Measuring the Thresholds of Extremism: Testing for Measurement Invariance Between Muslim Converts and Muslim Non-Converts of Radicalism With an Ordinal Model

Ari Fodeman

Follow this and additional works at: https://scholarworks.gsu.edu/psych_theses

Recommended Citation
doi: https://doi.org/10.57709/18371405
MEASURING THE THRESHOLDS OF EXTREMISM: TESTING FOR MEASUREMENT INVARIANCE BETWEEN MUSLIM CONVERTS AND MUSLIM NON-CONVERTS OF RADICALISM WITH AN ORDINAL MODEL

by

ARI FODEMAN

Under the direction of John Horgan, Ph.D.

ABSTRACT

Assessment of the risk of radicalism remains underdeveloped by terrorism researchers in part due to difficulties in standardized measurement. The Activism and Radicalism Intention Scales (ARIS) by Moskalenko and McCauley (2009)— an already robust and widely applicable tool—will be further improved upon and standardized in this proposed project using data previously collected via a grant-funded research project. Specifically, the Measurement Equivalence/Invariance of the latent factor Radicalism is tested for using two radicalism-relevant groups—Muslim converts and Muslim non-converts. Ordinal logistic regression, rather than a typical linear regression, is used since it is a more accurate statistical estimation of Likert survey data, like that found in the ARIS. These methods are the first of many steps to set a standard for more accurate measurement for surveying intervention outcomes and group comparisons in Countering Violent Extremism (e.g., at risk versus control or pre- versus post-treatment).

INDEX WORDS: Muslim, Radicalism, ARIS, CFA, Ordinal logistic, Measurement invariance
MEASURING THE THRESHOLDS OF EXTREMISM: TESTING FOR MEASUREMENT INVARIANCE BETWEEN MUSLIM CONVERTS AND MUSLIM NON-CONVERTS OF RADICALISM WITH AN ORDINAL MODEL

by

ARI FODEMAN

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of the Arts in the College of Arts and Sciences

Georgia State University

2020
MEASURING THE THRESHOLDS OF EXTREMISM: TESTING FOR MEASUREMENT INVARIANCE BETWEEN MUSLIM CONVERTS AND MUSLIM NON-CONVERTS OF RADICALISM WITH AN ORDINAL MODEL

by

ARI FODEMAN

Committee Chair: John Horgan

Committee: Anthony Lemieux
Kevin Swartout
Lee Branum-Martin

Electronic Version Approved:

Office of Graduate Studies
College of Arts and Sciences
Georgia State University
August 2020
ACKNOWLEDGEMENTS

I want to thank my family, friends, and mentors for supporting me personally and academically while preparing this thesis proposal. I want to give a special thank you first and foremost to my thesis committee chair, supervisor, and role model Dr. John Horgan; He has given me the room to grow into the kind of scientist I want to be, and he models a level of tenacity, productivity, and professionalism that I aspire to. He has helped me above all else to focus on honing my writing abilities, especially my wordiness that I have clearly forgone in this Acknowledgement. I cannot continue without saying that he graciously allowed me to use his lab’s data for this thesis, without which I could not practice these more advanced statistical techniques. On that note, I want to thank Dr. Lee Branum-Martin profusely as well, not only for his excellent classes in Structural Equation Modeling (SEM) through which I was able to learn the skills for this thesis analysis, but his advice beyond that as a statistician in far too many an email or meeting. His patience, knowledge, and deep love of teaching is something I wish to emulate as well in my career. My two other committee members, Drs. Kevin Swartout and Anthony Lemieux, I asked to sit on my committee as well because of their exemplary work as scientists and relevant knowledge to this thesis work; I trust that I can learn a great deal from them both as well. I trust their familiarity in researching difficult topics like radicalism and violence to aid me in this thesis review. Lastly, I could not have sculpted this manuscript to its present state without the help of both the Writing Studio and the Research and Data Services teams—most notably Dr. Raeda Anderson whose knowledge of CFA and statistical writing generally was an invaluable supplement to that provided by Dr. Branum-Martin.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. IV

LIST OF TABLES ... VIII

LIST OF FIGURES .. IX

LIST OF TERMS & ACRONYMS ... X

LIST OF SYMBOLS ... XI

1 INTRODUCTION ... 1

2 BACKGROUND ... 2

2.1 Clarifying Terms .. 2

2.1.1 Terrorism ... 2

2.1.2 Contextualizing Terrorism: Activism, Radicalism, & Mobilization 3

2.2 Measurement Problems & Solutions in Radicalism Research .. 5

2.2.1 Lack of Radicalism Data .. 5

2.2.2 Difficulty of Measuring Radicalism ... 6

2.2.3 Measuring Radicalism Better: The ARIS .. 6

2.3 Evaluating Survey Measures: Factor Analysis and Bias .. 9

2.3.1 Factor Analysis ... 9

2.3.2 Measurement Equivalence/Invariance. ... 11

2.3.3 ARIS Measurement Specifications ... 13

2.4 Estimating Ordinal Survey Items With CFA For ME/I .. 18

2.4.1 Comparing OLS & Ordinal Logistic Regression for CFA ... 18
2.4.2 Multiple-Group Categorical CFA ... 18

2.5 Specific Aim: Test for ME/I of the ARIS between American Muslim converts and American Muslim non-converts ... 20

3 METHODS ... 20

3.1 Procedures .. 20

3.1.1 Original Study’s Participant Screening & Recruitment 20

3.1.2 Original Study’s Sample Recruitment Considerations 22

3.1.3 Original Study’s Materials ... 22

3.1.4 Original Study’s Data Collection Participant Protection 23

3.2 Estimation Method & Fit Indices ... 23

4 RESULTS .. 24

4.1 Summary Statistics: Thresholds, Variances & Polychoric Correlations 24

4.1.1 Summary Frequencies & Thresholds ... 24

4.1.2 Summary Correlations ... 24

4.2 Model Results: Data Elements, Parameter Estimates & Fit 25

5 CONCLUSION .. 30

5.1 Discussion ... 30

5.2 Strengths and Limitations .. 33

5.3 Conclusion .. 35

6 REFERENCES .. 38
7 APPENDIX..48

7.1 Ordinal ME/I Conundrum: Scalar vs. Threshold Invariance48

7.2 Statistical Estimator Choice ..49

7.3 GoF Indices for Ordinal Indicators ..50

7.4 Choosing GoF Indices & Cutoffs ...51

7.5 ME/I Summary Statistics Reporting Procedures for Ordinal Indicators53
LIST OF TABLES

Table 1. ARIS Item Names & Survey Questions ... 7
Table 2. Original ARIS Likert Scale Items & EFA/PCA Factor Loadings (λ) 14
Table 3. Comparing Mean & SD of All 10 ARIS Item Scores Between Studies 16
Table 4. Polychoric Correlations Between RIS Indicators .. 24
Table 5. Data elements, parameters & specifications for ME/I models of the RIS 25
Table 6. RIS Scalar vs. Latent Mean Invariance Models’ Estimates 27
Table 6. GoF Index Comparisons ... 51
Table 7. Relevant GoF Cutoff Values Indicating Noninvariance 53
LIST OF FIGURES

Figure 1. Venn Diagram of Political Mobilization ... 3
Figure 2. Political Action Pyramid (adapted from Moskalenko & McCauley, 2017). 4
Figure 3. ARIS Structural CFA Model Diagram ... 10
Figure 4. Horgan lab sample ARIS 10-item Estimated CFA Model 15
Figure 5. Stacked RIS Histograms, Means, and SDs of RIS With & Without 'Zeroes' 17
Figure 6. Proposed ME/I Thesis Testing Steps ... 19
Figure 7. Response Frequencies To All ARIS Items For All Participants. 24
Figure 8. GoF and ΔGoF Indices For All ME/I Models and Paths .. 26
Figure 9. RIS Scalar Invariance Thresholds & Factor Scores ... 30
LIST OF TERMS & ACRONYMS

A
- activism
 - legal and non-violent political action
 (Moskalenko & McCauley, 2009). 7, 10, 12, 13, 18, 23
- AIS
 - Activism Intentions Scale10, 12, 16, 17, 19, 20, 23, 26, 27, 55
- ARIS
 - The Activism and Radicalism Intention Scales (Moskalenko & McCauley, 2009)....i, 5, 10, 11, 12, 13, 16, 17, 19, 20, 23, 24, 25, 27, 28, 37, 39, 40, 41

C
- CFA
 - Confirmatory Factor Analysis....i, v, 13, 14, 17, 18, 19, 21
- CFI
 - Comparative Fit Index......... 19, 53, 54, 55

D
- df
 - degrees-of-freedom 29, 53

G
- GoF
 - goodness-of-fit..19, 27, 30, 37, 41, 53, 54, 55

M
- MCCFA
 - Multiple-Group Categorical CFA 21, 22, 55
- ME/I
 - Measurement Non-Equivalence/Invariance...14, 15, 16, 19, 21, 22, 23, 27, 37, 40, 51, 52, 53, 55
- ML
 - Maximum Likelihood 52, 53, 55

O
- OLS
 - Ordinary Least Squares 21, 52

P
- Political mobilization
 - increasing extremity of beliefs, feelings, and actions in support of intergroup conflict (Moskalenko & McCauley, 2009).............................. 7

R
- radicalism
 - political mobilization that is both illegal and violent (Moskalenko & McCauley, 2009) i, 9, 10, 12, 13, 17, 18, 19, 23, 25, 28, 40
- RIS
 - Radicalism Intentions Scale 10, 12, 16, 17, 18, 19, 20, 21, 23, 26, 40

RMSEA
- Root Mean Square Error of Approximation 19, 53, 54, 55

T
- terrorism
 - Violence, or threat thereof, against noncombatants to send a message to engender political change..i, 6, 8, 9, 10, 23, 40

V
- VE
 - Violent Extremism............................ 8, 9

W
- WLS
 - Weighted Least Squares 52, 55
- WLSMV
 - Mean-and-Variance-adjusted WLS 26, 52, 53
LIST OF SYMBOLS

There are many different symbol conventions for parameters in CFA between fields, statistical approaches (e.g., Structural Equation Modeling (SEM) versus Item Response Theory), and even textbooks. The figures in this manuscript utilize a combination of conventions. Below is a table adapted from Dr. Lee Branum-Martin’s “Counting Degrees of Freedom” handout for his Stats III class on SEM. These symbols will be used in the proposed study thereof.

<table>
<thead>
<tr>
<th>Type</th>
<th>Sub-type</th>
<th>Parameter</th>
<th>Name</th>
<th>Definition</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>Means</td>
<td>ν</td>
<td>nu</td>
<td>Observed mean</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regression</td>
<td>α</td>
<td>alpha</td>
<td>Latent mean</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(single-headed</td>
<td>λ, Λ</td>
<td>lambda</td>
<td>observed on latent regression:</td>
<td>measurement</td>
</tr>
<tr>
<td>arrows)</td>
<td>Factor</td>
<td>β, B</td>
<td>beta</td>
<td>latent on latent regression</td>
<td></td>
</tr>
<tr>
<td></td>
<td>loadings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covariances</td>
<td></td>
<td>θ, Θ</td>
<td>theta</td>
<td>Observed variance-covariance</td>
<td></td>
</tr>
<tr>
<td>(double-headed</td>
<td></td>
<td>ψ, Ψ</td>
<td>psi</td>
<td>Latent variance-covariance</td>
<td>φ often used</td>
</tr>
<tr>
<td>arrows)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>instead</td>
</tr>
<tr>
<td>Scores</td>
<td></td>
<td>X</td>
<td></td>
<td>Observed variable score</td>
<td></td>
</tr>
<tr>
<td>(boxes & circles)</td>
<td></td>
<td>η</td>
<td>eta</td>
<td>latent factor score (implicit)</td>
<td>Capitalized & italicized</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ε</td>
<td>epsilon</td>
<td>observed variable residual score</td>
<td>letters (e.g.,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(implicit)</td>
<td>A or B) often used</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>to distinguish different</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>factors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E often used</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

The psychology of terrorism is not well understood (Victoroff, 2005). Terrorism prevention remains particularly underdeveloped due in part to the difficulty in measuring individual risk of engagement and therefore Countering/Preventing Violent Extremism (C/PVE) programs’ risk reduction effectiveness (Scarcella, Page, & Furtado, 2016; Gielen, 2017; Mirahmadi, 2016; Sarma, 2017; van den Berg, van Hemert, & van Vliet, 2018; Veldhuis & Kessels, 2013). An important part of risk assessment is its accuracy. This proposed thesis project aims to improve the measurement of the Activism and Radicalism Intention Scales (ARIS), developed by Moskalenko & McCauley (2009), one of the more robust and widely applicable tools used to assess radicalism (Scarcella, Page, & Furtado, 2016). Specifically, Measurement Invariance is tested between two groups—Muslim converts and Muslim non-converts—who are over- and under-represented respectively among Muslim terrorists in the United States (U.S.) and some Western European nations (Schuurman, Grol, & Flower, 2016). While there may be other explanations for Muslim converts’ overrepresentation among Muslim terrorists than greater intentions of engaging in radicalism, the link between radicalism intentions and terrorism warrants this cautious, caveated analysis. It will probably be a long time, if ever, before science can uncover the necessary, sufficient, and discrete causes and pathways to radicalism generally and terrorism particularly; however, by adopting these contemporary measurement methods, researchers may more accurately compare populations’ radicalism intentions. Using methods like these, researchers and practitioners interested in radicalism risk assessment can work towards more rigorous standards of measurement. This is particularly apt considering how the use of poor statistical techniques, if any, has been criticized in the field (Silke, 2001; Rich & Hoffman, 2004;
2 BACKGROUND

2.1 Clarifying Terms

2.1.1 Terrorism

Terrorism research has had its fair share of definitional differences, even among widely used databases\(^1\) (Schmid, 2004; Young & Findley, 2011). While the definition of terrorism is contested around the world, both legally and academically (Ganor, 2002; Schmid, 2011, 2012), it is most widely defined as violence, or the threat thereof, against noncombatants\(^2\) (Richardson, 2006) to send a message to engender political change (Hoffman, 2006). The political motivation in terrorism can be difficult to operationalization. Motive is particularly difficult to ascertain, let alone classify, since it is a question not of action—something tangible and therefore more verifiable—but rather of intention. Regardless of what qualifies as terrorism, scholars agree that it constitutes the most extreme ends of what some call the political mobilization spectrum.

\(^1\) Selectivity bias is a major concern in terrorism datasets due to different operationalizations (Mahoney, 2018) and ex/inclusion criteria fidelity (Chermak, Freilich, Parkin, & Lynch, 2012).

\(^2\) Includes both civilians and, arguably, military personnel who are not, when attacked, engaged in military operations (e.g., Nidal Hasan’s mass shooting at Fort Hood), or only indirectly (e.g., IEDs against military convoys). The latter distinction is difficult to tease apart from guerrilla warfare, however, depending on the law (Ganor, 2002).
2.1.2 Contextualizing Terrorism: Activism, Radicalism, & Mobilization

Terrorism and related behaviors have been classified a number of different ways. One particularly helpful conception is McCauley and Moskalenko’s Political Mobilization definitions (2009) and Two Pyramid Model (2017). Political mobilization, as defined by McCauley and Moskalenko, entails “increasing extremity of beliefs, feelings, and actions in support of intergroup conflict” (2009). Behaviors captured by this definition can be classified as activism and/or radicalism (see Figure 1 above for a visualization). Scholars use the term activism, or “legal and non-violent political action” (Moskalenko & McCauley, 2009), to describe various behaviors, including volunteering, voting, protesting, and even lobbying, campaigning, or financing. Radicalism, conversely, is the class of political mobilization that is both illegal and violent. This includes terrorism, as well as other types of political violence (e.g., war or insurgency). In the fields of terrorism research, extremism is often used

3 Scholars also refer to these behaviors as civic or political engagement (Abdi et al., 2015).
4 See Bötticher (2017) for a discussion of use, misuse, disagreements and consensus in the field.
synonymously with radicalism, although the modifier “violent” is often given to emphasize violent action (i.e., “violent extremism” or VE). There are also some behaviors that are non-violent, but illegal, such as civil disobedience or guerilla protest that fall between activism and radicalism. Moskalenko and McCauley (2017) arrange those who engage in political mobilization along a spectrum of extremity that, in terms of frequency, befits a pyramid (see Figure 2 below). That is to say that, the more extreme the behavior, the fewer people engage in it. Levels of extremism can be skipped: engaging at one level is not dependent upon engaging at any other levels (visualized via purple two-headed arrows in Figure 2 below).

The Pyramid Model is juxtaposed to linear models of terrorism engagement, such as Moghaddam’s Staircase (2005; see Hafez & Mullins, 2015 for discussion). It is this movement from inertia or activism into radicalism or terrorism that C/PVE programs attempt to prevent, and movement in the opposite direction that they attempt to promote.

Figure 2. Political Action Pyramid (adapted from Moskalenko & McCauley, 2017).

- **Terrorists**: Engage in illegal political action targeting violence against noncombatants for a group/cause.
- **Radicals**: Engage in illegal political actions for a group/cause.
- **Activists**: Engage in legal, non-violent political action for a group/cause.
- **Inert**: Do nothing for a political group/cause.
2.2 Measurement Problems & Solutions in Radicalism Research

2.2.1 Lack of Radicalism Data

C/PVE often focuses on identifying at-risk individuals based on factors assumed relevant to radicalism engagement (Weine, 2016; van den Berg, van Hemert, & van Vliet, 2018). These factors, however, are understudied, and an evidence base for the field is still being developed (Zeiger, et al., 2015). For many years, there was little research into VE risk assessment (Scarcella, Page, & Furtado, 2016; Altier, Thoroughgood, & Horgan, 2014). Most risk assessments have been conducted on known terrorism offenders to inform their sentencing, rehabilitation, and reintegration (Sarma, 2017). However, some risk assessment is aimed at preventing movement into radicalism or terrorism from inertia, activism, or radicalism. All of these risk assessments are either quantitative, discrete checklists with actuarial potential or qualitative, structured professional judgements (SPJ). In either case, these assessments largely focus on risks of imminent and acute threats (i.e., risk of committing terrorism within months or weeks of assessment) rather than solely radical attitudes, intentions of engaging in radicalism more broadly, or the more innocuous activism. There is a dearth of data on these risk assessments and correlated outcomes (Gielen, 2017; van den Berg, van Hemert, & van Vliet, 2018), particularly non-terrorism outcomes. This is unsurprising given that these assessments are rarely transparent (Horgan & Braddock, 2010). Indeed, Veldhuis and Kessels (2013) bemoaned the need for not only more data, but more structured collection, with standardized tools. This would allow comparisons across individuals, programs, time, and studies (i.e., meta-analysis). Even if the data were available, however, a medical-model approach may not be possible given what we know (or, more importantly, what we do not) about radicalism.
2.2.2 Difficulty of Measuring Radicalism

Few of the already rare quantitative radicalism measures and risk assessments thereof that have been conducted are based on scientific research, and those that are have an insufficient evidence base to predict who will commit VE (Sarma, 2017; Horgan & Taylor, 2011). The difficulty in evidence gathering and modeling arises from issues of causality and sample size (n). Radicalization and VE are the products of a multitude of neither sufficient nor necessary risk factors that vary widely across individuals. Measuring and modeling these complex, dynamic, multi- and equi-final processes (Horgan, 2008) is difficult given the low base rate of radicalism generally, let alone terrorism specifically (Gill, Horgan, Corner, & Silver, 2016)—not to mention the even rarer recidivism rates among former terrorists. Low base rates make actuarial science and establishing discriminant validity of these assessments a Herculean task in comparison to the already difficult assessment of risk of violence generally (Pressman, 2009). Regardless of evidence, however, intervention programs operate across the globe, affecting thousands. Given that reality, researchers ought to guide practitioners towards standardized tools for measuring radicalism starting with the best candidate tools for improvement.

2.2.3 Measuring Radicalism Better: The ARIS

In order to find the best and most relevant tools, Scarcella et al. (2016) conducted a systematic review of articles concerning measures of extremism, terrorism, fundamentalism, radicalization, and authoritarianism. They aggregated 835 articles from 20 databases across 5 subject areas (law, medicine, psychology, sociology and politics). Following PRISMA6 standards

5 E.g., The UK Channel Project had >8,000 referrals in its first 10 years, of which ~43% were assessed to be ‘at risk of radicalization’ and received support (Scarcella, Page, & Furtado, 2016).
6 The “Preferred Reporting Items for Systematic Reviews & Meta-Analysis” (PRISMA) guidelines as described by the organization of the same name.
(Moher, Liberati, Tetzlaff, Altman, & Group, 2009), they narrowed this pool of material down to 37 articles covering 16 different tools measuring the identified concepts. Among those 16 tools, Scarcella and colleagues ranked the Activism and Radicalism Scales (ARIS; Moskalenko & McCauley, 2009) as one of the best measures. This was based on methodological markers such as explanation of theory, methods, and sample selection, as well as psychometric properties including readability, cultural translation, and construct and internal validity. The ARIS is a survey of 8 to 10 questions (see Table 1 below), depending on the version (see section 2.3.3 below) gauging people’s intentions of engaging in activism (i.e., the Activism Intentions Scale, AIS) and radicalism (i.e., the Radicalism Intentions Scale, RIS). No previous scale captured both legal and illegal political behaviors together.

<table>
<thead>
<tr>
<th>AIS</th>
<th>Join</th>
<th>I would join/belong to an organization that fights for my group’s political & legal rights</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Donate</td>
<td>I would donate money to an organization that fights for my group’s political & legal rights</td>
</tr>
<tr>
<td></td>
<td>Volunteer</td>
<td>I would volunteer my time working (i.e., write petitions, distribute flyers, recruit people, etc.) for an organization that fights for my group’s political & legal rights</td>
</tr>
<tr>
<td></td>
<td>Protest</td>
<td>I would travel for one hour to join in a public rally, protest, or demonstration in support of my group</td>
</tr>
<tr>
<td>RIS</td>
<td>Illegal Group</td>
<td>I would continue to support an organization that fights for my group’s political & legal rights even if the organization sometimes resorts to violence</td>
</tr>
<tr>
<td></td>
<td>Violent Group</td>
<td>I would continue to support an organization that fights for my group’s political & legal rights even if the organization sometimes breaks the law</td>
</tr>
<tr>
<td></td>
<td>Violent Protest</td>
<td>I would participate in a public protest against oppression of my group even if I thought the protest might turn violent</td>
</tr>
<tr>
<td></td>
<td>Police Defense</td>
<td>I would attack police or security forces if I saw them beating members of my group</td>
</tr>
<tr>
<td></td>
<td>War</td>
<td>I would go to war to protect the rights of my group</td>
</tr>
</tbody>
</table>

Table 1. ARIS Item Names & Survey Questions
Retaliation: I would retaliate against members of a group that had attacked my group, even if I couldn’t be sure I was retaliating against the guilty party.

Note. Response scale 7-point Likert-type: “Strongly Disagree” (1) to “Strongly Agree” (7).

As seen in Table 1 above, each ARIS survey item references “my group.” Depending on the context of the study, participants can either A) choose the group that they report is most important to them—whether familial, collegiate, national, ethnic, religious, or political—or B) a group can be assigned to them based on an already acknowledged group membership. These items cover a range of activism and radicalism activities to varying degrees of extremity. The radicalism items are phrased with less specificity than the activism questions in order to counteract social desirability bias in respondents. Respondents answer each item on a 7-point Likert-type scale, from “Strongly Disagree” (1) to “Strongly Agree” (7), from which a composite score for each factor is calculated. Specifically, the AIS is composed of the first 4 questions (resulting in a range from 4 (“Strongly Disagree” for every item) to 28 (“Strongly Agree” for every item), and the RIS is composed of the latter 4 or 6, depending on the version (see discussion in section 2.3.3 below). In their three initial trials of the ARIS, Moskalenko and McCauley (2009) found that past activism and radicalism behaviors predicted both AIS and RIS scores respectively, connecting intentions to behaviors. After establishing this relationship, Moskalenko and McCauley created both a past actions and future intentions version of the survey questions. The past actions version, they argue, is useful for avoiding social desirability bias that might artificially lower scores, particularly on the RIS, versus future intentions.

While published research thus far on the ARIS has primarily been used in only laboratory settings, ARIS levels have been correlated with a variety of social-psychological factors that are theoretically relevant to the development of activism and radicalism. First and foremost are different types and levels of ingroup identification. These include birth and host country, religion
(specifically Christian or Muslim), political affiliation, clan, tribe, or even family (Moyano & Trujilo, 2014; Ellis, et al., 2016; Moskalenko & McCauley, 2009). A wide array of other correlates have been found, such as relative deprivation (Chikhi, 2017); perceived oppression and religious extremism (Moyano & Trujilo, 2014); Social Dominance Orientation and Right-Wing Authoritarianism (Lemieux, Kearns, Asal, & Walsh, 2017); and/or exposure to personal trauma and strong social bonds (Ellis, et al., 2016). Some of these correlates have even been manipulated experimentally to predict ARIS outcomes (Lemieux, Kearns, Asal, & Walsh, 2017). However, none of these studies reconsidered factor strength or measurement bias after Moskalenko and McCauley’s original paper (see section 2.3.3 below for their analysis).

Researchers should as the ARIS demonstrates several peculiarities that warrant more careful consideration—namely, non-normal, positively skewed Likert survey responses. This research project aims to address those peculiarities and measure them appropriately. In order to do so, we will first review, in brief, the primary means of developing survey index scales: Factor Analysis.

2.3 Evaluating Survey Measures: Factor Analysis and Bias

2.3.1 Factor Analysis

Factor Analysis (FA) is a technique used to determine if a set of indicators measure a single cohesive concept. More specifically, FA is a statistical method for testing whether variation in observed, correlated variables (indicators, such as individual survey questions) can be better explained by a fewer number of latent variables (factors, such as activism or radicalism). For example, FA is a way of modeling correlations between several indicators such as salary, assets, job skill, and education as a single factor of socioeconomic status. In Confirmatory Factor Analysis (CFA), factors constructed a priori are modeled by constraining
indicators (e.g., X_3 or Volunteering from the ARIS in Figure 3 below) to be predicted by their predetermined factors (e.g., Activism or η_1), means (e.g., ν_3) and variance or error (e.g., θ_3).

Figure 3. ARIS Structural CFA Model Diagram.

Key: Squares = manifest variables, i.e. indicators (X's); circles = latent variables (η's).

Key: λ = factor loadings; θ = indicator variances; ψ = latent factor (co)variances; ν = indicator means; α = latent means.

CFA improves accuracy and specificity over typical composite factor scoring (i.e., adding up indicator scores), as the latter makes several often false assumptions: A) the theorized factor structure is real as modeled and detectable as measured; B) each item has equal weight7 (λ’s) or different loadings will not affect factor means (α); and C) individual items’ variances (θ’s) are equal or will not affect factor variances (ψ’s). CFA, on the other hand, assumes none of the above, and can be used to test those assumptions. Violations of these assumptions threaten the internal validity of the latent construct. Save for Decker and Pyrooz’s 2019 study (discussed in section 2.3.3 below), all studies employing the ARIS subsequent to Moskalenko and McCauley’s

7 i.e., items are often added linearly unless one item is given different weight than another item *a priori*; the standard in ARIS research thus far has been to composite scores linearly.
2009 development of it have made those assumptions. While Decker and Pyrooz tested the factor structure in a more robust way than Moskalenko and McCauley originally conducted, they still assumed distributional qualities of the ARIS that would bias estimates of λ and ψ—namely, that the ARIS items are continuous and normally-distributed, when in fact they are ordinal with typically positive skew. Failing to meet these assumptions threatens the internal validity of the ARIS as measured in all of the aforementioned studies, let alone any ARIS score comparisons.

When comparing groups, there is an additional assumption called Measurement Equivalence/Invariance (ME/I) that, if violated, threatens external validity. ME/I is the condition that groups respond to all parts of a measure the same way (i.e., that the test is not biased against one group or another), such that all the parameters just discussed are equal across groups (e.g., that Protesting is as good a predictor of Activism in an autocracy as it is in a democracy with the right to assemble). Researchers ought to concern themselves with ME/I to avoid biased survey results when comparing groups on factor scores. ME/I is explained in 2.3.2 below.

2.3.2 Measurement Equivalence/Invariance.

ME/I is the condition under which groups are measured (e.g., via survey) in the same way. Often, surveyors are interested in determining whether there are significant differences between groups on a factor score such as RIS, but only the factor score—not on any individual part of the survey. In order to accurately compare factor scores, surveyors test for ME/I between groups on all of the aforementioned model parameters—i.e., indicator means (ν) and (co)variances (θ), plus factor loadings (λ), means (α) and (co)variances (ψ). If only factor means (α’s) significantly vary between groups, then those groups can be said to truly differ; if, however, there is not ME/I—if one or more other parameters significantly differ between groups—then the factor mean differences may be biased.
The order and type of ME/I tests are largely agreed upon in the literature for continuous indicators (Vandenberg & Lance, 2000). First, Configural Invariance: the factor structure for one group is equivalent for another ($Model\ structure_{Group1} = Model\ structure_{Group2}$). For example, protest may be a sign of activism in a democracy, but a sign of radicalism in an autocracy; thus, the configuration of the ARIS is noninvariant across countries. Second, Metric Invariance: the factor loadings for one group equal those of another (Configural Invariance & $\lambda_{Group1} = \lambda_{Group2}$). For example, donating might be a stronger predictor of activism for the middle class than for the lower or upper class because the former does not have the capitol to donate, and the latter may donate for status or tax breaks rather than for activism; thus, the metrics of activism (the indicators) are noninvariant across class. Third, Scalar Invariance: the indicator means for one group are equal to those of another (Metric Invariance & $\nu_{Group1} = \nu_{Group2}$). For example, the average number of violent protests may be less for environmentalist radicals than for anti-abortion radicals because the former group does not have an equally fervent opposition with whom to clash; therefore, the scale of violent protests is noninvariant across political movements. The last widely agreed upon step is testing for Factor Means Invariance: whether the factor means are equal across groups (Scalar Invariance & $\alpha_{Group1} \neq \alpha_{Group2}$). Factor means often are assumed to be unequal, as in this study where the literature would suggest that Muslim converts ought to demonstrate higher intentions of radicalism engagement than Muslim non-converts. Note that at each ME/I stage, the previously equality-constrained parameters continue to be restricted, resulting in increasingly stringent models (i.e., more and more parameters are modeled as equivalent across groups). If at any stage restricted models fit significantly poorer than the previously less restricted one, then there is not complete ME/I, but rather Configural, Metric, Scalar, or Factor Mean Noninvariance. Noninvariance suggests that
groups may respond differently to one or more parts of a survey (i.e., there is Differential Item Functioning, or DIF). The parameters with DIF can be estimated separately between groups for Partial Invariance (PI); however, testing for PI is beyond the scope of this thesis.

2.3.3 **ARIS Measurement Specifications**

When Moskalenko and McCauley created the ARIS (2009), they tested 10 items—four for the AIS, six for the RIS. In their first sample (140 American college students), the researchers found poor fit for two RIS items—“War” and “Retaliation,” items nine and 10 in
Table 2 below—via either Principal Components Analysis (PCA) or Exploratory Factor Analysis (EFA). PCA and EFA test specifically how many factors, if any, most strongly correlate with a respective set of indicators (see Kline (2016), pp. 191-194 for more explanation of EFA). Moskalenko and McCauley (2009) found that, as expected, the two-factor model of AIS and RIS fit better than a one or three factor model, and that the indicators aligned with the AIS versus RIS dimensions as hypothesized (see λ values outside parentheses in

8 PCA and EFA are different approaches, but Moskalenko and McCauley (2009) refer in their article to “Exploratory Principal Components Analysis” (emphasis added), which is unclear. Both PCA (Snook, Branum-Martin, & Horgan, In Review) and EFA assume normal distributions, which the ARIS items do not have.
9 i.e., as in the factor loadings (λ’s) of indicators regressed onto the latent factor(s).
Table 2 below), with the exception of items nine and 10. They excluded those items, ran another PCA or EFA (see \(\lambda\)’s in parentheses below), and still found good fit for the remaining items. They therefore chose to include those eight in their final scales (see bolded items below). They found that the index scales (composite means) were moderately correlated \((r = .42)\). They also found the scales to be reliable (Cronbach’s alphas of 0.86 and 0.83 each).
<table>
<thead>
<tr>
<th>Questions</th>
<th>Item</th>
<th>AIS λ</th>
<th>RIS λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. I would join/belong to an organization that fights for my group's political and legal rights</td>
<td>Join</td>
<td>.84</td>
<td>.00</td>
</tr>
<tr>
<td>2. I would donate money to an organization that fights for my group's political and legal rights</td>
<td>Donate</td>
<td>.86</td>
<td>.00</td>
</tr>
<tr>
<td>3. I would volunteer my time working (i.e. write petitions, distribute flyers, recruit people, etc.) for an organization that fights for my group's political and legal rights</td>
<td>Volunteer</td>
<td>.90</td>
<td>.00</td>
</tr>
<tr>
<td>4. I would travel for one hour to join in a public rally, protest, or demonstration in support of my group</td>
<td>Protest</td>
<td>.76</td>
<td>.15</td>
</tr>
<tr>
<td>5. I would continue to support an organization that fights for my group's political and legal rights even if the organization sometimes breaks the law</td>
<td>Illegal Group</td>
<td>.24</td>
<td>.67</td>
</tr>
<tr>
<td>6. I would continue to support an organization that fights for my group's political and legal rights even if the organization sometimes resorts to violence</td>
<td>Violent Group</td>
<td>.00</td>
<td>.85</td>
</tr>
<tr>
<td>7. I would participate in a public protest against oppression of my group even if I thought the protest might turn violent</td>
<td>Violent Protest</td>
<td>.12</td>
<td>.78</td>
</tr>
<tr>
<td>8. I would attack police or security forces if I saw them beating members of my group</td>
<td>Police Defense</td>
<td>.21</td>
<td>.83</td>
</tr>
<tr>
<td>9. I would go to war to protect the rights of my group</td>
<td>War Retaliation</td>
<td>0.00</td>
<td>0.48</td>
</tr>
<tr>
<td>10. I would retaliate against members of a group that had attacked my group, even if I couldn't be sure I was retaliating against the guilty party</td>
<td>Retaliation</td>
<td>0.00</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Note.
Table 2 above is adapted from Moskalenko and McCauley’s Table 2 (2009).

Note. n = 140; bold items selected for 8-item version; 10-item EFA loadings (λ) outside parentheses, 8-item inside.

However, far more similar loadings for all *six* RIS factors, and indeed higher loadings overall, emerged in a sample collected by Dr. John Horgan’s lab (Fodeman, Snook, & Horgan, In Press; Fodeman, Snook, & Horgan, 2020) than in Moskalenko and McCauley’s (2009) original sample (see Figure 4 below). While perhaps items nine and 10 capture more extreme intentions than the other four RIS items, theoretically they fall no less under radicalism, which might explain why Moskalenko and McCauley originally included these items. They might not have detected much endorsement of those items as there may have been a floor effect. The Horgan lab sample might have higher and more varied endorsement of those items, and higher correlations thereof with the other RIS items, for two reasons: 1) while Moskalenko and McCauley sampled only 140 individuals, the Minerva n was 356, providing more opportunities for detecting endorsement of extreme/rare RIS item thresholds; 2) while the groups that Moskalenko and McCauley’s participants chose to identify with have not historically been defended by radicalism in the U.S. (the most common identity was “Women,” followed by “Catholics,” and then a plethora of groups as irrelevant as “Runners” or “Honors Students”), the Horgan lab’s participants did—that is, they identified as Muslims who, as a group, have historically defended themselves via both activism and radicalism.

10 They do not explain individual items, saying only that items were adapted from the literature.

11 i.e., items have a lower variance limit than can reliably be detected in the general population.

12 McCauley and Moskalenko did not provide χ’s or response rates to compare to.
Figure 4. Horgan lab sample ARIS 10-item Estimated CFA Model

Note. Estimates are standardized, and dashed lines represent fixed parameters. Double-headed arrows refer to variances while single-headed arrows refer to regressions.

Similarly, Decker and Pyrooz (2019) found in their sample of 680 male prisoners that a CFA of the full 10-item ARIS fit within some GoF13 indices’ cutoffs (following Kline’s cutoff recommendations (2005); see Table 3 below). While they provided neither the correlations for the 10 items, nor their factor loadings (λ’s) and intercepts (ν’s), they did provide the means and Standard Deviations (SDs). Decker and Pyrooz’s sample and the Horgan lab sample demonstrate similar mean indicator responses amongst AIS and RIS survey items respectively, with lower endorsement on the 7-point Likert-scale of the RIS items than the AIS items. No other studies have tested the ARIS’s model fit14, and none have tested for ME/I. Furthermore, all studies previously have failed to address issues of ARIS item score distribution and variable type.

13 For an explanation of goodness-of-fit (GoF) indices, see section Error! Reference source not found. below.
14 While Soliman and colleagues (2016) conducted a SEM with the RIS predicted by a set of personality factors related to radicalism, they did not model the RIS as a latent factor itself.
Table 3. Comparing Mean & SD of All 10 ARIS Item Scores Between Studies

<table>
<thead>
<tr>
<th>Factor</th>
<th>Item Name</th>
<th>Decker & Pyrooz, 2019 (n = 680)</th>
<th>Cronbach’s α</th>
<th>Fodeman, Snook & Horgan, 2020 (n = 356)</th>
<th>Cronbach’s α</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIS</td>
<td>1. Join</td>
<td>5.34 (1.98)</td>
<td></td>
<td>4.63 (2.09)</td>
<td>.947</td>
</tr>
<tr>
<td></td>
<td>2. Donate</td>
<td>5.51 (1.80)</td>
<td>.875</td>
<td>4.59 (2.01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Volunteer</td>
<td>5.18 (1.91)</td>
<td></td>
<td>4.55 (2.03)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Protest</td>
<td>4.83 (2.10)</td>
<td></td>
<td>4.23 (2.07)</td>
<td></td>
</tr>
<tr>
<td>RIS</td>
<td>5. Illegal Group</td>
<td>2.91 (2.03)</td>
<td>.840</td>
<td>3.17 (2.22)</td>
<td>.927</td>
</tr>
<tr>
<td></td>
<td>6. Violent Group</td>
<td>2.39 (1.95)</td>
<td></td>
<td>2.79 (2.19)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Violent Protest</td>
<td>2.83 (2.12)</td>
<td></td>
<td>2.97 (2.21)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Police Defense</td>
<td>2.54 (2.12)</td>
<td></td>
<td>2.59 (2.09)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. War</td>
<td>4.53 (2.47)</td>
<td></td>
<td>2.90 (2.22)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10. Retaliation</td>
<td>2.35 (1.98)</td>
<td></td>
<td>2.54 (2.08)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Goodness of Fit Indices</th>
<th>Decker & Pyrooz, 2019 (n = 680)</th>
<th>Fodeman, Snook & Horgan, 2020 (n = 356)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi^2)</td>
<td>270.400*</td>
<td>232.282***</td>
</tr>
<tr>
<td>RMSEA</td>
<td>.101</td>
<td>.129</td>
</tr>
<tr>
<td>CFI</td>
<td>.928</td>
<td>.947</td>
</tr>
</tbody>
</table>

Note. Mean scores on 7-point Likert scale (low to high) unstandardized (SDs in parentheses); *p* < 0.05, ***p* < 0.001.

The ARIS presents non-normally distributed results that ought not to be treated as ordinal rather than continuous. Consider the Horgan lab sample results (Fodeman, Snook, & Horgan, In Press; Fodeman, Snook, & Horgan, 2020). The respondents received the 10-item version of the ARIS, which showed strong reliability\(^\text{15}\), as in Moskalenko and McCauley’s original study. The composite RIS and AIS factor scores shared significant, positive, moderate correlations (Pearson’s \(r = .59, p < 0.001 \); Spearman’s \(\rho = .60, p < 0.001 \)), as did Moskalenko and McCauley’s\(^\text{16}\). One must consider any analysis of the ARIS assuming a normal distribution carefully, however, as the scores tend to be positively skewed, i.e. few people would even gently endorse any RIS items. For example, consider the following histograms (Figure 5 below) of the RIS. Even removing the “Strongly Disagree” category (the second figure) still

\(^{15}\) The total ARIS Cronbach’s \(\alpha \) was .944, the AIS’s was .947, and the RIS’s was .927—all good fit by any standard.
\(^{16}\) Moskalenko and McCauley reported a significant \(r \) (no \(p \)-value) of .42 between the AIS and RIS.
presents a positively skewed distribution. The AIS presents similar skew, as do each individual ARIS item. This skew might be expected given the aforementioned rare endorsement of AIS and especially RIS, but sample distribution has not been previously discussed in the ARIS literature. While all previous analyses of the ARIS have used the assumption that responses fit a normal distribution, normality should not have been expected given that Likert-type survey items are ordinal. Ordinal data warrants another type of analysis to not bias estimates, as discussed below.

![Figure 5. Stacked RIS Histograms, Means, and SDs of RIS With & Without 'Zeroes'
Note. Dashed lines refer to means, solids to SDs. Curved lines are kernel density approximations. Note. Graphed with R package “ggplot2” (Wickham, 2016), as are all of the following figures.](image)

2.4 Estimating Ordinal Survey Items With CFA For ME/I

2.4.1 Comparing OLS & Ordinal Logistic Regression for CFA

There is a long history of estimating ordinal Likert-type survey responses to scales with five or more response options, like those of the ARIS, via Maximum Likelihood (ML)—the estimation method used for OLS regression (see Appendix Section 7.2 for a discussion of estimators); however, to do so violates the assumptions of multivariate normality (Lubke & Muthén, 2004) and can lead to inappropriate inferences (Rutkowski & Svetina, 2017). Lubke and Muthén note that 1) a high number of response categories, 2) low skewness, and 3) relatively
equal and large λ’s warrant estimation of latent factors via ML assuming the data are from a single homogeneous population. In a multigroup context, however, like in this study between Muslim converts and Muslim non-converts), ordinal data estimated with ML and OLS regression may distort the factor structure in FA differently across groups. Lubke and Muthén note that ME/I is therefore difficult to detect and interpret with OLS for ordinal data. Indeed, the ν’s and θ’s estimated by OLS regression are meaningless for ordinal variables whose data are integer rankings with no meaningful distances (Jöreskog, 2005). For example, coding “Very Unlikely,” “Somewhat Unlikely,” and “Neutral” as 1, 2, and 3 does not mean that there is some distance of ‘1 unit’ equally between the 1st and 2nd category and the 2nd and 3rd category. In order to avoid these assumption violations, measurement inaccuracies, and group comparison biases, researchers can use ordinal logistic instead of OLS regression for CFAs and MCCFAs.

2.4.2 Multiple-Group Categorical CFA

We can instead compare groups via Mutiple-Group Categorical CFA or MCCFA (Kim & Yoon, 2011)—that is, CFAs estimated for multiple groups simultaneously with ordinal indicators. Differences of ordinal thresholds (τ’s) between groups indicate ME/I (Vandenberg & Lance, 2000; Millsap & Yun-Tein, 2004). The underlying latent, continuous response variable is estimated by the likelihood, given the sample, of an individual choosing response category 1 as compared to 0, 2 as compared to 1, and so on. In MCCFA, we can compare the individual thresholds between groups. Therein, a true score of 1 on the latent response variable might lead differentially to a response of “Strongly Disagree” on, say, the Police Defense item for Muslim non-converts in our sample, but “Agree” for Muslim converts. We can test if this difference between τ’s is significant. In order to avoid the disadvantages of any one ordinal ME/I testing pathway strategy (see Appendix section 7.1 for discussion), all paths are tested in this thesis.
That is, \(\tau \)'s and \(\lambda \)'s are tested both independently from one another (i.e., separate Metric and Threshold Invariance models) as well as combined (i.e., the Scalar Invariance model). Below is a depiction of the order of model testing (Figure 6). Note that Threshold Invariance refers only to the latent response variable for each indicator, rather than individual thresholds tested for PI.

2.5 Specific Aim: Test for ME/I of the ARIS between American Muslim converts and American Muslim non-converts.

Hypothesis: American Muslim converts significantly differ in latent mean (\(\alpha \)) activism (AIS) and radicalism (RIS) scores on the ARIS from American Muslim non-converts, but not on other parameters. As discussed in other research (Fodeman, Snook, & Horgan, In Press), 1) Muslim converts are overrepresented amongst American Muslims who engage in terrorism-related offenses related to the general American Muslim population, and 2) activism and radicalism are potentially antecedent cognitions and behaviors to terrorism-related offenses. In other words, American Muslim converts will demonstrate Configural, Metric, Threshold, and Scalar Invariance, but not Latent Mean Invariance (see Figure 6 above) on their ARIS scores.
3 METHODS

3.1 Procedures

3.1.1 Original Study’s Participant Screening & Recruitment

The GSU Institutional Review Board approved data collection on June 15, 2016 (IRB number: H15619, Reference number: 339012). Between August 2016 and October 2016, a research team working under the Principal Investigator Dr. John Horgan sampled 356 Muslim participants living in the United States ages 18 to 65 years old. Of these, 177 were self-identified converts. This was part of a suite of research projects on Muslim converts supported by the Office of Naval Research (Grant N00014-16-1-2-19). The participants in this study were recruited through an online Qualtrics survey panel. Qualtrics recruited participants on the team’s behalf using established participant networks to produce a sample of United States residents who are Muslim. Participants were notified via email of a new study and invited to participate. Qualtrics provided non-monetary incentives (e.g., air miles, gift certificates, etc., equaling approximately $10) to participants. The survey remained open until the sampling quotas were met. All participants were English speakers for the expediency of administering the task. Originally, a random sample (not stratified) of 1,100 responded to the survey, of whom 659 were screened from participating in the study as they were not 18+ years old, Muslim, a United States resident, and/or did not agree to informed consent. This resulted in 441 Respondents (208 converts and 233 non-converts). This small n, resulting from a high screening gradient, was to be expected given the minority representation of Muslims in the U.S., let alone of converts amongst U.S. Muslims (see the next section 3.1.2 below for a discussion). An additional 85 of those responses were excluded from the analysis (83 at first pass and another 2 at second pass) due to
survey errors, including excess time17, data omission18, and inattention to attention-checking questions19. This resulted in a final sample of 356 valid survey responses (177 converts and 179 non-converts). These rates of raw online survey data exclusion are not uncommon following standard comprehensive criteria (e.g., the Ilume Quality Criteria), as cohorts of respondents fitting said paradata criteria often produce poor survey responses due to inattention, lack of commitment or coherent understanding of the survey (Freire, Senise, dos Reis, & Ono, 2017). Those poor survey responses were excluded from analysis so as not to bias analyses. Theoretically, those responses should only produce noise and not have any directional effects on results. This thesis re-analyzes the ARIS comparisons between Muslim converts and Muslim non-converts as in the original article (Fodeman, Snook, & Horgan, In Press), although using estimated factor scores with ordinal logistic links rather than single composite scores.

3.1.2 Original Study’s Sample Recruitment Considerations

This study required a large sample of US Muslims and US Muslim converts. Recruiting these participants was a daunting task given their relative scarcity in the US population. Currently, the United States is home to approximately 3.3 million Muslims—only about 1\% of the US population (Mohamed, 2016). Of that, about 20\% of Muslims in the US are converts to Islam (Pew Research Center, 2011). This percentage is much higher than other Western countries (Schuurman, Grol, & Flower, 2016), but still means that only about 0.2\% of the US population were eligible for inclusion. Above that, endorsement of radicalism is extremely rare amongst Muslims (Schmid, 2017). Qualtrics recruited converts and non-converts such that the

17 For measurement reliability, participants had 3 hours to complete the survey and could leave the survey inactive for no longer than 30 minutes. Response time outliers and \textit{a priori} thresholds like these are commonly used in online surveys (Malhotra, 2008; Greszki, Meyer, & Schoen, 2015; Matjašic, Vehovar, & Manfreda, 2018).

18 E.g., outliers or “straight-lining” answer “A” in a row (Levin, Fox, Forde, & David, 2012).

19 E.g., selecting “A” when the question says, “For this question, select C”: Freire, Senise, dos Reis, & Ono, 2017; Gummer, Roßmann, & Silber, 2018; Silber, Danner, & Rammstedt, 2019).
sample would be representative of recent US census results in terms of demographics. One exception to this strategy regarded Muslim converts’ race. Although little is known about US Muslim converts, there is evidence that the majority of them (59%) are African American (Pew Research Center, 2011). Therefore, in order to ensure the sample represented the US convert population, Qualtrics did not recruit converts according to general US census results for race.

3.1.3 Original Study’s Materials

The study, titled, “Understanding American Muslim Converts,” was conducted on the online survey platform Qualtrics. The research team used Qualtrics to administer the following surveys: The Psychological Measure of Islamic Religiousness (PMIR), the Adult Religious Conversion Experiences Questionnaire (ARCEQ), and the Activism-Radicalism Intentions Scale (ARIS). The former two were employed for analysis discussed elsewhere (Fodeman, Snook, & Horgan, 2020; Snook, 2018; Snook, Branum-Martin, & Horgan, in review; Snook, Horgan, Kleinmann, & White, in press). Those surveys were given in that order such that the PMIR and ARCEQ (skipped for non-converts) primed respondents to think of their group for the ARIS as Muslims— the last questions on the PMIR regarded the Islamic Exclusivism subscale as a particular prime. Several demographic questions were also asked (e.g., gender, race, occupation, education, age, etc.). Conversion did not lose significance as a predictor of either AIS or RIS scores in stepwise linear, ordinal, or negative binomial regressions with demographic control variables (Fodeman, Snook, & Horgan, In Press). Therefore, those demographics will not be included in this thesis. The PMIR and ARCEQ are also beyond the scope of this thesis.

20 Note that there was no explicit statement as such, but participants were repeatedly informed that the purpose of the study was regarding being a Muslim.
3.1.4 Original Study’s Data Collection Participant Protection

The research team used Qualtric’s Waiver of Documentation of Consent to maintain respondent anonymity. Since participants cannot give verbal consent online, they were asked to “click yes” if they agreed to proceed. The Waiver of Documentation of Consent explained 1) the risks of participation in the study, 2) that there were no direct benefits to participate, 3) participation was completely voluntary, and 4) data would be protected, anonymous and confidential. Neither Qualtrics, its panel providers, nor our lab collected any personally identifiable information about the respondents. The Informed Consent read as follows: “We would like you to participate in a study. The purpose of the study is to understand why people change to Islam as a new religion. We would like you to participate because you are a Muslim. You will complete an online survey. The surveys will ask you questions about being Muslim.”

3.2 Estimation Method & Fit Indices

Weighted Least Squares with Mean-and-Variance-adjusted (WLSMV: Jöreskog, 2005) was chosen as the optimal estimation method, as compared to ML or others, to decrease bias given this sample’s small n, asymmetric τ’s, and large λ’s (for a detailed explanation, see Appendix Section 7.2 below). The Goodness-of-Fit (GoF) indices χ², CFI, and RMSEA will be used to compare models as recommend by Rutkowski and Svetina in their ME/I GoF cutoff review (2017), although ΔCFI will be relied upon the most (see Appendix Sections 7.3-7.5).

4 RESULTS

4.1 Summary Statistics: Thresholds, Variances & Polychoric Correlations

For an explanation of the summary reporting procedures for ME/I with ordinal indicators and the graphing, table and estimate choices below, see Appendix Section 7.5. While 10 ARIS
items were surveyed, the four AIS items could not be estimated for ME/I and thus are excluded from analysis. The estimation difficulties are beyond the scope of this thesis. Regardless, the RIS is the construct of greater concern and will remain the sole focus of this thesis. Figure 7 below, depicting RIS response frequencies, was graphed with the R package “sjPlot” (Lüdecke, 2019).

4.1.1 Summary Frequencies & Thresholds

Figure 7. Response Frequencies To All ARIS Items For All Participants. Note. Response categories refer to agreement with intentions of engagement statements.

4.1.2 Summary Correlations

Table 4. Polychoric Correlations Between RIS Indicators

<table>
<thead>
<tr>
<th>Variable</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Illegal Group</td>
<td>.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Violent Group</td>
<td>.82</td>
<td>.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Violent Protest</td>
<td>.75</td>
<td>.78</td>
<td>.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Police Defense</td>
<td>.78</td>
<td>.81</td>
<td>.85</td>
<td>.87</td>
<td></td>
</tr>
<tr>
<td>5. War</td>
<td>.79</td>
<td>.82</td>
<td>.80</td>
<td>.86</td>
<td>.84</td>
</tr>
</tbody>
</table>

Note. All correlations have p values below .01.

Table 4 above contains the polychoric correlations for the entire dataset. Polychorics are appropriate for ordinal by ordinal data. The correlations are strong enough to warrant FA.

4.2 Model Results: Data Elements, Parameter Estimates & Fit

Table 5. Data elements, parameters & specifications for ME/I models of the RIS
The six 7-point Likert ordinal RIS items per the two groups resulted in 30 covariances (θ’s) and 72 thresholds (τ’s) total. Those 102 data elements (see Table 5 above—15 θ’s and 46 τ’s per group—equal 102 df with which to estimate the ME/I models.21 A Configural Invariance Model with no latent means (α) or variances (Ψ) estimated—fixed, instead, to 0 and 1 for each group respectively—results in 84 estimated parameters—12 factor loadings (λ’s, 6 per group) and 72 τ’s. In the Metric Invariance Model, the λ’s are equality-constrained (that is, the same λ is estimated for both groups per item), while Ψ is freed for one group, resulting in six df gained from the λ’s, but one spent to free Ψ, resulting in a net gain of 5 df. Similarly, τ’s are equality-constrained in the Threshold Invariance Model while an α is freed. In the Scalar Invariance Model, both equality-constraints and latent free estimates are maintained, while in the Latent Mean Invariance Model all latent parameters are fixed—α’s to 0 and Ψ’s to 1—standardizing RIS scores as equivalent across groups. This way, ever more restricted models are tested to

21 In this parameterization (“Theta”), residual variances are fixed to 1; the alternative “Delta” is beyond this thesis.
compare the parameters of the RIS between Muslim converts and non-converts for any bias.

Figure 8. GoF and \(\Delta \)GoF Indices For All ME/I Models and Paths.

Note. The \(\Delta \chi^2 \)diff-tests use the \(T_3 \) method (nested model comparison) to account for non-normal distributions using a function like the MPLus DIFFTEST (Asparouhov & Muthen, 2010).

Note: \(\Delta \)GoF failures noted by subscripts C (Chen, 2007) and RS (Rutkowski & Svetina, 2017). Note. Estimated with R packages Lavaan (Rosseel, 2012) and SemTools (Jorgensen et al., 2018).

These models and their \(\Delta \)GoF’s are reported in Figure 8 above per each ME/I testing path. All models failed to pass GoF cutoffs (DiStefano, et al., 2017; West, Taylor, & Wu, 2012) for \(\chi^2 (p < .05) \), RMSEA (\(\leq .06 \)), and WRMR (\(< 1.0 \)), though not CFI (\(\geq .95 \)). The poor \(\chi^2 \) and RMSEA results despite positive CFI’s may be due to small sample size, though the same blame cannot be attributed to WRMR which is more biased against large sample sizes. However, given that even the Configural Model has poor fit, it may be reasonable to proceed with comparing models. No models failed to pass all of either Rutkowski and Svetina’s (2017) or Chen’s (2007) \(\Delta \)GoF cutoffs. Note that while the \(\Delta \)CFI’s from the Configural invariance model to either the Threshold or Scalar Invariance models were at the cusp of Rutkowski and Svetina’s cutoff (\(\leq .004 \)), they argue that both CFI and RMSEA cutoffs have to simultaneously be surpassed in order
to qualify as noninvariance. Therefore, it is reasonable to conclude that the RIS is invariant between Muslim converts and Muslim non-converts.

Indeed, while we would expect the Latent Means model to be noninvariant compared to the Scalar one, the Latent Mean model maintains reasonable fit below ΔGOF cutoffs. Were we to only look at GoF, the Latent Mean model would be retained, and the Null Hypothesis that Muslim Converts and Non-Converts have the same mean RIS scores could not be rejected. However, looking at the Scalar model’s parameter estimates, the Converts’ α and Ψ are significantly different from 0 and 1 (the fixed parameters for Non-Converts as the reference group), respectively. This indicates a significant difference between groups, which contradicts the omnibus ΔGOF tests of the Latent Mean model. The reasons for this contradiction are beyond the scope of this thesis, but may be attributable to difficulties in estimating the skewness of this data, particularly regarding specification of and sensitivity to comparing the first two thresholds, as evidenced by the non-significant 1st and 2nd threshold estimates of some of the RIS items (see Table 6 below). There is evidence thereof for a substantive difference in latent radicalism between Muslim converts and Muslim non-converts; specifically, Muslim converts demonstrate a 4/10ths higher average RIS score than non-converts (p < .001), with 7/10ths the variance (p < .001)—i.e., less dispersed around that mean (see the left side of Table 6 below).

<table>
<thead>
<tr>
<th>Table 6. RIS Scalar vs. Latent Mean Invariance Models’ Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalar Invariance Model</td>
</tr>
<tr>
<td>Estimate</td>
</tr>
<tr>
<td>Illegal Group</td>
</tr>
<tr>
<td>Violent Group</td>
</tr>
<tr>
<td>Violent Protest</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Thresholds (τ’s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illegal Group</td>
<td></td>
</tr>
<tr>
<td>1-to-2</td>
<td>-0.18</td>
</tr>
<tr>
<td></td>
<td>.23</td>
</tr>
<tr>
<td>2-to-3</td>
<td>0.52*</td>
</tr>
<tr>
<td></td>
<td>.24</td>
</tr>
<tr>
<td>3-to-4</td>
<td>1.05***</td>
</tr>
<tr>
<td></td>
<td>.25</td>
</tr>
<tr>
<td>4-to-5</td>
<td>1.84***</td>
</tr>
<tr>
<td></td>
<td>.26</td>
</tr>
<tr>
<td>5-to-6</td>
<td>2.44***</td>
</tr>
<tr>
<td></td>
<td>.26</td>
</tr>
<tr>
<td>6-to-7</td>
<td>3.42***</td>
</tr>
<tr>
<td></td>
<td>.27</td>
</tr>
<tr>
<td>Violent Group</td>
<td></td>
</tr>
<tr>
<td>1-to-2</td>
<td>0.73*</td>
</tr>
<tr>
<td></td>
<td>.33</td>
</tr>
<tr>
<td>2-to-3</td>
<td>1.48***</td>
</tr>
<tr>
<td></td>
<td>.35</td>
</tr>
<tr>
<td>3-to-4</td>
<td>1.98***</td>
</tr>
<tr>
<td></td>
<td>.36</td>
</tr>
<tr>
<td>4-to-5</td>
<td>2.89***</td>
</tr>
<tr>
<td></td>
<td>.39</td>
</tr>
<tr>
<td>5-to-6</td>
<td>3.43***</td>
</tr>
<tr>
<td></td>
<td>.40</td>
</tr>
<tr>
<td>6-to-7</td>
<td>4.98***</td>
</tr>
<tr>
<td></td>
<td>.46</td>
</tr>
<tr>
<td>Violent Protest</td>
<td></td>
</tr>
<tr>
<td>1-to-2</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>.25</td>
</tr>
<tr>
<td>2-to-3</td>
<td>0.85**</td>
</tr>
<tr>
<td></td>
<td>.25</td>
</tr>
<tr>
<td>3-to-4</td>
<td>1.35***</td>
</tr>
<tr>
<td></td>
<td>.26</td>
</tr>
<tr>
<td>4-to-5</td>
<td>2.16***</td>
</tr>
<tr>
<td></td>
<td>.26</td>
</tr>
<tr>
<td>5-to-6</td>
<td>2.59***</td>
</tr>
<tr>
<td></td>
<td>.26</td>
</tr>
<tr>
<td>6-to-7</td>
<td>3.61***</td>
</tr>
<tr>
<td></td>
<td>.27</td>
</tr>
<tr>
<td>Police Defense</td>
<td></td>
</tr>
<tr>
<td>1-to-2</td>
<td>0.80**</td>
</tr>
<tr>
<td></td>
<td>.26</td>
</tr>
<tr>
<td>2-to-3</td>
<td>1.41***</td>
</tr>
<tr>
<td></td>
<td>.28</td>
</tr>
<tr>
<td>3-to-4</td>
<td>1.91***</td>
</tr>
<tr>
<td></td>
<td>.28</td>
</tr>
<tr>
<td>4-to-5</td>
<td>2.88***</td>
</tr>
<tr>
<td></td>
<td>.29</td>
</tr>
<tr>
<td>5-to-6</td>
<td>3.21***</td>
</tr>
<tr>
<td></td>
<td>.30</td>
</tr>
<tr>
<td>6-to-7</td>
<td>4.11***</td>
</tr>
<tr>
<td></td>
<td>.30</td>
</tr>
<tr>
<td>War</td>
<td></td>
</tr>
<tr>
<td>1-to-2</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>.26</td>
</tr>
<tr>
<td>2-to-3</td>
<td>0.90**</td>
</tr>
<tr>
<td></td>
<td>.27</td>
</tr>
<tr>
<td>3-to-4</td>
<td>1.51***</td>
</tr>
<tr>
<td></td>
<td>.26</td>
</tr>
<tr>
<td>4-to-5</td>
<td>2.47***</td>
</tr>
<tr>
<td></td>
<td>.26</td>
</tr>
<tr>
<td>5-to-6</td>
<td>2.93***</td>
</tr>
<tr>
<td></td>
<td>.26</td>
</tr>
<tr>
<td>Range</td>
<td>Retaliation</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>3.76***</td>
<td>.28</td>
</tr>
<tr>
<td>1.43***</td>
<td>.25</td>
</tr>
<tr>
<td>2.53***</td>
<td>.26</td>
</tr>
<tr>
<td>3.85***</td>
<td>.28</td>
</tr>
</tbody>
</table>

Residual Variances (θ’s)

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volunteer</td>
<td>1.00§</td>
<td>1.00§</td>
</tr>
<tr>
<td>Join</td>
<td>1.00§</td>
<td>1.00§</td>
</tr>
<tr>
<td>Donate</td>
<td>1.00§</td>
<td>1.00§</td>
</tr>
<tr>
<td>Protest</td>
<td>1.00§</td>
<td>1.00§</td>
</tr>
<tr>
<td>Violent</td>
<td>1.00§</td>
<td>1.00§</td>
</tr>
<tr>
<td>Illegal Group</td>
<td>1.00§</td>
<td>1.00§</td>
</tr>
<tr>
<td>Violent Group</td>
<td>1.00§</td>
<td>1.00§</td>
</tr>
<tr>
<td>Police</td>
<td>1.00§</td>
<td>1.00§</td>
</tr>
<tr>
<td>Defense</td>
<td>1.00§</td>
<td>1.00§</td>
</tr>
<tr>
<td>War</td>
<td>1.00§</td>
<td>1.00§</td>
</tr>
<tr>
<td>Retaliation</td>
<td>1.00§</td>
<td>1.00§</td>
</tr>
</tbody>
</table>

Latent Variances (Ψ’s)

<table>
<thead>
<tr>
<th>Radicalism</th>
<th>Non-Convert</th>
<th>Convert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.00§</td>
<td>1.00§</td>
</tr>
<tr>
<td>Convert</td>
<td>0.73***</td>
<td>.17</td>
</tr>
</tbody>
</table>

Latent Means (α’s)

<table>
<thead>
<tr>
<th>Radicalism</th>
<th>Non-Convert</th>
<th>Convert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00§</td>
<td>0.00§</td>
</tr>
<tr>
<td>Convert</td>
<td>0.40***</td>
<td>.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00§</td>
</tr>
</tbody>
</table>

*Note. § = fixed. All parameters equality-constrained, save for α & Ψ in the Scalar model.
Note. *p<0.05; **p<0.01; ***p<0.001. See Figure 8 above for [Δ]GoF.

RIS items’ latent response thresholds are graphed in Figure 9 below. These thresholds fall on a theoretical latent continuous response distribution of likelihood of selecting higher and higher ordinal response choices. Dots represent the Scalar Invariance model’s estimated thresholds (numbered by order) with SE bars. Examples of the Likert response choices are noted as brackets between thresholds’ SE bars. The estimates are graphed relative to RIS factor scores (the x-axis), such that a RIS factor score of x would likely result in the ordinal responses falling
within the items’ respective thresholds. Note that α‘s are depicted, demonstrating the higher mean RIS score for Muslim Converts than for Non-Converts (whose α is fixed to 0 and Ψ to 1). Note, however, that some thresholds are not, by their SEs, distinguishable for some of the items. There does not seem to be any pattern as such, though the last threshold (choosing Strongly Agree over Agree) is always unique across all items, as is the first threshold (choosing Disagree over Strongly Disagree) for all but the War item. That may be due to the aforementioned floor effects, and a substantive difference between those who choose the lowest, highest, and any middle responses.

Figure 9. RIS Scalar Invariance Thresholds & Factor Scores

Note. Based on Branum-Martin & co.’s Figure 3 (2013); plotted with ggplot2 (Wickham, 2016).

5 CONCLUSION

5.1 Discussion

Marsh and colleagues (Marsh, Hau, & Wen, 2004) remind us about the dangers of blindly following GoF cutoff values. While Marsh and colleagues (2004) harken to the dangers of earlier ME/I guidelines meant for continuous indicators (Hu & Bentler, 1999), the aforementioned
modern caveats and mere differences in GoF cutoff recommendations for ordinal data highlight the same issues that Marsh and colleagues discuss. Svetina and colleagues (2019) similarly make note that GoF cutoffs are always limited in their generalizability and are guidelines rather than absolute rules22. The better question for researchers to ask is not whether any particular cutoff is met, but what that degree of misfit means clinically. Unfortunately for this thesis, no published studies have correlated the ARIS with clinically-relevant outcomes. Given that there are no precedents from which to appropriately determine clinically significant GoF cutoffs or ranges of clinically impactful estimated parameter differences, this thesis will stop short at determining which parameters present DIF, and to what degree, if any, for future clinical use concerns. This thesis analysis is, first and foremost, a methodological exercise, if not a means to buttress previous treatment of the ARIS as a tenable composite score for comparing groups. The only parameters for which there is a theoretical basis for noninvariance with this thesis sample are latent means; that is, Muslim converts are expected have significantly higher overall (i.e., latent) radicalism scores than Muslim non-converts per the literature (see Fodeman, Snook, & Horgana,b), but not significantly differ on any other individual parameter (i.e., factor loadings or response thresholds). As to how large a difference in radicalism scores on the ARIS is clinically significant, the literature has yet to comment. Future studies may demonstrate this and look back to comparative studies like these to see how large a difference in radicalism on the ARIS is demonstrated in groups thought to be clinically relevant like Muslim converts.

Were [Λ]GoF tests the only tools by which to accept or reject models and hypotheses, we would likely conclude complete invariance between Muslim converts and Muslim non-converts. While all models only demonstrated strong GoF scores by CFI, this is the most reliable GoF

22 To treat GoF cutoffs as rules is akin to treating p-value cutoffs as rules and not guidelines.
indicator for this study (see Appendix Sections 7.3-7.5). Indeed, GoF indicators like RMSEA counterintuitively improved with more restrictive models—a phenomenon known to sometimes occur with ordinal data, but whose explanation is beyond the scope of this thesis. No models demonstrated poor ΔGoF, either, which would lead to acceptance of all models. However, given the significant latent factor score differences between groups in the Scalar Invariance model and the findings in the literature suggesting such a difference, the Latent Mean invariance model is rejected, as well, therein, as the Null Hypothesis.

Part of the difficulty in assessing by omnibus tests the significant latent factor score differences in the Latent Mean invariance model may be due to misspecification of the skewed ordinal responses. Ordinal logistic regression assumes a normally-distributed latent response variable underlying responses to an ordinal item, but a non-normal latent response distribution may be more appropriate given the data’s high positive skew. This skew is evidenced in the spacing of the ordinal thresholds, with largely increasing distance from lowest to highest thresholds. It is not uncommon to see such skew in similar data on radical cognitions and behaviors, but latent response distribution adjustment is neither the norm within such research nor within the scope of this thesis. Suffice it to say, both groups demonstrate this skew, and it is reasonable by omnibus and individual parameter estimates Wald statistics to treat item thresholds as the same across groups for at least the higher four thresholds if not all six. The aforementioned floor effect may be affecting the groups differently (as evidenced by the lower Wald statistic scores for the lower two thresholds—Disagree over Strongly Disagree and Somewhat Disagree over Disagree), but this might only give further credence to the findings of a significant difference in so far as Muslim converts may require less or be more likely to pass the hurdle of
giving any endorsement of radicalism at all. Testing for such partial invariance and/or mixture modeling, however, is also beyond the scope of this thesis.

The RIS clearly demonstrates skew found not only in this study but all the aforementioned reported findings in the literature. This ought to be taken into account for future measurements. This skew and floor affect might be ameliorated with a larger pool of items that cover the lower end of radicalism endorsement not currently captured by the RIS (i.e., less controversial radicalism behaviors). Doing so will only increase scale sensitivity. What can be said for the surveyed population (Muslims), like other populations surveyed, is that endorsement of radical behaviors is rare, both across several types (i.e., individual RIS items) and collectively in terms of a global factor. The findings would suggest that this skewed distribution may be shifted for Muslim converts relative to Muslim non-converts towards higher endorsement.

5.2 Strengths and Limitations

This analysis is both a unique comparison of Muslim convert versus non-convert radicalism and a technical buttress to other research products on the subject of either Muslim converts or the ARIS. This type of analysis, while more accurate than typical t-tests of survey composite scores, is more difficult to conduct and, therefore, for other researchers or practitioners to replicate. Indeed, some of the particulars as to the exact statistical procedures are still being debated in the field. However, the use of CFA, ordinal estimation, and ME/I is more appropriate for the data, overcoming the assumptions of past studies as to survey structure, response distributions, and invariance. This study’s top-down modeling approach is appropriate in so far as the literature has little to say thus far about the structure, function, and accuracy of the ARIS or radicalism measurement generally. Future research can apply and report the results
of these more nuanced modeling strategies, which will help inform any theoretical basis behind ARIS functionality or radicalism assessment.

This study is limited in many respects, however, by the nature of its sample. Its n is small compared to what is commonly used for these types of analyses (see section 3.2 above on fit indices, particularly the simulation studies mentioned in Appendix Section 7.2 below), although within viable ranges. Indeed, the strong correlations within the RIS’s theorized indicators are perhaps the saving grace that has enabled testing for ME/I with such a small n. Neither participant group is from a clinical population, although Muslim converts are identified in the literature as at a higher risk than their non-convert counterparts of engaging in radicalism. Note that these increased rates are only marginally higher and are more likely to lead to false positive diagnoses (White, 2019). Unfortunately, no use of the ARIS with clinical populations (i.e., those that have engaged in terrorism-related offenses) has been reported publicly for comparison. Therefore, instead of drawing on clinical significance of model misfit or noninvariance, this study instead will be a benchmark for future studies to call back to with clinical populations.

Even with ordinal estimation, this study may still be limited by the skew of its results. Some of the RIS questions, such as Violent Protest, Police Defense, War or Retaliation, might not be as relevant to Muslims as to other groups; therein, their results might capture less variance due to irrelevance (e.g., the plurality of respondents choosing “Strongly Disagree” compared to all other ordinal categories; see Figure 5 above). For example, the War item might be construed by respondents as being more relevant to active asymmetric conflict zones rather than in a democratic political space, or the Retaliation item might be construed in the context of apolitical inter-group vendettas. There is no theoretical reason to believe that these items should be any less relevant for Muslim converts as for Muslim non-converts, however, and therefore any
irrelevance thereof ought not to bias comparisons between the two groups. Similarly, the RIS is framed in the context of the AIS, which entails more socially desirable intentions than those in the RIS, but there is no theoretical reason to believe that converts would be more affected by this framing than non-converts. All in all, the limits of skew should not differently affect groups.

Since no GoF cutoffs have been simulated that fit the conditions of this exact study (i.e., ordinal distributions of six seven-point Likert-type indicators for one factor between two groups of ~175 participants each), it is difficult to use them. In any case, GoF cutoffs are more like guidelines, fraught with their own inherent inaccuracies if used as absolute rules. One should instead consider the degree of misfit between models and what that means clinically. Since publications on the ARIS are still relatively few, with no clinical outcomes as of yet, it is difficult to accept or reject any particular level of invariance outright. While the AIS could not be tested, the RIS does not surpass any of the noninvariance criteria proposed in the literature—even for latent means, which was expected between the two groups. To run more exact simulations than those from the field is beyond the scope of this thesis. Judging, then, by those criteria based on simulations from conditions most closely matching this thesis, as well as relative changes in fit and general knowledge about the ARIS, it is assumed at this time to be invariant for Muslim converts and Muslim non-converts, save for their overall radicalism per the significant latent factor parameter estimates in the Scalar Invariance model.

5.3 Conclusion

Per the results of this thesis, American Muslim converts and Muslim non-converts can be unbiasedly compared on the radicalism portion of the Activism and Radicalism Intentions Scale (ARIS). Therein, American Muslim converts do demonstrate significantly higher intentions of engaging in radicalism behaviors than non-converts. This is demonstrated in this thesis by the
successful tests of measurement equivalence or invariance (ME/I)—the condition that different
groups respond the same way to the same test. That is, in this case, the same survey questions
indicate intentions of engaging in radicalism the same way they do for American Muslim
converts as for non-converts. The factor loadings—how strongly those indicators each contribute
to measuring overall radicalism—can reasonably be treated as equivalent across as well. So, too,
can the seven-point Likert-type question thresholds—the estimated likelihood of choosing a “2”
over a “1,” a “3” over a “2,” and so forth—be treated as equivalent across groups. The ARIS, or
at least the radicalism portion, can be tested the same way for other group comparisons in future
studies and applied settings. It is especially important to demonstrate the unbiasedness of
measures like these in terrorism research given how difficult it can be to obtain samples, how
sensitive that data is, how difficult establishing at risk populations are, and how little quantitative
work has been done.

All in all, our findings modestly support the literature that would assume Muslim American
converts to demonstrate higher intentions of engaging in radicalism than Muslim American non-
converts due to disproportionate terrorism activity. Therein, if conversion is a risk factor for
terrorism engagement, radicalism itself may be an intervening variable; however, given the
contradictory Scalar Invariance and Latent Mean Invariance model findings, this finding should
be taken with a grain of salt. Future studies ought to test individual thresholds of the ARIS for
noninvariance—particularly the lower thresholds that may be part of a floor effect that varies by
group surveyed—and/or consider non-normal latent continuous response variable distributions
that might better model such expected skewed responses. Future studies ought also to consider
testing additional radicalism items that cover less extreme behaviors and therein lower hurdles to
endorse; in doing so, a larger variation of radicalism endorsement can be captured. In so doing,
an expanded ARIS might not suffer the same estimation difficulties at the latent factor level, much like how an IQ score can be reliably estimated across populations even if some individual IQ indicators have strong floor or ceiling effects (i.e., questions that capture some of the highest and lowest levels of intelligence). It is not, therein, that the ARIS is unreliable per-se, but that it may not measure a sufficiently broad spectrum of radicalism to reliably capture endorsement within non-clinical (i.e., non-terrorist) populations.
REFERENCES

Ekström, J. (2011). On the relation between the polychoric correlation coefficient and Spearman’s rank correlation coefficient. Retrieved from https://escholarship.org/uc/item/7j0t5sf

7 APPEndix

7.1 Ordinal ME/I Conundrum: Scalar vs. Threshold Invariance

There is far more disagreement with regards to the appropriate ME/I testing procedure for ordinal data, as compared to continuous data, because there are many issues with model identification (Wu & Estabrook, 2016). As Vandenberg and Lance note (2000), ordinal data do not have true means (ν’s), but thresholds for each response interval (τ, i.e., log-likelihoods of an individual choosing ordinal item response 2 over 1, 3 over 2, etc.). Therefore, τ’s replace the ν’s tested in Scalar Invariance (review section 2.3.2 above). However, factor loadings (λ’s) for ordinal data are inextricably linked to the underlying τ’s of the observed ordinal responses. As a result, there is disagreement as to whether ordinal indicators’ λ’s and τ’s should be constrained and freed simultaneously or separately (Bowen & Masa, 2015)—i.e., if it is possible to test for ordinal Metric (λ_{Group1} = λ_{Group2}) and Scalar Invariance (τ_{Group1} = τ_{Group2}) independently. Some researchers (e.g., Sass, 2011), including Muthén and Muthén in the MPlus User’s Guide (1998-2012), argue for joint constraints, as λ’s and τ’s jointly define item functioning. There would be no separate test for invariant λ’s, instead excluding the Metric Invariance step. Other researchers, however (Webber, 2014; Wegmann, K.M., 2014), argue that because loadings (λ’s) and thresholds (τ’s) contribute different information about item functioning, they should be constrained and freed separately so as to pinpoint and interpret specific sources of noninvariance (e.g. τ_{42}). In fact, some researchers (Wu & Estabrook, 2016; Svetina, Rutkowski, & Rutkowski, 2019) recommend testing for “Scalar”—otherwise known in this case as “Threshold” Invariance (τ_{Group1} = τ_{Group2})—before Metric Invariance (λ_{Group1} = λ_{Group2}) given that individual τ’s within ordinal items might be invariant and could be freed separately

23 Plus the Muthéns outside of the MPlus Manual (Lubke & Muthén, 2004; Muthén & Asparouhov, 2002).
(Millsap & Yun-Tein, 2004). This contradicts standards for continuous data ME/I testing24. In order to avoid the disadvantages of any one ordinal ME/I testing pathway strategy, all paths are tested in this thesis. That is, \(\tau\)’s and \(\lambda\)’s are tested both independently (i.e., separate Metric and Threshold Invariance models) as well as combined (i.e., the Scalar Invariance model).

7.2 Statistical Estimator Choice

There are several estimation methods, each with their own strengths and weaknesses. The most common for ME/I is Maximum Likelihood (ML), more typically used for Ordinary Least Squares (OLS) regression. However, for ordinal and other categorical data, most researchers recommend utilizing Weighted Least Squares (WLS) and its variants (e.g., Mean-and-Variance-adjusted WLS or WLSMV: Jöreskog, 2005). Diagonally-weighted matrices like those in robust WLS reduce \(n\) requirements and prevent certain convergence problems when modeling ordinal data (Bovaird & Koziol, 2012). Even robust ML (i.e., with relaxed assumptions of normality) is inferior to WLS in controlling for Type I error, save for in large \(n\)’s (i.e., \(n > 1,000\)) for \(\Delta \chi^2\) tests (Li, 2016). (Robust) WLS also provides more accurate factor loadings (\(\lambda\)), standard error, and inter-factor correlation estimates than (robust) ML regardless of simulation conditions (Li, 2016). This is especially true for large \(\lambda\)’s or asymmetric thresholds (\(\tau\)’s: Rhemtulla, Brosseau-Liard, & Savalei, 2012; Sass, Schmitt, & Marsh, 2014) like those found in this thesis sample25.

Many researchers recommend using WLSMV in particular for estimation (Flora & Curran, 2004; DiStefano & Morgan, 2014; Sass, Schmitt, & Marsh, 2014; Bovaird & Koziol, 2012). WLSMV estimations yields better fit and convergence likelihood generally than WLS estimation (DiStefano & Morgan, 2014), especially with smaller \(n\)’s (Flora & Curran, 2004) like in this

24 However, some researchers do recommend testing continuous data for intercept invariance separately from loading invariance before the typical combined Scalar Invariance model (van de Schoot, Lugtig, & Hox, 2012).

25 The \(\lambda\)’s were high (.85-.94); the positive skew and inflated 0’s produce asymmetric thresholds.
thesis \((n = 356\) for two groups). While (robust) ML often displays greater power to detect Scalar noninvariance compared specifically to WLSMV, ML demonstrates lower power to identify Metric noninvariance (Sass, Schmitt, & Marsh, 2014). Overall, WLSMV is the optimal estimation method for small \(n\)’s, asymmetric \(\tau\)’s, and large \(\lambda\)’s—like those found in this thesis.

7.3 GoF Indices for Ordinal Indicators

There are many different model goodness-of-fit (GoF) indices for researchers to consider. GoF indices measure discrepancies between expected and observed outcomes. They are useful not only to determine how good a fit a single model is, but to compare models. Higher versus lower degrees-of-freedom \((df)\)—i.e., more restricted or fewer estimated parameters—lead to poorer fit. In ME/I testing, ever more stringent models (i.e., Configural, Metric/Threshold, or Scalar) subsequently increase \(df\) and typically reduce GoF. Researchers disagree, however, as to how dramatic a reduction in GoF between more and less stringent models signifies noninvariance (i.e. a cutoff score for change in GoF), as well as which GoF indices are most appropriate, reliable, or sensitive for different model conditions (i.e., model complexity, \(n\), data type and distribution). The GoF indicators that, based on the literature (Kline, 2016; Chen, 2007; Svetina, Rutkowski, & Rutkowski, 2019), are appropriate, reliable, and sensitive for comparing ME/I models with ordinal indicators are: chi-squared \((\chi^2)\), which assesses the degree of discrepancy between the sample and fitted covariance matrices, with a \(p\)-value based on an \(H_0\) of, “The model fits perfectly;” the Root Mean Square Error of Approximation (RMSEA), which measures the same discrepancy, but relative to \(df\) and \(n\), and for which 0 represents a perfect fit, but there is no hypothesis test of significantly poorer fit than the null model (though cutoffs are recommended); the Comparative Fit Index (CFI), which demonstrates incrementally superior fitting models as compared to the null model (manifest covariance matrix) from 0 (poorest fit) to
l (perfect fit), with recommended cutoffs; and the Weighted Root Mean Square Residual (WRMR), designed specifically for ordinal data modeled with robust WLS estimators or non-normal continuous data with robust ML estimators by weighting the average differences in sample versus fitted covariances, and for which, like RMSEA, lower values represent better fit. Each of these GoF indicators present different strengths and weaknesses considered below.

<table>
<thead>
<tr>
<th>Table 7. GoF Index Comparisons</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoF Index</td>
</tr>
<tr>
<td>χ²</td>
</tr>
<tr>
<td>χ²/df</td>
</tr>
<tr>
<td>RMSEA</td>
</tr>
<tr>
<td>CFI</td>
</tr>
<tr>
<td>WRMR</td>
</tr>
</tbody>
</table>

Note. This table is based on Table 13.1 by West, Taylor & Wu (2012). **Bolded** criteria specified for ordinal data.

Note. “Small n” refers to increased Type II error rate with small n’s, “Large n” refers to increased Type I error rate with large n’s, “Both” refers to risks heightened at either n extremes, while “No” refers to no risks relative to n.

7.4 Choosing GoF Indices & Cutoffs

To establish GoF, statisticians have proposed various GoF index cutoff values by which a model can be judged to have a reliably good fit relative to a null or baseline model (see Table 7 above) χ² tests, while reported for every model test, assume that 1) manifest variables are normally distributed and 2) the n is large (West, Taylor, & Wu, 2012), neither of which are true of this thesis. χ² and its derivative χ²/df serve better as descriptive indicators of relative model fit rather than absolute benchmarks. For ordinal estimation, West, Taylor and Wu recommend that
all models must have CFI ≥ .95 and RMSEA ≤ .06 to be considered (2012), though the latter is sensitive to small n’s like in this thesis. WRMR was designed for ordinal data with a cutoff of < 0.90 (2017). However, WRMR is particularly useful to compare models whose, “sample statistics have widely varying variances… [or] are on different scales” (Muthén & Muthén, 1998-2012), unlike this thesis with all similarly skewed 7-point Likert items.

For comparing models, statisticians propose another set of GoF cutoffs as to whether the GoF difference (Δ) between the more restricted model and the less restricted model (e.g., MConfigural - MMetric) is significant. Increasingly equality-constrained models inherently worsen model fit due to increased degrees of freedom. Methodologists debate what measure and degree of ΔGoF indicates noninvariance (see Table 8 below). While researchers widely use ΔCFI ≤ −.010 as indicative of noninvariance for ordinal data (Cheung & Rensvold, 2002), some statisticians have shown by simulation that optimal cutoffs for ΔCFI, or Δχ² for that matter, are strongly biased by model complexity (Chen, 2007). ΔRMSEA and especially Δχ² perform well for ME/I testing of MCCFA regardless of data type, degree of DIF, and source of noninvariance (Kim & Yoon, 2011; Sass, Schmitt, & Marsh, 2014), although both are subject to increased risk of Type II error rates with small n’s and Type I error rates with large n’s (West, Taylor, & Wu, 2012). Conversely, CFI is relatively independent from n and therefore avoids those increased error rates (Chen, 2007; Hu & Bentler, 1999). Therefore, as Rutkowski and Svetina recommend in their ME/I GoF cutoff review (2017), all three indicators (Δχ², ΔCFI, and ΔRMSEA) will be considered together, although ΔCFI will be relied upon the most.

26 Raykov et al. (2012) note baselines need not meet fit criteria before testing Configural Inv.
27 Though DiStefano, Liu, Jiung, and Shi (2017) argue a cutoff of < 1.0 is sufficient, as above.
28 The same standards are confirmed for multivariate normal models (French & Finch, 2006).
29 Note that most simulations thereof largely only use ML, not WLS.
Table 8. Relevant GoF Cutoff Values Indicating Noninvariance

<table>
<thead>
<tr>
<th>Source</th>
<th>Data & Model Conditions</th>
<th>GoF Cutoffs Indicating Noninvariance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Groups</td>
<td>n/group</td>
</tr>
<tr>
<td>(Chen, 2007)</td>
<td>2</td>
<td>150-300</td>
</tr>
<tr>
<td>(French & Finch, 2006)</td>
<td>2</td>
<td>150-500</td>
</tr>
<tr>
<td>(Rutkowski & Svetina, 2017)</td>
<td>10</td>
<td>600-6K</td>
</tr>
<tr>
<td>(Svetina & Rutkowski, 2017)</td>
<td>10</td>
<td>750-6K</td>
</tr>
</tbody>
</table>

Note. **Bolded** conditions match this thesis, while **bolded italicized** ones might not (see AIS issues in section 4.2).

Note. Table 3 adapted from Svetina, Rutkowski & Rutkowski’s Table 1 (2019). \(\Delta \text{GoF} \) is *more restricted* minus *less*.

7.5 ME/I Summary Statistics Reporting Procedures for Ordinal Indicators

The literature recommends the following reporting procedures for FA (Jöreskog, 1994; Muthén B., 1984): “first order statistics,” i.e. frequencies, thresholds, means, and variances, then “second order statistics,” i.e. polychoric correlations\(^{30}\) between those ordinal variables, followed by the parameters of the structural part of the model. Polychoric correlations are estimated with the *polychoric* function from the “psych” package (Revelle, 2018), which is based on the package *polycor* (Fox, 2016). The two-step method is employed, estimating thresholds separately from the marginal distribution of each variable before calculating \(\rho \) (see Fox, 2016 for details).

Note that polychoric correlations are better suited for statistical inferences from ordinal response

\(^{30}\) Correlations of latent response variables, not ordinal outcomes directly (Timofeeva, 2017).
categories than Spearman’s rank coefficient (Ekström, 2011), reported previously above, and therefore will be used for analysis instead. Note as well that response frequencies and thresholds are reported, but neither means, SDs, nor variances are. While standard practice reporting for continuous data (Jöreskog, 1994; Muthén B., 1984), means and SDs are arguably not appropriate to report for ordinal data as they do not have true means. Similarly, no indicator variances are estimated with ordinal logistic regression, only latent response variance. Summary statistics tables are relegated to the appendix below, but above in section 4 (Results) are many of their visualizations—more succinct and clear ways of reporting that information.