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ABSTRACT

Extracting insights from the vast dataset of viral genome sequences collected throughout the

COVID-19 pandemic requires the development of novel algorithms that are tailored to its unique

properties. These properties, such as high sampling density, unambiguous knowledge of the phylo-

genetic root sequence, and completeness with respect to the virus’s evolutionary history in humans,

make it distinct among viral genome datasets. This dissertation details the development and ap-

plication of advanced computational methodologies to analyze the SARS-CoV-2 genomic dataset.

We introduce a suite of computational techniques that are tailored to this data, beginning with

SPHERE, an algorithm for scalable phylogeny reconstruction that adapts to the high density of the

genomic data. The next is (ε, τ)-MSN, which forms genetic relatedness networks by joining all

possible minimum spanning trees and sensibly augmenting the network with additional edges, to

capture groups of similar sequences. Furthermore, we present an unsupervised learning approach

for finding a clustering of genomic sequences that minimizes cluster entropy. We also propose a

method for implementing evolutionary jumps within genetic algorithms, simulating the punctuated

equilibrium phenomena observed in SARS-CoV-2 sequencing data, which was shown to improve

the speed of convergence for hard instances of the 0-1 Knapsack Problem. Collectively, these

works detail new, efficient ways in which to consider modeling and extracting information from

large scale viral sequencing datasets.

INDEX WORDS: SARS-CoV-2 Genomics, Phylogenetic Analysis, Computational Bi-
ology, Unsupervised Learning, Evolutionary Algorithms
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CHAPTER 1

Introduction

1.1 Favorable Properties of SARS-CoV-2 Genomic Data

The SARS-CoV-2 genomic data has properties that make it unique among other viruses. It is the

first virus introduced to humans recently, allowing researchers to sequence it with high density

throughout its evolution. For older viruses like HIV and HPV, their first cases in humans occurred

prior to the next-generation sequencing technology needed to understand their genomic compo-

sition. As a result, their data contain only the recent products of their evolution, the leaves of

the evolutionary tree. By contrast, immediate and high-frequency sequencing of SARS-CoV-2

since its inception in humans means that we are capturing the entire evolutionary tree of the virus

in real-time, not just the leaf nodes. Consequently, the data contains a high-resolution image of

the evolutionary tree of the virus, which may enhance the explanatory power of bioinformatics

methods if tailored to extract this information.

Phylogenetic trees model the evolutionary relationships of a set of sampled sequences, pro-

viding a hierarchical clustering into a dendrogram, giving the evolutionary order in which those

species emerged. At the leaf node level, we see all the species observed today, while internal nodes

represent common ancestors, all the way up to the root, which is the inferred ancestor of all ob-

served species. In this evolutionary model, internal node ancestors are not present in the observed

data; rather, the existence of these ancestor species is supported by inference. Such inference

is necessary, as many of the organisms we study have evolutionary histories that far predate our

ability to study them.
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However, this is not the case for SARS-CoV-2 data. As soon as the virus first appeared in late

2019 in Wuhan, researchers responded immediately by sequencing the genome of the collected

viral samples. Such sequencing was dense and frequent and continued throughout the pandemic, as

the virus mutated into its various strains and spread across the world. This mass sequencing effort

has amassed over 16 million DNA sequences of the virus, available in the public database GISAID

(2). This is out of approximately 700 million total cases of COVID-19, implying that more than

2.2% of all cases of SARS-CoV-2 were sequenced, and the viral genomes made publicly available.

Due to this unprecedented sequencing density, many key challenges in phylogenetic analysis

are not challenges for SARS-CoV-2. We no longer have a need for ancestral inference, and there

is no question of how to root the phylogenetic tree, as these sequences would be present in the

observed data. It is for this motivation that we proposed SPHERE, which used a different evolu-

tionary tree model that places observed sequences at internal nodes in the tree, not just on the leaf

nodes.

Another key property of SARS-CoV-2 data is that its mutation rate is relatively low but still

high enough that we can correlate mutations with transmission events. From the beginning of the

pandemic in December 2019 until October 2020, each strain of the virus collected 2 mutations per

month on average in the global population (3). Coupled with high sequencing density, this fact

allows us to reconstruct transmission networks, providing a real-time epidemiological account of

the transmission dynamics of the virus. By evaluating the efficacy of public health measures, we

can also predict future outbreaks. This fact also allows for a genomic account of the evolutionary

hierarchy among sampled genome sequences, by which we can determine which sampled sequence
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is the ancestor of another.

1.2 Contributions to Large-Scale Genomic Data Analysis

This dissertation covers research projects that improve upon state-of-the-art bioinformatics meth-

ods developed for general viral genomes, with algorithms tailored to SARS-CoV-2 data. The re-

sulting methods perform better on standard metrics for this data and can make stronger inferences

than we could from the sequencing data of older viruses.

The first presented work is SPHERE, an algorithm for reconstructing the phylogenetic tree of

SARS-CoV-2 genomes. This algorithm accepts aligned SARS-CoV-2 genome sequences and pro-

duces trees showing the evolutionary relationships between the genomes. It is scalable to the mil-

lions of sequences available in public databases, and uniquely, the trees it produces place observed

sequences in internal nodes as well, not just the leaf nodes, as is usually done in other methods.

This allows us to determine which sequence was the ancestor of another and infer transmission

events. We showed that our method agrees with state-of-the-art method Nextstrain’s phylogenetic

trees while being orders of magnitude faster and more stable in its results across increasing time-

densities of the data.

The second presented work is (ϵ, τ)-MSN, a method for creating genetic relatedness networks

by joining all possible minimum spanning trees, augmented by additional edges whose weights are

within a factor of ϵ of the minimum but no greater than τ .

The third presented work is Entropy based Clustering of SARS-CoV-2 Sequences, in which a

Monte Carlo entropy minimization procedure is developed and applied to find the minimal entropy
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clustering of a set of SARS-CoV-2 sequences.

The fourth presented work is Entropy based Clustering of SARS-CoV-2 Sequences, in which a

Monte Carlo entropy minimization procedure is developed and applied to find the minimal entropy

clustering of a set of SARS-CoV-2 sequences.

Lastly, the fifth and final presented work aims to improve the genetic algorithm with a new

procedure called ”Evolutionary Jumps” which are similar to an observed pattern in SARS-CoV-2

known as punctuated equilibrium, wherein a new sequence emerges that contains pairs of muta-

tions which were observed to be correlated across multiple different branches of the evolutionary

tree.
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CHAPTER 2

Scalable Reconstruction of SARS-CoV-2 Phylogeny with Recurrent Mutations

Daniel Novikov, Sergey Knyazev, Mark Grinshpon, Pelin Icer, Pavel Skums, Alex Zelikovsky

Journal of Computational Biology 2021

ABSTRACT

This paper presents a novel, scalable, character-based phylogeny algorithm for dense viral se-

quencing data called SPHERE (Scalable PHylogEny with REcurrent mutations). The algorithm

is based on an evolutionary model where recurrent mutations are allowed, but backward mutations

are prohibited. The algorithm creates rooted character-based phylogeny trees, wherein all leaves

and internal nodes are labeled by observed taxa. We show that SPHERE phylogeny is more stable

than Nextstrain’s, and that it accurately infers known transmission links from the early pandemic.

SPHERE is a fast algorithm that can process more than 200,000 sequences in less then 2 hours,

which offers a compact phylogenetic visualization of GISAID data.

2.1 Introduction

Equipped with the Next Generation Sequencing tools which are much more productive than ever

before, the scientific community have collected an unprecedented amount of SARS-CoV-2 ge-

nomic data, enabling tracking the entire history of SARS-CoV-2 evolution with high precision (2).

This tracking requires advanced phylogeny reconstruction software. However, the current state-of-

the-art phylogeny algorithms were created to handle significantly sparser genomic data than what

is available for SARS-CoV-2. The majority of the popular phylogenetic tools assume that only the
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final product of evolution is available, while all intermediate evolutionary taxa are unknown. Also,

these tools usually require significant computational resources, taking hours and sometimes days

to reconstruct the SARS-CoV-2 phylogeny even for a small subset of the available genomes.

The SARS-CoV-2 sequencing data are similar to single cell sequencing data in cancer studies,

where sequenced mutations from thousands of cancer cells offer a much closer look at cancer

evolution. For such densely sequenced samples, perfect phylogeny models are more insightful

than maximum likelihood models (4). The perfect phylogeny model requires each mutation to

occur only once and never disappear. More realistic cancer evolution models allow widespread

loss and recurrence of mutations (5; 6; 7).

In contrast to cancer evolution, in viral evolution backward mutations are rarer than recurrent

mutations (8). In the evolution of the SARS-CoV-2 virus, recurrent mutations are mostly induced

by the host’s non-specific immune response. As they tend to be selectivity neutral, these mutations

appear with higher frequency (9).

These properties of the SARS-CoV-2 genomic data, its density and a relatively high frequency

of recurrent mutations, motivate the need for a parsimony-based phylogeny algorithm that is scal-

able to the entire collection of SARS-CoV-2 sequences available on GISAID (which numbers about

2.3 million sequences at the time of writing).

In this work, we follow the approach proposed in (10), which uses mutation trees (4) associated

with character-based phylogenies that keep track of the accumulation of mutations in viral popu-

lations. We choose to employ parsimony-based phylogenetic analysis, because it explains evolu-

tionary history with the fewest number of mutations to reproduce the variations in the genomic
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data. Targeting both accuracy and resolution as aspects of information contained in a phylogenetic

tree, the maximum parsimony approach yields the results that are at least as good or better than

probabilistic approaches (11).

We propose SPHERE, Scalable PHylogEny with REcurrent mutations, as an efficient phy-

logeny reconstruction method that incorporates this model. Using this tool, we analyzed the avail-

able GISAID data with over 300,000 genome sequences. We compared the trees produced by

SPHERE with those produced by Nextstrain, and demonstrated that SPHERE trees are more sta-

ble with respect to extending datasets. Finally, we validated that the phylogeny trees produced by

SPHERE more reliably discover valid transmission links than other state-of-the-art algorithms.

2.2 Methods

2.2.1 Most Parsimonious Phylogeny Problem

Given a set of aligned sequences, possibly containing missing positions, and a reference sequence

with no missing positions, find a character-based phylogenetic tree that is rooted at the reference

sequence, that has the minimum total edge length, and that does not admit backward mutations.

An algorithm to meet these criteria should infer the phylogeny tree from a set S of size n

of aligned SARS-CoV-2 genome sequences. All of these sequences are built on the nucleotide

alphabet (A,C,T,G) and may contain missing positions (N). The reference sequence is required to

have no missing positions, i.e., no occurrences of N. Under the assumption of allowing recurrent

mutations but not allowing backward mutations, our algorithm creates a maximum parsimony

phylogeny tree for the given dataset rooted at the reference sequence.
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Nodes in the phylogeny tree represent sequence haplotypes that match one or more sequences

in the data. Edges in the tree are directed, and represent the ancestor/descendant relationship

between two sequences. The length of an edge is the Hamming distance between the sequences

that label its endpoints.

2.2.2 Algorithm Overview

For a given set S of aligned sequences and a reference sequence, the proposed Algorithm 1 finds

a maximum parsimony phylogenetic tree on the haplotypes in S, rooted at the reference sequence,

with no backward mutations allowed.

A tree rooted at the reference sequence is initialized, and all sequences in S are inserted into a

queue. Each sequence is then assigned a set of positions at which the sequence contains a different

nucleotide (i.e., a mutation) from the reference sequence. Each sequence’s priority in the queue

is determined by the size of its set of reference mutations, i.e., by its Hamming distance from the

root. Finally, each sequence’s parent is initialized to be the root by default.

Sequences are removed from the queue and added to the tree in increasing order of Hamming

distance from the root. To achieve the minimal total edge length, the parent of a node must be

on the shortest path from the root, and it must be the lowest such parent in the tree. By default,

the parent of a sequence is the root, and we look for a better parent as we add the sequence to the

tree. Once the parent is determined and the sequence is inserted into the tree, we fill any missing

positions in the sequence from its parent. If a sequence’s Hamming distance to its parent is 0, the

sequence is collapsed to the parent node and a new node is not created.
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Algorithm 1 Character-Based Phylogeny
Input: Set S of aligned sequences (with possible missing positions), reference sequence (with

no missing positions);
Output: Character-based phylogenetic tree on aligned sequences, rooted at the reference

sequence. Backward mutations are not allowed, recurrent mutations are allowed.
1: Initialize a tree rooted at reference, and a queue of all sequences
2: For each sequence, assign set of positions where the sequence differs from reference
3: Set root as initial parent of all sequences
4: while the queue is not empty do
5: Dequeue minimum priority sequence x
6: for each node v in reversed order of vertex set do
7: Check if v is a parent of x
8: Break when a parent is found.
9: end for

10: if Hamming distance to x’s parent is 0 then
11: collapse x to its parent
12: else add x to the tree:
13: Connect x to its parent
14: Fill missing positions in x from the parent
15: end if
16: end while

2.2.3 Parent Selection

When adding a sequence to the tree, the process of choosing its parent looks similar to a Dijkstra’s

shortest-path algorithm comparison. A sequence u is a parent of a sequence v if and only if (see

Figure 2.1):

• (root,u) + (u,v) = (root,v);

• u is the lowest such node in the tree.

Together, these two conditions imply that u is on the shortest path from root to v, that u im-

mediately precedes v, and that the total length of the tree after inserting v is the minimal possible.
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Figure 2.1 A visual representation of the parent selection constraint.

In the original implementation, see Algorithm 2, we updated the parents of all nodes in the

queue on each insertion, as shown in Figure 2.2. Whenever we would pop a new sequence from

the queue to add to the tree, we iterate through all nodes in the queue and check if the popped

sequence is a better parent.

Algorithm 2 Parent Selection
1: Pop node x from queue and add it to the tree
2: Add edge from x’s parent to x
3: for each node v in the queue do
4: Update parent of v with x, if necessary
5: end for

Figure 2.2 Choosing parents, original implementation. On each node insertion, for each sequence v re-
maining in the queue, check if the most recently inserted node x is a better parent of v.

With this approach, the parent selection procedure checks every possible edge between nodes
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throughout the execution of the algorithm, and thus gives us a quadratic run time of O(Size of queue)

comparisons for each of the O(n) node insertions, where n is the number of sequences.

With this implementation, the performance of our algorithm exceeded quadratic runtime (Fig-

ure 2.3). This is too slow for our goal of designing a scalable tool capable of processing available

SARS-CoV-2 genomic data in a reasonable amount of time.

Figure 2.3 Runtime of our phylogeny algorithm in comparison to O(n2) and O(n3) runtimes. The blue
curve represents the runtime of our algorithm, the orange curve represents O(n2) complexity, and the green
curve O(n3) complexity. This version of parent selection admits a runtime that is slightly greater than
O(n2).

2.2.4 Performance Improvements

Speeding Up Parent Selection

Originally, after each node insertion, we iterated through the queue updating parents as needed.

This mode of parent selection results in a quadratic runtime complexity, as each node is compared

to each other node throughout execution of the algorithm. Instead, as shown in Figure 2.4, we

decided to iterate through the tree vertices when looking for parents, rather than updating parents

in the queue. In the worst case, this still has a quadratic runtime; however, this mode of operation

allows us to escape the parent selection procedure early when a parent is found.
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Figure 2.4 When adding node x to the tree, we search the nodes in the tree in reverse order of insertion
(starting with the most recently inserted node) looking for parents that satisfy the triangle equality condition.
We can stop iteration early every time we find a parent.

On each node insertion, our algorithm now iterates through the tree vertices in reverse order

of insertion, looking for the parent that satisfies the triangle equality parent selection constraint

shown in Figure 2.1. We can break this iteration through the tree early as soon as a parent better

than the root is found, saving on the number of comparisons we need to make, see Algorithm 3.

Algorithm 3 Faster Parent Selection
1: Pop node x from queue and add it to the tree
2: for each node v in reversed order of vertex set do
3: Check if v is a parent of x
4: Break when a parent is found
5: end for
6: Add edge from v to x

We reduced the average complexity of our algorithm to below O(n2). Furthermore, the hidden

complexity coefficient also dropped. In Figure 2.3, which illustrates the original runtime, we

see that processing 1,000 sequences required almost 1,000 minutes of runtime. As is evident in

Figure 2.5, this change to the parent selection algorithm increased our speed, so that we could

now process 1,000 sequences in just a couple of minutes. However, 8,000 sequences still required
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almost 6 hours of runtime.

Figure 2.5 Performance after implementing the change to parent selection. This change has brought our
algorithm’s runtime down to below O(n2) in the average case. The hidden complexity coefficient has also
decreased slightly, allowing us to process notably larger datasets in the same amount of time.

Speeding up Hamming distance

The length of SARS-CoV-2 genome is 30,000 nucleotides, and mutations have already been ob-

served in more than 20,000 of them. However, any two available SARS-CoV-2 genome sequences

differ by no more than 300 mutations.

We assigned each sequence a set of positions where it has mutated from the reference sequence.

Then we compute the Hamming distance between two sequences as follows:

• The size of the symmetric difference between the two sets is added to the Hamming distance

immediately.

• For each position in the intersection of the two sets, check if the sequences differ at those

positions.
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2.3 Results

2.3.1 Datasets

For comparison and evaluation purposes, we use the following five datasets:

• C2C: The Coast–to–Coast dataset consists of 168 global SARS-CoV-2 sequences, including

9 sequences from COVID-19 patients identified in Connecticut (12).

• F22C: This dataset consists of 1,293 global SARS-CoV-2 sequences, which are all GISAID

sequences recorded up until February 22th, 2020, as well as the sequences in the C2C dataset.

all GISAID sequences recorded up until February 22th, 2020, as well as the sequences in the

C2C dataset.

• M14: This dataset consists of 9,286 global SARS-CoV-2 sequences, which are all GISAID

sequences recorded up until March 14th, 2020.

• M22: This dataset consists of 21,473 global SARS-CoV-2 sequences, which are all GISAID

sequences recorded up until March 22th, 2020.

• ETL: The Early Transmission Links dataset consists of 294 global SARS-CoV-2 sequences

collected before March 9th, 2020. This dataset was constructed to match the 25 known

transmission links. These transmission links were collected from news articles detailing

transmissions prior to the pandemic declaration, in the MIDAS 2019 Novel Coronavirus

Repository.
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Since all sequences in the C2C and ETL datasets were recorded before March 14th, 2020, both

are entirely contained in the M14 and M22 datasets.

2.3.2 Validation Metrics

Comparing Phylogenetic Trees One of the standard tools for comparing phylogenetic trees is

the Robinson-Foulds (RF) distance, which is the size of the symmetric difference of the sets of

bipartitions in two trees on the same set of taxa. Since the number of bipartitions in a SPHERE

tree is significantly less than in the Nextstrain tree for the same taxa, we separately report two

differences, each representing the number of bipartitions in one tree that are not present in the

other tree.

However, the RF metric suffers from the several drawbacks including small range, over-sensitivity

to minor differences, and assigning higher distances to more balanced trees (11). Therefore, we

also report the triplet and quartet distances that provide more precise measures of dissimilarity that

don’t suffer from the same shortcomings as bipartions (11).

We use Dendropy (13) and tqDist (14) to calculate the RF distance and the triplet and

quartet distances, respectively. Both tools require input trees in the Newick format with only

leaves labeled by taxa. We convert a SPHERE tree to the Newick format as follows: each internal

node labeled by a taxon is replaced by an unlabeled node with a child labeled by the same taxon;

if a node is labeled by several taxa, we replace it with a new internal node, which is the parent of

the new leaf nodes, each labeled by a single taxon (Figure 2.6).

Transmission Network Comparison When geographical metadata for SARS-CoV-2 sequences

is available, the phylogeny trees produced by our method imply a SARS-CoV-2 transmission net-
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Figure 2.6 Example of converting a SPHERE tree into the Newick format. Three new internal nodes X, Y,
and Z are introduced. The node X becomes the parent of S1, S2, and S3. The node Y becomes the parent of
S4. The node Z becomes the parent of S6 and S7.

work. We analyze the predictive value of the transmission network by computing a phylogeny tree

on the ETL dataset, extracting its implied network, and comparing it to the known transmission

links that accompany the dataset.

In a SPHERE phylogeny, a directed transmission link between two locations is defined by

a parent/child relationship in the tree between two sequences sampled at those locations. For

matching sequences collapsed into a single node in the tree, we resolve the direction of their

transmission link as earlier date→ later date. We calculate precision and recall of the transmission

network as follows:
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Precision =
Number of true links predicted by the tool

Total number of predicted links

Recall =
Number of true links predicted by the tool

Total number of given true links

2.3.3 Phylogenetic trees for C2C data

The SPHERE phylogeny tree has all internal nodes annotated (Figure 2.7) in comparison to the

Nextstrain tree (Figure 2.8). Nodes in both trees are colored by the locations they represent, where

multi-color nodes in the SPHERE tree have assigned sequences from different locations. The sizes

of the nodes in the SPHERE tree are proportional to the number of sequences they represent. Edges

in the SPHERE tree are labeled by the number of mutations from parent to child haplotype. Some

edges in the Nextstrain tree are labeled by codes of mutations.
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Figure 2.7 The phylogeny tree on the C2C dataset produced by SPHERE. Each edge is annotated
by the number of mutations between the parent and the child. The sizes of the nodes represent
the number of sequences assigned to the node. Multi-color nodes have assigned sequences from
different locations.

Figure 2.8 The phylogeny tree on the C2C dataset produced by Nextstrain.
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2.3.4 Comparing Phylogenetic Trees

We compare eight trees created by applying the two phylogeny tools, SPHERE and Nextstrain, to

the four datasets: C2C, F22C, M14, and M22 (see Table 2.1). Nextstrain prunes highly divergent

sequences, leading to a slight reduction of the number of sequences for F22C and M14. The

number of edges in SPHERE trees is much smaller than in Nextstrain trees since SPHERE does not

introduce internal nodes and collapses taxa that agree with each other in the sequenced positions.

Tree C2C S C2C N F22C S F22C N M14 S M14 N M22 S M22 N
# Taxa 168 168 1,293 1,283 9,286 9,265 21,473 21,473

# Edges 110 277 694 2,265 3,843 17,108 9,010 39,722

Table 2.1 Eight phylogeny trees are created by applying SPHERE (“ S”) and Nextstrain (“ N”) to
the four datasets C2C, F22C, M14, and M22.

C2C S C2C N F22C S F22C N M14 S M14 N M22 S M22 N
C2C S 0 48.39 6.45 45.16 16.13 45.16 16.13 45.16
C2C N 85.19 0 83.33 57.41 80.56 56.48 79.63 55.56
F22C S 21.62 51.35 0 50.26 12.89 52.11 18.04 52.58
F22C N 87.12 65.15 90.32 0 89.49 63.37 89.29 63.88
M14 S 38.1 50.0 19.14 49.76 0 49.68 18.28 51.43
M14 N 85.22 59.13 91.03 64.63 93.08 0 92.02 69.17
M22 S 43.48 52.17 25.7 50.0 26.19 47.48 0 50.68
M22 N 86.29 61.29 91.25 66.16 93.28 69.14 93.0 0

Table 2.2 The normalized directional RF distances between trees, given as percentages. Each
entry represents the number of bipartitions in the row tree that are not present in the column tree,
normalized by the total number of bipartitions in the row tree.
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C2C S C2C N F22C S F22C N M14 S M14 N M22 S M22 N
C2C S 0 30.44 9.41 31.19 11.13 36.23 10.18 31.4
C2C N 30.44 0 22.53 8.36 21.38 18.0 22.38 7.59
F22C S 9.41 22.53 0 49.98 0.26 57.37 0.6 52.07
F22C N 31.19 8.36 49.98 0 49.92 25.33 50.18 18.98
M14 S 11.13 21.38 0.26 49.92 0 37.95 16.12 23.95
M14 N 36.23 18.0 57.37 25.33 37.95 0 44.59 22.48
M22 S 10.18 22.38 0.6 50.18 16.12 44.59 0 29.54
M22 N 31.4 7.59 52.07 18.98 23.95 22.48 29.54 0

Table 2.3 Triplets comparisons. Values represent the normalized triplet distance between each pair
of trees, given as percentages.

C2C S C2C N F22C S F22C N M14 S M14 N M22 S M22 N
C2C S 0 30.96 10.18 33.84 13.28 35.89 12.58 32.82
C2C N 30.96 0 23.93 17.76 22.48 15.48 23.38 15.15
F22C S 10.18 23.93 0 45.97 0.55 50.31 1.22 47.25
F22C N 33.84 17.76 45.97 0 45.83 26.83 46.28 24.43
M14 S 13.28 22.48 0.55 45.83 0 33.84 23.55 31.68
M14 N 35.89 15.48 50.31 26.83 33.84 0 38.84 12.05
M22 S 12.58 23.38 1.22 46.28 23.55 38.84 0 37.4
M22 N 32.82 15.15 47.25 24.43 31.68 12.05 37.4 0

Table 2.4 Quartets comparisons. Values represent the normalized quartet distance between each
pair of trees, given as percentages.

For each pair of trees, we report the directional Robinson-Foulds distance (see Table 2.2), the

triplet distance (see Table 2.3), and the quartet distance (see Table 2.4). All distances are with

respect to the common taxa between the trees being compared, normalized by the total number of

bipartitions, triplets, or quartets, respectively.

Our results show that SPHERE is more stable than Nextstrain. Indeed, consider the chain of

datasets C2C ⊂ F22C ⊂ M14 ⊂ M22. A more stable phylogeny reconstruction method has

lesser distances between trees for consecutive datasets. The corresponding normalized directed RF

distances for SPHERE are 6.45%, 12.89%, and 18.28%, respectively; while for the trees produced
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by Nextstrain the distances are much larger 57.41%,63.37%, and 69.17%, respectively. Similarly,

the normalized triplet distances for SPHERE are 9.41%, 0.26%, and 16.12%, respectively; while

for Nextstrain, they are 8.36%, 25.33%, and 22.48%, respectively. Finally, the normalized quartet

distances for SPHERE are 10.18%, 0.55%, and 23.55%, respectively; while for Nextstrain, the

quartet distances are 17.76%, 26.83%, and 12.05%, respectively. We can see that in most cases

SPHERE method is more stable than Nextstrain.

2.3.5 Inferring Transmission Links

We have compared precision and recall of transmission networks inferred with SPHERE, the ILP-

based character state phylogeny (CS-phylogeny) (10) and the character-based phylogeny NET-

WORK5011CS (15). SPHERE has the best recall over existing methods (Table 2.5). Note that all

methods have small precision because the ETL dataset contains only verified transmission links.

The number or such links is only 25 for 294 nodes. There should be other transmission links,

however they are not validated. SPHERE has comparable precision to other methods that indicates

that all methods output similar number of predicted transmission links.

Tool Recall % Precision %
SPHERE 88 4.3
CS-phylogeny 80 4.76
NETWORK5011CS 72 4.99
SPHERE-directed 84 4.3

Table 2.5 Comparison of SPHERE with CS-phylogeny and NETWORK5011CS tools without taking in
account the transmission direction. SPHERE-directed also takes in account the transmission direction.
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2.3.6 Runtime

We ran SPHERE on the cluster hardware consisting of 128 cores Intel(R) Xeon(R) CPU E7-4850

v4 CPU @ 2.10GHz, with 3 TB of RAM, running Ubuntu 16.04.7 LTS.

Figure 2.9 A graph of input size vs runtime. Units are in seconds. This figure highlights the significant
performance improvements observed after optimizing the parent selection and Hamming distance methods.

Figure 2.9 shows that SPHERE is indeed a scalable method with a subquadratic runtime. For

example, it is able to process 200,000 sequences in two hours, while Nextstrain requires 2 days to

process 21,000 sequences on the same hardware, with 32 cores dedicated to the process.

2.4 Conclusion and Future Work

It is shown that the development of a character-based shortest-path phylogenetic tree is viable.

First, a shortest-path phylogeny is fast and scalable. Second, the resulting maximum parsimony

trees produced by our method are more stable than the Nextstrain’s maximum likelihood tree.
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Third, the inferred transmission network quality is higher or comparable with existing tools. We

plan to incorporate sparse backward mutations into the algorithm and add Steiner points corre-

sponding to internal vertices.
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CHAPTER 3

A Novel Network Representation of SARS-CoV-2 Sequencing Data

Sergey Knyazev, Daniel Novikov, Mark Grinshpon, Harman Singh, Ram Ayyala, Varuni Sarwal,

Roya Hosseini, Pelin Icer Baykal, Pavel Skums, Ellsworth Campbell, Serghei Mangul, Alex

Zelikovsky

ISBRA 2021

ABSTRACT

The unprecedented level of genome sequencing during the SARS-CoV-2 pandemic brought about

the challenge of processing this genomic data. However, the state-of-the-art phylogenetic meth-

ods were mostly designed for analyzing data that are significantly sparser and require extensive

subsampling of strains. We present (ε, τ)-MSN, a novel tool that reconstructs a viral genetic

relatedness network based on genetic distances, that can process hundreds of thousands of se-

quences in under several hours. We applied (ε, τ)-MSN to the global COVID-19 outbreak data

and were able to build a genetic network on more than 100,000 SARS-CoV-2 sequences. We

show that (ε, τ)-MSN can accurately detect transmission events and build a genetic network with

significantly higher assortativity with respect to continent and country attributes of SARS-CoV-

2 samples. The source code for this software suite is available at https://github.com/

Sergey-Knyazev/eMST.

https://github.com/Sergey-Knyazev/eMST
https://github.com/Sergey-Knyazev/eMST
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3.1 Introduction

The tendency of RNA viruses to rapidly change their genomes is the major reason for vast inter-

host and intra-host viral diversity and fast viral evolution (16). This evolution can be tracked with

high precision thanks to the rapid growth of capacity for viral genome sequencing that has been

occurring over the past decade (17). To see what that data can reveal about viral evolution and

transmission, numerous analytical methods have been proposed (18; 19; 20; 21; 22; 23; 24; 25; 26;

27; 28; 29). One of the essential tasks in analysis of viral genomic data is representation of genetic

relatedness between viral samples. For this purpose, standard phylogenetic methods as well as

network-based methods that were initially applied only to specific viruses such as HIV (30) and

HCV (31) have been proposed for SARS-CoV-2 analysis too.

The standard approach for representation of viral genomic data is based on phylogenetic trees.

In general, finding an optimal phylogenetic tree that fits a biologically relevant model of evolu-

tion, e.g., using maximum likelihood approaches, is an NP-hard problem (32). As a result, tools

for phylogeny reconstruction are too slow or inaccurate on large datasets. Indeed, the quality of

advanced phylogeny tools’ outputs significantly decreases with the growth of the number of input

sequences. For this reason, these methods rely heavily on subsampling to maintain the acceptable

quality of phylogeny reconstruction.

Network-based methods, designed to represent the most likely pairs of connected viral genomes

rather than viral evolution, offer an alternative approach to phylogenetic tree reconstruction (18;

19). This is convenient because establishing genetic relatedness between viral samples is the basic

step in viral outbreak investigations. Furthermore, network-based methods are more promising in
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the era of big genomic data because they are much more simple and scalable than phylogenetic

methods. The success of using networks-based method for HCV and HIV outbreak investigations

(33; 34; 35; 36) motivated the Centers of Disease Control and Prevention (CDC) to adopt them for

wider use.

Currently, the CDC is actively advancing the following two alternative approaches for tracing

genetic relatedness:

1. The Global Hepatitis Outbreak and Surveillance Technology (GHOST) is a cloud-based sys-

tem that allows users to analyze and visualize data regardless of computational expertise.

It uses the intra-host viral haplotypes for tracing HCV epidemics, the Hamming distance

between genomic sequences as a metric for genetic relatedness, and k-step networks (in-

troduced as minimal spanning networks in (18)) for choosing genetically related vertices

(33; 37; 31).

2. For HIV outbreaks, the current tool of choice is HIV-TRACE, which performs high-scale

analysis of genomes in HIV surveillance systems (30; 38). It identifies groups of closely re-

lated genomes using the Tamura-Nei 93 (TN93) genetic distance metric (39). HIV-TRACE

accepts either a Sanger sequence or a consensus sequence from NGS sequencing experiment

for each individual. These sequences are then used to look for evidence of relatedness be-

tween them. Relatedness is suspected when the genetic distance between sequences is below

a certain threshold (we will refer to this construction as τ -networks). This simple approach

has demonstrated high reliability for detecting rapidly growing outbreak clusters (40).
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In this paper we introduce a novel network-based method for constructing genetic similarity

networks, which generalizes both GHOST and HIV-TRACE.

First, we present ε-MSN, an algorithm that generalizes the methodology implemented in GHOST.

Given a set of genomic sequences along with distances between them, ε-MSN builds a network that

includes the union of all minimal spanning trees (MST), as well as some additional edges: those

that were close to being included in an MST, i.e., edges whose weights are just a little (within a

specified parameter ε) more than the largest edge weight in a path connecting its endpoints in an

MST.

We further improve ε-MSN by incorporating the τ -networks of HIV-TRACE. This second tool,

(ε, τ)-MSN, effectively builds an ε-MSN first, but then removes all edges that are too heavy, i.e.

all edges whose weight is more than a specified parameter τ .

We compare our tool with minimum spanning networks (MSN) and τ -networks (41; 30) and

demonstrate that ε-MSN and (ε, τ)-MSN results are of better quality in terms of attribute assor-

tativity, recall, and precision. Our method allows us to construct phylogeny networks and report

results for SARS-CoV-2 sequence datasets having up to more than hundred thousand strains, with

a potential of being scalable to much larger datasets.

3.2 Methods

When analyzing evolutionary relationships in a set of genomes, the first step may be to create

the complete graph of the genomes and measure the distances between them. Such a complete

graph incorporates all those relationships that we would like to see, but it has too many edges,
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making it impossible to discern the useful information from it. In fact, as a complete graph, it

contains all possible edges, including those between really distant genomes, i.e., edges whose

weights represent very long genetic distances. To extract edges connecting related genomes only,

we introduce a threshold parameter τ and remove edges with length greater than τ , thus getting rid

of edges that are too long.

Another idea for improving the graph is to use minimal spanning trees (MST). Generally, the

standard greedy algorithms for building MST’s always pick the shortest of available edges towards

the closest neighbor genomes. However, if one neighbor of a vertex (genome) is just slightly closer

than some others, the MST would include the shortest edge only and leave the rest out, even though

all of them have a close enough genetic relationship with each other. Thus we introduce another

parameter ε that allows us to include edges that are only slightly longer than the closest neighbors.

In summary, our goal is to build a graph G = (V,E), where each vertex v ∈ V represents a

viral genomic sequence, and where an edge e ∈ E connects two vertices u and v whenever u and

v represent genetically related viral genomes. Previous studies proposed to take G as the union

of all possible MST’s in the weighted graph whose nodes are the viral genomes and whose edges

are weighted by a genetic distance between these genomes (18; 33). We extend this approach and

propose to include some additional edges.

[ε-MSN ] Given an ε ≥ 0, ε-MSN is a graph in which two vertices u, v are connected if

d(u, v) ≤ (1 + ε) · d(x, y), where d(x, y) is the weight of the heaviest edge on the u-v path in an

MST.

An efficient algorithm for constructing ε-MSN is given in Algorithm 4.
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Following the τ -network methodology, we allow setting a threshold τ for additionally filtering

out edges that are too long.

[(ε, τ)-MSN ] Given an ε ≥ 0 and a τ > 0, (ε, τ)-MSN is a graph in which two vertices u, v

are connected if they are connected in ε-MSN and d(u, v) ≤ τ .

(ε, τ)-MSN is a generalization of both the MSN and τ -network methods. Indeed, MSN is a

special case of (ε, τ)-MSN if we set the parameters to ε = 0 and τ = ∞. Similarly, τ -network is

a special case of (ε, τ)-MSN when ε =∞.

An implementation of the (ε, τ)-MSN algorithm as a software tool is freely available on GitHub

at https://github.com/Sergey-Knyazev/eMST. The software can accept sequences

in FASTA format and compute (ε, τ)-MSN using either of the two genetic metrics of choice,

Hamming distance or TN93. The user can also provide their own distance matrix in the list of

edges format.

For efficiently computing Hamming distance between sequences, we implemented the follow-

ing speed up technique (42). Initially, we infer a consensus of all input sequences. Then, for each

sequence in the input, we determine a set of positions where each sequence has mutated from the

consensus. Finally, for each pair of sequences the Hamming distance is computed in two steps.

First, we initialize the value of Hamming distance to be the size of the symmetric difference be-

tween the two sets. Second, for each position in the intersection of the two sets, we check if the

sequences differ at this position, and if they do, we increment the value of Hamming distance by

one.

https://github.com/Sergey-Knyazev/eMST
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Algorithm 4 (ε-MSN)
1: MSA: Multiple Sequence Alignment of Strains
2: G: Fully connected distance graph obtained from strains
3: ε: ε ≥ 0, parameter for ε-MSN
4: function ADDEPSILONEDGES(MST , LongestEdge, E, ε)
5: for (x, y) ∈ E do
6: if d(x, y) ≤ (1 + ε) · (LongestEdge(x, y)) then
7: add (x, y) to MST
8: end if
9: end for

10: return MST
11: end function
12: function GETLONGESTEDGES(MST , E)
13: for (x, y) ∈ E do
14: LongestEdge(x, y)← max(ei) ∀ei ∈MSTx→y

15: end for
16: return LongestEdge
17: end function
18: procedure EMSN(A = MSA or G, ε)
19: If A = MSA, obtain G(V,E) using a distance metric (e.g.,

Hamming, TN93, etc)
20: MST ← getMST (G)
21: LongestEdge← getLongestEdges(MST,E)
22: eMST ← addEpsilonEdges(MST,LongestEdge, E, ε)
23: end procedure

3.3 Results

To demonstrate the usability of the (ε, τ)-MSN methodology, we benchmarked it against other

methods.

First, we compared ε-MSN and (ε, τ)-MSN with the two state-of-the-art methods for con-

structing τ -networks (used in HIV-TRACE) and minimum spanning networks (used in GHOST)

on COVID-19 sequences available from GISAID using assortativity analysis.

Second, we examined ε-MSN, (ε, τ)-MSN, τ -networks, and MSN on their ability to infer

transmission events and compared them with other available tools including CS-phylogeny (43),
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NETWORK5011CS (44), RAxML (45), outbreaker (46), and phybreak (47). For this test, we used

a SARS-CoV-2 sequencing dataset with known ground truth about infective transmission events,

and we measured precision and recall of each of the methods when applied to infer these events

from the sequencing data.

Third, we showed the scalability potential of (ε, τ)-MSN to process networks up to a size of

more than hundred thousand of sequences.

3.3.1 Datasets

1. For comparison of the methods via assortativity analysis, we used the coast-to-coast (C2C)

dataset, which contains 168 SARS-CoV-2 sequences collected from different countries, in-

cluding 9 sequences from COVID-19 patients identified in Connecticut (12). Each sample

in this dataset has geographical attributes named Continent, Country, and Division.

2. For comparison of precision and recall of the methods in inferring transmission links we

used the Early Transmission Links (ETL) dataset, which consists of 293 global SARS-CoV-

2 sequences collected before March 9th, 2020. Each sequence has a known country of

origin. This dataset was constructed to match the 25 known country-to-country transmission

links that were collected from news articles detailing transmissions prior to the pandemic

declaration, in the MIDAS 2019 Novel Coronavirus Repository (43).

3. For scalability analysis, we created datasets consisting of the initial 100, 200, 500, 1000,

2000, 5000, 10000, 20000, 50000, and 100000 SARS-CoV-2 sequences from the masked

multiple sequence alignment from GISAID. To generate these datasets, we ordered se-
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Figure 3.1 Attribute assortatitivity on the
C2C dataset for different values of edge
threshold τ , using τ -network with TN93 dis-
tance.

Figure 3.2 Attribute assortativity on the
C2C dataset for different values of ε, using
ε-MSN with TN93 distance and edge thresh-
old τ =∞.

quences by date, and picked the earliest date when the number of sequences exceeds the

desired number.

3.3.2 Assortativity analysis

We ran MSN, ε-MSN, τ -network, and (ε, τ)-MSN on the C2C dataset using TN93 as measurement

of genetic relatedness, and we evaluated attribute assortativity for continent, country, and division.

Figure 3.1 shows the dependence of attribute assortativity on τ ∈ [0, 1] for τ -network. The op-

timal value for continent assortativity is 0.702 when τ is 0.0001. Figure 3.2 shows the dependence

of attribute assortativity on ε ∈ [0, 1] for ε-MSN. The optimal value for continent assortativity is

0.661 when ε is 0.0002. Figure 3.3 shows the dependence of attribute assortativity on ε ∈ [0, 1]

for (ε, τ)-MSN, with fixed threshold τ = 0.0001 that maximized assortativity in the τ -network

analysis from Figure 3.1. The optimal value for continent assortativity is 0.7573 when ε is 0.0002.
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Figure 3.3 Attribute assortatitivity on the
C2C dataset for different values of ε, using
(ε, τ)-MSN with TN93 distance and edge
threshold τ = 0.0001. The maximum as-
sortativity occurs when ε = 0.0002.

Figure 3.4 Attribute assortatitivity on the
C2C dataset for different values of ε, using
ε-MSN with Hamming distance.

Figure 3.4 shows the dependence of attribute assortativity on ε ∈ [0, 1] for ε-MSN with Hamming

distance instead of TN93. The optimal value for continent assortativity is 0.546 when ε is 0.002.

Table 3.1 shows that the maximum assortativity on the C2C dataset was achieved by (ε, τ)-MSN’s

mixture of both parameters, with ε = 0.0002 and τ = 0.0001. The resulting continent assortativity

value of 0.753 is higher than the other methods, and the same is seen for country and division

assortativity.

Method ε τ No. of edges
Assortativity

Continent Country Division

MSN 0 ∞ 717 0.626 0.581 0.360

τ -network ∞ 0.0001 2056 0.702 0.631 0.351

ε-MSN 0.0002 ∞ 821 0.661 0.625 0.342

(ε, τ)-MSN 0.0002 0.0001 727 0.753 0.706 0.374

Table 3.1 This table shows the attribute assortativity values for optimal choices of ε and τ for MSN, ε-MSN,
(ε, τ)-MSN, and threshold-based network, each using TN93 distance.
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We find that (ε, τ)-MSN performs the best in terms of country, continent, and division assorta-

tivity values across all four methods.

3.3.3 Transmission network analysis

We evaluated the precision and recall of (ε, τ)-MSN on the ETL dataset. To evaluate the trans-

mission network quality of (ε, τ)-MSN, we define an undirected transmission link to be the pair of

sequence locations of the two vertices connected by an edge in (ε, τ)-MSN. The set of all unique

undirected transmission links forms the transmission network.

For each method shown in Table 3.2, we produced its transmission network and evaluated the

precision and recall against the known links provided in the ETL dataset. We calculate precision

as the ratio of the number of known true links predicted by the method and the total number of

predicted links, and we calculate recall as the ratio of the number of known true links predicted

and the total number of known true links in the ETL dataset.

Table 3.2 shows that MSN performed best in Precision and F1-Score. τ -network performed

best in Recall but not as well in precision or F1-score. ε-MSN and (ε, τ)-MSN performed compa-

rably well to MSN, and together these network based methods all outperformed the other standard

methods being compared.

3.3.4 Scalability analysis

To examine scalability of the proposed methods, we applied the ε-MSN tool to datasets of increas-

ing sizes of up to several hundred thousand sequences. For each of these datasets, we ran ε-MSN

in TN93 mode and Hamming distance mode separately and recorded the running times. Figure 4.1
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shows the results of the analysis. We see that ε-MSN has a quadratic runtime in both modes, but

that Hamming distance is significantly faster because of its efficient implementation.

Figure 3.5 Runtime analysis of ε-MSN on increasing input sizes. ε-MSN is a quadratic algorithm
in both TN93 and Hamming distance modes, although Hamming distance, with its efficient imple-
mentation, is much faster.

Tool Recall* Precision* F1-Score*

MSN (ε = 0, τ =∞,TN93) 80% 7.6% 0.139

τ -network (ε =∞, τ = 0.0001,TN93) 96% 2.5% 0.049

ε-MSN (ε = 0.0002, τ =∞,TN93) 80% 7.4% 0.135

(ε, τ)-MSN (ε = 0.0002, τ = 0.0001,TN93) 72% 6.6% 0.121

CS-phylogeny 80% 4.76% 0.090

NETWORK5011CS 72% 4.99% 0.093

RAxML 64% 4.26% 0.080

Bitrugs 52% 3.38% 0.063

outbreaker 28% 5.83% 0.097

phybreak 4% 0.83% 0.076

Table 3.2 Recall and precision comparison across different methods ran on the ETL dataset. MSN methods
were ran using the TN93 distance metric. Recall is defined as the ratio of known true links formed by the
tool to the total number of known true links. Precision is defined as the ratio of known true links formed
by the tool to the total number of links formed by the tool. F1-Score is defined as the twice the product of
precision and recall divided by the sum of precision and recall. * The ground truth is only partially known.
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3.4 Conclusion

We have developed two versions of a new network-based tool, ε-MSN and (ε, τ)-MSN, which

generalize the minimal spanning networks and τ -network approaches to representing genetic rela-

tionships.

We compared the proposed tools with other network-based methods using attribute assortativity

values. The experiments show that (ε, τ)-MSN Hamming distance does not perform as well as with

TN93 distance. With TN93, (ε, τ)-MSN outperforms all the other methods in continent, country,

and division attribute assortativity.

Further, we validated multiple tools, including the proposed ones, on known transmission net-

works. We evaluated recall, precision and F1-score for each tool. We found that network-based

tools perform better than the others, including those that are phylogeny-based.

The results validated the ε-MSN network and showed that the structure of the ε-MSN network

correlates with phylogenetic trees. ε-MSN is interpretable, integrable and scalable.

Users of our proposed tools can fit the parameters ε and τ to any dataset using the same method-

ology we used in our analysis, namely, fixing one parameter and varying the other, then fixing the

other and varying the first.

Our methodology is implemented in MicrobeTrace(29), a tool currently in use by the CDC for

viral outbreak investigation.
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Entropy Based Clustering of Viral Sequences
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ABSTRACT

Clustering viral sequences allows us to characterize the composition and structure of intrahost and

interhost viral populations, which play a crucial role in disease progression and epidemic spread.

In this paper we propose and validate a new entropy based method for clustering aligned viral

sequences considered as categorical data. The method finds a homogeneous clustering by mini-

mizing information entropy rather than distance between sequences in the same cluster. We have

applied our entropy based clustering method to viral sequencing data. We report the information

content extracted from the sequences by entropy based clustering. Our method converges to sim-

ilar minimum-entropy clusterings across different runs and limited permutations of data. We also

show that a parallelized version of our tool is scalable to very large datasets.

4.1 Introduction

Clustering viral sequences allows us to characterize the composition and structure of intrahost

and interhost viral populations, which play a crucial role in disease progression and epidemic

spread. For intrahost populations, clustering allows us to detect the distinct viral variants present

in the patient, including minor low-frequency variants, which can cause immune escape, drug
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resistance, and an increase of virulence and infectivity (48; 49; 50; 51; 52; 53; 54). Furthermore,

such minor variants are often responsible for transmissions and establishment of infection in new

hosts (55; 56; 57).

In this paper we propose a Monte Carlo entropy minimization method for clustering of viral

sequences considered as categorical data. The method finds a homogeneous clustering by mini-

mizing information entropy rather than distance between sequences in the same cluster. We discuss

advantages and disadvantages of both entropy and distance based approaches, and further validate

the meaningful information content extracted by entropy based clustering. We demonstrate that

the proposed method is stable, moving towards the same minimal entropy configuration across

multiple runs. We also show that it is fast and scalable to hundreds of thousands of sequences.

By clustering viral populations across different hosts, we determine major strains of closely

related viral samples, which is helpful for tracking transmissions and informing public health

strategies (58). For transmission tracking, clustering can identify the source of an outbreak and

whether the source is present in the sampled population. It can also determine whether two viral

samples belong to the same outbreak, and whether one infected the other (59). Therefore, using

clustering to obtain an accurate characterization of viral mutation profiles from infected individuals

is essential for viral research, therapeutics, and epidemiological investigations.

Viral sequences are strings from a fixed nucleotide alphabet, and hence they can be viewed

as vectors of categorical data. In the best possible clustering, sequences in each cluster will be

as homogeneous as possible in each site. Typically, this is achieved by minimizing the Hamming

distances between sequences within the same cluster or the distances to the cluster’s consensus
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(60). However, Hamming distance carries the implicit assumption that all mutations at all sites are

of equal cost, and also it does not consider the distribution of values in a given category, counting

each mismatch equally.

In this paper we propose to use entropy based clustering for viral sequences. Entropy considers

the distributions of nucleotides in each site, allowing us to capture different kinds of mismatches.

Minimizing entropy instead of distance also avoids the need to introduce the abstraction of equal

transition costs, implicit in Hamming distance. Thus, entropy as an objective for clustering makes

fewer assumptions on the data and is more informative for clustering categorical data.

We have applied our entropy based clustering method to the viral sequencing data. The un-

precedented effort in sequencing its genome has created vast databases of sequences, such as GI-

SAID (61). Clustering techniques can provide new insights into the evolution of the virus, assist

with phylogenetic and phylodynamic analyses, and offer new tools for constructing transmission

networks to help with understanding the spread of the pandemic (58).

We validate effectiveness of the entropy based clustering of viral sequences on real datasets. We

measure the information content extracted from the sequences by the resulting clustering. We also

demonstrate that our method converges to the same minimum-entropy clustering across different

runs, thus marking stability of the method. Finally, we describe a tag selection procedure, which

selects the highest entropy sites to represent sequences leading to a significant decrease in runtime

without major loss of information.
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4.2 Methods

In this section, first we define the entropy and Hamming distance of clustering of a set of aligned

viral sequences. We use each of these two measures as an objective function to be minimized

for clustering. Then we describe a Monte Carlo clustering algorithm, which is a modification

of an algorithm proposed in (62). Finally, we describe a tag selection preprocessing step, which

significantly reduces the runtime of the algorithm.

4.2.1 Entropy Based Clustering of Viral Sequences

Entropy of a category across a set of categorical vectors quantifies the heterogeneity of values in

the category. Entropy is low when a single value is highly frequent, and it is at its highest when

all values are equally frequent in the category. Since we are treating viral sequences as vectors

of categorical data, the categories here are sites along the sequence, and their values are from

the nucleotide alphabet {, , , }. A clustering with minimal entropy will have the highest possible

homogeneity of nucleotides in each site for sequences in the same cluster.

Formally, we have a set S of aligned nucleotide sequences on a set X of genomic sites. Since

the sequences s ∈ S are aligned, they can be viewed as rows of a matrix, and the sites x ∈ X ,

can be viewed as columns of this matrix. Let the alphabet = {, , , } be the four nucleotides, not

counting the gap () character. Following (62), the entropy H(Cx) of a site x ∈ X in cluster C is

defined as

H(Cx) = −
∑
s∈C

∑
a∈

p(sx = a) · log p(sx = a). (4.1)

Note that p(sx = a), the probability that a sequence s ∈ C has nucleotide a ∈ at site x,
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essentially amounts to the relative frequency of the nucleotide a in cluster C at site x (ignoring gap

characters).

The entropy H(C) of a cluster C of viral sequences on a set X of sites is then defined as

H(C) =
∑
x∈X

H(Cx), (4.2)

that is, we simply sum up the entropies at the individual sites.

Finally, given a clustering of the set S, the entropy of is defined as follows:

H() =
∑
C∈

|C|
|S|
·H(C) =

1

|S|
∑
C∈

|C| ·H(C). (4.3)

In other words, the entropy of clustering is the sum of cluster entropies weighted by their relative

sizes.

In (62), the authors prove that the entropy defined in equation (4.3) is a convex function, allow-

ing any optimization procedure to reach a global minimum. It is because of this property that we

can use techniques aimed directly at minimizing clustering entropy as the objective.

4.2.2 Hamming Distance Based Clustering of Viral Sequences

Similarly, we define a different clustering objective as Hamming distance (HD) instead of entropy.

This objective is the sum of the Hamming distances from each sequence s to the consensus of the

cluster containing s.

Formally, for a cluster C and for a site x ∈ X , the Hamming distance from the consensus letter

in this cluster at this site is

HD(Cx) =
∑
a∈

Cx(a)−max
a∈
{Cx(a)} (4.4)
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where Cx(a) is the number of occurrences of the letter a ∈ in site x in cluster C.

Then the Hamming distance HD(C) of a cluster C of viral sequences on a set X of sites is

defined as

HD(C) =
∑
x∈X

HD(Cx), (4.5)

and the Hamming distance of the clustering is defined as

HD() =
∑
C∈

HD(C). (4.6)

4.2.3 Algorithm Description

In general, Monte Carlo methods optimize an objective by attempting random changes and ac-

cepting a change only if it improves the objective. In our case, the objective is to minimize either

the clustering entropy or the clustering Hamming distance, defined in subsections 4.2.1 and 4.2.2

above. A trial step consists of moving a randomly selected sequence to a different randomly se-

lected cluster, and accepting the move only if the objective function is reduced.

Algorithm 5, Monte Carlo based clustering, implements this approach, with several modifica-

tions intended to improve its runtime and the quality of its outputs.

The algorithm takes an existing clustering as its starting point. In our experiments, we use

clusterings generated by the CliqueSNV tool (63) from the datasets described in subsection 4.3.1.

We supply such clustering as an input to the algorithm in order to generate a new clustering with

reduced clustering entropy H() or reduced Hamming distance HD(). Additional inputs to the

algorithm are two parameters I and K, where I defines the number of consecutive rejected trials



43

Algorithm 5 Monte Carlo based clustering
Input: Initial clustering (default from CliqueSNV), Number of rejected moves I (default

I = 800), Relative difference K (default K = 0.00001);
Output: Clustering with reduced entropy or Hamming distance.

1: Compute nucleotide counts for each column in each cluster.
2: Compute entropy (or Hamming distance) for each cluster and total H .
3: Initialize number of rejected moves T = 0.
4: while T ≤ I do
5: Pick a random sequence s.
6: Move s from its cluster A to a randomly selected cluster B (B ̸= A).
7: Update nucleotide counts for A and B.
8: Compute ∆, the change in overall entropy (or Hamming distance).
9: if ∆/H ≥ K then

10: Accept the move, update H = H −∆, reset T = 0.
11: else
12: Reject the move, increment T , return s to A.
13: end if
14: end while

before stopping, and K defines the relative objective function reduction threshold for accepting a

move.

To achieve the goal of finding a new clustering with reduced entropy or Hamming distance

as the objective, the algorithm applies Monte Carlo optimization by repeatedly trying to move

a randomly selected sequence from its current cluster to another randomly selected cluster; any

such move is accepted only if the relative improvement to the objective function is higher than the

threshold value K.

In the initialization phase, lines 1–3 of the algorithm, it starts by computing nucleotide counts

for each column in each cluster, which are then used to compute the values of the entropy and

the Hamming distance for each cluster, as well as the overall clustering entropy or Hamming

distance, H .
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A Monte Carlo optimization procedure is then implemented in the loop in lines 4–17 as follows:

• Line 5: Randomly pick a sequence s.

• Line 6: Remove sequence s from its cluster A and place into another randomly selected

cluster B.

• Line 7: Recalculate entropy (resp., Hamming distance) for both clusters A and B.

• Line 8: Compute the entropy (resp., Hamming distance) reduction between the new and the

previous clusterings.

• Lines 9–16: If entropy (resp., Hamming distance) has reduced by at least the relative differ-

ence parameter K, keep the new clustering; otherwise, revert to the previous clustering. By

default, we set K = 0.00001.

• Repeat lines 4–17 until the clustering converges. Specifically, the algorithm will stop if we

do not accept any moves for sufficiently long time, i.e., if the clustering does not change for

I consecutive iterations. By default, we set I = 800.

4.2.4 Tag Selection

To improve runtime, we apply a preprocessing tag selection step that allows us to represent se-

quences by a smaller subset of sites. Preferring tags with highest variability, the procedure chooses

the n sites with highest entropy, where n is some predefined value. Then clustering proceeds with

each sequence now of length n corresponding to the selected sites.
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4.3 Settings for Validation of Clustering Methods

We validate entropy based clustering by estimating improvement over an existing clustering tech-

nique. To that end, we apply this Monte Carlo based algorithm to the clustering obtained by the

CliqueSNV tool (63).

4.3.1 Datasets

For validation, we use two of the datasets of sequences that were also used by Melnyk et al in (64).

For both datasets, an initial clustering was obtained by the CliqueSNV-based method.

D1: This dataset includes all sequences submitted to the global GISAID viral database (61) from

the beginning of the pandemic up until the beginning of March 2020. It consists of 3,688

aligned sequences, all sequences 29,891 nucleotides long. CliqueSNV produced an initial

clustering of this dataset consisting of 28 clusters.

D2: This dataset includes all sequences submitted to the UK-based EMBL-EBI database from

the end of January 2020 to the end of December 2020 (65). It consists of 148,000 aligned

sequences, all sequences 29,903 nucleotides long. CliqueSNV produced an initial clustering

of this dataset consisting of 15 clusters.

4.3.2 Tag Selection Effects on Runtime

To measure the effects of tag selection on runtime, the proposed method was run on the D1 dataset

of 3,688 sequences, using the initial clustering generated by CliqueSNV as a starting point. The tag

selection procedure was employed to produce four subdatasets consisting of the same sequences,
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but of reduced lengths of 100, 1000, 3000, and 5100 tags. We expect that the Monte Carlo method,

when applied to a dataset consisting of shorter sequences, will be able to take more trial steps in

the same amount of time, and thus reduce its clustering entropy quicker. The total number of SNPs

in the input data was exactly 5100; all other positions did not mutate. Thus, this largest number of

tags contains information equivalent to the full length sequences for the purposes of clustering.

The program was run on each length of sequences. Every hour, the current clusterings of each

run were evaluated by their entropy on the full-length sequences. These hourly entropy values are

shown on an entropy-over-time graph, Figure 4.1, which compares the speed of entropy reduction

for different sequence lengths.

4.3.3 Discerning Signal from Noise with Monte Carlo Based Clustering Optimization

We estimate the amount of meaningful information extracted by the clusterings obtained by our

entropy minimization method. To distinguish between sample-specific noise and meaningfully

extracted information, we run our method on a perturbed version of the input with the same starting

entropy. For this experiment we use the D1 dataset with 3,688 sequences, alongside the initial

clustering from CliqueSNV of 28 clusters.

The permutation procedure is as follows. Within each cluster, every site is shuffled into a

random permutation. Importantly, by respecting clusters during permutation, the initial nucleotide

frequencies within each site in each cluster stay the same. Thus, the permuted input has the same

starting entropy as the original input. What changed is the haplotypes being clustered.

We run the program on both of these inputs for exactly 100,000 Monte Carlo trials each, ac-

cepting all moves that reduce entropy. We compare the resulting entropy reductions between the
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two runs. Any entropy reduction present in the permuted data is sample-specific noise extracted by

our method, while the difference in resulting entropies between the original and permuted inputs

corresponds to the amount of meaningful information extracted by our method.

4.3.4 Stability of Optimized Clustering

https://www.overleaf.com/project/6223ed0d808eaece9a5d8920 Now we evaluate the robustness of

our method against slight permutations of the input data as well as changes in random seed. Rather

than completely shuffling each site as in 4.3.3, we only shuffle a small percentage p of nucleotides

at each site. We still respect clusters when permuting the data, to ensure that nucleotide frequencies

in each site in each cluster remain unchanged.

We chose two values of p to create slightly permuted data sets for validation, p = 1% and

p = 5%, to be compared with the original data with 0% permutation. For each of the three datasets

(two permuted and one original), we run our method three times, on two different objectives:

first minimizing entropy, and second minimizing Hamming distance between sequences and their

cluster consensus. As a result, for each degree of permutation and for each Monte Carlo objective,

we obtain three minimum entropy clusterings.

The Rand index, measuring the degree of agreement between two clusterings, is measured be-

tween the initial clustering and all resulting clusterings, to get a sense of how far away the resulting

clusterings have moved from the initial one under varying degrees of permutation. Further, we

also measure the Rand index between the resulting clusterings, to determine whether the proposed

method converges to similar clusterings across multiple runs.
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4.4 Validation Results

We ran the proposed method on the cluster hardware consisting of 128 cores IntelXeonCPU E7-

4850 v4 CPU @ 2.10GHz, with 3 TB of RAM, running Ubuntu 16.04.7 LTS.

We ran our entropy based Monte Carlo clustering algorithm on different selections of tags,

selected based on highest entropy contribution. Figure 4.1 shows the results for different numbers

of tags. The maximum number of tags, 5100, corresponds to all SNP positions present in the input

data; all other sites were homogeneous. Since homogeneous sites have zero entropy, they can be

ignored from entropy calculations. Therefore, the yellow line representing 5100 tags corresponds

to using all sites.

When the number of tags is 1000, using tag selection yields better results of reducing entropy

for some time durations (up to 3 hours). But in general, the effect of using tags on reducing entropy

is not significant.

Compared to previous work (64), we were able to reduce the runtime by 95.83%. For accom-

plishing this, we initially stored the counts of each nucleotide across a given tag in a cluster of

sequences.

After further improving our entropy based Monte Carlo clustering algorithm and implementing

parallel computing, we made it scalable for running on large data sets. This version performs 12K–

13K iterations on average per hour, which is approximately 10 times faster than all our previous

implementations.

Interestingly, after running the algorithm for 83K iterations on the D2 dataset (which contains

148,000 aligned sequences each 29,903 nucleotides long) originally distributed across 15 clusters,
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Figure 4.1 Entropy reduction over runtime for different numbers of selected tags. After 1 hour, the 1000
tags representation was able to reach the lowest entropy.

we came to the conclusion that in instances where sequence data is clustered into a smaller number

of clusters there are some clusters where sequences are more dense than in others. For instance,

after this run, in the output clustering the biggest cluster consisted of 34,995 sequences, while the

smallest had only 3,571 sequences.

Therefore, moving one sequence at a time is not always beneficial for overall entropy reduction.

We tried to tackle this problem by updating our move acceptance threshold to accept even smaller

positive changes to entropy, from our previous relative difference threshold of K = 10−5 to K =

10−7. Although this change made our algorithm run for many more iterations before stopping

(recall that the algorithm stops when it reaches the stopping threshold of I = 800 unsuccessful
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moves), the reduction to the overall entropy was still very small.

We believe that moving similar sequences together within clusters rather than moving just one

could be a possible way of overcoming the problem we face here.

4.4.1 Picking signal over noise in clustering

By minimizing entropy on the permuted data, we find that the method reduces entropy to 29.6,

while on the original, unshuffled data the method reaches a much lower entropy of 24 (see Ta-

ble 4.1). This difference in entropies, 29.6 − 24 = 5.6, of resulting clusterings accounts for the

amount of meaningful information, which is not noise, that our method was able to extract from

the real data.

Entropy MC reduced Hamming distance MC reduced
Initial Original Permuted Initial Original Permuted
31.524 Avg Min Avg Min 1008.41 Avg Min Avg Min

24.77 24.7 29.62 28.65 373.14 369.61 770.39 689.97

Table 4.1 Results after running Monte Carlo for 1000 tags selected in decreasing order of entropy across
100 datasets obtained by applying the random permutation procedure described in section 4.3.3 to the D1
dataset 100 times. Average Iterations in Monte Carlo: 53804.39. Average successful moves: 615.31.

4.4.2 Stability of Monte Carlo Output

Table 4.2 shows the results of stability validation, in which we compare clustering similarity for

varying degrees of permutation of the input data (see subsection 4.3.4).

The first column compares resulting clusterings to the initial clustering. Without any permuta-

tions, the resultant clustering moves significantly further away from the initial one, giving a Rand

index of 0.93. As the permutation degree increases, we observed that the clusterings produced by

the Monte Carlo algorithm do not move as far away from the initial clustering; in other words,
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% permutation
Cluster similarity(Rand index)

Entropy Hamming
With original With runs With original With runs

0 0.936476 0.970195 0.936114 0.970135
1 0.978898 0.979435 0.936126 0.970374
5 0.980458 0.980688 0.936180 0.970616

Table 4.2 Clustering similarity (Rand index) across three choices of degree of permutation. The proposed
method was run three times for each permuted instance, each run consisting of 100.000 Monte Carlo trials.
Reported are average Rand index similarity of the resulting clusterings to the initial clustering, as well as
between resulting clusterings.

even after Monte Carlo was applied, the resulting clusterings had high degree of agreement with

the initial clustering.

The second column in Table 4.2 gives the average Rand index between multiple runs of Monte

Carlo for a given permutation. We see that for all degrees of permutation the method stably con-

verges towards similar clusterings, with Rand index scores of 0.97–0.98. The same trends can be

observed when using Hamming distance to cluster consensus as the objective.

4.4.3 Results for Large Datasets

Running our entropy based Monte Carlo method on the large dataset D2, which consist of 143,000

aligned sequences, we get the initial entropy for our initial clustering from CliqueSNV of 80.2750171.

After 82,786 iterations, the final entropy for the resultant clustering was 79.509444, and the total

runtime for this was 9 hours 15 minutes.

4.5 Conclusion

We have developed a scalable method to find minimum-entropy clusterings of datasets viral ge-

nomic sequences. The method is scalable to hundreds of thousands of sequences, and is made

even faster without significant loss of accuracy by picking a subset of tags with maximum entropy
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to represent the sequences. We estimate the amount of meaningful information extracted by the

method. We also show that our method converges toward similar minimum-entropy clusterings

across multiple runs, demonstrating its stability.

For future directions, we believe the Monte Carlo entropy minimization approach can be im-

proved by using simulated annealing, whose tolerance of suboptimal moves can allow us to escape

local minima. We are also going to add Monte Carlo entropy minimization method to CliqueSNV’s

clustering of intrahost populations.
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CHAPTER 5

Genetic Algorithm with Evolutionary Jumps

Hafsa Farooq, Daniel Novikov, Akshay Juyal, Alexander Zelikovsky

ISBRA 2023

ABSTRACT

It has recently been noticed that dense subgraphs of SARS-CoV-2 epistatic networks correspond to

future unobserved variants of concern. This phenomenon can be interpreted as multiple correlated

mutations occurring in a rapid succession, resulting in a new variant relatively distant from the

current population. We refer to this phenomenon as an evolutionary jump and propose to use it

for enhancing genetic algorithm. Evolutionary jumps were implemented using C-SNV algorithm

which find cliques in the epistatic network. We have applied the genetic algorithm enhanced with

evolutionary jumps (GA+EJ) to the 0-1 Knapsack Problem, and found that evolutionary jumps

allow the genetic algorithm to escape local minima and find solutions closer to the optimum.

5.1 Introduction

The unprecedented density of SARS-CoV-2 sequencing data allows to follow the viral evolution

much closer than in pre-pandemic time (66; 67). Epistatic networks of SARS-CoV-2 constructed

on GISAID data, contain densely linked subgraphs of mutations which correspond to known vari-

ants of concern, and also allow us to predict and early detection of future variants (68). The network

has non-additive phenotypic effects and their vertices are single nucleotide polymorphism(SNPs)
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and its edges are correlated pair of mutations, where dense subgraphs have high density of connec-

tivity among their vertices. It is remarkable that altered phenotype of variants of concern (VOC) do

not appear gradually since one cannot observe intermediate variants containing substantial subsets

of mutations defining the VOC. Such phenomenon was previously observed in Paleontology and

referred as punctuated equilibrium. This phenomenon can be interpreted as if multiple correlated

mutations occur in a rapid succession, resulting in appearing of a novel variant which is relatively

distant from the closest representative of the current population. In this paper, we propose to apply

this evolutionary mechanism (referred as evolutionary jumps) to enhance genetic algorithm (GA).

Genetic algorithm mimics the natural evolution and select the fittest individuals which further

reproduce using genetic operators. The drawback of genetic algorithm as well as other local op-

timization methods that they can stuck in local minima. We propose to rectify this drawback by

applying evolutionary jumps when no significant improvement is achieved for several generations

by GA. Instead of dense subgraphs in the epistatic network, our approach is to find cliques that’s

why we use C-SNV algorithm (C-SNV) (69). It identifies cliques (maximal complete subgraphs)

and use them to assemble viral variants present in the sequencing data. When GA stuck for a num-

ber of generations, we run C-SNV on all individual solutions constructed so far to identify new

individuals with all mutations corresponding to identified cliques.

In order to evaluate the quality of the GA and compare with the proposed enhancements, we

applied it to hard instances of 0-1 Knapsack Problem recently proposed in (1). Since the simple

GA solutions can be infeasible or extended, we first enhance GA with repairing and packing (GA-

RP) and then further introduce evolutionary jumps (GA-EJ). Our experiments show that GA-RP
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significantly outperform the simple GA on all instances while GA-EJ further improves GA-RP for

harder instances, i.e., for cases where finding optimal solution requires large runtime and GA-RP

stuck significantly far away from the optimum.

Section 5.2 describes a genetic algorithm and proposed enhancements using evolutionary jumps.

Section 5.3 applies GA to the 0-1 Knapsack Problem and gives details of enhancing GA with re-

pairing and packing as well as evolutionary jumps. Section 5.4 describes hard problem instances

and compares results achieved by GA, GA with repairing and packing (GA-RP), and GA with

repairing and packing & evolutionary jumps (GA-EJ).

5.2 Genetic Algorithm with Evolutionary Jumps

5.2.1 Simple Genetic Algorithm

Genetic algorithm is a metaheuristic inspired by the process of natural evolution relying on bi-

ologically inspired operators such as mutation, crossover and selection (70). GA is a heuristic

search-based evolutionary algorithm developed by John Holland in 70’s. Holland developed an

electronic organism named chromosomes consisting of binary encoded strings (71) or unit entity

known as gene. Those randomly generated binary encoded strings based chromosomes are also

called individual solutions, and these potential solutions altogether are the initial population.

After the creation of initial population, evolution begins. The fitness function evaluation is

performed for each individual of the population. The fitness score represents the ability of the

individual to compete for mating and its quality in the solution. The individuals with higher fitness

values are chosen for mating pool, called parents. After selecting the best fitted individuals from
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the population, selected individuals perform reproduction.

Crossover is a process of combining genetic material of parents by inheriting their traits in

offspring. Crossover randomly chooses a point or locus in the individuals and exchange before

and after sub-strings of individuals to create offspring. For example for single point crossover,

consider the two individuals and crossover point at the 5th position of the individual, shown in

Fig.5.1(a). The offspring 1 has first five genes from individual 1 and next five genes from individual

Figure 5.1 a) Two individuals are performing crossover. Red line represents the point of crossover.
b) Mutation is performed on 2nd, 5th, 8th and 9th gene of the individual.

2. Similarly, offspring 2 has left side of genes from individual 2 and right side of genes from

individual 1.

After crossover, individuals undergo mutation. The mutation operator changes one or more

genes randomly. It changes the gene value from 1 to 0 or vice versa, shown in Fig.5.1(b). The

type of crossover, mutation and its probability can be defined and depends on the problem under

experimentation. Both the parents and the offspring now comprise the next generation of the

genetic algorithm, where the process repeats. GA terminates after the fitness is not improved for

predefined number of generations or number of generations exceeds a given number.
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5.2.2 Punctuated Equilibrium and Epistatic Network of SARS-CoV-2

The genomic evolution of SARS-CoV-2 shows that the rate of mutations is not constant – the

gradual relatively slow evolution is replaced with brief and fast bursts resulting in emerging of new

viral variants with altered phenotypes including increased transmissibility. Such new variants (e.g.,

Alpha- and Omicron-variants) are referred as Variants of Concern (VOCs) or Variants of Interest

(VOIs)). This phenomenon has been labeled as punctuated equilibrium. It has been shown recently

that punctuated equilibrium events for SARS-CoV-2 which we refer to as evolutionary jumps can

be predicted from its epistatic network (68).

Following (68), we define an epistatic network as a graph with vertices corresponding to mu-

tated positions, e.g. single nucleotide polymorphisms (SNPs) or single amino-acid variations

(SAVs). Two vertices are connected if the mutations in the the corresponding positions i and j

are significantly more frequently observed in the same haplotype than they are expected if the

mutations would be independent.

Formally, let 0 and 1 denote the reference and mutated alleles in positions i and j, respectively.

Assuming that positions are biallelic, each possible haplotype h in positions i and j belong to the

set {00, 01, 10, 11} . Let Oh (resp. E(h)) be the observed (resp. expected) number of haplotypes

h in the sequencing data. It has been proved in (68) that if haplotype 11 is not viable (does not

produce descendants), then

E00 ∗ E11 ≤ E01 ∗ E10 (5.1)
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In the epistatic network we connect to vertices if the the corresponding haplotype 11 is viable, i.e.,

when the O00 ∗O11 is significantly larger than O01 ∗O10.

Recently, it has been shown that evolutionary jumps in SARS-CoV-2 evolution correspond to

dense subgraphs of the epistatic network (68). Formally, the densest subgraph, i.e. the one with

the maximum ratio of edges over vertices, frequently consists of mutations that differentiate an

emerging viral variant from the reference. Therefore, rather than performing a random combination

of mutations, evolutionary jumps include multiple mutually linked mutations.

5.2.3 Enhancement of GA with Evolutionary Jumps

The genetic algorithm uses selection pressure to push future generations closer to the optimum,

with limited differences between consecutive generations. It can be observed that standard genetic

algorithm is prone to getting stuck in local minima, because crossovers and mutations alone are not

enough to escape them. Therefore, we propose to enhance the genetic algorithm with evolutionary

jumps. Evolutionary jumps involve the appearance of new individual solutions in the population,

which include genes or mutations that are observed to be correlated in previous generations.

Our procedure decides when to perform evolutionary jumps by monitoring the fitness of the

best solution across generations. If the number of generations without fitness improvement exceeds

a predefined threshold, then the result of an evolutionary jumps are added to the next generation.

Instead of dense subgraphs in the epistatic network, our approach is to find cliques that’s why we

use C-SNV (69). It identifies cliques (maximal complete subgraphs) and use them to assemble

viral variants present in the sequencing data.
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5.3 Application of Genetic Algorithm with Evolutionary Jumps to the 0-1 Knapsack
Problem

5.3.1 The 0-1 Knapsack Problem

Given a set of items with weights and profits and a maximum capacity for the knapsack, the 0-1

Knapsack Problem asks for a subset of items that maximizes total profit without exceeding the

knapsack capacity. A solution to the 0-1 Knapsack Problem is a vector with binary coordinates

corresponding to items. The coordinate equals 1 when the corresponding item is selected, and 0

otherwise. We use the 0-1 Knapsack Problem as a benchmark to evaluate the performance of our

proposed improvement to the genetic algorithm.

5.3.2 Implementation of Genetic Algorithm

As a base implementation of the genetic algorithm, we employ the PyGAD genetic algorithm

Python library. (72) An initial population is created by randomly generating solutions that fill the

knapsack up to capacity. For a fitness function, we use the sum of profits of the items included

in the knapsack, unless the sum of their weights exceeds the knapsack capacity, in which case the

solution receives the minimum fitness of −1.

In each generation, a tournament selection procedure identifies high-fitting solutions to be par-

ents for the next generation. The chosen parents are grouped into pairs, and each pair is crossed-

over and randomly mutated to produce a pair of offspring for the next generation, as shown in

Fig.5.1. This procedure repeats for the given number of generations.
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5.3.3 Repairing and Packing

Throughout the execution of the standard genetic algorithm on the 0-1 Knapsack Problem, solu-

tions frequently either exceed the knapsack capacity or are under-filled, meaning there are still

items remaining which can fit in the solution without bringing it over capacity. Rather than dis-

carding these solutions, we propose a procedure for repairing solutions that are over-filled, and for

filling solutions that are under-filled. We call this procedure repairing and packing, illustrated in

Fig. 5.2.

To repair and pack a given solution, the procedure begins by sorting the items of the problem

instance such that all items which are included in the solution (1s) come first, and all non-included

items (0s) come afterwards. Then, it randomly shuffles the included items and the non-included

items separately. Ordering the array in this manner allows us to consider the items in a random

order subject to constraint that all items included in the solution preceed those that are not included.

Our procedure repairs and packs solutions in a single pass through this sorted array of items.

The procedure starts a new, empty solution, and begins iterating the sorted items array. While

iterating through the included items region, it tries to add each item to the solution, and does so as

long as the solution remains under capacity. If the item cannot fit (i.e., after its addition the total

capacity exceeds the upper limit), we change it to 0, removing it from the knapsack. This ensures

over-filled solutions will be brought back down to capacity. When we reach the non-included items

region of the sorted array, we try to add those items to the solution as well, and do so as long as

they fit. By applying the repairing and packing procedure, we can guarantee that solutions are not

over-capacity, and that there are no items remaining which could still fit in the knapsack.



61

We apply this procedure to each solution throughout the execution of the genetic algorithm. The

initial population, next generation offsprings, and evolutionary jumps solutions are all repaired-

and-packed according to this procedure, ensuring each solution is both feasible and maximally

filled.

1   0   1   0   1   0   0   1   1   0
 1        2        3        4        5        6        7        8         9       10

1   1   1   1   1   0   0   0   0   0

1   1   1   1   1   0   0   0   0   0

Input solution

Items sorted by 
inclusion

Items shuffled 
by inclusion

1   1   1   0   0   1   0   1   1   0Output solution

1   1   1   0   1   0   1   0   0   1Repairing and 
Packing

 1        3        5        8        9        2        4        6         7       10

 9        3        8        5        1        4        2       10       7       6

 1        2        3        4        5        6        7        8         9       10

 9        3        8        5        1        4        2       10       7       6

Figure 5.2 Repairing and packing procedure on an example instance of 10 items

5.3.4 Evolutionary Jumps Implementation

Evolutionary Jumps involve the introduction of new individuals to the genetic algorithm popula-

tion. These new solutions include items that are observed to be correlated in the past evolutionary

history. Our procedure decides when to perform evolutionary jumps by monitoring the fitness of

the best solution across generations. Each time we observe 10 consecutive generations without

improvement to the best fitting solution, the evolutionary jump procedure is triggered.

To facilitate the evolutionary jumps, C-SNV is employed to find correlated pairs of mutations.

C-SNV is a tool which finds characteristic haplotypes to describe a set of input sequences. Inter-

nally, the tool implements a procedure for identifying pairs of mutations which are correlated by
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high co-occurence in the input data.

Treating each solution vector as a sequence, we pass the entire evolutionary history, i.e, all

solutions from all generations so far, as an input to C-SNV, encoding 0 as A and 1 as C, using a

Fasta file format.

After finding correlated pairs of positions, C-SNV constructs an epistatic network over se-

quence sites with edges given by correlations, and finds cliques in this graph to reconstruct char-

acteristic haplotypes for the evolutionary history. Each clique relates a set of items which have

frequent pairwise co-occurrence. A haplotype is created from each clique, containing mutations

for the sites that appeared in the clique. C-SNV typically returns 2 − 10 haplotypes. For each

haplotype, we create a new knapsack solution to add to the population.

The procedure for creating knapsack solutions from C-SNV haplotypes begins with a solution

vector containing 1s where the haplotype had a 1. We observe 10 consecutive generations without

improvement towards the best fitting solution, then evolutionary jump procedure triggers. Then,

to each solution, we add the items included in the current best solution. In the result, the newly

created solutions are guaranteed to take the items where the C-SNV haplotype contained a 1 for

that position, and then additionally, they take the items included in the best solution observed so

far, so long as those don’t bring it over capacity. The newly created solutions each represent an

evolutionary jump, and these solutions are added back to the genetic algorithm population, prior to

starting the next generation. The new solutions are added by replacing the currently worst-fitting

solutions with the new ones created by the jump procedure.
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5.4 Results

5.4.1 Instances of the 0-1 Knapsack Problem

For validation of genetic algorithms on the 0-1 Knapsack Problem, we chose instances recently

generated in (1). It was proposed a new class of hard problem and shown that they are hard to solve

to optimality. Many hard problem instances were not even possible to solve on a supercomputer

using hundreds of CPU-hours. Out of 3240 instances we have selected the first ten instances which

were solved to optimality.

The selected problem instances are listed in the Table 5.1 together with the nomenclature from

(1). Different letters in the names of the instances represents;

• n: Number of items of a problem instance

• c: Capacity of the knapsack

• g: Number of groups of items of a problem instance

• f : Approximate fraction of items in the last group

• ε: Noise parameter

• s: Upper bound for profits and weights of items in the last group

The runtime for a solver to reach an optimal solution is given in the column Runtime. Note that

problem instances 1-5 are harder since they require significantly more runtime to reach optimality

then problem instances 6-10.
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Table 5.1 0-1 Knapsack Problem Instances (1)
ID Problem Instance Optimal Fitness Runtime(sec)
1 n 1000 c 10000000000 g 10 f 0.1 eps 0.0001 s 100 9999946233 2943
2 n 1000 c 10000000000 g 10 f 0.1 eps 0.0001 s 300 9999964987 6474
3 n 1000 c 10000000000 g 10 f 0.1 eps 0.01 s 100 9999229281 555
4 n 1000 c 10000000000 g 10 f 0.1 eps 0.01 s 200 9999239905 742
5 n 1000 c 10000000000 g 10 f 0.1 eps 0.01 s 300 9999251796 896
6 n 1000 c 10000000000 g 10 f 0.1 eps 0.1 s 100 9996100344 17
7 n 1000 c 10000000000 g 10 f 0.1 eps 0.1 s 200 9996105266 18
8 n 1000 c 10000000000 g 10 f 0.1 eps 0.1 s 300 9996111502 26
9 n 1000 c 10000000000 g 10 f 0.1 eps 0 s 100 9980488131 74
10 n 1000 c 10000000000 g 10 f 0.1 eps 0 s 200 9980507700 96

5.4.2 Parameter Tuning

We tuned the parameters of the genetic algorithm and the evolutionary jump procedure to optimize

the output profit. In genetic algorithm, these parameters include the size of the population, number

of generations, mutation probability, and so on. For evolutionary jumps, the parameters include

the number of non-improving generations to wait before jumping, how sensitive C-SNV should be

to determine links, and more. To find the optimal parameters for our problem instances, we ap-

plied multiple parameter configurations to each problem instance 10 times, observing the average

performance under each configuration.

The finalized values of parameters are shown in the Table 5.2. Some parameters have several

values, e.g., we report GA for 500, 1000, and 1500 generations.
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Table 5.2 Parameters Table

GA Parameter Value C-SNV Parameter Value
Population Size 1000 Jump Threshold 10
Num of Gen 500, 1000, 1500 Min.Gen.Wait 20
Num of Parents 500 Jump Type Global Best
Crossover type Single Point C-SNV Timeout 120sec
Parent Type Tournament Threshold.Freq 0.01
K-Tournament 3(default),25 Threshold.Freq+ 0.01
Mutation Type Inversion Memory 20GB
Mutation Pr 0.02 Edge Limit 1000

5.4.3 Performance Comparison of GA, GA+RP, and GA+EJ

The results of our experiments are shown in Tables 5.3-5.5. “Min.Error” is the minimum difference

between optimal fitness and the best fitness over 10 runs. “Avg.Error” is the average difference

between optimal fitness and the best fitness over 10 runs. “Runtime” is shown in the minutes and

its the average runtime over 10 runs.

We ran the GA and GA+RP on instances for K=3,K=25 and number of generations G= 500,

1000,1500 (see Tables 5.3-5.4 ) and GA+EJ just for K=25 and number of generations G=500 (see

Table 5.5).

It is easy to see that GA+RP significantly outperform simple GA on all instances and all con-

figurations. Also GA+RP with K=25 outperforms GA+RP with K=3 for all instances. Therefore

we decided to run GA+EJ just for K=25. For the harder instances 1,3,4,5 GA+EJ significantly

outperform GA-RP even for G=1500 the novel evolutionary enhancement of GA.
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Table 5.3 Simple Genetic Algorithm Results
Results 1 2 3 4 5 6 7 8 9 10

GA Min.Error 4.7e5 1.4e6 9695 1.9e4 3.0e4 5914 9908 1.5e4 1.7e4 3.5e4
K=3 Avg.Error 1.5e6 2.1e6 9798 1.9e4 3.0e4 4.3e6 4.6e6 4.3e6 1.8e4 3.6e4
G=500 Runtime 28 29 39 37 33 58 62 63 28 27
GA Min.Error 4.7e5 4.9e5 9620 1.9e4 2.9e4 5433 1.0e4 1.5e4 1.8e4 3.5e4
K=3 Avg.Error 1.6e6 1.8e6 9721 1.9e4 3.0e4 2.7e6 5.4e6 4.3e6 1.8e4 3.6e4
G=1K Runtime 43 43 56 60 60 94 109 93 43 43
GA Min.Error 4.7e5 4.9e5 9599 1.9e4 3.0e4 5953 1.0e4 1.4e4 1.7e4 3.5e4
K=3 Avg.Error 1.1e6 6.9e5 9726 1.9e4 3.0e4 4.3e6 4.3e6 4.3e6 1.8e4 36174
G=1.5K Runtime 78 80 122 106 108 186 167 175 80 79
GA Min.Error 4.7e5 4.8e5 9285 1.8e4 2.9e4 5498 3.9e6 1.3e4 1.7e4 3.4e4
K=25 Avg.Error 4.7e5 4.9e5 9472 1.9e4 2.9e4 3.5e6 5.8e6 3.1e6 1.7e4 3.5e4
G=500 Runtime 80 59 74 74 75 105 106 101 57 54
GA Min.Error 4.7e5 4.8e5 9254 1.8e4 2.9e4 5286 9362 1.4e4 1.7e4 3.3e4
K=25 Avg.Error 4.7e5 4.8e5 9414 1.9e4 2.9e4 3.1e6 3.5e6 1.9e6 1.7e4 3.5e4
G=1K Runtime 81 80 122 129 133 181 177 167 68 91
GA Min.Error 4.7e5 4.8e5 9283 1.8e4 2.8e4 5396 9655 1.3e4 1.7e4 3.4e4
K=25 Avg.Error 4.7e5 4.8e5 9428 1.8e4 2.9e4 3.9e6 3.1e6 3.1e6 1.7e4 35017
G=1.5K Runtime 159 159 194 200 214 286 263 275 133 126
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Table 5.4 Results for Genetic Algorithm with Repairing and Packing

Results 1 2 3 4 5 6 7 8 9 10
GA-RP Min.Error 1102 3298 2662 4242 7433 71 167 235 4406 1.1e4
K=3 Avg.Error 1157 3481 3170 5958 8577 120 275 400 6090 1.2e4
G=500 Runtime 98 98 102 99 99 136 149 141 118 106
GA-RP Min.Error 917 3181 2314 4063 6990 87 174 195 4556 8891
K=3 Avg.Error 1084 3422 3026 5289 8531 115 255 371 5324 1.1e4
G=1K Runtime 203 197 189 188 201 244 241 243 217 218
GA-RP Min.Error 915 3166 2353 4569 6777 67 163 184 3502 6445
K=3 Avg.Error 1067 3395 2763 5294 8166 95 226 297 4778 9392
G=1.5K Runtime 281 282 294 292 291 397 390 400 307 334
GA-RP Min.Error 874 2540 2742 4827 8388 14 36 48 306 573
K=25 Avg.Error 1046 2901 3343 6160 9528 34 93 105 450 903
G=500 Runtime 99 98 109 123 104 164 171 158 139 143
GA-RP Min.Error 959 2335 2566 4586 5406 14 31 39 214 525
K=25 Avg.Error 1037 2897 3120 5830 8867 26 55 75 361 956
G=1K Runtime 188 184 198 203 207 278 275 274 261 255
GA-RP Min.Error 780 1451 2365 5010 7646 17 40 39 265 644
K=25 Avg.Error 955 2642 3197 5670 9181 22 78 61 469 849
G=1.5K Runtime 283 299 316 318 341 472 473 462 408 407

Table 5.5 Results for Genetic Algorithm Evolutionary Jumps (GA+EJ)
Results 1 2 3 4 5 6 7 8 9 10

GA-EJ Min.Error 541 1950 1557 3972 6000 27 50 113 350 595
K=25 Avg.Error 751 2425 2761 5329 8596 47 83 178 686 951
G=500 Runtime 2234 1949 2081 1883 2171 3056 2829 3153 2441 2603

5.5 Conclusion

In this paper, we upgraded genetic algorithm with evolutionary jumps to mimic punctuated equi-

librium seen in SARS-CoV-2 sequencing data. The enhanced genetic algorithm was tested on

challenging cases of the 0-1 Knapsack Problem. Initially, the Genetic algorithm for the Knapsack

Problem was refined by applying repairing and packing methods. Subsequently, we boosted GA



68

with evolutionary jumps integrated through CliqueSNV. Our tests demonstrated that evolutionary

jumps notably enhance GA for extremely challenging instances of the 0-1 Knapsack Problem.
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CHAPTER 6

Summary of Contributions

The unprecedented size and density of the SARS-CoV-2 Genomic data has driven the development

of novel bioinformatics algorithms seeking to extract its insights. To facilitate this extraction, this

dissertation details four unsupervised approaches that are tailored to these unique data characteris-

tics.

The first contribution, SPHERE, is a scalable phylogeny reconstruction algorithm designed to

adapt to the high density of genomic data. It utilizes novel computational techniques to efficiently

map the evolutionary relationships within the SARS-CoV-2 virus, enabling a more detailed and

accurate understanding of its genetic lineage.

The second contribution introduces (ε, τ)-MSN, a method for constructing genetic relatedness

networks. This approach integrates all possible minimum spanning trees with additional edges, un-

covering clusters of similar sequences to facilitate the identification of closely related viral strains

and their transmission pathways.

The third contribution presents an innovative unsupervised learning strategy aimed at minimiz-

ing cluster entropy among genomic sequences. This method optimizes the grouping of sequences

to reflect their natural organization, thereby enhancing the ability to discern patterns and dynamics

of viral evolution.

Lastly, the fourth significant contribution is the introduction of evolutionary jumps within ge-

netic algorithms. This groundbreaking approach simulates the punctuated equilibrium phenomena

observed in SARS-CoV-2 sequencing data, offering profound insights into the dynamics of viral
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evolution. By optimizing for very hard instances of the 0-1 Knapsack Problem, this method show-

cases a significant advancement in genetic algorithms, enriching our understanding of complex

patterns of genetic changes over time.

Collectively, these contributions significantly enhance the toolkit available for bioinformatics

research, offering sophisticated analyses of viral genomes and contributing to the broader field of

computational biology with innovative solutions to complex biological problems.
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