Rhesus 

macaques were also found to respond differently to threatening faces depending on whether they 

received a visit from the veterinarian or enrichment prior to seeing those faces. Veterinarian 
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visits resulted in increased avoidance of the threatening faces while enrichment resulted in 

attendance to the faces (Bethell et al., 2012a). Further evidence for avoidance of negative stimuli 

was demonstrated in baboons when they were presented with a memory task with negatively 

valenced targets and distractors, such that accuracy increased when the distractors were 

negatively valenced (Blanchette, et al., 2017). In addition, Bethell, Holmes, MacLarnon, and 

Semple (2016) found that a macaque who was recently stressed by a veterinary visit was 

significantly slower to respond on an attention task when emotional distractors were present. 

 Due to the similarities in nonhuman primate responses to emotional stimuli, cognitive 

bias assessments in nonhuman primates have been used to further the understanding of 

interactions between cognition and emotion and of the emotional welfare of these animals. In the 

first study of judgment bias in nonhuman primates, Bethell, Holmes, MacLarnon, and Semple, 

(2012b) presented a rhesus macaque with a go/no-go task in which the monkey was trained to 

discriminate the lengths of two lines where different responses were associated with either a food 

reward or white noise and a time out. After training was successful, testing sessions occurred 

following either a visit from a veterinarian or enrichment and involved presentation of 

ambiguous lines of intermediate length. Bethell et al. (2012b) found that the macaque was less 

likely to respond to ambiguous stimuli following a veterinary visit but was more likely to touch 

the ambiguous probe closest to the positive cue and the middle probe following enrichment. 

These results suggested that the macaque’s emotional state was more optimistic when having had 

access to enrichment while the macaque’s response following a stressful veterinary visit reflected 

a more pessimistic emotional state. Further, this study provided evidence that judgment bias 

tasks can pick up changes to affect within one individual rather than only between groups who 

experienced different manipulations to their affective states. 
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Tests of cognitive bias in common marmosets revealed that there may be connections to 

handedness and aggression, such that left-handed marmosets were more pessimistic in their 

responses and experienced higher levels of aggression from conspecifics, while right-handed 

marmosets were more optimistic (Gordon & Rogers, 2015). The authors suggested that this 

relation between handedness, aggression from conspecifics, and pessimistic cognitive bias may 

stem from behavioral predispositions based in right hemispheric dominance. Further, Gordon 

and Rogers (2015) propose that cognitive bias testing and handedness may be a worthwhile 

technique for differentiating animals that may require additional welfare monitoring. Capuchin 

monkeys have also showed cognitive biases that correlated with stereotypic behaviors that are 

generally assumed to indicate negative affective states. Specifically, Pomerantz et al.  (2012) 

found that capuchin monkeys who performed higher levels of head twirling were prone to 

pessimistic biases and also possessed higher levels of corticosteroids in their fecal matter. The 

correlation between pessimistic judgment bias and stereotypic behavior was further supported in 

another study that also found that dominant monkeys and monkeys who received more overall 

grooming displayed optimistic biases (Schino et al., 2016). 

 While cognitive bias has been demonstrated in a variety of monkey species, results from 

the great apes have been mixed. Chimpanzees displayed individual differences in biases on a 

judgment test, and such tasks were deemed good potential measures for affective states in 

chimpanzees (Bateson & Nettle, 2015). However, gorillas have proven to have difficulty during 

training. When gorillas were successfully trained on a cognitive bias task, they displayed 

optimistic biases, but the results remained unclear as to whether this was truly indicative of 

affective state (McGuire & Vonk, 2018; McGuire, Vonk, Fuller, & Allard, 2017).  
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 Despite the mixed results with great apes, cognitive bias has been demonstrated widely 

across the animal kingdom. However, several issues have been raised regarding both the 

execution and interpretation of cognitive bias studies. Firstly, the ambiguous cues presented at 

test objectively have no correct answer and so it remains unclear as to how the animals are 

approaching these stimuli (Bateson, 2016). Further, responses to ambiguous stimuli at baseline 

(i.e., prior to affect manipulations) are not recorded, making it impossible to determine exactly 

how emotion may be influencing the judgment of these stimuli. Secondly, the majority of 

cognitive bias studies that employ manipulations to affect rely on between-subjects designs that 

require comparison between separate groups of subjects following changes to affective state. As 

a result, the potential for extraneous factors to influence responses to ambiguous stimuli is high, 

especially when using pre-existing changes to affect, as well as potential individual differences 

in how certain animals respond to those changes (Bateson, 2016; de Vere & Kuczaj, 2016). The 

use of control groups also introduces an issue of relative versus absolute biases, creating 

difficulty in determining whether subjects are experiencing objective changes to their affect and 

in measuring both long-term and short-term emotion states (Bateson, 2016; Bethell, 2015). 

Lastly, a large concern with the judgment bias paradigm involves the reward system of 

ambiguous stimuli or, more specifically, the lack thereof. Ambiguous cues are not rewarded 

which creates the possibility of subjects learning that these cues never result in positive 

reinforcement, leading to reduced responding irrespective of emotional state (Bateson, 2016; 

Perdue, 2017).  

To address some of these issues, Perdue (2017) presented rhesus macaques and capuchin 

monkeys with a continuum of elliptical stimuli consisting of 40 sizes. Monkeys were trained to 

respond “SMALL” or “LARGE” and received either one or four pellets for correct responses to 
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the smallest (e.g., level one) and the largest (e.g., level 40) stimuli. Specifically, for some 

monkeys, responding correctly on small ellipse trials resulted in a one pellet reward while large 

ellipse trials would result in four pellet rewards, and for other monkeys those contingencies were 

reversed. Following training on the two anchor stimuli, monkeys were shown intermediate 

stimuli ranging from level 2 to level 39. These intermediate stimuli were not reinforced, meaning 

no pellets or time outs were received for either correct or incorrect answers. After initial testing, 

the reward amounts were switched, such that monkeys who originally received one pellet for 

small trials now received four pellets and vice versa. This study involved no manipulation to 

affective state, but found that despite initial responses being unbiased, repeated exposure to 

ambiguous probes resulted in a shift toward negative responding (e.g., the lowest reward 

payout). Further, reversing the reward payouts resulted in a shift of response class preference to 

favor the lowest reward payout, suggesting that with repeated exposure to the cognitive bias task, 

monkeys tended to choose the response class associated with negative events regardless of 

previous training and in lieu of any manipulations to affective state. It was suggested that 

negative cognitive bias may be a result of learning that the ambiguous intermediate stimuli do 

not provide reinforcement and therefore a negative cognitive bias is observed not due to a 

negative affective state but to reward payout contrasts and learning effects.  

Given the results of her study, Perdue (2017) suggested caution when interpreting 

cognitive bias tasks. She suggested that negative biases may be due to learning or other factors 

outside of affect manipulations. Along with the prevalence of contradictory findings, studies on 

cognitive bias in nonhuman primates are relatively few in number when compared to studies 

with rats and livestock species. Further, the tasks used with capuchin monkeys have been solely 

manual tests and affect manipulations among nonhuman primates are centered either around 



35 

husbandry procedures or are not used at all, with researchers opting instead to use cognitive bias 

as a potential correlate of stereotypic behaviors generally accepted to indicate negative affect. 

Due to the complexity of nonhuman primate cognition, they present a greater challenge when 

studying emotional state and potential connections to cognitive processes. Indeed, the literature 

on cognitive bias in nonhuman primates is greatly lacking when compared to other species. 

Continued study of cognitive bias in nonhuman primates is necessary to determine whether these 

animals might be resistant to cognitive bias effects, why that might be the case, and how we 

might be able to adapt an assessment of emotional state through cognitive tasks for successful 

use with nonhuman primates.  

1.8 Purpose of the Current Study 

To address the shortcomings described above, the current study assessed cognitive bias in 

brown-tufted capuchin monkeys using a computerized program with a novel discrimination task 

and an affect manipulation that can be controlled among subjects as a within-subjects factor. 

Very few studies with nonhuman primates, and with nonhuman animals more generally, have 

assessed the impact of affect manipulations on a large number of responses to trained stimuli. 

Research has focused on training only one positive and one negative cue. The drawback of this is 

that responses to intermediate stimuli are only observed following the manipulation to affect, and 

it is possible that responses to these stimuli are driven by something other than affect, such as 

novelty, uncertainty, or surprise at the introduction of such stimuli. Due to this, the current study 

included training of both endpoint and intermediate stimuli prior to testing, allowing for 

assessment of the impact of affect manipulations on previously learned as well as previously 

unseen intermediate stimuli. In response to concerns raised by Perdue (2017), the current study 

also employed the use of non-differential reinforcement for the true intermediate stimulus to 
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prevent learning of reward outcomes as well as the testing of multiple intermediate stimuli to 

assess responses to previously unseen and ambiguous stimuli that still objectively fall in either 

the positive or negative cue categories. 

1.9 The Current Study 

The current study involved training capuchin monkeys to classify a stimulus on a 

computer screen as one of two possible discriminations. For Experiment 1, monkeys saw either a 

speed discrimination task, which required classifying a moving circle stimulus as either slow or 

fast, or an orientation discrimination task, which required classification of rectangles as either 

tall or wide. Movement speed or orientation ranged across 15 stimulus levels, with Level 1 being 

the slowest speed (or widest rectangle) and Level 15 being the fastest speed (or tallest rectangle). 

Training occurred in three phases: (1) Monkeys were trained only on levels 1 and 15 with 

standard reward contingencies, (2) Monkeys were trained on levels 1 through 5 and 11 through 

15 with standard reward contingencies, and (3) Monkeys were trained on levels 1 through 5 and 

11 through 15, but with reward contingencies that created a positive association with one 

response class and a negative association with the other response class. Following training, 

monkeys moved onto a test phase consisting of ten sessions. Test sessions began with the 

presentation of either a pleasant tasting or unpleasant tasting gelatin food, alternated every test 

session. Monkeys were then set up on the computer program identical to phase three of training, 

except with the addition of stimulus levels 6 through 10 that were oversampled so as to provide a 

large corpus of data on the objectively more ambiguous stimuli. 

1.10 Expected Results 

It was hypothesized that when monkeys were given the pleasant food prior to testing, 

they would be more likely to classify test stimuli (levels 6 through 10) using the positive 
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response, while they would be more likely to respond negatively to test stimuli when given the 

unpleasant food prior to testing.  

If the monkeys showed a positive bias when given access to a pleasant food and a 

negative bias when given an unpleasant food, there are several conclusions that may be drawn. 

Monkeys’ perception and interpretation of ambiguous stimuli was influenced by environmental, 

short-term manipulations to their emotional states. Leading from this, access to mood-improving 

foods or treats may improve animal welfare and emotional well-being in captive environments. 

On the contrary, a negative emotional state can result from unpleasant food sources. Overall, the 

emotional state of nonhuman primates can alter whether they interpret ambiguous events as 

positive or negative, and this can inform on better practices for housing and enrichment for 

captive animals.  
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2 EXPERIMENTS 

2.1 Experiment 1  

There were two potential tasks used for Experiment 1: a speed judgment task and an 

orientation judgment task. All monkeys received training on the speed judgment task, and if they 

could not meet criterion after 1,000 trials or five training sessions, they were given an increased 

time out (from 20 s to 60 s) for another 1,000 trials. If criterion was still not reached, monkeys 

were moved onto the orientation judgment task. 

2.1.1 Subjects 

Testing occurred at the Language Research Center (LRC). I tested 12 brown-tufted 

capuchin monkeys, 3 males and 12 females, aged 11 to 23 years. Capuchin monkeys were 

housed in four different social groups with frequent access to outdoor enclosures as well as other 

forms of enrichment and were fed a daily diet of chow, fruit, and vegetables. All testing 

conducted with these monkeys was voluntary and at no time were they food or water deprived. 

2.1.2 Apparatus 

All monkeys were previously trained to use a joystick connected to a computer that 

delivers pellets though an attached dispenser (Richardson et al., 1990; Rumbaugh, Richardson, 

Washburn, Hopkins & Savage-Rumbaugh, 1989). Rewards were 45mg banana flavored pellets. 

Capuchin monkeys gained access to their testing stations by voluntarily entering testing boxes 

attached to their indoor enclosures. On the front of test boxes was a transparent plexi-glass 

faceplate with openings for the joystick and the pellet dispensing tube. In the test boxes, 

monkeys were able to access the computer system which was placed in front of the faceplate, 

allowing monkeys to see a computer screen, manipulate a joystick, and receive pellet rewards. 

Monkeys remained in their testing boxes for the duration of testing, usually lasting around four 
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hours. While in the testing box, monkeys had visual and auditory access to their groupmates. 

Following testing, capuchin monkeys were released from their boxes and were provided with 

access to their outdoor enclosures and their group mates. Programs were written using Visual 

Basic 6.0.  

2.1.3 Phase 1 Training  

To begin a trial, monkeys used their joystick to move a cursor on the screen to a centered 

“Start Trial” button. Initiation of the trial replaced the cursor at the bottom center of the screen. 

For the speed judgment task, a black circular stimulus then appeared at the top center of the 

screen and began to move horizontally back and forth in the middle third region of the screen, 

starting randomly on either the left or right side and moving either very quickly or very slowly. 

More speed levels were introduced in subsequent training sessions, but for phase 1 of training, 

monkeys only saw the slowest speed (Level 1) and the fastest speed (Level 15). At the bottom 

left of the screen was the word “FAST” and at the bottom right of the screen was the word 

“SLOW.” The monkeys moved the cursor to either word depending on the speed of the stimulus. 

If the cursor was moving quickly (Level 15), the monkey should have moved the cursor to the 

left option to choose “FAST,” but if it was moving slowly (Level 1), the monkey should have 

moved the cursor to the right option to choose “SLOW.” The orientation judgment task looked 

similar to the speed judgment task, except that the stimulus was a stationary black box that was 

either tall or wide. The response classes were in the same placement as the previous task but 

instead said “TALL” on the left and “WIDE” on the right. This task also used multiple levels of 

orientation in further training, but only included the widest (Level 1) and the tallest (Level 15) 

stimuli during phase 1 of training. Monkeys received one 45mg banana-flavored pellet for 

correct responses but received a 20 s or 60 s time out for incorrect responses. All monkeys began 
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with a 20 s time out. However, following a monkey’s failure to reach criterion after 1,000 or 

more trials, the time out was increased to 60 seconds (see Table 1). Monkeys had to reach a 

criterion of 80 percent correct overall and 50 percent correct on each stimulus level to move onto 

the next training phase. 

2.1.4 Phase 2 Training  

Training continued as described above with the addition of eight intermediate levels of 

speed or orientation (Levels 2, 3, 4, 5, and 11, 12, 13, 14), excepting five of the very middle 

levels (Levels 6, 7, 8, 9, 10). Depending on the assigned task, monkeys were required to classify 

levels 2, 3, 4, and 5 as “SLOW” or “WIDE” and levels 11, 12, 13, and 14 as “FAST” or 

“TALL,” receiving rewards and time outs as detailed above for Phase 1. Trial stimulus level was 

randomly selected on each trial. Once the monkeys reached the criterion of 80% correct overall 

and 50% correct per level on the most recent 100 trials, they were moved onto the third and final 

phase of training. 

2.1.5 Phase 3 Training  

The final phase of training presented monkeys with the same 10 stimulus levels as in 

phase 2. However, the reward system was changed to reflect the standard cognitive bias reward 

contingencies in order to induce an association of one response class with a positive event (e.g. 

the “positive” cue) and the other response class with a negative event (e.g. the “negative” cue). 

Half of the monkeys were assigned to associate “SLOW” or “WIDE” with positive events and 

“FAST” or “TALL” with negative events, depending on the task received during training, while 

the other half were assigned to the opposite associations (e.g. “SLOW” or ”WIDE” with negative 

events and “FAST” or “TALL” with positive events). This association was trained by 

introducing varying reward and time out contingencies depending on the assigned valence of the 



41 

monkey. Responding correctly to the positive cue (fast or slow/ tall or wide, counterbalanced 

across monkeys) resulted in the delivery of a food pellet while responding incorrectly resulted in 

no food reward and a 1 s inter-trial interval (ITI) before the next start box appears to begin the 

next trial. Correct responses to the negative cue (the opposite cue from whatever the monkey was 

assigned for the positive cue) resulted in avoidance of a 20 s (or 60 s) time out and a 1 s ITI, 

while incorrect responses resulted in experience of a 20 s (or 60 s) time out before the 1 s ITI and 

the next trial appears. For example, a monkey assigned to associate slow-moving stimuli with 

positive events received a food pellet when correct on slow trials but moved on to the next trial 

with no time out when incorrect. The same monkey received a 20 second time out when 

incorrect on fast trials but moved on to the next trial with no time out and no pellet when correct. 

At the end of the ITI, the “Start Trial” button appeared again to initiate the next trial. Monkeys 

were again required to reach 80% correct overall and 50% correct per stimulus level in order to 

be moved to the testing phase. 

2.1.6 Testing Phase 

As stated above, some monkeys were not able to complete training on the speed 

judgment task and so were moved to the orientation judgment task. This resulted in a total of five 

monkeys trained and tested on the speed judgment task and a total of seven monkeys trained and 

tested on the orientation task. Prior to starting the computerized testing portion of the session, a 

researcher entered the room surrounding the indoor enclosure and set up a camera for filming 

test sessions. The researcher then left the room and re-entered carrying either a pleasant-tasting 

or unpleasant-tasting gelatin treat. Both versions of the food were made with gelatin powder and 

water in small ice cube trays as the base. Previous to any task training, pilot tests were conducted 

to determine a flavor that the monkeys liked and a flavor they disliked. If monkeys ate the food, 
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it was concluded they liked it, but if they did not eat it and/or threw the food on the ground, then 

it was concluded they did not like it. As a result, a stevia-sweetened, fruit-flavored liquid water 

enhancer was used for the pleasant gelatin food while turmeric powder was used for the 

unpleasant gelatin food. Throughout testing sessions, monkeys did not eat the unpleasant gelatin 

food, while they did eat the pleasant gelatin food.  

Monkeys were given a piece of gelatin food weighing between 2.5 and 3 grams before 

each test session. Whether the pleasant or unpleasant food type was encountered first was 

counterbalanced between monkeys, and then was alternated over ten testing sessions, generating 

a total of five sessions with the unpleasant food and five with the pleasant food. Following 

presentation of the food, the researcher observed and coded the monkey’s behavior for five 

minutes. Then, the computer system was affixed to the front of the test box faceplate and the 

relevant judgment task as seen during training was begun. 

The computerized portion of the test sessions continued until one hour had elapsed. The 

task otherwise resembled Phase 3 of training, but with the addition of the five remaining stimulus 

levels (Levels 6, 7, 8, 9, 10). Responses to levels 6, 7, 9, and 10 resulted in a reward or time out 

as described in Phase 3 of training, while the true intermediate ambiguous probe (Level 8) was 

non-differentially reinforced in the following way. Trials lead to a pellet reward with probability 

0.33, to the ITI with 0.33 probability, or to the timeout with 0.33 probability. Responses to all 

fifteen stimulus levels were recorded by the computer program, as well as response time data.  

2.2 Experiment 2 

This experiment was conducted to demonstrate the generalization of any cognitive bias 

effects seen in Experiment 1 to various stimulus classifications and to determine whether any 

evidence of cognitive bias in Experiment 1 was replicated with a new type of discrimination task.  
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2.2.1 Training Phases 

The procedure was identical to Experiment 1, with the only exception being the 

replacement of classification of stimulus speed or orientation with classification of various 

shades of gray boxes. The response “LIGHT” was located on the bottom left of the screen while 

“DARK” was located on the bottom right of the screen. Counterbalanced across monkeys, light 

(or dark) gray boxes were trained as the positive cue, while dark (or light) gray boxes were 

trained as the negative cue. Rewards and time outs were identical to Experiment 1, with some 

monkeys receiving a 20 s time out while others were given a 60 s time out (Table 2). Following 

successful classification of the darkest gray box (Level 1) and the lightest gray box (Level 15) in 

Phase 1, eight more shades of gray (Levels 2, 3, 4, 5, and 11, 12, 13, 14) were trained to criterion 

in Phase 2, and then again with the introduction of the cognitive bias response contingencies as 

described in Phase 3.  The criteria for progression were the same as in Experiment 1. One 

monkey (Gambit) was given the orientation task as her secondary task due to an inability to learn 

the shade task. 

2.2.2 Testing Phase 

The testing sessions were identical to Experiment 1 and again consisted of the 

presentation of either a pleasant or unpleasant gelatin food, followed by continued training with 

the previously seen stimuli as well as the addition of the remaining intermediate stimulus levels 

(Levels 6, 7, 8, 9, 10). Responses to the ambiguous probe (Level 8) were non-differentially 

reinforced as in Experiment 1. The classifications of the stimuli as light or dark and the response 

times were recorded by the program. 
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2.3 Data Analyses 

Performance (e.g., percent correct) was graphed for stimulus levels 1-5 and 11-15 during 

the training phases in which the criterion was reached. Each stimulus level had a proportion 

correct for that level, which is averaged across all subjects and sessions, as well as a distance 

value which reflects how far from the central level of the continuum it is located. For example, 

stimulus level 2 had the proportion correct (e.g., 80/100) and a distance value of 6 because it is 6 

stimulus levels away from level 8.  It was predicted that performance would increase with 

increasing distance level from the center level.  

All statistical analyses were run using SPSS (IBM Corp, 2017). For the test phase, a 

repeated-measures ANOVA was run to compare responses to the ambiguous probe (Level 8) 

across the condition of receiving the pleasant or unpleasant gelatin food as well as across block 

number. The percentage of times the monkeys chose the positively reinforced response class for 

this level was calculated for each block and food type. Specifically, Block Number One included 

the percentage of positive response class choices made during the first time the monkey received 

the unpleasant food and the first time the monkey received the pleasant food, and so on until 

Block Five to include all ten test sessions. The percentage of positive choices made over Block 

Number and Food Type were compared in order to determine whether food type influenced the 

frequency of positive responses to the probe stimulus. It was predicted that monkeys who 

received the pleasant food would be more likely to classify the ambiguous level 8 stimulus using 

the positive response class, while monkeys who received the unpleasant food would tend toward 

a negative classification. If the ambiguous probe was more often classified as negative, then this 

would indicate a negative, or “pessimistic,” bias. A higher frequency of positive classifications 

would indicate a positive, or “optimistic,” bias. If there was no difference in classification of the 
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ambiguous probe, then that would indicate food type had no effect on the monkeys’ affective 

state. 

 Responses to the remaining stimulus levels (1-7 and 9-15) in the pleasant food condition 

and the unpleasant food condition were also analyzed. Using a repeated measures ANOVA, the 

percentage of positive classifications collapsed across stimulus level was analyzed by food type 

and by block number, as described above. It was predicted that positive responses would be 

higher across the full stimulus range when monkeys received a pleasant food than when they 

received an unpleasant food. Further, this effect was expected to drop off over block number, 

such that monkeys were more equal in their positive classifications when having received a 

pleasant or an unpleasant food. This would reflect that manipulations to affective state using 

differing food types are relatively short-lived and do not exhibit influence over repeated 

exposures to the food and to the discrimination task. 

Percent correct was also analyzed by food type and block number to assess whether task 

performance was impacted by the food type received as well as over time. A repeated measures 

ANOVA was used to compare the average percent correct for each block and food type, as 

described above, to determine whether food type influenced performance on previously learned 

ambiguous stimuli and novel ambiguous stimuli. It was hypothesized that monkeys’ performance 

would not be impacted by food type, but that performance should increase over block number. 
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3 RESULTS 

3.1 Experiment 1 and 2 Training Phases 

All monkeys reached the criterion level of 80% correct overall and 50% correct per 

stimulus level on each of the three training phases before moving on to the test phase in both 

Experiment 1 and Experiment 2. Trial counts varied across monkeys and across training phases. 

For Experiment 1, Table 1 displays the total trial counts for each of the three phases for each 

monkey, their percent correct for the session in which criterion was reached, the length of their 

time outs, their age, their sex, and the positive valence assignment. For example, Gretel was 

assigned to associate “FAST” with positive events (i.e., a pellet), and so in Table 1, her positive 

valence is listed as “Fast.” Means and standard deviations for Experiment 1 trial counts and for 

performance in the criterion session are also displayed in Table 1. The same descriptive statistics, 

means, and standard deviations are listed for Experiment 2 in Table 2. 

Training Phase 2 included stimulus levels 1 through 5 and 11 through 15 but maintained 

standard reward contingences from the first training phase, meaning monkeys received a pellet 

for correct answers and either a 20 s or 60 s time out for incorrect answers. Stimuli closer to the 

center of the presented range are more ambiguous and therefore more difficult to assess, while 

stimuli on the ends, or anchors, of the stimulus range are easier to classify. Due to this, Train 2 

and Train 3 performances from the session in which criterion was reached are graphed in Figure 

1 for Experiment 1 and Figure 2 for Experiment 2 as a function of distance from the central trial 

level. Distance was calculated as follows: (3) levels 5 and 11 , (4) levels 4 and 12, (5) levels 3 

and 13, (6) levels 2 and 14, and (7) levels 1 and 15. Graphically, performance in the Train Phase 

2 criterion session was above criterion and increased as distance from the probe increased for 

both Experiment 1 and Experiment 2.  
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Training Phase 3 introduced nonstandard reward contingencies in order to train monkeys 

to associate one response class with positive events and the other response class with negative 

events (i.e., a pellet or a time out respectively). Stimulus levels were the same as in Phase 2 of 

training. As with Phase 2, monkeys reached the criterion of 80% overall and performance 

increased as distance from the ambiguous probe (level 8) increased for phase 3 of training in 

both Experiment 1 and Experiment 2 (see Figure 1 and Figure 2). However, the introduction of 

the cognitive bias reward contingencies created a large bias to whichever response class was 

assigned as positive, as explained in further detail in the discussion. 

3.2 Experiment 1 Test Phase 

Data were analyzed using repeated measures ANOVAs and One Sample t-tests. There 

were two dependent variables analyzed: percent positive and percent correct. Percent positive 

denoted the percentage of times monkeys chose their assigned positive response class while 

percent correct was their objective performance rates. Trial Block and Food Type were the 

independent variables included in the analyses. Block referred to the session number and ranged 

from one to five. Block 1 included the first session the monkeys received the pleasant food and 

the first session they received the unpleasant food, and so on. Food Type referred to whether the 

monkeys received the pleasant or unpleasant food. Three separate ANOVAs were run. The first 

included percent positive for Block and Food Type for stimulus level 8 only, as this was the true 

ambiguous probe. The second analysis included percent positive for Block and Food Type for all 

remaining stimulus levels that were grouped together excluding level 8. The third analysis 

included percent correct for Block and Food Type for the full range of stimulus levels excluding 

level 8 which had no correct classification. The aim of these three analyses was to assess whether 

monkeys were more likely to choose the positive response class or respond more correctly on 
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sessions in which they received a pleasant food. In addition, Block was included to assess if any 

effects changed over time and with more exposure to the psychophysical task. The One-Sample 

T-Test was also performed on the percentage of positive choices for the level 8 data set in order 

to assess whether the percentage of positive choices was significantly different from chance and 

leaned more toward positive or negative responses for the ambiguous probe overall.  

3.2.1 Ambiguous Probe (Level 8)  

Monkeys’ positive response class choices were not impacted by block number, F(1.554, 

12.436) = 1.24, p = 0.31, 𝜂𝑝
2 = 0.13. Note that sphericity was violated in this analysis, and so 

Greenhouse-Geisser values were used. The percentage of positive response class choices was 

also not affected by food type, F(1, 8) = 1.06, p = 0.33, 𝜂𝑝
2 = 0.12. There was no interaction 

between block number and food type, F(4, 32) = 0.83, p = 0.52, 𝜂𝑝
2 = 0.09. For the ambiguous 

probe, monkeys showed no bias to choose the positively or negatively reinforced response class 

as a function of session number or as a function of having had a pleasant food or unpleasant food 

(Figure 3). 

To determine whether monkeys chose the positive response class significantly more than 

chance when presented with the ambiguous level 8 probe, a One-Sample t-test comparing 

percent positive to a test value of 50 was performed. It was found that monkeys chose the 

positively reinforced response class for stimulus level 8 significantly above chance, but only for 

certain test sessions and food types (see Table 3). Positive response class choices were not 

significantly above chance for the second unpleasant session, for the third unpleasant session, or 

for the fifth pleasant and unpleasant sessions. This indicates that monkeys chose the positive 

response class more often overall, but this effect diminished as testing progressed (Figure 4). 
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While monkeys were overall more likely to classify the level 8 ambiguous probe stimulus  

as their positive response class, a task difference in this effect was observed (Figure 7). Monkeys 

chose their assigned positive response class at or above 80% of the time when they were tested 

using the speed discrimination task. However, monkeys who were tested on the orientation task, 

which was evidently an easier task for them, chose their assigned positive response class at close 

to chance levels. This indicates that monkeys on the orientation task did not discriminate the 

level 8 stimulus as resembling either the positive or negative response class, while monkeys on 

the speed task were more likely to classify the level 8 ambiguous probe as their positive response 

class. The task differences in positive responses to the level 8 ambiguous probe are examined 

further by individual monkey and task in Figures 13, 14, and 15. 

To determine whether individual monkeys were significantly above chance in choosing 

their positive response class when presented with the level 8 ambiguous probe, binomial tests 

were run on the percentage of positive choices each monkey made in the pleasant sessions and 

the unpleasant sessions. Further, data was separated by task type (e.g., speed, orientation, or 

shade discrimination) for graphical representation to examine both individual and task 

differences in the percentage of positive response class choices to the level 8 ambiguous probe 

(see Figures 13, 14, and 15). 

Figure 13 depicts the percentage of positive response class choices made to the level 8 

ambiguous probe by each of the five monkeys presented with the speed discrimination task for 

both food types given during testing. All five monkeys chose their positive response class 

significantly above chance levels for both food types, indicating they were more likely to classify 

the level 8 ambiguous probe as their positive response class regardless of whether they received 

a pleasant or unpleasant food. 
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The percentage of positive response class choices made to the level 8 ambiguous probe 

by each monkey tested using the orientation discrimination task is depicted in Figure 14. Note 

that the orientation discrimination task was the first task (e.g., Experiment 1) for all of the 

monkeys except for Gambit, who received this task as her second task (e.g., Experiment 2). 

Unlike the speed discrimination task, the preference for the positive response class when 

presented with the level 8 stimulus was not universal across all monkeys. Bailey, Gonzo, Griffin, 

Lily, and Gambit were significantly above chance when classifying the level 8 ambiguous probe, 

suggesting they were more likely to choose their positive response class for the level 8 stimulus. 

However, Logan, Nala, and Widget were significantly below chance when classifying the level 8 

stimulus as their positive response class, indicating these three monkeys were actually more 

likely to choose their negative response class when presented with the level 8 ambiguous probe. 

This explains why there were such large task differences observed in positive responses to the 

level 8 stimuli in Figure 7. It seems individual differences in the classification of the level 8 

stimulus as the positive response class underlie the task differences in this measure, and, more 

particularly, three monkeys were driving this difference in level 8 classifications between tasks. 

Despite these individual differences in overall percentages of positive classifications, food type 

had no impact of the classification of the level 8 stimulus as the positive response class. In other 

words, monkeys who responded significantly above chance were as likely to do so for both food 

types and monkeys who responded significantly below chance were as likely to do so for both 

food types. 

3.2.2 Remaining Stimulus Levels (Levels 1-7 and 9-15) 

For the remaining stimulus levels that were all combined, monkeys were not more likely 

to choose the positive response class over block number, F(4, 40) = 0.92, p = 0.46, 𝜂𝑝
2 = 0.085. 
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Further, food type had no impact on the percentage of positive response class choices made, F(1, 

10) < .01, p = 0.99, 𝜂𝑝
2 <  .01. There was no interaction between block number and food type, 

F(4, 40) = 0.78, p = 0.54, 𝜂𝑝
2 = 0.07. Monkeys were no more likely to choose the positively 

reinforced response class over sessions or when they had a pleasant food or unpleasant food 

(Figure 5). 

When assessing whether objective performance changed according to food type or block 

number, it was found that monkeys’ performance was not affected by block number, F(4, 40) = 

1.37, p = 0.26, 𝜂𝑝
2 = 0.12. Food type also had no impact on performance, F(1, 10) = 0.007, p = 

0.93, 𝜂𝑝
2 = 0.001. There was no interaction between food type and block number, F(4, 40) = 

1.17, p = 0.34, 𝜂𝑝
2 = 0.10. Monkeys’ performance on non-probe trials was not impacted by 

unpleasant or pleasant foods or over session number (Figure 6).  

Figure 7 depicts the percentage of positive responses as a function of the stimulus level. 

Monkeys are graphed according to their assigned positive response class. Monkeys chose their 

assigned positive response class close to 100% of the time when the stimulus was itself of the 

positive class. When the stimulus was of the negative class, monkeys chose the positive response 

class at much lower rates. This indicates that when the stimulus was of the positive class, 

monkeys chose the positive response at ceiling rates. Overall, performance was very high, such 

that monkeys chose correctly most of the time and especially if the stimulus was of the assigned 

positive class. 

3.3 Experiment 2 Test Phase 

All data gathered in Experiment 2 were analyzed using the same methods as in 

Experiment 1. The independent and dependent variables were the same as in Experiment 1. 

ANOVAs and One-Sample T-Tests were used to analyze all Experiment 2 data.  
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3.3.1 Ambiguous Probe (Level 8)  

As in Experiment 1, classifying the ambiguous probe as the positively reinforced 

response class was not affected by block number, F(4, 24) = 0.96, p = 0.45, 𝜂𝑝
2 = 0.14, or food 

type, F(1, 6) = 4.55, p = 0.08, 𝜂𝑝
2 = 0.43. In addition, there was no interaction between block 

number and food type, F(1.813, 10.880) = 1.23, p = 0.33, 𝜂𝑝
2 = 0.17. Note that sphericity was 

violated in the previous analysis, and so Greenhouse-Geisser values were used. Monkeys’ 

tendency to choose the positive response class was not impacted by the session number or 

whether they received a pleasant or unpleasant food (Figure 8). 

Unlike in Experiment 1, classifying ambiguous probe stimuli into the positively 

reinforced response class occurred at levels significantly above chance for all blocks and both 

food types (Table 4). Overall, monkeys chose the positive response class more often than the 

negative response class across all blocks and for both pleasant and unpleasant food types for 

their second task (Figure 9). 

In the second experiment, all monkeys were tested using the same shade discrimination 

task except one monkey who was tested with the orientation discrimination task. As such, no 

task differences in responses to the positive response class were observed. Monkeys responded to 

the level 8 ambiguous probe using their positive response class around 80% of the time, 

indicating that they were more likely to classify the level 8 stimulus as resembling their positive 

response class rather than their negative response class (Figure 12). This was true for monkeys 

on the shade discrimination task and the sole monkey on the orientation discrimination task. 

For the final task, monkeys discriminated between shades of gray boxes. This was the 

second task (e.g., Experiment 2) presented to the monkeys who participated in Experiment 2, 

except for Gambit who was given the orientation discrimination task as her second task. The 
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percentage of positive responses to the level 8 stimulus for both food types and for each monkey 

is shown in Figure 15. Similar to the speed discrimination task, all seven monkeys were 

significantly above chance when choosing their positive response class for the level 8 ambiguous 

probe. This indicates that monkeys were more likely to classify the level 8 ambiguous probe as 

their positive response class regardless of whether they received the pleasant or the unpleasant 

food type.  

3.3.2 Remaining Stimulus Levels (Levels 1-7 and 9-15)  

The percentage of positive responses was not influenced by block number, F(4, 24) = 

2.52, p = 0.07, 𝜂𝑝
2 = 0.30, or food type, F(1, 6) = 0.68, p = 0.44, 𝜂𝑝

2 = 0.10. No interaction 

between block number and food type was found, F(4, 24) = 1.83, p = 0.16, 𝜂𝑝
2 = 0.23. For non-

probe (level 8) trials, monkeys were equally likely to choose the positive response class 

regardless of block number and whether they received a pleasant or unpleasant food (Figure 10). 

Similar to Experiment 1, no effect of food type on performance was found, F(1, 6) = 

1.58, p = 0.26, 𝜂𝑝
2 = 0.21. However, a significant effect was found for block number, F(4, 24) = 

2.90, p = 0.043, 𝜂𝑝
2 = 0.33. Monkeys’ performance increased over sessions. Further, an 

interaction between block number and food type was also significant, F(4, 24) = 4.57, p = 0.007, 

𝜂𝑝
2 = 0.43. The interaction between block and food type is graphed in Figure 11. Post-hoc 

analyses, using a repeated-measures ANOVA assessing block number and sessions in which 

only a pleasant food was received, showed that performance improved over blocks only for 

pleasant food test sessions, F(4, 24) = 7.50, p < 0.001, 𝜂𝑝
2 = 0.56. Further post-hoc analyses, 

using a paired-sample t-test comparing each block to every other block for the pleasant food test 

sessions, revealed that this effect was driven by blocks two, four, and five in the pleasant food 
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sessions. Specifically, performance significantly improved from block two to block four, t(6) = 

2.56, p = 0.043, and from block two to block five, t(6) = 2.940, p = 0.026.  

As in Experiment 1, monkeys chose their assigned positive response class at 

exceptionally high rates when the stimulus was of the positive class. Their performance overall 

was high, especially when responding to stimuli that was of their assigned positive response 

class (Figure 12). 
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Table 3.1 Experiment 1 Descriptive Statistics 
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Table 3.2 Experiment 2 Descriptive Statistics 
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Table 3.3 Experiment 1 One-Sample t-test Level 8 Percent Positive vs Chance (50%) 
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Table 3.4 Experiment 2 One-Sample t-test Level 8 Percent Positive vs Chance (50%) 
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Figure 3.1 Experiment 1 Training Phase Performance. 

 

Performance, measured by percentage correct, for the second and third training phases in 

Experiment 1. Performance shown was for the training session in which criterion was reached, 

averaged across all monkeys. Error bars represent 95% confidence intervals. 
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Figure 3.2 Experiment 2 Training Phase Performance 

 

Performance, measured by percentage correct, for the second and third training phases in 

Experiment 2. Performance shown was for the training session in which criterion was reached, 

averaged across all monkeys. Error bars represent 95% confidence intervals. 
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Figure 3.3 Experiment 1 Level 8 Percent Positive Chosen by Block and Food Type 

 

The percentage of positive response class choices made in Experiment 1 compared between 

block number and food type for only the Level 8 ambiguous probe. Error bars represent 95% 

confidence intervals. 
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Figure 3.4 Experiment 1 Percentage of Positive Choices for Level 8 vs Chance (50%) 

 

The percentage of positive response class choices made in Experiment 1 compared across block 

number and food type against chance level (50%) for the Level 8 ambiguous probe. Error bars 

represent 95% confidence intervals. 
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Figure 3.5 Experiment 1 Percent Positive by Block and Food Type 

 

The percentage of positive response class choices made in Experiment 1 compared between 

block number and food type for stimulus levels 1-7 and 9-15. Error bars represent 95% 

confidence intervals. 
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Figure 3.6 Experiment 1 Percent Correct by Block and Food Type 

 

The percentage of correct choices made in Experiment 1 compared between block number and 

food type for stimulus levels 1-7 and 9-15. Error bars represent 95% confidence intervals. 
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Figure 3.7 Experiment 1 Percent Positive by Assigned Valence and Stimulus Level 

 

 The percentage of positive response class choices made in Experiment 1 compared between 

stimulus level and according to assigned positive valence response class. Stimulus levels 1-7 

were objectively slow or wide, depending on the task, while stimulus levels 9-15 were 

objectively fast or tall, depending on the task. Error bars represent 95% confidence intervals. 
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Figure 3.8 Experiment 2 Level 8 Percent Positive Chosen by Block and Food Type 

 

The percentage of positive response class choices made in Experiment 2 compared between 

block number and food type for only the Level 8 ambiguous probe. Error bars represent 95% 

confidence intervals. 
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Figure 3.9 Experiment 2 Percentage of Positive Choices for Level 8 vs Chance (50%) 

 

The percentage of positive response class choices made in Experiment 2 compared across block 

number and food type against chance level (50%) for the Level 8 ambiguous probe. Error bars 

represent 95% confidence intervals. 
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Figure 3.10 Experiment 2 Percent Positive by Block and Food Type 

 

The percentage of positive response class choices made in Experiment 2 compared between 

block number and food type for stimulus levels 1-7 and 9-15. Error bars represent 95% 

confidence intervals. 
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Figure 3.11 Experiment 2 Percent Correct by Block and Food Type 

 

The percentage of correct choices made in Experiment 2 compared between block number and 

food type for stimulus levels 1-7 and 9-15. Error bars represent 95% confidence intervals. 
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Figure 3.12 Experiment 2 Percent Positive by Assigned Valence and Stimulus Level 

 

The percentage of positive response class choices made in Experiment 2 compared between 

stimulus level and according to assigned positive valence response class. Stimulus levels 1-7 

were objectively dark, while stimulus levels 9-15 were objectively light or tall, depending on the 

task. Error bars represent 95% confidence intervals. 
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Figure 3.13 Speed Task Positive Responses of Individual Monkeys to Level 8 Stimuli 

 

The percentage of positive response class choices made in the speed discrimination task 

compared across individual monkeys and food type against chance level (50%) for the Level 8 

ambiguous probe.  
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Figure 3.14 Orientation Task Positive Responses of Individual Monkeys to Level 8 

Stimuli 

 

The percentage of positive response class choices made in the orientation discrimination task 

compared across individual monkeys and food type against chance level (50%) for the Level 8 

ambiguous probe.  
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Figure 3.15 Shade Task Percentage of Positive Responses to Level 8 

 

The percentage of positive response class choices made in the shade discrimination task 

compared across individual monkeys and food type against chance level (50%) for the Level 8 

ambiguous probe.  
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4 DISCUSSION 

Prior to any manipulation to affect during the testing phase, monkeys were trained to 

classify stimuli into one of two response classes. Criterion was reached on all training phases and 

decreases in performance reflected increasing difficulty as the central stimulus level was 

approached (i.e., as the task became objectively more difficult). This indicates that the speed, 

orientation, and shade tasks used were appropriate psychophysical tasks that became more 

difficult and ambiguous to classify as the center of the stimulus range was approached. Because 

cognitive bias tasks rely on ambiguous stimuli to elicit a cognitive bias effect, the differences in 

ambiguity and difficulty were important to maintain. For the current study, both Experiment 1 

and 2 employed the use of psychophysical tasks that the monkeys were able to learn but that also 

included sufficiently ambiguous stimuli for testing purposes. 

Not all monkeys were successful with the discrimination of stimulus speed and were 

moved therefore to a task requiring discrimination of orientation. The difficulty of some 

monkeys to learn the discrimination of slow or fast moving stimuli is interesting and could be a 

subject of future study. However, for the purposes of the current study, any psychophysical task 

the monkeys could successfully complete was sufficient for assessment of cognitive bias effects. 

There were also notable individual differences in the number of trials needed to reach criterion 

across monkeys. This is not abnormal for cognitive testing with nonhuman primates as the 

monkeys differ on how quickly they may learn a task. More notably, average trial counts to reach 

criterion were much lower for the second task monkeys completed. It is possible monkeys were 

more familiar with the general aim of the task, even though they were now discriminating shade 

rather than speed or orientation.  
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Some monkeys also experienced difficulty in learning the final phase of training in which 

the nonstandard reward contingencies for cognitive bias assessment were implemented. For 

many monkeys, a large bias emerged in favor of the response class that gave a reward, such that 

performance was still above 50% for all stimulus levels but was at ceiling for levels that were of 

the assigned positive response class. The inclusion of multiple training stimuli allowed for the 

revelation of this bias toward the positive response class even before the presentation of 

ambiguous stimuli or affect manipulations. The majority of cognitive bias assessments train only 

the anchor points of stimuli, such as only the fastest moving (level 15) and slowest moving (level 

1) stimuli. Training several points in between allowed for further assessment of how monkeys 

may respond to intermediate stimuli prior to manipulations to affect and with non-standard 

reinforcement contingencies in place.  

The bias toward the positive response class during training in the current study carried 

into the testing phase. For previously trained stimuli presented during the test phase, monkeys 

classified correctly stimuli that were of the positive response class at very high rates, such that 

their performance and positive responses were at ceiling with these stimuli. Further, monkeys’ 

positive classifications were significantly above chance when presented with the ambiguous 

probe (level 8). This indicates that monkeys were classifying the ambiguous probe as being from 

the positively reinforced stimulus class regardless of the food they were given. Although this 

may be evidence of overall positive affect in the current subjects, the presence of a positive bias 

during training is suggestive that there may be more at play than affective state in positive 

cognitive biases. Indeed, when presented with ambiguous stimuli, monkeys may be gravitating 

toward positive response classes due simply to the fact they receive food only for that response 

regardless of their inner mood states. The pattern of responding may be a strategy to maximize 
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the rewards gained during a given session and may have had little or nothing to do with general 

affective state. The addition of multiple training stimuli and probe stimuli assisted in revealing 

the responses of monkeys to ambiguous stimuli when under the cognitive bias reward 

contingencies, and potentially suggests that these reward contingencies may bias this species 

toward positive responding irrespective of emotional state. This could account for the bias 

toward positive responding such that the potential to receive a reward was more beneficial than 

the cost of a potential time out.  

Overall, monkeys were more likely to classify the level 8 ambiguous probe using their 

positive response class. However, this was not universal across the tasks used in Experiment 1. 

When discriminating the speed of the ambiguous probe, monkeys more frequently chose their 

positive response class. In contrast, monkeys who were discriminating the orientation of the 

ambiguous probe did not show a preference for either their negative or positive response class. 

Based on accuracy data, monkeys had higher performance on the orientation task, suggesting it 

was less difficult than the speed task, but why this might make their perception of the ambiguous 

probe less positive than a more difficult task is unclear. One possible explanation is that the 

difficulty of the speed discrimination task allowed for more uncertainty when presented with the 

ambiguous probe, and this uncertainty resulted in monkeys choosing their positive response class 

due to the inherent biases toward responses that give rewards. Because they displayed very high 

performance on the orientation discrimination task, responding at chance levels reflects their 

enhanced understanding of the task itself, due to the ambiguous probe truly being neither wide or 

tall. In other words, rather than defaulting to the response class that resulted in rewards, monkeys 

on the orientation discrimination task instead responded to the ambiguous probe equally as both 
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the negative and positive response class. Further investigation into how monkeys approached 

these two tasks would be required to provide a full explanation of these differences. 

All monkeys assigned to the speed discrimination task showed similar preferences for 

their positive response class when responding to the ambiguous probe. However, monkeys 

assigned to the orientation discrimination task differed in their positive classifications of the 

ambiguous probe. Specifically, three of the seven monkeys were significantly below chance in 

their level 8 responses, indicating they classified the ambiguous probe more often using their 

negative response class. The remaining four monkeys showed results that were similar to the 

monkeys assigned to the speed discrimination task. When considering these three monkeys’ 

performance and previous experience, no patterns emerge as explanation for these individual 

differences. Further investigation would be required to determine why some of the monkeys 

seemed to differ in their perceptions of the ambiguous probe and whether these differences 

resulted from the task itself or from individual differences in the monkeys. With regards to the 

second task, one of the three monkeys from Experiment 1 showed an increase in his 

classification of the ambiguous probe using the positive response class. This could result from 

prolonged exposure and experience with the cognitive bias reward contingencies, but because the 

remaining two monkeys did not progress to the second experiment, it is difficult to draw 

conclusions based on the data of one monkey.   

Unlike Experiment 1, the second task experienced by the monkeys showed no task 

differences in classifications of the ambiguous level 8 probe, with monkeys all preferring their 

positive response class. Again, further investigation into the tasks used in Experiment 1 would 

shed light on these differences. It is possible that monkeys gravitated toward their positive 

response class over time and experience with the cognitive bias tasks and reward contingencies, 
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or that the monkeys who participated in Experiment 2 have a stronger preference for the positive 

response class than those monkeys who only participated in Experiment 1. This possibility is 

discussed further with regard to individual monkeys’ classifications of the ambiguous probe.  

The positive bias of monkeys for the ambiguous probe (level 8) was present for most 

blocks and food type in the first experiment. However, it was present across all blocks and both 

food types in Experiment 2 (i.e., the second task). The universal preference for the positive 

response class in the second task may be due to several factors. The second task may have been 

easier for the monkeys. Shade may be an easier psychophysical discrimination when compared 

to speed or orientation, and the trial counts are reflective of faster acquisition. An easier task may 

account for the increase in positive responses either because it improved the mood of the 

monkeys or because time outs were less of a deterrent when the monkeys were correct on a 

majority of trials. While further testing would be needed to determine if task difficulty is a factor 

in affective state, it is more probable that monkeys chose the response that would reward them 

with food and were unconcerned with the possibility of a time out due to the easier nature of the 

task. 

Another explanation for the positive bias in the second task is that monkeys who 

progressed to Experiment 2 may be more positive (i.e., “optimistic”) than the monkeys who did 

not progress to the second task. In general, the monkeys who participated in Experiment 1 but 

not Experiment 2 took longer to complete the training phases for Experiment 1. It may be that 

the monkeys who had more difficulty are less positive either due to personality differences or to 

effects of task difficulty on frequency of positive response class choices as described above. In 

order to address this question fully, one would need to assess the data for Experiment 2 when all 

monkeys from Experiment 1 have completed testing on their second task.  
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Another potential explanation for the increase in positive class responses for the 

ambiguous probe in the second task is that over time and experience, monkeys’ responses may 

skew toward the positive response class regardless of affective state. This relates to the study 

performed by Perdue (2017) in which monkeys’ responses to ambiguous stimuli skewed toward 

negative responding over time and in the absence of any manipulation to their affective states. 

While the direction of the bias is in opposition to the current study, the presence of a pre-existing 

bias during training with cognitive bias reward contingencies prior to any food-related 

manipulations in the current study and of a negative bias in lieu of any affect manipulation in the 

Perdue (2017) study suggests that positive or negative biases observed during test phases may 

not necessarily be indicative of emotional state and may be due to other factors. Indeed, Perdue 

(2017) demonstrated that reward payouts shifted the bias from one response class to another (i.e., 

whichever class was the lowest paying class). In the current study, the inclusion of multiple 

stimulus levels during training may have skewed the monkeys toward positive responding 

because they were rewarded only when they chose that response class. It is possible that the 

results observed in both the current study and Perdue (2017) are indicative of a strategy derived 

from the potential for reward and not from affective state. For example, monkeys in the Perdue 

(2017) study were not rewarded or punished for responses to any of the ambiguous stimuli, while 

the monkeys in the current study were trained and reinforced on several levels of ambiguous 

stimuli. It may be that training resulted in a preference for the positive response class while 

unreinforced response classes beget negative response preferences. This is an interesting and 

important question to consider when moving forward with cognitive bias assessments, especially 

when dealing with nonhuman primates. 
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A final explanation of the current results lies in the design of time outs and rewards for 

responses to “negative” and “positive” stimuli. In Perdue (2017), rather than implementing 

rewards for positively valenced stimuli and a deterrent (e.g. a timeout) for negatively valenced 

stimuli during training, monkeys were trained to associate one response class with a low quantity 

of pellets and the other response class with a high quantity of pellets. The current study 

demonstrated that overall, monkeys were more likely to choose their positive response class 

when presented with ambiguous stimuli, while the monkeys in the Perdue (2017) study favored 

their negative response class when discriminating ambiguous stimuli. The use of rewards and 

time outs in the current study may have contributed to the findings of increased preferences for 

positive response classes.   

Specifically, the monkeys in the current study have extensive experience with time outs 

as indications of errors throughout any given task. In the current study, when monkeys correctly 

identified a stimulus that was of their negative response class, they avoided either a 20 s or 60 s 

timeout. The avoidance of a time out allowed for quicker access to the next trial and therefore to 

more potential rewards. The less time monkeys spent sitting through a time out, the more able 

they were to maximize the number of rewards they received, providing motivation to correctly 

identify those stimuli that were of the assigned negative response class. Further, time outs are 

typically used to indicate a monkey has made an error in responding to a stimulus, and the 

avoidance of a time out provides, albeit indirectly, feedback that the monkeys were not in error 

when responding to the stimulus in question. However, the use of time outs as an association 

with negative consequences may not have had the intended impact, such that time outs are 

perceived as a teaching mechanism rather than as a punishment or deterrent. This could have 

resulted in a reduced perception of the negative response class as a negative experience and 
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merely as a class of responses that were less desirable than those of the positive response class, 

thereby producing an overall preference for the positive response class. 

The evident bias of monkeys toward the reward-giving response may be a product of the 

design or an inherent preference, and which of these underlies the current results would benefit 

from further study. Indeed, Perdue (2017) implemented differing quantities of pellets for the 

positive and negative response classes, which may work toward combatting either a design-

induced or inherent bias toward reward-giving responses by providing rewards regardless of 

response class and using differing quantities to create associations with response classes such as 

“positive” and “less positive” or “more positive” depending on the amount of pellets rewarded. 

The current study may have benefitted from this method of reward quantities rather than rewards 

and time outs in order to balance the response classes more fully. 

While no effect of food type was found to impact the judgment of ambiguous stimuli as 

either belonging to the positive or negative response class, it was found that in the second task 

only the pleasant food influenced an increase in performance across sessions whereas the 

unpleasant food did not. This finding was unexpected, especially considering that this effect is 

only true when comparing block two to block four and block two to block five. While it is 

possible that receiving a pleasant food before testing may have improved motivation and thereby 

performance, further investigation is required before making such statements. Further, that this 

increase in performance over time and for only pleasant sessions occurred in the second task but 

not in the first task indicates that there may be fundamental differences in the tasks used or that 

prolonged exposure to cognitive bias assessments may influence the potential for pleasant foods 

to improve motivation. Due to the large effect size associated with this finding, it is likely worth 
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investigating the potential impact of pleasant foods and emotional state on task performance over 

time.  

The manipulation to affect using pleasant and unpleasant foods had no impact on the 

judgment of ambiguous stimuli as either positive or negative in both tasks presented to the 

monkeys. There are several explanations for these null results and some originate in the training 

phase while others regard the test phase. During the training phase, monkeys completed as many 

trials as necessary to reach criterion, and as a result, performance on testing sessions was high 

overall, especially with regards to positive response classes. In previous studies on the cognitive 

bias effect, subjects were given little training in comparison, only enough to ensure an 

association of one response with positive events and one with negative events and a basic 

understanding of the task. The monkeys in the current study are well-versed in and highly 

experienced with psychophysical discriminations and also received extensive training on the 

particular tasks used in the study. Due to this, the monkeys may have been too well-trained on 

the psychophysical tasks in that their understanding of stimulus discriminations eclipsed any 

impact pleasant or unpleasant foods may have had on their judgment of ambiguous stimuli. 

Whether this may be due to the current monkeys’ previous experience with similar tasks or to the 

experience gained during training of the current tasks is uncertain, and further study could 

illuminate how experience with the judgment task itself may influence cognitive bias 

assessments. Nevertheless, over-training could explain why the current results failed to support 

an effect of emotional state on the judgment of psychophysical stimuli, though there are many 

more reasons that may explain the null results either apart from or in tandem with the issue of 

over-training. 
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Another possible reason no effect of food type was discovered also related to the training 

phases in the current study. As discussed above, monkeys developed a strong bias toward their 

positive response class during the final phase of training, when the reward contingencies were 

shifted to reflect cognitive bias assessments. A pre-existing bias toward the positive response 

class could have impacted the results by masking any negative effects of the affect manipulation. 

That is, the tendency to favor the positive response class brought about by the preference for the 

response class that provided rewards was stronger than any potential negative affects brought on 

by the unpleasant food. However, this explanation assumes that pleasant and unpleasant foods 

have an impact on affective states in nonhuman primates and also that the unpleasant food used 

in the current study was truly a negative experience for the monkeys. Regarding the issue of 

affect manipulation effectiveness, two limitations of the current study regarding experiences 

during the testing phase are possibly responsible for the null results. 

First, it may be that pleasant and unpleasant foods were not sufficient to bring about 

short-term changes in affective state in the subjects, at least not enough to impact judgments of 

psychophysical stimuli. The monkeys in the current study are well-cared for and receive fresh 

fruits and vegetables daily as well as a variety of high preference foods from other researchers 

and care staff. A brief experience with a pleasant food is not out of the ordinary for these animals 

nor is it a special occurrence. Therefore, any increase in mood brought about by pleasant foods 

may not be salient enough to alter perception judgments on a cognitive task, especially 

considering the monkeys’ expert-level experience with a variety of cognitive tasks over years of 

research. Further, any negative emotion evinced by the unpleasant food would likely have had 

little effect on their ability to judge ambiguous stimuli when taking into account their overall 

state of well-being and task proficiency. Due to this, the monkeys in the current study offered 
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some unique challenges to assessing emotional state that were difficult to overcome. Future 

studies would need to take these into account when designing cognitive bias assessments to 

mitigate the monkeys’ experience level with cognitive tasks. 

Second, the unpleasant food used in the current study was a gelatin-food mixed with 

turmeric. While pilot studies indicated monkeys did not eat the unpleasant food, and monkeys 

did not eat it during the formal tests, it was repeatedly observed during test phases that monkeys 

would manipulate the unpleasant food for several minutes before discarding it. Manipulation of 

the unpleasant food included behaviors such as pulling it apart into pieces, rolling it in their 

hands or around their test boxes, pushing it into various areas around the test box, and running 

drinking water over it. As such, it is possible that manipulating the unpleasant-tasting gelatin 

food was indeed an enrichment-like experience for them, meaning a pleasant experience. If this 

was the case, the current study employed the use of two pleasant affect manipulations, one a 

primary reinforcer and one a secondary reinforcer, rather than a pleasant and an unpleasant 

manipulation. In this light, the failure to find a difference in the frequency of positive responses 

depending on food type as well as the overall positive classifications of the ambiguous probe 

may insinuate that a primary reinforcer, such as a pleasant food, may improve affective state as 

much as a secondary reinforcer, such as enrichment, improves affective state. An interesting 

question regarding the importance of access to pleasant foods as well as enrichment for animals 

in captivity arises and may be answered in future studies. The current study could address this 

question by providing monkeys with enrichment similar to that provided by the unpleasant food 

and comparing this against sessions with no enrichment at all in order to determine whether the 

presence or absence of enrichment may impact affective state sufficiently.  
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Apart from the explanations concerning the training and testing phases in the current 

study, a more general explanation of the failure to find cognitive bias effects lies in the nature of 

the species participating in the study. Nonhuman primates are highly intelligent creatures, which 

is a potential explanation of the scarcity and difficulty experienced when assessing cognitive bias 

effects with these animals. Specifically, nonhuman primates, especially the cognitive task experts 

in the current study, may be too intelligent or well-trained for small changes to their environment 

to alter the practiced and experienced subjects’ responses to psychophysical tasks. Cognitive bias 

assessments have been successful with a large number of species, but the current study presents 

some issues that may be addressed with other species not subject to the challenges of nonhuman 

primates. For example, the inclusion of multiple intermediate stimuli with other species may 

provide insight into how the cognitive bias reward contingencies impact judgment of ambiguous 

stimuli apart from affect manipulations (see also Perdue, 2017). In addition, further investigation 

of how repeated exposure to cognitive bias assessments may impact results should be pursued. 

Other species may respond differently to repeated exposure and multiple training stimuli and this 

may lead to further explanations of why cognitive bias assessments with nonhuman primates are 

uniquely challenging. 

Despite the failure to find a cognitive bias effect in the current study, there is much 

evidence that emotion and cognition in monkeys are linked as they are in humans, but the 

cognitive abilities of nonhuman primates may be too advanced for simple perceptual 

discriminations to be influenced by short-term manipulations to affective state. In other words, 

the cognitive bias assessment may not be suited for detecting influences of emotional state on 

responses to cognitive tasks in monkeys. Indeed, it can be difficult to determine just how 

emotion and cognition are linked in nonhuman primates based on the challenges of studying 
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emotional state objectively in nonhuman primates. Tasks that assess attention in nonhuman 

primates have determined that threatening stimuli does impact attention under stressful 

circumstances. However, it may be that the cognitive bias technique does not tap into the need 

for emotion to be involved when discriminating between simple stimuli. There may be no 

evolutionary imperative for emotional state to be a part of judgments in cognitive tasks in 

nonhuman primates whereas attention may be more sensitive to emotionally salient situations 

and stimuli. Future studies could attempt to assess whether emotional influences on cognition is 

more situation specific in nonhuman primates than in other species or even in humans. 

In sum, nonhuman primates are an understudied group of species in the cognitive bias 

literature, but they offer a unique and challenging perspective that should continue to be 

investigated. It may be discovered that cognitive bias assessment methodology must be altered 

significantly in order to accurately assess nonhuman primate emotional states, and this could 

only improve methods of welfare assessment in the future. 
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