
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

Summer 8-8-2024

Mitigating Class Imbalance in Time Series Classification via Mitigating Class Imbalance in Time Series Classification via

Generative Modeling Generative Modeling

Yang Chen

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

Recommended Citation Recommended Citation
Chen, Yang, "Mitigating Class Imbalance in Time Series Classification via Generative Modeling."
Dissertation, Georgia State University, 2024.
doi: https://doi.org/10.57709/37354731

This Dissertation is brought to you for free and open access by the Department of Computer Science at
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Computer Science Dissertations by
an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_diss
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/37354731
mailto:scholarworks@gsu.edu

Mitigating Class Imbalance in Time Series Classification via Generative Modeling

by

Yang Chen

Under the Direction of Rafal Angryk, Ph.D.

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2024

ABSTRACT

Most classification techniques assume a uniform distribution of training data classes.

However, well-balanced data is rare, with infrequent events often being the most valuable.

This well known class imbalance issue severely hinders the performance of supervised algo-

rithms, limiting their ability to accurately predict minority classes and resulting in analyses

that lack practical operational value. Generative models in machine learning are designed to

learn the underlying patterns or distribution of existing data, enabling them to generate new

data that resembles the original dataset. Inspired by the success of Generative Adversarial

Networks (GANs) in synthetic image generation, we employed Conditional GAN (CGAN) to

generate synthetic multivariate time series data on a benchmark dataset for solar flare fore-

casting. Our experiments show that the synthetic data produced is statistically comparable

to real data and and effective in addressing class imbalance. However, CGANs, typically

trained on well-processed and balanced datasets like MNIST and CIFAR-10, face challenges

when trained with imbalanced datasets. These challenges can negatively impact CGAN per-

formance, reducing the quality of synthetic samples, especially for minority class(es). To

handle this issue, we propose a Two-stage CGAN framework that enhances the quality and

diversity of synthetic samples for minority classes in both image and time series generation

tasks. We also introduce FFAD, a novel internal evaluation metric specifically designed to

assess the fidelity of synthetic time series data and evaluate generative model performance.

Our comprehensive evaluation on solar flare forecasting demonstrates the efficacy of our

CGAN-based approach in mitigating class imbalance issues, highlighting its potential to

enhance predictive capabilities for rare but critical events across various domains.

INDEX WORDS: Class imbalance, Synthetic data generation, Generative adver-
sarial networks (GANs), Multivariate time series, Evaluation
metric, Solar flare forecasting

Copyright by
Yang Chen

2024

Mitigating Class Imbalance in Time Series Classification via Generative Modeling

by

Yang Chen

Committee Chair:

Committee:

Rafal Angryk

Dustin Kempton

Berkay Aydin

Viacheslav Sadykov

Electronic Version Approved:

Office of Graduate Services

College of Arts and Sciences

Georgia State University

August 2024

iv

CHAPTER 0

DEDICATION

To my beloved parents, whose unwavering support, encouragement, and love have been

the foundation of my journey. Your endless belief in my potential has given me the strength

and determination to pursue my dreams. I am forever grateful for your wisdom, kindness,

and for being my greatest and eternal source of inspiration.

v

CHAPTER 0

ACKNOWLEDGMENTS

The work presented in this dissertation was made possible with the support of many

people. First and foremost, I extend my heartfelt gratitude to my advisor, Dr. Rafal Angryk,

for providing me with the opportunity to study in the U.S. and for guiding me throughout

my Ph.D. studies. Your mentorship has been crucial in helping me navigate key milestones,

and I am deeply thankful for all you have done.

Second, I would like to express my appreciation to Dr. Dustin Kempton. Your intelli-

gence and invaluable insights have been instrumental in shaping my research. Your guidance,

expertise, and support have profoundly enriched my academic journey. Thank you for your

dedication and patience. This dissertation would not have been possible without your ex-

ceptional mentorship.

I would also like to thank Dr. Berkay Aydin and Dr. Viacheslav Sadykov for serv-

ing on my Advisory Committee and supporting my doctoral training. Your expertise and

constructive feedback have greatly contributed to the quality and depth of this dissertation.

Furthermore, I appreciate all the discussions, feedback, and friendship from the mem-

bers of our lab over the years — Azim, Ruizhe, Xumin, Junzhi, Annie, Chetraj, and others.

Working at DMLab in the field of solar physics has provided me with the invaluable oppor-

tunity to tackle real-world problems similar to those in the industry, significantly aiding in

landing my job and advancing my career. It has been a great honor to work here.

Funding Acknowledgement

This project has been supported in part by funding from the Division of Advanced

Cyberinfrastructure within the Directorate for Computer and Information Science and En-

gineering, the Division of Atmospheric & Geospace Sciences within the Directorate for Geo-

sciences, under NSF awards #1931555 and # 1936361. It has also been supported by

NASA’s Space Weather Science Application Research-to-Operations-to-Research program

grant #80NSSC22K0272.

vii

CHAPTER 0

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

LIST OF TABLES . x

LIST OF FIGURES . xii

1 INTRODUCTION . 1

1.1 Motivation . 3

1.2 Challenges . 4

1.3 Outline . 7

2 BACKGROUND . 9

2.1 Class-imbalance Issue and Remedies . 9

2.1.1 Data-/Algorithm-Level Remedies 9

2.1.2 Impacts of Class Imbalance on CGAN Training 12

2.2 Generative Adversarial Networks (GANs) 13

2.2.1 Time Series Generation Using GAN 16

2.3 Evaluation Metrics for Generative Models 17

2.4 Datasets . 20

2.4.1 MNIST Dataset . 21

2.4.2 UCR Dataset . 22

2.4.3 SWAN-SF Benchmark Dataset 22

3 SYNTHETIC MULTIVARIATE TIME SERIES GENERATION 26

3.1 Conditional GAN . 26

3.2 Methodology . 30

3.2.1 Model Selection Using Distributions of Statistical Features 31

3.2.2 Model Selection Using Adversarial Accuracy 31

3.2.3 Synthetic Data v.s. Over-/Under-Sampling 32

3.3 Experiments . 33

3.3.1 Experimental Settings . 35

3.3.2 Evaluation Using Distributions of Statistical Features 36

3.3.3 Evaluation Using Adversarial Accuracy 38

3.3.4 Examining Descriptive Statistics of Synthetic Time Series 39

3.3.5 Examining Synthetic Time Series v.s. Over-/Under-Sampling 43

3.3.6 Examining Incremental Incorporation of Synthetic Time Se-
ries . 44

3.4 Conclusion . 46

4 EXAMINING EFFECTS OF CLASS IMBALANCE ON CONDITIONAL
GAN TRAINING . 48

4.1 Methodology . 49

4.2 Experiments . 51

4.2.1 Experimental Design . 51

4.2.2 Experimental Settings . 53

4.2.3 Model Selection . 53

4.2.4 Examining Two-stage CGAN on Image Generation 53

4.3 Conclusion . 58

5 FFAD: A NOVEL METRIC FOR ASSESSING TIME SERIES-BASED
GENERATIVE MODELS . 59

5.1 Background . 60

5.1.1 Fourier Transform . 60

5.1.2 Auto-encoder . 60

5.2 Methodology . 62

5.3 Experiments . 69

5.3.1 Transforming Data with Fourier Transform 69

5.3.2 Training Auto-encoder and Model Selection Criteria 72

5.3.3 Using FFAD to Differentiate Same-Class vs. different-Class 73

5.3.4 Using FFAD to Differentiate Real vs. Synthetic Samples . . 76

5.3.5 Consistency of Various Model Selection Strategies 77

5.3.6 Exploring Optimal Synthetic Data Generation Strategy for
Flare Forecasting . 79

5.3.7 A Case Study of How Synthetic Data Generation Benefits
Flare Forecasting . 82

5.4 Conclusion . 83

6 CONCLUSION . 85

6.1 Future Work . 85

REFERENCES . 88

x

CHAPTER 0

LIST OF TABLES

Table 2.1 The table summarizes fourteen studies related to this work. The Over-
/Under-sampling (Row 1) is the simplest one which is considered as our base-
line model. Row 2 corresponds an effective method in multi-class problems
that couples oversampling and undersampling by preserving the distribution
of the subclasses in the original dataset. Rows 3 and 4 describe statistic-based
methods. Rows 5-14 list several GAN-based methods. The type of the gener-
ated data for each method is specified in the 3rd column.
. 15

Table 3.1 The table lists all experiments carried out to examine various class-
imbalance remedies. Groups of A and B have experimented on the extracted
descriptive statistics of MVTS data. Group A utilizes the last value statistic of
MVTS samples as inputs, whereas in group B, median and standard deviation
of samples are used. All experiments in A and B utilize Partition 1 (P1) as
the training set and Partitions 2, 3, and 5 as the test sets. Partition 4 is not
involved in this experiment. The experiments in C are conducted to examine
various class-imbalance remedies by taking time series as inputs. Similarly,
Partition 1 is utilized as the training set and Partitions 2, 3, and 5 as the test
sets. Partition 4 is reserved for validation of the hyperparameters.
. 34

Table 4.1 The table lists five datasets intended to assess the performance of CGAN
training. A is directly taken from the original MNIST. B is produced by re-
ducing the minority classes of ’3’ and ’4’ to 500 and 100 samples, respectively,
based on A. C and D are obtained by employing oversampling and undersam-
pling strategies to B. E is the dataset that has been augmented on B using
Two-stage CGAN.
. 52

Table 4.2 The table provides a summary of the FID evaluation outcomes from
five experiments. Each FID score is determined by comparing 1,000 actual
and 1,000 synthetic samples of the same class. Five separate simulations are
performed to calculate the final results, guaranteeing the correctness of the
assessment.
. 57

Table 5.1 The table reported the FFAD scores for ten binary UCR datasets, with
each score representing the average from five repeated experiments. The ac-
tual scores are presented in scientific notation, multiplied by 10−5.
. 75

Table 5.2 The table reported FFAD scores comparison on the SWAN-SF dataset
for both same-class and different-class scenarios. Here, FL and NF denote
flare and non-flare samples, respectively, with ’r’ and ’s’ indicating real and
synthetic data.
. 77

xii

CHAPTER 0

LIST OF FIGURES

Figure 1.1 GOES15 1 - 8 Å solar X-ray flux from 2011-02-14 to 2011-02-15. The
GOES flare classification is provided on the minor y-axis. The plot also in-
cludes annotations of flares exceeding GOES class C5.0, with red vertical lines
indicating the flares’ peak time. The example interval also shows that during
these two days of intense activity, background X-ray flux was high, making it
difficult to identify small flares. 2

Figure 2.1 FID and Inception Score Comparison]Left: FID and right: Inception
Score are evaluated for first row: Gaussian noise, second row: Gaussian
blur, third row: implanted black rectangles, fourth row: swirled images,
fifth row. salt and pepper noise, and sixth row: the CelebA dataset con-
taminated by ImageNet images. Left is the smallest disturbance level of zero,
which increases to the highest level at right. The FID captures the distur-
bance level very well by monotonically increasing whereas the Inception Score
fluctuates, stays flat or even, in the worst case, decreases [1]. 19

Figure 2.2 The plot illustrates handwritten digit examples from the MNIST dataset,
with each grayscale image measuring 28x28 pixels. The dataset comprises 10
classes, representing the digits 0 through 9. 21

Figure 2.3 The plot illustrates the distribution of the 5 flare classes in SWAN-SF
dataset. The flare counts and the imbalance ratio (font in red) per partition
are annotated. In this study, the flare instances of X and M classes make up
the positive class, and the C, B, and N classes account for the negative class. 23

Figure 3.1 This is the framework of the CGAN algorithm, including components
of the generator (G) and the discriminator (D). Each component is processed
by the combination of the LSTM layer and the Dense layer. The inputs of the
generator are random input vectors concatenated with conditional vectors.
The inputs of the discriminator are either generated or real multivariate time
series with conditional vectors. The binary cross-entropy is the criterion for
optimizing the model. 27

Figure 3.2 The plots show the distributions of mean, median and standard de-
viation of the physical parameter TOTUSJH and its synthetic counterpart
using 20 equal-width bins. Columns A and B show the distributions of the
descriptive statistics at two intermediate epochs, 50th and 250th, respectively. 37

Figure 3.3 The plots shows the distributions of KL-divergence scores calculated
by comparing distributions of synthetic samples and real samples across all
intermediate models divided into six groups. 39

Figure 3.4 The box plots show the distributions of Adversarial Accuracy of the
three descriptive statistics of TOTUSJH, namely mean, median, and standard
deviation, evaluated with all intermediate models divided into six groups. . . 40

Figure 3.5 The bar plot compares CGAN’s synthetically generated data (A2) with
the other group A experiments listed in Table 3.1. The choice of the last-value
statistic in A makes our results comparable with the näıve random synthetic
oversampling methods of RUSO, RNSO, and RNOSO purposed in [2]. The
reported TSS and HSS2 values are averaged over three separate evaluation
trials on Partitions 2, 3, and 5 of SWAN-SF. Partition 4 is not involved in
this experiment. Error bars show the standard deviation of the obtained
TSS/HSS2 values. 41

Figure 3.6 The bar plot compares CGAN’s synthetically generated data (B2) with
the other group A experiments listed in Table 3.1. The reported TSS and
HSS2 values are averaged over three separate evaluation trials on Partitions
2, 3, and 5 of SWAN-SF. Partition 4 is not involved in this experiment. Error
bars show the standard deviation of the obtained TSS/HSS2 values. 42

Figure 3.7 The bar plot compares CGAN’s synthetically generated data (C2) with
the other group C experiments listed in Table 3.1. The reported TSS and HSS2
values are averaged over three separate evaluation trials on Partitions 2, 3, and
5 of SWAN-SF. Partition 4 is reserved for validation of the hyperparameters.
Error bars show the standard deviation of the obtained TSS/HSS2 values. . 44

Figure 3.8 The plot illustrates the gradual impact of reducing the imbalance ratio
of the training set on performance, by incrementally adding synthetic flaring
samples. The reported TSS and HSS2 values are averaged over three separate
evaluation trials on Partitions 2, 3, and 5 of SWAN-SF. Partition 4 is reserved
for validation of the hyperparameters. Error bars show the standard deviation
of the obtained TSS/HSS2 values. 45

Figure 4.1 The Two-stage CGAN framework consists of three steps: (1) under-
sampling Original-set and training the CGAN1 model on it to form Synthetic-
set-1 for minority classes; (2) merging Original-set and Synthetic-set-1 to
training the CGAN2 model to produce Synthetic-set-2 for minority classes;
and (3) combining Original-set and Synthetic-set-2 to obtain Final-set for
subsequent applications. 50

Figure 4.2 The box plots depict the distributions of FID scores for five digit classes
(i.e., ’0’, ’1’, ’2’, ’3’, and ’4’) as calculated by the CGAN model trained on
dataset-A. The x-axis represents the models per 25 epochs between the 200th
and 500th epochs, and the y-axis represents the corresponding FID scores for
each class. This metric is considered the selection criterion for models. . . . 54

Figure 4.3 The diagram shows real samples and synthetic samples generated by
CGAN models trained on datasets in Table 4.1. 55

Figure 5.1 An example of viewing a time signal in both the time and frequency
domains utilizing Fourier Transform. 1 . 61

Figure 5.2 The macro-architecture of an Auto-encoder consists of an “encoder”
followed by a “decoder.” The encoder maps the input data to a low-dimensional
“latent” space, while the decoder attempts to reconstruct the low-dimensional
representation back to the original high-dimensional space. 2 62

Figure 5.3 The plot illustrates the distribution of time series lengths in the UCR
dataset collection. These time series vary in length from 15 to 2,844 data
points, with an average length of 537 time steps. 64

Figure 5.4 Sub-figure (A) illustrates the procedure of employing Fourier Trans-
formation as a preprocessing step for the original time series data, ensuring a
consistent length for all datasets. Sub-figure (B) outlines the training proce-
dure of the autoencoder. 66

Figure 5.5 Shows the original time series and reconstructed time series utilizing
different number of frequency components. This example is sourced from
Partition 1 of SWAN-SF. 71

Figure 5.6 The results provide a comprehensive evaluation of the reconstruction
performance on Partition 1 of SWAN-SF . 72

Figure 5.7 Shows the procedure of selecting the Auto-encoder model by calculat-
ing Mean Square Error (MSE) as the evaluation metric every 500 epochs, and
identifies that the optimal model is achieved at the 3,000th epoch. 73

Figure 5.8 Displays six pairs of original and reconstructed time series. The ex-
amples are selected from UCR and SWAN-SF datasets. 74

Figure 5.9 The plots shows the distributions of KL-divergence, Adversarial Ac-
curacy and FFAD scores calculated between synthetic and real samples. The
CGAN model was trained for 300 epochs, with checkpoints saved every 5
epochs resulting in a total of 60 checkpoints, divided into six groups for cre-
ating the boxplots. 80

Figure 5.10 The bar plot presents the scores for three different CGAN training
strategies evaluated using TSS and HSS2. The three strategies are CGAN(OS)
(oversampling), CGAN(US) (undersampling), and Two-stage CGAN. The re-
ported TSS and HSS2 values are averaged over four separate evaluation trials
on Partitions 2, 3, and 5 of SWAN-SF. Error bars show the standard deviation
of the obtained TSS/HSS2 values. 82

Figure 5.11 The scatter plot illustrates the classification results for flare samples
(X and M classes), with the median values of TOTUSJH on the x-axis and the
standard deviation values of TOTUSJH on the y-axis.Grey points: Classified
correctly by both M1 and M2. Red points: Classified correctly only by M1.
Purple points: Classified correctly only by M2. Black points: Misclassified by
both. 84

1

CHAPTER 1

INTRODUCTION

Living With a Star (LWS) is a NASA initiative that studies the Sun-Earth system and its

effects on human and societal life. NASA launched the Solar Dynamics Observatory (SDO)

mission in February 2010 as part of its commitment to this programme. The SDO mission

is a vital device for studying solar activity, which might result in hazardous space weather.

This space weather activity has the potential to have devastating effects on space and air

travel, power grids, GPS, and communications satellites [3]. In March of 1989, for instance,

geomagnetically generated currents, formed when charged particles from a coronal mass

ejection impacted the earth’s atmosphere, led to blackouts and direct expenses of tens of

millions of dollars for the Canadian electric utility Hydro-Quebec [4]. If a similar occurrence

had occurred during the summer months, it would have likely caused widespread blackouts

in the northeastern United States, resulting in billions of dollars in economic damage [4].

A solar flare is an event that occurs in the solar corona and is characterised by a sudden

orders-of-magnitude brightening in Extreme Ultra-Violet (EUV) and X-ray emissions, and

for large flares, gamma-ray emissions, from a tiny location on the Sun lasting from minutes to

hours. Since 1974, Geostationary Operational Environmental satellites (GOES) operated by

the National Oceanic and Atmospheric Administration (NOAA) have been used to automat-

ically detect and categorise X-ray flares into wavelength bands of 1-8 Ångstrom. According

to the peak soft X-ray flux in this range, flares are logarithmically characterised as A, B, C,

M, and X, from weaker to stronger. Fig. 1.1 displays an example GOES satellite X-ray flux

2

Figure 1.1 GOES15 1 - 8 Å solar X-ray flux from 2011-02-14 to 2011-02-15. The GOES flare
classification is provided on the minor y-axis. The plot also includes annotations of flares
exceeding GOES class C5.0, with red vertical lines indicating the flares’ peak time. The
example interval also shows that during these two days of intense activity, background X-ray
flux was high, making it difficult to identify small flares.

series annotated with certain flare events based on the peak X-ray flux. In a typical binary

classification strategy, the most intense flares, namely the M and X classes, are identified

as the positive class. In contrast, no flare occurrence and flares of A, B and C classes are

identified as the negative class.

Natural sciences, particularly solar physics, face unique challenges stemming from the

rarity of the events of interest, high dimensionality of observational data, and behavior of

the systems being observed. Despite meticulous curation, data collected for real-world prob-

3

lems rarely comes in a clean, ready-to-use format. Inherent challenges, whether arising from

the subject matter itself or the data collection methodology, must be identified, understood,

and addressed appropriately. Solar flare forecasting is an excellent example of analyzing

rare-events (i.e., flaring events) of interest. In this dissertation, we focus on the class imbal-

ance caused by the rarity of flaring events and its effects on data preparation for machine

learning (ML) methods. By addressing these challenges, we aim to enhance the accuracy

and reliability of ML models in solar physics and other natural science domains.

1.1 Motivation

Class imbalance refers to a situation where the instances of one or more classes in a dataset

are significantly fewer than those of other classes. While data experts are aware of these chal-

lenges, the explicit impact on analysis and subsequent decision-making is often overlooked.

Addressing class imbalance between majority and minority classes is crucial, as significant

imbalance can introduce bias towards majority classes, leading to unsatisfactory results for

any classifier [5; 6; 7]. In solar flare prediction, the lack of positive flare data is a notable issue

that must be adequately addressed. This study aims to mitigate the class-imbalance issue

by generating synthetic multivariate time series data using generative adversarial networks

(GANs) based on deep learning techniques.

The well-known class-imbalance issue can also profoundly affect training GANs. The

authors of [8] state that traditional GANs cannot generate minority-class images from im-

balanced datasets. Few studies address this imbalance at the algorithm level, either by

4

employing autoencoders to learn latent features or by modifying objective functions during

training [9; 8]. A method addressing the inherent GAN training issues at the data level is

lacking. Motivated by this, we develop a solution, Two-stage CGAN, to enhance the quality

of samples from minority classes when training GAN models on imbalanced datasets.

The success of deep learning-based generative models in producing realistic images,

videos, and audio has led to a critical consideration: how to effectively assess the quality of

synthetic samples. The Fréchet Inception Distance (FID) is commonly used for evaluating

images [1], but it may not be directly applicable to sequential data, such as text, audio, or

time series, due to the absence of a widely accepted pre-trained model designed for extracting

feature vectors from time series data. The demand for such a metric is even more neces-

sary given the challenges in evaluating time series data through visual inspection compared

to image data. Motivated by this, we introduced a comprehensive metric called Fréchet

Fourier-transform Auto-encoder Distance (FFAD) [10], to assess the quality and diversity of

synthetic time series samples and provide an avenue for refining generative models for time

series generation.

1.2 Challenges

Class-imbalance presents significant challenges across various domains. In cyber attack de-

tection, the targeted nature of attacks and the evolving tactics of cybercriminals result in

a scarcity of valid observations for training machine learning classifiers [11]. For instance,

Denial of Service (DOS) attacks may constitute only 0.27% of training and 0.14% of test-

5

ing datasets [12]. Similarly, in Medicare fraud detection, a mere 25 fraudulent transactions

among 1,000,000 normal ones yield a striking imbalance ratio of 0.06%. The medical field

also grapples with extreme class-imbalance, exemplified by cancer diagnosis scenarios where

97% of patients are non-cancerous, underscoring the need for robust classifiers capable of

handling such skewed distributions [13]. This issue extends beyond cybersecurity and health-

care, impacting diverse areas such as information retrieval systems, oil spill detection in radar

images, land use classification in remote sensing [14], space weather forecasting [7], and other

natural science domains.

Numerous solutions have been proposed to address the class-imbalance issue, with cost-

sensitive methods being a traditional approach. However, these methods face significant

challenges. Deriving an accurate cost matrix is often difficult, as actual values are rarely

available from data or expert sources. This limitation is compounded by the impractical-

ity of manually testing various cost factors, leading to increased learning expenses [15; 16].

Real-world applications often involve multidimensional costs, such as monetary and reputa-

tional factors, which are frequently overlooked in machine learning literature [17]. Moreover,

most machine learning algorithms are not inherently designed for cost-sensitive learning,

necessitating time-consuming and algorithm-specific modifications to effectively utilize cost

matrices [18]. While ensemble learning methods are commonly employed in cost-sensitive

learning, they come with their own drawbacks. These include increased training time and

a higher risk of overfitting, which must be carefully considered when implementing such

solutions [19].

6

Beyond algorithm-level solutions, numerous data-level remedies have been proposed to

address class-imbalance issues. Authors of [5] explored various undersampling, oversampling,

and mix-sampling techniques for constructing training datasets from imbalanced data. While

these sampling-based methods are efficient, they offer limited improvements as they neither

introduce nor utilize new data. An alternative approach involves generating synthetic sam-

ples from existing data. This can be categorized into statistic-based and generative model-

based methods. SMOTE [20], a representative statistic-based method, creates new samples

between minority instances and their nearest neighbors of the same class. However, it’s cru-

cial to note that such methods: (1) generate point-in-time data rather than time series data;

and (2) assume normality, which may not hold in many real-world applications. In our study,

we observe that peak X-ray fluxes of solar flares follow a power-law distribution, influencing

the distribution of magnetic-field physical parameters in SWAN-SF. From a novel perspec-

tive, we focus on generative-based methods, particularly Generative Adversarial Networks

(GANs). GANs offer a promising solution to class-imbalance by learning the underlying

distribution of existing data and synthesizing new samples based on this distribution. This

approach facilitates the creation of a more balanced training dataset, thereby enhancing the

performance of multivariate time series classification tasks.

Furthermore, we aim to address several key challenges in this work, including: (1) de-

termining model training progress and optimal model selection; (2) assessing the realism of

synthetic data and its effectiveness in solar flare forecasting; (3) examining the impact of

class imbalance on the quality and diversity of minority class synthetic samples generated

7

by CGAN models; and (4) developing an effective evaluation metric for assessing the realism

of generated time series, analogous to the Fréchet Inception Distance (FID) used in image

evaluation, with the potential to refine time series-based generative models.

1.3 Outline

The remainder of this dissertation is structured as follows. Chapter 2 presents background in-

formation on class-imbalance remedies, Generative Adversarial Networks (GAN), time series

generation using GAN, the SWAN-SF dataset, and evaluation metrics for assessing synthetic

data. This will provide definitions for class-imbalance issue and generative adversarial net-

work, as well as other relevant details about datasets and evaluation metrics used throughout

the text.

In Chapter 3, our work on the generation of synthetic multivariate time series is described.

This section begins with a discussion of the conditional GAN, the data-generation approach.

Secondly, we describe two ways to verifying the resemblance between real and synthetic data

based on their descriptive statistics. In addition, we designed a series of experiments to

evaluate the efficacy of the generated samples as a class-imbalance remedy for solar flare

forecasting.

In Chapter 4, we evaluate the impact of the class-imbalance problem on training CGAN

models. Show the ineffectiveness of common remedies for training GANs on imbalanced

datasets, such as oversampling and undersampling. Additionally, we introduce a novel frame-

work, the Two-stage CGAN, designed to progressively improve the quality of minority class

8

samples in both image and time series contexts.

In Chapter 5, we introduce the Fréchet Fourier-transform Auto-encoder Distance (FFAD),

a novel metric that utilizes Fourier transform and Auto-encoder techniques to evaluate the

quality and diversity of generated time series samples.

Finally, in Chapter 6, we will provide a summary of our findings and discuss future work.

9

CHAPTER 2

BACKGROUND

2.1 Class-imbalance Issue and Remedies

One challenge present in many, if not all, natural hazard forecasting problems is the issue of

class-imbalance, and flare forecasting is no exception to this issue. Class imbalance typically

occurs when there are more instances of some classes than others. It is common to use

special remedies to address the class imbalance if it is present, since standard classifiers can

be overwhelmed by the majority classes and neglect the minority ones. In typical class-

imbalance situations, the minority class is the class of interest and therefore cannot be

ignored. As a result, two approaches to overcoming the imbalance issue are established:

either reduce the class skew at the data level or alternate the learning procedure at the

algorithm level.

2.1.1 Data-/Algorithm-Level Remedies

As the representative method of data level, resampling is a classifier-independent technique

for addressing imbalanced data, and it is accomplished in one of three ways: (1) Oversam-

pling: selecting and duplicating samples of the minority class; (2) Undersampling: removing

samples of the majority class; or (3) Hybrid: coupling the oversampling and undersampling

methods when multi-class data are present [7]. The authors of [21] show that the classifica-

tion performance improves when the above class-imbalance remedies are applied to a solar

flare benchmark dataset, namely SWAN-SF [22]. However, random undersampling can jeop-

10

ardize the preservation of important concepts because it removes the most samples from the

majority classes [23]. Random oversampling is susceptible to the risk of overfitting because

it neither introduces nor utilizes new data. To reduce such risks in the image domain, we

can perform transformation-based data augmentation, a heuristic oversampling strategy for

dealing with the lack of data. To achieve this, the current examples are subjected to one

or more data transformations, such as random rotation, translation, reflection, cropping,

blurring, sharpening, and hue adjustment. These transformations are not applicable in all

circumstances. A reflection or affine transformation, for instance, would alter the chirality

of a picture of a solar filament. In addition, it is challenging to apply transformation-based

data augmentation to feature-based data points or sequential data such as time series and

text data [24]. To deal with such a situation, SMOTE [20], a heuristic oversampling method,

is introduced by constructing new synthetic samples between minority instances and their

nearest neighbors of the same class. In [20], Synthetic Minority Oversampling Technique,

namely SMOTE, was introduced to create new samples between minority instances and their

nearest neighbors of the same class. In addition, authors of [2] devised three näıve random

synthetic oversampling methods, namely Random Uniform Synthetic Oversampling (RUSO),

Random Normal Synthetic Oversampling (RNSO), and Random NOise Synthetic Oversam-

pling (RNOSO), were employed to generate synthetic samples of the minority classes in the

flare forecasting problem. RUSO generates new samples from the uniform distribution be-

tween the minimum and maximum values of each feature of minority samples in the training

set. In contrast, RNSO uses the normal distribution with the mean and standard deviation

11

values of each feature of minority samples in the training set. RNOSO generates new samples

by sampling noise terms from the normal distribution with mean of 0 and standard deviation

of 0.1, and adds the noise to the existing minority samples. Although [2] demonstrates the

benefit of using various statistic-based synthetic sampling methods over näıvely oversam-

pling and undersampling, it is important to note that: (1) they do not generate time series

data, however, the development of recurrent neural networks and generative modeling opens

the door to generating sequential data, such as videos and music, and time series [25; 26];

(2) they work under the assumption of normality, which is not necessarily valid in many

real-world applications. In our study, we know that the peak X-ray fluxes of solar flares

follows a power-law distribution, and the distribution of each of the magnetic-field physical

parameters of SWAN-SF is impacted by that. In addition, the statistic-based oversampling

method may suffer when the separation between majority and minority clusters is not always

obvious, resulting in noisy samples [23]. Moreover, the method is based on information from

the local area, not the overall distribution of minority classes [14]. Generative Adversar-

ial Networks provide an alternative method for addressing the lack of data by learning the

underlying distribution of real samples and then generating new realistic samples [27; 28].

In contrast to data-level solutions, algorithm-level approaches are directly implemented

within the training procedures of classifiers. These approaches can be categorized into three

main types: (1) Classifier adaptation: This involves adapting existing machine learning

algorithms to a particular imbalanced dataset [29]. While effective, this method is time-

consuming and requires a deep understanding of the classifier; (2) Ensemble learning: This

12

approach combines several base models to construct an optimal predictive model. For ex-

ample, the majority class samples can be divided into multiple small portions balanced

with minority classes, training multiple individual classifiers and yielding the final decision

through a voting mechanism [30]. However, ensemble modeling has drawbacks, including

increased training time and a higher risk of overfitting [19]; (3) Cost-sensitive learning: This

method designates a high misclassification cost to minority classes with the objective of min-

imizing the total cost [16]. However, deriving an accurate cost matrix is often challenging, as

actual values are rarely available from data or expert sources [15; 16]. This limitation is com-

pounded by the impracticality of manually testing various cost factors, leading to increased

learning expenses. Moreover, real-world applications often involve multidimensional costs,

such as monetary and reputational factors, which are frequently overlooked in machine learn-

ing literature [17]. Overall, data-level solutions, which involve manipulating existing data or

generating synthetic samples to achieve a balanced class distribution, offer greater versatil-

ity in addressing class imbalance issues compared to algorithm-level approaches. Therefore,

this study primarily focuses on these data-level techniques as a means of mitigating class

imbalance.

2.1.2 Impacts of Class Imbalance on CGAN Training

The class imbalance issue can also have an impact on the CGAN training procedure. For

example, the authors of [8] suggest that standard GANs cannot be used to produce minority-

class images from an imbalanced dataset. There have been few research addressing this im-

balance issue. BAGAN [9] is an enhancement tool for producing high-quality photographs

13

of minority groups by accomplishing the following: (1) Using an autoencoder to initiate the

GAN training, allowing the model to learn accurate class-conditioning information in the

latent space. (2) Combining the real/fake and classification losses at the discriminator into

a single output. Using BAGAN as a foundation, the authors of [8] utilize supervised autoen-

coder and gradient penalty to overcome the instability problem when images from distinct

classes appear similar. However, the previous researchers aim to address the imbalance prob-

lem at the algorithm level, either by applying autoencoder to discover latent features or by

altering goal functions during the training stage. In Chapter 4, we investigate the issue of

class imbalance in CGAN training, and and develop a data-level solution named Two-stage

CGAN.

2.2 Generative Adversarial Networks (GANs)

Generative Adversarial Network is an emerging technique for modeling high-dimensional

distributions of real samples implicitly [31]. Initially proposed in [27], the GAN learns to

produce realistic data by training two components, the generator and the discriminator,

in an adversarial manner. First, the generator is used to capture the data distribution by

sampling random vectors from a latent space as inputs, and to produce samples similar to

the real data. Next, the discriminator receives both generated samples and real samples

as inputs, and estimates the probability of the input coming from the real data space.

By training the generator and the discriminator simultaneously, a generator is enabled to

gradually generate more realistic samples under the supervision of the real samples. This

14

process is repeated until the discriminator cannot distinguish the generated samples from

the real ones. Typically, either the generator or the discriminator can be implemented by

arbitrary multilayer neural networks consisting of fully connected networks, convolutional

neural networks (CNNs), and recurrent neural networks (RNNs), depending on the nature

of the data source.

The vanilla GAN has exhibited some limitations on the stability of the model training

and the diversity of the generated sample [32]. Therefore, several works have investigated

designing new architectures in order to mitigate the training issues, and improve the quality

of the generated samples. For example, the Deep Convolutional GAN (DCGAN) utilizes

convolutional neural networks as the generator and discriminator, and replaces pooling layers

with strided convolutions (discriminator) and fractional-strided convolutions (generator) to

improve the training stability [33]. The Wasserstein GAN [32] introduces the Earth-Mover

distance to improve the learning stability and provide a meaningful learning curve for tuning

hyperparameters. The Info GAN [34] incorporates the representation learning by maximizing

the mutual information between a fixed subset of the latent variables and the observations.

The Variational GAN (VAEGAN) [35] combines Autoencoder and GAN to encode the real

data as inputs of the generator instead of randomly sampling from a latent space, enabling the

GAN model to achieve faster and more stable learning. The Conditional GAN (CGAN) [36]

is another variant dedicated to improving the quality of the generated samples and controlling

the classes of the synthetic samples by utilizing conditional information. The most common

form of conditional information is the class labels. All the reviewed approaches and their

15

key features are organized in Table 2.1 for convenience.

Table 2.1 The table summarizes fourteen studies related to this work. The Over-/Under-
sampling (Row 1) is the simplest one which is considered as our baseline model. Row 2
corresponds an effective method in multi-class problems that couples oversampling and
undersampling by preserving the distribution of the subclasses in the original dataset. Rows
3 and 4 describe statistic-based methods. Rows 5-14 list several GAN-based methods. The
type of the generated data for each method is specified in the 3rd column.

No. Methods Types Features

1
Oversampling

Undersampling
Time series

The simplest one;

No new data introduced.

2
Advanced Oversampling

[7]
Time series Applied on multi-class problems.

3
SMOTE

[20]
Point-in-time Provides statistical interpretations.

4
RUSO/RNSO/RNOSO

[2]
Point-in-time Provides statistical interpretations.

5
Vanilla GAN

[27]
Time series Generating single-class samples.

6
WGAN

[32]
Time series

Stable and faster training by using

a meaningful objective function.

7
InfoGAN

[34]
Time series

Learns interpretable latent variables

in an unsupervised manner.

8 VAEGAN [35] Time series Stable and faster training.

9
CGAN

[36]
Time series

Generates multi-classes samples

by using conditional information;

Stable and faster training.

10 C-RNN-GAN [26] Time series Generates single category musical data.

11 RCGAN [37] Time series Generates privacy-free medical data.

12
DoppelGANger

[38]
Time series

High-fidelity; Privacy-free;

Deal with mix-type data.

13 [39] Time series
Learns the conditional probability

distribution of features by GAN.

14
TimeGAN

[40]
Time series

Incorporates conditional temporal

dynamics into the unsupervised GAN.

16

Numerous GAN applications have been proposed to deal with different demands, from

art, science, finance, drug discovery to video games, and have achieved great success. In

the computer vision domain, synthetic image generation has been tested in scenarios, such

as cartoon characters [41], face frontal views [42], and new human poses [43]. Image-to-

image translation [44; 45] and text-image synthesis [46] applications enable users to transfer

objects between different styles or different formats. Moreover, image super-resolution [47;

48] and motion stabilization [49] applications are especially helpful in autonomous driving

and navigation tasks since object detection accuracy is improved by utilizing optimized

images or videos. The last but not least avenue of applying GANs is data augmentation.

Traditional data augmentation techniques usually perform a transformation pipeline on the

existing instances of data, and it involves one or more of data manipulations, to name a few,

random rotation, translation, reflection, cropping, blurring, sharpening, and hue adjustment.

However, these transformations are not applicable to all situations. For example, the chirality

of an image of solar filament would be changed if a reflection or affine transformation is

performed. GAN provides an alternative way to perform the data augmentation. That is, to

learn an underlying distribution of real samples, and to produce new realistic samples based

on the learned distribution.

2.2.1 Time Series Generation Using GAN

Various projects in different domains have emerged to shed light on generating time series

data by utilizing the Generative Adversarial Network, as shown in Table 2.1. In [26], use of

a C-RNN-GAN was proposed as a method to generate musical data. This method applied a

17

unidirectional Long Short-Term Memory (LSTM) as the generator and a bidirectional LSTM

as the discriminator. In [37], RGAN was developed as a privacy-preserving method for gen-

erating synthetic medical data in an effort to mitigate the concern regarding the utilization

of the privacy-sensitive patient data to train machine learning models. DoppelGANger [38] is

another framework designed for generating synthetic time series data with high-fidelity and

sharing data with privacy-free properties. Particularly, it deals with mix-type datasets which

contain continuous and discrete features. In [50], GAN was utilized as a data augmentation

method for generating synthetic biosignal data, including electroencephalographic (EEG)

and electrocardiography (ECG). The improved Wasserstein GAN was employed to generate

synthetic spiking time series in the banking domain [51]. In [39], the authors used GAN to

learn the conditional probability distribution of the key features to generate synthetic time

series data. TimeGAN [40] combined the versatility of the unsupervised GAN approach

with the control over conditional temporal dynamics. This method has two more autoen-

coding components, including an embedding function and a reconstruction function trained

jointly with the generator and the discriminator components. This structure enables the

model to iteratively learn to encode features, generate representations, and adjust weighting

parameters according to the objective function.

2.3 Evaluation Metrics for Generative Models

Deep learning has shown remarkable success in numerous tasks and domains, highlighting

its effectiveness in tackling complex challenges. Notably, it particularly excels in generative

18

models such as Generative Adversarial Networks (GANs) [27], Conditional GANs (CGANs)

[36], and Variational Auto-encoders (VAEs) [52], showcasing their capacity to produce real-

istic images, artwork, and time series data [33; 45; 53].

Automatic evaluation metrics such as Inception Score (IS) and Fréchet Inception Distance

(FID) have been developed to assess the quality and diversity of generative samples [1;

54]. IS uses a pre-trained image classification network, Inception v3 [55], to evaluate the

conditional and marginal distributions of synthetic samples based solely on the generated

data. In contrast, FID measures the Fréchet distance between real and generated images,

employing feature vectors extracted from the Inception v3 model. FID has emerged as the

preferred metric (as depicted in Fig. 2.1) due to its ability to effectively capture the level

of discrepancy through its monotonically increasing behavior, whereas Inception Score may

fluctuate, remain constant, or even decrease in the worst cases [1]. However, FID is only

employed for the evaluation of images [56], and may not be as directly applicable to sequential

data, such as text, audio, or time series, due to the absence of a widely accepted pre-trained

model designed for extracting feature vectors from time series data.

The Fréchet distance provides a way for measuring the similarity between curves [57].

Introduced in 2017, the Fréchet Inception Distance (FID) score is the current standard metric

for evaluating the quality of generative models in image generation. Using the feature vectors

derived from the Inception v3 model [55], FID calculates the distance between real and

generated images. Specifically, the final pooling layer preceding the classification of output

images is used to capture computer-vision-specific features of an input image. In practice,

19

0 1 2 3
disturbance level

0

50

100

150

200

250

300

350

400

FID

0 1 2 3
disturbance level

0

1

2

3

4

5

IND

0 1 2 3
disturbance level

0

50

100

150

200

250

300

350

400

FID

0 1 2 3
disturbance level

0.0

0.2

0.4

0.6

0.8

1.0

IND

0 1 2 3
disturbance level

0

50

100

150

200

250

300

350

400

FID

0 1 2 3
disturbance level

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

IND

0 1 2 3
disturbance level

0

50

100

150

200

250

FID

0 1 2 3
disturbance level

0.0

0.2

0.4

0.6

0.8

1.0

IND

0 1 2 3
disturbance level

0

100

200

300

400

500

600

FID

0 1 2 3
disturbance level

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

IND

0 1 2 3
disturbance level

0

50

100

150

200

250

300

FID

0 1 2 3
disturbance level

0

10

20

30

40

50

60

70

80

IND

Figure 2.1 FID and Inception Score Comparison]Left: FID and right: Inception Score are
evaluated for first row: Gaussian noise, second row: Gaussian blur, third row: implanted
black rectangles, fourth row: swirled images, fifth row. salt and pepper noise, and sixth
row: the CelebA dataset contaminated by ImageNet images. Left is the smallest disturbance
level of zero, which increases to the highest level at right. The FID captures the disturbance
level very well by monotonically increasing whereas the Inception Score fluctuates, stays flat
or even, in the worst case, decreases [1].

20

each input image is represented as a feature vector. X and Y are feature vectors of the real

and synthetic samples. Then, multivariate FID can be computed based on the formulation

in Eq. 2.1 [58]. µX and µY are the vector magnitudes X and Y , respectively. Tr(.) is the

trace of the matrix, while ΣX and ΣY are the covariance matrices of X and Y . Lower FID

values indicate higher quality and diversity in synthetic samples.

Score = ||µX − µY ||2 + Tr(ΣX + ΣY − 2
√

ΣXΣY) (2.1)

Moving beyond image generating models, the authors of [59] introduced the Fréchet

ChemNet Distance (FCD) as a evaluation metric for generative models in the context of

molecular structures relevant to drug discovery. Diverging from the FID, FCD derives feature

vector representations for each molecules by utilizing the penultimate layer of the ChemNet

[60]. Subsequently, the Fréchet Distance is computed based on the distribution of real and

generative samples.

2.4 Datasets

This work primarily utilizes three data sources, including MNIST, UCR, and SWAN-SF

datasets, explored across Sections 3, 4, and 5. Each dataset plays a pivotal role as a foun-

dational component for exploring and validating a wide range of methodologies and models

specific to their respective chapters.

21

Figure 2.2 The plot illustrates handwritten digit examples from the MNIST dataset, with
each grayscale image measuring 28x28 pixels. The dataset comprises 10 classes, representing
the digits 0 through 9.

2.4.1 MNIST Dataset

MNIST is a benchmark database of handwritten digits that is frequently used to train and

evaluate machine learning algorithms [61]. The original dataset consists of 10 classes, which

are distributed evenly across 60,000 training images and 10,000 testing images. Each image

being grayscale and normalized to fit into a 28x28 pixel box, as shown in Fig. 2.2. MNIST has

been pivotal in advancing the development of various machine learning techniques, serving

as a standard testbed for evaluating the performance of classifiers, neural networks, and deep

learning models.

22

2.4.2 UCR Dataset

The UCR Time Series Classification/Clustering Repository, curated by the University of

California, Riverside (UCR), stands as a prominent resource in the fields of time series

analysis and data mining [62]. It plays a pivotal role as a benchmark for the development

and assessment of algorithms and models tailored for time series classification, clustering,

and related tasks. The UCR datasets consist of 117 datasets of fixed length. In Chapter 5, we

specifically utilized 97 out of the 117 datasets, as our Fourier transform-based methodology

was found to be incompatible with the remaining 20 datasets.

2.4.3 SWAN-SF Benchmark Dataset

Solar flares are understood to be dynamical phenomenon which have clear pre-flare and post-

flare phases [63]. However, many studies utilize point-in-time measurements, e.g., [64; 65; 66],

to predict flares’ behavior in the future. To expand the horizon of flare forecasting, a recent

study generated a large collection of multivariate time series data of flares’ magnetic fields

extracted from solar photospheric vector magnetograms in Space weather HMI Active Region

Patch (SHARP) series [67]. The benchmark dataset, named Space Weather ANalytics for

Solar Flares (SWAN-SF), is meant to serve as a testbed for flare forecasting models [22].

It is hoped that using this dataset some significant improvements in the performance and

robustness of the forecasting models be achieved. This benchmark dataset is made openly

available on Harvard Dataverse repository [68]. SWAN-SF has 5 classes, including four flare

classes of X, M, C, and B, with an additional class labeled as NF representing absence of

23

Figure 2.3 The plot illustrates the distribution of the 5 flare classes in SWAN-SF dataset.
The flare counts and the imbalance ratio (font in red) per partition are annotated. In this
study, the flare instances of X and M classes make up the positive class, and the C, B, and
N classes account for the negative class.

any of the listed flares. Each multivariate time series is labeled by looking at the strongest

flare event recorded in the 24-hour prediction window. This interval follows the 12-hour

observation window from which the magnetic-field parameters are calculated. In this study,

we simplify the task to a binary classification by merging the stronger instances (i.e., X- and

M-class flares) to form the positive class, and the weaker instances (i.e., of C, B, and NF

classes) to represent the negative class. The extreme class imbalance exhibited by SWAN-SF

is illustrated in Fig. 2.3, with each class’s sample size annotated. A proper treatment of this

imbalance is the objective of this study.

The SWAN-SF is made up of five temporally non-overlapping partitions covering the

period from May 2010 through August 2018. Each partition contains approximately an equal

24

number of X- and M-class flares, and there are a total of 6,234 flare records and 324,952 non-

flaring records. Each flare record is a multivariate time series (MVTS) with 60 time steps,

each of which has 51 magnetic field parameters (for the definition of the parameters see

Table 1 in [22]). We limit our investigation to only four of these 51 parameters, abbreviated

to TOTUSJH, ABSNJZH, SAVNCPP, and TOTBSQ, which have been listed as the most

relevant to the flare forecasting in several studies including [67] and more recently in [69].

Moreover, based on how they are calculated it is easy to see that many of these parameters

are highly correlated with each other and a small subset of them suffices our objective in

this study.

One major concern for evaluating flare forecasting models is to determine evaluation

metrics appropriate for the above-mentioned class imbalance. Many well-known performance

metrics are significantly impacted by class imbalance [70], including accuracy, precision, and

F1-score, which ignore the number of misclassified instances. From years of exploration,

domain experts have agreed on two effective metrics, namely the true skill statistic (TSS)

[71] and the updated Heidke skill score (HSS2) [72], as shown in Eq. 2.2 and Eq. 2.3,

respectively. These are functions of the confusion matrix whose entries are true positive

(tp), true negative (tn), false positive (fp), and false negative (fn). We will use both of these

metricsf to evaluate the performance of our flare forecasting models.

TSS =
tp

tp+fn
− fp

fp+tn
(2.2)

25

HSS2 =
2·((tp·tn)−(fn·fp))

(tp+fn)·(fn+tn)+(fp+tn)·(tp+fp)
(2.3)

26

CHAPTER 3

SYNTHETIC MULTIVARIATE TIME SERIES GENERATION

Our primary objective is to evaluate the effectiveness of Conditional GAN as a potential

solution to the class-imbalance issue in the SWAN-SF dataset. In this chapter, we focus

on accurately assessing the contribution of CGAN-based synthetic multivariate time series

for SWAN-SF and determining whether these generated time series are reliable for machine

learning use.

3.1 Conditional GAN

The algorithm we employ is the Conditional Generative Adversarial Network (CGAN) whose

architecture is illustrated in Fig. 3.1. Several reasons make us decide to utilize this algorithm:

First, CGAN can control the category of generated samples, allowing us to generate samples

of minority classes to mitigate the class-imbalance issue. Second, it can provide stable

and faster training compared to the vanilla GAN as stated in [73]. Third, the category

information of instances in the SWAN-SF dataset is available as conditional information for

training CGAN models. We choose LSTM networks as the fundamental components in both

the generator and the discriminator since our subject is sequential data.

As mentioned in Section 2.2, the ultimate goal of a generator (G) is to generate an output

with similar characteristics as the real data. As seen in Fig. 3.1, the algorithm takes in a

random input vector Zn, which is a tensor with the shape of [batch size, sequence length,

latent dim]. In our case, the shape is [32, 60, 3] for 32 multivariate time series in a batch,

each of length 60 and the latent dimension of 3. The conditional vector (Cn), as a type of

27

Figure 3.1 This is the framework of the CGAN algorithm, including components of the
generator (G) and the discriminator (D). Each component is processed by the combination
of the LSTM layer and the Dense layer. The inputs of the generator are random input
vectors concatenated with conditional vectors. The inputs of the discriminator are either
generated or real multivariate time series with conditional vectors. The binary cross-entropy
is the criterion for optimizing the model.

28

auxiliary information, has the shape of [32, 60, 2] since the binary labels are encoded into a

one-hot representation. By concatenating Zn and Cn, we obtain a tensor of shape [32, 60, 5]

as the final input of the generator. Note that the latent space dimension, as a hyperparame-

ter, is determined by the dimension of the parameters and the conditional information. We

empirically assume that the total dimension of the latent space and the conditional infor-

mation should be similar to the dimension of the parameters being produced. Besides, the

dimension of the latent space and the conditional information should be balanced, which

means neither should dominate the inputs of a generator. The outputs of the generator,

regarded as the generated or synthetic samples, are calculated by going through the LSTM

and Dense layers pipeline. The LSTM layer controls the memorizing process using a gating

mechanism. Meanwhile, the Dense layers guarantee that the generated samples can main-

tain the same shape as the real data, i.e., [32, 60, 4] where 4 stands for four magnetic field

parameters mentioned in Section 2.4.

The task of a discriminator (D) is to classify inputs as either being the real or generated

samples produced by the generator. As Fig. 3.1 illustrates, the discriminator takes both

the real and the generated multivariate time series samples as the inputs. To simplify the

notation, we use X̃n to denote either real (Xn) or synthetic samples (G(Zn|Cn)) when the

difference is clear from the context. By feeding Cn into D, the discriminator produces

judgments about whether the sample is generated or real and evaluates if the category of

the generated sample corresponds to its conditional information. Finally, the binary cross-

entropy loss calculated between the predicted and the ground truth values is used to update

29

the weighting parameters of the generator and the discriminator using the backpropagation.

So far, we have described the structures and functionalities of the generator and the

discriminator. Next, we define the objective function used for optimizing the algorithm. In

our framework, the objective function is divided into two parts: the generator loss (LossG)

and the discriminator loss (LossD). The discriminator loss is obtained by calculating the

cross-entropy between the ground-truth and the outputs of the discriminator, as shown in

Eq. 3.1,

LossD(X̃n|Cn, yn) = −CE
(
D(X̃n|Cn), yn

)
(3.1)

where X̃n is the set of inputs of the discriminator, and Cn is the conditional vector. D(X̃n|Cn)

returns the likelihood of X̃n being a real or a generated sample, and CE stands for the cross-

entropy loss function. Note that X̃n is composed of two different types of data sources, as

formulated in Eq. 3.2.

X̃n =


Xn if inputs are real samples

G(Zn|Cn) if inputs are generated samples

(3.2)

Correspondingly, yn takes two different values depending on the source of the sample in X̃n.

yn =


1 if inputs are real samples

0 if inputs are generated samples

(3.3)

30

The generator loss (LossG) is also formulated in Eq. 3.4, where the input G(Zn|Cn) is the

generated samples, and its corresponding predictions are D
(
G(Zn|Cn)|Cn

)
. To optimize the

generator, we need to guide the discriminator to classify the generated samples as real. To do

so, we initialize the ground-truth labels with 1s (same as the real samples). By minimizing

LossG, the predictions of the discriminator approach 1s gradually, indicating the generated

samples are realistic-enough that the discriminator cannot distinguish them from the real

samples.

LossG(Zn|Cn) = −CE

(
D
(
G(Zn|Cn)|Cn

)
,1

)
(3.4)

3.2 Methodology

There are two main concerns in evaluation of GAN models and their synthetically generated

data: (1) to determine the learning progress, and (2) to examine the effectiveness of synthetic

data for the original problem. Regarding the former, in most image-based GAN projects,

researchers can determine the training progress by visually examining the synthetic images.

However, the visual inspection of synthetic time series does not give us much evidence as

to whether the synthetic samples are realistic or not. To address this concern, we present

two statistical-based approaches to handle the model selection issue. Regarding the latter,

we design multiple experiments by applying different class-imbalance remedies to tackle the

flare forecasting problem. We elaborate on our methodologies in the following text.

31

3.2.1 Model Selection Using Distributions of Statistical Features

To provide a statistical evaluation for our model, we compare a few descriptive statistics

extracted from the real and synthetic time series data. This establishes a high-level similarity

criterion that must be satisfied if the distributions of the real and generated time series are

indeed similar.

Suppose we have sets of real (T) and synthetic (S) samples, with equal number of multi-

variate time series. For each instance, we extract its mean, median, and standard deviation.

We then construct the corresponding probability distributions PT and PS, with setting the

bin size to M . To quantitatively measure the similarity, we calculate the Kullback–Leibler

(KL) divergence [74] between distributions of PT and PS using Eq. 3.5. The KL-divergence

is a non-negative measure, which means DKL(PT ||PS) ≥ 0. The smaller value indicates the

higher similarity between PT and PS.

DKL(PT ||PS) =
∑
m∈M

PT (m) · log
(PT (m)

PS(m)

)
(3.5)

3.2.2 Model Selection Using Adversarial Accuracy

The Adversarial Accuracy, as formulated in Eq. 3.6, is put forward by Yale et al. [75],

which is used for measuring the similarity of two sets of data samples through their nearest

neighbors.

AATS =
1

2
(
1

n

n∑
i=1

1(dTS(i) > dTT (i)) +
1

n

n∑
i=1

1(dST (i) > dSS(i))) (3.6)

32


dTS(i) = minj||X i

T −Xj
S||2

dTT (i) = minj,j ̸=i||X i
T −Xj

T ||2

(3.7)

In Eq. 3.6, the subscripts T and S refer to the sets of real and synthetic samples, respec-

tively. The distance function d is defined in Eq. 3.7 as the minimum (Euclidean) distance

between each real sample X i
T and all synthetic samples Xj

S (i.e., dTS(i)), and all other real

samples Xj
T (i.e., dTT (i)). The shortest distance generally means the highest similarity be-

tween two samples. If dTS(i) > dTT (i), it means no synthetic sample is found in S that is

more similar to X i
T than any other real samples in T . Otherwise, a synthetic sample, which is

more similar to the X i
T , can be found. A realistic sample is generated when dTS(i) < dTT (i).

The range of Adversarial Accuracy is [0, 1]. The outcome 1 indicates that there is no re-

semblance between the set of real samples and the set of synthetic samples. The outcome 0

indicates that the two sets are exactly the same, yielding no new information. The desirable

outcome of Adversarial Accuracy is close to 0.5, implying that the real and synthetic samples

generated by the generators are indistinguishable [75].

3.2.3 Synthetic Data v.s. Over-/Under-Sampling

To assess the effectiveness of the synthetic data, we design several experiments where we

compare the impact of different balancing remedies on the classification of flaring and non-

flaring instances of SWAN-SF, with that of balancing using our synthetic data. As shown in

Table 3.1, we set up three groups of experiments, namely A, B, and C, and each comprises

33

four experiments. For A and B, the primary difference between them is that in the former we

utilize the last-value statistic of MVTS samples, whereas in the latter, median and standard

deviation of time series are used. The last-value is literally the last value of each time series.

This makes our results comparable with those in [2] where point-in-time data were used. The

mean statistic is sensitive to outliers, which makes us eliminate it for flare forecasting. For C,

we aim to examine the effectiveness of synthetic samples in their original high-dimensional

format, i.e., time series. The question is whether the unwanted noise of the synthetic MVTS

samples was obscured by the summary descriptive statistics. Therefore, we conduct the

experiments in C to verify the hypothesis.

For each group, we train four classifiers with the same parameter setting, but with differ-

ent training datasets. The models in A1, B1 and C1 are trained on the highly imbalanced,

real dataset without any changes. The models in A2, B2 and C2 are trained on the dataset

that is made balanced by adding synthetic minority (flaring) samples. The models in A3, B3

and C3 are trained on the dataset that is made balanced by random oversampling of (i.e.,

duplicating) the minority instances. Lastly, the models in A4, B4 and C4 are trained on

the dataset that is made balanced by random undersampling of the majority (non-flaring)

instances. The models in A1, B1 and C1 are considered as the baseline.

3.3 Experiments

In this section, we conduct experiments to evaluate the effectiveness of the proposed as-

sessment methods. First, we show the results of two model selection methods based on the

34

Table 3.1 The table lists all experiments carried out to examine various class-imbalance
remedies. Groups of A and B have experimented on the extracted descriptive statistics of
MVTS data. Group A utilizes the last value statistic of MVTS samples as inputs, whereas
in group B, median and standard deviation of samples are used. All experiments in A
and B utilize Partition 1 (P1) as the training set and Partitions 2, 3, and 5 as the test
sets. Partition 4 is not involved in this experiment. The experiments in C are conducted
to examine various class-imbalance remedies by taking time series as inputs. Similarly,
Partition 1 is utilized as the training set and Partitions 2, 3, and 5 as the test sets. Partition
4 is reserved for validation of the hyperparameters.

Group No. Method Description Statistic

A

A1 Baseline (BL)
No data augmentation

applied on P1.

last

value

A2
Synthetic Oversampling

using CGAN (CGAN)

Adding synthetic flaring samples

to the minority class of P1.

A3 Random Oversampling (RO)
Randomly oversampling samples

of the minority class on P1.

A4 Random Undersampling (RU)
Randomly undersampling samples

of the majority class on P1.

B

B1 Baseline (BL)
No data augmentation

applied on P1.

median

&

standard

deviation

B2
Synthetic Oversampling

using CGAN (CGAN)

Adding synthetic flaring samples

to the minority class of P1.

B3 Random Oversampling (RO)
Randomly oversampling samples

of the minority class on P1.

B4 Random Undersampling (RU)
Randomly undersampling samples

of the majority class on P1.

C

C1 Baseline (BL)
No data augmentation

applied on P1.

time

series

C2
Synthetic Oversampling

using CGAN (CGAN)

Adding synthetic flaring samples

to the minority class of P1.

C3 Random Oversampling (RO)
Randomly oversampling samples

of the minority class on P1.

C4 Random Undersampling (RU)
Randomly undersampling samples

of the majority class on P1.

35

distributions of statistical features and the Adversarial Accuracy. Then, we present multi-

ple experiments by applying different class-imbalance remedies to tackle the flare forecasting

problem. Furthermore, we exhibit a quantitative analysis of the quality and usefulness of the

synthetic flaring time series generated by the CGAN model to balance the training dataset.

3.3.1 Experimental Settings

After exploring various settings based on the defined objective function, we found that us-

ing the Adam Optimizer for the generator and the Gradient Descent Optimizer for the

discriminator produced optimal results. We tune the performance of CGAN model by set-

ting different hyper-parameters, i.e. latent space dimensions: {2, 3, 4, 5}, learning rates:

{0.5, 0.1, 0.01, 0.001, 0.0001}, batch sizes: {16, 32, 64}. Empirically, we concluded our opti-

mal hyper-parameter setting with the latent space dimension of 3, the conditional informa-

tion dimension of 2 (since we have two classes), the learning rate of 0.1, the batch size of 32,

and the LSTM hidden size of 100. The model was trained with 300 epochs, and intermediate

models were saved at every five epochs. We have implemented CGAN using the TensorFlow

2.1 library [76].

For preprocessing of SWAN-SF, we linearly transformed all five partitions to the range

[−1, 1] for training the CGAN model and evaluations. We train the generator on Partition

1 of SWAN-SF, with the four magnetic field parameters mentioned in Section 2.4.

We employ the Support Vector Machine (SVM) as the standard classifier for experiment

groups A and B in Section 3.2.3. The models are trained on Partition 1 and evaluated on

Partitions 2, 3, and 5. Partition 4 is not involved in this experiment. For the experiments

36

in A, we use the same hyperparameters as were used in [2], i.e., kernel, C and gamma

set to ‘rbf’, 0.5 and 8, respectively. Since the input of the experiments in group B has

double dimensions compared to A (from 4 to 8), we adjust the hyperparameters accordingly

following the instructions in [77; 78; 79], and set the kernel, C and gamma to ‘rbf’, 0.25

and 0.25, respectively. We conduct the time series-based classification experiments (group C

in Section 3.2.3) using the time-series specific Support Vector Classifier (T-SVC). Similarly,

Partition 1 is for training and Partitions 2, 3, and 5 are for evaluation. Partition 4 is reserved

for validation of the hyperparameters. We performed a grid search on C and gamma to find

the optimal setting, i.e. C: {0.001, 0.01, 0.1, 1, 10, 100}, gamma: {0.001, 0.01, 0.1, 1, 10,

100}, using the ‘rbf’ kernel. We conclude the optimal setting with C and gamma to 0.01

and 0.01.

3.3.2 Evaluation Using Distributions of Statistical Features

We have conducted this analysis on all of the four selected physical parameters, but for

brevity, we present only the results for the physical parameter TOTUSJH. In Fig. 3.2, we

compare the results by monitoring the improvement of the models at every 5 epochs, and

the quality of the samples they generate. Specifically, we utilize 1, 254 real flare samples

in Partition 1 of SWAN-SF and 1, 254 synthetic samples generated by the CGAN model in

the evaluation. The columns A and B in Fig. 3.2 compare the distributions of the three

descriptive statistics of the real and synthetic time series based on two intermediate models

saved in the training process. Column A corresponds to a model trained after 50 epochs,

whereas B shows the results after 250 epochs. Comparing A with B it is evident that, at

37

Figure 3.2 The plots show the distributions of mean, median and standard deviation of
the physical parameter TOTUSJH and its synthetic counterpart using 20 equal-width bins.
Columns A and B show the distributions of the descriptive statistics at two intermediate
epochs, 50th and 250th, respectively.

least in terms of the three descriptive statistics, the generator gradually learn to generate

synthetic time series which are more and more similar to the real flaring time series. To draw

a more comprehensive picture, we calculate the Kullback–Leibler (KL) divergence between

the distributions of three descriptive statistics of the real and the synthetic time series every

50 epochs. We observe, as shown in the Fig. 3.3, that the KL divergence decreases as

training progresses. We found that on average, the models between the epochs 201-250

achieve the best performance, with lower KL-divergence for the mean, median, and standard

38

deviation distributions. We also see that the variance between the results produced by

intermediate models trends downward until we surpass the 250 epoch mark. We further

need to examine the overfitting issue. That is, the KL-divergence can be low if the CGAN

model just memorizes the training set, resulting in no or limited new information produced.

We assess this question in the next section.

3.3.3 Evaluation Using Adversarial Accuracy

As previously mentioned, the KL-divergence score can underestimate model performance

if the model memorizes or replicates the training set. To address this, the Adversarial

Accuracy method aims for a score close to 0.5, indicating that real and synthetic samples

are indistinguishable. The evaluation of our intermediate models using Adversarial Accuracy

is conducted for the physical parameter TOTUSJH, as an example. We again utilize 1, 254

real flare samples in Partition 1 of SWAN-SF and 1, 254 synthetic samples generated by the

CGAN model. As the box plots suggest, the models between 201 to 250 epochs achieve

the adversarial accuracy of 0.55, 0.60, and 0.68, in terms of mean, median, and standard

deviation of the generated time series, respectively. This shows that the CGAN model can

generate realistic synthetic samples by maintaining a good balance between underfitting and

overfitting. Moreover, the Adversarial Accuracy results are consistent with our evaluation

using KL-divergence.

39

Figure 3.3 The plots shows the distributions of KL-divergence scores calculated by comparing
distributions of synthetic samples and real samples across all intermediate models divided
into six groups.

3.3.4 Examining Descriptive Statistics of Synthetic Time Series

We conducted two groups of flare forecasting-based experiments (A&B) to examine the

effectiveness of the synthetic data using descriptive statistics. Four classifiers are trained for

each group, with the same parameter setting but different training datasets. In A2 and B2,

40

Adversarial Accuracy Adversarial AccuracyAdversarial Accuracy

Mean StdevMedian

Figure 3.4 The box plots show the distributions of Adversarial Accuracy of the three de-
scriptive statistics of TOTUSJH, namely mean, median, and standard deviation, evaluated
with all intermediate models divided into six groups.

we generate 70, 984 synthetic flare samples to balance the training set. For A3 and B3, the

training dataset is made balanced by random oversampling 70, 984 duplicates of the minority

instances. For A4 and B4, the training dataset is made balanced by random undersampling

1, 254 of the majority instances. Of course, data manipulation is only served for the purpose

of training, and test sets are made entirely of real data.

The results of the group A experiments are illustrated in Fig. 3.5. Comparing A1 and

A2, it is evident that the performance of SVM trained on the synthetically balanced data is

significantly higher than that of the baseline classifier, by both metrics, TSS and HSS2. This

41

BL
(A1)

CGAN
(A2)

RO
(A3)

RU
(A4)

RUSO RNSO RNOSO
0.0

0.2

0.4

0.6

0.8

1.0

T
S
S
&
H
S
S

0.11

0.18

0.76

0.39

0.74

0.19

0.81

0.2

0.49

0.39
0.32

0.21

0.56

0.37

TSS

HSS

Figure 3.5 The bar plot compares CGAN’s synthetically generated data (A2) with the other
group A experiments listed in Table 3.1. The choice of the last-value statistic in A makes our
results comparable with the näıve random synthetic oversampling methods of RUSO, RNSO,
and RNOSO purposed in [2]. The reported TSS and HSS2 values are averaged over three
separate evaluation trials on Partitions 2, 3, and 5 of SWAN-SF. Partition 4 is not involved in
this experiment. Error bars show the standard deviation of the obtained TSS/HSS2 values.

observation confirms that the model generally performs best when classes in the training

dataset are roughly equal in size. Specifically, the CGAN classifier results in a five-fold

improvement compared to the baseline experiment in terms of TSS (an increase from 0.11

to 0.76). The HSS2 shows an over one-fold improvement (from 0.18 to 0.39). The HSS2

improvement in A2 compared to A3 and A4 is also significant; from 0.19 to 0.39. TSS,

however, remains roughly stagnant in these cases, which is simply due to the difference in

what the two metrics measure. It is crucial to note that while balancing the data seems to

be the main reason for the significant improvement in performance from A1 to A2, it would

not have happened by balancing the dataset with unrealistic flaring instances. This is the

main takeaway from our synthetically generated samples that we are evaluating through A2

42

BL
(B1)

CGAN
(B2)

RO
(B3)

RU
(B4)

0.0

0.2

0.4

0.6

0.8

1.0

T
S
S
&
H
S
S

0.04
0.08

0.81

0.45

0.77

0.21

0.79

0.27

TSS

HSS

Figure 3.6 The bar plot compares CGAN’s synthetically generated data (B2) with the other
group A experiments listed in Table 3.1. The reported TSS and HSS2 values are averaged
over three separate evaluation trials on Partitions 2, 3, and 5 of SWAN-SF. Partition 4 is
not involved in this experiment. Error bars show the standard deviation of the obtained
TSS/HSS2 values.

experiment.

Furthermore, compared to the statistic-based oversampling methods purposed in [2], the

CGAN-based method achieves a significant improvement in terms of TSS while maintaining

HSS2 at its highest value, i.e., 0.39. Overall, the experiment results show that our method

can produce a better flare forecasting performance than the random sampling-based methods

or the statistic-based oversampling methods.

Next, we examine the forecasting performance of the group B experiments, as shown in

Fig. 3.6. In these experiments, we observe that B2 achieves the highest TSS and HSS2. The

result shows that the CGAN model can successfully learn the median and standard deviation

of real multivariate time series samples.

43

Putting together the results shown in Figs. 3.5 and 3.6, we demonstrated that our method

has multiple advantages compared to other remedies. First, comparing to the random over-

sampling method (A3 and B3), the CGAN-based method can bring new information through

generating realistic synthetic samples instead of duplicating existing samples. Second, com-

paring to the random undersampling strategy (A4 and B4), the CGAN-based approach can

produce unlimited synthetic samples. Thus, more data provides a path towards training

more powerful machine learning models. This significantly benefits flare forecasting mod-

els based on deep neural networks. Third, comparing to the statistic-based oversampling

methods (RUSO, RNSO, and RNOSO), the CGAN-based method can learn the descriptive

statistics of the real MVTS samples and, therefore, generate realistic samples. All in all,

we can so far conclude that CGAN algorithm can be used to remedy the imbalance issue of

MVTS flare datasets. What we have not yet examined, however, is the temporal character-

istics of the synthetic time series, and whether they are realistic beyond their median and

standard deviation summaries. Next, we put this question to the test.

3.3.5 Examining Synthetic Time Series v.s. Over-/Under-Sampling

In this section, we examine the effectiveness of synthetic samples in time series format. For

the experiments in the Group C, we use the same setting of training datasets with the Groups

A and B mentioned in Section 3.3.4. The forecasting results of experiments in Group C are

reported in Fig. 3.7. We observe that the model in C2 trained on the dataset balanced with

the synthetic samples beats the models trained in C1 and C3, in terms of both TSS and

HSS2 scores. The experiment C2 shows a 31% improvement in terms of TSS comparing to

44

BL
(C1)

CGAN
(C2)

RO
(C3)

RU
(C4)

0.0

0.2

0.4

0.6

0.8

1.0

T
S
S
&
H
S
S

0.05

0.09

0.8

0.42

0.76

0.33

0.61

0.46

TSS

HSS

Figure 3.7 The bar plot compares CGAN’s synthetically generated data (C2) with the other
group C experiments listed in Table 3.1. The reported TSS and HSS2 values are averaged
over three separate evaluation trials on Partitions 2, 3, and 5 of SWAN-SF. Partition 4 is
reserved for validation of the hyperparameters. Error bars show the standard deviation of
the obtained TSS/HSS2 values.

the model trained in C4. Although the model in experiment C2 does not obtain the highest

HSS2 score, it still gives a comparable performance. The experimental result validates our

assumption that adding informative synthetic samples to balance the training dataset can

result in a more robust forecasting model.

3.3.6 Examining Incremental Incorporation of Synthetic Time Series

To further demonstrate the effectiveness of the synthetic multivariate time series, we conduct

another experiment to show how varying the number of incorporated synthetic samples

affects the forecasting performance. More specifically, we fix the number of real flaring and

non-flaring samples in the training dataset, and gradually add synthetic flaring samples while

monitoring the model’s performance on the test set. As illustrated in Fig. 3.8, we conduct

45

1:58 1:30 1:20 1:15 1:12 1:10 1:5 1:3 1:2 1:1

Imbalance ratio (FL:NF)

0.0

0.2

0.4

0.6

0.8

1.0

T
S
S
&
H
S
S

0.05

0.09

0.08

0.14

0.14

0.22

0.22

0.32

0.31

0.39

0.38

0.44

0.56

0.48

0.66

0.48

0.74

0.46

0.8

0.42

TSS

HSS

Figure 3.8 The plot illustrates the gradual impact of reducing the imbalance ratio of the
training set on performance, by incrementally adding synthetic flaring samples. The reported
TSS and HSS2 values are averaged over three separate evaluation trials on Partitions 2, 3,
and 5 of SWAN-SF. Partition 4 is reserved for validation of the hyperparameters. Error bars
show the standard deviation of the obtained TSS/HSS2 values.

ten experiments by varying the imbalance ratios of the training dataset from 1:58 to 1:1.

The ratio of 1:58 is the original imbalance ratio of Partition 1, including 1, 254 real flares

and 72, 238 non-flaring samples.

Through observing the result, we can see that the performance generally increases as

we reduce the imbalance ratio using our synthetic multivariate time series data. While the

strict increase of TSS values indicates that the incorporated synthetic time series are of high

quality (when compared with the real time series), we notice that the HSS2 values slightly

decline at the very end. Familiar with the different behavior of these two metrics, we believe

this is caused due to lack of a per-experiment hyperparameter tuning. In other words, the

46

added synthetic time series eventually made the default hyperparameters ineffective and

consequently the model suboptimal. This change seems to have been overlooked by TSS,

but not by HSS2, which is the main reason for using them as a couple. Overall the results

show that the trained CGAN model can indeed generate realistic multivariate time series

samples.

We would like to recapitulate that our main objective is to show the effectiveness of

CGAN as a possible remedy to the class-imbalance issue on SWAN-SF. Therefore, we do not

claim the superiority of this approach over any other existing methods, nor do we infer that

our findings can be extended to any other multivariate time-series datasets. To this end, we

did not include multiple datasets, and we did not compare the performance of CGAN with

other GAN-based algorithms. Instead, we kept our focus on evaluating the contribution of

CGAN-generated synthetic MVTS of SWAN-SF, and the reliableness of the generated time

series for machine learning use.

3.4 Conclusion

In this chapter, we show the usage of the conditional generative adversarial network (CGAN)

to perform data-informed augmentation of multivariate time series (MVTS) on a recently

released flare forecasting benchmark dataset (SWAN-SF). We tailor several verification meth-

ods to show that the generated MVTS samples indeed preserve the distribution of the real

physical parameters: (1) we utilize KL-divergence metric to quantify the similarity between

the distributions of the real and synthetic data; (2) we use Adversarial Accuracy to moni-

47

tor the performance of CGAN directly; (3) we use the synthetic MVTS samples to balance

our dataset and compare the classification performance with that trained on the original

data, and that on the dataset that was balanced by other oversampling, undersampling, and

statistic-based synthetic oversampling methods such as RUSO, RNSO, and RNOSO. The

results showed that the CGAN-based approach can remarkably boost flare forecasting per-

formance in terms of TSS and HSS2. Therefore, we consider that the CGAN method is an

effective remedy for mitigating the class imbalance issue in flare forecasting, and it provides

a preliminary attempt to generate meaningful synthetic physical features.

48

CHAPTER 4

EXAMINING EFFECTS OF CLASS IMBALANCE ON CONDITIONAL
GAN TRAINING

In this chapter, we explore the impact of class imbalance on the quality and diversity of

synthetic samples generated by conditional generative adversarial networks (CGANs). While

CGANs have demonstrated remarkable success in generating realistic image samples using

well-processed and balanced benchmark datasets like MNIST and CIFAR-10 [61; 80], real-

world applications such as fraud detection, diabetes diagnosis, and solar flare prediction

often involve imbalanced data distributions. The well-known class-imbalance issue can also

have a profound effect when training CGAN on imbalance datasets, as in [8], the authors

stated that traditional GANs cannot be employed to generate minority-class images from an

imbalanced dataset.

The aforementioned works mentioned in Section 2.1.2 attempt to address the imbalance

issue at the algorithm level, either by employing Autoencoder to learn latent features or

by modifying objective functions during the training procedure [8; 9]. Our obejctive is to

investigate the issue of class imbalance inherent to GAN training at the data-level, showing

that how the imbalance in the training set has a negative effect on the performance of CGANs

and the ineffectiveness of common remedies for training GANs on imbalanced datasets, such

as oversampling and undersampling.

Furthermore, we introduce a novel approach, the Two-stage CGAN, designed to enhance

the quality of minority-class samples when training CGANs on imbalanced datasets. To

demonstrate its effectiveness, we conduct experiments using MNIST to generate realistic

49

images.

4.1 Methodology

We utilize the Conditional Generative Adversarial Network (CGAN), as outlined in Sec-

tion 3.1, for two primary reasons: Firstly, CGAN enables us to control the category of

generated samples, allowing us to address the class imbalance problem by generating sam-

ples from minority classes. Secondly, compared to vanilla GANs [73], CGAN offers more

stable and efficient training processes. Building on the CGAN framework, we introduce a

novel approach named Two-stage CGAN to tackle the inherent challenges of class imbalance

during model training.

The proposed pipeline consists of three steps. To begin with, if the original set is un-

balanced, we use random undersampling to reduce it to a smaller, more balanced set (i.e.,

Training-set-1 in Fig. 4.1) and then train the first CGAN model (CGAN1) on this equally

represented dataset. After completing CGAN1 training, we can generate synthetic minority

class samples, resulting in Synthetic-set-1. The reason for performing undersampling and

generating the Synthetic-set-1 dataset based on it is that we discovered that the CGAN1

can create synthetic samples of minority classes with acceptable quality. In the intermediary

stage, the original set and Synthetic-set-1 are merged to create Training-set-2 in Fig. 4.1, a

balanced and much larger set. This dataset is then used to train the second CGAN model

(CGAN2). Again, we generate synthetic minority class samples to construct the Synthetic-

set-2. In the final phase, the Original Set and Synthetic-set-2 will be combined to form the

50

Figure 4.1 The Two-stage CGAN framework consists of three steps: (1) undersampling
Original-set and training the CGAN1 model on it to form Synthetic-set-1 for minority
classes; (2) merging Original-set and Synthetic-set-1 to training the CGAN2 model to pro-
duce Synthetic-set-2 for minority classes; and (3) combining Original-set and Synthetic-set-2
to obtain Final-set for subsequent applications.

final training set (i.e., Augmented-set in Fig. 4.1) for subsequent applications.

51

4.2 Experiments

4.2.1 Experimental Design

We conducted the experiments on the MNIST dataset, introduced in Section 2.4.1. The

original dataset comprises 10 classes, each with approximately 6,000 training images. For

brevity, we used a subset of the original MNIST and performed necessary resampling oper-

ations to meet experimental requirements. Specifically, we selected five digit classes out of

ten, where ’0’, ’1’, ’2’ are considered majority classes and ’3’, ’4’ as minority classes, detailed

in Table 4.1. In addition, we manually generate five different datasets to evaluate the effi-

cacy of CGAN models trained on them. The dataset-A is derived directly from the original

MNIST, which has approximately 6,000 samples per class and is balanced. The dataset-B is

created based on A by reducing the minority classes of ’3’ and ’4’ to 500 and 100 samples,

respectively. We chose 500 and 100 because we wish to examine two distinct imbalance

ratios, which are approximately 1:12 and 1:60. If the assumption that the class imbalance

issue affects the performance of CGAN models holds true, we consider two common resam-

pling strategies in practice: oversampling and undersampling. The dataset C is created by

duplicating and rebalancing existing samples of classes ’3’ and ’4’ with majority classes. We

can also determine if the overfitting issue resulting from oversampling the underrepresented

classes is affecting the sample quality. The dataset D is generated by removing the existing

samples of majority classes to align their size with the size of minority classes. The dataset

E differs from the dataset C in that it was oversampled using Two-stage CGAN, a newly

devised framework. Instead of duplicating existing samples, we rebalance the dataset by

52

adding 5,500 and 5,900 synthetic samples, respectively, to the minority classes of ’3’ and ’4’.

Table 4.1 The table lists five datasets intended to assess the performance of CGAN training.
A is directly taken from the original MNIST. B is produced by reducing the minority classes
of ’3’ and ’4’ to 500 and 100 samples, respectively, based on A. C and D are obtained by
employing oversampling and undersampling strategies to B. E is the dataset that has been
augmented on B using Two-stage CGAN.

Dataset Type
Digit Class

Total

0 1 2 3 4

A
Balanced

(Baseline)

5923 6742 5958 6131 5842 30596

B Imbalanced 5923 6742 5958
(6131→)

500

(5842→)

100

19223

C
Oversampling

(OS)

5923 6742 5958
(500→)

6000

(100→)

6000

30623

D
Undersampling

(US)

(5923→)

100

(6742→)

100

(5958→)

100

(500→)

100

100 500

E Two-stage
CGAN

5923 6742 5958
500real+

5500synthetic

100real+

5900synthetic

30623

53

4.2.2 Experimental Settings

We evaluate the performance of CGAN model with the same hyper-parameter configuration

across different experiments, setting the latent space dimension to 3, the learning rates to

0.1, the batch size to 32, and the LSTM hidden size of 100. The models were trained with

500 epochs. Empirically, we use the Adam Optimizer for the generator and the Gradient

Descent Optimizer for the discriminator. The CGAN model is implemented based on the

TensorFlow 2.1 library [76].

4.2.3 Model Selection

For the sake of simplicity, we only display the FID score distribution of the CGAN trained

on dataset-A in Fig. 4.2 when performing model selection based on FID scores. We review

the checkpoints every 25 epochs, between the 200th and 500th epochs. We conclude that

the 300th epoch is a reasonable option given the trade-off between performance and compu-

tational cost. We determine the 300th checkpoint in evaluation with experiments A, B, C,

and E because the dataset size variation is insignificant. Since the experiment D dataset is

much smaller than other datasets, we repeat the FID-based model selection process for it,

and we choose to use the 900th checkpoint in the evaluations and analyses that follows.

4.2.4 Examining Two-stage CGAN on Image Generation

Using the setup shown in Table 4.1, we trained CGAN models on each of the five datasets

separately. Fig.4.3 shows examples of the output from these models. By looking at the out-

puts in subplot (A), it is evident that a CGAN trained on a balanced training set is capable of

54

Figure 4.2 The box plots depict the distributions of FID scores for five digit classes (i.e.,
’0’, ’1’, ’2’, ’3’, and ’4’) as calculated by the CGAN model trained on dataset-A. The x-axis
represents the models per 25 epochs between the 200th and 500th epochs, and the y-axis
represents the corresponding FID scores for each class. This metric is considered the selection
criterion for models.

producing acceptable synthetic samples for all classes. However, in the subplot (B), we dis-

covered that the generated samples of class ’4’ are of lesser quality, whereas we can generate

samples of comparable quality for other classes using A. This confirms the assumption that

the imbalance ratio in the training set can affect the performance of a GAN, i.e. that GANs

give more attention to the majority classes in practice. In scenario (C), we observe that both

’3’ and ’4’ synthetic samples have low diversity and low quality. This may be because the

random oversampling strategy typically involves duplicating samples exactly to expand the

data space, which may lead to the overfitting issue. Therefore, balancing the training set

by randomly oversampling minority class samples cannot enhance the performance of the

CGAN and generate high-quality synthetic samples. In (D), we can see that the diversity

of minority classes is better than the results in (C), although this strategy can put the loss

of important concepts at risk. The lower-quality outputs are caused by insufficient training

data. The subplot (E) depicts the synthetic samples generated by Two-stage CGAN, which

55

Figure 4.3 The diagram shows real samples and synthetic samples generated by CGAN
models trained on datasets in Table 4.1.

enhance both quality and diversity simultaneously.

The FID score is then utilized to quantitatively assess the similarity between the real

and synthetic samples. Specifically, 1,000 real samples per class are selected at random, and

56

1,000 synthetic samples per class are generated using CGAN models trained on five training

sets. The results of the FID are shown in Table 4.2. Row-A displays the FID scores of

five classes for a balanced training set, which can be interpreted as the baseline similarity

between real and synthetic samples. Row B is the result of an imbalanced training set. We

discovered that the FID scores for the majority classes (i.e., ’0’, ’1’, and ’2’) are lower than

A while the scores for the minority classes (i.e., ’3’ and ’4’) are higher than A, with means

of 32.89 and 86.79, respectively. The ’4’ digit class, which has the greatest imbalance in our

design (approximately 1:60), is especially affected. There are two possible explanations for

why the digit class of ’3’ is not significantly affected: (1) Because the class of ’3’ is not the

rarest, the weights in the generator for generating ’3’s receive more training opportunities

than the weights for generating ’4’s; (2) because the digits ’2’ and ’3’ are naturally more

similar, feeding sufficient samples of ’2’ into the training process can aid the training process

of ’3’. The FID scores of the oversampling strategy as a remedy for class imbalance are

displayed in Row C. The increased FID scores of both minority classes (i.e., ’3’ and ’4’)

indicate less similarity between real and synthetic samples. This is more evident for ’4’,

indicating that oversampling cannot mitigate the data deficiency issue and result in a well-

trained synthetic data generator for minority classes. Row D displays the FID score of using

the undersampling strategy as the class imbalance remedy, which results in higher FID scores

than Row A. However, given that the training set is balanced, the variances in FID are not

that great. In D, the FID score of the digit ’4’ is 45.81, which is lower than in B and C,

indicating that the synthetic samples of ’4’ are more similar to real samples of ’4’. Therefore,

57

we are considering utilizing this advantage to generate synthetic samples of minority classes

to supplement the imbalance dataset (i.e., dataset B), and then training a final CGAN model

on a larger and more balanced training set, yielding the result of Row E. Observing the FID

results for Row E, we can see that it achieves the lowest FID scores of all classes, indicating

the proposed framework provides a significant improvement over typical oversampling and

undersampling techniques utilized for class imbalance remediation.

Table 4.2 The table provides a summary of the FID evaluation outcomes from five
experiments. Each FID score is determined by comparing 1,000 actual and 1,000 synthetic
samples of the same class. Five separate simulations are performed to calculate the final
results, guaranteeing the correctness of the assessment.

FID(mean±std) Digit - 0 Digit - 1 Digit - 2 Digit - 3 Digit - 4

A 21.44 ± 0.32 15.81 ± 0.20 27.47 ± 0.36 26.62 ± 0.45 24.99 ± 0.55

B 15.28 ± 0.38 11.07 ± 0.26 15.11 ± 0.15 32.89 ± 0.23 86.79 ± 0.50

C 15.12 ± 0.19 14.16 ± 0.36 25.46 ± 0.44 51.75 ± 0.81 142.59 ± 0.59

D 55.36 ± 0.48 30.31 ± 0.28 59.81 ± 0.39 53.73 ± 0.57 45.32 ± 0.46

E 12.44 ± 0.28 10.03 ± 0.39 17.11 ± 0.52 10.31 ± 0.23 9.81 ± 0.19

58

4.3 Conclusion

In this chapter, we show how the imbalance in the training set has a negative effect on

the performance of GANs. In addition, we show the ineffectiveness of common remedies

for training GANs on imbalanced datasets, such as oversampling and undersampling. To

address these challenges, we propose a novel solution called Two-stage CGAN aimed at

enhancing the quality of samples from minority classes in image contexts. Our experimental

results confirm that this framework significantly improves the quality of synthetic samples.

However, if try to apply the proposed framework to the context of time series generation, we

face the challenge of lacking a widely accepted metric for evaluating synthetic time series.

However, applying the proposed framework to time series generation presents a challenge

due to the lack of a widely accepted metric for evaluating synthetic time series. In the next

chapter, we introduce a novel metric named the Fréchet Fourier-transform Auto-encoder

Distance (FFAD), which leverages Fourier transform and Auto-encoder techniques to assess

the quality and diversity of generated time series samples. By using FFAD as the model

selection criterion, we further demonstrate the effectiveness of Two-stage CGAN in time

series generation, leading to practical applicability and performance improvements in solar

flare forecasting tasks.

59

CHAPTER 5

FFAD: A NOVEL METRIC FOR ASSESSING TIME SERIES-BASED
GENERATIVE MODELS

The success of deep learning-based generative models in generating realistic images, videos,

and audio has raised an important question: how can we effectively evaluate the quality of

synthetic samples? While the Fréchet Inception Distance (FID) serves as the standard metric

for assessing generative models in image synthesis, a comparable metric for time series data

is conspicuously absent. This gap in assessment capabilities arises from the lack of widely

accepted feature vector extractors pretrained on benchmark time series datasets. To address

the challenges in evaluating time series quality, particularly using Fréchet Distance, this study

proposes a novel solution: the Fréchet Fourier-transform Auto-encoder Distance (FFAD).

By leveraging the Fourier transform and Auto-encoder, FFAD offers a promising approach

to distinguishing samples from different classes and evaluating the quality and diversity of

generated time series samples. Our experimental results demonstrate the potential of FFAD,

contributing to the ongoing efforts to enhance assessment methodologies in deep learning-

based generative models. Finally, we extend the Two-stage CGAN framework to synthetic

time series generation, and conduct experiments in solar flare forecasting to validate the

efficacy.

60

5.1 Background

5.1.1 Fourier Transform

The Fourier transform, an integral mathematical technique applied extensively in signal pro-

cessing, mathematics, and diverse scientific disciplines, is employed to analyze and depict

functions or signals within the frequency domain. Its primary objective is the dissection of

complex signals into constituent sinusoidal components. This process involves the decom-

position of time-domain signals into their corresponding frequency components, providing a

comprehensive understanding of the varied frequency contributions comprising the signal, as

shown in Fig. 5.2.

Numerous Fourier Transform implementations have been proposed. The Discrete Fourier

Transform (DFT) is widely employed in digital signal processing when dealing with discrete,

sampled data. The Fast Fourier Transform (FFT) has an improved computation time com-

pared to the straightforward evaluation of the DFT, making it widely used in applications

such as signal processing, image analysis, and many scientific computations [81]. In this

project, we prioritize the use of FFT due to its superior computational efficiency, enabling

rapid analysis and processing of complex datasets.

5.1.2 Auto-encoder

Auto-encoders, a class of neural networks, have gained significant attention in the domain

of deep learning and unsupervised learning. A typical auto-encoder consists of an encoder

1Image source: www.nti-audio.com/en/support/know-how/fast-fourier-transform-fft

61

Figure 5.1 An example of viewing a time signal in both the time and frequency domains
utilizing Fourier Transform. 1

and a decoder. The encoder compresses input data into a lower-dimensional representation,

while the decoder reconstructs the original input from this code. During training, the network

learns to minimize the difference between the input and the reconstructed output, facilitating

the extraction of meaningful features in the encoded representation. To address specific data

types, Convolutional Auto-encoders are customized for image data through the integration of

convolutional layers [82]. Similarly, Recurrent Auto-encoders are devised for sequential data,

such as time series, employing recurrent units [83]. In this work, we utilize the Recurrent

Auto-encoder, considering frequency components as sequential data.

2Image source: https://www.compthree.com/blog/autoencoder/

62

Figure 5.2 The macro-architecture of an Auto-encoder consists of an “encoder” followed by
a “decoder.” The encoder maps the input data to a low-dimensional “latent” space, while
the decoder attempts to reconstruct the low-dimensional representation back to the original
high-dimensional space. 2

5.2 Methodology

Our main goal is to train an Auto-encoder utilizing a variety of time series datasets. Fol-

lowing this, we aim to utilize the Encoder component to generate a lower-dimensional rep-

resentation for any time series, whether from real-world datasets or synthetic ones produced

by generative models like conditional GANs. Furthermore, we will assess the dissimilarity

between distributions using the FFAD score, which compares pairs of time series datasets,

whether they are from different categories or involve comparisons between real and synthetic

63

samples.

To effectively train an Auto-encoder for time series data, the foremost challenge to address

is handling datasets with varying sequence lengths. Within the UCR dataset collection, the

time series datasets can range in length from 15 to 2,844 data points, with an average length

of 537 time steps, as depicted in Fig. 5.3. To tackle this significant variability, we utilize

Fourier Transformation as a preprocessing step for the original UCR time series. This choice

is guided by two primary reasons: (1) Ensuring all time series data with a consistent input

length for training RNN-based auto-encoder. Maintaining a uniform input length eliminates

the need for padding the variable-length inputs, resulting in increased time efficiency. (2)

Shifting from time domain to frequency domain with Fourier Transform while preserving

essential features. This transformation enables us to represent the original time series by

selecting a suitable number of sine components, which are not only appropriate but also

fewer in number compared to the original sequence length.

Consider a collection of time series datasets denoted as D = {d1, d2, ..., dn}, as shown

in (A) of Fig. 5.4. Each individual dataset di has its own length leni and number of sam-

ples |di|. As a result, each di can be represented as a matrix with dimensions [|di|, leni].

Through the utilization of the Fourier transformation, we can convert each dataset from the

time domain to the frequency domain. Assuming a selection of m frequency components,

each datasets yields a Fourier-transform (FT) representation matrix (Zdi) with the shape of

[|di|,m]. Choosing the same m value for all datasets enables the concatenation of the FT rep-

resentation matrices into a larger matrix (ZD) with the shape of [N,m] (i.e., N =
∑n

i=1 |di|),

64

Figure 5.3 The plot illustrates the distribution of time series lengths in the UCR dataset
collection. These time series vary in length from 15 to 2,844 data points, with an average
length of 537 time steps.

as shown in Eq. 5.1. Within ZD, each element (e.g., zki,j) represents k as the dataset index,

i as the sample index within each dataset, |di| indicating the total number of samples for a

specific dataset, and j as the index of frequency components.

65

ZD = [Zd1 , Zd2 , ..., Zdn] =



z11,1 z11,2 ... z11,m
z12,1 z11,2 ... z11,m
...

z1|d1|,1 z1|d1|,2 ... z1|d1|,m
z21,1 z21,2 ... z21,m
...
zn1,1 zN1,2 ... zN1,m
...

zn|dn|,1 zn|dn|,2 ... zn|dn|,m


shape−−−→ [N,m] (5.1)

An aspect that requires investigation concerns the characteristics of Fourier transform

results. These results manifest as complex numbers, encompassing crucial information about

both magnitude and phase. Since we employ Keras, which primarily supports real-valued

computations for neural networks, and doesn’t have native support for complex numbers

in its core operations, so the pre-preocessing for complex numbers is needed. Considering

each row in ZD as list of frequency components z = [z1, z2, ..., zm] (where zi = a + bj), we

separate the real (a) and imaginary parts (bj) by organizing them into a two-dimension array

z
′

= [[a1, b1], [a2, b2], ..., [am, bm]], characterized by a shape of [m, 2]. The ultimate shape of

the matrix ZD will be [N,m, 2].

In the implementation of the Recurrent Auto-encoder, we employ the Gated Recurrent

Unit (GRU) for both the Encoder and Decoder components. GRU is selected for its en-

hanced performance in processing long sequences, by minimizing the risk of the gradient

vanishing problem [84]. We adopt a mini-batch approach to train the Auto-encoder effec-

tively. During each iteration, a batch comprising a batch-size of samples (referred to as X)

from the matrix ZD serves as input for the Encoder component. The output of the Encoder,

denoted as Y = Encoder(X), represents a significantly compressed representation compared

66

Figure 5.4 Sub-figure (A) illustrates the procedure of employing Fourier Transformation as
a preprocessing step for the original time series data, ensuring a consistent length for all
datasets. Sub-figure (B) outlines the training procedure of the autoencoder.

to X. For the Encoder training, we require another integral component known as the De-

coder. This Decoder takes Encoder(X) as its input and generates an output represented by

X ′ = Decoder(Y) = Decoder(Encoder(X)). The primary goal of the Decoder is to recon-

struct the initial input data X. Therefore, the overarching objective function of the entire

67

model is to minimize the error between X ′ and X. In practice, we utilize the Mean Square

Error (MSE) as the training criterion, as shown in Eq. 5.2.

Loss =

 1

|batch|

|batch|∑
i=1

(X ′
i −Xi)

2

 −→ Minimized,

where X ′
i = Decoder(Yi) = Decoder (Encoder(Xi))

(5.2)

After completing the training of the auto-encoder, the focus shifts to retaining solely the

Encoder component. Taking a binary dataset di as a case study, we have two sample sets:

Spos representing the positive class and Sneg signifying the negative class. Employing the

Encoder, which has been effectively trained, we generate encoded representations denoted

as Ypos and Yneg for the positive and negative sets, respectively. Then, the FFAD score can

be calculated to measure the similarity between Spos and Sneg, as illustrated in Eq. 5.3,

FFAD Score = ||µYpos − µYneg||2 + Tr(ΣYpos + ΣYneg − 2
√

ΣYposΣYneg) (5.3)

Here, Ypos and Yneg serve as the encoded representations, while µYpos and µYneg correspond

to the vector magnitudes of Ypos and Yneg, respectively. The function Tr(.) denotes the trace

of the matrix, with ΣYpos and ΣYneg representing the covariance matrices of Ypos and Yneg.

Lower values within this equation indicate a higher similarity between the two input sets.

Furthermore, we implement the Inverse Fourier Transform to verify the reconstruction

capability of the transformed data. As shown in Algorithm 1, the Inverse Fourier Transform

function requires two parameters: frequencies and length. The frequencies parameter is

68

Algorithm 1 Inverse Fourier Transform

Input: frequencies // a list of freq components

length // the original time series’ length

Output: rec ts // The reconstructed time series.

1: Set rec ts to an array of zeros with length elements

2: Set index to an array containing values of [0, length) with increments of 1.0 i = 1 to

length

3: Set rec ts to 0

4: Set index[i] to i * (2 * pi) / length

k, p in enumerate(frequencies)

5: If k is not equal to 0, then multiply p by 2

6: Separate the real and imaginary components of p as a+bj j = 1 to length

7: Add a * cos(k * index[j]) to rec ts[j]

8: Subtract b * sin(k * index[j]) from rec ts[j]

anticipated to be a list or array containing the Fourier transform coefficients of the sequence.

On the other hand, length signifies the length of the original time series. The goal of the

Inverse Fourier Transform is to merge these Fourier coefficients to reconstruct the original

time series.

69

5.3 Experiments

We conducted experiments on two widely recognized public datasets: UCR and SWAN-SF

(as mentioned in Section 2.4), with the aim of addressing the following objectives:

• (1) Determining the optimal number of frequency components using Fourier Transform

to convert time series data from the time domain to the frequency domain, thereby stan-

dardizing their representation and mitigating the effects of varying sequence lengths.

• (2) Demonstrating the effectiveness of the compressed representations obtained by

training a general Auto-Encoder on a diverse set of time series datasets (UCR and

SWAN-SF).

• (3) Assessing the consistency of the FFAD score with two statistical model selection

methods introduced in Section 3.2.

• (4) Using the FFAD score as an evaluation metric to distinguish between data from

different classes and to assess the realism of generated samples across multiple classes.

• (5) To extend the Two-stage CGAN to synthetic time series generation and validate its

efficacy through experiments aimed at improving solar flare forecasting performance.

5.3.1 Transforming Data with Fourier Transform

We conducted an experiment to evaluate the capacity of various frequency components in rep-

resenting the original sequences through Fourier transformation. Our investigation involved

assessing the reconstruction capability across different numbers of frequency components:

70

{1, 2, 3, 5, 10, 15, 20, 30}. To conduct this analysis, we selected the SWAN-SF dataset, focus-

ing on four parameters from partition-1. This selection was deliberate for two key reasons:

(1) SWAN-SF represents a real-world dataset ideal for reconstruction studies, and (2) its

extensive collection of time series encapsulates the inherent complexity often observed in

such data.

To assess the reconstruction capability of the transformed data, we employed the In-

verse Fourier Transform (Inverse-FT) as described in Section 5.2. Fig. 5.5 illustrates the

reconstruction examples for the ABSNJZH parameter using varying numbers of frequencies,

ranging from 1 to 30. When the number of frequency components is between 1 and 5, the

Inverse-FT can only approximate the major trend of the input time series in a coarse man-

ner. However, with the utilization of more frequency components (i.e., 10, 15, 20, 30), the

restored time series becomes more refined, and the Inverse-FT can fully recover the input

time series using all 30 components (considering the input time series comprises 60 time

steps).

To conduct a comprehensive evaluation of the reconstruction performance, we employ

Mean Square Error (MSE) as the evaluation metric, as discussed in Section 5.2. The cor-

responding results are depicted in Fig. 5.6. It is evident from the figure that the Mean

Squared Error (MSE) decreases as more frequency components are incorporated into the

reconstruction process. We conclude that employing 20 components achieves a favorable

equilibrium between compressed representation and reconstruction capability for subsequent

experiments.

71

Figure 5.5 Shows the original time series and reconstructed time series utilizing different
number of frequency components. This example is sourced from Partition 1 of SWAN-SF.

72

Figure 5.6 The results provide a comprehensive evaluation of the reconstruction performance
on Partition 1 of SWAN-SF .

5.3.2 Training Auto-encoder and Model Selection Criteria

To train a unified Auto-encoder, we combined 97 UCR datasets with the SWAN-SF dataset.

The training dataset comprises the training sets from the 97 UCR datasets, as well as

partition-1 of SWAN-SF, which includes 4 parameters. Similarly, the testing dataset includes

the testing sets from the 97 UCR datasets, along with partition-2 of SWAN-SF, containing

4 parameters. We tune the performance of Auto-encoder model by setting different hyper-

parameters, i.e. GRU hidden sizes: {5, 10, 20, 30}, learning rates: {0.1, 0.01, 0.001, 0.0001},

batch sizes: {256, 512, 1, 024}. Empirically, we concluded our optimal hyper-parameter set-

ting with the GRU hidden size of 20, the learning rate of 0.001, the batch size of 512. The

model was trained with 5, 000 epochs.

To perform model selection during the Auto-encoder’s training, we utilize Mean Square

Error (MSE) as the evaluation metric over every 500 epochs. More specifically, we randomly

73

Figure 5.7 Shows the procedure of selecting the Auto-encoder model by calculating Mean
Square Error (MSE) as the evaluation metric every 500 epochs, and identifies that the
optimal model is achieved at the 3,000th epoch.

select 10,000 from both the training and testing sets to compute the MSE, and the outcomes

are depicted in Fig. 5.7. Analyzing the training and testing curves, we identify that the

optimal model is achieved at the 3,000th epoch. Additionally, Fig. 5.8 shows six pairs

of original and reconstructed time series examples, selected from the testing test of UCR

and SWAN-SF. These examples illustrate how well the Auto-encoder preserves the essential

characteristics of the original data, showcasing its ability to effectively reconstruct time series

samples.

5.3.3 Using FFAD to Differentiate Same-Class vs. different-Class

In this section, we evaluate the effectiveness of FFAD in distinguishing between samples

from the same or different classes. We consider a hypothetical binary dataset divided into

74

Figure 5.8 Displays six pairs of original and reconstructed time series. The examples are
selected from UCR and SWAN-SF datasets.

training and testing sets, each containing two classes (e.g., class-0 and class-1), resulting

in four sub-datasets. The FFAD score is computed across these sub-datasets, yielding six

scores by pairing any two of them. Notably, two scores stem from comparisons within the

same classes (e.g., train-0 vs. test-0 and train-1 vs. test-1), while the remaining four scores

arise from comparisons across different classes (e.g., train-0 vs. train-1, train-0 vs. test-

1, train-1 vs. test-0, and test-0 vs. test-1). Table 5.1 summarizes the FFAD results for

ten binary UCR datasets. Upon observing the results, it is evident that FFAD scores for

same-class comparisons are notably lower than those for different-class comparisons. This

observation implies the effectiveness of FFAD in distinguishing between samples from the

same or different classes.

75

Table 5.1 The table reported the FFAD scores for ten binary UCR datasets, with each score
representing the average from five repeated experiments. The actual scores are presented in
scientific notation, multiplied by 10−5.

Binary

Datasets

Same-class Different-class

train-0 vs.

test-0

train-1 vs.

test-1

train-0 vs.

train-1

train-0 vs.

test-1

train-1 vs.

test-0

test-0 vs.

test-1

1. BeetleFly 67.81 64.07 174.01 146.74 335.66 243.5

2. BirdChicken 40.34 18.11 43.9 52.76 64.43 71.39

3. ECG200 202.86 28.7 1431.86 1336.32 1298.21 1090.2

4. ECGFiveDays 0.75 5.09 24.45 15.08 20.84 11.1

5. GunPoint 22.75 15.66 426.84 314.97 327.61 219.7

6. Lightning2 1.44 1.1 4.47 3.71 4.47 1.86

7. Strawberry 1.37 10.74 81.88 48.43 102.79 62.11

8. TwoLeadECG 10.93 4.52 47.0 29.38 34.54 18.59

9. Wafer 2.52 1.17 11.21 11.16 14.77 11.32

10. Yoga 3.3 4.15 21.26 13.13 15.89 12.8

76

5.3.4 Using FFAD to Differentiate Real vs. Synthetic Samples

In this section, we extensively evaluated FFAD’s ability to distinguish between real and

synthetic samples using the SWAN-SF dataset. Our main goal was to generate high-quality

synthetic samples for this real-world dataset. Specifically, we utilized 1,254 real flare samples

and 1,254 real non-flare samples of the physical parameter TOTUSJH from Partition 1 of

SWAN-SF. Subsequently, we generated an equal number of synthetic flare and non-flare

samples using the CGAN model.

Table 5.2 presents the FFAD score comparisons on the SWAN-SF dataset for both same-

class and different-class scenarios. Here, ’r’ and ’s’ denote real and synthetic data, re-

spectively. Our analysis yielded several key findings: Firstly, FFAD scores for same-class

scenarios (i.e., FL r vs. FL s and NF r vs. NF s) were notably lower compared to those

for different-class scenarios, indicating higher similarity or realism of synthetic samples gen-

erated by the CGAN model relative to real samples. Secondly, all different-class scenarios

exhibited similar FFAD scores, with FL r vs. NF r serving as the baseline, suggesting con-

sistency and realism of synthetic samples across different classes. These results indicate the

effectiveness of FFAD in assessing the realism of generated samples and verifying their class

information, establishing it as a crucial metric for evaluating the fidelity of generated time

series data in our study.

77

Table 5.2 The table reported FFAD scores comparison on the SWAN-SF dataset for both
same-class and different-class scenarios. Here, FL and NF denote flare and non-flare
samples, respectively, with ’r’ and ’s’ indicating real and synthetic data.

SWAN-SF

Dataset

Same-class Different-class

FL r vs.

FL s

NF r vs.

NF s

FL r vs.

NF s

FL s vs.

NF s

FL s vs.

NF r

FL r vs.

NF r

FFAD scores 0.008 0.003 0.482 0.440 0.458 0.499

5.3.5 Consistency of Various Model Selection Strategies

In the last section, we would like to compare FFAD with two model selection methods that

have previously introduced in Section 3.2: one using distributions of statistical features and

another using Adversarial Accuracy. It is valuable to examine the consistency among these

various model selection methods. This examination also serves to validate the effectiveness

of FFAD in assessing the realism of generated samples.

We conducted experiments using 1,254 real flare time series samples from Partition 1 of

SWAN-SF and 1,254 synthetic samples generated by the CGAN model. Due to FFAD’s cur-

rent limitation to one-dimensional inputs, our CGAN training focused solely on the physical

parameter TOTUSJH. The model was trained for 300 epochs with checkpoints saved every 5

epochs, resulting in a total of 60 checkpoints, with other settings same with Section 3.3.1. For

each checkpoint, we calculated the KL-divergence, Adversarial Accuracy, and FFAD score.

To streamline computation, we utilized the mean as the representative statistical feature

78

for calculating KL-divergence and Adversarial Accuracy during each checkpoint evaluation.

As illustrated in Fig. 5.9, we observed that all three scores achieved their lowest values be-

tween epochs 201 and 250, which is in line with our previous findings. This consistency

further validates that the FFAD score aligns well with the other two evaluation methods we

employed.

Furthermore, we can compare three model selection methods. Specifically, both the

KL-divergence and Adversarial Accuracy methods utilize statistical features such as mean,

median, and standard deviation as inputs. The KL-divergence method aims to measure the

similarity between the distributions of real and synthetic samples, but it can yield mislead-

ingly low scores if the model overfits or duplicates samples. Addressing this, the Adversarial

Accuracy aims for a score of approximately 0.5, indicating that real and synthetic sam-

ples are indistinguishable. In contrast, FFAD utilizes time series inputs, providing a more

comprehensive assessment based on global information. It leverages a pre-trained model to

extract features from time series, providing more informative features than simple statis-

tics (e.g., mean and standard deviation). While Adversarial Accuracy is computationally

intensive, requiring distance computation between each sample and others, FFAD and KL-

divergence scores are efficient as they focus on distribution perspectives. In addition, FFAD

can be utilized independently for assessing synthetic samples, whereas KL-divergence often

requires Adversarial Accuracy as a complement. Overall, FFAD not only shows consistency

with statistic-based methods but also balances comprehensive evaluation and computational

efficiency, making it a promising metric for model selection and synthetic data assessment

79

in time series analysis.

5.3.6 Exploring Optimal Synthetic Data Generation Strategy for Flare
Forecasting

In this section, we explore optimal strategies for generating synthetic multivariate time series

for flare forecasting. We compare the performance of CGAN models trained using different

methodologies on imbalanced time series datasets, focusing on four physical parameters from

Partition 1 of the SWAN-SF dataset (as mentioned in Section 2.4.3). This partition includes

1,254 flare samples and 70,984 non-flare samples. To create a balanced training set, we

explore three approaches:

• CGAN(OS): Oversampling the 1,254 flare samples to match the 70,984 non-flare sam-

ples, resulting in a balanced training set of 144,476 samples. This strategy is detailed

in Section 3.3.

• CGAN(US): Undersampling the 70,984 non-flare samples to match the 1,254 flare

samples, resulting in a smaller balanced training set of 2,508 samples.

• Two-stage CGAN: Implementing a two-stage CGAN approach (described in Section 4.1)

on time series data to create a larger balanced training set. The first stage follows the

CGAN(US) strategy, while the second stage combines synthetic samples generated by

the first stage CGAN (CGAN1) with the original imbalanced dataset to form a larger

balanced training set. This set is then utilized to train another CGAN (CGAN2), which

generates high-quality synthetic samples. These synthetic samples are combined with

80

Figure 5.9 The plots shows the distributions of KL-divergence, Adversarial Accuracy and
FFAD scores calculated between synthetic and real samples. The CGAN model was trained
for 300 epochs, with checkpoints saved every 5 epochs resulting in a total of 60 checkpoints,
divided into six groups for creating the boxplots.

81

the original dataset to form a final training set that is large, balanced, and of high

fidelity, suitable for subsequent applications.

We evaluate the performance of these approaches through a flare forecasting task. For

CGAN(OS) and CGAN(US), we create corresponding datasets and train CGAN models

using the settings described in Section 3.3.1. The main difference lies in the number of

training epochs: CGAN(OS) is trained for 300 epochs, while CGAN(US) requires approx-

imately 15,000 epochs, adjusted for training set size differences. In the Two-stage CGAN

experiment, we conduct 15,000 epochs in stage-1 and 300 epochs in stage-2. Throughout all

experiments, we employ the FFAD score as the model selection criterion.

Using the synthetic time series of the flare class generated from each scenario, we rebal-

ance Partition 1 of the SWAN-SF dataset. We then train an SVM based on each rebalanced

training set using the settings mentioned in Section 3.3.1. Finally, forecasting is performed

on Partitions 2, 3, and 5, and results for TSS and HSS2 are reported.

In Fig.5.10, the Two-stage CGAN outperforms our previous CGAN(OS) strategy, achiev-

ing a higher TSS score (0.83) while maintaining a similar HSS2 score (0.44). CGAN(US)

shows the lowest performance in both metrics, suggesting that undersampling may compro-

mise model effectiveness due to information loss. This finding aligns with the analysis from

the image experiment detailed in Section 4.2. Moreover, the comparison between CGAN(US)

and Two-stage CGAN underscores the value of the stage-2 data augmentation in enhancing

the quality of generated data. Overall, our experiment suggests that the Two-stage CGAN

represents a promising strategy for generating high-quality synthetic time series samples

82

Figure 5.10 The bar plot presents the scores for three different CGAN training strategies eval-
uated using TSS and HSS2. The three strategies are CGAN(OS) (oversampling), CGAN(US)
(undersampling), and Two-stage CGAN. The reported TSS and HSS2 values are averaged
over four separate evaluation trials on Partitions 2, 3, and 5 of SWAN-SF. Error bars show
the standard deviation of the obtained TSS/HSS2 values.

and may serve as an effective remedy for mitigating class imbalance issue in classification

problems.

5.3.7 A Case Study of How Synthetic Data Generation Benefits Flare
Forecasting

In this section, we demonstrate how synthetic time series data generation mitigates class im-

balance and improves solar flare forecasting performance. We train two SVM classifiers, M1

and M2, using different data rebalancing strategies based on four physical parameters from

the SWAN-SF dataset (as described in Section 2.4.3). Classifier M1 is trained on Partition

1, rebalanced using synthetic flare samples generated by Two-stage CGAN. Classifier M2 is

trained on Partition 1, rebalanced via random oversampling of flare samples. Both strategies

result in a training set comprising 70,984 flare samples and 70,984 non-flare samples.

83

After training, we test both classifiers on Partition 2 and present the classification results

for flare samples (X & M classes) in Fig. 5.11. The scatter plot displays the median values

of TOTUSJH on the x-axis and the standard deviation values of TOTUSJH on the y-axis.

The data points are colored as follows: grey points represent samples correctly classified by

both M1 and M2; red points indicate samples correctly classified only by M1; purple points

show samples correctly classified only by M2; and black points denote samples misclassified

by both models. The distribution of red points, predominantly found between the grey

and black points, indicates that these samples are uniquely classified by M1. This suggests

that M1 achieves a better classification boundary generalized to the testing data. Our

results indicate that the CGAN approach can effective generate synthetic samples, thereby

improving classification performance.

5.4 Conclusion

In this chapter, we introduce a novel metric called the Fréchet Fourier-transform Auto-

encoder Distance (FFAD), which seamlessly integrates the Fourier transform and Auto-

encoder. We demonstrate that FFAD aligns with statistical feature-based methods for

CGAN model selection. Our experimental results further illustrate FFAD’s effectiveness

in distinguishing between samples from the same or different classes. Next, we employ gen-

erative models, such as conditional GANs, in time series generation tasks. Our findings

show that FFAD can not only assess the realism of generated samples but also verify if

these samples accurately correspond to their class information, thereby establishing itself

84

Figure 5.11 The scatter plot illustrates the classification results for flare samples (X and
M classes), with the median values of TOTUSJH on the x-axis and the standard deviation
values of TOTUSJH on the y-axis.Grey points: Classified correctly by both M1 and M2.
Red points: Classified correctly only by M1. Purple points: Classified correctly only by M2.
Black points: Misclassified by both.

as a robust metric for evaluating generated time series data. Furthermore, our experiments

show that the Two-stage CGAN is the most effective strategy for generating synthetic data

and highlight how this synthetic data enhances classification performance in flare forecasting

tasks.

85

CHAPTER 6

CONCLUSION

This dissertation presents my research on using conditional generative adversarial networks

(CGANs) to create synthetic multivariate time series (MVTS) samples for flare forecasting.

The study employs the SWAN-SF benchmark dataset and develops multiple verification

methods to ensure the generated samples accurately reflect real physical parameter distri-

butions. Our experiments demonstrate that the CGAN approach effectively addresses class

imbalance issues in flare forecasting. Additionally, we introduce a novel Two-stage CGAN

framework to improve CGAN performance on imbalanced datasets. Moreover, we propose

FFAD, a new metric for evaluating synthetic time series data. Our results show that FFAD

successfully assesses the realism of generated time series samples, suggesting its potential

utility in refining existing methodologies for time series generation.

Our work contributes to the broader field of data synthesis and flare forecasting, offering

new techniques and evaluation methods that can be applied beyond solar flare prediction to

other domains involving imbalanced time series data.

6.1 Future Work

The CGAN-based method provides an promising attempt to generate reliable synthetic

dataset, leading to an effective remedy for mitigating the class-imbalance issue. In future, we

plan to extend our research from following aspects: First, we are working on a novel CGAN

utilizing a Fourier Frequency Component-based generator and a time series-based discrim-

inator. This approach allows us to generate time series data from the frequency domain

86

perspective, which offers several advantages. By leveraging Fourier frequency components,

we can capture and model the inherent periodicities and spectral characteristics of time se-

ries data more effectively. Additionally, using a time series-based discriminator ensures that

the temporal dependencies and sequential nature of the data are preserved and properly

evaluated during training. This dual approach of combining frequency domain insights with

time series discrimination provides a robust framework for addressing the complexities of

time series data, potentially leading to an improved generative model. Next, we plan to

incorporate multi-modal learning with Conditional GAN (CGAN). By integrating various

data modalities such as time series data of solar activity and corresponding images from

solar observatories, a multi-modal CGAN can capture complex relationships between dif-

ferent data types. The generator network in such a framework learns to generate coherent

representations of solar flare events that align with both temporal patterns and visual obser-

vations, enhancing the realism and predictive accuracy of generated samples. This approach

will facilitates the generation of synthetic data that mirrors real-world solar phenomena [85].

Third is to investigate class imbalance issue in more severe scenarios, such as forecasting

coronal mass ejections (CMEs) or solar energetic particle (SEP) events. These phenomena

are significantly less frequent than solar flares but can have far more severe impacts on space

weather, satellite operations, and terrestrial power grids. The rarity of these events intensi-

fies the class imbalance problem, significantly challenging the development of accurate and

reliable forecasting models. Addressing this imbalance is crucial for enhancing the reliabil-

ity and robustness of predictive models in these high-impact scenarios. Moreover, we hope

87

to collaborate more with astrophysical specialists, seeking a deeper understanding of the

significance of synthetic samples and how they might be used to investigate astrophysical

processes. We firmly believe that our cooperation will stimulate new lines of scientific inquiry

and result in advances in the understanding of the solar.

88

CHAPTER 6

REFERENCES

[1] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp

Hochreiter. Gans trained by a two time-scale update rule converge to a local nash

equilibrium. Advances in neural information processing systems, 30, 2017.

[2] Maxwell Hostetter and Rafal A. Angryk. First steps toward synthetic sample generation

for machine learning based flare forecasting. In Xintao Wu, Chris Jermaine, Li Xiong,

Xiaohua Hu, Olivera Kotevska, Siyuan Lu, Weija Xu, Srinivas Aluru, Chengxiang Zhai,

Eyhab Al-Masri, Zhiyuan Chen, and Jeff Saltz, editors, IEEE International Conference

on Big Data, Big Data 2020, Atlanta, GA, USA, December 10-13, 2020, pages 4208–

4217. IEEE, 2020.

[3] National Research Council. Severe Space Weather Events–Understanding Societal and

Economic Impacts: A Workshop Report. The National Academies Press, Washington,

DC, 2008.

[4] D. H. Boteler. Geomagnetic hazards to conducting networks. Natural Hazards,

28(2):537–561, 2003.

[5] Azim Ahmadzadeh, Berkay Aydin, Manolis K. Georgoulis, Dustin J. Kempton,

Sushant S. Mahajan, and Rafal A. Angryk. How to train your flare prediction model:

Revisiting robust sampling of rare events. The Astrophysical Journal Supplement Series,

254(2):23, May 2021.

[6] A. Ahmadzadeh, B. Aydin, D. J. Kempton, M. Hostetter, R. A. Angryk, M. K. Geor-

89

goulis, and S. S. Mahajan. Rare-event time series prediction: A case study of solar flare

forecasting. In 2019 18th IEEE International Conference On Machine Learning And

Applications (ICMLA), pages 1814–1820, 2019.

[7] A. Ahmadzadeh, M. Hostetter, B. Aydin, M. K. Georgoulis, D. J. Kempton, S. S. Maha-

jan, and R. Angryk. Challenges with extreme class-imbalance and temporal coherence:

A study on solar flare data. In 2019 IEEE International Conference on Big Data (Big

Data), pages 1423–1431, 2019.

[8] Gaofeng Huang and Amir Hossein Jafari. Enhanced balancing gan: Minority-class image

generation. Neural Computing and Applications, pages 1–10, 2021.

[9] Giovanni Mariani, Florian Scheidegger, Roxana Istrate, Costas Bekas, and Cris-

tiano Malossi. Bagan: Data augmentation with balancing gan. arXiv preprint

arXiv:1803.09655, 2018.

[10] Yang Chen, Dustin J. Kempton., and Rafal A. Angryk. FFAD: A novel metric for

assessing generated time series data utilizing fourier transform and auto-encoder. arXiv

preprint arXiv:2403.06576, 2024.

[11] Russell W Walter. Methods to address extreme class imbalance in machine learning

based network intrusion detection systems. 2016.

[12] Tawfiq Hasanin, Taghi M Khoshgoftaar, Joffrey L Leevy, and Richard A Bauder.

Severely imbalanced big data challenges: investigating data sampling approaches. Jour-

nal of Big Data, 6(1):1–25, 2019.

[13] Sara Fotouhi, Shahrokh Asadi, and Michael W. Kattan. A comprehensive data level

90

analysis for cancer diagnosis on imbalanced data. Journal of Biomedical Informatics,

90:103089, 2019.

[14] Georgios Douzas and Fernando Bacao. Effective data generation for imbalanced learning

using conditional generative adversarial networks. Expert Systems with Applications,

91:464–471, 2018.

[15] Bartosz Krawczyk, Micha l Woźniak, and Gerald Schaefer. Cost-sensitive decision tree

ensembles for effective imbalanced classification. Applied Soft Computing, 14:554–562,

2014.

[16] Yanmin Sun, Mohamed S Kamel, Andrew KC Wong, and Yang Wang. Cost-sensitive

boosting for classification of imbalanced data. Pattern recognition, 40(12):3358–3378,

2007.

[17] Peter D Turney. Types of cost in inductive concept learning. arXiv preprint cs/0212034,

2002.

[18] Jason Brownlee. Imbalanced classification with Python: better metrics, balance skewed

classes, cost-sensitive learning. Machine Learning Mastery, 2020.

[19] Ibraheem M Alkhawaldeh, Ibrahem Albalkhi, and Abdulqadir Jeprel Naswhan. Chal-

lenges and limitations of synthetic minority oversampling techniques in machine learn-

ing. World Journal of Methodology, 13(5):373, 2023.

[20] N. Chawla, K. Bowyer, L. Hall, and W. P. Kegelmeyer. Smote: Synthetic minority

over-sampling technique. J. Artif. Intell. Res., 16:321–357, 2002.

[21] Azim Ahmadzadeh, Berkay Aydin, Manolis K. Georgoulis, Dustin J. Kempton,

91

Sushant S. Mahajan, and Rafal A. Angryk. How to train your flare prediction model:

Revisiting robust sampling of rare events. The Astrophysical Journal Supplement Series,

254(2):23, may 2021.

[22] Rafal A. Angryk, Petrus C. Martens, Berkay Aydin, Dustin Kempton, Sushant S. Ma-

hajan, Sunitha Basodi, Azim Ahmadzadeh, Xumin Cai, Soukaina Filali Boubrahimi,

Shah Muhammad Hamdi, Michael A. Schuh, and Manolis K. Georgoulis. Multivariate

time series dataset for space weather data analytics. Scientific Data, 7(1), July 2020.

[23] Georgios Douzas, Fernando Bacao, and Felix Last. Improving imbalanced learning

through a heuristic oversampling method based on k-means and smote. Information

Sciences, 465:1–20, 2018.

[24] Qingsong Wen, Liang Sun, Fan Yang, Xiaomin Song, Jingkun Gao, Xue Wang, and

Huan Xu. Time series data augmentation for deep learning: A survey. arXiv preprint

arXiv:2002.12478, 2020.

[25] Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei Efros. Everybody dance now.

In 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, oct

2019.

[26] Olof Mogren. C-rnn-gan: A continuous recurrent neural network with adversarial train-

ing. In Constructive Machine Learning Workshop (CML) at NIPS 2016, page 1, 2016.

[27] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Pro-

ceedings of the 27th International Conference on Neural Information Processing Systems

92

- Volume 2, NIPS’14, page 2672–2680, Cambridge, MA, USA, 2014. MIT Press.

[28] Yang Chen, Dustin J. Kempton, Azim Ahmadzadeh, and Rafal A. Angryk. Towards

synthetic multivariate time series generation for flare forecasting, 2021.

[29] Ken Chen, Bao-Liang Lu, and James T Kwok. Efficient classification of multi-label and

imbalanced data using min-max modular classifiers. In The 2006 IEEE International

Joint Conference on Neural Network Proceedings, pages 1770–1775. IEEE, 2006.

[30] Muhammad Atif Tahir, Josef Kittler, and Fei Yan. Inverse random under sampling

for class imbalance problem and its application to multi-label classification. Pattern

Recognition, 45(10):3738–3750, 2012.

[31] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta,

and Anil A Bharath. Generative adversarial networks: An overview. IEEE Signal

Processing Magazine, 35(1):53–65, 2018.

[32] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversar-

ial networks. In Proceedings of the 34th International Conference on Machine Learning

- Volume 70, page 214–223. JMLR.org, 2017.

[33] A. Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning

with deep convolutional generative adversarial networks. CoRR, abs/1511.06434, 2016.

[34] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel.

Infogan: Interpretable representation learning by information maximizing generative

adversarial nets. In Proceedings of the 30th International Conference on Neural In-

formation Processing Systems, NIPS’16, page 2180–2188, Red Hook, NY, USA, 2016.

93

Curran Associates Inc.

[35] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther.

Autoencoding beyond pixels using a learned similarity metric. In Proceedings of the 33rd

International Conference on International Conference on Machine Learning - Volume

48, ICML’16, page 1558–1566. JMLR.org, 2016.

[36] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets, 2014.

[37] Cristóbal Esteban, Stephanie L. Hyland, and G. Rätsch. Real-valued (medical) time

series generation with recurrent conditional gans. ArXiv, abs/1706.02633, 2017.

[38] Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. Using gans for

sharing networked time series data: Challenges, initial promise, and open questions.

In Proceedings of the ACM Internet Measurement Conference, IMC ’20, page 464–483,

New York, NY, USA, 2020. Association for Computing Machinery.

[39] Chi Zhang, Sanmukh R. Kuppannagari, Rajgopal Kannan, and Viktor K. Prasanna.

Generative adversarial network for synthetic time series data generation in smart grids.

In 2018 IEEE International Conference on Communications, Control, and Computing

Technologies for Smart Grids (SmartGridComm), pages 1–6, 2018.

[40] Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series generative

adversarial networks. In Advances in Neural Information Processing Systems, pages

5508–5518, 2019.

[41] Yanghua Jin, Jiakai Zhang, Minjun Li, Yingtao Tian, Huachun Zhu, and Zhihao Fang.

Towards the automatic anime characters creation with generative adversarial networks.

94

ArXiv, abs/1708.05509, 2017.

[42] Rui Huang, Shu Zhang, Tianyu Li, and R. He. Beyond face rotation: Global and local

perception gan for photorealistic and identity preserving frontal view synthesis. 2017

IEEE International Conference on Computer Vision (ICCV), pages 2458–2467, 2017.

[43] Liqian Ma, Xu Jia, Qianru Sun, Bernt Schiele, Tinne Tuytelaars, and Luc Van Gool.

Pose guided person image generation. In Proceedings of the 31st International Con-

ference on Neural Information Processing Systems, NIPS’17, page 405–415, Red Hook,

NY, USA, 2017. Curran Associates Inc.

[44] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image transla-

tion with conditional adversarial networks. 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 5967–5976, 2017.

[45] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired image-to-

image translation using cycle-consistent adversarial networks. In 2017 IEEE Interna-

tional Conference on Computer Vision (ICCV), pages 2242–2251, 2017.

[46] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang,

and Dimitris N. Metaxas. Stackgan: Text to photo-realistic image synthesis with stacked

generative adversarial networks. 2017 IEEE International Conference on Computer

Vision (ICCV), pages 5908–5916, 2017.

[47] C. Sønderby, J. Caballero, L. Theis, W. Shi, and F. Huszár. Amortised map inference

for image super-resolution. In International Conference on Learning Representations,

2017.

95

[48] C. Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew P. Aitken, Alykhan

Tejani, J. Totz, Zehan Wang, and W. Shi. Photo-realistic single image super-resolution

using a generative adversarial network. 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 105–114, 2017.

[49] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro Mishkin, and Jiri

Matas. Deblurgan: Blind motion deblurring using conditional adversarial networks.

2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8183–

8192, 2018.

[50] Shota Haradal, Hideaki Hayashi, and Seiichi Uchida. Biosignal data augmentation based

on generative adversarial networks. In 2018 40th Annual International Conference of

the IEEE Engineering in Medicine and Biology Society (EMBC), pages 368–371, 2018.

[51] L. Simonetto. Generating spiking time series with generative adversarial networks : an

application on banking transactions. 2018.

[52] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd In-

ternational Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,

April 14-16, 2014, Conference Track Proceedings, 2014.

[53] Yang Chen, Dustin J. Kempton, Azim Ahmadzadeh, Junzhi Wen, Anli Ji, and Rafal A.

Angryk. Cgan-based synthetic multivariate time-series generation: a solution to data

scarcity in solar flare forecasting. Neural Comput. Appl., 34(16):13339–13353, aug 2022.

[54] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and

Xi Chen. Improved techniques for training gans. In Proceedings of the 30th International

96

Conference on Neural Information Processing Systems, NIPS’16, page 2234–2242, Red

Hook, NY, USA, 2016. Curran Associates Inc.

[55] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.

Rethinking the inception architecture for computer vision. In 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826, 2016.

[56] Yang Chen, Dustin J. Kempton, and Rafal A. Angryk. Examining effects of class

imbalance on conditional gan training. In Artificial Intelligence and Soft Computing,

pages 475–486, Cham, 2023. Springer Nature Switzerland.

[57] Sariel Har-Peled and Benjamin Raichel. The fréchet distance revisited and extended.

ACM Trans. Algorithms, 10(1), jan 2014.

[58] D.C Dowson and B.V Landau. The fréchet distance between multivariate normal dis-

tributions. Journal of Multivariate Analysis, 12(3):450–455, 1982.

[59] Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Gunter

Klambauer. Fréchet chemnet distance: a metric for generative models for molecules

in drug discovery. Journal of chemical information and modeling, 58(9):1736–1741,

2018.

[60] Elyas Goli, Sagar Vyas, Seid Koric, Nahil Sobh, and Philippe H Geubelle. Chemnet: A

deep neural network for advanced composites manufacturing. The Journal of Physical

Chemistry B, 124(42):9428–9437, 2020.

[61] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

97

[62] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdullah

Mueen, and Gustavo Batista. The ucr time series classification archive, July 2015.

www.cs.ucr.edu/~eamonn/time_series_data/.

[63] Arnold Benz. Flare observations. Living Reviews in Solar Physics, 5, 02 2008.

[64] M. G. Bobra and S. Couvidat. Solar flare prediction using SDO/HMI vector magnetic

field data with a machine-learning algorithm. Astrophys. J., 798(2):135, jan 2015.

[65] G. Barnes, K. D. Leka, C. J. Schrijver, T. Colak, R. Qahwaji, O. W. Ashamari, Y. Yuan,

J. Zhang, R. T. J. McAteer, D. S. Bloomfield, P. A. Higgins, P. T. Gallagher, D. A.

Falconer, M. K. Georgoulis, M. S. Wheatland, C. Balch, T. Dunn, and E. L. Wagner. A

comparison of flare forecasting methods. i. results from the “all-clear ”workshop. The

Astrophysical Journal, 829(2):89, Sep 2016.

[66] Chang Liu, Na Deng, Jason TL Wang, and Haimin Wang. Predicting solar flares

using sdo/hmi vector magnetic data products and the random forest algorithm. The

Astrophysical Journal, 843(2):104, 2017.

[67] Monica G Bobra, Xudong Sun, J Todd Hoeksema, M Turmon, Yang Liu, Keiji Hayashi,

Graham Barnes, and KD Leka. The helioseismic and magnetic imager (hmi) vector

magnetic field pipeline: Sharps–space-weather hmi active region patches. Solar Physics,

289(9):3549–3578, 2014.

[68] Rafal Angryk, Petrus Martens, Berkay Aydin, Dustin Kempton, Sushant Maha-

jan, Sunitha Basodi, Azim Ahmadzadeh, Xumin Cai, Soukaina Filali Boubrahimi,

Shah Muhammad Hamdi, Micheal Schuh, and Manolis Georgoulis. SWAN-SF, 2020.

www.cs.ucr.edu/~eamonn/time_series_data/

98

[69] Atharv Yeoleka, Sagar Patel, Shreejaa Talla, Krishna Rukmini Puthucode, Azim Ah-

madzadeh, Viacheslav M Sadykov, and Rafal A Angryk. Feature selection on a flare fore-

casting testbed: A comparative study of 24 methods. arXiv preprint arXiv:2109.14770,

2021.

[70] Mohammad Hossin and MN Sulaiman. A review on evaluation metrics for data classi-

fication evaluations. International Journal of Data Mining & Knowledge Management

Process, 5(2):1, 2015.

[71] A.W. Hanssen and W.J.A. Kuipers. On the Relationship Between the Frequency of Rain

and Various Meteorological Parameters: (with Reference to the Problem Ob Objective

Forecasting). Koninkl. Nederlands Meterologisch Institut. Mededelingen en Verhan-

delingen. Staatsdrukkerij- en Uitgeverijbedrijf, 1965.

[72] Christopher C Balch. Updated verification of the space weather prediction center’s

solar energetic particle prediction model. Space weather : the international journal of

research & applications., 6(1), 2008.

[73] J. Brownlee. Generative Adversarial Networks with Python: Deep Learning Generative

Models for Image Synthesis and Image Translation. Machine Learning Mastery, 2019.

[74] S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of Mathe-

matical Statistics, 22(1):79 – 86, 1951.

[75] Andrew Yale, Saloni Dash, Ritik Dutta, Isabelle Guyon, Adrien Pavao, and Kristin P.

Bennett. Privacy preserving synthetic health data. F1000Research, 8, 2019.

[76] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

99

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Joze-

fowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,

Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit

Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-

van, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,

Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on hetero-

geneous systems, 2015. Software available from tensorflow.org.

[77] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller,

Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler,

Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API

design for machine learning software: experiences from the scikit-learn project. In

ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pages

108–122, 2013.

[78] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. A practical guide to support

vector classification, 2003.

[79] A. Ben-Hur and J. Weston. A user’s guide to support vector machines. Methods in

molecular biology, 609:223–39, 2010.

[80] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny

images. 2009.

[81] James W. Cooley, Peter A. W. Lewis, and Peter D. Welch. The fast fourier transform

100

and its applications. IEEE Transactions on Education, 12(1):27–34, 1969.

[82] Xiao-Jiao Mao, Chunhua Shen, and Yu-Bin Yang. Image restoration using convolutional

auto-encoders with symmetric skip connections. arXiv preprint arXiv:1606.08921, 2016.

[83] Kyunghyun Cho et al. Learning phrase representations using RNN encoder–decoder

for statistical machine translation. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar,

October 2014. Association for Computational Linguistics.

[84] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical

evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555, 2014.

[85] Lin Ma, Zhuo Chen, Long Xu, and Yihua Yan. Multimodal deep learning for solar radio

burst classification. Pattern Recognition, 61:573–582, 2017.

	Mitigating Class Imbalance in Time Series Classification via Generative Modeling
	Recommended Citation

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Motivation
	Challenges
	Outline

	BACKGROUND
	Class-imbalance Issue and Remedies
	Data-/Algorithm-Level Remedies
	Impacts of Class Imbalance on CGAN Training

	Generative Adversarial Networks (GANs)
	Time Series Generation Using GAN

	Evaluation Metrics for Generative Models
	Datasets
	MNIST Dataset
	UCR Dataset
	SWAN-SF Benchmark Dataset

	SYNTHETIC MULTIVARIATE TIME SERIES GENERATION
	Conditional GAN
	Methodology
	Model Selection Using Distributions of Statistical Features
	Model Selection Using Adversarial Accuracy
	Synthetic Data v.s. Over-/Under-Sampling

	Experiments
	Experimental Settings
	Evaluation Using Distributions of Statistical Features
	Evaluation Using Adversarial Accuracy
	Examining Descriptive Statistics of Synthetic Time Series
	Examining Synthetic Time Series v.s. Over-/Under-Sampling
	Examining Incremental Incorporation of Synthetic Time Series

	Conclusion

	EXAMINING EFFECTS OF CLASS IMBALANCE ON CONDITIONAL GAN TRAINING
	Methodology
	Experiments
	Experimental Design
	Experimental Settings
	Model Selection
	Examining Two-stage CGAN on Image Generation

	Conclusion

	FFAD: A NOVEL METRIC FOR ASSESSING TIME SERIES-BASED GENERATIVE MODELS
	Background
	Fourier Transform
	Auto-encoder

	Methodology
	Experiments
	Transforming Data with Fourier Transform
	Training Auto-encoder and Model Selection Criteria
	Using FFAD to Differentiate Same-Class vs. different-Class
	Using FFAD to Differentiate Real vs. Synthetic Samples
	Consistency of Various Model Selection Strategies
	Exploring Optimal Synthetic Data Generation Strategy for Flare Forecasting
	A Case Study of How Synthetic Data Generation Benefits Flare Forecasting

	Conclusion

	CONCLUSION
	Future Work

	REFERENCES

