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ABSTRACT

Molecular sequence analysis serves as a fundamental process for elucidating the intricate

functions, structures, and behaviors inherent in sequences. Its application extends to char-

acterizing associated organisms, such as viruses, facilitating the development of preventive

measures to mitigate their dissemination and influence. Given the potential of viruses to

trigger epidemics with global ramifications, comprehensive sequence analysis is pivotal in

understanding and managing their impact effectively. The rapid expansion of bio-sequence

data has surpassed the computational capabilities of traditional analytical techniques, such

as the phylogenetic approach, due to their high computational costs. Consequently, clus-

tering and classification have emerged as compelling alternatives, with machine learning

(ML) and deep learning (DL) algorithms capable of effectively implementing these methods.

Although ML/DL models are known for their high analytical capabilities, however, they

typically require the inputs to be either in numerical or image form. Therefore, efficient

and effective mechanisms are needed to transform bio-sequences into ML/DL-compatible

inputs, and this research intends to devise such techniques. In this regard, alignment-free

and fast feature-engineering-based approaches and image-based approaches are put forward

in this work to convert the bio-sequences into numerical and image form respectively. The

feature-engineering-based methods, PSSMFreq2Vec and PSSM2Vec combine the power of k-

mers and position weight matrix (PWM) to be scalable, alignment-free, and compact, while

Hashing2Vec utilizes the combination of hashing and k-mers to achieve high embedding gen-

eration speed and to be alignment-free respectively. Furthermore, two of the image-based

approaches follow the underlying concept of Chaos Game Representation (CGR) to map

sequences to images while one uses Bezier function-based mapping of sequences into images,

and they aim to enable the application of sophisticated vision DL analytical models on bio-

sequences. The representations gained from both feature-engineering-based and image-based



methods are passed on to ML/DL models to perform classification tasks and their results

illustrate high predictive performance as compared to the respective baseline models.

INDEX WORDS: Biological Sequence Analysis, Feature-Engineering-based Bio-
Sequence Representation, Image Classification, Machine Learn-
ing, Deep Learning, Chaos Game Representation, Bezier Func-
tion
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CHAPTER 1

Introduction

Molecular sequences usually refer to nucleotide or amino acids sequences. Their analysis

can provide detailed information about the functional and structural behaviors of the corre-

sponding organisms, like viruses etc. In this study, we focus on the analysis of viruses, which

are usually responsible for causing diseases for example Flu Das (2012), Covid-19 Pedersen

et al. (2020), etc. The genetic diversity and dynamics (e.g., mutations, variations, hosts) of a

virus can also be investigated through analysis. Gaining a deeper understanding of a virus is

very helpful in building prevention mechanisms, like drugs Rognan (2007), vaccines Dong &

Pei (2007), etc., to control its associated disease spread and eliminate the negative impacts.

It can also be useful in virus-spread surveillance.

1.1 Motivation

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus is such an ex-

ample that has caused COVID-19 disease. This disease has infected almost 1.36 million

people from 219 countries as of April 2021 Uyangodage et al. (2021). According to a re-

cent report (June 2022) by the Centers for Disease Control and Prevention (CDC), a total

of 86, 379, 937 cases are reported in the United States alone. With the pandemic levels of

COVID-19, an unprecedented amount of SARS-CoV-2 genomic sequencing data has been

collected and is still ongoing. Such data is essential for comprehending the disease, which

will help researchers to advise preventive measures and minimize its effects. Moreover, it

is well-known that many major mutations happen in the spike region of the SARS-CoV-2
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genome Kuzmin et al. (2020); Ali et al. (2021). It can be due to the role of this region to

attach the virus to the host cell membrane Kuzmin et al. (2020). Thus the spike protein

region provides sufficient information about the virus’s genome that can be used to perform

further analysis of the virus. The structure of the SARS-CoV-2 genome is shown in Fig-

ure 1.1. It is approximately 30kb in length, the spike region lying in the 21–25kb range,

coding for a “spike” protein of 1273 amino acids, which can be divided into two sub-units

S1 and S2. The receptor-binding domain (RBD) is a region in the subunit S1 which ranges

from amino acids 319 to 541 of the spike protein. To infect the host cell, the spike protein

RBD of the SARS-CoV-2 virus engages with the ACE2 cell surface protein. SARS-CoV-2

variants of concern that have appeared independently across the world feature mutations in

the RBD Morales et al. (2021). Thus the spike sequence is often sufficient for characterizing

a given variant of SARS-CoV-2 Kuzmin et al. (2020). Furthermore, the SARS-CoV-2 virus

has been studied recently by analyzing its spike sequences, which includes performing classi-

fication tasks using these sequences. These tasks are either host-wise Kuzmin et al. (2020);

Ali et al. (2022) or variant-wise Ali et al. (2021); Ali & Patterson (2021); Tayebi et al. (2021).

Host-wise intends to classify the sequences based on the corresponding infected hosts, while

variant-wise follows the virus’s variant/lineage-based classification. The high performance

of ML/DL classification models makes them an ideal choice for spike protein sequence clas-

sification, however, these sequences need to be transformed into ML/DL compatible inputs

first to enable the application of ML/DL models.
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Figure 1.1 The SARS-CoV-2 genome, roughly 30kb in length, codes for both structural and
non-structural proteins. Among the structural proteins, S, E, M, and N, the S (spike) protein
is responsible for the attachment of the virus to the host cell membrane. Advantageous
mutations in the spike region are often responsible for increased transmissibility of the virus.

1.2 Bio-Sequence Embedding Generation Techniques

There are many methods put forward in literature to produce ML/DL compatible trans-

formation of spike sequences, like one-hot encoding (OHE) Kuzmin et al. (2020). It yields

a binary feature vector of a given spike sequence, however, it faces the curse of dimen-

sionality and sparsity challenges. Similarly, a k-mer (see Definition 1) based alignment-free

approach Ali & Patterson (2021) is proposed, but it has very high embedding generation

time complexity making it difficult to be scalable and it also undergoes the sparsity issue.

Likewise, a position weight matrix (PWM) based encoding method Ali et al. (2022) is given

to obtain the numerical encoding of the sequences, however, this method is alignment-based

and sequence alignment is a computationally expensive process. Sequence alignment is a

way of arranging the sequences of DNA, RNA, or protein to identify regions of similarity

that may be a consequence of functional, structural, or evolutionary relationships between

the sequences. Futhemore, kernel matrix based method Farhan et al. (2017) is proposed



4

but it is space inefficient. Moreover, to enable the application of sophisticated DL vision

classification models on bio-sequence data, the algorithms to convert sequences into images

following the CGR Jeffrey (1990) concept are presented. Like Hoang et al. (2016); Rizzo

et al. (2016) proposed CGR-based algorithms to build images of DNA (nucleotide-based)

sequences, however, applying them on spike protein sequences causes overlapping in the

corresponding generated images. Authors of Löchel et al. (2020) proposed modifications to

CGR known as FCGR (Frequency Chaos Game Representation) to handle protein sequences.

However, they consider the amino acids of a sequence one by one (rather than considering

substrings using n-gram Ali & Patterson (2021); Ali et al. (2021)) and assign equal weight

to every amino acid (i.e., every pixel in the image corresponding to an amino acid will have

a value 1 rather than weights based on their positions in the sequence) in their respective

image representation.

Definition 1 (k-mers). It is referred to as a set of (consecutive) amino acids of length k for

any given sequence (also called nGram in the NLP domain). The total number of k-mers

generated for a sequence of length N is N − k + 1.

Therefore, this work deals with proposing alignment-free and time-efficient mechanisms

to transform spike protein sequences into ML/DL-compatible inputs. Some of these methods

are shown to be scalable, while others enable the application of DL classifiers on spike protein

sequences. The proposed work is categorized into two groups and they are as follows,
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1.2.1 Feature-Engineering-based Encoding Methods

Three alignment-free numerical embedding generation algorithms for spike protein se-

quences are proposed in this work. These algorithms are PSSMFreq2Vec, PSSM2vec, and

Hashing2Vec. The PSSMFreq2Vec and PSSM2vec techniques combine the power of k-mers

and PWM to be scalable and alignment-free. They also demonstrate compactness as com-

pared to their respective baselines. Hashing2Vec merges the underlying concepts of k-mers

and hashing to be alignment-free and fast. The numerical features obtained from these

encoding methods are further given to ML classifiers to perform classification tasks.

1.2.2 Image-based Encoding Methods

Image classification is a well-studied problem. Many sophisticated DL models have been

developed in past years to achieve state-of-the-art performance in terms of image classi-

fication using DL architectures such as convolutional neural networks (CNN). To enable

the application of high-performing DL vision classifiers on bio-sequences, we proposed three

methods to convert sequences into images. Two of them are based on the concept of chaos

game representation, while one follows Bezier curve function to generate images. Some ad-

vantages of converting sequences to images are that these approaches does not depend on

sequence length or alignment (the size of the image remains fixed) and they enable DL
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classifiers application on the spike protein classification.

1.3 Contributions

The contributions made by this work are the following,

1. Three alignment-free, fast, and scalable numerical embedding generations algorithms

(PSSMFreq2Vec, PSSM2Vec, Hashing2Vec) are proposed to convert the SARS-CoV-2

spike protein sequences into numerical form to enable ML-based classification on them.

2. An image-based method, named Spike2CGR, is put forward to generate the images of

spike protein sequences of the SARS-CoV-2 virus based on the concepts of chaos game

representation (CGR) and minimizers.

3. A novel approach for converting biological sequences into images utilizing the Bézier

function is also presented. By harnessing the capabilities of the Bézier curve in con-

junction with deep learning analytical models, we can foster a more profound compre-

hension of these sequences. This innovative technique holds promise for advancing our

understanding of biological data and enabling more robust analysis and insights.

4. A new image-based approach for ACP classification is proposed which explore the use

of secant and cosecant functions as an alternative to sine and cosine functions in the

CGR technique to generate a more rectangular mapping. We also combined spaced

k-mers concept usage with the CGR method to produce better images in terms of

predictive performance.

5. The statistical analysis and visualization of feature-engineering methods are provided.
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6. The statistical analysis of image-based encoding methods is discussed.
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CHAPTER 2

Background

Molecular sequence study is a popular topic in research, like protein analysis Rao et al.

(2014); Buchan & Jones (2019) is essential for inferring its functional and structural prop-

erties, which helps in understanding diseases and building prevention mechanisms like drug

discovery, etc. In this regard, learning-based methods play a vital role and they usually

consist of an essential step of representation learning. Various representation learning-based

techniques are presented to perform bio-sequence analysis using learning methods and they

are categorized as follows,

2.1 Feature-Engineering-based Analysis

Identifying sequence homology (common ancestry) between proteins and predicting disease

transmission using phylogeny-based techniques Dhar et al. (2020) are crucial problems in

bioinformatics. However, the millions of sequences now accessible for viruses, like SARS-

CoV-2, greatly exceed the capacity of such phylogeny techniques Hadfield et al. (2018);

Minh et al. (2020). Various feature embedding-based methods are put forward to gain a

deeper understanding of the biological sequences, like Kuzmin et al. (2020) proposed a one-

hot encoding (OHE) technique to classify spike protein sequences of SARS-CoV-2 virus by

transforming the sequences into binary vectors. However, this technique undergoes the curse

of dimensionality and sparsity challenges, and it doesn’t retain any ordering information of

the sequence. Similarly, a k-mer-based alignment-free approach, known as Spike2Vec Ali

& Patterson (2021), is proposed to perform spike protein analysis, but it has very high
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embedding generation time complexity making it difficult to be scalable and it also under-

goes the sparsity issue. Likewise, a position weight matrix (PWM) based encoding method

PWM2Vec Ali et al. (2022) is given to obtain the numerical encoding of the spike sequences,

however, this method is alignment-based and sequence alignment is a computationally expen-

sive process. PWKmer Ma et al. (2020) method uses position distribution information and

k-mers frequencies to do a phylogenetic analysis of HIV-1 viruses. However, these methods

are computationally expensive and can face the curse of dimensionality challenge.

2.2 Neural Network-based Analysis

Moreover, another set of bio-sequence analysis mechanisms employs neural networks to gen-

erate numerical representations like WDGRL Shen et al. (2018), AutoEncoder Xie et al.

(2016) etc. WDGRL is an unsupervised technique that uses a neural network to extract

numerical embeddings from the sequences. AutoEncoder follows the encoder-decoder ar-

chitecture and the encoder network yields the feature embeddings for any given sequence.

These embeddings are used to do ML-based classification. However, these methods are

computationally expensive and require large training data to achieve good performance.

Furthermore, a set of pre-trained models to deal with protein classification are also in-

troduced like Protein Bert Brandes et al. (2022), Seqvec Heinzinger et al. (2019), UDSM-

Prot Strodthoff et al. (2020) etc. In Protein Bert an NN model is trained using protein

sequences and this pre-trained model can be employed to get embeddings for new sequences.

Likewise, SeqVec provides a pre-trained deep language model for generating protein se-
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quence embeddings. In UDSMProt a universal deep sequence model is put forward which

is pre-trained on unlabeled protein sequences from Swiss-Prot and further fine-tuned for the

classification of proteins. However, all these methods have heavy computational costs.

2.3 Kernel-based Analysis

Several kernel-based analysis techniques are proposed, like Farhan et al. (2017) which com-

putes the distance between sequences using the number of matches and mismatches between

characters (amino acids) from k-mers and designs the kernel (or gram) matrix. But its

memory inefficient because it has to load the entire kernel matrix (which is very high dimen-

sional) in the memory. Another method is gapped k-mer (Gkm) string kernel Ghandi et al.

(2014) which enables the usage of string inputs (biological sequences) for training SVMs. It

determines the similarity between pairs of sequences using gapped k-mers, which eradicates

the sparsity challenge associated with k-mers. However, the interpretation of gkmSVMs can

be challenging. GkmExplain Shrikumar et al. (2019) is an extension of Gkm which claims to

be more efficient in performance. The string kernel Lodhi et al. (2002) is a kernel function

that is based on the alignment of substrings in sequences but it’s space inefficient.

2.4 Image-based Analysis

An alternative molecular sequence analysis category contains the methods which transform

the sequences into images to perform further analysis. These methods follow CGR which fo-

cuses on the visual encoding of sequences based on generating fractals. Although CGR builds

a visual representation of a given sequence, it was originally designed for DNA (nucleotide)
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sequences Jeffrey (1990); Hoang et al. (2016); Rizzo et al. (2016). Authors of Löchel et al.

(2020) proposed modifications to CGR known as FCGR (Frequency Chaos Game Represen-

tation) to handle protein sequences. However, they consider the amino acids of a sequence

one by one (rather than considering substrings using n-gram Ali & Patterson (2021); Ali

et al. (2021)) and assign equal weight to every amino acid (i.e., every pixel in the image cor-

responding to an amino acid will have a value 1 rather than weights based on their positions

in the sequence) in their respective image representation. Moreover, the existing CGR-based

approaches operate on k-mer (for k > 1) for nucleotide only and only 1-mers in the case of

protein sequences (also known as FCGR). However, better underlying sequence representa-

tions, such as Minimizers, can be used rather than k-mers. Similarly, using k > 1 for FCGR

could also produce better results.
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CHAPTER 3

Proposed Approaches

This work consists of two categories of proposed methods to convert spike protein sequences

of the SARS-CoV-2 virus into ML/DL-compatible forms. A detailed discussion of each

method is mentioned below,

3.1 Feature Engineering Methods

Three different methods are designed to generate numerical feature embeddings from the

spike sequences. These embeddings are further utilized by the ML models to perform the

classification of the sequences. The methods are as follows,

3.1.1 PSSMFreq2Vec

For a given spike sequence, PSSMFreq2Vec works by using the idea of k-mers (Defina-

tion 1) to design a PWM and then assign a weighted value to each k-mer based on the

values for different amino acids at different positions in the PWM. The position weight ma-

trix (PWM) Stormo et al. (1982), also known as the position-specific scoring matrix (PSSM),

is utilized historically for the portrayal of biological sequences-based motifs (patterns). It

comprises information about the count of amino acids for each position in the form of weights

(log-likelihood). Then a fixed-length feature vector for all possible combinations of amino

acids of length k is generated and the score from the PWM to the respective k-mer bin is

added. All remaining entries of the vector will have a value of zero. In this way, the locality
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information is captured by using the k-mers, and the importance of different characters’

positions in the sequence is also computed. Such weighted information cannot be computed

by using k-mers only. Moreover, as PSSMFreq2Vec is a (weighted) frequency vector, it does

not rely on a global alignment so it is alignment-free. Combining these pieces of information

in this way allows us to devise a compact, general, and alignment-free feature embedding

technique, which can convert many types of bio-sequence data to numerical form so that the

data is compatible with many different downstream ML tasks.

A summary of the PSSMFreq2Vec algorithm is shown in Figure 3.1. It follows the given

steps (from a to h) for generating a feature vector against a sequence. In step (a), a spike

protein sequence is provided, which is used to extract k-mers in (b) (k = 3 is used in

experiments). Further, in step (c), a position frequency matrix (PFM) is generated from

these k-mers, which stores the count of each character of their position in the k-mers. The

dataset used in the experiments contains 20 unique characters (represented by Σ, the set of

amino acids) with k = 3, so the dimensions of PFM, in this case, is 20 × 3. In step (d), a

position probability matrix (PPM) is generated by converting PFM values into column-wise

probabilities. To obtain the PPM, we divide the count for a given character by the total

count of characters in the column. To avoid zero values in the PPM, a Laplace value (pseudo

count) is added to every element, resulting in the matrix depicted in (e). A Laplace value

of 0.1 is used in the experiments Nishida et al. (2009). In (f), a position weight matrix

(PWM) is produced from the Laplace-adjusted PPM by computing the log-likelihood of

each character c ∈ Σ at a position i with the formula Wc,i = log2(p(c, i)/p(c)), where p(c) is



14

defined as n(c)/61 and n(c) is the number of codons for each amino acid c ∈ Σ and 61 is the

number of sense codons. Then the absolute scores of each k-mer is calculated by summing up

the individual scores from the PWM of every k-mer character with respect to their position

in the PWM, resulting in the vector (g). In the last step (h), a feature vector of length |Σ|k

is created, representing all the possible k-combinations of Σ. The feature vector consists

of all zero values except for the positions representing the k-mers, which hold the absolute

scores (computed in (g)) of the respective k-mers. The entire process is repeated for each

spike sequence.

Figure 3.1 PSSMFreq2Vec and PSSM2Vec flow chart. For PSSMFreq2Vec, a feature vector
is built from a sequence by computing PWM from k-mers, creating a zero feature vector
of length |Σ|k, and updating its values accordingly. For PSSM2Vec, the vector is built by
flattening the PWM matrix in step (f).
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3.1.2 PSSM2Vec

This embedding approach is a more compact and generalized version of PWM2Vec Ali

et al. (2022). Given a sequence, PSSM2Vec first designs the position weight matrix (PWM)

and then ”flattens” (concatenates the rows) to obtain the resulting feature vector. The

flowchart for PSSM2Vec is given in Figure 3.1. Note that the steps from (a) to (f) are the

same as in PSSMFreq2Vec, but in the last step (I), the PWM is simply flattened to obtain a

feature vector corresponding to the input sequence. Again, this process is repeated for each

protein sequence.

3.1.3 Hashing2Vec

This is another numerical embedding (ϕ) generation strategy for spike sequences. Let Σ

represent the alphabet (the set of all unique amino acids comprised of ACDEFGHIKLMN-

PQRSTVWXY ) and k is the length of a k-mer. The total number of k-mers of length k

created from the given spike sequence will be |Σ|k. The Hashing2Vec model uses a hashing

technique with a hash table of size m to obtain embeddings and it reduces the bin searching

overhead (see Definition 2).

Moreover, the Algorithm 1 demonstrates the pseudocode for the overall pipeline of the

Hashing2Vec method. We can observe that, for a given sequence s, k-mer length k, and hash

table size m, it returns the exact feature embedding of the sequence. The first step involves

computing unique k-mers of size k in a spike sequence of length n. Then a dictionary (local

hash value to k-mers within a spike sequence) of size d is created, where d ≤ n−k+1 (since
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there will be repetitive k-mer in a sequence) and store the counts of each unique k-mer in

the dictionary. After that, the (global) hash value for all possible k-mers in the data is

computed, and a hash table position is assigned to them. For each (local) k-mer within a

spike sequence, we use its global hash value and place its count in the hash table (we use

this hash table as a feature embedding ϕ). The dimension of ϕ is the size m of the hash

table. The final step is to use Principal Component Analyses (PCA) to get a low dimensional

representation of ϕ. Each step is further explained in more detail below:

Definition 2 (Bin searching). Given a vector for all possible k-mers (|Σk|), each k-mer in

the spike sequence is assigned to a bin in the feature vector. Since we do not (initially) know

the position of the bin for a specific k-mer, we need to perform searching. This problem is

called bin searching.

3.1.3.1 Step 1: Generating k-mers:

To generate the fixed-length embedding for a given spike sequence, generate its all possible

k-mers. An example of generating k-mers for a given spike sequence is shown in Figure 3.1(c).

For Hashing2Vec embedding generation, we took k = 3, which is decided using standard

validation set approach Devijver & Kittler (1982).

3.1.3.2 Step 2: Counting the k-mers:

After creating the k-mers, count the number of each k-mer by storing the unique k-mers



17

in a dictionary (this can be thought of as “local” hashing of the k-mers within a specific

spike sequence). After getting the k-mers count, the next step is to design an embedding ϕ,

where each unique k-mer is assigned a bin that will contain its count as the numerical value.

The k-mers that are not present in a given spike sequence will have zero value in ϕ. To find

the optimal bin for the k-mers in ϕ, a brute-force method is used to search the embedding to

see which bin a specific k-mer belongs to. For each k-mer in a given spike sequence, this step

must be repeated. In the worst case, this bin search for the relevant k-mers position can end

up being an expensive process. Therefore, we intend to solve the problem of bin searching

(see Definition 2) of ϕ in this work, after the k-mers frequencies computation is done. Note

that bin searching is not an optimization problem. Note that we are not concerned with

the k-mers counting algorithm, rather our focus is to improve the ϕ generation as a result

of k-mers counting (i.e., improving the traditional bin searching mechanism). There are

many efficient and fast methods for k-mers counting, however, discussing (and using) those

methods are out of the scope of this research work.

3.1.3.3 Step 3: Assign Unique ID to k-mers Using Hashing:

The bin searching problem is solved by utilizing the hashing technique in this work. More

specifically, the k-mers are hashed (refer to them as “Global” hash values) using a popular

hash function, called Fowler–Noll–Vo Fowler et al. (2011), to assign a unique ID (hash table

entry) to each k-mer. FNV (FNV-1a 32bit specifically) works by initializing a hash variable.

Then it performs two major operations for each byte of data. First, an XOR of the byte and
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the hash is performed, and then the result is multiplied by a particular prime number. After

mapping the k-mers to consistent hash values, we designed a frequency-based feature vector.

For a given spike sequence, we now have a k-mers count (computed in step 2) and a global

hash value (computed using FNV). At the global hash table entry, we place the k-mer count

directly for all k-mers in a given spike sequence. All the other entries in the hash table will

have the value 0. The experiments show that for k = 3, the optimal hash table size (m) is

404048. The optimality of m is determined (iteratively) by eliminating the collisions of hash

values. Since the parameter m (hash table size) is a learned parameter, hence it guarantees

zero collisions in the hash table. The value of m is learned by iteratively increasing the hash

table size until each unique k-mer gets a unique hash table id. Therefore our created feature

embeddings are exact (not approximate embeddings). Moreover, the learning of m needed to

be done only once in the start, and we can then have O(1) time complexity for placing each

k-mers in relevant bins of feature vector (the hash table entry) afterward for any number

of sequences (hence it could be scaled to any size of data as no bin searching overhead is

required). For Hashing2Vec, we only require one hash function. The resultant hash table

(containing k-mers count) is considered as the final feature vector ϕ. At this point, for q

spike sequences (total number of spike sequences in the data), we get a q ×m dimensional

matrix, where each row corresponds to a numerical representation of a spike sequence and

each column corresponds to a specific k-mer count. Note that the hash values assigned in

Step 3 are different from the dictionary of k-mers discussed in Step 2 (k-mers counting). In

step 2, we are interested in designing a dictionary to locally count the unique k-mers within
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a specific spike sequence (which will be different for different spike sequences). Now, in order

to design a general-purpose feature embedding for a spike sequence, we need a “global” hash

value for each possible k-mer in all spike sequences, so that any k-mer in any given spike

sequence is mapped to the same hash table entry (the resultant feature vector).

Definition 3 (Fowler–Noll–Vo (FNV)). FNV is a non-cryptographic commonly utilized de-

terministic hash function.

3.1.3.4 Step 4: Low Dimensional Representation Using PCA:

Since the dimensionality (size) of the hash table (feature embedding ϕ) is very high, we

applied Principle Component Analysis (PCA) Wold et al. (1987) to reduce it. PCA is a

popular and widely followed technique for the reduction of data dimensionality. For our

experiments, we have chosen the first 500 PCA components.

Furthermore, the workflow of Hashing2Vec is given in Figure 3.2. In the first step, we

compute the unique k-mers frequency count for the spike sequence of length n as shown in

the left box of Figure 3.2 (a), (b) and (c)). The k-mers are generated using a sliding window

of size k. Along with it, a dictionary d is maintained to keep the counts of unique k-mers

in a spike sequence, where the size |d| of the dictionary is |d| ≤ n − k + 1 (since we will

have repeated k-mers in the sequence). Afterward, each unique k-mer in the dictionary d

is passed through the FNV hash function to get a (global) corresponding hash value. The

k-mer frequency count from the dictionary is mapped to the hash table using the respective



20

computed (global) hash value for each unique k-mer in the dictionary as shown in Figure 3.2

(d)). Finally, the feature embedding (ϕ) of the sequence is generated using the hash table,

and the length of the feature embedding (ϕ) is m since the size of the hash table is m.

Figure 3.2 Flow chart of Hashing2Vec based embedding.

Algorithm 1 Hashing2Vec

1: Input: Spike Sequence seq, and integer k and m
2: Output: Feature Vector ϕ based on Hash Values
3: kmers = ∅
4: ϕ = List(0) × m ▷ feature embedding vector of length m
5: for i← 1 to |seq| do
6: kmer.append(seq[i : i+ k]) ▷ create k-mers using sliding window
7: end for
8: unique kmer, kmer count = createDictionary(kmers); ▷ local hash value

▷ create the FNV hash of size m for each k-mer using its count
9: for i← 1 to |unique kmer| do
10: global hash value = FNV (unique kmer[i],m) ▷

map k-mer count to hash table for each unique kmer in dictionary
11: ϕ[global hash value] = kmer count[i]
12: end for
13: ϕ = PCA(ϕ, 500); ▷ get the first 500 PCA components
14: return(ϕ)

3.2 Image-based Methods

These methods convert the bio-sequences into a image form so that sophisticated vision DL

analytical models can be applied to the sequences. The methods are as follow,
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3.2.1 Spike2CGR

A popular approach used for encoding biological sequences into images is Chaos Game

Representation (CGR) Barnsley (2012); Jeffrey (1990). It was originally designed for nucleotide-

based sequences (DNA), and it starts by computing k-mers of a given sequence. After that

for each k-mer, its respective nucleotides are utilized to allocate a position to the k-mer in

the image. For example, in the case of a DNA genome sequence, an empty image is divided

into 4 quadrants, each one representing a unique nucleotide, i.e., A “upper left”, C “lower

left”, G “upper right”, and T “lower right”. Each of these 4 quadrants is further subdivided,

recursively, up until the length k of the k-mer. Based on the nucleotides of a given k-mer,

the appropriate position of the k-mer in the image is then detected in this recursive manner,

the respective pixel value incremented by 1. This process is visually shown in Figure 3.3b.

Although the above-mentioned method works perfectly fine for DNA (genome) sequences

(with the number of unique nucleotides n ≤ 4), it poses the challenge of overlapping in an

image for n > 4, e.g., protein sequences with twenty proteinogenic amino acids.

Therefore to eliminate the overlapping, authors in Löchel et al. (2020) proposed a fre-

quency matrix-based CGR, known as FCGR (for reference, we call this method “Chaos” in

the rest of the report). The Chaos produces an n-flakes (also referred to as poly-flake) Tzanov

(2015) based image representation (where n is the number of amino acids), which consists of

an image with multiple icosagons (see Figure 3.3c for an example). An n-flake or poly-flake

follows an iterative mechanism to construct a fractal starting from an n-gon. For example,
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given a spike sequence with 20 amino acids, the Chaos image representation generates twenty

edges (one for each amino acid) and then generates twenty inner icosagons within the larger

icosagon (see Figure 3.3c).

(a) 5-mers. (b) CGR-based allocation. (c) protein 20-flakes.

Figure 3.3 Example of (a) k-mers, (b) determination of the location (in yellow) of the 3-mer
”GTT” in the image using CGR method, and (c) 20-flakes image based on Chaos/FCGR
method.

Definition 4 (Icosagons). In geometry, an icosagon or 20-gon is a twenty-sided polygon (see

Figure 3.3c).

Given a sequence, the fractal is then generated via an iterative process, starting at the

center of the image. Each subsequent step is governed by the following process for deter-

mining the location of the next pixel in the image based on the previous: First, we calculate

the contraction ratio r between the outer and inner polygon. For this purpose, we use the

following expression (as proposed in Löchel et al. (2020); Strichartz (2000)):

r =
sin(π

n
)

sin(π
n
) + sin(π

n
+ 2πm

n
)
, for m = ⌊n

4
⌋ (3.1)

where n = 20 for twenty amino acids in the protein/spike sequence. Then we define a scaling

factor (SF), which is the ratio of the distance between the current location and the target
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edge (amino acid). The SF is computed using the following expression (as proposed in Löchel

et al. (2020)):

sf = 1− r (3.2)

Finally, we calculate the coordinates x and y of this next pixel using the following expression

(as proposed in Löchel et al. (2020)).

x[i] = r · sin(2πi
n

+ θ) (3.3)

y[i] = r · cos(2πi
n

+ θ) (3.4)

where i ∈ {1, 2, . . . , |S|} (where S is a spike sequence and s[i] ∈ S corresponds to a single

amino acid), n is the total number of amino acids, and θ is the angle of orientation. The

Chaos method takes a protein sequence as input and yields an image as output by considering

the amino acids of the sequence one by one, following Equation 3.3 and Equation 3.4 to get

the coordinates of every amino acid in the image. The FCGR generates a greyscale image

of a protein sequence based on the coordinates of each amino acid in the spike sequence

computed using Equation 3.3 and Equation 3.4. Note that the FCGR allocates pixel value

1 for each amino acid in the spike sequence for which x-y coordinates within the image are

computed using Equation 3.3 and Equation 3.4.

In summary, the Chaos method iteration is as follows, starting from point (0,0):

1. Check the next character (amino acid) of the sequence.

2. Go a fraction of the way to the corresponding amino acid (base), according to the
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scaling factor.

3. Save coordinates x, y of this next point (and draw a pixel at those coordinates) and

repeat (from bullet point 1.).

In this work, four methods are proposed to build images from SARS-CoV-2 spike protein

sequences by making different modifications to the Chaos method respectively in order to

improve the final predictive performance. Those methods are as follows,

3.2.1.1 Spike2Vec-based Image Encoding

Since the original FCGR (Chaos) includes a single pixel value for each amino acid, it

may not represent the spike sequence very effectively. For this purpose, we use a recently

proposed method called Spike2Vec Ali & Patterson (2021). The Spike2Vec uses the idea

of k-mers to generate the feature embeddings. In this work, we use the same k-mers idea

to generate the images from spike sequences by considering a set of amino acids (rather

than single amino acid at a time as done by the Chaos approach) with a sliding window (of

increment 1) to draw pixels within images. After generating all the k-mers, we concatenate

them to make a single (new) sequence, which is used as input to the Chaos method for image

generation (using Equation 3.3 and Equation 3.4). In our experiments, the images generated

for Spike2Vec use 9-mers (selected using standard validation set approach Devijver & Kittler

(1982)).
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3.2.1.2 PWM2Vec-based Image Encoding

Both Chaos and Spike2Vec assign an equal weight of 1 to each amino acid. However,

this uniform value may not be the most effective way to come up with a image representation

of a given sequence. To assign weight to each amino acid within k-mers, we use a recently

proposed method, called PWM2Vec Ali et al. (2022). The PWM2Vec technique is also driven

by the notion of k-mers, however, instead of using a constant frequency value, it uses weighted

values computed from the Position Weight Matrix (PWM) corresponding to alphabets in a

sequence. Like Spike2Vec, PWM2Vec enables capturing of locality information due to k-

mers usage, but it also considers the importance of relative positions of amino acids in the

sequence.

As shown in Figure 3.1, the steps from (a) to (f) are followed to get a PWM for any

sequence. After assigning weight to each amino acid within the k-mers of a sequence using

PWM2Vec, we use those weights as corresponding pixel values (rather than assigning the

pixel value 1 to each amino acid in the sequence). Similar to Spike2Vec, the procedure of

PWM2Vec image encoding for a given spike sequence computes k-mers and starts off with

a blank image but it includes an additional step of calculating the PWM of the sequence

and updating the pixel values corresponding to the amino acids of a k-mer based on PWM

values rather than a constant value 1. Now for each k-mer, once the respective coordinates

of every amino acid are determined in the image using Equation 3.3 and Equation 3.4, the

pixel values representing each amino acid are updated by adding the respective PWM value.

Yet again, the task of coordinates finding and pixel value update is repeated for all k-mers
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of the given sequence and it results in image generation.

3.2.1.3 Minimizer-based Image Encoding

In this approach, rather than utilizing k-mers for image construction, we use another

popular approach in bioinformatics, called minimizers Roberts et al. (2004). One of the main

problems with k-mers is that they introduce redundancy (repeated k-mers) in long sequences

and hence increase the computation and storage cost. This redundancy could be eliminated

using minimizers. The pseudocode of calculating m-mers for any given sequence is shown in

Algorithm 2. Its workflow is given in Figure 3.4 and it illustrates that for a given sequence

the k-mers of the sequence are extracted (9-mers in the figure example). Then for each

k-mer, a minimizer (3-mer in figure example) is computed by getting the lexicographically

smallest one from both forward and backward m-mers of the k-mer. The minimizer takes

two parameters (k, m). k is the length of k-mer (where k = 9 in our case) while m indicates

the size of m-mer (where m = 3 in our case). Given a spike sequence, it extracts k-mers

of the sequence. Then for each k-mer, it computes a corresponding m-mer (minimizer).

After computing minimizers, we concatenate all m-mers to make a new sequence and use it

as input to the Chaos method for image generation (by computing x and y coordinates of

each amino acid in this new sequence using Equation 3.3 and Equation 3.4 and increment

the corresponding pixel values of the amino acids by 1). Note that methods like Spike2Vec

and PWM2Vec are originally designed to generate numerical vectors. We transform those

methods to generate the 2-D visual representations so that we can apply image classification
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models for supervised analysis.

Definition 5 (Minimizer). For a given k-mer, a minimizer (also called m-mer) is a substring

of consecutive characters (amino acids) of length m from the k-mer, which is lexicographically

smallest one in both forward and backward order of the k-mer, where m < k and is fixed.

Figure 3.4 Workflow of Minimizer. Firstly, the k-mers (9-mers in this case) are extracted
from the sequence. Then for every k-mer, its corresponding minimizer is computed by finding
the lexicographically smallest one among the forward and backward m-mers (3-mers in this
case).
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Algorithm 2 Minimizer Computation

1: Input: Sequence seq and integer kSize and mSize

2: Output: Set of Minimizers

3: minimizersList = ∅

4: q = [ ] ▷ maintain queue of all m-mers

5: index = 0 ▷ index of the current minimizer

6: for i← 1 to |seq| − kSize+ 1 do

7: kmer = seq[i : i+ kSize]

8: if index > 1 then

9: q.dequeue

10: mmer = seq[i+ kSize−mSize : i+ kSize] ▷ new m-mer

11: index ← index −1 ▷ shift index of current minimizer

12: mmer = min(mmer, reverse(mmer)) ▷ lexicographically smallest forw./rever.

13: q.enqueue(mmer)

14: if mmer < q[index] then

15: index = kSize−mSize ▷ update minimizer with new m-mer

16: end if

17: else

18: q, index = [ ], 0 ▷ reset the queue

19: for j ← 1 to kSize−mSize+ 1 do

20: mmer = kmer[j : j +mSize] ▷ compute each m-mer

21: mmer = min(mmer, reverse(mmer))

22: q.enqueue(mmer)

23: if mmer < q[index] then

24: index = j ▷ index of current minimizer

25: end if

26: end for

27: end if

28: minimizersList ← minimizersList ∪ q[index] ▷ add current minimizer

29: end for

30: return(minimizersList)
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3.2.1.4 Spike2CGR-based Image Encoding

The main idea of Spike2CGR is the same as the minimizer computation as given in

Algorithm 2. However, the main difference in the case of Spike2CGR is the preservation

of the order of amino acids in m-mers (minimizers). More formally, given a sequence s, we

first compute the minimizers using Algorithm 2. Then, we combine all minimizers to make a

single sequence s′ (see Figure 3.5). Note that s′ will be a different sequence from s as it only

contains the amino acids within the minimizers. We then repeat the process of computing

k-mers (similar to Spike2Vec) from s′. This will give us a list of k-mers computed from s′.

We then concatenate all those k-mers to make a new sequence s′′. This new sequence s′′ is

then used as input to the chaos method for image generation (by computing the x and y

coordinates of each amino acid in s′′ using Equation 3.3 and Equation 3.4 and increment the

corresponding pixel values of the amino acids by 1).

Figure 3.5 Workflow of Spike2CGR for a given sequence. For a given spike sequence, steps
from (a) to (d) are followed to generate the corresponding Spike2CGR sequence.
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3.2.2 Spaced K-mers & CGR based Image Generation

The generation of an image using the spaced k-mers Singh et al. (2017) of a sequence,

rather than using the sequence itself, is investigated in this method. As spaced k-mers provide

more meaningful manipulation of amino acids, therefore they enable more information about

the sequence to be captured in the corresponding generated image, which can lead to better

predictive performance. Spaced k-mers are introduced to overcome the sparsity and high-

dimensionality challenges associated with k-mers. For a given peptide sequence, we start by

computing its g-mers, and then we use these g-mers to compute the spaced k-mers. Note

that k < g. For our experiments, we have used k = 4 and g = 9.

Definition 6. Spaced k-mers: It is a set of contiguous sub-sequences of length g (where

g < k) for a given sequence. The algorithmic pseudocode to compute spaced k-mers is given

in Algorithm 3.

Algorithm 3 Spaced k-mers Algorithm

Input: A biological sequence S, k-mer length k, and gap size g
Output: A set of spaced k-mers for the given sequence

1: K = {} ▷ Initialize an empty set of spaced k-mers
2: for i = 0 to len(S) - (k + g) do
3: k-mer = S[i:i+k]
4: spaced-k-mer = k-mer[0:g] ▷ where g < k
5: K.append(spaced-k-mer)
6: end for
7: return set K

Our peptide sequence image generation methodologies follow the CGR Jeffrey (1990)

concept. We use one existing (P-CGR Löchel et al. (2020)) and 3 different strategies (Static,
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Random, RCGR) to do the image encoding of our peptide dataset. The details of each

strategy are given below.

3.2.2.1 P-CGR

P-CGR (protein CGR) is proposed to map protein sequences into images by producing

n-flakes Tzanov (2015), where n represents the number of amino acids (n = 20 for protein

sequences). A fractal is constructed by an n-flake following an iterative mechanism from an

n-gon.

Definition 7 (n-gon). An n-gon is a n-sided polygon in geometry.

For a given peptide sequence, the 2D coordinates (x, y) of its amino acid at index j is

obtain by using the following formulas:

x = sin(
2πj

n
)

y = cos(
2πj

n
)

(3.5)

where n represents the number of amino acids in the peptide sequence. The reason to use

the trigonometric functions sin and cos is to generate the coordinates based on circular

mapping instead of linear mapping, which can result in better visualization and clustering

of similar amino acids. We use this method as a traditional image-based baseline to perform

the evaluation. The algorithmic pseudocode for P-CGR is given in Algorithm 4.
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Algorithm 4 P-CGR

Input: Peptide Sequences
Output: 2D Image Representations

1: for seq in sequences do
2: x, y ← [1], [1] ▷ Initialize the starting point
3: point← [1, 1]
4: for aa in seq do ▷ Loop through the sequence
5: x = sin( 2πj

|seq|) ▷ From Equation 3.5

6: y = cos( 2πj
|seq|) ▷ From Equation 3.5

7: coord← [x, y]
8: point← point+coord

2

9: x.append(point[0])
10: y.append(point[1])
11: end for
12: imageseq ← GenerateImage(x, y)
13: end for
14: return(image)

3.2.2.2 Static Chaos Game Representation

In the static Chaos Game Representation (CGR) method, we employ a set of pre-defined

axis values for each amino acid of the peptide sequence. This set contains 20 pairs of unique

values for the x and y axis corresponding to 20 unique amino acids, as shown in Table 3.1.

For a given peptide sequence, the location of its amino acid in the image is determined

based on the axis value of that amino acid and the location of the previous amino acid. The

algorithmic pseudocode for static CGR is given in Algorithm 5.

3.2.2.3 Random Chaos Game Representation

In this approach, we use a CGR that utilizes a random function (instead of using pre-

defined static values) to assign axis values to any amino acid of the peptide sequence. This
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Amino Acid X-Axis Value Y-Axis Value

A 1 0
C 0.5 0.5
D 0 1
E 0.5 1.5
F 1 2
G 1.5 0
H 1.5 1
I 2 1
K 0 0
L 2 0
M 2 2
N 0.5 0
P 2 0.5
Q 0 0.5
R 0.5 2
S 2 0.5
T 1 1
V 2 1
W 0 2
Y 1 2

Table 3.1 Static Amino acids positions/coordinates for x and y axis in the 2D image.

Algorithm 5 Static Chaos Game Representation

Input: Peptide Sequences
Output: 2D Image Representations

1: for seq in sequences do
2: x, y ← [1], [1] ▷ Initialize the starting point
3: point← [1, 1]
4: for aa in seq do ▷ Loop through the sequence
5: coord← AminoAcidCoord(aa) ▷ Table 3.1
6: point← point+coord

2

7: x.append(point[0])
8: y.append(point[1])
9: end for
10: imageseq ← GenerateImage(x, y)
11: end for
12: return(image)

randomly assigned axis value pair (2-D array) is further utilized with the location axis of

the previous amino acid to draw the existing amino acid on the image. The algorithmic

pseudocode for random CGR is given in Algorithm 6.
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Algorithm 6 Random Chaos Game Representation

Input: Peptide Sequences
Output: 2D Image Representations

1: for seq in sequences do
2: x, y ← [1], [1] ▷ Initialize the starting point
3: point← [1, 1]
4: for aa in seq do ▷ Loop through the sequence
5: x = GenerateRandomNumber()
6: y = GenerateRandomNumber()
7: coord← [x, y]
8: point← point+coord

2

9: x.append(point[0])
10: y.append(point[1])
11: end for
12: imageseq ← GenerateImage(x, y)
13: end for
14: return(image)

3.2.2.4 Rectangular Chaos Game Representation (RCGR)

Our proposed RCGR portrays a similar behavior as P-CGR but it uses the following

formulas to get the axis value for an amino acid:

x = secant(
2πj

n
)

y = cosecant(
2πj

n
)

(3.6)

where n represents the number of amino acids in the peptide sequence. The usage of trigono-

metric functions secant and cosecant will result in a more rectangular mapping, as they have

a strong periodicity in their output. The algorithmic pseudocode for RCGR is given in

Algorithm 7.

Furthermore, using all four methods, we have generated the images based on spaced k-

mers of the peptide sequences (referred to as S-P-CGR, S-Static, S-Random, and S-RCGR in
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Algorithm 7 RCGR

Input: Peptide Sequences
Output: 2D Image Representations

1: for seq in sequences do
2: x, y ← [1], [1] ▷ Initialize the starting point
3: point← [1, 1]
4: for aa in seq do ▷ Loop through the sequence
5: x = secant( 2πj

|seq|) ▷ From Equation 3.6

6: y = cosecant( 2πj
|seq|) ▷ From Equation 3.6

7: coord← [x, y]
8: point← point+coord

2

9: x.append(point[0])
10: y.append(point[1])
11: end for
12: imageseq ← GenerateImage(x, y)
13: end for
14: return(image)

the experiments) and based on the original peptide sequences (referred to as P-CGR, Static,

Random, and RCGR in the experiments) to investigate the performance. We referred to

P-CGR as the traditional image-based baseline (proposed in Tzanov (2015)). Moreover,

an overview of the images generated by various methods for a given peptide sequence is

illustrated in Figure 3.6. We can observe that all the generated images differ from each

other, which indicates that every method is capturing the sequence information in the image

differently. This kind of comparative study can help us to identify the most optimal mapping

from sequences to images in terms of predictive performance.

3.2.3 Bézier Curve based Image Generation

Bézier curve Han et al. (2008) is a smooth and continuous parametric curve that is
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(a) S-P-CGR (b) S-RCGR (c) S-Static (d) S-Random

Figure 3.6 Graphical representations of different methods using a randomly selected peptide
sequence belonging to a moderately active category generated by different methods using the
spaced k-mers of the sequence.

defined by a set of discrete control points. It is widely used to draw shapes, especially in

computer graphics and animation. It has been used in the representation learning domain

previously but mainly focusing on extracting numerical features, such as in Hug et al. (2020)

which does n-step sequence prediction based on the Bézier curve, Liu et al. (2021) proposed

end-to-end text spotting using the Bézier curve, Qiao et al. (2023) does map construction,

etc. However, we aim to utilize the Bézier curve to formulate an efficient mechanism for

transforming biological sequences into images by effectively mapping the components of a

sequence onto a curve. Each component, or character (an amino acid, nucleotide, etc.) of

a sequence is represented by multiple lines on the curve which enable more information to

be captured in the respective image, hence producing a better representation. The goal of

using Bezier curves is to create a visualization that aids in the analysis of protein sequences.

This visualization can allow researchers to explore patterns and trends that might provide

insights into protein structure and function.

The general formula Baydas & Karakas (2019) of the Bézier curve is

BZ(t) = Σn
i=0

(
n
i

)
ti(1− t)n−iPi

where 0 ≤ t ≤ 1, Pi are known as control points and are elements of Rk, and k ≤ n.
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To construct the protein images, we employ a Bézier curve with n = 3 and k = 2. As

images consist of x and y coordinates, therefore k = 2 is used. The formulas to determine

the coordinates for representing an amino acid in the respective generated image are,

x = (1− t)3 · P0x + 3 · (1− t)2 · t · P1x + 3 · (1− t) · t2 · P2x + t3 · P3x (3.7)

y = (1− t)3 · P0y + 3 · (1− t)2 · t · P1y + 3 · (1− t) · t2 · P2y + t3 · P3y (3.8)

where, (P0x , P0y), (P1x , P1y), (P2x , P2y), & (P3x , P3y) denote the x & y coordinates of the

four distinct control points respectively.

The algorithm and workflow of creating Bézier-based images are illustrated in Algorithm 8

and Figure 3.7, respectively. We can observe that given a sequence and number of parameters

m as input, the algorithm and workflow yield an image as output. Note that m indicates

the parameter t shown in the above equations. The process starts by computing the control

points by considering the unique amino acids of the given sequence and their respective

ASCII values (numerical), as depicted in steps 4-6 of the algorithm and step (b) of the

workflow. A control point is made of a pair of numerical values representing the x and y

coordinates, where x is assigned the index of the first occurrence of the respective unique

amino acid and y holds its ASCII value. Moreover, m linearly spaced random pairs belonging

to [0,1] are generated as parameters (mentioned in step 9 and step (c) of the algorithm and

workflow respectively). Note that we used m = 200 for our experiments. Then the deviation
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pair points are generated for every amino acid of the sequence (as exhibited in step 15 of

the algorithm and step (d) of the workflow). We utilized 3 deviation pairs to conduct our

experiments. After that, modified pair points are obtained by adding the deviation pairs

to the corresponding amino acid’s control point pair respectively, as shown in step 16 of

the algorithm and step (e) of the workflow. Then the Bézier pair points are extracted from

the Bézier function by employing (3.7) and (3.8) (as presented in step 19 and step (f)

of the algorithm and workflow respectively). Finally, the Bézier pairs are used as x and y

coordinates to plot the image (as shown in step 23 and step (g) of the algorithm and workflow

respectively). Note that, we get multiple Bézier pairs depending on the value of m and we

plot all the pairs in the created image to represent the respective amino acid in the image.

Figure 3.7 The workflow of our system to create an image from a given sequence and a
number of parameters m. We have used ”MAVM” as an input sequence here. Note that the
cur P ts consists of a set of values for x coordinates and y coordinates.

As Bézier curves are known for their ability to smoothly interpolate control points, us-

ing them to connect control points for representing amino acids ensures a visually smooth

transition between points, making the visualization more intuitive and easy to interpret.

Moreover, introducing randomness to the control points by adding deviations results in con-
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Algorithm 8 Bézier Curve Based Image Generation

Input: Sequence seq, No. of Parameters m
Output: Image img

1: conPoint = {} ▷ dictionary for control points
2: for i, aa ∈ seq do: ▷ every unique amino acid aa in seq
3: conPoint[aa] = [i, ASCII(aa)] ▷ assign control point the index i and ASCII of aa
4: end for
5: xCord = [] ▷ list for x coordinates
6: yCord = [] ▷ list for y coordinates
7: t V al = Get m pairs ∈ [0, 1] ▷ list of m pairs of parameters
8: ite = 3 ▷ no. of deviations pair points. It can have any value.
9: for a ∈ seq : do ▷ every amino acid a in seq
10: org point = conPoint[a] ▷ control point of a
11: points = [org point]
12: for i ∈ (ite) : do
13: dev = Get Random Pair ▷ get a random pair
14: mod point = org point + dev ▷ get a modified control point
15: points.append(mod point)
16: end for
17: curve point = Get Bezier Point(points, t V al) ▷

get bezier curve points from bezier func
18: xCord = curve point[:0] ▷ get x coords of curve
19: yCord = curve point[:1] ▷ get y coords of curve
20: end for
21: img = plot(xCord, yCord) ▷ get image by plotting x & y coords
22: return(img)

trolled CGR. While the approach deviates from traditional CGR, it helps reveal patterns

that might not be apparent in regular CGR due to the scattering of control points. This

randomness mimics the inherent variability and noise present in biological sequences. It can

be justified as an attempt to capture the inherent variability in protein sequences that can

arise due to mutations, structural differences, or experimental variations.
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CHAPTER 4

Experimental Setup

This chapter discusses the experimental details for each of the proposed method. All exper-

iments are conducted using a server having Intel(R) Xeon(R) CPU E7-4850 v4 @ 2.40GHz

with Ubuntu 64 bit OS (16.04.7 LTS Xenial Xerus) having 3023 GB memory.

4.1 Dataset Statistics

This section highlights the datasets used for evaluating each of the proposed system.

4.1.1 PSSMFreq2Vec & PSSM2Vec

The PSSMFreq2Vec and PSSM2Vec are evaluated using two datasets, Coronavirus host

dataset and SARS-CoV-2 variant dataset.

The Coronavirus host dataset is extracted from both ViPR Pickett et al. (2012); Ali et al.

(2022) and GISAID 1. The statistical detail of this data is given in Table 4.1. Given the

spike protein sequence of the Coronavirus, it’s corresponding host name is used as label to

perform classification using various ML models. Note that for the Coronavirus host data,

we also performed sequence alignment on all sequences so that we can run different baseline

approaches that only work when all sequences have the same length. We then compare the

results for the aligned and unaligned versions of this dataset in the results section.

The SARS-CoV-2 variant dataset is extracted purely from GISAID. It consists of SARS-

1https://www.gisaid.org/

https://www.gisaid.org/
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Host Name Count Host Name Count Host Name Count

Bats 153 Bovines 88 Cats 123
Equine 5 Fish 2 Cattle 1
Humans 1813 Pangolins 21 Rats 26
Weasel 994 Birds 374 Turtle 1
Dolphins 7 Environment 1034 Camels 297
Hedgehog 15 Monkey 2 Canis 40
Python 2 Swines 558 Unknown 2

Total 5558

Table 4.1 The Coronavirus host dataset distribution.

CoV-2 spike sequences along with the information about the corresponding variant. The

variant name is used as label for performing classification with the corresponding sequence

as input. The statistical distribution of this data is illustrated in Table 4.2. It has 22 unique

variants which are the classification labels.

Variant/Lineage Count Variant/Lineage Count Variant/Lineage Count

B.1.1.7 976077 B.1.351 20829 B.1.617.2 242820
P.1 56948 B.1.427 17799 AY.4 156038
B.1.2 96253 B.1 78741 B.1.177 72298
B.1.1 44851 B.1.429 38117 AY.12 28845
B.1.160 25579 B.1.526 25142 B.1.1.519 22509
B.1.1.214 17880 B.1.221 13121 B.1.258 13027
B.1.177.21 13019 D.2 12758 B.1.243 12510
R.1 10034

Total 1995195

Table 4.2 The SARS-CoV-2 variant dataset distribution.

4.1.2 Hashing2Vec

Hashing2Vec is also validated by employing two datasets. One of them is the same

Coronavirus host dataset as discusses above (Table 4.1) used for host classification, while

the other consists of SARS-CoV-2 variant data (refer as Spike7k data) but it follows a
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different distribution as shown in Table 4.3. This variant data is extracted from GISAID

and it is used to perform variant classification. It has 22 unique variants which are the

classification labels.

Variant/Lineage Count Variant/Lineage Count Variant/Lineage Count

B.1.1.7 3369 B.1.617.2 875 AY.4 593
B.1.2 333 B.1 292 B.1.177 243
P.1 194 B.1.1 163 B.1.429 107
B.1.526 104 AY.12 101 B.1.160 92
B.1.351 81 B.1.427 65 B.1.1.214 64
B.1.1.519 56 D.2 55 B.1.221 52
B.1.177.21 47 B.1.258 46 B.1.243 36
R.1 32

Total 7000

Table 4.3 The SARS-CoV-2 variant dataset distribution.

4.1.3 Spike2CGR

This method is yet again validated using two datasets, Coronavirus host data and SARS-

CoV-2 variant data. The host data is the same as given in Table 4.1 but since it’s image

classification, so a more detailed distribution is shown in Table 4.4. Likewise, it employs

SARS-CoV-2 variant data but only for 13 unique variants/lineages, and their distribution is

given in Table 4.5.

4.1.4 Spaced K-mers & CGR based Image Generation

This approach is validated using the Membranolytic anticancer peptides (ACPs) dataset Grisoni

et al. (’2019’) contains information about the peptides (protein sequences) and their anti-

cancer activity (target labels) on breast cancer cell lines. The target labels are catego-
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Host
No. of sequences

TrainingValidation Testing

Bat 96 23 34
Bird 242 61 71
Bovine 55 12 21
Camel 186 45 66
Canis 26 5 9
Cat 72 18 33
Cattle 1 0 0
Dolphin 4 1 2
Environment682 162 190
Equine 3 0 2
Fish 1 0 1
Hedgehog 10 3 2
Human 1159 292 362
Monkey 1 0 1
Pangolin 13 2 6
Python 1 0 1
Rat 22 2 2
Swine 344 104 110
Turtle 1 0 0
Unknown 1 0 1
Weasel 629 160 205

Total 3549 890 1119

Table 4.4 Dataset statistics for different coronavirus infected hosts (5558 in total).

Lineage Region Labels No. Mut. S/Gen.
No. of sequences

TrainingValidationTesting

B.1.1.7 UK Alpha 8/17 9930 2527 3146
B.1.617.2 India Delta 8/17 1877 450 456
P.2 Brazil Zeta 3/7 1780 432 533
B.1.429 California Epsilon 3/5 1079 256 326
P.1 Brazil Gamma 10/21 994 245 306
B.1.526 New York Iota 6/16 847 219 255
B.1.351 South Africa Beta 9/21 837 221 258
B.1.427 California Epsilon 3/5 835 218 268
B.1.1.529 South Africa Omicron 34/53 747 178 253
C.37 Peru Lambda 8/21 732 169 228
B.1.621 Colombia Mu 9/21 717 168 219
B.1.525 UK and Nigeria Eta 8/16 714 187 224
P.3 Philippines Theta 8/17 111 30 34

Total 21200 5300 6238

Table 4.5 Dataset statistics for different coronavirus variants (32738 in total).

rized into “very active”, “moderately active”, “experimental inactive”, and “virtual inactive”

groups. This dataset contains 949 peptide sequences distributed among the four categories,
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as shown in Table 4.6.

Peptide Sequence Length Number of Sequences

ACPs Category Count Min. Max. Average Training Validation Testing

Inactive-Virtual 750 8 30 16.64 540 60 150
Moderate Active 98 10 38 18.44 71 7 19
Inactive-Experimental 83 5 38 15.02 61 6 16
Very Active 18 13 28 19.33 14 1 3

Total 949 - - - - - -

Table 4.6 ACPs dataset distribution based on their respective activity on the breast cancer
cell line. The min, max, and average length of sequences belonging to each category are
also mentioned, along with the counts of sequences in test, validation, and train sets for the
respective category.

4.1.5 Bézier Curve based Image Generation

We have used 3 distinct protein sequence datasets, a nucleotide-based dataset, a musical

dataset, and a SMILES string dataset to evaluate our proposed system. The reason to

use such diversified datasets is to show the generalizability of our method for any type of

sequence. Each dataset is summarized in Table 4.7.

4.2 Evaluation Metrics

The performance of various models is evaluated using average accuracy, precision, recall, F1

(weighted), F1 (macro), Receiver Operator Characteristic Curve (ROC), Area Under the

Curve (AUC), and training run-time metrics. Furthermore, the one-vs-rest approach is used

to convert the binary evaluation metrics to multi-class ones. These metrics are reported for

all the proposed techniques.
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4.3 ML Models

For some proposed mechanism, a set of ML models are used for classifiction-based evaluation.

This set belongs to the following list of classifier, Support Vector Machine (SVM), Naive

Bayes (NB), Multi-Layer Perceptron (MLP), K-Nearest Neighbors (KNN), Random Forest

(RF), Logistic Regression (LR), and Decision Tree (DT).

4.4 DL Models

The image-based encoding methods are validated using DL models to do classification. These

DL models are categorized into vision models and tabular models. The vision models employ

the image datasets generated from various image-encoding methods. The tabular models are

used to classify the tabular data generated from the baseline methods (WDGRL & OHE).

These baselines are used to compare the predictive performance of image-based encoding

methods.

4.4.1 Vision Models

Various vision models are employed to evaluate the performance of image-based methods

through classification. The vision models include custom convolution neural network (CNN),

transformer model, and pretrained models. These models are trained by splitting the data

into 80 − 20% train-test sets based on stratified sampling, as it preserves the proportions

between the classes. For all the models, the training hyper-parameters used are learning rate
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0.003, batch size 64, epochs 10, and optimizer ADAM. The input images are of size 480x480.

Furthermore, the negative log-likelihood (NLL) Yao et al. (2019) loss function is employed

for training, as it’s known to be a cross-entropy loss function for multi-class problems. The

details of each model is given below,

4.4.1.1 Custom CNN

We form four types of simple CNN models (1-Layer CNN, 2-Layer CNN, 3-Layer CNN,

4-Layer CNN) by varying the number of “BLOCK” layers. A BLOCK layer consists of

a Convolution layer followed by a ReLu activation function and a Max-Pool layer with a

kernel size of 5x5 and stride of 2x2. For each model, the BLOCK layers are followed by two

fully connected (FC) layers and a final Softmax classification layer. We use these models

to observe the impact of an increasing number of layers on the classification performance of

our dataset by doing the training from scratch. The architecture of 4-Layer CNN is shown

in Figure 4.1.

4.4.1.2 Transformer

A vision transformer model (ViT) is also used by us for performing the classification tasks.

As ViT is known to utilize the power of transformer architecture, we want to see its impact on

our bio-sequence datasets classifications. In ViT the input image is partitioned into patches,

which are then linearly transformed into vectors by a linear embedding module. Note that

we used patch size 20 & 8 vector dimensions in our experiments. Then positional embeddings
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Figure 4.1 The architectures of the 4-layer CNN model, which is used to classify ’K’ classes.
Here ker represents kernel and str represents stride filter size.

are added to the vectors and they are subsequently processed by two Transformer encoder

blocks. Each encoder block consists of a normalization layer, a multi-head self-attention

layer with residual connections, a second normalization layer, and a multi-layer perceptron

with another residual connection. The final output is directed to a softmax classification

module for image label prediction. This design capitalizes on self-attention mechanisms for

efficient image classification.

4.4.1.3 Pretrained Models

We also examine the consequences of using pre-trained vision models for classifying our

datasets, and for that, we used pre-trained ResNet-50 (He et al. 2016), EfficientNet (Tan &

Le 2019), DenseNet (Iandola et al. 2014) and VGG19 (Simonyan & Zisserman 2015) models.
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4.4.2 Tabular Models

The feature vectors generated from OHE and WDGRL baselines methods to evalute the

image-based encoding methods are classified using two types of tabular models, 3-Layer Tab

CNN and 4-Layer Tab CNN. The 3-Layer Tab CNN network contains 3 hidden Linear layers,

while 4-Layer Tab CNN has 4 hidden Linear layers. For both, the hidden layers are followed

by a final classification Linear layer. For training, these models also follow 80−20% train-test

split, with learning rate 0.003, batch size 64, epochs 10, optimizer ADAM, and loss function

NLL. The vectors generated by OHE for both SARS-CoV-2 host and variant datasets are

of size 27817 for each sequence. However, the vectors computed from WDGRL have 10 size

each, as this technique transforms the high dimensional data into low dimension.

4.5 Baselines

Various baseline techniques are utilized to evaluate the proposed algorithms by giving an

overview of their comparative performance. The summary of the set of baseline models

employed by each proposed method is illustrated in Table 4.8 and the detail of each baseline

model is given below.

4.5.1 One Hot Embedding (OHE) Kuzmin et al. (2020)

In this method, a binary feature vector is designed for each alphabet Σ (where Σ contains

”ACDEFGHIKLMNPQRSTVWY” characters) in the protein sequence, and the concatena-

tion of all of these represents the sequence. In the binary vector, a 1 is only assigned to the
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corresponding character’s location while all others have 0 value.

4.5.2 Spike2Vec Ali & Patterson (2021)

For every spike sequence, this method generates sub-strings of length k (k-mers) and

creates a frequency vector (Φ) containing the count of each k-mer occurrence in the sequence.

Since in our experiments, k = 3, the length of the frequency vector for the spike sequence

dataset consisting of 20 unique alphabets is 203 = 8000.

4.5.3 PWM2Vec Ali et al. (2022)

PWM2Vec generates embeddings for spike sequences based on the position weight matrix

(PWM) concept Stormo et al. (1982). It builds the PWM based on the k-mers of the

sequences and uses PWM values as weights for the k-mers to construct the feature vector.

4.5.4 Approximate/String Kernel Farhan et al. (2017)

String kernel works by computing the distance between sequences using the number of

matches and mismatches between characters (amino acids) from k-mers and designing the

kernel (or gram) matrix. After computing the kernel matrix, classification can be performed

by applying kernel PCA (for the non-kernel-based classifiers).
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4.5.5 Wasserstein Distance Guided Representation Learning

(WDGRL) Shen et al. (2018) WDGRL is an unsupervised domain adoption technique.

It uses the source and target encoded distributions to determine the Wasserstein distance

(WD), which is utilized for extracting features from input data with the help of neural

networks. It aims to determine the representation by minimizing the estimated WD and

optimizing the feature extractor network. It uses a sequence’s standard one-hot encoded

(OHE) vector as input. The OHE Kuzmin et al. (2020) is an algorithm for creating a

fixed-length numerical representation of sequences.

4.5.6 Spaced k-mers Singh et al. (2017)

Feature vectors for sequences based on k-mers frequencies are very large-sized and sparse,

and their size and sparsity negatively impact the sequence classification performance. Spaced

k-mers introduced the concept of using non-contiguous length k sub-sequences (g-mers) for

generating compact feature vectors with reduced sparsity and size. Given a spike sequence

as input, it first computed g-mers. From those g-mers, we compute k-mers, where k < g.

We used k = 4 and g = 9 to perform the experiments. The size of the gap is determined by

g − k.

4.5.7 Auto-Encoder Xie et al. (2016)

This approach employs a deep neural network to learn the feature representation of data.
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It follows the technique of non-linear mapping from data space X to a lower-dimensional

feature space Z, where it iteratively optimizes the objective. It takes the sequences as input.

For our experiments, we have used a 2 layered network with an ADAM optimizer and MSE

loss function.

4.5.8 SeqVec Heinzinger et al. (2019)

This approach has proposed a way to represent the protein sequences in continuous

vectors using the language model named ELMO (Embeddings from Language Models). It

captures the biophysical properties from the unlabeled data UniRef50 and creates the em-

beddings. This process is known as SeqVec (Sequence-to-Vector). It assigns the embeddings

to a word by considering the context of a word.

4.5.9 Chaos Löchel et al. (2020)

The FCGR method is referred to as Chaos in this work and it is used as a baseline to

evaluate the image-based encoding methods. It produces an n-flakes-based image represen-

tation (where n is the number of amino acids), which consists of an image with multiple

icosagons. The Chaos method takes a protein sequence as input and yields an image as

output by considering the amino acids of the sequence one by one, following Equation 3.3

and Equation 3.4 to get the coordinates of every amino acid in the image.
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Dataset Description

Protein
Subcellu-
lar
Localization

It has 5959 unaligned protein sequences distributed
among 11 unique subcellular locations. The associated
subcellular location is predicted for a given protein se-
quence as input.

Coronavirus
Host

The unaligned spike protein sequences from various
clades of the Coronaviridae family are collected to form
this dataset. It contains 5558 spike sequences dis-
tributed among 22 unique hosts.

Anticancer
Peptides
(ACPs)

It consists of 949 unaligned peptide-protein sequences
along with their respective anticancer activity on the
breast cancer cell lines distributed among the 4 unique
target labels.

Human
DNA Hu-
man DNA
(2022)

It consists of 2, 000 unaligned Human DNA nucleotide
sequences which are distributed among seven unique
gene families. These gene families are used as labels
for classification. The gene families are G Protein
Coupled, Tyrosine Kinase, Tyrosine Phosphatase, Syn-
thetase, Synthase, Ion Channel, and Transcription Fac-
tor containing 215, 299, 127, 347, 319, 94, & 599 in-
stances respectively.

SMILES
String Shamay
et al.
(2018)

It has 6, 568 SMILES strings distributed among ten
unique drug subtypes extracted from the DrugBank
dataset. We employ the drug subtypes as a la-
bel for doing classification. The drug subtypes are
Barbiturate [EPC], Amide Local Anesthetic [EPC],
Non-Standardized Plant Allergenic Extract [EPC], Sul-
fonylurea [EPC], Corticosteroid [EPC], Nonsteroidal
Anti-inflammatory Drug [EPC], Nucleoside Metabolic
Inhibitor [EPC], Nitroimidazole Antimicrobial [EPC],
Muscle Relaxant [EPC], and Others with 54, 53, 30,
17, 16, 15, 11, 10, 10, & 6352 instances respectively.

Music
Genre Li
et al.
(2003)

This data has 1, 000 audio sequences belonging to 10
unique music genres, where each genre contains 100 se-
quences. We perform music genre classification tasks us-
ing this dataset. The genres are Blues, Classical, Coun-
try, Disco, Hiphop, Jazz, Metal, Pop, Reggae, and Rock.

Table 4.7 The summary of all the datasets used for evaluation.
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Proposed Algo. Baselines

PSSMFreq2Vec & PSSM2Vec OHE, Spike2Vec, PWM2Vec, String Kernel
Hashing2Vec Spike2Vec, PWM2Vec, String Kernel, WDGRL, Spaced k-mers, Autoencoder, SeqVec
Spike2CGR OHE, WDGRL, Chaos
Spaced K-mers & CGR based Images OHE, WDGRL, Chaos
Bézier Curve based Images OHE, WDGRL, Chaos, Spike2CGR, RandomCGR

Table 4.8 The list of baseline methods used to evaluate each of the proposed algorithms.
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CHAPTER 5

Results & Discussion

This chapter highlights the classification performance achieved by the proposed methods

and compares them with their respective baselines. It also compares the data visualization

and runtime of embedding generation for the Hashing2Vec algorithm with its corresponding

baselines. Furthermore, the statistical analysis and t-SNE Evaluation of PSSMFreq2Vec and

PSSM2Vec is also illustrated here.

5.1 Classification Results

The classification tasks are performed by all the proposed methods on their respective

datasets for evaluation. The classification results are discussed in detail below.

5.1.1 PSSMFreq2Vec & PSSM2Vec

These algorithms are evaluated using the Coronavirus host dataset and the SARS-CoV-

2 variant dataset by performing classification of host and variant respectively, and their

performance summary is as follows,

5.1.1.1 Host Data Classification Results

The host-wise classification is performed using aligned and unaligned spike sequences

and their respective results are shown in Table 5.1 and Table 5.2. These results summarize

the performance obtain by various ML classifiers upon using the embeddings from different
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embedding generation methods. From both tables, we can observe that overall PSSM2Vec is

outperforming all other embedding techniques. The Spike2Vec and PSSMFreq2Vec methods

seem to be comparable in terms of predictive performance. Apart from that, the perfor-

mance achieved on unaligned data is better or sometimes comparable to) than the aligned

data, which indicates that our alignment-free methods are sophisticated enough to extract

meaningful information from the spike sequences irrespective of their alignment. They also

eradicate the computationally expensive sequence alignment step which could improve our

methods’ overall runtime and make them more practically applicable in real-world scenar-

ios. Moreover, the training run-time is also optimum for PSSM2Vec, which is because it

generates low-dimensional feature vectors.

5.1.1.2 Variant Data Classification Results

The scalability of PSSMFreq2Vec and PSSM2Vec are validated using the SARS-CoV-2

variant data (≈1.9 million sequences) by doing variant-wise classification and the results

are demonstrated in Table 5.3. We can observe that PSSMFreq2Vec outperforms all other

embedding methods, including PSSM2Vec, in terms of predictive performance. This is an

interesting observation here, which indicates that with “Big Data”, PSSMFreq2Vec is able

to generalize more as compared to PSSM2Vec. Moreover, although PSSM2Vec requires less

training time, its performance is lower as compared to PSSMFreq2Vec.
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Method ML.
Algo.

Acc. Prec. Recall F1
(Weig.)

ROC
AUC

Train
Time
(Sec.)

OHE Kuzmin
et al.
(2020)

SVM 0.82 0.83 0.82 0.82 0.83 389.128
NB 0.67 0.80 0.67 0.65 0.81 56.741
MLP 0.77 0.76 0.77 0.75 0.71 390.289
KNN 0.80 0.79 0.80 0.79 0.78 16.211
RF 0.83 0.83 0.83 0.82 0.83 151.911
LR 0.83 0.84 0.83 0.82 0.83 48.786
DT 0.82 0.83 0.82 0.81 0.81 21.581

Spike2Vec Ali
&
Pat-
terson
(2021)

SVM 0.81 0.82 0.81 0.81 0.83 52.384
NB 0.65 0.77 0.65 0.64 0.74 9.031
MLP 0.81 0.82 0.81 0.81 0.77 44.982
KNN 0.80 0.80 0.80 0.79 0.75 2.917
RF 0.83 0.84 0.83 0.82 0.82 17.252
LR 0.82 0.84 0.82 0.82 0.83 48.826
DT 0.81 0.82 0.81 0.81 0.81 4.096

PWM2Vec Ali
et al.
(2022)

SVM 0.83 0.82 0.83 0.82 0.83 40.55
NB 0.37 0.68 0.37 0.33 0.69 1.56
MLP 0.82 0.82 0.82 0.81 0.80 17.28
KNN 0.82 0.80 0.82 0.81 0.78 2.86
RF 0.84 0.84 0.84 0.84 0.83 5.44
LR 0.84 0.84 0.84 0.83 0.83 43.35
DT 0.82 0.81 0.82 0.81 0.82 3.46

Approx.
Ker-
nel Farhan
et al.
(2017)

SVM 0.78 0.79 0.78 0.77 0.78 16.67
NB 0.62 0.66 0.62 0.61 0.72 0.19
MLP 0.79 0.77 0.79 0.77 0.80 8.34
KNN 0.85 0.84 0.85 0.84 0.80 0.24
RF 0.82 0.81 0.82 0.81 0.83 1.95
LR 0.76 0.77 0.76 0.74 0.83 3.80
DT 0.77 0.77 0.77 0.77 0.82 0.27

PSSMFrq2Vec

SVM 0.83 0.83 0.83 0.82 0.81 50.72
NB 0.64 0.74 0.64 0.61 0.75 5.90
MLP 0.83 0.82 0.83 0.83 0.77 33.44
KNN 0.80 0.80 0.80 0.80 0.75 65.20
RF 0.84 0.85 0.84 0.83 0.81 11.42
LR 0.84 0.85 0.84 0.84 0.81 57.55
DT 0.81 0.82 0.81 0.80 0.79 7.50

PSSM2Vec

SVM 0.78 0.79 0.78 0.76 0.85 1.81
NB 0.60 0.62 0.60 0.57 0.77 0.15
MLP 0.81 0.81 0.81 0.80 0.89 13.70
KNN 0.82 0.82 0.82 0.81 0.87 0.66
RF 0.86 0.86 0.86 0.85 0.91 1.43
LR 0.73 0.75 0.73 0.70 0.78 1.91
DT 0.82 0.82 0.82 0.82 0.89 0.20

Table 5.1 Performance comparison for
different embedding methods and dif-
ferent classifiers on the Coronavirus
Host (aligned) dataset. Best values are
shown in bold.

Method ML.
Algo.

Acc. Prec. Recall F1
(Weig.)

ROC
AUC

Train
Time
(Sec.)

Spike2Vec Ali
&
Pat-
terson
(2021)

SVM 0.84 0.84 0.84 0.83 0.87 45.36

NB 0.69 0.77 0.69 0.67 0.79 6.02

MLP 0.81 0.83 0.81 0.81 0.83 46.14

KNN 0.80 0.81 0.80 0.79 0.79 1.97

RF 0.84 0.85 0.84 0.84 0.85 10.21

LR 0.84 0.85 0.84 0.84 0.87 31.00

DT 0.82 0.83 0.82 0.82 0.85 2.54

Approx.
Ker-
nel Farhan
et al.
(2017)

SVM 0.79 0.80 0.79 0.77 0.78 18.18

NB 0.60 0.66 0.60 0.57 0.73 0.07

MLP 0.79 0.78 0.79 0.78 0.75 7.69

KNN 0.86 0.85 0.86 0.862 0.76 0.21

RF 0.82 0.82 0.82 0.81 0.78 1.80

LR 0.76 0.77 0.76 0.74 0.76 2.36

DT 0.78 0.78 0.78 0.77 0.75 0.24

PSSMFrq2Vec

SVM 0.82 0.82 0.82 0.81 0.84 51.32

NB 0.67 0.74 0.67 0.64 0.78 6.19

MLP 0.82 0.84 0.82 0.82 0.81 32.82

KNN 0.80 0.80 0.80 0.79 0.78 46.85

RF 0.83 0.83 0.83 0.82 0.84 11.70

LR 0.84 0.84 0.84 0.83 0.84 33.09

DT 0.81 0.82 0.81 0.81 0.81 5.79

PSSM2Vec

SVM 0.77 0.78 0.77 0.75 0.86 1.34

NB 0.68 0.76 0.68 0.65 0.79 0.14

MLP 0.81 0.81 0.81 0.80 0.86 11.72

KNN 0.82 0.82 0.82 0.81 0.88 0.49

RF 0.87 0.86 0.87 0.865 0.92 1.55

LR 0.72 0.75 0.72 0.70 0.78 1.25

DT 0.82 0.82 0.82 0.81 0.90 0.19

Table 5.2 Performance comparison for dif-
ferent embedding methods and different
classifiers on the Coronavirus Host (un-
aligned) dataset. Best values are shown in
bold.

5.1.2 Hashing2Vec

This method is also evaluated for Coronavirus host data and SARS-CoV-2 variant data

(refer to as Spike7k data here).
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Method ML.
Algo.

Acc. Prec. Recall F1
(Weig.)

ROC
AUC

Train Time
(Sec.)

OHE
NB 0.31 0.58 0.31 0.38 0.60 6576.10
LR 0.57 0.51 0.57 0.50 0.58 191296.4
RC 0.56 0.49 0.56 0.49 0.57 8725.96
KC 0.59 0.55 0.59 0.54 0.60 120316.7

Spike2Vec
NB 0.59 0.79 0.59 0.60 0.78 4410.27
LR 0.88 0.89 0.88 0.87 0.86 140245.19
RC 0.85 0.83 0.85 0.82 0.82 2985.94
KC 0.88 0.901 0.88 0.87 0.86 53000.61

PWM2Vec
NB 0.46 0.80 0.46 0.56 0.71 590.13
LR 0.72 0.71 0.72 0.69 0.72 858.06
RC 0.70 0.71 0.70 0.67 0.70 138.74
KC 0.81 0.79 0.81 0.79 0.74 2287.41

PSSMFrq2Vec
NB 0.14 0.73 0.14 0.14 0.71 4605.95
LR 0.88 0.89 0.88 0.87 0.86 281995.3
RC 0.86 0.88 0.86 0.84 0.83 7659.69
KC 0.89 0.905 0.89 0.88 0.87 90316.71

PSSM2Vec
NB 0.09 0.55 0.09 0.11 0.53 42.56
LR 0.81 0.77 0.81 0.77 0.75 363.13
RC 0.76 0.70 0.76 0.70 0.64 106.60
KC 0.82 0.81 0.82 0.81 0.79 695.107

Table 5.3 Variants Classification Results on the SARS-CoV-2 dataset for the top 22 variants
(1995195 sequences). Best values are shown in bold.

5.1.2.1 Variant Data Classification Results

The classification performance obtained by Hashing2Vec and its respective baselines is

reported in Table 5.4. We can observe that Hashing2Vec is outperforming all other base-

lines for every evaluation metric, which indicates that it’s the optimal embedding generation

mechanism in terms of predictive performance. Furthermore, although WDGRL has a min-

imum train time, it yields the lowest predictive performance. Overall, Hashing2Vec shows

optimal classification performance with reasonable training runtime.

5.1.2.2 Host Data Classification Results

The host data classification results are given in Table 5.5. Since the original host classifi-

cation is done using PWM2Vec in Ali et al. (2022), that is why we are comparing Hashing2Vec
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Embedding Algo. Acc. Prec. Recall F1 (Weig.) F1
(Macro)

ROC
AUC

Train
Time
(Sec.)

Spike2Vec Ali
&
Pat-
terson
(2021)

SVM 0.855 0.853 0.855 0.843 0.689 0.843 61.112
NB 0.476 0.716 0.476 0.535 0.459 0.726 13.292
MLP 0.803 0.803 0.803 0.797 0.596 0.797 127.066
KNN 0.812 0.815 0.812 0.805 0.608 0.794 15.970
RF 0.856 0.854 0.856 0.844 0.683 0.839 21.141
LR 0.859 0.852 0.859 0.844 0.690 0.842 64.027
DT 0.849 0.849 0.849 0.839 0.677 0.837 4.286

PWM2Vec Ali
et al.
(2022)

SVM 0.818 0.820 0.818 0.810 0.606 0.807 22.710
NB 0.610 0.667 0.610 0.607 0.218 0.631 1.456
MLP 0.812 0.792 0.812 0.794 0.530 0.770 35.197
KNN 0.767 0.790 0.767 0.760 0.565 0.773 1.033
RF 0.824 0.843 0.824 0.813 0.616 0.803 8.290
LR 0.822 0.813 0.822 0.811 0.605 0.802 471.659
DT 0.803 0.800 0.803 0.795 0.581 0.791 4.100

String
Ker-
nel Farhan
et al.
(2017)

SVM 0.845 0.833 0.846 0.821 0.631 0.812 7.350
NB 0.753 0.821 0.755 0.774 0.602 0.825 0.178
MLP 0.831 0.829 0.838 0.823 0.624 0.818 12.652
KNN 0.829 0.822 0.827 0.827 0.623 0.791 0.326
RF 0.847 0.844 0.841 0.835 0.666 0.824 1.464
LR 0.845 0.843 0.843 0.826 0.628 0.812 1.869
DT 0.822 0.829 0.824 0.829 0.631 0.826 0.243

WDGRL Shen
et al.
(2018)

SVM 0.792 0.769 0.792 0.772 0.455 0.736 0.335
NB 0.724 0.755 0.724 0.726 0.434 0.727 0.018
MLP 0.799 0.779 0.799 0.784 0.505 0.755 7.348
KNN 0.800 0.799 0.800 0.792 0.546 0.766 0.094
RF 0.796 0.793 0.796 0.789 0.560 0.776 0.393
LR 0.752 0.693 0.752 0.716 0.262 0.648 0.091
DT 0.790 0.799 0.790 0.788 0.557 0.768 0.009

Spaced k-
mers Singh
et al.
(2017)

SVM 0.852 0.841 0.852 0.836 0.678 0.840 2218.347
NB 0.655 0.742 0.655 0.658 0.481 0.749 267.243
MLP 0.809 0.810 0.809 0.802 0.608 0.812 2072.029
KNN 0.821 0.810 0.821 0.805 0.591 0.788 55.140
RF 0.851 0.842 0.851 0.834 0.665 0.833 646.557
LR 0.855 0.848 0.855 0.840 0.682 0.840 200.477
DT 0.853 0.850 0.853 0.841 0.685 0.842 98.089

Auto-
Encoder Xie
et al.
(2016)

SVM 0.699 0.720 0.699 0.678 0.243 0.627 4018.028
NB 0.490 0.533 0.490 0.481 0.123 0.620 24.6372
MLP 0.663 0.633 0.663 0.632 0.161 0.589 87.4913
KNN 0.782 0.791 0.782 0.776 0.535 0.761 24.5597
RF 0.814 0.803 0.814 0.802 0.593 0.793 46.583
LR 0.761 0.755 0.761 0.735 0.408 0.705 11769.02
DT 0.803 0.792 0.803 0.792 0.546 0.779 102.185

SeqVec Heinzinger
et al.
(2019)

SVM 0.796 0.768 0.796 0.770 0.479 0.747 1.0996
NB 0.686 0.703 0.686 0.686 0.351 0.694 0.0146
MLP 0.796 0.771 0.796 0.771 0.510 0.762 13.172
KNN 0.790 0.787 0.790 0.786 0.561 0.768 0.6463
RF 0.793 0.788 0.793 0.786 0.557 0.769 1.8241
LR 0.785 0.763 0.785 0.761 0.459 0.740 1.7535
DT 0.757 0.756 0.757 0.755 0.521 0.760 0.1308

Hashing2Vec

SVM 0.853 0.858 0.853 0.842 0.685 0.844 10.044
NB 0.598 0.741 0.598 0.637 0.497 0.744 0.375
MLP 0.759 0.763 0.759 0.752 0.554 0.776 10.972
KNN 0.825 0.817 0.825 0.811 0.635 0.805 0.557
RF 0.835 0.842 0.835 0.813 0.642 0.804 4.593
LR 0.860 0.862 0.860 0.847 0.699 0.841 17.719
DT 0.822 0.828 0.822 0.815 0.635 0.812 1.539

Table 5.4 Classification results for different evaluation metrics using the proposed and base-
line methods for the Spike7k dataset. Best values are shown in bold.

to PWM2Vec. The results illustrate that the RF method corresponding to Hashing2Vec out-

performs PWM2Vec in terms of accuracy, precision, recall, and F1 weighted score, while the

SVM of Hashing2Vec has the maximum AUC ROC score. Likewise, Hashing2Vec achieves

minimum training time for NB. These results indicate that the Hashing2Vec method has

better performance than PWM2Vec.
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Embeddings Algo. Acc. Prec. Recall F1 (Weig.) F1
(Macro)

ROC
AUC

Train
Time
(Sec.)

PWM2Vec Ali
et al.
(2022)

SVM 0.799 0.806 0.799 0.801 0.648 0.859 44.793
NB 0.381 0.584 0.381 0.358 0.400 0.683 2.494
MLP 0.782 0.792 0.782 0.778 0.693 0.848 21.191
KNN 0.786 0.782 0.786 0.779 0.679 0.838 12.933
RF 0.836 0.839 0.836 0.828 0.739 0.862 7.690
LR 0.809 0.815 0.809 0.800 0.728 0.852 274.917
DT 0.801 0.802 0.801 0.797 0.633 0.829 4.537

Hashing2Vec

SVM 0.815 0.825 0.815 0.818 0.725 0.863 5.591
NB 0.588 0.649 0.588 0.583 0.585 0.791 0.146
MLP 0.779 0.783 0.779 0.777 0.483 0.735 43.401
KNN 0.812 0.809 0.812 0.809 0.642 0.817 0.499
RF 0.859 0.859 0.859 0.853 0.735 0.846 5.767
LR 0.573 0.479 0.573 0.493 0.213 0.591 4.638
DT 0.800 0.804 0.800 0.800 0.660 0.840 1.855

Table 5.5 Classification results for different evaluation metrics using the proposed and base-
line methods for Coronavirus Host dataset. Best values are shown in bold.

5.1.3 Spike2CGR

The four image-based encoding methods (Spike2Vec-based Image Encoding, PWM2Vec-

based Image Encoding, Minimizer-based Image Encoding, Spike2CGR-based Image Encod-

ing) are also evaluated using SARS-CoV-2 variant data and Coronavirus host data.

5.1.3.1 Variant Data Classification Results

The variant classification results for the SARS-CoV-2 dataset are reported in Table 5.6.

We can observe that the CNN model with 4 layers (using Spike2CGR-based image encoding)

outperforms all other methods in terms of average accuracy and recall (best values are shown

in bold). For the F1 (macro) score and precision, the 4-layer CNN with PWM2Vec-based

image encoding outperforms all other embeddings and DL models. However, for ROC-AUC,

the 3-layer CNN model gives the best performance by using minimizer-based image encoding.

Moreover, the minimum training runtime is gained by the WDGRL baseline against the

3-layer Tab CNN model. These results illustrate that the performance of the spike to image-
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based models is higher than the feature vector-based (baselines) models (OHE andWDGRL),

hence indicating that the image representation retains more meaningful information about

the input (spike) sequence as compared to the baseline numerical representations for doing

classification. We have also reported the performance improvement of the Spike2CGR-based

image encoding method as compared to the SOTA Chaos method, and the results show

that Spike2CGR-based image encoding has achieved up to 16.7% improvement in terms of

ROC-AUC compared with the Chaos method. Overall, Spike2CGR-based image encoding

outperforms the Chaos method in most of the evaluation metrics and DL approaches. An

important point to note here is that the pre-trained models (RESNET50 and VGG19) are

not performing better than the customized CNN models. A possible reason for this behavior

is that those models are originally trained on different types of images that have different

scales, backgrounds, and foreground information. Hence they fail to generalize on the Chaos-

based images. Note that although the performance improvement (for SARS-CoV-2 data) is

not very high in some cases compared to Chaos, Spike2CGR can assist doctors, biologists,

and relevant government authorities better in taking efficient decisions to minimize the effect

and spreading of the coronavirus. Since human health is the most important factor when

we talk about fighting a pandemic, a small improvement in the predictive model can help in

taking impactful timely decisions.

5.1.3.2 Host Data Classification Results

The host classification results are shown in Table 5.7. Unlike variant classification, it por-
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DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.)↑

F1
(Macro)↑

ROC
AUC↑

Train Time (hrs.)
↓

3-Tab OHE 0.472 0.301 0.472 0.368 0.060 0.552 0.594
WDGRL 0.636 0.457 0.636 0.523 0.263 0.594 0.380

4-Tab OHE 0.637 0.469 0.637 0.528 0.157 0.511 0.977
WDGRL 0.688 0.517 0.688 0.582 0.227 0.637 0.866

1-Layer
CNN

Chaos 0.700 0.680 0.696 0.651 0.563 0.673 8.195
Spike2Vec 0.733 0.690 0.733 0.679 0.679 0.850 7.779
PWM2Vec 0.734 0.676 0.734 0.691 0.697 0.844 5.744
Minimizer 0.743 0.707 0.743 0.709 0.709 0.832 6.171
Spike2CGR 0.719 0.730 0.766 0.739 0.717 0.840 4.992

% improv. of
Spike2CGR from
SOTA Chaos

1.9 5 7 8.8 15.8 16.7 39.08

2-Layer
CNN

Chaos 0.700 0.669 0.697 0.652 0.564 0.645 6.394
Spike2Vec 0.740 0.730 0.744 0.729 0.736 0.725 7.329
PWM2Vec 0.740 0.700 0.739 0.688 0.694 0.676 6.615
Minimizer 0.710 0.710 0.710 0.681 0.581 0.771 6.426
Spike2CGR 0.633 0.577 0.633 0.559 0.376 0.663 6.193

% improv. of
Spike2CGR from
SOTA Chaos

-6.7 -9.2 -6.4 -9.3 -18 .8 1.8 3.14

3-Layer
CNN

Chaos 0.740 0.722 0.739 0.717 0.696 0.809 5.658
Spike2Vec 0.750 0.723 0.750 0.715 0.725 0.838 6.919
PWM2Vec 0.751 0.715 0.751 0.716 0.732 0.846 7.458
Minimizer 0.750 0.729 0.750 0.721 0.719 0.851 6.332
Spike2CGR 0.770 0.724 0.767 0.734 0.712 0.845 4.758

% improv. of
Spike2CGR from
SOTA Chaos

3 0.2 2.8 1.7 1.6 3.6 31.23

4-Layer
CNN

Chaos 0.740 0.686 0.737 0.706 0.678 0.728 7.986
Spike2Vec 0.750 0.686 0.749 0.712 0.720 0.842 7.447
PWM2Vec 0.750 0.733 0.745 0.736 0.747 0.847 7.720
Minimizer 0.750 0.726 0.750 0.706 0.709 0.846 7.068
Spike2CGR 0.7708 0.731 0.768 0.738 0.714 0.843 10.658

% improv. of
Spike2CGR from
SOTA Chaos

3 4.5 3.1 3.2 3.6 11.5 -33.45

RESNET50

Chaos 0.680 0.644 0.676 0.641 0.547 0.743 10.654
Spike2Vec 0.711 0.657 0.710 0.666 0.644 0.759 10.746
PWM2Vec 0.680 0.589 0.675 0.606 0.507 0.757 10.264
Minimizer 0.723 0.665 0.723 0.673 0.647 0.802 11.732
Spike2CGR 0.740 0.661 0.736 0.683 0.626 0.780 14.299

% improv. of
Spike2CGR from
SOTA Chaos

6 -1.7 6 4.2 7.9 3.7 -34.21

VGG-19

Chaos 0.480 0.233 0.483 0.315 0.050 0.500 27.398
Spike2Vec 0.470 0.221 0.470 0.301 0.049 0.500 26.599
PWM2Vec 0.464 0.215 0.464 0.294 0.048 0.500 23.781
Minimizer 0.480 0.227 0.477 0.308 0.496 0.500 24.459
Spike2CGR 0.495 0.245 0.495 0.327 0.050 0.500 24.355

% improv. of
Spike2CGR from
SOTA Chaos

1.5 1.2 1.2 1.2 0 0 8.4

Table 5.6 Variant classification results for SARS-CoV-2 dataset.

trays the best performance for the 1 layer CNN model, and it is because the dataset is small.

Hence increasing the model’s layers could lead to over-fitting. For the 1 layer CNN model,

the Spike2CGR-based image encoding illustrates the best performance in terms of precision,

F1 macro, and ROC AUC scores compared to other methods. However, the Minimizer-based

image encoding has maximum accuracy, recall, and F1 weighted scores but the difference
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between Minimizer-based image encoding and Spike2CGR-based image encoding for these

metrics is small. We can also observe that the image-based host classification outperforms

the feature vector-based methods (OHE and WDGRL). Furthermore, similar to lineage clas-

sification, the pre-trained models (RESNET50 and VGG19) show bad performance for the

host classification task. The performance improvement of Spike2CGR-based image encoding

compared to Chaos yet again illustrates the performance gain by our method as Spike2CGR

gains up to 7.2% improvement in accuracy compared to the Chaos method.

DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.)↑

F1
(Macro)↑

ROC
AUC↑

Train Time (hrs.)
↓

3-Tab OHE 0.625 0.626 0.625 0.566 0.335 0.663 0.032
WDGRL 0.304 0.137 0.304 0.182 0.041 0.499 0.029

4-Tab OHE 0.613 0.478 0.613 0.534 0.323 0.662 0.067
WDGRL 0.312 0.130 0.312 0.167 0.035 0.498 0.054

1-Layer
CNN

Chaos 0.680 0.707 0.680 0.670 0.517 0.761 0.984
Spike2Vec 0.728 0.738 0.728 0.711 0.412 0.710 0.738
PWM2Vec 0.753 0.745 0.753 0.745 0.496 0.743 0.950
Minimizer 0.737 0.735 0.737 0.727 0.514 0.766 1.028
Spike2CGR 0.743 0.745 0.743 0.739 0.569 0.797 0.711

% improv. of
Spike2CGR from
SOTA Chaos

6.3 3.8 6.3 5.9 5.3 3.6 27.7

2-Layer
CNN

Chaos 0.668 0.684 0.668 0.655 0.410 0.710 1.046
Spike2Vec 0.735 0.728 0.735 0.713 0.354 0.674 0.821
PWM2Vec 0.742 0.742 0.742 0.729 0.508 0.7641 0.970
Minimizer 0.685 0.718 0.685 0.671 0.426 0.706 1.098
Spike2CGR 0.740 0.734 0.740 0.726 0.428 0.716 0.688

% improv. of
Spike2CGR from
SOTA Chaos

7.2 5 7.2 7.1 1.8 0.6 34.2

3-Layer
CNN

Chaos 0.681 0.677 0.681 0.672 0.470 0.74 0.681
Spike2Vec 0.718 0.690 0.718 0.695 0.283 0.632 0.717
PWM2Vec 0.697 0.724 0.697 0.682 0.395 0.689 0.795
Minimizer 0.731 0.734 0.731 0.719 0.424 0.716 0.960
Spike2CGR 0.729 0.729 0.729 0.715 0.354 0.677 0.831

% improv. of
Spike2CGR from
SOTA Chaos

4.8 5.2 4.8 4.3 -11.6 -6.3 -22.02

4-Layer
CNN

Chaos 0.624 0.617 0.624 0.606 0.262 0.623 0.991
Spike2Vec 0.720 0.708 0.720 0.695 0.282 0.630 0.686
PWM2Vec 0.732 0.720 0.732 0.712 0.294 0.635 0.981
Minimizer 0.718 0.716 0.718 0.695 0.290 0.636 0.995
Spike2CGR 0.686 0.668 0.686 0.672 0.283 0.632 0.684

% improv. of
Spike2CGR from
SOTA Chaos

6.2 5.1 6.2 6.6 2.1 0.9 30.97

RESNET50

Chaos 0.662 0.665 0.662 0.639 0.267 0.621 0.840
Spike2Vec 0.706 0.672 0.706 0.685 0.277 0.621 0.786
PWM2Vec 0.663 0.673 0.663 0.663 0.627 0.614 1.020
Minimizer 0.694 0.671 0.694 0.665 0.266 0.621 1.730
Spike2CGR 0.691 0.683 0.691 0.663 0.270 0.624 0.786

% improv. of
Spike2CGR from
SOTA Chaos

2.9 1.8 2.9 2.4 0.3 0.3 6.42

VGG-19

Chaos 0.519 0.475 0.519 0.442 0.158 0.572 3.738
Spike2Vec 0.506 0.405 0.506 0.407 0.149 0.566 3.390
PWM2Vec 0.491 0.401 0.491 0.386 0.166 0.579 3.535
Minimizer 0.509 0.427 0.509 0.427 0.186 0.576 3.969
Spike2CGR 0.458 0.409 0.458 0.363 0.129 0.559 3.409

% improv. of
Spike2CGR from
SOTA Chaos

-6.1 -6.6 -6.1 -7.9 -2.9 -1.3 8.80

Table 5.7 Host classification results for coronavirus host dataset.
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5.1.4 Spaced K-mers & CGR based Image Generation

The results are shown in Table 5.8. The classification results demonstrate that although

the tabular models for OHE fall in the top 5% in terms of average Precision, F1 Macro, F1

Weighted, and ROC AUC score, they tend to lean towards the lower performance bound

(even among the top 5%) for most of the evaluation metrics as compared to the image-based

methods. Moreover, the image-based methods clearly outperform the WDGRL approach for

all the metrics. These results indicate that image representations retain more meaningful

information about the peptide sequences than feature-engineering-based methods. We can

observe that the traditional image-based baseline, P-CGR, exhibits comparable results in

terms of almost all evaluation metrics as compared to our proposed methods for 1-Layer

CNN and 2-Layer CNN models. Similarly, our proposed methods (S-P-CGR, S-Static, Static,

RCGR) can be seen to yield performance results in the top 5% for almost all the metrics

using 1-Layer CNN, 2-Layer CNN models, and 3-Layer CNN models. We can also notice that

as the number of layers are increasing in the models, the performance tends to be constant,

which indicates that the models are no longer learning. One possible reason for this behavior

can be the gradient vanishing issue. With the increased number of layers, the gradient in the

back-propagation step can be lost and hence hinders the model’s learning ability. Moreover,

our dataset size is very small and this also limits the model’s learning. Furthermore, the pre-

trained vision models are depicting lower performance for most of the metrics as compared

to the custom CNN models. This is because those models are trained using different types
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of images originally, and they are unable to generalize well to CGR-based images.

5.1.5 Bézier Curve based Images

This section provides an extensive discussion of the classification results obtained by

our proposed method and the baseline approaches for 6 distinct classification tasks using 6

different datasets respectively. The details of each one is given below.

5.1.5.1 Protein Subcellular Dataset’s Performence

The classification results of the protein subcellular dataset via different evaluation met-

rics are mentioned in Table 5.9. We can observe that in the case of the custom CNN models,

the performance stopped increasing after two layers. It could be because of the dataset

being small in size which causes the gradient vanishing problem. Moreover, for the ViT

model although the Bézier images have maximum performance as compared to the FCGR

and RandomCGR images, however, the overall performance gained by the ViT model is

less than the custom CNN models. A reason for this could be the dataset being small in

size as ViT typically requires substantial training data to surpass CNN models. Addition-

ally, in ViT a global attention mechanism is used which focuses on the entire image, but

in the images generated by all three methods (FCGR, RandomCGR & Bézier) the perti-

nent information is concentrated in specific pixels, with the remaining areas being empty.

Consequently, the global attention mechanism may not be as efficient for these images as a

local operation-based CNN model, which is tailored to capture localized features efficiently.



65

The feature-engineering-based methods are yielding very low performance as compared to

our image-based methods (especially FCGR & Bézier) indicating that the image-based rep-

resentation of bio-sequences is more effective in terms of classification performance over

the tabular one. The pre-trained ResNet-50 classifier corresponding to the Bézier method

has the optimal predictive performance for all the evaluation metrics. It shows that the

ResNet-50 is able to generalize well to the Bézier generated images. It may be due to the

architecture of ResNet (like skip connections) enabling the learning on our small dataset.

Overall, the pre-trained models (ResNet, VGG19, & EfficientNet) are performing well for the

Bézier based images, except the DensetNet model. A reason for DenseNet having very bad

performance could be the dataset being small, as DenseNet typically requires large data to

yield good performance. Furthermore, among the image-based methods, our Bézier method

is tremendously outperforming the baselines for every evaluation metric corresponding to

all the vision DL classifiers. This can be because the average length of sequences in the

protein subcellular localization dataset is large and our technique uses the Bézier curve to

map each amino acid, so a large number of amino acids results in more effective capturing of

information about the sequences in their respective constructed images. We have also added

results of the Spike2CGR baseline method in Table 5.9 and we can observe that this method

is underperforming for all the classifiers for every evaluation metric as compared to our pro-

posed Bézier method. This indicates that the images created by the Bézier technique are

of high quality in terms of classification performance as compared to the Spike2CGR-based

images. Moreover, the String kernel-based results also showcase very low performance as
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compared to the image-based method, hence again indicating that converting sequences to

images gives a more effective representation than mapping them to vectors.

5.1.5.2 Coronavirus Host Dataset’s Performance

The Coronavirus host dataset-based classification performance via various evaluation

metrics is reported in Table 5.10. We can observe that for the custom CNN models, the

performance is not directly proportional to the number of hidden layers, i.e., increasing the

number of hidden layers does not result in better performance, as most of the top values

reside corresponding to the 1-layer CNN model and the 2-layer CNN model. This could be

because the host dataset is not large enough to tackle a heavy CNN model, hence ending up

having a gradient vanishing problem, which stops the model from learning. Apart from that,

the ViT model is exhibiting lower performance than the custom CNN model and it can be

yet again due to the dataset being small. Moreover, among the pre-trained models, ResNet-

50 & VGG19 are showcasing nearly similar performance as the custom CNN classifiers (with

Bézier-based images yielding maximum performance), which indicates that these models are

able to generalize well using the images created by our Bézier method. However, DenseNet

and EfficientNet are demonstrating very low performance for all evaluation metrics may

be because the size of host data is small and these models typically need large data to

attain good performance. Additionally, the feature-engineering-based methods lean towards

a lower performance bound for all the evaluation metrics corresponding to both 3-layer Tab

CNN & 4-layer Tab CNN, and most of the ML classifiers based on the String kernel also
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showcase less performance. This indicates that converting the host sequences into images

can preserve more relevant information in the respective images about the sequence in terms

of classification performance as compared to converting them into vectors. Furthermore,

among the image generation methods, RandomCGR has the lowest performance for every

metric while Bézier (our method), Spike2CGR, and FCGR have comparable performance as

they yield most of the top values for all the metrics. Overall, Bézier seems to perform well

for the host classification task, implying that the images generated by it are of good quality

for classification.

5.1.5.3 ACP Dataset’s Performance

The classification performance achieved using the ACP dataset for various evaluation

metrics is summarized in Table 5.11. We can observe that increasing the number of inner

layers for the custom CNN models does not enhance the predictive performance, as 1-layer

CNN & 2-layer CNN models portray higher performance. This could be because the ACP

dataset is very small, so using a large model can cause a gradient vanishing challenge and,

hence, hinder the learning process. Additionally, the ViT model is yielding lower perfor-

mance than the custom CNN models and it can be due to yet again the dataset being very

small. Moreover, the pre-trained ResNet-50 and VGG19 models depict very similar perfor-

mance as the custom CNN models. This shows that the ResNet and VGG19 models are able

to generalize well to our Bézier-based data. However, the EfficeintNet and Denset classifiers

portray very low performance for every evaluation metric. It can be due to their architectures
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which require large data for fine-tuning the model, however, our dataset is extremely small.

Furthermore, the feature-engineering-based embedding approaches are overall showcasing

bad performance (except for 4 tab CNN OHE) as compared to the image-based methods. It

implies that the bio-sequences’s information is effectively preserved in the respective image

form rather than the vector form generated from the feature-engineering methods in terms

of predictive performance. Note that, although the String kernel embedding-based ML clas-

sifiers are yielding the highest performances corresponding to every evaluation metric, our

method’s performance is also close to it, which means that our method is also yielding an ef-

fective representation for sequences. For the image-based embedding methods, we can notice

that our method (Bézier) and the FCGR baselines illustrate comparable predictive results,

while RandomCGR and Spike2CGR lean toward the lower performance bound. Overall, we

can claim that the Bézier method exhibits good performance for the ACP classification task.

5.1.5.4 Human DNA Dataset Performance

The classification results for the DL model using the Human DNA dataset are given in

Table 5.12. We can observe that the pre-trained vision models and the vision transformer

classifier are yielding very low performance corresponding to every image-based strategy. It

can be again due to the gradient vanishing problem because of the small size of the dataset.

Moreover, the customer CNN models are obtaining high performance, especially for the

1-layer CNN model and 2-layer CNN model. Note that increasing the number of layers

in the custom CNN models is reducing the performance, and a small dataset could be a
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reason for this behavior too. We can also notice that our proposed Bézier method is able

to achieve performance in the top 5% for almost every evaluation metric corresponding to

the custom CNN classifiers. Furthermore, the image-based methods clearly outperform the

feature-engineering ones, hence indicating that converting the nucleotide sequences to images

can retain more information about the sequences as compared to mapping them to vectors

in terms of classification predictive performance. Similarly, the String kernel method-based

ML classifiers, except RF, also portray less performance than the custom CNN models which

yet again proves that converting sequences into images is more effective than mapping them

to vectors.

5.1.5.5 SMILES String Dataset Performance

The classification results for the DL model using the SMILES String dataset are given in

Table 5.13. We can observe that, the performance achieved by all the classifiers corresponding

to every embedding strategy (image or vector) is very good and similar to each other, except

for the DenseNet and EfficientNet models which have bad results. A reason for the bad

results could be the small size of the data as DenseNet and EfficientNet usually operate

on large datasets to have optimal performance. Note that, although most of the classifiers

portray similar results, our method achieves the maximum performance. Moreover, as this

data contains sequences constituted of more than 20 unique characters, therefore, the FCGR

& Spike2CGR methods failed to operate on them. Furthermore, our image-based method is

performing better than the tabular ones (feature-engineering-based and String kernel-based),
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hence obtaining images of sequences is more useful for the classification tasks.

5.1.5.6 Music Genre Dataset Performance

The classification results for the DL model using the Music Genre dataset are given in

Table 5.14. An important point to note here is that since the number of unique characters

in the music data is > 20, the traditional FCGR and Spike2CGR methods fail to run on

such datasets. In general, although the RandomCGR method performs better using classical

vision models, the performance drastically reduces compared to the proposed method on the

pre-trained vision models (e.g. see results for VGG-19 results in Table 5.14). Such behavior

supports our argument that in general, the proposed method improves the performance of the

pre-trained models in terms of sequence classification. Moreover, the image-based methods

are clearly outperforming the feature-engineering and String-kernel baselines, hence image

representations are more promising for doing classification than the tabular ones.

5.2 Statistical Analysis of Feature-Engineering-based Encoding Methods

The feature-engineering-based encoding methods are further evaluated using statistical anal-

ysis and their details are as follows,

5.2.1 Data Visualization (Hashing2Vec)

The t-distributed stochastic neighbor embedding (t-SNE) Van der Maaten & Hinton (2008)

is utilized to identify any hidden patterns in the Spike7k data. This method works by

mapping the high dimensional input data into 2D space but preserves the pairwise distance
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between data points in high dimensions. This visualization aims to highlight if different

embedding methods introduce any changes to the overall distribution of data. For the

Hashing2Vec embedding method along with its respective baselines, Figure 5.1 illustrated

the t-SNE-based visualization (with variants as labels as shown in legends) of the Spike7k

dataset. We can observe that overall the B.1.1.7 (Alpha) variant forms a single huge group

(shown in yellow color) since its representation in the dataset is larger than other variants.

Moreover, we can observe that Hashing2Vec can preserve the structure of the data similar to

Spike2Vec, PWM2Vec, Spaced k-mers, and String kernel. The WDGRL shows a scattered t-

SNE plot, which means that the overall structure of data, in that case, is disturbed, hence the

performance of the embeddings will not be as good compared to other embedding methods

(this behavior is also observed in classification results in the next section, in Table 5.4).

(a) Spike2Vec (b) PWM2Vec (c) String Kernel (d) Autoencoder

(e) WDGRL (f) Spaced k-mers (g) Hashing2Vec (h) SeqVec

Figure 5.1 t-SNE plots using different embeddings for 7000 Spike7k dataset sequences. This
figure is best seen in color.
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5.2.2 Embedding Generation Run-Time (Hashing2Vec)

To evaluate the embedding generation computation time for Hashing2Vec and its re-

spective baselines, we report the runtime in Table 5.15 for the Spike7k dataset. We can

observe that Hashing2Vec takes the lowest time to generate the feature vectors as compared

to the baseline methods. The PWM2Vec is the second-best while the SeqVec takes the most

time for feature vector generation. We observed the same behavior regarding the embedding

generation runtime in the case of coronavirus host data as well. We also provide % improve-

ment for Hashing2Vec from PWM2Vec (second best in terms of runtime) and SeqVec(worst

in terms of runtime) using the following expression for the Spike7k dataset:

% improvement =
RBaseline − RHashing2V ec

RBaseline

× 100 (5.1)

where RBaseline represents the runtime of baselines PWM2Vec and SeqVec embedding meth-

ods while RHashing2V ec corresponds to the run-time for Hashing2Vec embedding computation.

We can observe that Hashing2Vec improves the runtime performance by 68.7% and 99.8%

as compared to PWM2Vec and SeqVec, respectively. The runtime for computing PWM2Vec

and Hashing2Vec with the increasing number of sequences is shown in Figure 5.2 for the

Spike7k dataset. We can see that Hashing2Vec significantly outperforms the PWM2Vec

(fastest among other embeddings) in terms of runtime with any number of sequences. Ad-

ditionally, we can observe that the increasing runtime trend for Hashing2Vec is very slow as

compared to the PWM2Vec, which makes it more suitable for Big Data. Overall, we can
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observe that the proposed embedding, called Hashing2Vec not only performs slightly better

in terms of predictive performance as compared to the baselines, but it also preserves the

overall structure of the data similar to the recently proposed embedding methods. Moreover,

Hashing2Vec can be generated very quickly as compared to the other methods, making it an

ideal choice while dealing with larger-sized datasets because of its scalability property.

Embeddings Runtime (Seconds)

Spike2Vec Ali & Patterson (2021) 354.061
PWM2Vec Ali et al. (2022) 163.257

String Approx. Farhan et al. (2017) 2292.245
WDGRL Shen et al. (2018) 438.188

Spaced k-mers Singh et al. (2017) 12901.808
Auto-Encoder Xie et al. (2016) 181.70052
SeqVec Heinzinger et al. (2019) 32500.19

Hashing2Vec (ours) 51.094

% Improv. of Hashing2Vec from PWM2Vec 68.7%
% Improv. of Hashing2Vec from SeqVec 99.8%

Table 5.15 Embedding generation runtime for dif-
ferent methods using the Spike7k dataset. Best
value is shown in bold. The percentage improve-
ment of runtime (see Equation (5.1)) is also given
for Hashing2Vec.
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Figure 5.2 Runtime for embedding gen-
eration of PWM2Vec and Hashing2Vec
with increasing number of sequences for
the Spike7k dataset. The figure is best
seen in color.

5.2.3 Compactness Analysis & t-SNE Evaluation (PSSMFreq2Vec &
PSSM2Vec)

We use the t-distributed stochastic neighbor embedding (t-SNE) approach Van der Maaten

& Hinton (2008) to evaluate the (hidden) patterns in the data. To see how well the data is

preserved by t-SNE in 2 dimensions given different feature embeddings as input, we use k-ary

neighborhood agreement (k-ANA) method Zhu & Ting (2021). The k-ANA test computes

the nearest neighbors in the original High Dimensional (HD) data and the Low Dimensional
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data (LD) (from t-SNE). It then takes the intersection of these to evaluate the number

of neighbors on which both HD and LD agree. Using this intersection, a value R(k) is

calculated for evaluating the preservation of k-ary neighborhoods, and R(k) is defined as

follows: R(k) = (n−1)Q(k)−k
n−1−k

, where Q(k) = Σn
i

1
nk
|kNN(xi)

⋂
kNN(x

′
i)|. Similarly, kNN(x)

represents the set of nearest neighbors of x in high dimensions (HD). Moreover, kNN(x′)

represents the nearest neighbors in low dimensions (LD). The R(k) ∈ [0, 1] and higher value

of R(k) indicates better preservation of the neighborhood in LD space. For our experiment,

we have aggregated the R(k) values for k from 1 to 99 and calculated the area under the

curve formed by R(k) using the following expression: AUCRNX =
Σk

R(k)
k

Σk
1
k

. The values of

AUCRNX for the baselines and proposed model are given in Table 5.16. We can observe that

PSSM2Vec performs better than the other models for the Coronavirus Host dataset. This

means that t-SNE is able to preserve the distance (hence the global structure of the data)

between sequences more accurately using PSSM2Vec. For the SARS-CoV-2 data, PWM2Vec

performs better than the other models. However, PSSM2Vec also performs comparably to

PWM2Vec. Since PWM2Vec does not work with unaligned sequences, using PSSM2Vec

becomes even more relevant as it works for both aligned and unaligned sequences. In gen-

eral, since PSSM2Vec is better in terms of predictive performance, training runtime, and

preserving the overall structure of data, we believe that it is more applicable in real-world

scenarios for the classification of biological sequences.

Furthermore, to get a better idea about the overall time taken by each method to generate

embeddings, we reported the feature vector computation runtime for different embedding
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methods in Table 5.17. We can again observe that PSSM2Vec takes very little time to

generate in the case of both datasets. On the SARS-CoV-2 dataset, while other embedding

methods took more than 3 days, PSSM2Vec just took 4.25 hours to generate feature vectors

for 1.9 million sequences.

One way to evaluate the effectiveness of the feature embeddings is to analyze their com-

pactness. For this purpose, we perform statistical analysis, including Pearson and Spearman

Correlation. We compute the correlation values for different features of embeddings (cor-

responding to class labels) and report the fraction of attributes in each feature embedding

having a high correlation corresponding to the class labels. The Pearson correlation values

for different thresholds are reported in Figure 5.3a (for the Coronavirus Host dataset). Sim-

ilarly, the Spearman correlation values for different thresholds (ranging from -1 to 1) and

embeddings are reported in Figure 5.3b (for the Coronavirus Host dataset). We can observe

that, overall, PSSM2Vec and PSSMFreq2Vec have the highest fraction of values for both

Pearson correlation and Spearman correlation. This shows that more features in PSSM2Vec

are highly correlated with the class label, demonstrating that these embeddings are the most

compact. This compactness is also highlighted in terms of obtaining better predictive perfor-

mance in terms of sequence classification (as given in Table 5.1 “for aligned data”, Table 5.2

“for unaligned data” and Table 5.3 “for SARS-CoV-2 data”). In summary, we have the

following properties of the PSSM2Vec: (i) it is better (or sometimes comparable) in terms of

predictive performance, training runtime, and embedding generation runtime, (ii) it easily

scales to millions of sequences, (iii) it works for both aligned and unaligned sequences, and
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(iv) it is better in terms of feature vector compactness (computed using Pearson and Spear-

man correlation). Therefore, we can conclude that in a real-world scenario, using PSSM2Vec

is more appropriate than other embedding approaches for biological sequence classification.
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(b) Spearman Correlation

Figure 5.3 Correlation values for Coronavirus Host data. (a) and (b) show the fraction of
features having correlation values greater than or less than the thresholds (on the x-axis).
The fractions are computed by taking the denominator as the size of embeddings (69960
for OHE, 8000 for Spike2Vec, 3490 for PWM2Vec, 8000 for PSSMFreq2Vec, and 60 for
PSSM2Vec).

5.3 Statistical Analysis of Spike2CGR

The image-based-based encoding methods are further evaluated using the confusion matrices

and their details are given below. The reasons for different image-based encoding methods

yielding different images is also highlighted in this section.

5.3.1 Confusion Matrices

We also investigated the confusion matrices of the best performing model (4-layer CNN)

for Chaos (the SOTA approach Löchel et al. (2020)) and Spike2CGR-based embedding (see

Figure 5.4) for variant classification. We can observe that although for the Alpha variant

(B.1.1.7), Chaos-based embedding has the highest true positive count. However, for all other
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classes, Spike2CGR-based embedding performs better. This behavior shows that Chaos tends

to focus more on the label with high frequency in the data (a typical class imbalance problem)

since the Alpha variant has the highest count in the dataset. Likewise, the confusion matrices

for host classification using Chaos and Spike2CGR embeddings for the best performing model

(1 layer CNN) are given in Figure 5.5. They also portray a similar behavior where Spike2CGR

is performing better for most of the hosts as compared to Chaos.

(a) Chaos (b) Spike2CGR

Figure 5.4 Confusion matrices comparison of Chaos and Spike2CGR based encoding to per-
form variant classification using the best performing model (4-layers CNN).

5.3.2 Reasons of Different Image-based Embeddings Generating Different
Images

After the analysis of classification results, a natural question arises why results for differ-

ent embedding methods are not similar? A few fundamental facts for this behavior are the

following:
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(a) Chaos (b) Spike2CGR

Figure 5.5 Confusion matrices comparison of Chaos and Spike2CGR based encoding to per-
form host classification using the best performing model (1-layers CNN).

1. The ith amino acid (pixel) drawn using the CGR for a given sequence corresponds to a

specific position in the spike sequence (and it holds some local meaning). Therefore, no

other sub-sequence within that spike sequence may have similar information/pattern

(up to the resolution of the screen). Hence, there is a one-to-one mapping between the

sub-sequence patterns of a given spike sequence and pixels of the CGR. If there is a

mutation in the sequence, that mutation should be highlighted clearly in the resultant

visual representation using CGR.

2. If we manipulate the sequence (in a biologically meaningful way) using different em-

bedding tricks such as minimizers, the amino acid positions should be disturbed and

will no longer remain similar to the original spike sequence. This disturbance of the

sequence may affect the performance of classifiers positively or negatively.
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3. Because of this manipulation of the protein sequence, the “area of interest” within the

CGR image could be different for different embeddings.

4. Assigning a certain weight to the pixels (as done using PWM2Vec) is also an important

factor for classification as it could affect the resolution of the image.

5.4 Overall Results Summary

The overall summary of the results discussed above in detail is as follows,

1. The PSSM2Vec and PSSMFreq2Vec are shown to be alignment-free and compact

feature-engineering methods with the ability to be scalable. They also demonstrate

high predictive performance using various ML methods, hence these embeddings are

effective and efficient. They have also shown to retain the original data structure in

the low dimensional space.

2. The Hashing2Vec algorithms is an alignment-free and fast feature-engineering method.

It is fast in terms of embedding generation time. It achieves high classification perfor-

mance using ML models and shown to identify the hidden data patterns.

3. The image-based encoding methods (Spike2CGR, Spaced K-mers & CGR based Image

Generation, Bézier Curve based Images) are alignment-free. They have enabled the ap-

plication of sophisticated DL classification models on the sequence data and illustrated

high predictive performance using these models.
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DL Model Method Acc. Prec. Recall F1
(Weig.)

F1
(Macro)

ROC
AUC

Train
Time
(hrs.)

3-Tab OHE 0.768 0.8390.768 0.790 0.452 0.719 0.042
WDGRL 0.615 0.740 0.615 0.660 0.326 0.603 0.0001

4-Tab OHE 0.796 0.8430.796 0.807 0.474 0.736 0.056
WDGRL 0.631 0.754 0.631 0.673 0.346 0.623 0.0002

1-Layer
CNN

P-CGR 0.8630.8310.863 0.844 0.490 0.677 0.357
Static 0.849 0.8200.849 0.825 0.467 0.657 0.271
Random 0.792 0.638 0.792 0.707 0.221 0.497 0.404
RCGR 0.796 0.756 0.796 0.773 0.385 0.598 0.342

S-P-CGR 0.8420.8100.842 0.819 0.423 0.637 0.412
S-Static 0.8350.7950.835 0.809 0.409 0.627 0.312
S-Random 0.701 0.579 0.701 0.599 0.241 0.511 1.385
S-RCGR 0.803 0.737 0.803 0.756 0.347 0.563 0.468

2-Layer
CNN

P-CGR 0.8520.8330.852 0.837 0.489 0.676 0.419
Static 0.8210.710 0.821 0.759 0.318 0.566 0.536
Random 0.800 0.640 0.800 0.711 0.222 0.500 0.389
RCGR 0.8210.8090.821 0.775 0.372 0.584 0.332

S-P-CGR 0.8630.8350.863 0.842 0.467 0.666 0.430
S-Static 0.8560.8270.856 0.836 0.463 0.662 0.385
S-Random 0.800 0.640 0.800 0.711 0.222 0.500 0.416
S-RCGR 0.796 0.727 0.796 0.751 0.337 0.556 0.406

3-Layer
CNN

P-CGR 0.800 0.640 0.800 0.711 0.222 0.500 0.490
Static 0.8350.8530.835 0.810 0.391 0.651 0.557
Random 0.800 0.640 0.800 0.711 0.222 0.500 0.391
RCGR 0.8210.8070.821 0.778 0.376 0.583 0.529

S-P-CGR 0.8380.8210.838 0.806 0.370 0.657 0.462
S-Static 0.800 0.640 0.800 0.711 0.222 0.500 0.392
S-Random 0.800 0.640 0.800 0.711 0.222 0.500 0.436
S-RCGR 0.807 0.690 0.807 0.730 0.254 0.518 0.389

4-Layer
CNN

P-CGR 0.8310.735 0.831 0.779 0.329 0.586 0.498
Static 0.800 0.640 0.800 0.711 0.222 0.500 0.512
Random 0.800 0.640 0.800 0.711 0.222 0.500 0.435
RCGR 0.800 0.640 0.800 0.711 0.222 0.500 0.536

S-P-CGR 0.800 0.640 0.800 0.711 0.222 0.500 0.563
S-Static 0.800 0.640 0.800 0.711 0.222 0.500 0.474
S-Random 0.800 0.640 0.800 0.711 0.222 0.500 0.460
S-RCGR 0.800 0.640 0.800 0.711 0.222 0.500 0.506

RESNET50
Pre-
Trained
Model

P-CGR 0.800 0.642 0.800 0.712 0.222 0.501 1.317
Static 0.800 0.640 0.800 0.711 0.222 0.500 1.159
Random 0.800 0.640 0.800 0.711 0.222 0.500 1.387
RCGR 0.800 0.640 0.800 0.711 0.222 0.500 1.374

S-P-CGR 0.8280.8010.828 0.791 0.357 0.633 1.043
S-Static 0.8280.768 0.828 0.783 0.369 0.585 1.273
S-Random 0.800 0.640 0.800 0.711 0.222 0.500 1.170
S-RCGR 0.800 0.640 0.800 0.711 0.222 0.500 1.181

VGG-19
Pre-
Trained
Model

P-CGR 0.803 0.684 0.803 0.720 0.243 0.509 1.189
Static 0.8240.713 0.824 0.761 0.323 0.565 1.153
Random 0.800 0.640 0.800 0.711 0.222 0.500 1.054
RCGR 0.800 0.640 0.800 0.711 0.222 0.500 1.06

S-P-CGR 0.8170.713 0.817 0.761 0.318 0.576 1.185
S-Static 0.8280.737 0.828 0.779 0.353 0.616 1.573
S-Random 0.800 0.640 0.800 0.711 0.222 0.500 1.377
S-RCGR 0.800 0.640 0.800 0.711 0.222 0.500 1.430

Table 5.8 Classification results for different models and algorithms for ACPs dataset. The
top 5% best values for each evaluation metric are shown in bold.
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Category DL Model Method Acc. Prec. Recall F1
(Weig.)

F1
(Macro)

ROC
AUC

Train
Time
(hrs.)

Tabular Models
3-Tab OHE 0.449 0.405 0.449 0.401 0.227 0.667 0.398

WDGRL 0.458 0.315 0.458 0.354 0.163 0.751 0.109

4-Tab OHE 0.404 0.409 0.404 0.384 0.215 0.657 0.525
WDGRL 0.457 0.309 0.457 0.351 0.161 0.708 0.130

String
Kernel

- SVM 0.496 0.510 0.496 0.501 0.395 0.674 5.277
- NB 0.301 0.322 0.301 0.265 0.243 0.593 0.136
- MLP 0.389 0.390 0.389 0.388 0.246 0.591 7.263
- KNN 0.372 0.475 0.372 0.370 0.272 0.586 0.395
- RF 0.473 0.497 0.473 0.411 0.218 0.585 7.170
- LR 0.528 0.525 0.528 0.525 0.415 0.678 8.194
- DT 0.328 0.335 0.328 0.331 0.207 0.568 2.250

Custom CNN Models

1-Layer
FCGR 0.545 0.542 0.545 0.527 0.386 0.653 3.065
RandmCGR 0.292 0.172 0.292 0.211 0.102 0.528 6.443
Spike2CGR 0.460 0.453 0.460 0.432 0.277 0.603 6.879
Bézier 0.948 0.919 0.948 0.931 0.769 0.890 3.455

% impro. of Bézier
from FCGR

40.3 37.7 40.3 40.4 38.3 23.7 -12.72

% impro. of Bézier
from Spike2CGR

48.8 46.6 48.8 49.9 49.2 28.7 49.7

2-Layer
FCGR 0.565 0.565 0.565 0.554 0.432 0.677 4.074
RandmCGR 0.295 0.171 0.295 0.216 0.104 0.530 6.433
Spike2CGR 0.461 0.454 0.461 0.433 0.278 0.604 8.932
Bézier 0.959 0.971 0.959 0.963 0.904 0.965 13.089

% improv. of Bézier
from FCGR

39.4 40.6 39.4 40.9 47.2 28.8 -221.28

% impro. of Bézier
from Spike2CGR

49.8 51.7 49.8 53 62.6 36.1 -2922.8

3-Layer
FCGR 0.504 0.518 0.504 0.501 0.376 0.656 4.821
RandmCGR 0.303 0.186 0.303 0.228 0.110 0.532 8.930
Spike2CGR 0.429 0.430 0.429 0.421 0.287 0.612 3.998
Bézier 0.951 0.965 0.951 0.952 0.881 0.957 14.983

% improv. of Bézier
from FCGR

44.7 44.7 44.7 44.8 50.5 30.1 -210.78

% impro. of Bézier
from Spike2CGR

52.2 53.5 52.2 53.1 59.4 35.5 -274.7

4-Layer
FCGR 0.539 0.524 0.539 0.525 0.393 0.663 5.146
RandmCGR 0.311 0.181 0.311 0.229 0.110 0.536 10.234
Spike2CGR 0.420 0.420 0.420 0.424 0.280 0.600 9.121
Bézier 0.938 0.958 0.938 0.944 0.884 0.959 15.456

% improv. of Bézier
from FCGR

39.9 43.4 39.9 41.9 49.1 29.6 -200.36

% impro. of Bézier
from Spike2CGR

51.8 53.8 51.8 52 60.4 35.9 -69.4

Vision Transformer ViT
FCGR 0.226 0.051 0.226 0.083 0.033 0.500 0.180
RandmCGR 0.222 0.049 0.222 0.080 0.033 0.500 0.154
Spike2CGR 0.222 0.051 0.222 0.083 0.147 0.500 0.176
Bézier 0.462 0.254 0.462 0.327 0.147 0.572 0.160

% improv. of Bézier
from FCGR

23.6 20.3 23.6 24.4 11.4 7.2 11.11

% impro. of Bézier
from Spike2CGR

24 20.3 24 24.4 0 7.2 -9.09

Pretrained Vision Models

ResNet-
50

FCGR 0.368 0.268 0.368 0.310 0.155 0.556 3.831
RandmCGR 0.293 0.174 0.293 0.211 0.102 0.527 13.620
Spike2CGR 0.368 0.175 0.368 0.214 0.105 0.565 10.992
Bézier 0.964 0.967 0.964 0.961 0.907 0.948 11.415

% improv. of Bézier
from FCGR

59.6 69.9 59.6 65.1 75.2 39.2 -197.96

% impro. of Bézier
from Spike2CGR

59.6 79.2 59.6 74.7 80.2 38.3 -3.8

VGG-19
FCGR 0.316 0.209 0.316 0.241 0.114 0.533 14.058
RandmCGR 0.288 0.192 0.288 0.218 0.105 0.525 26.136
Spike2CGR 0.351 0.352 0.351 0.333 0.211 0.550 19.980
Bézier 0.896 0.879 0.896 0.873 0.680 0.840 18.837

% improv. of Bézier
from FCGR

58 67 58 63.2 56.6 30.7 -33.99

% impro. of Bézier
from Spike2CGR

54.5 52.7 54.5 56.3 46.9 29 5.7

DenseNet
FCGR 0.081 0.006 0.081 0.012 0.013 0.500 2.001
RandmCGR 0.094 0.008 0.094 0.016 0.015 0.500 1.974
Spike2CGR 0.099 0.010 0.099 0.020 0.002 0.500 2.111
Bézier 0.011 0.000 0.011 0.000 0.002 0.500 2.668

% improv. of Bézier
from FCGR

-7 -0.6 -7 -1.2 -1.1 0 -33.33

% impro. of Bézier
from Spike2CGR

-8.8 -1 -8.8 -2 0 0 -26.3

EfficientNet
FCGR 0.100 0.088 0.100 0.094 0.035 0.532 31.194
RandmCGR 0.284 0.107 0.284 0.152 0.078 0.500 30.223
Spike2CGR 0.320 0.230 0.320 0.230 0.200 0.500 25.497
Bézier 0.834 0.787 0.834 0.797 0.483 0.751 20.312

% improv. of Bézier
from FCGR

73.4 69.9 73.4 70.3 44.8 21.9 34.88

% impro. of Bézier
from Spike2CGR

51.4 55.7 51.4 56.7 28.3 25.1 20.3

Table 5.9 Classification results for different models and algorithms for Protein Subcellular
Localization dataset. The top 5% values for each metric are underlined.
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Category DL Model Method Acc. Prec. Recall F1
(Weig.)

F1
(Macro)

ROC
AUC

Train
Time
(hrs.)

Tabular Models
3-Tab OHE 0.625 0.626 0.625 0.566 0.335 0.663 0.032

WDGRL 0.304 0.137 0.304 0.182 0.041 0.499 0.029

4-Tab OHE 0.613 0.478 0.613 0.534 0.323 0.662 0.067
WDGRL 0.312 0.130 0.312 0.167 0.035 0.498 0.054

String
Kernel

- SVM 0.601 0.673 0.601 0.602 0.325 0.624 5.198
- NB 0.230 0.665 0.230 0.295 0.162 0.625 0.131
- MLP 0.647 0.696 0.647 0.641 0.302 0.628 42.322
- KNN 0.613 0.623 0.613 0.612 0.310 0.629 0.434
- RF 0.668 0.692 0.668 0.663 0.360 0.658 4.541
- LR 0.554 0.724 0.554 0.505 0.193 0.568 5.096
- DT 0.646 0.674 0.646 0.643 0.345 0.653 1.561

Custom CNN Models

1-Layer
FCGR 0.680 0.707 0.680 0.670 0.517 0.761 0.984
Spike2CGR 0.743 0.745 0.743 0.739 0.569 0.797 0.711
RandomCGR0.262 0.193 0.262 0.210 0.051 0.500 8.695
Bézier 0.652 0.652 0.652 0.644 0.592 0.766 2.698

% improv. of Bézier
from FCGR

-2.8 -5.5 -2.8 -2.6 7.5 0.5 -174.18

2-Layer
FCGR 0.668 0.684 0.668 0.655 0.410 0.710 1.046
Spike2CGR 0.740 0.734 0.740 0.726 0.428 0.716 0.688
RandomCGR0.293 0.235 0.293 0.246 0.093 0.521 8.839
Bézier 0.656 0.669 0.656 0.644 0.610 0.778 2.976

% improv. of Bézier
from FCGR

-1.2 -1.5 -1.2 -1.1 20 6.8 -184.51

3-Layer
FCGR 0.681 0.677 0.681 0.672 0.470 0.740 5.681
Spike2CGR 0.729 0.729 0.729 0.715 0.354 0.677 0.831
RandomCGR0.320 0.102 0.320 0.155 0.028 0.500 9.440
Bézier 0.611 0.652 0.611 0.612 0.623 0.793 4.660

% improv. of Bézier
from FCGR

-7 -2.5 -7 -6 15.3 5.3 17.97

4-Layer
FCGR 0.624 0.617 0.624 0.606 0.262 0.623 8.991
Spike2CGR 0.686 0.668 0.686 0.672 0.283 0.632 0.684
RandomCGR0.320 0.102 0.320 0.155 0.028 0.500 10.778
Bézier 0.640 0.643 0.640 0.575 0.594 0.782 5.102

% improv. of Bézier
from FCGR

1.6 2.6 1.6 -3.1 33.2 15.9 43.25

Vision Transformer ViT
FCGR 0.322 0.104 0.322 0.157 0.023 0.500 0.188
Spike2CGR 0.332 0.323 0.332 0.333 0.213 0.500 0.877
RandomCGR0.320 0.102 0.320 0.155 0.028 0.500 0.173
Bézier 0.316 0.100 0.316 0.152 0.022 0.500 0.183

% improv. of Bézier
from FCGR

-0.6 -0.4 -0.6 -0.5 -0.1 0 2.65

Pretrained Vision Models

ResNet-
50

FCGR 0.662 0.665 0.662 0.639 0.267 0.621 8.840
Spike2CGR 0.691 0.683 0.691 0.663 0.270 0.624 0.786
RandomCGR0.319 0.113 0.319 0.159 0.030 0.500 13.488
Bézier 0.571 0.473 0.571 0.504 0.335 0.564 6.411

% improv. of Bézier
from FCGR

-9.1 -19.2 -9.1 -13.5 6.8 -5.7 27.47

VGG-19
FCGR 0.519 0.475 0.519 0.442 0.158 0.572 3.738
Spike2CGR 0.458 0.409 0.458 0.363 0.129 0.559 3.409
RandomCGR0.320 0.102 0.320 0.155 0.028 0.500 21.474
Bézier 0.521 0.421 0.521 0.448 0.222 0.500 3.200

% improv. of Bézier
from FCGR

0.2 -5.4 0.2 0.6 6.4 -7.2 14.39

DenseNet
FCGR 0.018 0.000 0.018 0.001 0.018 0.500 2.566
Spike2CGR 0.017 0.000 0.017 0.000 0.001 0.500 2.675
RandomCGR0.015 0.000 0.015 0.000 0.001 0.500 2.123
Bézier 0.011 0.000 0.011 0.001 0.011 0.500 2.332

% improv. of Bézier
from FCGR

-0.8 0 -0.8 0 -0.8 0 9.11

EfficientNet
FCGR 0.169 0.028 0.169 0.049 0.013 0.500 34.443
Spike2CGR 0.169 0.031 0.169 0.053 0.015 0.500 31.229
RandomCGR0.317 0.108 0.317 0.162 0.032 0.529 37.334
Bézier 0.465 0.427 0.465 0.394 0.157 0.577 35.768

% improv. of Bézier
from FCGR

29.6 39.9 29.6 34.5 14.4 7.7 -3.84

Table 5.10 Classification results for different models and algorithms for Coronavirus Host
dataset. The top 5% values for each metric are underlined.
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Category DL Model Method Acc. Prec. Recall F1
(Weig.)

F1
(Macro)

ROC
AUC

Train
Time
(hrs.)

Tabular Models
3-Tab OHE 0.768 0.839 0.768 0.790 0.452 0.719 0.042

WDGRL 0.615 0.740 0.615 0.660 0.326 0.603 0.0001

4-Tab OHE 0.796 0.843 0.796 0.807 0.474 0.736 0.056
WDGRL 0.631 0.754 0.631 0.673 0.346 0.623 0.0002

String
Kernel

- SVM 0.802 0.836 0.802 0.813 0.454 0.692 0.789
- NB 0.872 0.869 0.872 0.864 0.523 0.732 0.018
- MLP 0.611 0.771 0.611 0.666 0.348 0.626 2.478
- KNN 0.871 0.849 0.871 0.853 0.482 0.694 0.286
- RF 0.866 0.837 0.866 0.847 0.470 0.681 1.029
- LR 0.881 0.872 0.881 0.870 0.536 0.720 0.254
- DT 0.835 0.843 0.835 0.838 0.465 0.702 0.338

Custom CNN Models

1-Layer
FCGR 0.863 0.831 0.863 0.844 0.490 0.677 0.357
Spike2CGR 0.783 0.613 0.783 0.687 0.219 0.500 0.999
RandomCGR0.792 0.638 0.792 0.707 0.221 0.497 0.404
Bézier 0.835 0.779 0.835 0.781 0.314 0.548 0.805

% improv. of Bézier
from FCGR

-2.8 -5.2 -2.8 -6.3 -17.6 -12.9 -125.49

2-Layer
FCGR 0.852 0.833 0.852 0.837 0.489 0.676 0.419
Spike2CGR 0.783 0.613 0.783 0.687 0.219 0.500 1.196
RandomCGR0.800 0.640 0.800 0.711 0.222 0.500 0.389
Bézier 0.814 0.795 0.814 0.803 0.419 0.633 0.626

% improv. of Bézier
from FCGR

-3.8 -3.8 -3.8 -3.4 -7 -4.3 -49.40

3-Layer
FCGR 0.800 0.640 0.800 0.711 0.222 0.500 0.490
Spike2CGR 0.783 0.612 0.783 0.687 0.219 0.500 1.456
RandomCGR0.800 0.640 0.800 0.711 0.222 0.500 0.391
Bézier 0.830 0.748 0.830 0.780 0.296 0.541 0.637

% improv. of Bézier
from FCGR

3 10.8 3 6.9 7.4 4.1 -30

4-Layer
FCGR 0.831 0.735 0.831 0.779 0.329 0.586 0.498
Spike2CGR 0.783 0.612 0.783 0.687 0.219 0.500 1.776
RandomCGR0.800 0.640 0.800 0.711 0.222 0.500 0.435
Bézier 0.825 0.681 0.825 0.746 0.226 0.500 0.668

% improv. of Bézier
from FCGR

-0.6 -5.4 -0.6 -3.3 -10.3 -8.6 -34.13

Vision Transformer ViT
FCGR 0.767 0.588 0.767 0.666 0.217 0.500 0.031
Spike2CGR 0.754 0.487 0.74 0.565 0.211 0.500 0.650
RandomCGR0.756 0.512 0.756 0.632 0.201 0.500 0.032
Bézier 0.825 0.681 0.825 0.746 0.226 0.500 0.027

% improv. of Bézier
from FCGR

5.8 9.3 5.8 8 0.9 0 12.90

Pretrained Vision Models

ResNet-
50

FCGR 0.800 0.642 0.800 0.712 0.222 0.501 1.317
Spike2CGR 0.770 0.559 0.770 0.654 0.198 0.500 2.290
RandomCGR0.800 0.640 0.800 0.711 0.222 0.500 1.387
Bézier 0.835 0.780 0.835 0.796 0.334 0.601 0.175

% improv. of Bézier
from FCGR

3.5 13.8 3.5 8.4 11.2 10 86.71

VGG-19
FCGR 0.803 0.684 0.803 0.720 0.243 0.509 1.189
Spike2CGR 0.765 0.650 0.765 0.650 0.200 0.500 2.111
RandomCGR0.800 0.640 0.800 0.711 0.222 0.500 1.054
Bézier 0.825 0.681 0.825 0.746 0.226 0.500 2.144

% improv. of Bézier
from FCGR

2.2 -0.3 2.2 2.6 -1.7 -0.9 -80.31

DenseNet
FCGR 0.116 0.013 0.116 0.024 0.052 0.500 0.987
Spike2CGR 0.116 0.011 0.116 0.022 0.050 0.500 1.767
RandomCGR0.095 0.011 0.095 0.010 0.095 0.500 1.381
Bézier 0.105 0.011 0.105 0.020 0.105 0.500 1.211

% improv. of Bézier
from FCGR

-1.1 -0.2 -1.1 -0.4 5.3 0 -22.69

EfficientNet
FCGR 0.089 0.008 0.089 0.014 0.041 0.500 1.622
Spike2CGR 0.085 0.005 0.085 0.009 0.008 0.500 2.221
RandomCGR0.028 0.002 0.028 0.004 0.027 0.500 1.988
Bézier 0.058 0.003 0.058 0.006 0.027 0.500 1.566

% improv. of Bézier
from FCGR

-3.1 -0.5 -3.1 -0.8 -1.4 0 3.45

Table 5.11 Classification results for different models and algorithms for ACPs (Breast
Cancer) dataset. The top 5% values for each metric are underlined.
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Category DL Model Method Acc. Prec. Recall F1
(Weig.)

F1
(Macro)

ROC
AUC

Train
Time
(hrs.)

Tabular Models
3-Tab OHE 0.627 0.699 0.627 0.613 0.566 0.729 0.024

WDGRL 0.657 0.716 0.657 0.649 0.601 0.758 0.020

4-Tab OHE 0.680 0.704 0.680 0.661 0.581 0.762 0.042
WDGRL 0.654 0.692 0.654 0.635 0.551 0.743 0.038

String
Kernel

- SVM 0.618 0.617 0.618 0.613 0.588 0.753 39.791
- NB 0.338 0.452 0.338 0.347 0.333 0.617 0.276
- MLP 0.597 0.595 0.597 0.593 0.549 0.737 331.068
- KNN 0.645 0.657 0.645 0.646 0.612 0.774 1.274
- RF 0.731 0.776 0.731 0.729 0.723 0.808 12.673
- LR 0.571 0.570 0.571 0.558 0.532 0.716 2.995
- DT 0.630 0.631 0.630 0.630 0.598 0.767 2.682

Custom CNN Models

1-Layer
FCGR 0.717 0.719 0.717 0.709 0.711 0.834 0.351
RandmCGR 0.820 0.827 0.820 0.816 0.787 0.872 0.355
Spike2CGR 0.662 0.698 0.662 0.660 0.627 0.768 0.353
Bézier 0.710 0.712 0.710 0.700 0.713 0.831 0.339

% impro. of Bézier
from Spike2CGR

5.1 1.4 5.1 4 8.6 6.3 -3.9

2-Layer
FCGR 0.705 0.708 0.705 0.694 0.691 0.831 0.365
RandmCGR 0.785 0.791 0.785 0.782 0.750 0.845 0.622
Spike2CGR 0.665 0.685 0.665 0.664 0.633 0.786 0.692
Bézier 0.700 0.722 0.700 0.695 0.659 0.803 0.350

% impro. of Bézier
from Spike2CGR

3.5 3.7 3.5 3.1 2.6 1.7 49.4

3-Layer
FCGR 0.632 0.641 0.632 0.623 0.609 0.767 0.332
RandmCGR 0.710 0.724 0.710 0.697 0.661 0.807 0.530
Spike2CGR 0.580 0.636 0.580 0.582 0.514 0.715 0.331
Bézier 0.426 0.498 0.426 0.351 0.298 0.594 0.376

% impro. of Bézier
from Spike2CGR

-15.4 -13.8 -15.4 -23.1 -21.6 -12.1 -13.59

4-Layer
FCGR 0.300 0.090 0.300 0.138 0.065 0.500 0.331
RandmCGR 0.287 0.082 0.287 0.128 0.063 0.500 0.521
Spike2CGR 0.377 0.385 0.377 0.305 0.232 0.562 0.311
Bézier 0.313 0.097 0.313 0.149 0.068 0.500 0.321

% impro. of Bézier
from Spike2CGR

-6.4 -28.8 -6.4 -15.6 -16.4 -6.2 -3.2

Vision Transformer ViT
FCGR 0.300 0.090 0.300 0.138 0.065 0.500 0.782
RandmCGR 0.295 0.140 0.295 0.142 0.097 0.510 0.828
Spike2CGR 0.307 0.094 0.307 0.144 0.067 0.500 3.787
Bézier 0.382 0.326 0.382 0.323 0.239 0.613 0.654

% impro. of Bézier
from Spike2CGR

7.5 23.2 7.5 17.9 17.2 11.3 82.7

Pretrained Vision Models

ResNet-
50

FCGR 0.357 0.251 0.357 0.283 0.208 0.500 0.495
RandmCGR 0.290 0.192 0.290 0.137 0.072 0.500 0.481
Spike2CGR 0.352 0.341 0.352 0.295 0.208 0.565 2.443
Bézier 0.408 0.244 0.408 0.294 0.184 0.561 0.873

% impro. of Bézier
from Spike2CGR

5.6 -9.7 5.6 -0.1 -2.4 -0.4 64.2

VGG-19
FCGR 0.345 0.285 0.345 0.249 0.181 0.540 1.078
RandmCGR 0.287 0.082 0.287 0.128 0.063 0.500 1.115
Spike2CGR 0.307 0.094 0.307 0.144 0.067 0.500 3.032
Bézier 0.317 0.132 0.317 0.176 0.098 0.510 1.221

% impro. of Bézier
from Spike2CGR

1 3.8 1 3.2 3.1 1 59.7

DenseNet
FCGR 0.075 0.005 0.075 0.010 0.019 0.500 0.764
RandmCGR 0.062 0.003 0.062 0.007 0.016 0.500 0.825
Spike2CGR 0.067 0.004 0.067 0.008 0.018 0.500 1.295
Bézier 0.078 0.007 0.078 0.013 0.022 0.491 0.822

% impro. of Bézier
from Spike2CGR

1.1 0.3 1.1 0.5 0.4 -0.9 36.5

EfficientNet
FCGR 0.200 0.141 0.200 0.147 0.094 0.517 0.814
RandmCGR 0.287 0.082 0.287 0.128 0.063 0.500 0.837
Spike2CGR 0.275 0.169 0.275 0.187 0.112 0.524 1.343
Bézier 0.313 0.097 0.313 0.149 0.068 0.500 0.844

% impro. of Bézier
from Spike2CGR

3.8 -7.2 3.8 -3.8 -4.4 -2.4 37.1

Table 5.12 Classification results for different models and algorithms for Human DNA
dataset. The top 5% values for each metric are underlined.
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Category DL Model Method Acc. Prec. Recall F1
(Weig.)

F1
(Macro)

ROC
AUC

Train
Time
(hrs.)

Tabular Models
3-Tab OHE 0.966 0.935 0.966 0.950 0.098 0.500 0.132

WDGRL 0.966 0.935 0.966 0.950 0.098 0.500 0.001

4-Tab OHE 0.966 0.935 0.966 0.950 0.098 0.500 0.155
WDGRL 0.966 0.935 0.966 0.950 0.098 0.500 0.001

String
Kernel

- SVM 0.812 0.813 0.812 0.811 0.084 0.502 10.254
- NB 0.537 0.643 0.537 0.549 0.096 0.502 1.24
- MLP 0.789 0.788 0.789 0.790 0.079 0.505 13.149
- KNN 0.844 0.858 0.844 0.842 0.087 0.503 2.348
- RF 0.929 0.927 0.929 0.925 0.098 0.507 9.315
- LR 0.772 0.769 0.772 0.760 0.073 0.502 5.652
- DT 0.834 0.829 0.834 0.832 0.075 0.508 3.318

Custom CNN Models

1-Layer RandmCGR 0.962 0.926 0.962 0.944 0.098 0.500 0.988
Bézier 0.970 0.942 0.970 0.956 0.109 0.512 1.003

% impro. of Bézier
from RandomCGR

0.8 1.6 0.8 1.2 1.1 12 -1.51

2-Layer RandmCGR 0.962 0.926 0.962 0.944 0.098 0.500 0.989
Bézier 0.970 0.942 0.970 0.956 0.109 0.512 1.253

% impro. of Bézier
from RandomCGR

0.8 1.6 0.8 1.2 1.1 12 -26.6

3-Layer RandmCGR 0.962 0.926 0.962 0.944 0.098 0.500 1.411
Bézier 0.970 0.942 0.970 0.956 0.109 0.511 1.082

% impro. of Bézier
from RandomCGR

0.8 1.6 0.8 1.2 1.1 12 80.04

4-Layer RandmCGR 0.962 0.926 0.962 0.944 0.098 0.500 1.331
Bézier 0.970 0.942 0.970 0.956 0.109 0.512 1.210

% impro. of Bézier
from RandomCGR

0.8 1.6 0.8 1.2 1.1 12 9.09

Vision Transformer
ViT RandmCGR 0.962 0.926 0.962 0.944 0.098 0.500 1.876

Bézier 0.970 0.942 0.970 0.956 0.109 0.512 1.864

% impro. of Bézier
from RandomCGR

0.8 1.6 0.8 1.2 1.1 12 0.63

Pretrained Vision Models

ResNet-
50

RandmCGR 0.962 0.926 0.962 0.944 0.098 0.500 1.872
Bézier 0.970 0.940 0.970 0.950 0.100 0.500 1.142

% impro. of Bézier
from RandomCGR

0.8 1.4 0.8 0.6 0.2 0 38.99

VGG-19 RandmCGR 0.962 0.926 0.962 0.944 0.098 0.500 7.120
Bézier 0.970 0.940 0.970 0.950 0.100 0.500 2.899

% impro. of Bézier
from RandomCGR

0.8 1.4 0.8 0.6 0.2 0 59.2

DenseNet RandmCGR 0.001 0.024 0.001 0.004 0.000 0.500 5.043
Bézier 0.001 0.023 0.001 0.066 0.000 0.500 2.867

% impro. of Bézier
from RandomCGR

0 1 0 6.2 0 0 43.14

EfficientNetRandmCGR 0.962 0.926 0.962 0.944 0.098 0.500 4.892
Bézier 0.969 0.938 0.969 0.950 0.100 0.500 3.892

% impro. of Bézier
from RandomCGR

0.6 1.2 0.6 5.6 0.2 0 20.44

Table 5.13 Classification results for different models and algorithms for SMILES String
dataset. The best value for each metric is underlined. As the performances of most of the
models are the same and highlighting the top 5% includes a lot of data, that’s why we only
underlined the best one.
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Category DL Model Method Acc. Prec. Recall F1
(Weig.)

F1
(Macro)

ROC
AUC

Train
Time
(hrs.)

Tabular Models
3-Tab OHE 0.515 0.682 0.515 0.611 0.451 0.652 0.003

WDGRL 0.599 0.600 0.599 0.565 0.515 0.659 0.001

4-Tab OHE 0.516 0.555 0.516 0.511 0.451 0.652 0.003
WDGRL 0.612 0.588 0.612 0.588 0.530 0.670 0.001

String
Kernel

- SVM 0.301 0.322 0.301 0.294 0.294 0.615 0.886
- NB 0.369 0.376 0.369 0.357 0.352 0.649 0.039
- MLP 0.219 0.231 0.219 0.212 0.211 0.568 3.476
- KNN 0.400 0.409 0.400 0.388 0.387 0.669 0.169
- RF 0.341 0.354 0.341 0.334 0.333 0.638 1.478
- LR 0.397 0.397 0.397 0.389 0.386 0.666 21.209
- DT 0.283 0.290 0.283 0.282 0.281 0.603 0.392

Custom CNN Models

1-Layer RandmCGR 0.989 0.989 0.989 0.989 0.989 0.989 0.400
Bézier 0.957 0.953 0.957 0.953 0.844 0.919 0.312

% improv. of Bézier
from RandomCGR

-3.2 -3.6 -3.2 -3.6 -14.5 -7 22

2-Layer RandmCGR 0.985 0.985 0.985 0.985 0.985 0.992 0.4121
Bézier 0.943 0.941 0.943 0.939 0.827 0.911 0.345

% improv. of Bézier
from RandomCGR

-4.2 -4.3 -4.2 -4.6 -15.8 -1.1 16.2

3-Layer RandmCGR 0.085 0.007 0.085 0.013 0.015 0.500 0.541
Bézier 0.886 0.893 0.886 0.882 0.789 0.887 0.453

% improv. of Bézier
from RandomCGR

80.1 88.6 80.1 86.9 77.4 38.7 16.2

4-Layer RandmCGR 0.155 0.044 0.155 0.063 0.074 0.545 0.554
Bézier 0.900 0.908 0.900 0.897 0.802 0.895 0.438

% improv. of Bézier
from RandomCGR

74.5 86.4 74.5 83.4 72.8 35 20.9

Vision Transformer
ViT RandmCGR 0.110 0.012 0.110 0.021 0.019 0.500 0.807

Bézier 0.099 0.009 0.099 0.017 0.022 0.500 1.090

% improv. of Bézier
from RandomCGR

-1.1 -0.3 -1.1 -0.4 -0.3 0 -23.9

Pretrained Vision Models

ResNet-
50

RandmCGR 0.525 0.608 0.525 0.485 0.496 0.740 0.653
Bézier 0.546 0.545 0.546 0.479 0.457 0.728 0.543

% improv. of Bézier
from RandomCGR

2.1 -6.3 2.1 0.6 -3.9 -1.2 16.8

VGG-19 RandmCGR 0.410 0.421 0.410 0.334 0.410 0.673 1.220
Bézier 0.843 0.867 0.843 0.838 0.741 0.856 1.421

% improv. of Bézier
from RandomCGR

43.3 44.6 43.3 50.4 33.1 18.3 -16.47

DenseNet RandmCGR 0.080 0.056 0.080 0.052 0.053 0.489 2.118
Bézier 0.113 0.130 0.113 0.043 0.049 0.508 2.332

% improv. of Bézier
from RandomCGR

3.3 7.4 3.3 -0.9 -0.4 1.9 -10.10

EfficientNetRandmCGR 0.735 0.719 0.735 0.697 0.689 0.851 1.011
Bézier 0.929 0.928 0.929 0.924 0.808 0.898 0.889

% improv. of Bézier
from RandomCGR

19.4 20.9 19.4 22.7 11.9 4.7 12.06

Table 5.14 Classification results for different models and algorithms for Music Genre
dataset. The top 5% values for each metric are underlined.

Dataset Method AUC

Coronavirus Host

OHE 0.3914
Spike2Vec 0.4054
PWM2Vec 0.4169

PSSMFreq2Vec 0.4029
PSSM2Vec 0.4417

SARS-CoV-2

OHE 0.2248
Spike2Vec 0.2549
PWM2Vec 0.2850

PSSMFreq2Vec 0.2554
PSSM2Vec 0.2819

Table 5.16 k-ary neighborhood agree-
ment for k = 1 to 99.

Dataset No. of Seq. Method Runtime

Coronavirus Host 5558

OHE 196.31 Sec.
Spike2Vec 1179.66 Sec.
PWM2Vec 1506.63 Sec.

Approx. Kernel 379.47 Sec.
PSSMFreq2Vec 908.12 Sec.
PSSM2Vec 48.25 Sec.

SARS-CoV-2 2519386

OHE > 3 days
Spike2Vec > 3 days
PWM2Vec > 3 days

PSSMFreq2Vec > 3 days
PSSM2Vec > 4 Hours

Table 5.17 Runtime for generating feature vectors
using different methods.
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CHAPTER 6

Conclusion

This work deals with proposing methods to transform bio-sequence data into ML/DL com-

patible form. In this regard, two categories of alignment-free methods are put forward,

feature-engineering-based and image-based encoding methods. Among the feature-engineering-

based methods, PSSM2Vec and PSSMFre2Vec are scalable and compact, and Hashing2Vec

is fast in terms of embedding generation runtime. Moreover, the image-based encoding

methods have enabled the application of DL models on bio-sequence classification.
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