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BIOINFORMATICS TECHNIQUES FOR STUDYING DRUG RESISTANCE IN HIV AND 

STAPHYLOCOCCUS AUREUS 

by 

Shrikant Pawar 

Under the Direction of Dr. Irene. Weber, Ph.D.  

ABSTRACT 

 

The worldwide HIV/AIDS pandemic has been partly controlled and treated by antivirals targeting HIV protease, integrase 

and reverse transcriptase, however, drug resistance has become a serious problem. HIV-1 drug resistance to protease inhibitors 

evolves by mutations in the PR gene. The resistance mutations can alter protease catalytic activity, inhibitor binding, and stability.  

Different machine learning algorithms (restricted boltzmann machines, clustering, etc.) have been shown to be effective 

machine learning tools for classification of genomic and resistance data. Application of restricted boltzmann machine produced 

highly accurate and robust classification of HIV protease resistance. They can also be used to compare resistance profiles of 

different protease inhibitors. 

HIV drug resistance has also been studied by enzyme kinetics and X-ray crystallography. Triple mutant HIV-1 protease 

with resistance mutations V32I, I47V and V82I has been used as a model for the active site of HIV-2 protease. The effects of four 

investigational antiviral inhibitors was measured for Triple mutant. The tested compounds had significantly worse inhibition of 

triple mutant with Ki values of 17-40 nM compared to 2-10 pM for wild type protease.  The crystal structure of triple mutant in 

complex with GRL01111 was solved and showed few changes in protease interactions with inhibitor. These new inhibitors are not 

expected to be effective for HIV-2 protease or HIV-1 protease with changes V32I, I47V and V82I.  

Methicillin-resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen that causes hospital and community-

acquired infections. Antibiotic resistance occurs because of newly acquired low-affinity penicillin-binding protein (PBP2a). 

Transcriptome analysis was performed to determine how MuM (mutated PBP2 gene) responds to spermine and how Mu50 (wild 

type) responds to spermine and spermine–β-lactam synergy. Exogenous spermine and oxacillin were found to alter some significant 

gene expression patterns with major biochemical pathways (iron, sigB regulon) in MRSA with mutant PBP2 protein. 

 

 



INDEX WORDS: HIV protease, Drug resistance, Machine learning, Restricted Boltzmann 

Machine, Structure-based drug design, Staphylococcus aureus.  
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1 GENERAL INTRODUCTION 

 

Approximately 37 million people are currently infected with HIV worldwide [1].  

HIV/AIDS epidemic has been partly controlled and treated by antivirals targeting different viral 

proteins, including HIV protease and transcriptase [1]. HIV is a retrovirus with two types, HIV-1 

and HIV-2, and HIV-1 is subdivided into groups M, N, and O. Group M is further divided into 

subtypes with different geographical prevalence. The two HIV types have distinct origins. HIV-1 

strains are closer to SIV that naturally infect chimpanzees (SIVcpz) [2], while HIV-2 strains are 

related to SIV from sooty mangabeys (SIVsm) [3]. HIV-1 group O is the most divergent group, 

and it has recently been suggested it could have originated from SIV that infected wild gorillas 

(SIVgor) [4]. SIVgor is related to SIVcpz and thus it is possible that gorillas are an intermediate 

reservoir of HIV-1 group O [5]. The HIV-1O epidemic pattern is restricted to the West and Central 

Africa [6], Group N was only identified in 1998 [7], and its origin was traced to a recombination 

event between the ancestor of group M and SIVcpz [8]. In the early 1990s the sequencing and 

alignment of viral genes env and gag from different strains of HIV-1 allowed for first time to 

establish the presence of well-defined HIV-1M genetic clades [9]. All HIV strains previously 

classified as subtype E based on env gene phylogeny has divergent subtype A classification in gag 

and pol [10].  According to the current classification, HIV-1 group M is divided into nine different 

“pure” subtypes or non-recombinant forms (A-D, F-H, J and K) [11]. Genetic differences between 

sub-subtypes are around 7% in pol, and to date only two subtypes are divided in sub-subtypes, 

subtype A (A1 through A5) and F (F1 and F2) [12]. The remaining six HIV-1 subtypes (D, F, G, 

H, J and K) represented together only 10% of new infections in 2004 [13]. HIV-1 non-B subtypes 

represent a challenge to HAART treatment as there are scarce studies in the literature on the 
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efficacy of treatment in the context of infection by these subtypes. Different HIV groups and 

subtypes carry in their genomes genetic signatures and polymorphisms that could alter the structure 

of viral proteins which are targeted by drugs, thus impairing ARV drug binding and efficacy. HIV-

2 is less susceptible to some PIs, such as amprenavir, ritonavir and indinavir [13]. Various HIV-1 

antivirals have been developed to block several essential proteins within the viral life cycle. HIV-

1 protease, integrase and reverse transcriptase are successful enzyme targets in treatment of HIV-

1 antivirals. HIV-1 PR is crucial for the viral maturation step; it processes cleavage sites in Gag-

Pol region allowing for assembly of individual structural proteins. Some drugs block viral fusion 

by blocking gp120/gp41 receptors [14], or by blocking CCR5 co-receptor [15]. Nucleoside 

inhibitors (NRTI) perform chain termination [16] and non-nucleoside inhibitors (NNRTI) hinder 

polymerase activity [17] targeting reverse transcriptase. HIV-1 protease inhibitors prevent 

processing of Gag and Gag-Pol viral polyproteins during the virus maturation [18].  

 

1.1. Resistance to HIV-1 PR inhibitors: 

 

Evolution of HIV to gain resistance to anti-retroviral drugs emerges from a combination of 

several factors. The factors include the high genetic diversity of the virus, lack of proof-reading 

and rapid replication. The viral reverse transcriptase lacks a proofreading function and a low 

fidelity transcription drives an increased rate of spontaneous mutagenesis [14]. The long term 

usage of HAART (highly active antiretroviral therapy) has caused increase in the selection of 

resistant strains and the virus containing resistant protease mutants is still capable of reproducing 

in vivo by successful processing of the Gag and Gag-Pol precursors in the maturation stage. HIV 

PR mutations are classified as either major or minor resistance mutations by their effect in HAART 
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treatment [19]. Major mutations are distributed between the active site, flap and distal regions of 

the protease dimer. Several mechanisms have been described for resistance towards protease 

inhibitors. Single substitutions in active site cavity residues can result in altered drug interactions, 

mutations can lower dimer stability by interrupting the interactions at the interface between the 

two subunits in the dimer, and distal mutations can cause low dimer stability and defects in 

autoprocessing [30]. Some of the well-known single residue mutations causing resistance are 

D30N, V32I, I47V, G48V, I50V, Val82 and I84V [21]. Distal major mutation of L76V is 

associated with resistance to DRV, APV, IDV and LPV, while conferring susceptibility to the 

other PIs. Protease with this mutation shows low dimer stability and defects in autoprocessing 

[22].  

Individual mutations combine to produce highly resistant virus [32]. Several multidrug and 

highly resistant HIV protease mutants have been characterized to understand how the mutations 

affect the structure and function of the enzyme. A D25N variant of a multidrug resistant clinical 

isolate (MDR769) carries 10 mutations L10I, M36V, M46L, I54V, I62V, L63P, A71V, V82A, 

I84V, and L90M and a variant of MDR769 with V82T mutation shows 11–2600-fold resistance to 

all the nine available PIs [20]. A clinical isolate from a pediatric patient harboring 22 mutations in 

the protease (T4S, L10V, I13A, K14R, K20I, A22V, L33I, E35D, M36I, N37D, R41K, K43S, 

G48A, I54V, I66F, H69K, T74S, V82A, I84V, L89I, L90M and T91S) was studied by kinetic and 

x-ray analysis in complex with DRV [23]. Some of the mutation combinations 

(V82A/I84V/G48A) contribute to the collapse of the 80’s loop by directly affecting inhibitor 

binding to the S1/S1′ subsites inducing long-range structural changes altering inhibitor and 

substrate binding kinetics [24]. PR20, protease with 20 mutations indicates the higher dissociation 

constant stemming from loss of intersubunit contacts between the more flexible flaps. Mutations 
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M36I/I15V/133F in PR20 cause structural rearrangements causing flaps flexibility. Unlike other 

highly resistant mutants, PR20 retains the majority of hydrogen bond interactions with clinical 

inhibitors DRV, SQV and APV [25]. Different mutations in the precursor cleavage sites have been 

associated with resistant protease [15]. Mutations in the gag cleavage sites of NC-p2 and p2-p6 

are commonly associated with drug resistance [15].  

1.2. Structure of HIV-1 PR:  

 

It is an aspartic protease which forms dimer from identical 99-residue monomers [26]. The 

dimer interface residues 1-4 from the N-terminus and 96-99 from the C-terminus glue the two 

monomers [27]. Flaps are flexible and they open and close upon substrate binding, residues I50 

and G51 create a transient dimer interface [28]. There are several intermolecular interactions which 

occur with the movement of flaps. Water molecules play important role in the hydrolysis of 

substrate; it can form a tetrahedral intermediate causing substrate hydrolysis [28]. Figure 1 shows 

protease dimer showing sites of resistance mutations. Locations of resistance associated mutations 

mapped on the HIV protease dimer bound with DRV (PDB: 2IEN). Major and minor mutations 

are distributed among both monomers and shown in red and blue spheres, respectively [30].  

 

Figure 1: Protease dimer showing sites of resistance mutations. Major and minor mutations are 

distributed among both monomers and shown in red and blue spheres, respectively [18]. 
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1.3. Action of HIV-1 PR inhibitors:  

 

Highly active anti-retroviral (HAART) therapy consists of different inhibitors targeting 

multiple life cycle of HIV virus [31]. HIV-1 protease inhibitors act by competitive inhibition. They 

occupy the PR active site and inhibit proteolysis in a competitive, reversible manner. P2-P2’ 

positions on inhibitors fill in the S2-S2’ pockets in PR [32]. A transition state is mimicked by an 

hydroxyl group between P1 and P1’ sites which displaces the active-site water nucleophile [33]. 

The clinical protease inhibitors used in the current setting are atazanavir, indinavir, nelfinavir, 

amprenavir, darunavir, lopinavir, tipranavir and saquinavir. 

1.4. Triple mutant protease with mutations V32I, I47V and V82I:  

 

HIV-1 PR (PR1) and HIV-2 PR (PR2) share 39–48% amino acid sequence identity and the 

two enzymes differ in their cleavage site sequences in the viral precursors and in their specificity 
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for peptide substrates and inhibitors at the P2 positions of peptide substrates [33]. The binding site 

for clinical inhibitors differs only in the conservative substitution of hydrophobic residues Val32, 

Ile47, and Val82 in PR1 by Ile32, Val47, and Ile82 in PR2 [34]. Earlier studies showed that PR1 

bearing the substitutions, V32I, I47V, and V82I, altered the inhibition but not the binding mode of 

a tripeptide inhibitor [35]. Tie et al. have shown that the PR with three resistance mutations V32I, 

I47V and V82I resembles PR2. It is poorly inhibited by amprenavir, although saquinavir and 

darunavir inhibition are similar to values for wild type PR1 and PR2 [36]. Kovalevsky et al. also 

proved that these three mutations in HIV-2 PR contribute fewer interactions with inhibitors relative 

to HIV-1 PR [37]. The mutation I47V is located at the flaps while the mutations V32I and V82I 

are away from the flaps. I47V mutation shortens the length of side chain for residue 47 while V32I 

and V82I mutations increase the size of mutated side chains. The mutated side chains alter 

hydrophobic interactions with inhibitors. A single substitution V82I in HIV PR-1 is associated 

with resistance to ATV [19]. Therefore, it is of importance to elucidate potential mechanism of 

drug resistance of three mutations V32I, I47V, and V82I toward inhibitors and testing if some 

newer potent inhibitors can effectively target such mutant protease. 

1.5. Investigational inhibitors designed to target resistant HIV-1:  

 

GRL01111, GRL0519, GRL0739 and GRL0249 are very potent HIV-1 protease inhibitors 

developed by structure-guided designs. GRL01111 has an improved backbone ligand-binding site 

interactions with incorporation of basic-amines at the C4 position of the bis-tetrahydrofuran (bis-

THF) ring. This incorporation causes a unique hydrogen bonding interactions with the backbone 

carbonyl group of Gly48 as well as with the backbone NH of Gly48 in the flap region of the 

enzyme active site [39]. These ligand-binding site interactions are possibly responsible for their 
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potent activity. Furthermore, this inhibitor has displayed very potent enzyme inhibitory and 

antiviral activity [39]. GRL0519 is a novel nonpeptidic human immunodeficiency virus type 1 

(HIV-1) protease inhibitor (PI) containing tris-tetrahydrofuranylurethane (tris-THF) and a 

sulfonamide isostere, is highly potent against laboratory HIV-1 strains and primary clinical 

isolates. GRL-0519 blocked the infectivity and replication of HIV-1NL4-3 variants selected by up 

to a 5 μM concentration of ritonavir, lopinavir, or atazanavir [40]. GRL-0519 is  also potent against 

multi-PI-resistant clinical HIV-1 variants isolated from patients who no longer responded to 

existing antiviral regimens after long-term antiretroviral therapy, highly darunavir (DRV)-resistant 

variants [40]. Furthermore, the development of resistance against GRL-0519 is substantially 

delayed compared to other PIs like amprenavir (APV) and DRV. This PI has a tris-THF moiety, 

compared to the bis-THF moiety present in DRV, has greater water-mediated polar interactions 

with key active-site residues of protease and the tris-THF moiety and paramethoxy group 

effectively fill the S2 and S2′ binding pockets [40]. GRL-0739, a novel nonpeptidic HIV-1 

protease inhibitor containing a tricycle (cyclohexyl-bis-tetrahydrofuranylurethane [THF]) and a 

sulfonamide isostere, is highly active against laboratory HIV-1 strains and primary clinical isolates 

with minimal cytotoxicity [41]. GRL-0739 is highly active against multidrug-resistant clinical 

HIV-1 variants isolated from patients who no longer responded to existing antiviral regimens after 

long-term antiretroviral therapy [41]. GRL-0739 has also been showed to have a desirable central 

nervous system (CNS) penetration property, as assessed using a novel in vitro blood-brain barrier 

model [41]. The tricyclic ring and methoxybenzene of GRL-0739 have a larger surface and make 

greater van der Waals contacts with protease than in the case of darunavir. GRL0249 is a novel 

C3-substituted cyclopentyltetrahydrofuranyl (Cp-THF)-derived HIV-1 protease inhibitor [42]. 

The C3-functional groups on the Cp-THF ligand maximize the ligand-binding site interactions in 
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the flap region of the protease [42]. It has displayed the most potent enzyme inhibitory and antiviral 

activity against a panel of multidrug resistant HIV-1 variants [42].  

Specific aim 3 focuses on drug resistance in triple mutant protease to understand if it can 

be attenuated by formation of new interactions with inhibitors GRL01111 [39],  GRL0519 [40], 

GRL0739  [41] and GRL0249 [42].  We hypothesize that these newer inhibitors will have 

increased interactions and improved inhibition towards the mutant HIV-1 protease relative to 

established clinical inhibitors like Lopinavir (LPV) or Darunavir (DRV). Enzyme kinetics were 

performed for each of the inhibitors with triple mutant to assess the effect relative to Ki values of 

wild type PR. Furthermore, crystal structure of triple mutant in complex with GRL01111 was 

solved for comparison with PRWT complex with the same inhibitor.  

1.6. Machine learning for prediction of resistance:  

 

Presence of specific mutations in the viral genome can be used to predict drug resistance. 

Several genotype interpretation algorithms have been utilized for predicting drug resistance. These 

algorithms either use a Genetics/Bayer Diagnostics genotype interpretation rules [43] to generate 

the susceptibility of the infecting virus for each drug or apply a score or 'penalty' for each drug 

such as the algorithm used in Stanford HIV database [44, 45]. Although these methods are fast, 

they suffer from the major disadvantage of relying on specific known mutations strongly 

associated with resistance and cannot identify newly appearing resistance mutations. Linear 

protein sequence based methods omitting potentially valuable information from the three-

dimensional protein structure have also been applied in resistance classification. Statistical 

methods such as cluster analysis and linear discriminant analysis have been evaluated [47], and 

non-parametric methods have been proposed for high dimensionality data [48]. Several machine 
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learning algorithms like linear regression, decision trees, neural networks, support vector 

regression, and bayesian networks have been utilized to predict resistance. The KNN algorithm is 

a non-parametric method that uses the full training data set finding the K nearest neighbors to a 

query point and reports their class by majority vote. KNN in training stage is faster and it uses the 

complete training data in the prediction stage. Another important algorithm is random forest (RF) 

[47]. The RF algorithm is an ensemble based classifier that works with multiple decision trees to 

improve the accuracy. Previous studies from our lab have predicted phenotypic results successfully 

from protease sequences by applying a unified encoding of sequence and protein structure as a 

feature vector [46]. Yu, et. al. (2014) have utilized support vector machines for classification of 

resistance mutations [46]. This classification shows high accuracy, sensitivity and specificity for 

all inhibitors. For PIs the accuracy values range from a low of 0.93 to a high of 0.96, while 

sensitivity and specificity range from 0.92-0.96 and 0.94-0.98, respectively. The same technique 

was applied with Artificial Neural Networks (ANN) to classify genotype-phenotype data for 

resistance and the values calculated for accuracy, sensitivity and specificity for resistance to PIs 

have a low of 0.91 and reach 0.97 [46]. Significantly higher accuracies have been achieved with 

this technique. This approach utilizes sequences from publicly available high quality filtered 

datasets obtained from the Stanford HIV drug resistance database, which includes the results of 

drug susceptibility tests using the PhenoSense assay 

(http://hivdb.stanford.edu/pages/genopheno.dataset.html). Eight protease inhibitors, atazanavir 

(ATV), indinavir (IDV), nelfinavir (NFV), amprenavir (APV), darunavir (DRV), lopinavir(LPV), 

tipranavir (TPV) and saquinavir (SQV), are included in the datasets.  

One approach developed in our laboratory to select a small number of meaningful mutants 

uses the Mean shift clustering seeking the mode of a density function in the given sample set [65]. 
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By clarifying the relationship between mean shift and the optimization, the algorithm could 

potentially be applied on clustering and global optimization problems by declaring each mode as 

representative of one cluster and assigning each data point to the mode it converges to. A non-

parametric iterative mean shift with protein encoding method to extract the most representative 

drug resistant mutants from the Stanford HIV database has been proven successful in identifying 

representative drug resistant mutants in HIV-1 protease [67, 68]. This selection algorithm works 

well on selecting drug resistant mutants from both HIV PR and RT inhibitor genotype/phenotype 

data. Among all the mutants, around 250 most representative mutants were selected for different 

drugs. Such selection was based on the kernel bandwidth, and the goal correlation (R2) value. 

After selection, the multiple linear regression was applied on the selected mutants drug resistance 

values [65]. Identifying a small number of representative mutants will enable laboratory studies of 

the molecular mechanisms of resistance. In another study, RF algorithm prediction accuracies were 

examined by five-fold cross-validation on the genotype-phenotype datasets [69]. A supervised 

machine learning approach for automatic prediction of drug resistance was developed to handle 

genotype-phenotype datasets of HIV protease (PR) and reverse transcriptase (RT). It predicts the 

drug resistance phenotype and its relative severity from a query sequence. The accuracy of the 

classification was higher than 0.973 for eight PR inhibitors and 0.986 for ten RT inhibitors, 

respectively. The overall cross-validated regression R2-values for the severity of drug resistance 

were 0.772–0.953 for 8 PR inhibitors and 0.773–0.995 for 10 RT inhibitors [69]. 

1.7. Delaunay triangulation:  

 

As mentioned in section 1.6, each of the machine learning approaches like mean shift 

clustering or RF utilizes our efficient in-house sequence-structure encoding technique with 
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Delaunay triangulation (DT) [46, 65, 67, 69]. DT is a triangulation such that the circumsphere of 

every d-simplex is empty. It does not contain any of the given points in its interior. DT minimizes 

the maximum radius of circle and it maximizes the minimum angle. Distance along edges from 

DT between two vertices is constant time the Euclidean distance between them. There are several 

algorithms for calculating DT: local improvement, starting with an arbitrary triangulation, 

algorithm locally flips the faces of pairs of adjacent simplices according to the circumsphere 

criteria. Incremental construction, DT constructed by successively building simplices whose 

circumspheres contain no points in P (first point selection is usually a middle point). Incremental 

insertion, recursively adding and testing by putting points from P at one time in a triangulation 

(order of adding is not important).  Higher dimensional embedding by applying convex hull 

(smallest convex set that contains X). Divide and conquer, recursive partitioning and local 

triangulation of point sets. Euclidean distance or Euclidean metric is the straight-line distance 

between two points in Euclidean space. In three-dimensional Euclidean space, the distance is: 

 

 

 

In MATHLAB ‘delaunayn’ function can make DT graphs. T = Delaunayn(X) computes a 

set of simplices such that no data points of X are contained in any circumspheres of the simplices. 

The set of simplices forms the Delaunay triangulation. X is an m-by-n array representing m points 

in n-dimensional space. T is an array where each row contains the indices into X of the vertices of 

the corresponding simplex.  

1.8. Clustering algorithms:  
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As stated in section 1.6, the mean shift algorithm (Fukunaga and Hostetler 1975; Cheng 

1995) is a recursive algorithm that allows us to perform non-parametric mode-based clustering, 

i.e. clustering data on the basis of a kernel density and has been successfully used to predict 

sequences with high level resistance [65]. Agniswamy et al 2016 have successfully reported 

structural analysis of HIV protease variant PRS17 selected by this technique. Other different 

techniques of cluster analysis which can be applied to improve the existent analysis are KNN: an 

algorithm which determines the classification of a point, combines the classification of the K 

nearest points, Agglomerative hierarchical clustering: Hierarchical clustering by starting with each 

point as a singleton cluster and repeatedly merging two clusters until a single, DBSCAN: Density 

based clustering algorithm that produces a portioning cluster in which number of clusters is 

determined by a density algorithm. It becomes a challenging task to identify certain important, 

representative HIV-1 PR sequences from a pool of several hundred sequences. This paper attempts 

to answer this question by implying some supervised and unsupervised machine learning 

techniques. Support vector machine (SVM) and random decision forest (RF) are supervised 

machine learning techniques, while K means, hierarchical agglomerative and divisive clustering 

are categorized as unsupervised machine learning techniques, and we have implemented them to 

identify important PR sequences from a large pool of mutants. While some groups have tried to 

provide valuable insights into characterization of novel HIV drug resistance mutants using 

clustering, multidimensional scaling and SVM based feature ranking from relational clinical 

databases, ours attempts to select resistant sequences from existing pool. 

1.9. Transcriptomic analysis of Methicillin-resistant Staphylococcus aureus (MRSA): 

 



13 

 MRSA is a rapidly emerging Staphylococcal infection which has developed resistance to 

most of the β-lactam antibiotics causing it difficult to treat [49]. Staphylococcus aureus is a gram-

positive, round-shaped bacterium that is a member of the Firmicutes, and it is a usual member of 

the microbiota of the body, frequently found in the upper respiratory tract and on the skin [50]. 

Staphylococcus aureus is both a commensal bacterium and a human pathogen. Approximately 

30% of the human population is colonized with S. aureus [51]. It is a leading cause of bacteremia 

and infective endocarditis (IE) as well as osteoarticular, skin and soft tissue, pleuropulmonary, and 

device-related infections. While overall rates of Staphylococcus aureus may have stabilized over 

the past 20 years, the contribution of methicillin-resistant S. aureus (MRSA) has fluctuated. In 

Quebec, Canada, the incidence of MRSA bacteremia increased from 0 per 100,000 person-years 

to 7.4 per 100,000 person-years from 1991 to 2005 [52]. Similar trends of increasing MRSA 

bacteremia incidence over this time period were seen in Minnesota from 1998 to 2005 [53], 

Calgary, Canada, from 2000 to 2006 and Oxfordshire, United Kingdom, from 1997 to 2003 [53]. 

In North America, epidemic community-associated clones of MRSA (e.g., USA300) have been 

largely responsible for the increase in the incidence of MRSA bacteremia while in the United 

Kingdom, epidemic health care-associated clones of MRSA [53]. Methicillin-resistant 

Staphylococcus aureus (MRSA) is an opportunistic pathogen that causes hospital and community-

acquired infections varying from mild skin lesions to severe, life-threatening conditions like 

pneumonia, sepsis, and endocarditis [54]. The resistance occurs because of newly acquired low-

affinity penicillin-binding protein (PBP2a), which can build the cell wall when other PBPs are 

blocked by beta-lactams [55]. Beta-lactam antibiotics irreversibly occupy the serine residue at the 

active site of penicillin-binding proteins (PBPs) forming a stable ester-linked acyl-enzyme which 

inhibits the transpeptidation process necessary for cell wall cross-linking [56]. Thus, MRSA seems 
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to regulate a complex gene expression profiling when challenged with beta-lactams. Many studies 

have shown that exogenous spermine may become toxic to Staphylococcus aureus [57]. 

Exogenous spermine exerts a dose-dependent inhibition effect on the growth of E. coli, Salmonella 

enterica serovar, and Staphylococcus aureus. In  Staphylococcus aureus, there are four native PBPs 

(PBP1-4) and one acquired PBP2a is attributive to MRSA [58]. Recently, it was reported that 

exogenous spermine may affect cell wall synthesis through its interactions with PBP2 and/or 

PBP2-associated multienzyme machineries to enhance the killing effects of β-lactam antibiotics 

[59]. Here an unusual finding of down regulation in sigB regulon and most ATP-producing 

pathways to high dose spermine stress was reported. Exogenous spermine exerts a dose-dependent 

inhibition effect on the growth of E. coli, Salmonella enterica serovar and Staphylococcus aureus 

[60]. PBP2 itself or enzymatic activities associated with the PBP2-dependent complex in cell wall 

synthesis could be potential target of spermine so we sought to identify a spontaneous mutation 

derived MRSA strain (MuM) conferring spermine resistance and studying how this mutation can 

contribute to resistance. Vancomycin works by binding to the D-Ala-D-Ala moiety, and 

subsequently blocking cross-linkage of the murein monomers during the transpeptidation reactions 

by PBPs [61]. We also made an intriguing finding where MuM lost spermine–β-lactam synergy 

and instead gained a spermine-vancomycin synergy. Transcriptome of how MuM responds to 

spermine and how Mu50 responds to spermine and spermine–β-lactam synergy is still unknown, 

therefore in this aim we have systematically compared Mu50 (wild type) and MuM response to 

spermine alone (high dose) or in combination with b-lactam (oxacillin) (both at low dosages) using 

bioinformatics tools. We hypothesize that exogenous spermine and oxacillin can alter some 

significant gene expression patterns with major biochemical pathways in Staphylococcus aureus 

with mutant PBP2 protein. 
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Specific Aim 1: Analysis of drug resistance in HIV protease with Restricted Boltzmann machine. 

Specific Aim 2: Computational optimization of previously defined graph based sequence structure 

resistance prediction technique.  

Specific Aim 3: Investigating effectiveness of newer protease inhibitors against HIV-1 triple 

mutant.  

Specific Aim 4: To analyze biological pathways in Staphylococcus aureus with mutant penicillin 

binding protein 2 on spermine and oxacillin stress. 
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2 ANALYSIS OF DRUG RESISTANCE IN HIV PROTEASE 

 

Pawar S, Freas C, Weber I, Harrison R. (2018) Analysis of drug resistance in HIV protease. 

BMC Bioinformatics, 19(l11):362. 

 

Abstract  

  

Background: Drug resistance in HIV is the major problem limiting effective antiviral therapy. 

Computational techniques for predicting drug resistance profiles from genomic data can accelerate 

the appropriate choice of therapy. These techniques can also be used to select protease mutants for 

experimental studies of resistance and there by assist in the development to next-generation 

therapies.  

Results: The machine learning produced highly accurate and robust classification of HIV protease 

resistance. Genotype data were mapped to the enzyme structure and encoded using Delaunay 

triangulation. Generative machine learning models trained on one inhibitor could classify 

resistance from other inhibitors with varying levels of accuracy. Generally, the accuracy was best 

when the inhibitors were chemically similar.  

Conclusions: Restricted Boltzmann Machines are an effective machine learning tool for 

classification of genomic and structural data. They can also be used to compare resistance profiles 

of different protease inhibitors. 

2.1 INTRODUCTION  
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Human Immunodeficiency Virus (HIV) is a major pandemic disease [62]. More than 36 

million people have been infected and about half of these people receive anti-retroviral therapy 

[63]. However, retroviruses like HIV mutate rapidly since the conversion from the RNA genome 

to DNA is error-prone [64]. They readily form quasi-species and distinct viral strains. Therefore, 

retroviruses can respond effectively to selective pressures such as drug treatment by mutating to 

evade the antiviral drug. The development of drug resistance in HIV is an ongoing threat to 

effective long-term therapy.  

Machine learning can predict drug resistance from sequence data with high accuracy as 

shown by tests on genotype-resistance data for HIV protease and reverse transcriptase [65–72]. 

The critical improvement in the application of machine learning to drug resistance is the inclusion 

of structural data in the features. We found that using Delaunay triangulation to encode the protein 

structure [73] is highly effective. The encoding compresses a protein sequence and its 

corresponding structure into a feature set consisting of 210 components. The set contains the 

relative frequencies of each kind of amino acid pair from the structure. Yu’s use of compressed 

encoding in [65] suggested that even fewer features were necessary to encapsulate drug resistance. 

Therefore, we used Principle Components Analysis (PCA) to explore the remaining redundancy 

in the data. The availability of a large amount of sequence and resistance data for HIV protease 

(PR) has proved valuable for method development.  

The validity of this approach was verified by experimental studies [74, 75]. Machine 

learning was used to rigorously select representative highly resistant PR sequences for biochemical 

and structural characterization. The computationally selected mutant demonstrated several orders 

of magnitude worse affinity for inhibitors compared to wild type enzyme. The selected mutant had 
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only one mutation in the inhibitor binding site. Therefore, a high level of resistance was achieved 

almost exclusively by mutations distal from the active site.  

Restricted Boltzmann Machines (RBMs) are a generative machine learning algorithm [76, 

77]. RBMs only require positive, or in-class, training data, and often generalize more accurately 

than other approaches. Training the standard algorithm on large datasets is often computationally 

infeasible. We have developed a highly efficient version of this algorithm [78, 79]. Using a 

simplified representation of the hidden and visible spins and replacing a numerical estimate of the 

gradient with an analytic form results in an algorithm that is at least 14 times faster than the 

conventional algorithm without compromising the accuracy.  

Generative machine learning has not been applied to drug resistance in HIV. Therefore, 

application of this approach to the analysis of drug resistance is of interest. This paper shows that 

RBMs are as accurate as other machine learning approaches for these data. Additionally, we 

studied how well RBMs trained on one drug were able to predict resistance for a different drug.  

2.2 METHODS 

 

2.2.1. Datasets and data preparation  

 

Datasets used for the study: The genotype-phenotype datasets were downloaded from the 

Stanford HIV drug resistance database [80]. Data were used for the HIV protease inhibitors: 

atazanavir (ATV), nelfinavir (NFV), ritonavir (RTV), indinavir (IDV), lopinavir (LPV), tipranvir 

(TPV), saquinavir (SQV), fosamprenavir (FPV) and darunavir (DRV). All the datasets were pre-

processed using the methods and the cutoff values described previously in [65]. The threshold for 

resistance recommended by the database curators was used in this work [80]. The results of the 
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expansion of data for each of the HIV-1 PR inhibitors and proportion of resistant mutants are 

shown in Table 1.  

Table 1The results of the expansion for each of the HIV-1 PR inhibitors 

 

Inhibitor No. 

isolates 

No. 

sequences 

No. 

resistant 

No. 

sensitive 

Fraction 

resistant 

SQV 1722 10258 4206 6052 41.0 

DRV 607 5973 1889 4084 31.6 

LPV 1444 10239 5095 5144 49.8 

NFV 1771 10911 6170 4741 56.5 

IDV 1730 10537 5122 5415 48.6 

ATV 1141 8430 4237 4193 50.3 

FPV 1681 10521 4405 6116 41.9 

TPV 847 7363 2062 5301 28.0 

 

2.2.2. Pre-processing/expansion of the datasets  

 

Wild type HIV PR has a protein sequence of 99 amino acids. Sequences with insertions, 

deletions, or stop codons were removed. Genomic datasets often include multiple mutations at the 

same site. In these cases, the data were expanded to multiple sequences with single amino acids at 

each location to represent a single amino acid sequence for each mutant protein. For example, if 

one 99-amino acid mutant sequence has two different types of amino acids at one position and 

another site has three, this one sequence needs to be represented by six unique sequences each 

differing in only one amino acid substitution. The pre-processing method has been explained in 
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detail in [65]. Each sequence was accompanied by its inhibitor resistance fold values. The relative 

resistant fold values for each of the inhibitors ranged from 0 to 800-fold resistance. Finally, the 

expanded datasets with sequences were allotted a unique identifier number to help recover the 

original sequences and their respective resistance fold change after analysis.  

2.2.3. Encoding structure and sequence with Delaunay triangulation  

 

A graph-based encoding system was utilized to represent the sequence and structural 

information of the protein [67]. The X-ray crystal structure for HIV-1 PR (3OXC) [58] was used 

as a template for creating the Delaunay triangulation. The structurally adjacent pairs of amino acids 

were represented as a vector of the 210 unique pairs of 20 standard amino acids. This graph-based 

encoding of sequence and structure has been proven to be a promising technique for fast and 

accurate predictions of resistance from sequence in HIV infections [46, 66].  

2.3.4. Principal component analysis  

 

Principal Component Analysis (PCA) using Singular Value Decomposition (SVD) was run 

on all the HIV-1 PR datasets using the Scikit-Learn machine learning library [82]. The datasets for 

each inhibitor were analyzed using the Pandas data analysis library [83]. The resistance fold values 

were not included in the PCA calculations since predicting these values is the goal of this work. 

The results of this analysis are detailed in the “Results” section. 

2.3.5. Training the RBM  

 

The mutants with relative resistant fold less than 3.0 were classified as non-resistant 

(susceptible) and denoted as 0; while those with relative resistant fold of greater than 3.0 were 
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classified as resistant and denoted as 1, as used in [65] and consistent with other analyses of the 

Stanford HIV resistance database [80]. RBMs work best with bit patterns. These bit patterns were 

generated by scaling and dividing the range of individual features into equal intervals. Each feature 

of the data was scaled to the range 0 to 1 based on the maximum and minimum values of that 

feature. The scaled data were divided into eight intervals encoded with three bits per feature. The 

testing and training sets were scaled independently.  

The RBM was trained using gradient descent with the derivative as shown in Eq. 1. The 

analytic expression for the expected value of the derivative, shown in Eq. 2 and derived in [78], 

was used.  

dU/dWi,j = HjVi− < dU/dWi,j > (1) 

< dU/dWi,j >= Hj eβU − e−βU / eβU + e−βU (2) 

In these equations, H and V are hidden and visible (or input) layers respectively, β is the 

inverse temperature, U is the potential energy, and W are the weights used to define the potential.  

During training, the layer that gave the best fit for each new data point was updated with a 

descent step and the other layers were “anti-trained” with a small ascent step. “Anti-training” 

improves the convergence and training efficiency of the RBM. Anti-training is only feasible when 

using an analytic expression for the training gradient. An RBM with 150 units in the hidden layer 

was trained for each category with a constant step-size of 0.1. A step-size of 0.01 was used for 

anti-training. An RBM was trained for both resistant and non-resistant classes. Class membership 

was assigned by the fractional reconstruction error, shown in Eq. 3 as defined in [78].  

R = Hi j Wi,jVj / |Hi| j Wi,j Cj where C is the perfect reconstruction. (3)  
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Five-fold cross validation was used to ensure that the results reflect the error in the models. 

The models for each fold were trained to convergence with ten iterations and the values for 

accuracy, positive predictive value, recall, and F from the last iteration were reported.  

2.3 RESULTS  

 

2.3.1 Classification with an RBM  

 

The classification results are detailed in Table 2 and show a high degree of accuracy.  

 

Table 2 The accuracy of the machine learning model 

 

Inhibitor Accuracy PPV Recall F 

Idv 0.979 0.974 0.985 0.979 

Lpv 0.984 0.977 0.992 0.984 

Sqv 0.969 0.963 0.986 0.974 

Tpv 0.987 0.984 0.998 0.991 

Drv 0.988 0.985 0.998 0.992 

Atv 0.983 0.976 0.989 0.983 

Nfv 0.978 0.974 0.975 0.975 

Fpv 0.988 0.984 0.998 0.991 
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The nearly uniform values of close to 1.0 for accuracy, PPV, recall, and F-score, show that the 

models reliably predict both resistant and nonresistant classes. These results compare favorably 

with our earlier results using non-generative machine learning algorithms [65–67, 69]. 

2.3.2 Cross-classification with an RBM  

 

RBMs differ from non-generative machine learning methods in an interesting way. It is 

trivial to train an RBM against one dataset and use it to predict the behavior of another. Table 3 

shows the results of a cross-training analysis of resistance data.  

Table 3Cross training reveals similarity between the inhibitors 

 

Compound Atv Drv Fpv Idv Lpv Nfv Sqv Tpv 

Atv 0.990 0.868 0.880 0.955 0.946 0.914 0.893 0.819 

Drv 0.767 0.996 0.818 0.786 0.785 0.718 0.792 0.925 

Fpv 0.929 0.873 0.981 0.889 0.886 0.822 0.822 0.828 

Idv 0.945 0.863 0.880 0.989 0.960 0.905 0.878 0.809 

Lpv 0.939 0.892 0.877 0.963 0.988 0.891 0.865 0.837 

Nfv 0.923 0.853 0.824 0.918 0.901 0.987 0.837 0.758 

Sqv 0.898 0.837 0.825 0.890 0.871 0.840 0.983 0.807 

Tpv 0.723 0.929 0.765 0.729 0.728 0.655 0.732 0.993 

 

Each row was trained on one inhibitor and the columns show the accuracy with which that model 

predicts the resistance for the other inhibitors. The inhibitors generally, but not completely, cross-

classify with high accuracy. TPV and DRV seem to have more differences from the other 

inhibitors. The ability of an RBM trained on resistance to one inhibitor to predict the behavior of 

resistance to another inhibitor shows that the drug resistance of HIV protease does not fully depend 

on the type of drug. The existence of cross-resistance is well known and our lab has used similar 

approaches to identify interesting multi-drug resistant mutants for structural study [69, 74, 75].  
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2.3.3 Principal component analysis  

 

Figure 2 shows the explained variance for each of the datasets as a function of the number 

of reduced dimensions. As shown in the figure, there is overlap between some of the datasets (some 

of the plots depict the same data). This suggests that redundancy exists between datasets and not 

just within a single dataset. The horizontal line in the figure depicts where at least 95% of the 

explained variance of the datasets is captured. In most cases, the first principal component 

explained at least 90% of the observed variance. This was true for the ATV, LPV, NFV, and SQV 

inhibitors. The remaining four inhibitors had an explained variance ratio between 51% and 87% 

for the first principal component. For all inhibitors except for DRV, 95% of the explained variance 

for each dataset was captured within 60 dimensions, suggesting that the data could be further 

compressed while still minimizing the reconstruction error. For DRV, the explained variance could 

be reduced to 50 dimensions. These results indicate that a more compact encoding for the 

resistance data exists, consistent with Yu’s results on effectiveness of compressed encoding for 

machine learning [65].  

2.4 DISCUSSION  

 

2.4.1. Classification of resistant mutations of HIV PR  

 

The combination of structure-based encoding and RBMs is an effective technique for the 

prediction of drug resistance in HIV PR. The five-fold cross validated results in Table 2 clearly 

demonstrate their success and accuracy. The high values for PPV indicate that the models could 

be clinically valuable. The use of an RBM is especially interesting because there are essentially no 
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adjustable parameters in the process. Efficient training algorithms allow the RBM to handle large 

datasets in reasonable times. While these datasets are not quite big data, they are too big for other 

machine learning programs [68, 84]. 

2.4.2. Comparison with other methods  

 

We pioneered the approach of using a unified representation of sequence with 3D structural 

data expressed as a 210-long feature vector for  

 

Figure 2 Principal Component Analysis on the HIV-1 PR Datasets. The similarity in the 

curves indicates that the datasets have a similar underlying structure 

   

 

machine learning [65]. This approach gave improved accuracy for predicting drug 

resistance for HIV protease and reverse transcriptase compared to using sequence data alone.  
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Another group reported mean R2 values of >0.95 for regression with ANN using a subset 

of HIV sequences restricted to subtype B with the data filtered to remove rare variants [71]. Their 

classification accuracy was less impressive. Structural data can also be represented by molecular 

mechanics calculations on protein-drug complexes. Molecular interaction components calculated 

between a drug and 36 single mutants of HIV protease were used for SVM classification of 

resistance and showed improved accuracy over using sequence alone [70]. These results were 

comparable to our earlier results, but for a much smaller number of sequences. Feature vectors 

derived from a four-body statistical potential and n-grams were applied in [72]. This approach also 

used explicit atomic models for the protease and therefore only a few hundred mutants were 

included for classification and regression. Their reported accuracy was worse than ours.  

Our approach preserves structural information using Delauney Triangulation derived from 

a single protein structure, and is applicable to any mutant, while eliminating the expensive step of 

calculating molecular properties for models of every mutant structure.  

2.4.3 Redundancy in the data  

 

One of the original motivations for exploring graphbased encoding of protein structures 

was to remove unnecessary data while retaining the critical features for machine-learning based 

analysis of structure and function [61]. Earlier work [65], which used compressed encoding, hinted 

that the redundancy was not completely removed from the data. Our use of PCA on the data 

demonstrated that further compression is possible because the majority of the variance in the data 

could be captured with 50–60 dimensions instead of the 210 used in the original representation. 

This strongly suggests that we may be able to extract patterns of mutations associated with drug 

resistance from the structural data itself. 
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2.4.4 Inhibitor specific patterns of drug resistance  

 

Another important difference between generative machine learning and more conventional 

algorithms is that it is logically consistent to apply generative machine learning across categories. 

Since the RBM is essentially measuring how well it can reconstruct a given data point, it makes 

sense to ask whether an RBM trained on one inhibitor such as ATV could reconstruct data for a 

different inhibitor such as DRV. Examples of two inhibitors, Darunavir and Atazanavir are shown 

in Fig. 3 which demonstrates the diversity of drug chemistry used to inhibit HIV PR.  

Figure 3 The chemical structures for a sulfonamide-containing (DRV) and non-

sulfonamide-containing (ATV) inhibitor are shown here. These demonstrate the variety of 

chemistry used in inhibitors 

 

 

The inhibitors segregate into two main classes in the cross-training analysis. Cross-training results 

in high accuracy for most inhibitors, with the exception of DRV and TPV, which both incorporate 

sulphonamides. DRV and TPV, predict each other with reasonable accuracy (92.5%), however 

they show worse prediction for other inhibitors. While this could be due to chemical similarity, it 
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could also be due to these being second generation or salvage inhibitors where the full spectrum 

of resistance mutations has not had time to evolve. 

 

2.5 CONCLUSION  

 

Generative machine learning algorithms such as the RBM are well-suited to the prediction 

of drug resistance in HIV PR, and likely will work on other systems as well. The graph-based 

structure/sequence encoding used in this and related work removes much of the redundancy in the 

data, but does not remove it all. This result suggests that even more efficient encoding schemes 

are possible. The RBM was used to analyze similarities in resistance profiles for different clinical 

inhibitors. The analysis suggests that there are at least two main classes of inhibitors for HIV PR.  
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3 MACHINE LEARNING APPROACH FOR SELECTING DELINEATIVE DRUG 

RESISTANCE MUTANTS OF HIV-1 PROTEASE* 

 

*In the process of submission. 

 

Abstract 

 

Background: Highly active antiretroviral therapy (HAART) is a combination of different 

antiretroviral drugs, currently prescribed as an anti-AIDS treatment. Upcoming drug resistance to 

HAART have caused an alarming concern in its treatment. Several groups have tried to predict 

drug resistance from genotype data by a variety of algorithms. It becomes a challenging task to 

identify certain important, representative HIV-1 PR mutants from a pool of several hundred 

mutants. 

Results: This paper attempts to answer this question by implying some supervised and 

unsupervised machine learning techniques. Support vector machine (SVM) and random forest 

(RF) are supervised machine learning techniques, while K means, hierarchical agglomerative and 

divisive clustering are categorized as unsupervised machine learning techniques, and we have 

implemented them to identify important PR mutations from a pool of mutants. By intersecting 

sequences with the 2 clustering techniques, 32, 257, 287, 76, 53, 104, 331, and 304 sequences felt 

common with hierarchical and divisive clustering for each of the ATV, DRV, FPV, IDV, LPV, 

NFV, SQV and TPV inhibitors. Further, intersecting these with the K means clustering selected 

only 20, 37, 2 and 35 sequences for FPV, LPV, NFV and SQV inhibitors. 
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Conclusion: In this study, we have effectively encoded HIV-1 protease sequence and structure 

information in a vector by using Delaunay triangulation. The effectiveness is tested by SVM and 

RF learning algorithms. We then have utilized 3 un-supervised machine learning algorithms for 

identifying most representative mutants. These resistant sequences with mutants will enable 

laboratory studies of the molecular mechanisms of resistance. 

 

3.1 INTRODUCTION  

 

Acquired Immunodeficiency Syndrome (AIDS) is one of the deadliest pandemic disease 

with approximately 1.1 million people living with HIV in US [86]. A total of 26 licensed drugs 

are used in anti-AIDS therapy targeting viral entry, reverse transcription, integration and 

maturation [87]. An important enzyme, HIV protease (PR) causes processing of viral precursor 

proteins after budding of virus from the host cell during the maturation stage [88]. Inhibitors to 

block this PR and subsequently its proteolytic activity have been effective in controlling infections 

[89]. Highly active antiretroviral therapy (HAART) is a combination of different antiretroviral 

drugs, currently prescribed as a anti-AIDS treatment [90]. Upcoming drug resistance to HAART 

have caused an alarming concern in its treatment [90]. Several groups have tried to predict drug 

resistance from genotype data by a variety of algorithms [91] [92] [93]. It becomes a challenging 

task to identify certain important, representative HIV-1 PR sequences from a pool of several 

hundred sequences. This paper attempts to answer this question by implying some supervised and 

unsupervised machine learning techniques. Support vector machine (SVM) and random decision 

forest (RF) are supervised machine learning techniques, while K means, hierarchical 

agglomerative and divisive clustering are categorized as unsupervised machine learning 
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techniques, and we have implemented them to identify important PR sequences from a large pool 

of mutants. While some groups have tried to provide valuable insights into characterization of 

novel HIV drug resistance mutants using clustering, multidimensional scaling and SVM based 

feature ranking from relational clinical databases, ours attempts to select resistant sequences from 

existing pool [94]. We have generated a novel pipeline for such analysis as depicted in Figure 4. 

Figure 4 Pipeline for analysis: Sequence of steps for the analysis are shown. 

 

 

3.2  RESULTS 

 

3.2.1 Efficient encapsulation of protein sequence and structure using Delaunay triangulation:  

 

We have efficiently encoded a combined three-dimensional protein structure and sequence 

information of HIV-1 protease using a graph generated by Delaunay triangulation [95]. Structure 

template 3OXC [96] was used for HIV-1 PR. All the PR mutant sequences can be efficiently 
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represented using 210-dimensional vectors with a constant dimensionality. These structure vectors 

along with their respective resistance fold values were fed in SVM to check the efficiency of 

encapsulation. SVM is widely used as a supervised learning classifier in the classification area 

[97]. A clear delineation between resistant and non-resistant sequences through SVM can indicate 

encapsulation efficiency. In this experiment a three, five and ten fold validations were performed 

for SVM analysis in a linear kernel mode by implementing Python sklearn toolbox [98]. The results 

are shown in Table 4.  

Table 4Confidence Intervals, P-Value, Sensitivity, Specificity, Positive and Negative Predictions, 
Balanced Accuracy and Standard Deviation for all the inhibitors from SVM and Random Forest (RF) 
analysis 
 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters 
ATV 

Three Fold 
(SVM,RF) 

Five Fold (SVM,RF) Ten Fold (SVM,RF) 

Accuracy 0.9742,0.9863 0.9709,0.99 0.9491,0.9964 

95 Percent 
Confidence Interval 

(0.9697, 
0.9782),(0.983, 
0.9891) 

(0.9666, 
0.9748),(0.9866, 
0.9928) 

(0.9439, 
0.954),(0.9896, 
0.9993) 

P-Value <2e-16,<2e-16 <2e-16,<2e-16 <2e-16,<2e-16 

Sensitivity 0.9727,0.9878 0.9759,0.9957 0.9472,0.9976 

Specificity 0.9757,0.9847 0.9661,0.9844 0.9511,0.9954 

Positive Prediction 
Value 

0.9765,0.9848 0.9661,0.9845 0.9512,0.9952 

Negative Prediction 
Value 

0.9719,0.9877 0.9758,0.9957 0.9471,0.9977 

Balanced 
Accuracy 

0.9742,0.9863 0.971,0.9901 0.9491,0.9965 

Stddev 
FPV 

4.10528,4.099989 4.10528,4.101648 4.10528,4.103662 

Accuracy 0.9602,0.9998 0.9379,0.9995 0.9386,0.9772 

95 Percent 
Confidence Interval 

(0.9554, 
0.9647),(0.9991, 1) 

(0.9325, 
0.9429),(0.9983, 
0.9999) 

(0.9336, 
0.9434),(0.9646, 
0.9862) 

Parameters Three Fold (SVM,RF) Five Fold (SVM,RF) Ten Fold (SVM,RF) 

P-Value <2e-16,<2e-16 <2e-16,<2e-16 <2e-16,<2e-16 

Sensitivity 0.9482,1.0000 0.9278,1.0000 0.9266,1.0000 

Specificity 0.969,0.9997 0.9451,0.9990 0.9474,0.9539 
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Positive 

Prediction Value 

0.9569,0.9997 0.9233,0.9991 0.9273,0.9568 

Negative 

Prediction Value 

0.9626,1.0000 0.9483,1.0000 0.9469,1.0000 

Balanced 

Accuracy 

0.9586,0.9998 0.9364,0.9995 0.937,0.9769 

Stddev 

IDV 

4.104171,4.097711 4.104171,4.104209 4.104171,4.104669 

Accuracy 0.9671,0.9821 0.9571,0.9826 0.9505,0.986 

95 Percent 

Confidence Interval 

(0.9627, 

0.9712),(0.9783, 

0.9853) 

(0.9525, 

0.9613),(0.9782, 

0.9863) 

(0.946, 

0.9548),(0.9757, 

0.9928) 

P-Value <2e-16,<2e-16 <2e-16,<2e-16 <2.2e-16,<2e-16 

Sensitivity 0.9617,0.9966 0.9547,0.9963 0.9387,1.0000 

Specificity 0.9723,0.9674 0.9593,0.9688 0.9617,0.9739 

Positive 

Prediction Value 

0.971,0.9685 0.9566,0.9700 0.9585,0.9708 

Negative 

Prediction Value 

0.9635,0.9965 0.9575,0.9961 0.9433,1.0000 

Balanced 

Accuracy 

0.967,0.9820 0.957,0.9825 0.9502,0.9869 

Stddev 

DRV 

4.105339,4.102193 4.105339,4.104663 4.105339,4.102954 

Accuracy 0.9895,0.9806 0.9772,0.9827 0.9745,0.9764 

95 Percent 

Confidence Interval 

(0.9858, 0.9924),(0.977, 

0.9838) 

(0.9726, 

0.9812),(0.9789, 0.986) 

(0.9699, 

0.9786),(0.9704, 

0.9815) 

P-Value <2.2e-16,<2.2e-16 <2e-16,<2.2e-16 <2e-16,<2.2e-16 

Sensitivity 0.996,0.9913 0.9683,0.9915 0.9643,0.9954 

Specificity 0.9865,0.9717 0.9813,0.9771 0.9793,0.9733 

Positive 

Prediction Value 

0.9709,0.9665 0.9601,0.9652 0.9559,0.8603 

Negative 

Prediction Value 

0.9982,0.9927 0.9852,0.9945 0.9833,0.9992 

Balanced 

Accuracy 

0.9912,0.9815 0.9748,0.9843 0.9718,0.9843 

Stddev 

NFV 

4.108086,4.058676 4.108086,4.055835 4.108086,4.057195 

Accuracy 0.9658,0.9921 0.953,0.9915 0.9496,0.9902 

95 Percent 

Confidence Interval 

(0.9613, 

0.9698),(0.9895, 

0.9942) 

(0.9484, 

0.9574),(0.9883, 

0.9941) 

(0.9451, 

0.9538),(0.9808, 

0.9958) 

P-Value <2e-16,<2e-16 <2e-16,<2e-16 <2e-16,<2e-16 
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Sensitivity 0.9692,0.9993 0.9559,0.9995 0.9538,1.0000 

Specificity 0.9612,0.9848 0.9493,0.9831 0.9441,0.9805 

Positive 

Prediction Value 

0.9704,0.9851 0.9609,0.9842 0.9571,0.9808 

Negative 

Prediction Value 

0.9597,0.9993 0.9428,0.9995 0.9399,1.0000 

Balanced 

Accuracy 

0.9652,0.9920 0.9526,0.9913 0.9489,0.9902 

Stddev 

LPV 

4.107777,4.104829 4.107777,4.106061 4.107777,4.104499 

Accuracy 0.9754,0.9901 0.965,0.9921 0.9639,0.9915 

95 Percent 

Confidence Interval 

(0.9714, 

0.9789),(0.9872, 

0.9925) 

(0.9608, 0.9688),(0.989, 

0.9946) 

(0.9599, 

0.9676),(0.9826, 

0.9966) 

P-Value <2e-16,<2e-16 <2e-16,<2e-16 <2.2e-16,<2e-16 

Sensitivity 0.9791,0.9993 0.9643,0.9995 0.9567,1.0000 

Specificity 0.9718,0.9809 0.9656,0.9846 0.971,0.9828 

Positive 

Prediction Value 

0.971,0.9812 0.965,0.9851 0.9704,0.9836 

Negative 

Prediction Value 

0.9797,0.9993 0.9649,0.9995 0.9575,1.0000 

Balanced 

Accuracy 

0.9754,0.9901 0.965,0.9921 0.9639,0.9914 

Stddev 4.106898,4.106167 4.106898,4.107035 4.106898,4.10363 

Parameters 

TPV 

Three Fold (SVM,RF) Five Fold (SVM,RF) Ten Fold (SVM,RF) 

Accuracy 0.9701,0.9859 0.9523,0.9901 0.9538,0.9956 

95 Percent 

Confidence Interval 

(0.9649, 

0.9746),(0.9826, 

0.9886) 

(0.9465, 

0.9576),(0.9869, 

0.9927) 

(0.9485, 

0.9588),(0.9913, 

0.9981) 

P-Value <2e-16,<2e-16 <2e-16,<2e-16 <2e-16,<2e-16 

Sensitivity 0.9512,0.9918 0.9067,0.9929 0.9136,1.0000 

Specificity 0.9774,0.9805 0.9697,0.9879 0.9697,0.9942 

Positive 

Prediction Value 

0.9423,0.9785 0.9197,0.9849 0.9224,0.9816 

Negative 

Prediction Value 

0.981,0.9926 0.9645,0.9943 0.966,1.0000 

Balanced 

Accuracy 

0.9643,0.9862 0.9382,0.9904 0.9416,0.9971 

Stddev 

SQV 

4.108681,4.089722 4.108681,4.088172 4.108681,4.089285 

Accuracy 0.9681,0.9988 0.9559,0.9986 0.9357,1.0000 
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We found a high accuracy, sensitivity, 95 percent confidence, positive and negative prediction 

values and specificity for all the tested inhibitors. For all the PIs the accuracy values range from a 

low of 0.96 to a high of 0.98, while sensitivity and specificity range from 0.95-0.99 and 0.96-0.98, 

respectively. A 95 percent confidence values ranged from 0.95-0.99, while the positive and 

negative prediction values ranged from 0.95-0.97 and 0.95-0.99, respectively. These values were 

consistent for all the tested fold validations. We further validated these SVM results with another 

supervised machine learning algorithm, random decision forest (RF) analysis. These high SVM 

and RF parameters conclusively separates the resistant and non-resistant data into two distinct 

categories thereby demonstrating an efficient encapsulation 

3.2.2 Hierarchical agglomerative clustering for classifying resistance mutations:  

 

Hierarchical agglomerative clustering is a ’bottom up’ approach, where each observation 

starts in its own cluster, followed by a continuous merging with upwards hierarchical movement 

[99]. The choice of an appropriate metric is important in influencing the shape of the clusters. 

Distance plays an important factor in cluster distribution and various distance techniques such as 

euclidean, squared euclidean, manhattan, maximum and mahalanobis distances have been implied 

95 Percent 

Confidence Interval 

(0.9637, 

0.9722),(0.9976, 

0.9995) 

(0.9512, 

0.9602),(0.9969, 

0.9995) 

(0.9305, 

0.9406),(0.9957, 1) 

P-Value <2e-16,<2e-16 <2e-16,<2e-16 <2.2e-16,<2e-16 

Sensitivity 0.9622,1.0000 0.941,1.0000 0.9123,1.0000 

Specificity 0.9722,0.9976 0.9664,0.9971 0.9519,1.0000 

Positive 

Prediction Value 

0.9595,0.9976 0.9517,0.9972 0.9295,1.0000 

Negative 

Prediction Value 

0.9741,1.0000 0.9588,1.0000 0.9398,1.0000 

Balanced 

Accuracy 

0.9672,0.9988 0.9537,0.9985 0.9321,1.0000 

Stddev 4.112695,4.101274 4.112695,4.107813 4.112695,4.10336 
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in such clustering [100]. In this analysis, an manhattan or euclidean metric seems appropriate as 

we are interested in an ’absolute magnitude’, identifying vectors having similar mean values [101, 

102]. Although, the run-time of agglomerative and divisive clustering are exhaustive and slow 

with O(n 2 log(n)) and O(2n ) complexities [103], we didn’t had any run-time issues with our data 

on an IBM system x3850 X5 server. Hierarchical agglomerative clustering starts with an most 

disparate observation which initiates a splinter group, which subsequently reassigns observations 

that are closer to the splinter group than to the old party and results in a division of the selected 

cluster [102]. Euclidean distances were calculated using function ’dist{stats}’ from cluster 

package in R [103]. This function computes and returns the distance matrix computed between the 

rows of a data matrix [104]. Hierarchical cluster analysis was performed using function 

’hclust{stats}’ from cluster package in R [105]. Agglomeration method of ’complete linkage’ for 

finding similar clusters was utilized. With complete linkage, for ’n’ observations there are ’n-1’ 

merges with ’2n−1 ’ possible orderings for the leaves in a dendrogram [102]. Figure 5 depicts the 

sequences clustered with hierarchical clustering, interestingly most of the high resistance fold 

sequences with class 2 were clustered in first 10 clusters for all the selected inhibitors, delineating 

a clean separation between non-resistant and resistant sequences.  

Figure 6 Hierarchical and divisive clustering on sequences: Most of the high resistance 

fold sequences with class 2 were clustered in first 10 clusters for all the selected inhibitors 

through both hierarchical and divisive clustering delineating a clean separation between non-

resistant and resistant sequences. 
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Table 5 shows results from hierarchical agglomerative clustering. We found a total of 1433, 657, 

4349, 3018, 7616, 2594, 2092 and 1070 sequences in first 10 clusters for each of the ATV, DRV, 

FPV, IDV, LPV, NFV, SQV and TPV inhibitors.  

 

Table 5 Number of sequences for each of the 3 classes clustered via Hierarchical (H) clustering 
for first 10 clusters 
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Cluster 

Number 

Class ATV 

H 

DRV 

H 

FPV 

H 

IDV H LPV 

H 

NFV 

H 

SQV 

H 

TPV 

H 

Total  1433 657 4349 3018 7616 2594 2092 1070 

1 0 0 72 50 6 0 56 63 69 

 1 88 4 559 50 130 16 24 35 

 2 10 8 41 6 0 19 4 1 

2 0 11 1 16 0 45 188 24 35 

 1 212 29 103 0 231 502 84 1 

 2 41 2 73 8 0 213 8 2 

3 0 22 0 1877 16 570 4 239 0 

 1 229 26 150 4 253 280 181 0 

 2 11 19 8 0 0 341 135 16 

4 0 19 2 10 422 24 32 0 97 

 1 21 15 6 102 44 369 8 87 

 2 3 7 8 0 0 11 4 10 

5 0 0 0 266 3 0 30 8 8 

 1 13 70 465 16 3 205 487 8 

 2 7 3 6 0 0 22 71 8 

6 0 0 0 82 16 1 1 52 306 

 1 0 0 70 18 136 29 227 8 

 2 10 32 7 0 0 5 40 1 

7 0 2 0 0 0 36 0 125 133 

 1 294 24 7 0 9 34 204 120 

 2 132 5 3 0 0 4 28 7 

8 0 2 0 68 2005 3 0 17 9 

 1 17 0 316 141 20 8 4 8 

 2 18 128 5 0 0 4 12 3 

9 0 16 88 8 26 227 0 0 2 

 1 90 91 22 131 157 77 17 4 

 2 57 5 24 0 0 49 10 12 
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3.2.3 Divisive clustering for classifying resistance mutations:  

 

Divisive clustering is a ’top down’ approach, where all the observations start in one cluster 

and splitting occurs recursively as one moves down the hierarchy [102]. Divisive cluster analysis 

was performed using function ’diana{cluster}’ from cluster package in R [104]. This algorithm 

constructs a hierarchy of clusterings, starting with one large cluster containing all ’n’ observations 

with divisions until each cluster contains only a single observation [104]. The logical flag was set 

to true, as the input matrix was considered a dissimilarity matrix obtained from vectors euclidean 

distances. Table 6 shows results from divisive clustering.  

Table 6 Number of sequences for each of the 3 classes clustered via Divisive (D) clustering for 
first 10 clusters 

10 0 0 15 0 19 0 54 0 2 

 1 26 9 66 29 2 38 0 10 

 2 82 2 33 0 0 3 16 68 

Cluster 

Number 

Class ATV 

D 

DRV 

D 

FPV 

D 

IDV 

D 

LPV 

D 

NFV 

D 

SQV 

D 

TPV 

D 

Total  2125 771 4152 2798 5774 4059 3273 1210 

1 0 0 6 0 0 0 4 0 29 

 1 367 1 162 46 294 26 31 55 

 2 136 4 37 8 249 8 1 13 

2 0 10 0 18 35 7 236 41 26 

 1 104 0 87 685 356 502 295 1 

 2 41 4 30 303 643 222 154 2 

3 0 33 0 64 0 648 29 243 0 

 1 264 17 864 4 301 637 258 0 

 2 33 2 7 32 8 356 78 16 

4 0 6 0 1967 16 0 4 0 1 
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We found a total of 2125, 771, 4152, 2798, 5774, 4059, 3273 and 1210 sequences in first 10 

clusters for each of the ATV, DRV, FPV, IDV, LPV, NFV, SQV and TPV inhibitors.  

3.2.4 K means clustering for classifying resistance mutations:  

 

K means method aims to partition the points into K groups, such that the sum of squares 

from points to the assigned cluster centre’s is minimized, it at-most tries to put all cluster centre’s 

at the mean of their Voronoi sets [105]. For a set of observations {x1, x2, ..., xn}, K means 

 1 61 0 291 150 4 94 454 10 

 2 13 16 10 19 53 33 90 4 

5 0 25 136 10 0 0 32 0 38 

 1 138 363 291 145 80 172 0 34 

 2 23 1 8 4 7 10 2 11 

6 0 0 0 101 452 36 48 20 134 

 1 13 0 345 277 40 606 81 337 

 2 8 3 9 11 124 76 42 5 

7 0 38 32 0 0 20 8 46 32 

 1 76 34 1 277 64 66 209 6 

 2 108 3 7 34 76 31 34 1 

8 0 4 45 4 0 5 0 5 126 

 1 145 13 16 1 90 306 26 82 

 2 270 17 7 2 27 231 8 37 

9 0 5 2 0 0 2245 0 36 45 

 1 44 32 15 46 255 86 81 42 

 2 89 17 17 10 7 36 50 1 

10 0 0 8 0 0 4 0 481 52 

 1 18 10 18 419 85 117 463 34 

 2 53 5 8 27 46 83 44 36 
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clustering aims to partition the ’n’ observations into K sets, S = {S1, S2, ..., Sk}, so as to minimize 

the within-cluster sum of squares (WCSS), where µi is the mean of points in set Si [103].  

K means analysis was performed using function ’kmeans{stats}’ from cluster package in 

R [104]. The centers or the number of clusters, K were chosen with the silhouette method with K 

maximum of 100. Figure 5 shows the optimal cluster cutoffs for each of the inhibitors. We also 

tried other techniques for validating optimal cluster determination by silhouette, some of them 

were elbow method, clusGap, Mclust, and cascadeKM. 

Figure 5 Silhouette method for cluster cutoffs: Optimal cluster cutoffs for each of the 

inhibitors. A: ATV, B: DRV, C: FPV, D: IDV, E: LPV, F: NFV, G: SQV, and H: TPV 

 

 

 

 

3.2.5 Sequences/mutations selected from intersection between hierarchical agglomerative, 

divisive and K means clustering:  
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Table 7 and Figure 6 shows the sequences selected from intersection between hierarchical 

agglomerative, divisive and K means clustering.  

Table 7Number of sequences common via hierarchical (H), divisive (D) and K means (K) 
clustering. Cluster numbers shown in brackets 

 

Category ATV DRV FPV IDV LPV NFV SQV TPV 

H and D 32 257 287 76 53 104 331 304 

H, D and 
K 

0 0 20 (66) 0 35 (61) , 
2 (31) 

2 (12) 5 (58), 6 
(63), 3 
(73), 21 
(85) 

0 

 

 

Figure 7 A Venn diagram showing number of mutations found common via hierarchical, 

divisive and K means clustering: Number of mutations found common ivia hierarchical, divisive 

and K means clustering. Optimal cluster numbers are shown in brackets 

 

 

 

Different cluster combinations between hierarchical agglomerative and divisive were performed 

as shown in Figure 4. Each cluster of hierarchical was intersected with each cluster of divisive, the 

cluster combination giving maximum common sequences was selected to intersect with K means 

clusters. With intersections between hierarchical agglomerative and divisive clustering, for ATV 
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D and ATV H, cluster combination 1659 gave maximum number of common sequences (94), 

belonging to class 1 with resistance fold of 55. DRV D and DRV H, cluster combination 1711 

gave maximum number of common sequences (38), belonging to classes 0, 1 with resistance folds 

of 0.4 and 51. FPV D and FPV H, cluster combination 198 gave max number of common sequences 

(149), belonging to classes and resistance folds of 1, 23; 1, 53; 1, 70; 2, 400; and 0, 0.3. IDV D 

and IDV H, cluster combination 1113 gave max number of common sequences (146), belonging 

to classes and resistance folds of 1, 15; 2, 186.9 and 2, 500. LPV D and LPV H, cluster combination 

538 gave max number of common sequences (104), belonging to classes and resistance folds of 0, 

2.3; 1, 3.2; 1, 21; 1, 76; 1, 82; 2, 100.7; 2, 126; and 2, 280.0. NFV D and NFV H, cluster 

combination 932 gave max number of common sequences (62), belonging to classes and resistance 

folds of 1, 48; 1, 68; 1, 72; 1, 78; 1, 97.2; and 2, 286. SQV D and SQV H, cluster combination 

1327 gave max number of common sequences (132), belonging to classes and resistance folds of 

0, 1; 0, 1.8; 1, 14.0; 1, 14.0; 1, 33; 1, 56; 1, 93; 2, 181; 2, 242; 2, 249.8; 2, 350.0; 2, 591.5; and 2, 

1000. TPV D and TPV H, cluster combination 793 gave max number of common sequences (76), 

belonging to classes and resistance folds of 2, 200; and 0, 0.4. These sequences were then 

intersected with clusters from K means clustering, and 20 (cluster 66), 37 (Cluster 61, 31), 2 

(Cluster 12), and 35 (Cluster 58, 63, 73 and 85) sequences felt in common clusters for each of the 

FPV, LPV, NFV and SQV inhibitors. 

3.3 Materials and methods  

 

3.3.1 Datasets used for the study:  
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The genotype-phenotype datasets were downloaded from the Stanford HIV drug resistance 

database [106] (http://hivdb.stanford.edu/pages/genopheno.dataset.html). For HIV-1 PR, the 

inhibitors atazanavir (ATV), nelfinavir (NFV), ritonavir (RTV), indinavir (IDV), lopinavir (LPV), 

tipranvir (TPV), saquinavir (SQV), and darunavir (DRV) were tested. All the datasets were pre-

processed using the methods and the cutoff values described previously in [93]. The results of the 

expansion for each of the HIV-1 PR inhibitors were: for SQV 10258 sequences of 1722 isolates, 

DRV 5973 sequences of 607, LPV 10239 sequences of 1444, NFV 10911 sequences of 1771, IDV 

10537 sequences of 1730, ATV 8430 sequences of 1141, FPV 10521 sequences of 1681 and TPV 

7363 sequences of 847.  

3.3.2 Pre-processing/Expansion of the datasets:  

 

Insertion, deletion, or presence of stop codon in sequences has been removed for data 

unification. A sequence with 99 amino acids representing protease HIV-1 PR has been used for 

this data. Datasets usually have multiple mutations at the same sites; these datasets were expanded 

to multiple sequences with single amino acids at each location to represent a single amino acid 

sequence for each mutant protein. For example, if one 99-amino acid mutant sequence has two 

different types of amino-acids, and another site has three, this one sequence needs to be represented 

in six different sequences each having only one amino-acid substitution. The time complexity to 

minimize such calculations have been explained in detail [93] and been applied for pre-processing 

this dataset. Each of these sequences were accompanied by their inhibitor resistance fold values. 

The relative resistant fold values for sequences in each of the inhibitors ranged from 0-800-fold 

resistance. Furthermore, the expanded datasets with sequences have been allotted a unique 



45 

identifier number which will help to trace back the sequences and its resistance fold change after 

analysis.  

3.3.3 Encoding structure and sequence with Delaunay triangulation:  

 

A graph-based encoding system was utilized to represent the sequence and structural 

information of the protein [95]. The structurally adjacent pairs of amino acids were represented in 

form of a vector of the 210 unique pairs of 20 standard amino acids. A amino acid type for each 

adjacent pair in structure was the parameter utilized for calculating all the 210 vectors. Such graph-

based encoding of sequence and structure have been proven to be an promising technique for faster 

and accurate predictions of resistance from sequence in HIV infections [106]. The X-ray crystal 

structure for HIV-1 PR (3OXC) was used as a template for creating Delaunay triangulation [96].  

3.3.4 Cutoffs for resistance/susceptibility for each drug:  

 

For SVM and RF analysis, for all the HIV-1 PR inhibitors those mutants with the relative 

resistant fold > 3.0 were classified as resistant, denoted as 1. For K means, hierarchical and divisive 

clustering, relative resistant 99 denoted as class 1 and anything above relative resistant fold of 100 

were classified as class 3.  

3.3.5 SVM and RF analysis:  

 

To understand the efficiency of Delaunay triangulation encoding, randomly chosen (k-1)/k 

sequences (some are drug resistant, while others are non-drug resistant) were selected for training 

the classifier and the remaining 1/k sequences were used for testing. The SVM and RF parameters 
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for each of the inhibitors are shown in Table 4. A three, five and ten fold validation was performed 

for both RF and SVM analysis.  

3.3.6 Clustering analysis with K means, Hierarchical and Divisive clustering:  

 

Optimal number of clusters for K means clustering were selected through silhouette 

method [106]. 10, 87, 98, 92, 87, 94, 95, and 97 clusters were found to be optimal for sequences 

with ATV, DRV, FPV, IDV, LPV, NFV, SQV and TPV inhibitors. Figure 4 shows the optimal 

cluster cutoffs for each of these inhibitors. For divisive clustering the height of 60 was found to be 

optimal for all the inhibitors. For hierarchical clustering, the height of 60 was also found to be 

optimal for ATV, DRV, IDV, LPV, SQV and TPV inhibitors, while 65 and 70 heights were found 

to be optimal for FPV and NFV inhibitors. Hierarchical and divisive clustering was performed 

with resistance levels on 210 vectors for each of the sequences. Table 5 and Table 6 shows number 

of sequences for each of the 3 classes clustered in first 10 clusters. 

3.4 DISCUSSION  

 

Drug resistance in HIV-infected individuals is a serious problem and there are numerous 

mutations that can occur in any of the 99 amino acids of HIV-1 protease sequence. Thus, making 

it extremely difficult to select representative mutants for detailed research in the laboratory. In this 

study, we have effectively encoded HIV-1 protease sequence and structure information in a vector 

by using Delaunay triangulation. The effectiveness is tested by two supervised machine learning 

algorithms. We then have utilized 3 un-supervised machine learning algorithms for identifying 

most representative mutants. By intersecting sequences with the 2 clustering techniques, 32, 257, 

287, 76, 53, 104, 331, and 304 sequences felt common with hierarchical and divisive clustering 
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for each of the ATV, DRV, FPV, IDV, LPV, NFV, SQV and TPV inhibitors. Further, intersecting 

these with the K means clustering selected only 20, 37, 2 and 35 sequences for FPV, LPV, NFV 

and SQV inhibitors. This approach selected sequences with L10F, I13V, L33F, E35D, M36I, 

N37D, I54V, I84V and L90M, L10I, M46I, L63P and A71V mutations. Some important 

characteristics of these resistant mutations from selected sequences are summarized below. With 

L10F mutation, a hydrogen bond that is crucial for effective inhibition is lost with NFV [109]. 

L10I mutation impairs replication complex and confers resistance to SQV [110]. L33F increases 

non-covalent interactions in the hydrophobic pocket, it also increases rigidity of the 30s and 80s 

loops compared to wild type protease with expansion of the S1/S1 prime sub site which alters 

DRV binding [111]. E35D mutation is seen to increase flexibility of the flaps affecting the 

conformational equilibrium between the closed and semi open conformations of the free protease 

[112]. Double mutant (V82A and L90M) both confer strong resistance to ritonavir (RTV), and the 

molecular dynamic simulations reveals a contraction of the ligand binding pocket which is 

enhanced by I54V mutation [113]. A71V and M36I are also important secondary mutations 

associated with resistance [114]. These sequences will enable laboratory studies of the molecular 

mechanisms of resistance.  
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4 STUDIES OF FOUR INVESTIGATIONAL PROTEASE INHIBITORS WITH 

HIV-1 PROTEASE BEARING DRUG RESISTANT SUBSTITUTIONS V32I, I47V AND 

V82I* 

 

*In the process of submission 

Abstract 

 

Antiviral inhibitors of HIV-1 protease are effective in HIV/AIDS therapy, although drug resistance 

is a severe problem. This study examines the effects of four investigational inhibitors against HIV-

1 protease with drug resistant mutations of V32I, I47V and V82I (PRTri) that models the inhibitor-

binding site of HIV-2 protease. Inhibitors GRL-0249, GRL-0519, GRL-0739 and GRL-1111 

introduce diverse chemical modifications on the darunavir scaffold, and form new interactions 

with wild type protease. The measured inhibition constants for PRTri mutant range from 17-40 

nM or three-orders of magnitude worse than for wild type enzyme. The X-ray crystal structure of 

PRTri mutant in complex with GRL-1111 determined at 1.5 Å resolution shows minor changes in 

interactions with inhibitor compared with the corresponding wild type PR complex. Instead, 

mutation to Ile82 induces two alternate conformations for the side chain of Arg8 with new 

interactions with inhibitor and Leu10. 

 

4.1 Introduction 

 

HIV/AIDS is a pandemic disease with about 37 million people infected worldwide [115]. 

HIV infection can be controlled by antiviral drugs targeting different stages of viral replication, 
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however, the genetic diversity of the virus and rapid selection of drug resistant strains pose a severe 

challenge [116,117]. The retrovirus HIV includes two types, HIV-1 and HIV-2, and HIV-1 is 

subdivided into three groups (M, O, and N) and subtypes with different geographical distribution. 

HIV-2 infections are common in West Africa, however, some drugs designed for HIV-1 are not 

effective for HIV-2 infections [118].   

 

One important class of antiviral drugs targets the viral protease (PR), which is crucial for 

production of infectious virus. PR processes cleavage sites in Gag-Pol region during viral 

maturation to produce individual structural proteins [119]. This aspartic protease is catalytically 

active as a dimer of 99-residue monomers [120]. Clinical inhibitors bind in the active site cavity 

of the enzyme and block binding of substrates. Some HIV-1 PR inhibitors, including amprenavir 

(APV), are significantly less potent against HIV-2 infections probably because the amino acid 

sequences of HIV-1 and HIV-2 PRs show only about 40% sequence identity [121]. In addition to 

its natural genetic diversity, the virus has evolved resistance mutations for all clinical protease 

inhibitors (PIs) [122]. Single, major mutations decrease binding of inhibitor, however, they can be 

deleterious for viral replication. Resistance mutations can alter the catalytic activity, binding 

affinity and stability of PR [9,10]. The virus evolves additional mutations that compensate by 

restoring effective viral replication in the presence of inhibitor [123]. 

 

HIV-1 PR with drug resistant mutations V32I, I47V and V82I (PRTri) has been evaluated 

as a model for inhibition of HIV-2 PR. The three mutations in PRTri alter residues in the inhibitor-

binding cavity (Figure 8) and represent the changes in the inhibitor binding site of HIV-2 protease. 

APV showed poor inhibition of both PRTri and HIV-2 PR at 15- and 19-fold worse than for HIV-
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1 PR, while darunavir (DRV) and saquinavir (SQV) were effective inhibitors of all three enzymes 

[124]. Moreover, the individual mutations of V32I, I47V and V82I are associated with resistance 

to one or more clinical inhibitors [122]. Hence, PRTri was chosen to evaluate the efficacy of 

investigational inhibitors for drug-resistant mutants and HIV-2 PR.  

 

Figure 8: Sites of mutation in HIV-1 PR dimer with inhibitor GRL-1111. PR is shown as 

green ribbons with sites of the three mutations, V32I, I47V and V82I, indicated as grey spheres, 

GRL-1111 is shown in red bonds.  

 

 

 

 

The four investigational antiviral inhibitors were designed on the DRV scaffold (Figure 9) 

with the aim of introducing new interactions of the P2 group with PR. They exhibited potent 

antiviral activity on wild type and drug resistant strains of HIV-1.  
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Figure 9: Structures of the clinical and investigational inhibitors used in this study.  

 

 

 

 

Inhibitor GRL-0519 contains tris-tetrahydrofuranylurethane (tris-THF) as the P2 ligand 

instead of bis-THF in DRV [127-129]. The third THF group introduces new water-mediated 

hydrogen bond interactions with Gly27 and Arg87 in the PR dimer interface. GRL-1111 has a 

novel P2 bis-THF group with a basic amine that forms direct and water-mediated hydrogen bond 

interactions with the main chain carbonyl oxygen and amide of Gly48 in the PR flap [130]. GRL-

0739 has a novel tricycle cyclohexyl-bis-tetrahydrofuranylurethane at P2, and resembles GRL-

0519 in its new water-mediated interactions [131]. This inhibitor showed favorable penetration of 

the central nervous system (CNS) in an in vitro model [18].  GRL-0249 has a 3-(S)-N-

methoxycarbonyl amino substituted cyclopentyltetrahydrofuranyl (Cp-THF) at the P2 group [132]. 
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The carbamate NH forms hydrogen bonds interactions with the main chain of Gly48 similar to 

those of GRL-1111 and the carbamate carbonyl has a water-mediated interaction with the 

guanidinium group of Arg8’. Crystal structures confirmed the presence of new interactions of wild 

type PR with the P2 groups of these inhibitors compared to DRV. Therefore, we hypothesized they 

would show good inhibition of PRTri. Inhibition constants were measured for the four inhibitors, 

and a high resolution X-ray structure was determined for PRTri in complex with GRL-1111.    

 

4.2 Materials and methods 

 

 

4.2.1 Inhibitors 

 

Amprenavir (APV) (HPLC purity of 99.7%) was obtained from the AIDS Reagent 

Program, Division of AIDS, NIAID, NIH. Compounds GRL-0519, GRL-1111, GRL-0739 and 

GRL-0249 (>95.0% purity by HPLC) were provided by Dr. Arun Ghosh at Purdue University.  

 

4.2.2 Protein purification  

 

The clone for triple mutant PRTri (V32I, I47V and V82I) includes optimizing mutations of 

Q7K, L33I, and L63I to decrease autoproteolysis, and C67A, C95A to eliminate cysteine-thiol 

oxidation [134]. Protein was expressed in E. coli BL21 and purified from inclusion bodies as 

described previously [135,136] using gel filtration followed by reverse phase chromatography and 

refolding. Samples were concentrated to 5.0 mg/mL for crystallization or diluted for kinetic assays.  

 

4.2.3. Protein crystallography  
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PRTri was mixed with inhibitor (dissolved in dimethylsulfoxide) at a molar ratio of 1:5. 

Crystals were grown at room temperature by hanging drop vapor diffusion. Each drop contained 

1 μL protein and 1 μL reservoir solution. Crystals of PRTri-GRL-1111 were grown from 0.1 M 

sodium acetate, pH 4.6, and 2 M NaCl. Crystals were cryo-protected in 30% glycerol and flash 

frozen in liquid nitrogen. X-ray diffraction data were collected on the SER-CAT 22ID beamline, 

Advanced Photon Source, Argonne National Laboratory (Argonne, IL), and processed  using 

HKL-2000 [137]. The structure was solved by molecular replacement with PR complex with APV 

(3NU3) [138] using CCP4i Phaser [139,140]. The structure was refined with SHELX-2014 [141], 

followed by REFMAC5 [141]. COOT [143] was used for visualization and refitting. Alternate 

conformations were modeled according to the electron density maps. Anisotropic B factors were 

applied in the refinement. Structural figures were made using PyMOL [144]. Atomic coordinates 

and structure factors for PRTri with GRL-1111 have been deposited in the PDB [145] with ID: 

XXXX.  

 

4.2.4. Enzyme kinetic assays  

 

Kinetic parameters of PRTri were determined in 3-5 replicate runs by monitoring hydrolysis 

of fluorescence substrate derived from the HIV-1 p2/NC cleavage site: Abz-Thr-Ile-Nle-p-nitro-

Phe-Gln-Arg-NH2 (BACHEM H-2992) (where Abz is anthranilic acid, Nle is norleucine, and p-

nitro-Phe is p-nitrophenylalanine). Samples were equilibrated at 37 C for 5 minutes prior to 

initiating the reactions. Enzyme activity was measured at 37 C using a PolarStar Optima 

microplate reader (BMG Labtech) with excitation wavelength at 340 nm and emission wavelength 

at 420 nm, as described previously [138,146]. To determine catalytic efficiency, 10 µL of PRTri 
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(final well concentration of 40-100 nM determined by active site titration with APV) was mixed 

with 100 µL reaction buffer (100 mM MES pH 5.6, 400 mM NaCl, 1 mM EDTA, and 5% 

glycerol). Reaction was initiated by adding 100 µL substrate (12-96 µM final concentration). 

Initial velocities (V0) were determined using MARS software (BMG Labtech). The Km and kcat 

were determined by fitting data to the Michaelis-Menten plot of V0 vs [substrate].  

For inhibition studies, 10 µL PRTri was mixed with 98 µL reaction buffer and 2 µL inhibitor 

in DMSO (final well concentration 0-40 µM). Reaction was initiated with 90 µL substrate (final 

well concentration 60 µM). IC50 values were determined using SigmaPlot (Systat Software) by 

non-linear regression curve fitting to a dose-response plot of V0 vs [inhibitor]. Ki values were 

calculated using the equation for tight-binding inhibitor of Ki = (IC50 - 0.5[E]) / (1 + [S]/Km) [147].  

For the urea denaturation assay, 10 µL PRTri was mixed with 100 µL reaction buffer 

containing 8 different urea concentrations (0-4 M). Reaction was initiated with 90 µL substrate 

(final well concentration 60-72 µM) in 0-4 M urea. The urea concentration in each well remained 

the same throughout the experiment. A plot of V0 vs [urea] was constructed using SigmaPlot 

(Systat Software) and sigmoidal curve fitting used to determine the urea concentration for 50% 

maximum velocity (UC50). 

 

4.3 Results 

 

4.3.1 Kinetic Parameters, Inhibition and Stability of PRTri mutant 

 

Kinetic parameters were determined for PRTri hydrolysis of a fluorescent substrate analog 

at 37 C prior to assaying the effects of inhibitors under the same conditions. PRTri mutant had kcat 
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of 299 ± 48 μM/min and Km of 72 ± 17.7 µM. The catalytic efficiency (kcat/Km) of 4.2 μM-1 min-

1 is similar to that value of 6.5 μM-1 min-1 for wild type enzyme at 26 C [147].  

 

Ki values were measured for investigational inhibitors (Table 8). Clinical inhibitor APV 

gave a Ki value of 2.5 nM for PRTri mutant, which is identical to the value reported previously 

using a different peptide substrate in an HPLC assay [126]. APV showed 16-fold worse inhibition 

of the mutant compared to wild type PR, as reported earlier using a different assay [126]. These 

investigational inhibitors, however, had Ki values ranging from 16.7 to 39.5 nM for the mutant. 

GRL-0249 with Ki of 16.7 nM was the best of the four inhibitors, and GRL-0519 and GRL-0739 

were the worst with Ki values of 38.4 and 39.5 nM, respectively. The tested inhibitors were 

significantly less effective for the mutant compared to Ki values of 2-10 pM reported for the wild 

type enzyme [128,130,132,133]. 

 

The stability of the mutant and wild type enzymes were assessed by measuring enzyme 

activity under urea denaturation. A UC50 value of 0.97 +/- 0.05 M was obtained for PRTri mutant. 

In comparison, the wild type enzyme gave a UC50 value of 0.70 +/- 0.07 M under the same 

conditions. These values suggest the mutant dimer is somewhat more stable than the wild type 

protease.  

 

4.3.2 Crystallographic analysis of PRTri complex with GRL-1111 

 

The crystal structure of PRTri with GRL-1111 was solved at 1.50 Å resolution in the P21212 

space group, and refined to R/Rfree values of 13.4/17.2 %. Crystallographic statistics are listed in 
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Table 9. The asymmetric unit of the crystal structure contained a dimer of PRTri, and the inhibitor, 

GRL-1111, was bound at the active site in two alternate orientations with an occupancy ratio of 

0.5/0.5. The solvent was modeled with 133 water, 1 glycerol and 4 formic acid molecules from the 

crystallization and cryo-protectant solutions. The crystal structure of PRTri/GRL-1111 was 

compared with the corresponding complex of wild type PR (PDB ID: 5BRY), which was 

determined at 1.34 Å resolution in the same space group with isomorphous unit cell dimensions 

and contained PR dimer with inhibitor bound in two orientations with 0.6/0.4 relative occupancy 

[130]. The two dimer structures superimposed with a low RMSD value of 0.23 Å on Cα atoms.  

The interactions of PRTri with inhibitor were analyzed in comparison to those in wild type 

PR complex. GRL-1111 forms six direct hydrogen bonds with PRTri, excluding the interactions of 

the central hydroxyl with the catalytic Asp25 and 25’ (Figure 10).  

Figure 10: Hydrogen bond interactions of PRTri with inhibitor GRL-1111. Protein is shown 

as grey bonds, inhibitor in green bonds. Dotted lines indicate hydrogen bond interactions with 

interatomic distances in Å.  
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Additionally, it forms water-mediated interactions with flap residues Gly48, Ile50 and 

Ile50’, while one orientation of inhibitor (designated as the “major” conformation) has a water-

mediated interaction with the carboxylate side chain of Asp29. PR-inhibitor hydrogen bond 

interactions are conserved in the mutant and wild type complexes with differences of no greater 

than 0.2 Å in length for the major inhibitor conformations. GRL-1111 was designed to incorporate 

an amine on bis-THF at P2 that forms a new direct hydrogen bond interaction with the carbonyl 

oxygen of Gly48, a water-mediated interaction with the amide of Gly48 in the flap region, and a 

second water-mediated interactions with the side chain of Asp29. These interactions of GRL-1111 

cannot occur with clinical inhibitor DRV, which lacks the basic amine. However, the minor 

inhibitor conformation of GRL-1111 in PRTri complex has lost the second water and its interaction 

with Asp29.   
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The hydrophobic side chains of residues 32, 47 and 82 are important components of the 

PR binding site for substrates or inhibitors. In wild type PR/GRL-1111, Val82 interacts with the 

P1 and P1’ groups of inhibitors, while Val32 and Ile47 contribute to the binding site for P2 and 

P2’ groups (Figure 11).  

Figure 11: The hydrophobic side chains of residues 32, 47 and 82. 

 

 

 

Ile82 in the mutant has similar interactions with inhibitor P1 and P1’ as seen for Val82 of 

wild type enzyme. The P2 group of GRL-1111 has similar interactions with Val32 and Ile32, while 

Val47 in the mutant has shifted to form new interactions with P2 compared to Ile47 in the flap. 

The P2’ group has gained van der Waals interactions with Ile32’ and lost contacts with Val47’ 

relative to those in the wild type structure.  
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In addition to the contacts with inhibitors, these residues interact with adjacent PR side 

chains. The side chains of residue 32 and 47 form hydrophobic contacts with each other and with 

neighboring side chains, as shown in Figure 12.  

 

Figure 12: Figure depicting side chains of residue 32 and 47 forming hydrophobic contacts 

with each other and with neighboring side chains. 

 

 

 

Val32 and Val32’ have similar hydrophobic contacts with Thr80/80’ and Ile84/84’, while 

Val32’ forms an additional van der Waals interaction with the side chain of Ile50 at the tip of the 

flap. Flap residues Ile47 and 47’ show conserved hydrophobic contacts with Lys45/45’, Ile54/54’ 

and Ile50’/50, while Ile47’ has an additional contact with Val56’ in the flap and Leu76’ but loses 

a contact with Asp30’. The majority of these internal hydrophobic contacts are retained in the PRTri 

mutant, despite the altered side chains of V32I and I47V. Compared to the wild type complex, 
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both Ile32 and 32’ lose one hydrophobic contact to Val47 and Val47’, respectively. However, 

Ile32 has gained a contact with Ile50’ in the mutant relative to the wild type complex. Val47 in the 

mutant has shifted by about 0.5Å and rotated by 180°, thus forming three extra hydrophobic 

contacts to the P2 group of the inhibitor but losing contacts with Asp30, Ile54, Ile50’, and Lys45. 

While Val47’ has the same orientation as the wild type residue, it loses two contacts to the P2’ 

group of the inhibitor and has fewer contacts with Lys45’ and Leu76’ in the mutant.  

The Ca atoms of both Val47 and 47’ shift by about 0.5Å relative to their location in wild 

type PR. The most significant change illustrated for Val47 in mutant relative to Ile47 in wild type 

PR. This shift enables Val47 to form 3 new hydrophobic contacts with the P2 group of inhibitor, 

while losing contacts with neighboring side chains of Asp30, Lys45, Ile54 and Ile50’.  

Mutation of Val82 to the longer Ile introduces new van der Waals interactions and 

significant changes in the side chain conformation of Arg8. In the wild type PR complex, the side 

chain of Arg8 has a single conformation that forms a key intersubunit ion pair with Asp29’ and no 

contacts with inhibitor. In the PRTri/GRL-1111 structure, the longer side chain of Ile82/82’ appears 

to induce two alternate conformations of Arg8/8’ with equivalent changes in both subunits. The 

guanidinium group of one conformation of Arg8 retains the ion pair with Asp29’ and also forms a 

new van der Waals contact with the P2 group of inhibitor. The second conformation of Arg8 is 

rotated away to form van der Waals contacts with Leu10 instead of the intersubunit ionic 

interaction with Asp29’. The second conformation of Arg8/8’ is not observed in the corresponding 

complex of PRTri/DRV, possibly because DRV lacks the extra amine of GRL-1111. These changes 

may be due to the local environment, since a multiple mutant PR20 has similar alternative 

conformations of Arg8/8’ related to the substitution of the larger Phe side chain instead of Leu10 

(Figure 13) [149]. 
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Figure 13: Interactions of alternative conformations of Arg8’ with neighboring side chains 

and inhibitor. Mutant is in magenta bonds with alternate conformation of Arg8’ in cyan and GRL-

1111 in green. Wild type PR and inhibitor are grey. Dotted lines indicate ionic interaction, and 

dashed lines indicate hydrophobic interactions. CH-pi interactions with the aromatic P1 group of 

inhibitor are indicated by a single dashed line.   

 

 

4.4 Discussion 

 

The four tested investigational antiviral compounds were poor inhibitors (Ki values of 16.7 

to 39.5 nM) of HIV-1 PRTri despite their excellent pM inhibition of wild type enzyme 

[128,130,132,133]. Analysis of protease-inhibitor interactions in the crystal structure of 

PRTri/GRL-1111 revealed the loss of one water mediated polar interaction in one orientation of 
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inhibitor and small changes in hydrophobic contacts. In particular, Val47 loses hydrophobic 

contacts with flap residues Lys45, Ile50’ and Ile54 compared to those of wild type complex. The 

most substantial change compared to the wild type complex occurred for mutated residue 

Ile82/82’, where the larger side chain produces two alternate conformations for the side chain of 

Arg8/8’. One conformation of the guanidinium group of Arg8/8’ forms new van der Waals 

contacts with Leu10 and the P2 group of GRL-1111 instead of its typical intersubunit ion pair with 

Asp29’/29. We previously reported the crystal structures of PRTri complexes with APV, DRV and 

SQV [126]. These structures exhibited a single conformation for Arg8/8’, except for the APV 

complex which had two alternate conformations for Arg8’ side chain in one subunit and new van 

der Waals contacts with Ile82’ and Leu10’ similar to those in the PRTri/GRL-1111 structure. 

Moreover, only a single conformation was observed for Arg8/8’ in our structures of HIV-2 PR 

with different inhibitors [126,150]. This change in conformation seen for Arg8/8’ in PRTri/GRL-

1111, comprising partial loss of its intersubunit ion pair and new intra-subunit interactions, might 

be expected to alter the stability of the mutant, however, the UC50 for urea denaturation remains 

close to the value for wild type PR. In contrast, PR mutant with the single substitution of R8Q, 

which completely eliminated the ion pair with Asp29’, showed decreased stability with UC50 of 

0.7 relative to wild type enzyme [151]. Overall, the loss of internal contacts among flap residues 

and disruption of the Arg8 – Asp29’ ion pair are consistent with molecular dynamics simulations 

suggesting substitutions V32I, I47V and V82I in HIV-2 PR decrease the hydrophobic interactions 

with APV and DRV [152]. 

 

This new structure of PRTri/GRL-1111 shows how drug resistant mutations of V32I and 

I47V on opposite sides of the S2/S2’ subsites can partially compensate for altered hydrophobic 
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interactions with inhibitors and other protease residues, while mutation V82I induces alternate 

conformations of Arg8/8’ and introduces new interactions with Leu10 and the P2 group of GRL-

1111. These changes appear to be specific for this combination of inhibitor and mutant.  

 

 
Table 8: Ki values (nM) of tested inhibitors.  
 

 
 APV GRL-1111 GRL-0249 GRL-0519 GRL-0739 

PRTri 2.5 ± 

0.9  

31.4 ± 3.9 16.7 ± 0.8 38.4 ± 1.2 39.5 ± 6.1 

PR 0.16 

[147]  

0.002 [130] 0.002 [132] 0.006 [150] 0.010 [149] 

Values for wild type enzyme are from listed citations.  

 

Table 9: Crystallographic Data Collection and Refinement Statistics.  

(Values in parentheses are given for the highest resolution shell.) 

 

 PRTri/GRL-1111 

Space group P21212 

Unit cell dimensions: (Å)  

  A 58.57 

  B 86.52 

  C 45.32 

Resolution range (Final Shell )(Å) 50-1.50 (1.55-1.50) 

Unique reflections 37,188 (2,865) 

Rmerge (%) overall (final shell) 
5.9 (49.2) 

I/σ(I) overall (final shell) 26.6 (3.1) 

Completeness (%) overall (final shell) 96.8 (76.4) 

Redundancy (final shell) 6.7 (4.1) 

  R (%) 13.4 

  Rfree (%) 17.2 
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No. of solvent atoms  151 

RMS deviation from ideality  

  Bonds (Å) 0.020 

  Angle distance (degree) 2.29 

Average B-factors (Å2)  

 Wilson B-factor 17.7 

  Main-chain atoms 17.0 

  Side-chain atoms 23.6 

  Whole chain atoms 20.2 

  Inhibitor 15.7 

  Solvent 28.3 
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5 SPERMINE AND OXACILLIN STRESS RESPONSE ON THE CELL WALL 

SYNTHESIS AND THE GLOBAL GENE EXPRESISON ANALYSIS IN METHICILLIN 

RESISTANCE STAPHYLOCOCCUS AUREUS 

 

Pawar S, Yao X, Lu C. 2018. Spermine and oxacillin stress response on the cell wall 

synthesis and the global gene expression analysis in Methicillin-resistance Staphylococcus aureus. 

Genes & Genomics. 41:43–59. https://doi.org/10.1007/s13258-018-0735-8. 

 

Abstract: 

 

Methicillin-resistant Staphylococcus aureus (MRSA) is a rapidly emerging bacteria 

causing infection, which has developed resistance to most of the beta-lactam antibiotics because 

of newly acquired low-affinity penicillin-binding protein (PBP2a), which can continue to build the 

cell wall when beta-lactams block other PBPs. Exogenous spermine exerts a dose-dependent 

inhibition effect on the growth of Escherichia coli, Salmonella enterica serovar, and S. aureus. 

Selection of an MRSA Mu50 derivative which harbors mutation on PBP2 gene (named as MuM) 

showing spermine resistance and which confers a complete abolishment of spermine-beta-lactam 

synergy was identified. To further investigate the gene expression changes, a transcriptome 

profiling of MuM against Mu50 (wild-type) without any treatment, MuM and Mu50 in response 

to high dose spermine and Mu50 in response to spermine-beta-lactam synergy at 15, 30 and 60 min 

time points was performed. Functional annotation was further performed to delineate the metabolic 

pathways associated with the significant genes. A significant down-regulation in the iron 

regulatory system, potassium channel uptake and polyamine transport system with an up-
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regulation in general stress response sigB dependent operon in MuM strain at 15, 30 and 60 min 

time points with spermine treatment compared to Mu50 strain was observed. Analysis of spermine-

dependent synergy with beta-lactams on cell wall synthesis revealed that it significantly reduces 

the degree of cross-linkage on cell wall with no change in trypsin digestion pattern of purified 

PBPs and without affecting PBPs expression or PBPs acylation by Bocillin. A strong relation 

between PBP2 protein and general stress sigB response, iron, potassium and polyamine transport 

systems was observed. SigB regulon should be activated on stress, which was not seen in some of 

our previous studies where it was down-regulated in wild-type Mu50 strain with spermine stress. 

Here, an intriguing finding is made where there seems to be a correction of this abnormal response 

of no SigB induction to a significant induction by PBP2 mutation. In MuM strain, a significant 

downregulation of KdpABC operon genes at 15, 30 and 60 min time points on spermine stress is 

seen, which seems to be absent without spermine treatment. Since KCL has been found to protect 

the cell against spermine stress in wild-type strain by induction of KdpABC operon, it fails to do 

so in MuM strain underlying the importance of PBP2 protein in spermine stress. Analysis of 

spermine-dependent synergy with beta-lactams on cell wall synthesis revealed that it significantly 

reduces the degree of cross-linkage on cell wall with no change in trypsin digestion patterns of 

purified PBPs and without affecting PBPs expression or PBPs acylation by Bocillin. Furthermore, 

spermine does not help in enhancing the binding of beta-lactams to PBPs and binding of spermine 

to PBPs does not cause conformational changes to PBPs, as tested with trypsin digestion patterns. 

Future studies on the molecular mechanism of spermine interactions with these systems hold great 

potential for the development of new therapeutics for MRSA infections. 
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5.1 INTRODUCTION 

 

Methicillin-resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen that 

causes hospital and community-acquired infections varying from mild skin lesions to severe, life-

threatening conditions like pneumonia, sepsis, and endocarditis [154, 155]. The resistance occurs 

because of newly acquired low-affinity penicillin-binding protein (PBP2a), which can build the 

cell wall when other PBPs are blocked by beta-lactams [156]. In Staphylococcus aureus, there are 

four native PBPs (PBP1-4), and one acquired PBP2a is attributive to MRSA [157]. Beta-lactam 

antibiotics irreversibly occupy the serine residue at the active site of penicillin-binding proteins 

(PBPs) forming a stable ester-linked acyl-enzyme which inhibits the transpeptidation process 

necessary for cell wall cross-linking [158-173]. Thus, MRSA seems to regulate a complex gene 

expression profiling when challenged with beta-lactams. Many studies have shown that exogenous 

spermine may become toxic to Staphylococcus aureus [174-177]. Exogenous spermine exerts a 

dose-dependent inhibition effect on the growth of E. coli, Salmonella enterica serovar, and 

Staphylococcus aureus. Recently, we reported that exogenous spermine might affect cell wall 

synthesis through its interactions with PBP2 and PBP2-associated multienzyme machinery to 

enhance the killing effects of beta-lactam antibiotics. The two possible ways of making MRSA 

sensitive by spermine-beta-lactam synergy can be by reducing the cross-linkage of peptidoglycan 

layer or by inhibiting cell growth. The PBP2 itself or enzymatic activities associated with the 

PBP2-dependent complex in cell wall synthesis could be a potential target of spermine, so we 

sought to identify a spontaneous mutation derived MRSA strain (MuM) conferring spermine 

resistance and studying how this mutation can contribute to resistance. The identified MuM strain 

showed a 32-fold increase in tolerance of growth inhibition by spermine and has completely lost 
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the spermine-beta-lactam synergy. Genome re-sequencing revealed a deprivation of transpeptidase 

activity with a 7-bp deletion within the pbpB gene, which may result in perturbation of cell wall 

synthesis and change the peptidoglycan structure. We also found that the degradation of MuM cell 

wall materials was significantly faster than that for the Mu50 control which suggested that cell 

walls of MuM may be less cross-linked and more susceptible to hydrolysis due to the defects in 

PBP2 protein [177, 178]. Thus, MuM is seemed to adjust its metabolic activities to compensate the 

defective cell wall synthesis. A detailed transcriptomic analysis of how MuM and Mu50 responds 

to spermine and spermine-beta-lactam synergy is still unknown. Therefore, in the current study, 

we have systematically compared Mu50 (wild-type), and MuM strain response to spermine alone 

(high dose) or in combination with b-lactam (oxacillin) (both at low dosages) using microarrays. 

To study the exogenous spermine effects on cell wall synthesis through its interactions with PBP2 

and PBP2-associated multienzyme machinery to enhance the killing effects of beta-lactam 

antibiotics, comparisons between Mu50 and MuM strains are performed using cell wall synthesis 

and transcriptomic assays. For transcriptomic experimental design, a three time-point (0, 30, and 

60 minutes) microarray data with replicates was generated for each of the two strains treated with 

spermine, oxacillin or both, and comparisons were made to study within and between treatment 

(MuM) changes when compared to the control strain (Mu50). Complementation of pbpB protein 

was also performed to validate the changes in treatment strain. While some groups have reported 

genome-wide transcriptional profiling of Staphylococcus aureus against the cell wall active 

antibiotics [177], ours is one of the first attempts in understanding this species response to spermine 

and beta-lactams with mutated PBP2 protein. 

5.2 METHODS 
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5.2.1 Bacterial strains, plasmids, growth conditions and isolation of spermine-resistant 

mutants: 

 

Staphylococcus aureus Mu50 (ATCC 700699), RN4220 (kindly provided by R. P. Novick, 

Newyork, USA) and Escherichia coli DH5 alpha (Bethesda Research Laboratories, Maryland, 

USA) were used for this study. Spontaneous mutants of MRSA Mu50 (oxacillin MIC of 512 μg/ml 

and spermine MIC of 1 mM at pH 8.0) were isolated by spreading 1×108 CFU of log-phase cells 

onto spermine-containing plates (2 to 8 mM, pH 8.0) maintained in the Luria-Bertani (LB) medium 

and incubated overnight at 37°C. One independent colony was found resistant to spermine (up to 

32 mM) in broth and on plates designated as MuM. For cell wall composition analysis, 

Staphylococcus aureus Mu50 (ATCC700699), E. coli DH5 alpha (Bethesda Research 

Laboratories, Maryland, USA) and Top10 (Invitrogen, Massachusetts, USA) strains were 

employed. The plasmids and primers used in this study are listed in Table 10.  

Table 8 Plasmids used in this study 

 

Plasmids Relevant 

characteristics 

Source or 

reference 

pBAD/HisA Expression vector, 

Amp 

Invitrogen 

pBAD/HisD Expression vector for 

producing N 

terminal His tag 

fusion, Amp 

This study 

pBAD/HisE Expression vector for 

producing C 

terminal His fusion, 

Amp 

This study 

pH6N-

PBP1 

pBAD/HisD expressing 

N-HisPBP1 

This study 
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pH6C-

PBP2 

pBAD/HisE expressing 

C-HisPBP2 

This study 

pH6N-

PBP3 

pBAD/HisD expressing 

N-HisPBP3 

This study 

pH6N-

PBP4 

pBAD/HisD expressing 

N-HisPBP4 

This study 

pBP2a pBAD/HisA expressing 

no tag PBP2a 

This study 

 

Both E. coli and Staphylococcus aureus strains were grown and maintained in the LB medium 

cultured in 20mM Tris-HCl at the indicated pH when needed. For E. coli, ampicillin was added to 

the medium as necessary at 100 μg/ml. Antibiotics were added to the medium as necessary at the 

following concentrations for maintenance of plasmids: ampicillin, 100μg/ml for E. coli; 

kanamycin, 25μg/ml for E. coli, 50μg/ml for S. aureus; erythromycin, 10μg/ml for S. aureus; 

chloramphenicol, 10μg/ml for S. aureus.  

5.2.2 Complementation of pbpB:  

 

The pbpB gene was reported to be transcribed independently or as a polycistronic RNA 

from its upstream prfA promotor [185]. To ensure optimal expression, a 3.2 kb fragment covering 

both prfA and pbpB were amplified by PCR from Mu50 genomic DNA with the primers 5’-CGC 

GGA TCC ACA CAT ACT TGT ACT TGC CTC-3’ (forward) and 5’-CGC GGC GCC GAG TGG 

ATT AGT TGA ATA TAC CTGTTA ATC CAC CGC TG-3’ (reverse). The resulting PCR product 

was cloned into the BamHI and NarI sites of the shuttle vector pCN38. The recombinant plasmid 

pYX9 was first cloned into and extracted from E. Coli and then electroporated into Staphylococcus 

aureus RN4220 [167, 194]. Plasmid DNA isolated from recombinant strains of RN4220 was 

subsequently introduced into Mu50 and MuM strains by electroporation. Meanwhile, empty vector 
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(pCN38) did not rescue the phenotypes in MuM (data not shown). 

5.2.3 Transcriptional profiling conditions:  

 

Staphylococcus aureus Mu50 and MuM were grown in Tris-buffered LB (pH 7.5), and 

cultures in the exponential phase (optical density at 600 nm [OD600] of around 1.0) were 

immediately treated with the RNA protection reagent (Qiagen, Maryland, USA) before harvesting. 

In the first condition, Mu50 and MuM strains were treated with 1mM spermine, and RNA isolated 

at 0, 15, 30 and 60-minute time-points with spermine and single 0 min time-point without 

spermine. In the second condition, three treatments of Mu50 strain with 1mM spermine, 2ng/μl 

oxacillin and a combination of 1mM spermine, 2ng/μl oxacillin were grown for one hour 

subsequently followed by RNA isolation. Spermine at 0.5mM was able to potentiate oxacillin MIC 

in MRSA strain Mu50, from 512μg/mL to less than 1μg/ml. Spermine MIC alone is 2-4mM. 

Therefore, spermine at 0.5 or 1 mM, oxacillin at 1μg/ml, 2μg/ml or 16μg/ml, are the concentrations 

that do not affect bacterial growth when used alone, but they can kill MRSA when used in 

combination [167]. So we chose to use 1/4 MIC instead of 1mM for spermine, and 1/32 MIC 

instead of 16μg/mL for oxacillin. RNA samples were extracted from cells with phenol (Fisher, 

Massachusetts, USA), digested with RNase-free DNase I (Roche, Indiana, USA) to remove 

genomic DNA, and purified with RNeasy mini columns (Qiagen, Maryland, USA). The cDNA 

synthesis, fragmentation, and terminal labeling were carried out as per the protocols of the 

manufacturer (Affymetrix, Massachusetts, USA). Labeled cDNA was hybridized to the GeneChip 

Staphylococcal aureus genome array. After scanning, the images were processed with GCOS 1.4 

software (Affymetrix, Massachusetts, USA). The data was generated for two independent 

biological replicates. 
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5.2.4 Microarray analysis:  

 

Mas 5.0 normalization was performed for all the files at 0-minute time point for Mu50 and 

MuM strains and strains with MuM-PBP2 and Mu50-PBP2 complementation plasmid [195]. For 

calculating upregulated genes, in control of all the P (present) call intensity values were considered 

for analysis and all the M (marginal) and A (absent) calls were regarded as 100. For treatment, all 

the genes with intensity values above 500 were considered in the analysis. This rigorous approach 

gave us significant differences amongst various comparisons avoiding any false positive and false 

negative results. The exact opposite criteria were applied to find down-regulated genes. Fold 

changes (greater than 1.5 and less than 1.5) with MuM-Mu50 and (MuM with PBP2)-(Mu50 with 

PBP2) were taken to find up and down-regulated genes in MuM strain. A similar method was used 

for comparison of MuM and Mu50 at 15, 30 and 60-minute time points with spermine treatment. 

Up and down-regulated genes were calculated and compared with 0-minute time point with no 

spermine treatment. All the microarray data were analyzed using library ’Affy’ package [196] on 

R platform [197]. Heat maps were generated using library ’gplots’ [198]. Heat maps were 

developed on Z scores, which were calculated by heatmap.2 function of gplots [Z score = (raw 

intensity - average)/standard deviation]. MA plots [199] for showing differentially expressed genes 

were calculated as follows: M = Logarithm to base 2 (Treatment/Control), A= 1/2×Logarithm to 

base2 (Treatment×Control). MA plots were made on R platform with ‘plotMA’ limma 

Bioconductor package [200].  

5.2.5 Cell wall composition analysis:  
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MRSA strain Mu50 was grown in LB broth (pH 8.0, w/ 20mM Tris cl) at 37°C with 

aeration. Cultures were supplemented with 0.5 mM spermine (Spm) and/or 1 ng/μl oxacillin (Ox) 

at OD600 of 0.5 and cell growth was continued for 4 hours before harvesting. Isolation of cell wall 

peptidoglycans and the analysis of the muropeptides by reverse-phase HPLC were carried out by 

CeCo Labs from Tubingen University, Tubingen, Germany (www.cecolabs.de).  

5.2.6 Protein cloning, expression, and purification:  

 

Phusion polymerase (NEB) was used to amplify pbp1 (or pbpA), pbp3 (or pbpC), pbp4 (or 

pbpD) genes with no N-terminal signal peptide and the putative transmembrane (TM) domain (at 

N-terminus of PBP1 and PBP3 and C-terminus of PBP4) from gDNA of MRSA Mu50 strain. 

Three plasmids were generated (pH6N- PBP1, pH6N-PBP3, and pH6N-PBP4) from PCR product 

cloned into pBAD/HisD expression vector digested at PstI/EcoRI restriction enzyme sites. The 

constructs encoded hexahistidine tag at the N-terminus of PBP1, PBP3, and PBP4 plasmids. 

Recombinant proteins covering residues M37-D744 for PBP1, Q44-K691 for PBP3, and T25-

H400 for PBP4 were expressed from these plasmids. A similar approach was utilized for 

expressing periplasmic polyamine-binding protein PotD and PotR of the potABCD operon. The 

PCR products were digested with HindIII and EcoRI and cloned into vector pBAD/HisD (5’ blunt 

end of PCR product ligating to SmaI site on the vector) at SmaI/HindIII and SmaI/EcoRI sites. We 

labeled these plasmids as pH6NnSP-PotD and pH6N-PotR (hexa-histidine tags were fused to N-

terminus of PotD and PotR). Top10 E. coli strains harboring plasmid of interest were grown at 

30°C in LB medium containing 100 μg/ml ampicillin. At 0.6 to 0.8 OD600 cultures were 

supplemented with 0.2 percent arabinose and grown for additional 4 hours. After harvestation cells 

were suspended in buffer A containing 20 mM sodium phosphate [NaPi] buffer, pH 7.4, and 
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500mM NaCl. The buffer was also supplemented with EDTA-free protease inhibitors (Roche), 

which after centrifugation at 20, 000×g for 30min at 4°C a HisTrap HP column (GE) pre-

equilibrated with Buffer A was applied on soluble fraction. Bound proteins were eluted by 

increasing concentrations of imidazole (final conc. 500 mM) in a gradient-dependent manner. 

Protein concentration was performed on fractions using Aminco Ultra-4 centrifugal filter unit 

(Millipore, Massachusetts, USA) with buffer to 20 mM Tris-HCl (pH 7.6). The region encoding 

amino acids W59 to S716 for pbp2 (or pbpB) gene was PCR amplified (Phusion, NEB, New 

England, USA) from Mu50 genomic DNA with specific primers. Digestion was done with 

BspHI/SmaI restriction enzymes and the product was cloned in vector pBAD-HisE at NcoI/SmaI 

sites (pH6C-PBP2 having C-terminal hexahistidine tag) which were subsequently introduced into 

E. coli Top10 for expression its protein. Induction with 0.2 percent arabinose for 4 hours at 30°C 

was performed at a log-phase culture. This was followed by French press at 17,000 psi in Buffer 

A. After centrifugation (20, 000g × for 30 min) pellet was suspended in Buffer A (0mM CHAPS, 

10 percent glycerol, 0.1 percent Sarkosyl (detergent) at pH to 9.0. Stepwise elution was performed 

with detergent-containing Buffer A with 500mM imidazole using a HisTrap HP column (GE). 

Concentration was performed using Aminco Ultra-4 centrifugal filter unit (Millipore, 

Massachusetts, USA) at buffer 20 mM Tris-Cl (pH7.6). mecA gene (without first 69 bases for its 

N-terminal anchoring region of 23 amino acids) was amplified from Mu50 gDNA and cloned into 

NcoI/HindIII restriction enzyme sites of pBAD/HisA for expressing PBP2a protein. The resulting 

plasmid pPBP2a was transformed into E. coli Top10 which was induced at a log-phase culture 

with 0.2 percent arabinose for 4 hours at 30°C. Cells were disrupted by French press at 17,000 psi 

in buffer Q (20mM Tris-Cl, pH7.6). The supernatant after centrifugation at 20, 000g × for 30 min 

was subjected to ammonium sulfate fractionation. At 30 percent saturation fraction was 
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precipitated and concentrated by Aminco Ultra-4 centrifugal filter unit (Millipore, Massachusetts, 

USA). The obtained protein sample was further diluted with Q buffer and applied to HiTrap Q HP 

column (GE, California, USA). Gradient elution with buffer Q containing 1M KCl was also used, 

and samples were concentrated again with Aminco Ultra-4 centrifugal filter unit to change the 

buffer to 20 mM Tris-HCl (pH 7.6). 

5.2.7 Construction of expression vector pBAD-HisE:  

 

Expression vector pBAD-HisE was constructed with primer pair’s hisF-5’-GGGCAT 

CATCATCATCATCATTGAATTCTGC-3’ and hisR-5’-GCAGAATTCAATGAT 

GATGATGATGATGCCC-3’. Digestion was performed with SmaI/EcoRI to incorporate this 

region in the vector pQF50. Further digestion was performed with NcoI/EcoRI enzymes to release 

the partial MCS carrying the His6 region.  

5.2.8 Bocillin labeling of PBPs:  

 

Purified PBPs (0.04 μg in 20 μl of 20mM Tris-Cl pH8.0) were incubated with Bocillin of 

indicated concentrations for 30 min at 37°C with gentle shaking. Staphylococcus. aureus (10 ml) 

was harvested at log-phase and the cell pellet was suspended in 200 μl the lysis buffer (50mM Tris 

pH7.5, 50mM NaCl, 5-10 μl of lysostaphin (10mg/ml), 5ul of DNaseI (10 Units/μl), 5 μl of RNase 

A (200 μg/ml) for 15-20 minutes at 37°C. The lysates obtained were labelled by adding Bocillin 

at a final concentration of 5uM and incubated at 37°C for 30 min. Ranges of Bocillin concentration 

varied from 0.25-16 uM for concentration-dependent experiments. Samples were pre-incubated 

with spermine for 30 min at 37°C prior to Bocillin labeling when needed. Samples were then mixed 
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with Laemmli sample buffer and boiled for 5 minutes prior to SDS-PAGE. The gel was rinsed and 

scanned with Typhoon scanner with excitation wavelength at 488 nm and emission wavelength at 

530 nm. Band intensity was quantified by Image Quant software.  

5.2.9 DARTS (Drug Affinity Responsive Target Stability):  

 

The purified protein in buffer containing 1 μg in 20 μl of 50mM Tris-Cl, pH 8.0, 50mM 

NaCl, 10 mM CaCl2 was incubated at 37°C with or without 1 mM spermine for 25 min followed 

by trypsin digestion (0.075 μg) at 25°C. The reaction was terminated with Laemmli sample buffer 

followed by boiling samples for 10min and subsequent SDS-PAGE. 

5.3 RESULTS 

 

 5.3.1 Transcriptome analysis of MuM strain in response to high dose spermine: 

5.3.1.1 Differences in Mu50 and MuM gene expression at 0-minute time point without spermine 

and reversion by MuM/PCN38 complementation:  

 

A total of 220 significantly up and down-regulated genes were found to be expressed in 

MuM strain with no spermine treatment at 0-minute time-point. These genes were then compared 

with MuM-PBP2 complementation plasmid to see if the changes reverted to wild-type expression 

profile. Reversion of expression by MuM-PBP2 was set to genes whose expression levels felt 

below -1-fold or went above +1-fold [170]. Three groups were made with genes which reverted to 

down-regulation, genes which returned to up-regulation, and genes with no change after 

complementation. Doing so 59 genes which completely reverted to up or down-regulation profiles 
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and rest 161 genes had no effect by complementation. A heat map in Figure 14 compares these 

220 significant genes in MuM and MuM complemented with the PBP2 plasmid.  

Figure 14 Heatmap comparing 220 significant genes in MuM and MuM complemented 

with PBP2 plasmid strains. 

 

 

The complete reversion of the up and down regulation status of genes in MuM strain with a PBP2 

complemented plasmid is because of mutant PBP2 protein. These genes are selected to validate 

the changes occurring with and without spermine treatment in subsequent analysis. 

5.3.1.2 Significant down-regulation in the iron transport system and up-regulation of sigB 

regulon genes was seen at 15, 30 and 60-minute time points in MuM strain when 

compared to Mu50 strain with spermine treatment:  

 

A total of 420, 335, and 332 genes were found significantly expressed in MuM strain at 15, 

30 and 60-minute time points when compared with Mu50 strain. These genes were then fed in 

DAVID database [170] to perform functional annotation. Genes with the iron transport system 

were found to be significantly downregulated with spermine treatment at 15, 30 and 60-minute 
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time points in MuM strain compared to Mu50 strain. The list of these genes and their fold change 

expression levels are given in Table 11 and Figure 28.  

Table 9List of iron regulation, polyamine and potassium transport genes with their significant 
fold change expression levels (logarithm to base 2) 

 

Gene 

symbol 

Affymetrix 

ID 

MUM.NOSPM.0 MUM.SPM.15 MUM.SPM.30 MUM.SPM.60 

fhud sa 

c914s711 at 

1.39 0 − 2.32 − 2.33 

fhug sa 

c7993s6980 

at 

0 − 1.28 − 1.56 − 1.26 

fhua sa 

c5423s4693 

a at 

0 0 − 1.2 − 1.07 

fhub sa 

c7989s6976 

at 

0 − 1.2 − 1.57 − 1.3 

htsB sa 

c4643s3963 

a at 

0 − 1.13 − 1.15 0 

htsC sa 

c4639s3961 

a at 

0 0 − 1.31 0 

sirA sa 

c1230s1008 

at 

0 1.18 0 − 1.26 

sirB sa 

c1172s953 

a at 

0 0 − 1.1 − 1.12 

NARG  sa 

c5574s4827 

a at 

− 2.99 0 0 0 

NIRD sa 

c5580s4836 

a at 

− 1.94 0 0 0 

SACOL1640 sa 

c2711s2285 

a at 

0 − 1.95 0 0 
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SACOL1810 sa 

c3357s2894 

a at 

0 − 1.57 − 1.61 − 1.69 

MUTY  sa 

c3689s3168 

a at 

0 0 − 1.98 − 1.8 

SDAAB sa 

c6092s5283 

a at 

0 0 − 1.99 − 2 

GLTD sa 

c7412s6438 

a at 

0 0 0 − 2.08 

SACOL0939 sa 

c8086s7067 

a at 

0 1.6 1.56 0 

SACOL0770 sa 

c8202s7182 

a at 

0 − 1.84 0 0 

SACOL0706 sa 

c7993s6980 

at 

0 0 − 1.56 0 

SACOL0705 sa 

c7989s6976 

at 

0 0 − 1.57 0 

SACOL0797 sa 

c8283s7260 

a at 

0 0 0 − 1.65 

SACOL0796 sa 

c8276s7256 

a at 

0 0 0 − 2.09 

SACOL0798 sa 

c5353s4626 

a at 

0 0 − 2.07 − 1.58 

kdpa sa 

c4298s3650 

a at 

1.88 − 1.26 − 2.82 − 2.8 

kdpb sa 

c4292s3644 

a at 

0 − 1.74 − 2.52 − 2.38 

kdpc sa 

c236s9562 

at 

1.32 0 − 1.54 − 1.49 



80 

 

 

 

 

 

 

 

Figure 15 Bar graph with fold changes (logarithm to base 2) for iron regulation, 

potassium and polyamine transport genes in MuM strain at 15, 30 and 60 min time points with 

spermine treatment. 

 

 

 

 

A pattern of sigB regulon genes with significant up regulation with spermine treatment was seen 

in MuM strain when compared to Mu50 strain. A heat map comparing expression levels of sigB 

pota sa 

c5349s4625 

a at 

− 1.01 − 4.01 − 3.66 − 2.58 

potb sa 

c9028s7925 

a at 

− 1.97 − 4.68 − 3.94 − 2.7 

potc sa 

c795s596 a 

at 

− 1.36 − 4.31 − 3.83 − 2.48 

potD sa 

c803s604 a 

at 

− 1.69 − 3.71 − 3.01 − 2.06 
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operon genes at 0-minute time point with no spermine, 15, 30 and 60-minute time points with 

spermine treatment is shown in Figure 15.  

Figure 16 Heat map on the fold changes comparing 92 sigB genes in MuM and Mu50 

strains at 0 min time-point without spermine treatment, MuM at 0  min time-point without 

spermine treatment and with PBP2 complementation, MuM with spermine treatment at 15, 30 

and 60  min time points. 

 

 

Iron is an essential element of redox systems in many gram-positive and negative bacteria’s. Iron 

transport systems are needed by bacteria to solubilize external Fe3+. The ABC transporters form 

a major iron transport system in gram-positive bacteria. Staphylococcus aureus grows on 

transferrin as a sole iron source [173]. There has been a recent demonstration of the production of 

siderophores by Staphylococcal strains. Staphylococcus hyicus has been shown to produce at least 

two siderophores, staphyloferrins A and B. Siderophores mobilize transferrin iron and donate it to 
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siderophore specific ABC transporters in the cytoplasmic membrane [175]. Staphyloferrin A and 

B also host catecholamine hormones that support the growth of Staphylococcus aureus. 

Staphyloferrin iron is taken up via the HtsABC and SirABC systems, whereas catecholate iron is 

taken up by the newly identified SstABCD transport system. Approximately, 42 known transport 

proteins of Fe3+ siderophore transport systems have been identified [175]. Expression of iron 

repressible outer membrane proteins (IROMPs) binding to specific iron-containing compounds 

transport free iron or the iron bound ligand into the cell. The binding of these receptor proteins is 

mediated by the iron binding repressor protein and ferric uptake regulator (fur) requiring ferrous 

iron as a cofactor [176]. In Escherichia coli fhu operon is composed of the fhuA, B, C and D genes 

which are essential for the utilization of ferric siderophores of the hydroxamate-type and mutations 

in either one of the fhu genes negatively influence the expression of other fhu genes in the operon. 

Transport across the outer membrane is regulated by fhuA, while the cytoplasmic membrane 

transport is regulated via fhuC, B, and D genes [177]. By comparing MuM with Mu50 strains at 

15, 30 and 60-minute time points with spermine treatment, a significant down-regulation in 

HtsABC, SirABC and fhu operons in MuM strain was observed. These significant genes included 

iron ion binding proteins, iron-sulfur cluster binding proteins, and iron ABC transporters. There 

have been reports for chelation of iron inside the bacterial cell from spermine by forming ternary 

complexes with Fe2 and phosphate groups [178] [179]. We have shown that spermine can induce 

stress through iron starvation in Staphylococcus aureus which can be the result of altered 

intracellular iron status [176]. These signals can be reciprocated by intracellular iron regulators 

channels like HtsABC, SirABC, and fhu operons. Significant induction of all these iron acquisition 

operons is seen in Staphylococcus aureus on spermine stress indicating a correlation between iron 

and spermine. We see a significant down-regulation in iron acquisition operons with mutant PBP2 
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protein pitching the importance of PBP2 to iron acquisition and spermine stress. SigB factors have 

been shown in various bacteria to be important for survival under extreme conditions influencing 

virulence and pathogenicity [180]. SigB regulon is one of the first regulons to response in stress 

for bacteria [181]. SigB influences the expression of a variety of virulence genes like alpha-

hemolysin, lipases, and proteases [181-184]. DNA microarray bases study in Staphylococcus 

aureus has shown that the sigB regulon influences the expression of at least 251 genes (198 and 

53) genes as positively and negatively controlled respectively) [180]. A sixth sigma factor is 

necessary to initiate transcription from promoters by binding to the core of RNA polymerase 

consisting of five subunits [182] [183]. Most bacteria have additional sigma factors called 

alternative sigma factors which can target specific recognition sequences and control specialized 

regulons that are activated under stress [179]. Regulators RsbV and RsbW are conserved in all 

gram-positive bacteria that have sigB regulon [166]. The kinase activity of RsbW determines 

phosphorylation state of the anti-sigma factor antagonist RsbV is subsequently controlling sigma 

B activation [182] [184]. The sigma B regulated genes are involved in many cellular processes 

including cell envelope turnover, biosynthesis, intermediary metabolism, virulence and membrane 

transport processes where the SigB regulon is highly interconnected with other regulatory 

networks. Moreover, global regulators of stress response like SarA are also partly under SigB 

control [183]. About 92 sigB regulated genes were identified to respond at 0, 15, 30 and 60-minute 

time points. At 0-minute time point with no spermine treatment, 49 genes were found to be 

significantly up-regulated in MuM strain. When compared with 15, 30 and 60-minute time points 

with spermine treatment, 45, 35 and 30 genes of 49 significantly expressed at 0-time point showed 

a fold change of greater than 1.5. A pattern of sigB regulon genes with significant up-regulation 

with spermine treatment was seen in MuM strain when compared to Mu50. MuM strain deprives 
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transpeptidase activity of the PBP2 protein, being abnormal physiology, the bacterium may try to 

compensate it by activating sigB regulon in MuM strain without spermine stress. Spermine stress 

may exacerbate this condition and can cause a continued up-regulation of this regulon throughout 

15, 30 and 60-minute time points on spermine stress. SigB regulon should be activated on stress, 

which was not seen in some of our previous studies where it was down-regulated in wild-type 

Mu50 strain with spermine stress [166]. Here, we have made an intriguing finding where there 

seems to be a correction of this abnormal response of no SigB induction to a significant induction 

by PBP2 mutation. It seems to be unclear why SigB regulon was not induced by spermine stress 

in wild-type strain which starts responding in MuM strain. 

 

 

5.3.1.3 A total of 488, 146 and 249 significant genes stating differences between and within 

treatments for Mu50 and MuM strains were selected amongst three categories for functional 

annotation:  

 

To identify within and between treatment changes, three categories of comparisons were made: 1. 

Comparison of Mu50 15, 30 and 60-minute time-points with spermine treatment and Mu50 0 

minute time-point without spermine treatment, 2. Comparison of MuM 15, 30 and 60-minute time-

points with spermine treatment was compared with MuM 0 minute time-point without spermine 

treatment and 3. Comparison of MuM 15, 30 and 60-minute time-points with spermine treatment 

was compared with Mu50 0 minute time-point without spermine treatment. A total of 488 

significant genes with a fold change of greater and lesser than 1.5 in category 1, 146 significant 

genes in category 2 and 249 significant genes in category three were selected. MA (log ratio to 
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mean average) plots for each of these comparisons are plotted in Figure 17 to show the distribution 

of these differentially expressed genes.  

Figure 17 MA plots showing differentially expressed genes in Mu50 and MuM 

treatments. a.1, a.2, a.3 Mu50 at 15, 30 and 60 min time-points with spermine treatment over 

Mu50 0  min time-point without spermine treatment. b.1, b.2, b.3 MuM at 15, 30 and 60 min 

time-points with spermine treatment over MuM 0  min time-point without spermine treatment. 

c.1, c.2, c.3 MuM at 15, 30 and 60 min time-points with spermine treatment over Mu50 0  min 

time-point without spermine treatment. 

 

 

These significant genes were further used for functional annotation. 

 

5.3.1.4 Addition of spermine to Staphylococcus aureus Mu50 strain caused decrease expression 

of genes in major central metabolic pathways of carbohydrate biosynthesis, glycolysis and TCA 
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cycle, cell structure, fatty acid and lipid biosynthesis and electron transfer chain:  

 

The metabolic pathways and genes involved in Staphylococcus were downloaded from Biocyc 

pathway/genome database collection. Functional annotation was performed to delineate the 

metabolic pathways associated with the significant genes. Addition of spermine to Staphylococcus 

aureus Mu50 strain caused decrease expression of genes in major central metabolic pathways of 

carbohydrate biosynthesis, glycolysis and TCA cycle, cell structure, fatty acid and lipid 

biosynthesis and electron transfer chain. Percent number of genes involved in each of the processes 

affected in MuM and Mu50 strains is shown in Figure 30 with their descriptions in Table 12. 

Table 10 List of metabolic processes affected in each of the MuM and Mu50 strains on spermine 
stress [+: affected, −: not affected] 

 

Process 

number 

Metabolic processes MU50 MU50  

(percent 

genes) 

MuM MUM 

(percent 

genes) 

1.2 Interconversions + 22 − 0 

2.1 Amines and polyamines biosynthesis + 100 + 57 

2.2 Amino acids biosynthesis + 7 + 2 

2.5 Carbohydrates biosynthesis + 36 − 0 

2.6 Cell structures biosynthesis + 1 − 0 

2.7 Cofactors, prosthetic groups, electron 

carriers biosynthesis 

+ 2 + 0.5 

2.8 Fatty acid and lipid biosynthesis + 2 − 0 

2.1 Nucleosides and nucleotides 

biosynthesis 

+ 1.5 + 0.5 

2.11 Other biosynthesis − 0 + 0.5 

3.1 Alcohols degradation + 23 + 3 

3.2 Aldehyde degradation + 66 + 0 

3.3 Amines and polyamines degradation + 15 + 5 

3.4 Amino acids degradation + 20 + 2 

3.5 C1 compounds utilization and 

assimilation 

+ 43 + 4 
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Figure 18 Functional annotation was performed to delineate the metabolic pathways 

associated with the significant genes using Biocyc pathway/genome database collection. 

 

 

This transcriptome analyses demonstrated a specific pattern of response in MRSA Mu50 upon high 

3.6 Carbohydrates degradation + 21 + 3 

3.7 Carboxylates degradation + 5 − 0 

3.8 Degradation/utilization/assimilation—

other 

+ 100 − 0 

3.9 Fatty acid and lipids degradation + 8 − 0 

3.1 Inorganic nutrients metabolism + 2 − 0 

3.11 Nucleosides and nucleotides 

degradation 

+ 5 + 3 

3.14 Secondary metabolites degradation + 5 + 5 

3.15 Steroids degradation − 0 − 0 

4.2 Methylglyoxal detoxification − 0 + 1 

4.3 Reactive oxygen species degradation + 12 + 12 

5.3 Electron transfer + 11 − 0 

5.4 Fermentation + 11 + 0.5 

5.5 Glycolysis + 22 − 0 

5.7 Respiration + 19 + 4 

5.8 TCA cycle + 22 − 0 

6.1 Metabolic clusters + 5 − 0 

7.1 Superpathways + 9 + 2 
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dose spermine exposure, suggesting spermine alone may alter the intracellular iron status and 

suppress the SigB regulon to exert its toxicity. Combination of two drugs may inhibit bacterial 

growth in more complicated ways than the single drug does. As for our case, the synergy of 

spermine and beta-lactams may function by spermine facilitating beta-lactams on perturbation of 

cell wall synthesis or beta-lactam enhancing spermine attack on unknown targets, or the formation 

of a new structural configuration that makes the common target more vulnerable to be attacked by 

spermine or beta-lactams. To obtain a better insight of how two agent’s, spermine and beta-lactam 

might affect each other to enhance the antibacterial effectiveness, we monitored the global changes 

in gene expression patterns over spermine only or oxacillin only and spermine/oxacillin 

combination conditions. Considering our isolated Mu50 derivative MuM became spermine-

resistant and lost spermine/beta-lactam synergy by a specific mutation on PBP2. We therefore 

further tested the hypothesis that spermine may interfere with PBP(s) or the coordinated complex 

in cell wall synthesis. Three possible ways were selected, by looking at cell wall composition, by 

understanding the expression of PBPs on transcriptional level and translational levels upon 

challenge by spermine or beta-lactam alone or in combination and looking at the possible 

interactions between spermine and PBPs with the recombinant PBPs from Mu50 analyzed via 

various biochemical approaches. Down-regulation of various carbohydrate metabolism and 

transport genes was observed. Specifically, the expression of genes like phosphoglycerate mutase, 

glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglyceromutase, 

glucose-6-phosphate isomerase, phosphoglycerate mutase, fructose-bisphosphatase, fructose-1, 

6-bisphosphate aldolase and hexulose-6-phosphate synthase were reduced in Mu50 strain with 

spermine treatment at 15, 30 and 60-minute time points respectively. These genes and processes 

were unaffected in MuM strain with spermine treatment. Polycationic molecules like polyamines 
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play important role in maintaining conformation of negatively charged nucleic acids. Bacteria’s 

have evolved transport systems that can allow uptake of extracellular polyamines. Polyamine 

spermidine can bind to PotD protein causing conformational change triggering a subsequent 

conformational change in PotBC leading to ATP hydrolysis and spermidine uptake [186]. 

Mutations in any of the genes in the potABCD operon abolish polyamine transport [186]. After 

comparing MuM strain with spermine treatment at 15, 30 and 60-minute time points, a general 

trend in down-regulation of potABCD operon was observed in all the time-points.  The similar 

pattern was seen in MuM without spermine treatment at 0-minute time point but with low fold 

expression which was amplified by an at least one-fold decrease on spermine treatment. Our data 

show that there may exist some interaction between potABCD proteins of spermine transport 

system and PBP2 protein causing down-regulation of potABCD operon on spermine stress in PBP2 

mutant strain compared to wild-type Mu50 strain. Co-immunoprecipitation or Bio-molecular 

fluorescence (BiFC) techniques would be needed to confirm these interactions. Potassium uptake 

and regulation in bacteria is carried out with kdp operon [188]. KdpABC genes constitute Kdp 

operon whose expression is regulated by the KdpDE two-component system in response to 

potassium limitation or turgor pressure [189]. The spermine can enter the cell and occlude the 

transmembrane pore domain of inwardly rectifying potassium channel (Kir) [200]. When 

supplemented with high concentration potassium, we have seen an increase in spermine resistance 

by counteracting spermine obstruction on the uptake channel in wild-type Mu50 strain [166]. 

Addition of potassium (300 mM KCl) has been seen to increase Spermine MIC up to 32-fold [166]. 

In MuM strain, we see a significant down-regulation of KdpABC operon genes at 15, 30 and 60-

minute time points on spermine stress which seems to be absent without spermine treatment. Since 

KCL has been found to protect the cell against spermine stress in wild-type strain by induction of 
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KdpABC operon, it fails to do so in MuM strain underlying the importance of PBP2 protein in 

spermine stress. 

 

5.3.1.5 No significant stimulation of cell-wall-stress stimulon and peptidoglycan synthesis genes 

in Mu50 strain with only spermine, or only oxacillin or with combination treatment:  

 

Mu50 strain at two hour-time point with only spermine treatment, with only oxacillin and with 

spermine and oxacillin in combination were compared with Mu50 two hour-time point without 

spermine and oxacillin treatment. A significant stimulation of cell-wall-stress stimulon and 

peptidoglycan synthesis genes with only spermine, or only oxacillin or with combination treatment 

was not seen. Further analysis of sigB regulon, iron, potassium and polyamine transporter genes 

status was performed. With only spermine and only oxacillin treatment, over 90 percent of genes 

were found to be insignificant, while 45 percent of genes were found to be down regulated in 

spermine with oxacillin treatment. This finding was overlapping with our previous finding where 

there was down regulation of sigB regulon to high dose spermine stress [166]. We further saw the 

induction of iron regulation genes with the spermine-oxacillin combination, while both potassium 

and polyamine transport genes were found to be insignificant in all the conditions. Cell-wall-active 

antibiotics can stimulate regulons controlled by RNA polymerase sigma factors. A cell-wall-stress 

stimulon in Staphylococcus aureus has been reported by transcriptional profiling in response to 

cell wall-active antibiotics. 98 genes upregulated by oxacillin treatment are noticed as a cell-wall-

stress stimulon in Staphylococcus aureus [192]. These genes are involved in several processes like 

coenzyme metabolism, energy production, and conversion, lipid metabolism, secondary 

metabolites biosynthesis, transport and catabolism, translation, ribosomal structure, and 
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biogenesis. 29 such genes to be up-regulated with a fold change of greater than 1.5 with only 

spermine treatment were identified. Most of these genes showed similar or higher up-regulation 

with a spermine-oxacillin synergy at the one-hour time point. Genes potentially related to cell-wall 

biosynthesis like murI (Glutamate racemase), murZ (UDP-N-acetylglucosamine 1-carboxylvinyl 

transferase 2), PBP2, sgtB (Hypothetical protein like penicillin-binding protein 1A/1B) were not 

seen to be significantly upregulated with spermine and spermine-oxacillin synergy. Oxacillin binds 

to PBPs to inhibit the cross-linking step of peptidoglycan biosynthesis [192]. It has been proposed 

that the cell responds to inhibition of peptidoglycan synthesis by increasing the transcription of the 

pbpB gene to increase the rate of peptidoglycan synthesis [193]. MurZ is the first protein involved 

in the biosynthesis of UDPN-acetylmuramyl pentapeptide [193]. We didn’t find a significant 

stimulation of cell-wall-stress stimulon in Mu50 strain by only spermine treatment or with 

spermine-oxacillin synergy as only 29 percent genes were significantly expressed. Also, we didn’t 

see a significant stimulation of cell-wall biosynthesis genes with only spermine and with spermine-

oxacillin treatment, suggesting spermine alone or in combination with oxacillin can weaken cell 

wall without stimulating genes in cell wall synthesis. When we compared Mu50 and MuM strains 

with spermine and without oxacillin treatment, a general trend in down-regulation of cell structure 

biosynthesis genes was seen in the Mu50 strain which was absent in MuM. The peptidoglycan 

synthesis genes like bifunctional N-acetylglucosamine-1-phosphate, phosphoglucosamine  

mutase, UDP-N-acetylglucosamine  2-epimerase,  phospho-N-acetylmuramic-pentapeptide-

transferase, UDP-N-acetylmuramoylalanine-D-glutamate ligase, UDP-N-acetyl muramate-L-

alanine ligase, D-alanine-D-alanine ligase, and UDP-N-acetylglucosamine 1-

carboxyvinyltransferase were down-regulated in Mu50 strain. Some of these genes seemed to be 

down-regulated in MuM, but a general trend in down-regulation was consistent in Mu50 when 
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compared to MuM. Lipid metabolism genes like NADPH-dependent glycerol-3-phosphate 

dehydrogenase, phosphatidylglycerophosphate synthase, enoyl reductase, an acyl carrier protein, 

3-oxoacyl-ACP synthase were seen to be down-regulated in Mu50 treated with spermine. It has 

been proposed that spermine can form a complex with PBP2 protein eliciting conformational 

change to weaken interactions among enzymes in the complex and inhibit the trans-glycosylase 

activity of PBP2 in cell wall synthesis by increasing the transcription of the pbpB gene to increase 

the rate of peptidoglycan synthesis [166]. Given our observations, it seems to contradict this 

hypothesis as there is down-regulation of peptidoglycan synthesis genes in Mu50 on spermine 

stress. Further analysis of these genes with real-time PCR can provide more insights on validating 

these observations. 

 

5.3.1.6 Analysis of spermine-dependent synergy with beta-lactams on cell wall synthesis: The 

synergy between spermine and oxacillin reduces the degree of cross-linkage on cell wall:  

 

Peptidoglycan was digested with M1 muramidase, and the fragments were analyzed by HPLC to 

determine the composition and degree of cell wall cross-linkage in spermine/oxacillin-grown cells. 

As shown in Figure 19.1, there were no major changes seen in the biochemical composition of PG 

in the presence of spermine (0.5mM) alone, oxacillin (1ng/µl) alone or their combination.  

Figure 19 Chromatograms of peptidoglycan analysis by HPLC. Effect of Spm/beta-

lactam on the muropeptide composition and degree of cross-linking of peptidoglycan extracted 

from S. aureus Mu50. 
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However, we do saw differences in the degree of cross-linking between glycan chains within the 

samples. The combination treatment results in a more depressed hump (retention time 110 minutes 

and after) in this sample, while samples of spermine or oxacillin alone do not cause any significant 

changes on the chromatograms (data not shown). Depressed humps on chromatogram have also 

been encountered in Staphylococcus aureus at high doses of beta-lactams that block the 

biochemical functions of PBPs [160]. Since PG cross-linking is catalyzed by PBPs, this result 

suggests an enhanced PBP inactivation by oxacillin-spermine synergy. The PBPs contribution in 

cell wall synthesis can be affected by oxacillin/spermine synergy at multiple levels of transcription 

and translation; the binding affinity with beta-lactams; the enzymatic activity, which may result 

from irregular conformation, incorrect localization, masked active sites, etc. To study if PBP2a or 

the PBPs complex is involved in the synergism, we then tested if spermine suppresses PBP’s 

expression; whether spermine enhances the PBPs-beta-lactam binding and whether spermine can 

directly interact with PBPs to influence their activities. We did not evaluate whether spermine can 

delocalize PBP(s) or prevent their recruitment to the septum due to some technical limitations. 
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5.3.1.7 Transcriptional or translational expression of PBPs is not seen to be affected by spermine 

treatment:  

 

We compared microarray gene expression levels of PBPs in MRSA Mu50 treated with spermine 

(1mM), oxacillin (16ng/µl), or in combination. As seen in Figure 19.2 (signal intensities of 

different PBP expression), no significant differences were detected between untreated and treated 

transcripts, suggesting low-dose spermine by itself or in combination with beta-lactams may not 

affect the PBP transcription. To examine whether spermine can influence the PBPs protein levels, 

lysates from Mu50 grown in the presence of different concentrations of spermine (0.5mM, 2mM, 

10mM) were labeled to Bocillin labeling (for detection of PBP1-4) or Western blot (for detection 

of PBP2a). Again, we didn’t see any significant changes in the quantities of any PBPs as seen in 

Figure 19.3. Thus, we conclude that spermine may not affect PBPs expression either at the 

transcriptional or translational level. The PBP2 mutant strain MuM became spermine resistant and 

showed no spermine/beta-lactam synergy which suggested that PBPs could be the target for 

spermine. In line with this, the reduced PG crosslinking by a combination of low dose spermine 

and oxacillin further supports the hypothesis of spermine perturbing cell wall integrity in favor of 

beta-lactam efficacy. However, a series of experiments investigating spermine effects on PBPs, the 

beta-lactam targets, implies that spermine does not appear to suppress the PBPs expression or alter 

their interactions with beta-lactams. Besides, no apparent stimulation of cell-wall-stress stimulon 

in Mu50 strain by only spermine treatment or with spermine-oxacillin synergy was observed (as 

only 29 percent of cell wall stimulon genes were significantly expressed). Even so, these results 

cannot rule out the possibility that the enzymatic activities of PBP-associated multi-enzyme 

complexes might be modulated directly by binding of spermine to the complexes or indirectly 
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through delocalization or reconfiguration of the complexes on the membrane. Also, spermine may 

perturb other cell wall-related factors (instead of PBPs) to achieve the spermine/beta-lactam 

synergy. Our unpublished data showing other spontaneous mutants with mutation not locating on 

pbp2 also lose the synergy like MuM, suggest that other gene defects may confer similar impacts 

as that of PBP2 deficiency in MuM to block the spermine target. Although we did not see the up-

regulation of cell wall stimulon by the spermine/oxacillin combination, the induced expression of 

iron uptake genes in Mu50 strain drew our attention. Iron and H2O2 or its precursor superoxide 

(O2-) are required for the Fenton reaction to generate destructive hydroxyl radicals (-OH), which 

can trigger a common oxidative damage cellular death pathway by increasing the transcription of 

the pbpB gene to increase the rate of peptidoglycan synthesis [193] [194]. Bactericidal antibiotics 

including beta-lactams can trigger superoxide production through destabilization of the electron 

transport chain and in our transcriptome data, iron/heme acquisition was highly stimulated by 

spermine. Therefore, one possibility was that the enhanced ferrous iron uptake by spermine, 

together with superoxide generated by beta-lactams significantly intensifies the Fenton reaction 

and subsequently causes cell death. There is also a possibility of beta-lactams augmenting 

spermine effects during the synergy. The extensively affected energy production pathways 

(glycolysis, fermentation, TCA cycle) by spermine may also perturb the electron transport chain. 

If so, one presumption is: beta-lactam inhibited cell wall synthesis will disturb membrane potential 

which cooperates with the possible deficiency on the electron transport chain endowed by 

spermine effect to kill the bacteria. In conclusion, a significant down-regulation in an iron 

regulatory system, potassium channel uptake and polyamine transport system with an up-

regulation in general stress response sigB dependent operon in MuM strain at 15, 30 and 60-

minutes time points with spermine treatment when compared to Mu50 is observed. The electron 
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transfer chain, carbohydrate biosynthesis, cell structure fatty acid and lipid biosynthesis systems 

were seen to be down-regulated in Mu50 and unaffected in MuM strain on spermine stress. 

Furthermore, analysis of spermine-dependent synergy with beta-lactams on cell wall synthesis 

revealed that it significantly reduces the degree of cross-linkage on cell wall with no change in 

trypsin digestion patterns of purified PBPs and without affecting PBPs expression or PBPs 

acylation by Bocillin. 

 

5.3.1.8 Spermine does not help in enhancing the binding of beta-lactams to PBPs:  

 

To evaluate if spermine can enhance binding of beta-lactams to PBPs binding during 

synergy, PBPs in Staphylococcus aureus lysate or purified PBPs were incubated with Bocillin 

(fluorescent beta-lactam derivative) with or without spermine treatment. Lysates from Mu50 

grown in the medium free of spermine or oxacillin were pre-incubated with 0.5mM spermine and 

subjected to labeling by Bocillin of indicated concentrations. The binding affinities were estimated 

by measuring the fluorescence intensities of acylated PBPs by Bocillin. As illustrated in figure 

19.4, the binding kinetics of Bocillin to PBPs were unaffected by the presence of spermine. We 

then studied beta-lactam-PBP binding affinity individually or in combination with purified PBPs. 

As shown in Figure 19.5, we calculated affinity of Bocillin for different PBP’s through a 

monophasic saturation curve. A notably higher dissociation constant (Kd) for PBP2a than those of 

other PBPs and was consistent with its low affinity to beta-lactams and the resultant high beta-

lactam MIC for MRSA was seen. We also compared the individual Kd values between spermine 

treated and untreated samples where no significant variations were detected. Coomassie staining 

of the same gel ensured no variations in protein amount between samples (data not shown). Our 
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results suggest that spermine may not affect PBP acylation by beta-lactams. 

 

5.3.1.9 Binding of spermine to PBPs does not cause conformational changes to PBPs, as tested 

with trypsin digestion patterns:  

 

Binding of spermine to PBPs may cause conformational changes causing sensitivity of 

ligand-protein complexes against protease digestion. So, we utilized DARTS (drug affinity 

responsive target stability) method to look for possible conformation changes of PBPs due to 

spermine interaction. Purified PBP was pre-incubated with or without spermine and subjected to 

trypsin digestion following a time course with subsequent SDS-PAGE separation. The unrelated 

carboxylesterase Est55 served as control. As shown in Figure 32.6, no significant difference on the 

digestion patterns were observed regardless of spermine treatment. 
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