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ABSTRACT

Graphs are a general language for describing and modeling interconnected systems. To

learn graph data, Graph Neural Networks (GNNs) have been introduced. However, tra-

ditional graph data structures often fall short of describing the higher-order complex re-

lationships within these systems. Hypergraphs, with their natural ability to capture such

higher-order relations, offer a promising alternative. Despite their potential, GNNs are in-

herently designed for simple graphs and do not extend naturally to hypergraphs, leaving a

gap in effectively leveraging hypergraph structures.

To address this gap, Hypergraph Neural Networks (HyperGNNs) have been proposed.

HyperGNNs offer enhanced capabilities to learn higher-order complex relationships beyond

the scope of traditional GNNs. However, despite their potential, there remains a gap in

effectively leveraging HyperGNNs for complex real-world problems due to limitations in cur-

rent methodologies and applications. This dissertation aims to bridge this gap by developing

and presenting new models for HyperGNN and examining their applications in real-world

challenges. This work is built upon four pivotal studies, each emphasizing the development

of novel HyperGNNs to tackle complex issues, especially in biomedical contexts, while also

advancing methodologies to achieve superior outcomes.

The first study introduces a novel Hypergraph Neural Network model, HyGNN for drug-

drug interaction prediction (DDI). By leveraging the SMILES strings of drugs, this approach

first constructs a drug hypergraph presenting drugs as hyperedges and substructures of drugs

as nodes. Then it utilizes a novel attention-based hyperedge encoder to generate drug rep-

resentation for DDI prediction. The second study extends the application of HyperGNNs

to sequence classification with the development of the Sequence Hypergraph Attention Net-

work (Seq-HyGAN). This model captures complex structural similarities between sequences

by defining higher-order relationships via common subsequences. By employing a novel hy-



pergraph attention mechanism, Seq-HyGAN significantly improves the accuracy of sequence

classification tasks, demonstrating the effectiveness of HyperGNNs in sequence data mining.

In the next 2 projects, we shift our focus to methodological advancements. Existing hy-

pergraph transformers predominantly utilize semantic feature-based self-attention, resulting

in the loss of the structural attributes of nodes and hyperedges. As a solution, the third

study presents the Structure-aware Hypergraph Transformer (SaHT). SaHT model integrates

both structural and spatial information into node representations, utilizing a structure-aware

self-attention mechanism. By comprehensively considering both semantic and topological

attributes, SaHT achieves notable improvements in node classification performance, thereby

advancing the capabilities of hypergraph representation learning. Furthermore, traditional

graph contrastive learning methods struggle to capture higher-order relationships inherent

in complex data. The fourth study addresses this challenge by presenting HyperGCL

that generates multiple hypergraph views from the input graph to preserve comprehensive

higher-order structural and attribute information. By employing a learnable augmentation

function, view-specific encoders, and a network-aware contrastive loss, this framework signif-

icantly enhances the performance of node classification tasks, establishing a new benchmark

in contrastive learning for graph data. Collectively, these studies highlight the robustness

and versatility of HyperGNNs in both practical applications and theoretical advancements.

INDEX WORDS: Hypergraph Neural Network, Hypergraph Transformer, Graph
Contrastive Learning, DDI Prediction, Sequence Data Analysis
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

The field of machine learning has undergone significant transformations over the past few

decades, with Graph Neural Networks (GNNs) emerging as a pivotal innovation. GNNs

have demonstrated remarkable efficacy in modeling and learning from graph-structured data

across various domains, including social networks [1], recommendation systems [2], and bio-

logical networks [3]. However, since traditional graphs are limited to capturing only dyadic

relationships within a network, GNNs designed for these graphs fail to capture higher-order

relationships—interactions involving more than two entities simultaneously. This limita-

tion is significant in many real-world applications where complex relationships are the norm

rather than the exception [4, 5].

Hypergraph Neural Networks (HyperGNNs) have been developed to address this limita-

tion. Unlike traditional graphs, hypergraphs can model complex, multi-way relationships di-

rectly, offering a more expressive and comprehensive representation of data [6]. HyperGNNs

extend the capabilities of GNNs by enabling the modeling of these higher-order interactions,

thereby providing a more nuanced understanding of complex data structures [7, 8, 9, 10].

This advancement is particularly beneficial in domains such as biomedical research, where

interactions between multiple entities (e.g., genes, proteins, drugs) are crucial for accurate

modeling and analysis [11, 12].

This dissertation explores the development and application of HyperGNNs, presenting
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novel methodologies that enhance the expressivity and efficiency of these models. We in-

vestigate two key application areas of hypergraph learning: drug-drug interaction prediction

and sequence classification. Additionally, we conduct two research studies focusing on im-

proving the performance of HyperGNNs by designing a hypergraph transformer and graph

contrastive learning from the hypergraph viewpoint. Each area addresses specific challenges

and demonstrates the versatility and power of HyperGNNs in different contexts.

1.2 Overview of the Studies

1.2.1 Study 1: HyGNN for Drug-Drug Interaction Prediction

Drug-Drug Interactions (DDIs) pose significant risks in clinical treatments, often leading to

Adverse Drug Reactions (ADRs) that can compromise patient safety [13, 14]. Traditional

clinical trials are limited in scope and duration, often failing to identify all potential DDIs

before drugs reach the market [15]. Computational models have thus become indispensable

for early DDI detection. With the availability of public databases like DrugBank1, STITCH2,

SIDER3, PubChem4, and KEGG5, various computational models have been proposed to

detect DDIs [16, 17].

These models often consider drug pairs’ chemical structure SMILES similarity or binding

properties [18]. SMILES, using ASCII characters, explicitly defines molecular structures.

However, only a few substructures within a chemical structure are responsible for chemical

1https://go.drugbank.com/
2http://stitch.embl.de/
3http://sideeffects.embl.de/
4https://pubchem.ncbi.nlm.nih.gov/
5https://www.kegg.jp/
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reactions between drugs, making the consideration of the entire structure potentially biased

and undermining DDI prediction [19]. Moreover, to improve accuracy, current methods

integrate multiple data sources to extract drug features such as side effects, target proteins,

pathways, and indications [20, 15].

Network-based methods for DDI prediction construct drug networks based on known

DDIs, typically considering dyadic relationships where each vertex represents a drug and

each edge represents an interaction between drug pairs. Some methods also create het-

erogeneous graphs that include relationships between drugs and other biological entities to

predict unknown drug interactions using various topological information. With advance-

ments in GNNs, different models for DDI prediction have been proposed [17, 21], either by

manually creating heterogeneous graphs from different resources or by building biomedical

knowledge graphs from raw data sources like DrugBank [22, 23, 6]. These graphs represent

entities such as drugs, proteins, and side effects as nodes, and their relationships as edges.

While integrating multiple drug-centric information can enhance DDI prediction, it poses

challenges due to the difficulty of data integration and interpretation, especially for new

drugs in the early development stages, where information may be unavailable [24].

To overcome these limitations, we propose a hypergraph-based model that relies solely

on the SMILES strings of drugs, which are universally available. Our method relies on the

hypothesis that similar drugs behave similarly, are likely to interact with the same drugs, and

two drugs are similar if they have similar substructures as functional groups in their SMILES

strings [25, 26]. To depict the higher-order structural similarities between drugs, we construct
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a hypergraph where drugs are represented as hyperedges connecting multiple substructures as

nodes derived from SMILES strings. This representation captures the intricate similarities

between drugs more effectively than traditional graph-based models. Then we introduce

a variant of Hypergraph Neural Network named HyGNN, which employs a novel hyperedge

encoder to learn drug embeddings. Pairwise drug representations are then passed through

decoder functions to predict a binary score indicating potential interactions. Our method

demonstrates superior performance in predicting DDIs, especially for new drugs, without

requiring extensive biomedical knowledge.

1.2.2 Study 2: Seq-HyGAN for Sequence Learning

Extracting meaningful features from sequences and devising effective similarity measures are

crucial for sequence data mining tasks, particularly sequence classification. Neural networks

(NN), especially recurrent neural networks (RNN) like LSTM and GRU, are commonly used

to learn features capturing adjacent structural information [27, 28, 29]. However, these

models may struggle to capture non-adjacent, high-order, and complex relationships present

in sequence data. Recently, graphs have been explored for various sequence data classification

tasks such as text classification [30], DNA-protein binding prediction [31], protein function

prediction [32], and drug-drug interaction prediction [33]. Graphs, as sophisticated data

structures, can effectively capture both local and global non-adjacent information within the

data [34, 35]. State-of-the-art models for sequence-to-graph conversion fall into two main

categories: order-based graphs and similarity-based graphs [36, 37, 38].

While existing graph models for sequence data have achieved great performance, they
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still face key challenges. Order-based models generate many large and sparse graphs, espe-

cially when dealing with long sequences or a large number of sequences, leading to increased

computational and memory requirements. Similarly, similarity-based graphs encounter diffi-

culties in calculating similarities between all pairs of sequences, especially for large datasets.

Additionally, order-based graphs fail to capture relationships beyond intra-sequence connec-

tions, considering only dyadic relationships between nodes. Sequence data, however, may

possess more complex relationships, such as triadic or tetradic relationships, which these

models cannot capture. The selection of appropriate similarity measures is problematic, and

using similarity values to define relationships between sequences can lead to information loss.

To address the challenges in sequence classification, we propose a novel Hypergraph At-

tention Network model, Seq-HyGAN. Our approach assumes that sequences sharing structural

similarities tend to belong to the same classes and can be considered similar if they contain

similar subsequences. To capture these structural similarities, we represent sequences in a

hypergraph framework, where sequences are depicted as hyperedges connecting their respec-

tive subsequences as nodes. This allows us to create a single hypergraph encompassing all

sequences in the dataset.

Unlike standard graphs where edges connect only two nodes, hyperedges in a hypergraph

can connect an arbitrary number of nodes [6, 39, 40]. To enhance sequence representation

and capture complex relationships, we introduce a three-level attention-based neural net-

work architecture in Seq-HyGAN. Unlike regular neural networks (e.g., RNNs) that capture

only local information, Seq-HyGAN captures both local (within sequences) and global (be-
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tween sequences) information. Furthermore, while traditional GNNs are limited to message

passing between two nodes, the hypergraph setting in Seq-HyGAN enables message passing

between many nodes and between nodes and hyperedges, resulting in a more robust sequence

representation.

1.2.3 Study 3: SaHT for Enhancing Node Representation

Inspired by the success of transformers in text [41], the transformer architecture has been

extended to handle graph-structured data, resulting in graph transformers [42, 43, 44, 45,

46, 47]. These models aggregate weighted semantic-structural information from neighbor-

ing nodes, leveraging pairwise relational information to learn meaningful node and graph

representations [48, 49]. However, real-world relationships often extend beyond pairwise in-

teractions, exhibiting complex higher-order dynamics that standard graph transformers fail

to capture.

Hypergraphs model higher-order interactions in complex systems by representing entities

as nodes and their interactions as hyperedges. Despite their strength, there are few real-world

hypergraph datasets, leading to the common practice of converting standard graphs into

hypergraphs by aggregating nodes with similar semantics [7, 8, 9]. This method, however,

can result in a loss of detailed structural information. GNNs have shown great performance

in graph representation learning, but adapting them for hypergraphs remains challenging

due to the complexity of hypergraph structures. Researchers have introduced hypergraph

representation learning techniques, including hypergraph neural networks [7], hypergraph

convolution networks [50], and hypergraph attention networks [9]. These methods aim to
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learn node and hyperedge embeddings by considering both topology and attributes, offering

improved solutions for understanding complex relationships. Building on the success of

transformers in graph data analysis, hypergraph transformer models have been developed

[51, 52, 53, 54]. However, these models primarily focus on attribute-based semantic features,

neglecting structural attributes.

To address these limitations, we propose a novel Structure-aware Hypergraph Trans-

former (SaHT) model. SaHT generates node representations through a new structure-aware

self-attention mechanism, identifying the importance of nodes and hyperedges from both

semantic and structural perspectives. First, we create hypergraphs from standard graphs,

preserving structural information by considering nodes’ higher-order relations. Our SaHT

model operates on these hypergraphs. In the input layer, we introduce a learnable structure

encoding scheme, which includes local structure encoding, centrality encoding, and unique-

ness encoding to capture essential local and global structural information. Additionally, we

use a learnable hypergraph Laplacian eigenvector as node positional information, enabling

distance-aware spatial encoding within the hypergraph.

Given that hyperedges contain multiple nodes with varying degrees of structural and

semantic importance, and nodes may belong to multiple hyperedges with differing levels of

importance, we introduce a structure-aware self-attention mechanism comprising two layers.

The Local Structure-Aware Node-to-Hyperedge Attention layer aggregates node representa-

tions into a hyperedge representation by emphasizing structurally and semantically signifi-

cant nodes, with structural importance determined using the node-local clustering coefficient
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and node coreness. The Global Structure-Aware Hyperedge-to-Node Attention layer aggre-

gates hyperedge representations into a node representation by highlighting structurally and

semantically important hyperedges, with structural importance defined using the hyperedge

density score and the hyperedge clustering coefficient. The learned node representations are

then used for node classification.

1.2.4 Study 4: HyperGCL for Graph Contrastive Learning

Contrastive Learning (CL) has become a prominent paradigm in self-supervised learning,

excelling across various domains like computer vision and NLP by bringing augmented views

of the positive samples closer together in the representation space while pushing apart the

embeddings of negative samples. This is typically achieved using a similarity metric and

contrastive loss. Frameworks like SimCLR [55], MoCo-v2 [56], CLIP [57], and MetAug [58]

have set new benchmarks in CL, often surpassing supervised methods [59, 60, 61, 62].

Inspired by this success, Graph Contrastive Learning (GCL) extends CL principles to

graph-structured data, using GNNs to learn robust representations. GCL involves generating

augmented views of the input graph and maximizing agreement between these views to

enhance node and graph representations. Notable GCL frameworks include Deep Graph

InfoMax (DGI) [63], Graphical Mutual Information (GMI) [64], MVGRL [65], and AD-GCL

[66].

However, GCL models face significant challenges. They often focus on local structures

to learn discriminative information, limiting their ability to capture higher-order global in-

formation [64, 67, 68]. Additionally, they rely on handcrafted graph-augmented views (e.g.,
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node dropping, edge perturbation, attribute masking), which can result in the loss of critical

structural and attribute information and make models inflexible and poorly adaptable to

diverse data [69, 70, 71]. Moreover, GCL methods often apply contrastive losses designed for

computer vision without addressing the differences between images and graphs [67, 69, 72].

This can overlook network structural information, contradict the homophily principle, and

lead to high computational and memory costs due to the reliance on many negative samples.

To address these issues, we present HyperGCL, an Attribute-Structure aware Graph Con-

trastive Learning framework from a Hypergraph perspective. Hypergraphs naturally model

complex systems and can capture hidden higher-order information from standard graphs.

To extract different granularities of higher-order information, we design three hypergraphs

from the input graph and its attributes. First, an attribute-driven hypergraph view groups

semantically similar nodes into hyperedges, capturing semantic similarities but potentially

losing detailed structural information. This is mitigated by creating two structure-infused

hypergraph views: local structure-infused and global structure-infused, capturing different

levels of structural information.

Instead of applying predefined augmentation, we employ an adaptive augmentation tech-

nique using a learnable Gumbel-Softmax function for each hypergraph view. This introduces

controlled stochasticity, generating robust samples for contrastive learning and enhancing

training diversity. Moreover, the learnable Gumbel-Softmax refines the constructed views

by selectively highlighting important relationships within the hypergraph. Following this,

we apply view-specific encoders to the augmented views. For attribute-driven hypergraph
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augmented views, we use the Hypergraph Attention Network (HyGAN) [10, 73] to learn node

embeddings. HyGAN employs a two-layer attention network to identify semantically impor-

tant nodes and hyperedges, generating the ultimate node embeddings. However, since HyGAN

prioritizes semantic features, it may lose structural information when applied to structure-

infused hypergraphs. To address this, we design Structure-aware HyGAN (SHyGAN), which also

uses a two-layer attention network but incorporates node structure encodings and structural

inductive biases to identify important nodes and hyperedges from both semantic and struc-

tural perspectives.

Instead of traditional contrastive losses like InfoNCE [74] or NT-Xent [55], we introduce

a novel network-aware contrastive loss, NetCL. This loss extends NT-Xent by incorporat-

ing network topology as supervised signals to better define positive and negative samples

in HyperGCL. Unlike NT-Xent, which forms only a single positive pair per anchor, NetCL

supports multiple positive pairs for each anchor. These positives are drawn from the same

node in different hypergraph views, the neighbors of the anchor within a hypergraph view

or the input graph.

Nodes not fulfilling these conditions are considered negative instances, referred to as NegS.

To address the computational expense of considering all negative instances, we propose two

selective negative sampling strategies: distance-based and similarity-based. In distance-

based negative sampling, we select the ’a’ most distant negative samples from the anchor

node in the graph view. In similarity-based negative sampling, we select the ’a’ least similar

negative samples from NegS.
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Notation Description
G = (V , E) A hypergraph with the set of nodes V and the set of hyperedges E

(m,n) Numbers of elements in V and E , respectively
A Incidence matrix representing the hypergraph
hd Hyperedge density
pli Representation of node vi in layer l
qlj Representation of hyperedge ej in layer l
α, β Nonlinear activation function
W Trainable weight matrices
∆ Attention map in the transformer network

θ, ψ, ζ, ϕ Learnable parameters
Ω Node structural importance score
Υ Hyperedge structural importance score
Ha Attribute-driven hypergraph view
Hl Local structure-infused hypergraph view
Hg Global structure-infused hypergraph view

sim(), dis() Similarity and distance function, respectively

Table 1.1 Main symbols

1.3 Terminology

In this section, we give the necessary terminology and symbols to facilitate discussion in the

rest of the dissertation. Table 1.1 lists these symbols.

First, we define a hypergraph G = (V , E), where V = {v1, . . . , vm} is the set of nodes

and E = {e1, . . . , en} is the set of hyperedges. Each hyperedge ej is degree-free and consists

of an arbitrary number of nodes. A hypergraph can be represented by an incidence matrix

A where Ai,j = 1 if the node vi is in the hyperedge ej (vi ∈ ej) and Ai,j = 0 otherwise.

The hyperedge density (hd) quantifies the proportion of nodes that a hyperedge consists

of compared to the total number of nodes in the hypergraph. In HyperGNN, pli denotes

node vi representation in layer l, and qlj is hyperedge ej representation in layer l. The

nonlinear activation function α and the LeakyReLU activation function β are used within

the neural networks. The trainable weight matrices are denoted by W . The attention

map in the transformer network is represented by ∆. Other learnable parameters θ, ψ, ζ, ϕ
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are used for various transformations and computations within the neural networks. Node

structural importance score is denoted by Ω, and hyperedge structural importance score is

denoted by Υ. Different views of the hypergraph are represented as Ha (attribute-driven

hypergraph view), Hl (local structure-infused hypergraph view), and Hg (global structure-

infused hypergraph view). The similarity function sim() and distance function dis() are

used to measure similarities and distances between nodes, respectively.



13

CHAPTER 2

RELATED WORKS

2.1 Graph and Hypergraph Neural Networks

Graph Neural Networks (GNNs) are deep learning models designed to handle graph-structured

data by aggregating information from a node’s local neighborhood. Among the notable mod-

els is the Graph Convolutional Network (GCN), introduced by Kipf and Welling [75]. GCNs

apply convolution operations using a spectral approach based on the graph Laplacian, en-

abling effective information propagation across nodes. In another approach, GraphSAGE,

developed by Hamilton et al. [76], samples a fixed-size neighborhood for each node and

learns an aggregation function to generate node embeddings. This method allows for gen-

eralization to unseen nodes and graphs, adding a layer of versatility to GNN applications.

Graph Attention Networks (GATs), brought forward by Veličković et al. [77], use attention

mechanisms to weigh the contributions of neighboring nodes. This approach enhances the

model’s ability to handle various graph types with more precision and adaptability. Mean-

while, Message Passing Neural Networks (MPNNs), conceptualized by Gilmer et al. [78],

exchange messages between nodes and update their representations based on these interac-

tions. This model provides a unifying framework for various GNN techniques, improving

their capacity to capture complex relationships within graph data.

Hypergraph Neural Networks (HyperGNNs) extend GNNs to hypergraphs, capturing

higher-order complex relations. Various models have been proposed in this area. HGNNs

[7] and HyperGCN [79] were among the first to apply graph convolution to hypergraphs.
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HGNNs handle complex data correlations using hyperedge spectral convolution and the

clique expansion technique, while HyperGCN introduces a generalized hypergraph Laplacian

to capture complex data relationships effectively. Another approach, MPNN-R [80], treats

hyperedges as distinct nodes, linking a “hyperedge node” with all constituent nodes and

transforming the hypergraph into a graph for direct use with GNNs. Motivated by the

success of attention networks on graphs, HAN [9] and HyperGAT [10] leverage attention

mechanisms for hypergraphs, enabling adaptive learning of node and hyperedge significance.

Direct message passing on hypergraphs is employed by HyperSAGE [81] and UniGNN [82],

which avoid information loss compared to HGNN. The AllSetTransformer framework [83]

blends Deep Sets [84] and Set Transformers [85] with HyperGNNs to learn multiset functions,

providing substantial modeling flexibility and enhancing performance in various tasks.

2.2 Drug-Drug Interaction Prediction

Many works have been proposed for the DDI prediction problem over the years. These can

be categorized into similarity-based, classification-based, and network-based methods.

2.2.1 Similarity-based methods

Previous works assume that similar drugs have similar interaction profiles and define dif-

ferent similarities between drugs. Traditionally, pharmacological, topological, or semantic

similarity based on statistical learning is utilized to predict DDIs. Vilar et al. [25] identify

DDIs based on molecular similarities, representing each drug by a molecular fingerprint, a

bit vector reflecting the presence/absence of a molecular feature. INDI, developed by [86],
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uses seven different drug-drug similarity measures learned from drug side effects, fingerprints,

therapeutic effects, etc. Another vital research by [87] incorporates four different biological

information (e.g., target, transporter, enzyme, and carrier) of drugs to measure the similarity

of drug pairs.

2.2.2 Classification-based methods

Some models extract features of drugs from various biological entities and drug interaction

information and apply different machine learning (ML) methods for DDI training [88, 19,

89, 90]. Davazdahemami and Delen [89] construct a graph containing both drug-protein and

drug-side effect interactions and employ classification methods on the feature set, producing

many similarities and centrality metrics. Luo et al. [90] propose a DDI prediction server

that provides real-time DDI predictions based only on molecular structure, using a 611-

dimensional docking vector for drug pair features. Ibrahim et al. [88] first extract different

similarity features and employ logistic regression to pick the best feature; later, the best

feature is used in six different ML classifiers to predict DDIs. Zheng et al. [19] propose

DDI-PULearn to address the lack of negative samples, generating negative samples using

one-class SVM and kNN before predicting DDIs.

2.2.3 Network-based methods

Last decade, network-based models got great attention for drug-related problems. Some

researchers construct a drug network using known DDI where drugs are nodes and interacting

drugs are connected by a link [91]. Moreover, heterogeneous information networks leveraging
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different biomedical entities, such as proteins, side effects, pathways, etc., are also used to

address similar problems [92]. As a different model, [93] constructs a molecular graph for

each drug from its SMILES representation. Moreover, existing network-based models often

extract drug embedding and directly learn latent node embedding using various embedding

methodologies. As a result, their capacity to obtain specific neighborhood information on

any organization in KG is restricted.

2.2.4 GNN-based methods

Recently, GNNs have shown promising performance in different fields, including drug dis-

covery [94], drug abuse detection [30], and drug-drug interaction [95, 33, 93]. Decagon [17]

creates a knowledge graph based on protein-protein, drug-drug, and drug-protein interac-

tions and uses a relational graph convolutional neural network for predicting multi-relational

links in multimodal networks. CASTER [96] develops a dictionary learning framework for

predicting DDIs based on drug chemical structures, outperforming numerous deep learning

approaches such as DeepDDI [97] and molVAE [98]. Bumgardner et al. [33] construct a

drug network where two drugs are connected if they share common chemical substructures,

applying different GNN models to predict interactions.

2.3 Sequence Classification

Various studies have been carried out on the problem of sequence classification, broadly

categorized into three types of methods: ML-based, Deep Learning (DL)-based, and GNN-

based.
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2.3.1 Machine learning and deep learning-based methods

ML-based methods first generate a feature vector using kernel functions such as the k-

spectrum kernel [99] and local alignment kernel [100]. These feature vectors are then used

with ML classifiers for sequence classification tasks. Applications of DL-based methods,

especially recurrent neural networks (RNN) such as LSTM and GRU, are commonly used to

learn features capturing adjacent structural information for sequence data [27, 28, 101, 29].

Some studies use a single DL method, while others create hybrid models by combining

different DL techniques.

2.3.2 Network-based methods

Network-based models have also been explored to analyze sequence data [102, 103]. A com-

mon approach for representing genome sequences in a network is the De-Bruijn graph [104].

To construct a De-Bruijn graph, the k-mer method is applied to sequence input, generating

k-mer tokens as nodes. Subsequent k-mers with overlapping k − 1 positions are connected

with edges to construct the graph.

2.3.3 GNN-based methods

GNNs have exhibited great performance in different research areas, such as DDI predic-

tion [92] and image classification [105]. GCN, a popular GNN variant, has also been applied

for sequence data analysis [106, 107]. In [108], authors apply GCN for text classification

by creating a heterogeneous text graph including document and word nodes from the whole

corpus. The same architecture is applied for DNA-protein binding prediction from sequen-
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tial data [31], where networks include sequence and token nodes extracted using the k-mer

method.

2.4 Graph and Hypergraph Transformer

2.4.1 State-of-the art graph transformer model

Vaswani et al. introduce the transformer model in [41], highlighting the self-attention mech-

anism’s capability to capture long-range dependencies in sequential data. This innovation

inspired the development of graph transformers, which extend self-attention to handle graph-

structured data. Dwivedi et al. advance this field with a graph transformer [109] that

incorporates graph connectivity as an inductive bias, ensuring nodes attend only to their

neighbors, utilizing graph Laplacian eigenvectors for node positional encoding. Gophormer

[49] adopts a different approach by extracting ego-graphs as transformer inputs rather than

processing the entire graph. It addresses the challenges of incorporating structural data

into the transformer model through a proximity-enhanced attention mechanism [49] and by

integrating centrality, spatial, and edge encoding techniques [42].

2.4.2 State-of-the art hypergraph transformers model

While transformers for standard graphs have seen considerable progress, a gap remains in de-

veloping transformers specifically for hypergraphs. Recent research in hypergraph transform-

ers [51, 110, 52, 111, 54] shows promise but tends to focus predominantly on the attribute-

based semantic features of nodes and hyperedges within the self-attention module, while

often overlooking crucial structural information. Notably, models in [51, 110] are limited to
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meta-path-guided heterogeneous hypergraphs, further narrowing their scope.

2.5 Graph Contrastive Learning

2.5.1 Contrastive learning

Contrastive Learning (CL) is a widely used self-supervised learning technique, especially

popular in computer vision and NLP. By optimizing a contrastive loss function, CL aims

to learn an embedding space where samples from the same instance are positioned closer

together, while samples from different instances are pushed apart. Notable CL methods in

computer vision include SimCLR [55], MoCo [56], and BYOL [112]. In NLP, CL models

such as SimCSE [61] and DeCLUTR [113] have been effectively utilized.

2.5.2 State-of-the art graph contrastive learning models

Graph Contrastive Learning (GCL) extends the principles of CL to GNNs to effectively cap-

ture both structural and attribute information in graph-structured data. DGI [114], inspired

by Deep InfoMax [115], learns node representations by maximizing the mutual information

between local graph patches and the global graph summary, thereby capturing global in-

formation often overlooked by traditional GCNs. GRACE [116], inspired by SimCLR [55],

creates two augmented graph views by uniformly perturbing nodes, edges, and features, and

learns node representations by contrasting the same node across these views. Thakoor et al.

[70] generate two augmented views by masking node features and edges using different func-

tions. GraphCL [69] introduces four types of augmentation techniques: node dropping, edge

perturbation, attribute masking, and subgraph extraction. Similarly, CSSL [71] presents four
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graph alteration techniques, including node insertion/deletion and edge insertion/deletion,

to generate augmented views.

Rather than randomly perturbing graph structures and features, MVGRL [65] uses a

graph diffusion technique to generate an augmented view and contrasts it with the input

graph. SCGDN [117] creates a k-NN graph as an augmented view using node attributes

and contrasts it with the input graph. Existing GCL models often use contrastive loss

functions from computer vision, treating the same node across different views as a positive

sample and all other nodes, including neighbors, as negative samples [67, 69, 72]. This

approach contradicts the homophily assumption, where a node and its neighbors often share

the same label, and creates a large pool of negative samples, making the learning process

computationally expensive.



21

CHAPTER 3

HYGNN: DRUG-DRUG INTERACTION PREDICTION VIA
HYPERGRAPH NEURAL NETWORK

3.1 Introduction

In this paper, we present a novel GNN-based approach for DDI prediction that relies solely

on the SMILES string of drugs, which is available for all drugs. Our method is based on

the hypothesis that similar drugs behave similarly and are likely to interact with the same

drugs, with similarity determined by common substructures in their SMILES strings [25, 26].

Identifying these similarities is challenging, so we represent drugs in a hypergraph framework,

where drugs are hyperedges connecting multiple substructures as nodes. A hypergraph differs

from a regular graph as hyperedges can connect an arbitrary number of nodes [6, 7, 40, 39].

After constructing the hypergraph, we develop a Hypergraph Neural Network, HyGNN to

learn DDIs by generating representations of drugs as hyperedges. HyGNN follows an encoder-

decoder architecture: the hyperedge encoder generates drug embeddings, and these pairwise

drug representations are processed through decoder functions to predict a binary interaction

score for each drug pair.

The main contributions of this paper are summarized as follows:

• Hypergraph Construction from SMILES Strings: We construct a hypergraph to

depict drug similarities. Substructures extracted from SMILES strings are represented

as nodes, while drugs, consisting of unique substructures, are represented as hyper-

edges. This hypergraph captures higher-order connections between substructures and
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drugs, aiding in defining complex similarities and enhancing GNN models’ ability to

learn robust drug representations.

• Hypergraph GNN: To learn and predict DDIs, we propose HyGNN, which includes a

novel hyperedge encoder and a decoder. The encoder has two layers: the first gener-

ates node embeddings by aggregating hyperedge embeddings, and the second generates

hyperedge (drug) embeddings by aggregating node embeddings. An attention mecha-

nism is used to identify significant substructures for drugs and chemical reactions. The

decoder predicts DDIs by taking pairwise drug representations as input. Our method

exclusively uses chemical structure data from SMILES strings, making it applicable to

any drug, including new ones, without needing additional information like side effects

or existing DDIs.

• Extensive Experiments: We conduct extensive experiments comparing our model

with state-of-the-art models. The results show that our method significantly out-

performs all baselines across various accuracy measures. Additionally, case studies

demonstrate that our model can discover new DDIs for existing and new drugs.

3.2 HyGNN model for DDI

In this section, we first define our DDI prediction problem and then summarize the prelim-

inaries, model, and settings (Section 3.2.1). Then we explain our hypergraph construction

step with substructures extraction from Drugs (Section 3.2.2). After that, we introduce our

proposed HyGNN model with attention-based encoder and decoder layers (Section 3.2.3).
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3.2.1 Problem Formulation

Our goal is to develop a computational model that takes a drug pair (Dx, Dy) as input and

predicts whether there exists an interaction between this drug pair. Each drug is represented

by the SMILES string. SMILES is a unique chemical representation of a drug that consists

of a sequence of symbols of molecules and the bonds between them.

Most of the graph-based existing DDI methods consider a dyadic relationship between

drugs. This simple graph type considers an edge that can connect a maximum of two objects.

However, there could be a more complex network in real life where an arbitrary number of

nodes may interact as a group, so they could be connected through a hyperedge (i.e., triadic,

tetradic, etc.). A hypergraph can be used to formulate such a complex network. A formal

definition of the hypergraph is given below.

Hypergraph: A hypergraph is a special kind of graph defined as G = (V , E) where

V = {v1, ..., vm} is the set of nodes and E = {e1, ..., en} is the set of hyperedges. Each

hyperedge ej is degree-free and consists of an arbitrary number of nodes. Like the adjacency

matrix of a regular graph, a hypergraph can be denoted by an incidence matrix A with Ai,j = 1

if the node i is in the hyperedge j as vi ∈ ej and Ai,j = 0 otherwise.

In this paper, we construct a hypergraph network of drugs where each drug is a hyperedge,

and the chemical substructures of drugs are the nodes. The chemical structures of a drug

can be obtained from the SMILES, a unique chemical representation of a drug. We design a

novel hypergraph neural networks model as an encoder-decoder architecture to accomplish

the DDI prediction task. The encoder part exploits an attention mechanism to learn the



24

HyGNNEncoder

Hypergraph Construction

Substructure Extraction

Drug
Interaction: 0

Decoder

Drug
Interaction: 1Hyperedge-level Attention

Node-level Attention

Decoder

Hypergraph

Figure 3.1 System architecture of the proposed method. The First step is to construct a
hypergraph network of drugs where each drug is a hyperedge, and frequent chemical sub-
structures of drugs are the nodes. The second step is to design a hypergraph neural network
(HyGNN) model with an attention-based encoder for hyperedge (drug) representation learning
and decoder for DDI learning.

representations of hyperedges (drugs) by giving attention to edges and nodes (substructures).

The decoder predicts the interaction between drug pairs using latent learned drug features.

The whole system is trained in a semi-supervised fashion. The functional architecture of this

paper is shown in Figure 3.1. Our proposed model consists of two steps:
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1. Hypergraph construction from SMILES,

2. DDI prediction with hypergraph neural networks

(a) Encoder: Drug (Hyperedge) representation learning

(b) Decoder: DDI prediction

3.2.2 Drug Hypergraph Construction

We construct a hypergraph to depict the structural similarities among drugs. At first, we

decompose all the drugs’ SMILES into a set of substructures. In our drug hypergraph, these

substructures are used as nodes. Moreover, each drug with a certain number of substructures

is represented by a hyperedge. Drugs as hyperedges may connect with other drugs employing

shared substructures as nodes. This hypergraph represents the higher-level connections of

substructures and drugs, which may help to define complex similarities between chemical

structures and drugs. Also, this helps us to learn better representation for drugs with GNN

models with the passing message not only between 2 nodes but between many nodes and

also between nodes and edges.

Substructures can be generated by utilizing different algorithms such as ESPF [118], k-

mer[119], strobemers [120], etc. In this project, we use ESPF and k-mer to see the effect of

substructures on the results. While k-mer use all extracted substructures, ESPF selects the

most frequent ones. Algorithm 1 briefly shows the hypergraph construction steps.

ESPF: Like the concept of sub-word units in the natural language processing (NLP)

domain, ESPF is a powerful tool that decomposes sequential structures into interpretable



26

Algorithm 1: Drug Hypergraph Construction

Input: SMILES strings
Output: Hypergraph incident matrix: A
Call Substructure Decom(SMILES strings); /* Substructure Decom() could

be ESPF or k-mer that decomposes SMILES into substructures. It

returns a list of unique substructures and drug dictionary that will

be used in the following for loop */

for each Substructure in Substructure list do
if Substructure is in Drug dict[SMILES] then

A[i, j] = 1 ; /* i,j is the id of substructure and drug,

respectively. */

end

end
Output: A, Hypergraph incident matrix

Algorithm 2: Explainable Substructure Partition Fingerprint (ESPF)

Input: Set of initial SMILES tokens S as atoms and bonds, set of tokenized
SMILES strings TS, frequency threshold α, and size threshold L for S.
for t = 1 . . . , L do

(S1, S2), f ← scan TS ; /* (S1, S2) is the frequentest consecutive

tokens. */

if f < α then
break ; /* (S1, S2)’s frequency lower than threshold */

end
TS ← find (S1, S2) ∈ TS, replace with (S1S2) ; /* update TS with the

combined token (S1S2) */

S ← S ∪ (S1S2) ; /* add (S1S2) to the token vocabulary set S */

end
Output: TS, the updated tokenized drugs; S, the updated token vocabulary set.

functional groups. They consider that a few substructures are mainly responsible for drug

chemical reactions, so they extract frequent substructures as influential ones. The ESPF

algorithm is shown in Algorithm 2. Given a set of drug SMILES strings S, ESPF finds

the frequent repetitive moderate-sized substructures from the set and replaces the original

sequence with the substructures. If the frequency of each substructure in S is above a
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predefined threshold, it is added to a substructure list as a vocabulary. Substructures appear

in this list in the most to least frequent order. We use this vocabulary list as our nodes

and decompose any drug into a sequence of frequent substructures concerning those. For

any given drug, we partition its SMILES in order of frequency, starting from the highest

frequency. An example of partitioning a SMILES of a drug, DB00226, is as follows.

NC(N)=NCC1COC2(CCCCC2)O1

⇓

N C(N) =N CC1 CO C2 (CCC CC2) O1.

k-mer: k-mer is a tool to decompose sequential structures into subsequences of length

k. It is widely used in biological sequence analysis and computational genomics. Similar to

n-gram in NLP, a k-mer is a sequence of k characters in a string (or nucleotides in a DNA

sequence). To get all k-mers from a sequence, we need to get the first k characters, then

move just a single character to start the next k-mer, and so on. Effectively, this will create

sequences that overlap in k-1 positions. Pseudocode for k-mer is shown in Algorithm 3.

For a sequence of length l, there are l − k + 1 numbers of k-mers and nk total possible

number of k-mers, where n is the number of monomers. k-mers are like words of a sentence.

k-mers help to bring out semantic features from a sequence. For example, for a sequence

NCCO, monomers: {N, C, and O}, 2-mers: {NC, CC, CO} , 3-mers: {NCC, CCO}.
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Algorithm 3: k-mer

Input: SMILES strings, size threshold k
Substructure list: []
Drug dict:{}
for each SMILES in SMILES strings do

Lst=[]
for x in range (l-k+1) do

/* l is the length of SMILES */

C = SMILES[x : x+ k]
Lst.append(C)
Substructure list.append(C)

end
Drug dict[SMILES] = Lst

end
Output: Drug dict, Substructure list

3.2.3 Hypergraph Neural Network (HyGNN) for DDI Prediction

We design a Hypergraph Neural Network named (HyGNN) for DDI prediction. HyGNN includes

an encoder, which generates the embedding of drugs, and a decoder that uses the embedding

of drugs from the encoder to predict whether a drug pair interacts or not.

3.2.3.1 Drug Representation learning via HyGNN - Encoder

To detect interacting pairs of drugs, we need features of drug pairs and, thus, features of

drugs that encode their structure information. To generate features of drugs, we propose a

novel hyperedge encoder. It creates d
′

dimensional embedding vectors for hyperedges (drugs)

instead of nodes as in regular GNN models. Given the edge feature matrix, F ∈ R|E|∗d

and incidence matrix A ∈ R|V|∗|E|, the encoder of the HyGNN generates a feature vector of d′

dimension through learning a function Z. Any layer (e.g., (l + 1)th layer) of HyGNN can be
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expressed as

F l+1 = Z(F l, AT ). (3.1)

We consider the hyperedge encoder with a memory-efficient self-attention mechanism.

It consists of two different levels of attention: (1) hyperedge-level attention, (2) node-level

attention.

While hyperedge-level attention aggregates the hyperedge information to get the repre-

sentation of nodes, node-level attention layer aggregates the connected vertex information

to get the representation of hyperedges. In general, we define the HyGNN attention layers as

pli = AE
l(pl−1

i , ql−1
j |∀ej ∈ Ei), (3.2)

qlj = AV
l(ql−1

j , pli|∀vi ∈ ej) (3.3)

where AE is an edge aggregator that aggregates features of hyperedges to get the represen-

tation pli of node vi in layer-l and Ei is the set of hyperedges that are connected to node vi.

Similarly, AV is a node aggregator that aggregates features of nodes to get the representation

qlj of hyperedge ej in layer-l and vi is the node that connects to hyperedge ej.

Hyperedge-level attention: In a hypergraph, each node may belong to multiple numbers

of edges. However, the contribution of hyperedges to a node may not be equal. That is why

we design an attention mechanism to highlight the crucial hyperedges and aggregate their

features to compute the node feature pli of node vi. With the attention mechanism, pli is
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defined as

pli = α

⎛⎝∑︂
ej∈Ei

YijW1q
l−1
j

⎞⎠ (3.4)

where α is a nonlinear activation function, W1 is a trainable weight matrix that linearly

transforms the input hyperedge feature into a high-level, Ei is the set of hyperedges connected

to node vi, and Yij is the attention coefficient of hyperedge ej on node vi. The attention

coefficient is defined as

Yij =
exp(ej)∑︁

ek∈Ei
exp(ek)

(3.5)

ej = β(W2q
l−1
j ∗W3p

l−1
i ) (3.6)

where β is a LeakyReLU activation function, W2, W3 are the trainable weight matrices, and

∗ is the element-wise multiplication.

Node-level attention: Each hyperedge in a hypergraph consists of an arbitrary number of

nodes. However, the importance of nodes in a hyperedge construction may not be the same.

We design a node-level attention mechanism to highlight a hyperedge’s important nodes and

aggregate their features accordingly to compute the hyperedge feature qlj of hyperedge ej.

With the attention mechanism, qlj is defined as

qlj = α

⎛⎝∑︂
vi∈ej

XjiW4p
l
i

⎞⎠ (3.7)
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where W4 is a trainable weight matrix, and Xji is the attention coefficient of node vi in the

hyperedge ej. The attention coefficient is defined as

Xji =
exp(vi)∑︁

vk∈ej exp(vk)
(3.8)

vi = β(W5p
l
i ∗W6q

l−1
j ) (3.9)

where vk is the node that belongs to hyperedge ej, W5, W6 are the trainable weight matrices.

Our hyperedge encoder model works based on these two attention layers that can capture

high-order relations among data. Given the input hyperedge features, we first gather them to

get the representation of nodes with hyperedge-level attention, then we gather the obtained

node features to get the representation of hyperedges with node-level attention.

3.2.3.2 DDI prediction - Decoder

After getting the representation of drugs from the encoder layer, our target is to predict

whether a given drug pair interacts or not. To accomplish this target, we design a decoder.

Given the vector representations (qx, qy) of drug pairs (Dx, Dy) as input, the decoder

assigns a score, px,y to each pair through a decoder function defined as

px,y = γ(qx, qy) (3.10)

We use two different types of decoder functions:

MLP: After concatenating the features of drug pairs, we pass it through a multi-layer
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perceptron (MLP), which returns a scalar score for each pair

γ(qx, qy) = f2(f1(qx ∥ qy)) (3.11)

where f1 and f2 are two different layers of MLP, and || is the concatenation operation.

Dot product: We compute a scalar score for each edge by performing element-wise dot

product between features of drug pairs using

γ(qx, qy) = qx · qy (3.12)

Afterward, we pass the decoder output through a sigmoid function σ(γ(qx, qy)) that

generates predicted labels, Y ′, within the range 0 to 1. Any output value closer to 1 implies

a high chance of interaction between two drugs.

3.2.3.3 Training the whole model

We consider the DDI prediction problem as a binary classification problem predicting whether

there is an interaction between drug pairs or not. As a binary classification problem, we train

our entire encoder-decoder architecture using a binary cross-entropy loss function defined as

loss = −
N∑︂
i=1

(︂
Yi log Y

′

i + (1− Yi) log(1− Y ′

i )
)︂

(3.13)

where N is the total number of samples, Yi is the actual label, and Y
′
i is the predicted label.
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3.2.4 Complexity

Our method is highly efficient with paralyzing across the edges and nodes [121]. The hy-

peredge encoder generates d
′

dimensional embedding vector for each hyperedge with a given

initial feature as d dimensional vector using two-level attention. Hence, the time complexity

in the encoder part is the cumulative complexity of attention layers. According to equation

3.4, the complexity in the hyperedge-level attention can be expressed as O(|E|dd′
+ |V|Dd′

),

where D is the average degree of nodes. Similarly, the complexity in the node-level attention

can be expressed as: O(|V|dd′
+ |E|Bd′

), where B is the average degree of hyperedges.

3.3 Experiment

In this section, we evaluate our proposed HyGNN model for DDI prediction with extensive

experiments on two different datasets. We use F1, ROC-AUC, and PR-AUC accuracy metrics

to compare our model’s performances with the state-of-art baseline models. Making DDI

predictions for new drugs could be more challenging than existing drugs. Therefore, we

assess our model’s performance for both new and existing drugs as well. First, we describe

our datasets, TWOSIDES and DrugBank, then we explain our experiments, and present and

analyze our results.

3.3.1 Dataset

We evaluate the proposed model using two different sizes of datasets. One is a small dataset,

and another one is a large dataset. (1) TWOSIDES is our small dataset. TWOSIDES

was created using data from adverse event reporting systems. Common adverse effects,
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Dataset # of Drug # of DDI
TWOSIDES 645 63473
DrugBank 1706 191402

Table 3.1 Statistics of Dataset

such as hypotension and nausea, occur in more than a third of medication combinations,

but others, such as amnesia and muscular spasms, occur in only a few. We extract 645

approved drugs’ information from TWOSIDES. Each drug is linked to its chemical structure

(SMILES). There are 63,473 DDI positive labels for the selected drugs. (2) DrugBank is

our large dataset and it is the largest dataset for drugs that is publicly available. It is a

drug knowledge database that includes clinical information about drugs, such as side effects

and (DDIs). DrugBank also includes molecular data, such as the drug’s chemical structure,

target protein, and so on. From DrugBank, we retrieve information on 1706 approved drugs

along with their SMILES strings and 191,402 DDI information. Both datasets are publicly

available on Therapeutics Data Commons (TDC) 1. The first unified platform, TDC, was

launched to comprehensively access and assess machine learning across the entire therapeutic

spectrum.

All known DDIs in both datasets are our positive samples. However, to train our model,

we need negative samples as well. Therefore, we randomly sample a drug pair from the

complement set of positive samples for each positive sample. Thus, we ensure a balanced

dataset of equally positive and negative samples for an individual dataset.

We apply the ESPF algorithm and k-mer separately to extract the substructures from the

SMILES string of drugs. For ESPF, we notice that when a lower frequency threshold is set,

1https://tdcommons.ai/
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ESPF |N | k-mer |N |
5 555 3 822
10 324 6 7025
15 249 9 14002
20 208 12 17351
25 187 15 18155

Table 3.2 Number of Nodes (N) in the Hypergraph based on parameters of the methods,
ESPF, and k-mer, for TWOSIDES Dataset

ESPF |N | k-mer |N |
5 1266 3 1296
10 729 6 11849
15 550 9 29443
20 462 12 43634
25 400 15 51315

Table 3.3 Number of Nodes (N) in the Hypergraph based on parameters of the methods,
ESPF, and k-mer, for DrugBank Dataset

it generates many substructures, some of which may be unimportant. However, when a more

significant threshold value is set, it generates fewer substructures and may lose some critical

substructures. These substructures are used as nodes in the hypergraph. To examine the

impact of the frequency threshold and thus the number of nodes in the hypergraph learning,

we choose five different threshold values from 5 to 25. For k-mer, we notice that typically

with the increment of k, the number of substructures (i.e., nodes) also increases. Similarly,

to examine the impact of the k and thus the number of nodes in the hypergraph learning,

we choose five different values of k from 3 to 15. A statistic of both datasets is shown in

Table 3.1. The number of nodes for different threshold values of ESPF and k-mer is given

in Table 3.2 and Table 3.3 for each dataset.
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Parameter Values
Learning rate 1e-2, 5e-2, 1e-3, 5e-3
Hidden units 32, 64, 128

Dropout 0.1, 0.5
Weight decay 1e-2, 1e-3

Table 3.4 Hyper-parameter Settings

3.3.2 Parameter Settings

Each dataset is randomly split into three parts: train (80%), validation (10%), and test

(10%). We repeat this five times and report the average performances in terms of F1-score,

ROC-AUC, and PR-AUC. The optimal hyper-parameters are obtained by grid search based

on the validation set. The ranges of grid search are shown in Table 3.4.

We employ a single-layer HyGNN having two levels of attention. We use a LeakyReLU

activation function in the encoder side and a ReLU activation function in the MLP predictor

of the decoder side. During training, we simultaneously optimize the encoder and decoder

using adam optimizer. Each model is trained for 2000 epochs with an early stop if there is

no change in validation loss for 200 consecutive epochs.

For the baselines in subsection: 3.3.3, each GNN model is used as a two-layer architecture.

All other parameters of each GNN are set by following their sources. For DeepWalk and

node2vec, the walk length, number of walks, and window size are set to 100, 10, and 5,

respectively. We use Logistic Regression as a simple ML classifier.

3.3.3 Baselines

We compare our model performance with different types of state-of-the-art models. We cate-

gorize the baseline models into five groups based on the data representation and methodology.
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1. Random walk-based embedding (RWE) on DDI graph We construct a regular graph

based on the drug interaction information called a DDI graph. Drugs are represented as

nodes, and two drugs share an edge if they interact. After constructing the graph, we ap-

ply the random walk-based graph embedding methods to get the representations of drugs.

DeepWalk [122] and Node2vec [123] are two well-known graph embedding methods. They

are both based on a similar mechanism of ‘walk’ on the graph traversing from one node to

another. We apply DeepWalk and Node2Vec on the DDI graph and generate the embedding

of nodes. Afterward, we concatenate drug embeddings to get the drug pair features and feed

that into a machine learning classifier for binary classification.

2. GNN on DDI graph: After constructing the DDI graph as explained above, we apply

three different GNN models with unsupervised settings; graph convolution network (GCN)

[75], graph attention network (GAT) [121], and GraphSAGE [76] to get the representations

of drugs. These GNN models are obtained from DGL2. After getting the representations of

drugs, we concatenate them pair-wise and use them as the features of drug pairs in the ML

classifier for binary classification.

3. GNN on substructure similarity graph (SSG) We follow [33] to create the substruc-

ture similarity graph (SSG). We construct an edge between two drugs if they have at least a

predefined number of common substructures. We apply the ESPF algorithm to the SMILES

strings of drugs to get the frequent substructures. Afterward, we apply three different GNN

2https://docs.dgl.ai/
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models, GCN, GAT, and GraphSAGE, to the constructed graph to get the representations

of drugs. The drug representations are then concatenated pair-wise and fed into a classifier

to predict the DDI.

4. CASTER We apply the Caster algorithm [96] for DDI prediction. It takes SMILES

strings as input and employs frequent sequential pattern mining to discover the recurring

substructures. They use the ESPF algorithm to extract frequent substructures. Then, they

generate a functional representation for each drug using those frequent substructures. Fur-

ther, the functional representation of drug pairs is used to predict DDIs. We reproduce

CASTER results for our datasets.

5. Decagon Decagon [17] uses a multi-modal graph consisting of protein-protein inter-

actions and drug-protein target interactions for DDI prediction. It has an encoder-decoder

architecture. The encoder exploits GCN to generate the representation of drugs by em-

bedding all drug interactions with other entities in it. Then, the decoder takes drug pair

representations as input and predicts DDIs with an exact side effect. The same TWOSIDES

drug-drug interactions network is used in Decagon. That is why we directly compare our

model performances with their reported results for TWOSIDES data instead of reproducing

Decagon. However, we do not consider DrugBank data for Decagon as we do not have the

additional information (e.g., side effects and target protein) in our DrugBank dataset to

construct the multi-modal graph.
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3.3.4 Results

3.3.4.1 Model Performances

We conduct detailed experiments on our proposed models for two different datasets with

different threshold values of k-mer and ESPF. Both MLP and dot predictor-based decoder

functions are employed individually for each setup to compare their performances. The

overall performances are illustrated in Fig. 3.2 and Fig. 3.3. Fig. 3.2 depicts the model’s

performance for different ESPF frequency thresholds ranging from 5 to 25. This figure

shows that it has a more significant impact on the TWOSIDES dataset, especially for the

Dot decoder function than DrugBank. On TWOSIDES with MLP, it gives similar results till

25, and then it has a considerable decrease for 25. Since we get a significantly less number

of substructures, it would not be enough to learn with those. For DrugBank, it gives similar

results for different thresholds of ESPF. In general, frequency threshold 5 gives the best

performance for TWOSIDES and DrugBank with MLP and DOT. As with the increment of

the frequency threshold, the number of substructures (i.e., nodes) decreases, which could be

a potential reason for performance degradation. The best performance for each dataset and

decoder is recorded for a threshold value of 5.

Fig. 3.3 presents the models’ performances for five different k values of k-mer ranges

from 3 to 15. Similar to ESPF, the effect of the parameter on the results is higher for

TWOSIDES than DrugBank. The reason for this could be that it is smaller than DrugBank,

so the graph’s size is affecting its results. However, DrugBank is a large dataset with enough

training data to get good results, even with a small graph. Here, we can see that with
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Figure 3.2 Performance comparison of models for different frequency thresholds of ESPF.

Figure 3.3 Performance comparison of models for different sizes of k-mer.
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Model Method F1 ROC-AUC PR-AUC
DeepWalk 80.35 80.36 85.19

RWE on DDI Graph Node2vec 84.50 84.52 88.33
GCN 85.34 85.38 88.87

GNN on DDI graph GraphSage 85.83 85.80 89.28
GAT 82.67 82.68 86.86
GCN 53.85 54.04 66.94

GNN on SSG graph GraphSage 60.19 60.18 70.34
GAT 54.25 54.37 66.85

CASTER - 82.35 90.45 90.58
Decagon - - 87.20 83.20

ESPF & MLP 88.79 96.01 96.30
ESPF & Dot 76.79 91.12 93.37

HyGNN k-mer & MLP 89.21 96.25 96.53
k-mer & Dot 78.55 91.80 93.88

Table 3.5 Performance comparisons of HyGNN with baseline models on TWOSIDES dataset.

Model Method F1 ROC-AUC PR-AUC
DeepWalk 73.34 73.35 80.05

RWE on DDI Graph Node2vec 79.52 79.54 84.56
GCN 77.05 77.06 82.78

GNN on DDI graph GraphSage 80.83 80.88 85.51
GAT 63.84 69.75 78.52
GCN 58.00 58.04 69.11

GNN on SSG graph GraphSage 61.10 61.15 70.64
GAT 58.20 58.24 69.25

CASTER - 87.36 94.27 94.20
ESPF & MLP 92.42 97.63 97.53
ESPF & Dot 83.94 95.80 96.57

HyGNN k-mer & MLP 94.61 98.69 98.68
k-mer & Dot 87.38 97.99 98.28

Table 3.6 Performance comparisons of HyGNN with baseline models on DrugBank dataset.

the increment of the size of k-mer, the performance of the model increases, especially for

TWOSIDES. As with increasing k, the number of substructures (i.e., nodes) increases which

could be the reason for overall performance improvement. After some point, we will get too

many substructures that could put noise into the data and decrease the model’s performance.

The best performance for each dataset and decoder are reported with k = 9 for k-mer.
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3.3.4.2 Comparison with Baselines

We evaluate our models by comparing their performances with several baseline models and

present the results in Table 3.5 for the TWOSIDES, and Table 3.6 for the DrugBank dataset.

As we see in these tables, our models comprehensively outperform all the baseline models.

More precisely, in Table 3.5 for the TWOSIDES dataset, HyGNN achieves at least 7% on F1,

6% on ROC-AUC, and PR-AUC better performance than other baseline models. While the

best model among all the baselines, CASTER, achieves an F1 score of 82.35%, our HyGNN

with k-mer & MLP scores 89.21% with almost 7% gain. A similar situation also happens

for the other two accuracy measures: ROC-AUC and PR-AUC.

In Table 3.5, for the DDI graph, from the GNN models, GraphSage gives the best results

with 85.83%, 85.80%, and 89.29% on F1, ROC-AUC, and PR-AUC, respectively. Also, from

random walk-based embedding models, Node2Vec gives the best results, which is very similar

to GraphSage results with 84.50% on F1, 84.52% on ROC-AUC, and 88.33% PR-AUC scores.

For the SSG graph, again, GraphSage gives the best result. In our result comparison table,

CASTER is the best competitor of HyGNN. Out of all baseline models, CASTER shows the

best performance with ROC-AUC and PR-AUC of above 90%. Decagon is a multi-modal

graph that also exhibits better performance than GNN on SSG.

Table 3.6 presents the performance comparison of HyGNN with baselines for the DrugBank

dataset. As for TWOSIDES, here again, out of three different GNN models on DDI and

SSG graphs, GraphSage yields the best result. Similarly, Node2Vec performs better than

DeepWalk. CASTER is still the best performer among all baselines, with 87.36%, 94.27%,



43

Figure 3.4 Performance comparison of models for different training sizes where x-axes rep-
resent the training percentages.

and 94.20% on F1, ROC-AUC, and PR-AUC, respectively. However, our HyGNN with k-mer

& MLP significantly surpasses CASTER with 94.61% on F1, 98.69% on ROC-AUC, and

98.68% on PR-AUC. As Decagon depends on the drug and other drug-centric information,

we could not experiment with it on the DrugBank dataset.

In summary, HyGNN with k-mer gives better results than ESPF. The reason for this could

be that with the ESPF, we eliminate many substructures but keep just frequent ones. This

may result in losing important ones that are not frequent. However, with k-mer, we get

all and let the attention models in HyGNN learn which substructures are more important for

DDI.

Moreover, we take the best-performing method from each baseline model, namely Node2Vec

from random walk-based embedding, GraphSage from GNN on DDI, GraphSage from GNN

on SSG, CASTER, and k-mer & MLP from our HyGNN models. Then, we compare their
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performances by changing the training sizes from 10% to 80% for both datasets. A compar-

ison of performance is outlined in Fig 3.4. Results indicate HyGNN to be the best-performing

model, and it still gives very good results with small training data. However, decreasing

the training size affects the baseline models significantly, especially GraphSage on the SSG

model. It is worthy of mention that based on our results, all graph-based models, especially

different variants of GNNs, including HyGNN and baselines, have performed fairly well on our

data.

Hypergraphs are used in a wide range of scientific fields. Hypergraphs are a natural

method to illustrate shared group relationships. Through a hypergraph structure, HyGNN is

able to capture higher-order correlations between data (i.e., triadic, tetradic, etc.). Further-

more, employing an attention mechanism makes it more robust by giving more weight to

important substructures while learning representations of drugs. Though GAT has attention

architecture as well, it can not discover the important edges. The main strength of our HyGNN

is the proposed hyperedge encoder that has two levels of attention mechanism. At first, it

aggregates the hyperedges to generate the representation of the node. While aggregating,

it imposes more attention on the important hyperedges. Similarly, to generate the repre-

sentation of a hyperedge, it aggregates the nodes’ information with much attention to the

important ones.

Moreover, HyGNN has a decoder function, and we learn all the parameters of the encoder

and decoder simultaneously during training. From Table 3.5 and Table 3.6, we can see

HyGNN with k-mer & MLP performs better than dot product. k-mers are k-length substrings
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Drug1 Drug2 TL Predicted DDI Score DL
Desvenlafaxine Paroxetine 0 0.9989 1

Probenecid Metformin 0 0.9931 1
Fluvastatin Metronidazole 0 0.9212 1
Loratadine Isradipine 0 0.9703 1
Glyburide Bosentan 0 0.9068 1
Salmeterol Dicycloverine 0 0.9189 1
Valdecoxib Sodium sulfate 0 0.9105 1
Lisinopril Naratriptan 0 0.9336 1

Bexarotene Maprotiline 0 9.9993e-10 0
Amoxapine Econazole 0 6.8256e-09 0
Nabilone Oxaprozin 0 4.1440e-08 0

Dexmedetomidine Carbachol 0 1.2417e-08 0

Table 3.7 Novel DDI Predictions by HyGNN on the TWOSIDES Dataset

Drug1 Drug2 DL Predicted DDI Score TL
Hydroxychloroquine Loratadine 0 0.9879 1
Dextromethorphan Ofloxacin 0 0.9772 1

Midazolam Warfarin 0 0.9884 1
Benzthiazide Fentanyl 0 5.6989e-14 0

Labetalol Levonorgestrel 0 9.1049e-07 0
Cefprozil Disulfiram 0 1.0882e-11 0

Table 3.8 Novel DDI Predictions by HyGNN on DrugBank Dataset

included inside a biological sequence. A bigger k-mer is preferable since it ensures greater

uniqueness in the base sequences that will create the string. Larger k-mer sizes aid in the

elimination of repetitive substrings. Moreover, MLP predictors are well-suited for classifica-

tion problems in which data is labeled. They are extremely adaptable and may be used to

learn a mapping from inputs to outputs in general. Additionally, it generates superior results

compared to dot predictor since it has trainable parameters that are learned throughout the

training.

3.3.4.3 Case Study - Prediction and Validation of Novel DDIs

We evaluate the effectiveness of HyGNN model on novel DDIs prediction. We select some

drug pairs from the TWOSIDES. None of these drug pairs have DDI info in TWOSIDES
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Dataset Unseen Node F1 ROC-AUC PR-AUC
TWOSIDES 5% 72.75 78.25 85.64
DrugBank 5% 65.23 70.84 78.04

Table 3.9 Performance of HyGNN for New Drugs

but have DDI info in DrugBank. Then we train our HyGNN using TWOSIDES and make

predictions for those pairs. Following that, we collect predicted scores for those drug pairs

as shown in Table 3.7. From this table, we see that for the first eight drug pairs, though

the TWOSIDES label for each of these pairs is zero, we get predicted scores above 90% for

each pair, which shows there is a high chance that each pair will interact between them.

To further validate it, we cross-check our predicted score with DrugBank, which says each

of these eight drug pairs interacts between them. Moreover, for the last four-drug pairs of

Table 3.7 the predicted scores are minimal, and TWOSIDES, and DrugBank both say they

don’t interact. Similarly, six drug pairs are selected from DrugBank having no DDI info in

DrugBank but in TWOSIDES as shown in Table 3.8, then HyGNN is trained using DrugBank

data and validated the predicted scores by TWOSIDES.

3.3.4.4 Case Study- DDI Prediction for New Drugs

Making DDI predictions for new drugs could be more challenging than existing drugs. Since

the model does not learn based on the SMILES strings of new drugs. To show the effectiveness

of our model for new drugs, at first, we randomly select a 5% drug from a dataset and

completely remove these drugs’ information from the corresponding train set and keep those

drugs’ information only in the test set. These selected 5% drugs can be considered new

drugs. The experimental results for both datasets with new drugs are shown in Table 3.9.
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As we see in the table, our model predicts DDIs effectively for both datasets.
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CHAPTER 4

SEQ-HYGAN: SEQUENCE CLASSIFICATION VIA HYPERGRAPH
ATTENTION NETWORK

4.1 Introduction

In this paper, we present a novel Hypergraph Attention Network model, Seq-HyGAN, for se-

quence classification. We hypothesize that sequences sharing structural similarities tend to

belong to the same classes, and sequences can be considered similar if they contain similar

subsequences. To capture these structural similarities, we represent sequences in a hyper-

graph framework, where sequences are depicted as hyperedges connecting their respective

subsequences as nodes. This allows us to create a single hypergraph encompassing all se-

quences in the dataset. Unlike a standard graph where each edge connects exactly two

nodes, hyperedges can connect an arbitrary number of nodes, enhancing the representation

of sequences and capturing complex relationships among them.

Our Seq-HyGAN architecture employs a three-level attention-based neural network, mak-

ing it robust in capturing both local (within the sequence) and global (between sequences)

information. Traditional GNNs are limited to message-passing between two nodes, but

our hypergraph setting enables learning robust sequence representations through message-

passing among many nodes and between nodes and hyperedges.

Our contributions are summarized as follows:

• Hypergraph Construction from Sequences: We introduce a novel hypergraph

construction model where each subsequence from the sequences is represented as a
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node, and each sequence, composed of unique subsequences, is represented as a hyper-

edge. This model captures higher-order structural similarities between sequences.

• Hypergraph Attention Network: We propose Seq-HyGAN, a hypergraph attention

network model specifically designed for sequence classification. Our model learns se-

quence representations as hyperedges while considering both local and global context

information through three levels of attention-based aggregation. At the first level, it

generates node embeddings incorporating global context by aggregating hyperedge em-

beddings. At the second level, it refines node embeddings for each hyperedge, capturing

local context by aggregating neighboring node embeddings within the same hyperedge.

Finally, at the third level, it generates sequence embeddings by aggregating node em-

beddings from both global and local perspectives.

• Capturing Importance via Attention: Our model incorporates an attention mech-

anism to capture the relative importance of individual subsequences (nodes) within

each sequence (hyperedge). This mechanism learns the varying significance of specific

subsequences in contributing to the overall similarity between sequences and discerns

the importance of subsequences and sequences relative to each other, capturing inter-

dependencies at different levels of granularity.

• Extensive Experiments: We conduct extensive experiments on four different datasets

and five classification problems, comparing Seq-HyGAN with state-of-the-art baseline

models. The results demonstrate that our method significantly surpasses baseline mod-
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(a) Hypergraph Construction (b) Seq-HyGAN

Figure 4.1 System architecture of the proposed method. The first step is hypergraph con-
struction, where each sequence (e.g., DNA) is a hyperedge, and the (frequent) subsequences
of sequences are the nodes. The second step is the Sequence Hypergraph Attention Network,
namely Seq-HyGAN, which generates the representations of sequences while giving more at-
tention to the important subsequences and learning the labels of the sequences.

els in various accuracy measures.

4.2 Methodology

4.2.1 Preliminaries and Settings

Sequence classification is the problem of predicting the class of sequences. Our motivation

in this work is that patterns as subsequences are important features of sequences, and if

two sequences share many patterns, they have a higher similarity. Also, it is assumed that

similar sequences will have the same class labels. To define the higher-order pattern-based

similarity between sequences, we construct a hypergraph from the sequence data.

After hypergraph creation, to accomplish the sequence classification task, we propose an

attention-based hypergraph neural network model consisting of a novel three-level attention

mechanism that learns the importance of the subsequences (nodes) and, thus, the repre-
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sentation of the sequences (hyperedges). We train the whole model in a semi-supervised

fashion. Our proposed model has two steps: (1) Hypergraph construction from the sequence

data, (2) Sequence classification using attention-based hypergraph neural networks. Figure

4.1 shows the overall model architecture.

4.2.2 Sequence Hypergraph Construction

In order to capture the similarity between sequences, we define the relationship between

sequences based on common subsequences within each sequence. We represent this rela-

tionship as a hypergraph that captures the higher-order similarity of the sequences. First,

we decompose the sequences into a set of subsequences as the important patterns of the

sequences. Then, we represent this set of subsequences as the nodes of the hypergraph, and

each sequence, including a set of subsequences, is a hyperedge. Each hyperedge may connect

with other hyperedges through some shared nodes as subsequences. Thus, this constructed

hypergraph defines a higher-level connection of sequences and subsequences and helps to

capture the complex similarities between the sequences. Moreover, this hypergraph setting

ensures a better robust representation of sequences with a GNN model having a message-

passing mechanism not only limited to two nodes but rather between the arbitrary number

of nodes and also between edges through nodes. The steps of hypergraph construction are

shown in Algorithm 4.

Different algorithms can be used to generate the subsequences, such as ESPF [118], k-mer

[119], strobemers [120]. In this paper, we exploit ESPF, and k-mer to generate subsequences

and examine their effects on the final results. While k-mer uses all the extracted subsequences
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for a certain k value, ESPF only selects the most frequent subsequences from a list of

candidate subsequences for a certain threshold.

Algorithm 4: Sequence Hypergraph Construction

Input: Sequences
Output: Hypergraph incident matrix: A
Subsequence list¡- Sequence Decomposition(Sequences);
/* Sequence Decomposition() could be ESPF or k-mer that decomposes

sequences into moderated size subsequences. */

for each subsequence in Subsequence list do
if subsequence is in Sequence dictionary[sequence] then

A[i, j] = 1 ; /* i,j is the id of subsequence and sequence,

respectively. */

end

end
Output: Hypergraph incident matrix, A

ESPF: ESPF stands for Explainable Substructure Partition Fingerprint. As for sub-

word mining in the natural language processing domain, ESPF decomposes sequential inputs

into a vocabulary list of interpretable moderate-sized subsequences. ESPF considers that a

specific sequence property is mainly led by only a limited number of subsequences known as

functional groups. Given a database, S of sequences as input, ESPF generates a vocabulary

list of subsequences as frequent reoccurring customized size subsequences. Starting with

tokens as the initial set, it adds subsequences having a frequency above a threshold in S to

the vocabulary list. Subsequences appear in this vocabulary list in order of most frequent to

least frequent. In our hypergraph, we use this vocabulary list as nodes and break down any

sequence into a series of frequent subsequences relating to those. For any given sequence as

input, we split it in order of frequency, starting from the highest frequency one. An example

of splitting a DNA sequence is as follows.
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CTGAAAGCAACAGTGAGACGATGAGACCGACGATCCCAGGAGG

⇓

CTGAAAG CAACAG TGAGA CGA TGAGA CCGACGA TCCCAG GAGG

k-mer: k-mer is an effective tool widely used in biological sequence data analysis (e.g.,

sequence matching). It splits sequential inputs into a list of overlapping subsequence strings

of length k. To generate all k-mers from an input string, it starts with the first k characters

and then moves by just one character to get the next subsequence, and so on. If t is the

length of a sequence, there are t − k + 1 numbers of k-mers and T k total possible number

of k-mers, where T is the number of monomers. k-mers can be considered as the words

of a sentence. Like words, they help to attain the semantic features from a sequence. For

example, for a sequence ATGT, monomers: {A, T, and G}, 2-mers: {AT, TG, GT}, 3-mers:

{ATG, TGT}.

4.2.3 Sequence Hypergraph Attention Network

To classify sequences, it is essential to generate feature vectors that can effectively embed

the structural information. Since in our hypergraph model, we represent each sequence as a

hyperedge; we need to learn hyperedge representation. Regular GNN models that generate

the embedding of nodes do not work on our hypergraph. Therefore, we propose a novel

Sequence Hypergraph Attention Network model, namely Seq-HyGAN.

Given the f dimensional hyperedge feature matrix, X ∈ R|E|×f and incidence matrix

A ∈ R|V|×|E|, Seq-HyGAN generates a hyperedge feature vector of f ′ dimension via learning a



54

function F . Then, it predicts labels for sequences using generated feature vectors.

Our proposed model leverages memory-efficient self-attention mechanisms to capture

high-order relationships in the data while preserving both local and global context informa-

tion. It comprises a three-level attention network: hyperedge-to-node, node-to-node, and

node-to-hyperedge levels. At the hyperedge-to-node level, attention is utilized to aggregate

hyperedge information and generate node representations that encapsulate global context.

The node-to-node level attention refines the node representations by aggregating informa-

tion from neighboring nodes within the same hyperedge, capturing local context. Lastly,

the node-to-hyperedge level attention aggregates node representations from both local and

global context perspectives to generate hyperedge representations with attention. We define

tree attention layers in general as follows.

pli = AGE−V
l(pl−1

i , nl−1
j |∀ej ∈ Ei), (4.1)

ml
i,j = AGV−V

l(pli, p
l
y|∀vy ∈ ej), (4.2)

nl
j = AGV−E

l(nl−1
j , pli,m

l
i,j|∀vi ∈ ej) (4.3)

where AGE-V (Hyperedge-to-Node) aggregates the information nj of all hyperedges ej to

generate the l-th layer representation pli of node vi and Ei is the set of hyperedges that node vi

belongs to. AGV-V(Node-to-Node) generate the l-th layer representation ml
i,j of node vi for

a specific hyperedge ej by aggregating all the nodes vy present in ej. Finally, AGV-E(Node-

to-Hyperedge) aggregates the information of all nodes vi that belongs to hyperedge ej to
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generate the l-th layer representation nl
j of ej.

Hyperedge-to-node level attention: As our first layer, we learn the representation of

nodes via aggregating information from hyperedges to capture the global context in the

hypergraph. Although a node may belong to different hyperedges, all hyperedges may not

be equally important for that node. To learn the importance of hyperedges for each node

and incorporate them into the representation of nodes, we design a self-attention mechanism.

While aggregating hyperedge representations for a node, this attention mechanism ensures

more weight to important hyperedges than others. With the attention mechanism, the l-th

layer node feature pli of node vi is defined as

pli = α

⎛⎝∑︂
ej∈Ei

ΓijW1n
l−1
j

⎞⎠ (4.4)

where α is a nonlinear activation function, W1 is a trainable weight matrix, and Γij is the

attention coefficient of hyperedge ej on node vi defined as

Γij =
exp(ej)∑︁

ek∈Ei
exp(ek)

(4.5)

ej = β(W2n
l−1
j ∗W3p

l−1
i ) (4.6)

where Ei is the set of hyperedges vi is connected with, β is a LeakyReLU activation function

and ∗ is the element-wise multiplication and W2 and W3 are trainable weights.

Node-to-node level attention:

The hyperedge-to-node level attention captures global context information while gen-

erating node representations. However, while a subsequence is common in the different
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sequences, they may also have different roles and importance in each sequence. Therefore,

it is crucial to capture the local information of nodes specific to hyperedges. Moreover,

we need to incorporate the individual contributions of adjacent local subsequences into the

representation of a specific subsequence. Furthermore, retaining the positional information

of the subsequences in a sequence is essential for the accurate analysis of sequence data. To

address these, we introduce a node-to-node attention layer that passes information between

nodes in a hyperedge. It learns the importance of subsequences for each other within the

same sequence and also incorporates a position encoder that assigns a unique position to each

subsequence. To get the position information, we adopt a simple positional encoder inspired

by the transformer model [41]. This enables us to preserve local and spatial information of a

subsequence within a specific sequence. Using the attention mechanism, the l-th layer node

feature ml
i,j of node vi belonging to hyperedge ej is defined as

ml
i,j = α

⎛⎝∑︂
vy∈ej

ΦiyW4pȳ
l

⎞⎠ (4.7)

p̄y = py + PE(posvy) (4.8)

PE(pos, 2x) = sin(pos/100002x/d) (4.9)

PE(pos, 2x+ 1) = cos(pos/100002x/d) (4.10)

WhereW4 is a trainable weight, Φiy is the attention coefficient of neighbor node vy on node

vi. PE represents the positional encoding function, posvy represents the original positional

index of vy in the sequence, PE(pos, x) refers to the x-th dimension of the positional encoding
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of the word at position pos in the sequence, and d denotes the dimension of the positional

encoding. The attention coefficient Φiy is defined as

Φiy =
exp(qy)∑︁

qk∈ej exp(qk)
(4.11)

qy = β(W5pȳ
l ∗W6pī

l) (4.12)

where ej is the hyperedge node vi belongs, W5 and W6 are trainable weights.

Node-to-hyperedge level attention: Hyperedge is degree-free that consists of an arbi-

trary number of nodes. However, the contribution of nodes in hyperedge construction may

not be the same. To highlight the important nodes for each hyperedge, we employ an atten-

tion mechanism. This attention aggregates node representations and assigns higher weights

to crucial ones. Moreover, during the aggregation process, it considers the representations of

the nodes from both local and global contexts, allowing for a comprehensive understanding

of their significance within the hypergraph. With the attention mechanism, the l-th layer

hyperedge feature nl
j of hyperedge ej is defined as

nl
j = α

⎛⎝∑︂
vi∈ej

∆jiW7(m
l
i,j||pli)

⎞⎠ (4.13)

where W7 is a trainable weight, || is the concatenation operation, and ∆ji is the attention

coefficient of node vi in the hyperedge ej defined as

∆ji =
exp(vi)∑︁

vk∈ej exp(vk)
(4.14)
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vi = β
(︁
W8(m

l
i,j||pli) ∗W9n

l−1
j )
)︁

(4.15)

where vk is the node that belongs to hyperedge ej, and W8, W9 are trainable weights.

Seq-HyGAN generates the hyperedge representations by employing this three-level of at-

tention. Finally, we linearly project the output of Seq-HyGAN with a trainable weight matrix

to generate a C dimensional output for each hyperedge as Z = nW T
c , where C is the number

of classes, n is the output of the Seq-HyGAN, and Wc is a trainable weight.

Training: We train our entire model using a cross-entropy loss function defined as

L = −
N∑︂
i=1

C∑︂
c=1

wc log
exp(Zi,c)∑︁C
j=1 exp(Zi,j)

yi,c (4.16)

where y is the target, w is the weight, C is the number of classes, and N is the number of

samples.

4.2.4 Complexity

Seq-HyGAN is an efficient model that can be parallelized across the edges and the nodes [121].

Given the f dimensional initial feature of a sequence, it exploits a three-level attention net-

work and generates f
′

dimensional embedding vector for the sequence. Thus, the time com-

plexity of Seq-HyGAN can be expressed in terms of the cumulative complexity of the attention

networks. From equation 4.4, we can formulate the time complexity for the hyperedge-to-

node level attention as: O(|E|ff ′
+ |V|κf ′

), where κ is the average degree of nodes. And

in the node-to-node level attention, the time complexity is: O(|E|(χff ′
+ χ2f

′
)), where χ

is the average degree of hyperedges. Similarly, we can formulate the time complexity in the
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node-to-hyperedge level attention as: O(|V|ff ′
+ |E|χf ′

).

4.3 Experiment

In this section, we perform extensive experiments on four different datasets and five different

research problems to evaluate the proposed Seq-HyGAN model. We compute three different

accuracy metrics, Precision (P), Recall (R), and F1-score (F1), to analyze and compare

our proposed model with the state-of-the-art baseline models. This section starts with a

description of our datasets, parameter settings, and baselines, and then we present our

experimental results.

4.3.1 Dataset

We evaluate the performance of our model using four different sequence datasets. They are

(1) Human DNA sequence, (2) Anti-cancer peptides, (3) Cov-S-Protein-Seq and (4)

Bach choral harmony. All these datasets are publicly available online.

1. The Human DNA (HD) sequence dataset consists of 4,380 DNA sequences [124].

Each DNA sequence corresponds to a specific gene family (class), with a total of seven

families.

Our objective is to predict the gene family based on the coding sequence of the DNA.

2. The Anti-cancer peptides (ACPs) are short bioactive peptides [125]. ACPs are

found to interact with vital proteins to inhibit angiogenesis and recruit immune cells to

kill cancer cells, such as HNP-110 [106]. These unique advantages make ACPs the most

promising anti-cancer candidate [126]. The ACP dataset contains 949 one-letter amino-acid
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sequences representing peptides and their four different anti-cancer activities (i.e., very ac-

tive, moderately active, experimental inactive, virtual inactive) on breast and lung cancer cell

lines [127]. Given the amino-acid sequence, our goal is to predict the anti-cancer activities.

3. The Cov-S-Protein-Seq (CPS) dataset consists of 1,238 spike protein sequences from

67 different coronavirus (CoV) species, including SARS-CoV-2 responsible for the COVID-

19 pandemic [128, 129]. The dataset provides information on the CoV species (CVS) and

their host species (CHS) [130]. The CoV species are grouped into seven categories, and the

host species are grouped into six categories. The goal is to predict the CoV species and host

species based on the spike protein sequences.

4. Music is sequences of sounding events. Each event has a specific chord label. The

Bach choral (BC) harmony dataset consists of 60 chorales containing a total of 5,665 events

[127]. Each event is labeled with one of 101 chord labels and described by 14 features. The

goal is to predict the chord label based on this information. For the experiment, the five

most frequent chord labels out of the 101 chord labels are selected.

4.3.2 Parameter Settings

We extract subsequences from given sequence datasets using ESPF and k-mer separately to

create our hypergraph. With a low-frequency threshold, ESPF produces more subsequences,

and all of them may not be important. But with a large-frequency threshold, it produces less

number of subsequences, and there might be a missing of some vital subsequences. We choose

five different frequency thresholds from 5 to 25 and examine the impact of threshold value on

hypergraph learning. Similarly, in k-mer, typically with the increment of k-mer length (i.e.,
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ESPF HD BC ACP CPS
|N | |N | |N | |N |

5 25207 446 382 10776
10 15774 347 225 7987
15 11166 287 166 6769
20 8871 253 138 5971
25 7483 198 110 5477

k-mer HD BC ACP CPS
|N | |N | |N | |N |

5 1247 3220 10301 99794
10 602,855 14462 6799 157,399
15 1,449,240 16163 3103 193,544
20 1,462,963 17909 - 223,073
25 1,467,256 18752 - 248,938

Table 4.1 Number of Nodes (N) in the hypergraph based on frequency threshold of ESPF
and k value of k-mer

k value), the number of subsequences also increases. We choose five different k values from

5 to 25 and examine their impact on hypergraph learning. However, as Anticancer peptide

sequences are too small, we just choose k from 5 to 15. The number of nodes for different

threshold values of ESPF and k value of k-mer is given in Table 4.1 for each dataset.

We perform a random split of our datasets, dividing them into 80% for training, 10%

for validation, and 10% for testing. This splitting process is repeated five times, and the

average accuracy metrics are calculated and reported in the results section. To find the

optimal hyperparameters, a grid search method is used on the validation set. The optimal

learning rate is determined to be 0.001, and the optimal dropout rate is found to be 0.3 to

prevent overfitting.

We utilize a single-layer Seq-HyGAN having a three-level of attention network. one-hot

coding is used as an initial feature of the sequences. A LeakyReLU activation function is

used on the attention networks side. The model is trained with 1000 epochs and optimized

using Adam optimizer. An early stop is used if the validation accuracy does not change for
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100 consecutive epochs.

The ML classifiers in subsection: 4.3.3 are taken from sci-kit learn [131]. For logistic

regression (LR), we set the inverse of regularization strength, C=2. A linear kernel with

polynomial degree 3 is used in the support vector machine (SVM). Default parameters are

used for the decision tree (DT) classifier. The DL models are implemented from Keras layers

[132]. In the DL models, RCNN and BiLSTM, we use relu and softmax activation functions

in the hidden dense layers and dense output layer, respectively. The models are optimized

using Adam optimizer, and dropout layers of 0.3 are used. For node2vec, the walk length,

number of walks, and window size are set to 80, 15, and 15, respectively, and for graph2vec,

we use the default parameters following the source. We follow DGL [133] to implement

graph attention network (GAT). For DNA-GCN and hypergraph neural networks (HGNN,

HyperGAT), we use the same hyper-parameters as mentioned in the source papers.

4.3.3 Baselines

We evaluate our model by comparing its performance with different state-of-the-art models.

Based on the data representation style and methodology, we categorize the baseline models

into groups below.

1. Machine Learning We utilize CountVectorizer to generate the input features and

employ LR, SVM, and DT classifiers. 2. Deep Learning We use two different hybrid DL

models, recurrent convolutional neural networks (RCNN) and bidirectional long short-term

memory (BiLSTM), as baselines. 3. Node2vec We represent each sequence in a graph set-

ting by following a classic method called the De-Bruijn graph as explained in section 2.3.2.
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After constructing the graph, we apply Node2vec [123], which is a random walk-based graph

embedding. Node2vec generates the embedding of nodes. To obtain the graph-level represen-

tation, we average the embedding of nodes of that graph. Finally, the generated embedding is

fed as a feature to the ML classifier for sequence classification. 4. Graph2vec In the same De-

Bruijn graph, we apply the Graph2vec [134] method to generate graph embeddings. Then the

graph embeddings are fed into the ML classifiers for sequence classification. 5. Graph Neural

Network Here, we apply graph attention network (GAT) [121] on De-Bruijn graphs to learn

the node embedding. Then we get the graph-level embedding using an average pooling-based

readout function. Moreover, we follow DNA-GCN [31] to construct a heterogeneous graph

from the entire corpus and the extracted subsequences. This graph has two types of nodes:

sequence node and subsequence node. After constructing the graph, we apply a two-layer

GCN. 6. Hypergraph Neural Network (HNN) We further compare our model performances

with two state-of-the-art hypergraph neural network models: HGNN [7] and HyperGAT [10].

HGNN generates the representation of nodes by aggregating hyperedges. First, we apply

HGNN to our hypergraphs and get the node (i.e., subsequence) representations, and then

we combine the node representations to get the hyperedge representations. Finally, the

hyperedge representations are passed through a classifier. HyperGAT is an attention-based

hypergraph neural network that is presented for document classification problems. We apply

HyperGAT to our sequence hypergraphs and generate the embeddings of subsequences, and

then we apply a mean-pooling layer to get the sequence embedding. Then, the representa-

tion is passed through a classifier. In both HGNN and HyperGAT, we use one-hot coding
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Figure 4.2 Performance comparison of the proposed model with different thresholds of (a)
ESPF and (b) k-mer for different datasets.

of nodes as initial features.

4.3.4 Results

4.3.4.1 Model Performance

We assess the performance of our proposed model by performing extensive experiments on

four different datasets for five different problems. For each experiment, we select different

threshold values of ESPF and k-mer, and we present the overall performance of our proposed

models in terms of the F1-score in Figure 4.2.

In Figure 4.2 (a), we depict the performance of our models with a changing frequency

threshold of ESPF from 5 to 25. As we can see from this figure, with the increase of ESPF

frequency threshold, model performance degrades generally. Especially it shows that the

ESPF frequency threshold has a comparatively more significant impact on the Human DNA

dataset than others. With the change of frequency threshold from 5 to 25, the F1 score of

the Human DNA dataset has dropped by almost 25%. Since with the increase of frequency
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threshold, we get a smaller number of subsequences (nodes), and it might not be enough to

learn hyperedges with those smaller numbers of nodes (refer Table 4.1). Generally, frequency

threshold 5 yields the best performance for Human DNA and CoV-S-Protein-Seq (for Host

species classification) datasets. We get the best performance for Bach choral, Anticancer

peptides, and CoV-S-Protein-Seq (for CoV species classification) datasets with frequency

thresholds of 15, 10, and 15, respectively.

Figure 4.2 (b) presents the proposed models’ performances for k-mer ranges from 5 to

25. As of ESPF, the effect of parameter k on the results is the most for Human DNA than

other datasets. When the k value is 5, the F1-score of Human DNA is 33.98%, and for the k

value of 25, it is increased by about 190% to 98.83%. The next highest changes are noticed

for the Bach choral dataset. With the increase of threshold k from 5 to 25, its F1-score

is increased by about 27%. The value of k has comparatively less impact on the results of

Cov-S-Protein-Seq datasets. However, interestingly, with the increase of k, the results of the

Anticancer peptides dataset decrease. The reasons for these scenarios could be explained by

Table 4.1. In this table, we can see that with the increase in k, the number of nodes in the

Human DNA dataset has markedly increased from 1,247 to 1,467,256. This vast number of

nodes might capture better information and thus improve the overall performance. On the

other hand, for Anticancer peptides, with the increase of k, the number of nodes decreases,

hence the graph size, which might degrade the performance.
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Model Method Human DNA Bach choral Anticancer pept.
P R F1 P R F1 P R F1

LR 92.82 90.64 90.84 88.09 76.68 78.52 77.00 83.16 77.67
ML SVM 90.09 85.39 85.83 89.30 80.27 82.08 83.10 86.32 83.27

DT 92.87 80.37 83.68 86.49 70.85 73.92 78.28 85.32 81.35
RCNN 68.84 37.90 27.86 76.83 71.30 68.23 69.62 80.00 73.34

DL BiLSTM 77.80 39.27 35.18 73.93 69.96 66.32 65.70 81.05 72.57
LR 36.09 32.19 22.89 16.11 20.17 18.14 71.32 82.11 75.11

Node2vec SVM 10.32 30.82 14.52 14.14 20.18 16.17 66.39 81.05 72.99
DT 18.04 18.26 18.13 23.03 22.87 22.89 68.75 64.21 66.40
LR 21.07 26.94 23.63 23.34 19.73 17.81 66.39 81.05 72.99

Graph2vec SVM 10.32 30.82 14.52 13.09 15.75 16.50 71.32 82.11 75.11
DT 19.41 19.63 19.39 25.60 25.56 25.48 77.93 73.68 75.54

GNN DNA-GCN 96.46 96.28 96.36 85.54 85.24 85.27 83.25 83.53 83.82
GAT 30.06 42.14 36.01 24.75 29.19 31.12 79.23 87.44 79.67

HNN HGNN 87.03 86.82 87.12 86.12 86.89 86.93 83.82 85.42 83.97
HyperGAT 85.13 85.33 84.11 88.09 87.44 87.45 85.33 88.42 86.68

ESPF 88.77 87.89 87.78 89.93 89.72 89.88 91.98 86.75 87.65
Seq-HyGAN k-mer 98.91 98.88 98.83 93.78 93.10 93.18 93.36 91.72 92.33

Table 4.2 Performance comparisons of models for Human DNA, Bach choral and
Anticancer datasets

Method Model Host species CoV species
P R F1 P R F1

LR 92.64 91.94 91.48 96.04 95.16 95.21
ML SVM 94.20 93.55 93.42 96.60 95.97 96.02

DT 92.25 91.13 91.25 95.60 94.97 95.02
RCNN 83.22 79.03 76.82 65.53 62.90 57.47

DL BiLSTM 70.61 66.94 61.56 66.66 72.58 66.92
LR 26.28 29.03 19.29 12.34 20.16 14.92

Node2vec SVM 23.07 24.19 23.27 22.42 25.00 23.54
DT 20.00 21.77 20.80 23.47 23.39 23.33
LR 23.74 25.00 23.98 25.92 28.23 26.67

Graph2vec SVM 17.22 27.42 17.81 17.16 22.58 16.59
DT 22.68 22.58 22.50 22.80 22.58 22.47

GNN DNA-GCN 90.91 90.18 91.11 94.34 94.57 94.13
GAT 22.36 33.23 25.22 24.10 29.65 26.19

HNN HGNN 91.52 91.91 91.60 94.62 94.42 94.63
HyperGAT 93.44 93.55 93.14 95.52 95.35 95.45

ESPF 95.78 95.66 95.49 98.89 98.78 98.72
Seq-HyGAN k-mer 97.83 96.13 97.01 99.56 99.29 99.45

Table 4.3 Performance comparisons of models on Cov-S-Protein-Seq dataset for Host and
CoV species prediction

4.3.4.2 Comparative Analysis with Baselines

We compare our model results with several state-of-the-art baseline models for each dataset.

We consider the thresholds for ESPF and k for k-mer that give the best result for our models
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for each dataset; as an example, for the Human DNA dataset, we chose k = 25 for k-mer that

gives the highest score for this data. The experimental results of all models for Human DNA,

Bach choral, and Anticancer peptides (Anticancer pept.) datasets are shown in Table 4.2,

and all model results for Cov-S-Protein-Seq dataset for both host species and CoV species

are shown in Table 4.3. In these tables, we can see our models surpass all the baselines

thoroughly for all the datasets. More specifically, in Table 4.2 for the Human DNA dataset,

our Seq-HyGAN with k-mer gives the best performance with 98.91%, 98.88%, and 98.83% on

precision (P), recall (R), and F1-score (F1). The next best performer is DNA-GCN, which

achieves an F1-score of 96.36%, more than 2.5% lower than our model and similar to other

accuracy measures. The performances of ML models are also very promising and competitive

with our models. All the ML models achieve an F1-score above 80%.

Eventually, for all the datasets, the hypergraph-based model gives the best performance.

Specifically, in almost every case, HyperGAT serves as the superior baseline, while HGNN

performs as the second-best baseline. The reason for their success lies in their ability to

capture higher-order, intricate relationships within a hypergraph structure. Additionally,

HyperGAT utilizes attention networks to enhance sequence representation learning, which

is superior to HGNN’s approach. It is worth mentioning that we apply these models to our

hypergraphs, and our experiments demonstrate the effectiveness of representing sequences

as hypergraphs.

The overall performance of DNA-GCN is also very competitive with hypergraph-based

approaches. DNA-GCN is based on a heterogenous graph that has both sequence and subse-
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quence nodes. It allows information to be passed between the subsequences and also between

sequence and subsequence. Moreover, though it does not have any direct connection between

sequence nodes, it employs a two-layer GCN that allows the information to be passed be-

tween the sequences too. This whole architecture helps it learn a robust representation of

sequences. Out of all ML models, generally, SVM generates better output for all the datasets.

However, ML models cannot learn features automatically and are limited to external fea-

tures. In both tables, for all the datasets, the performances of DL models fail to cross the

ML classifiers. For example, in the Bach choral dataset, the F1-score of Seq-HyGAN with

k-mer is above 93%, and for ML with SVM classifier, it is above 82%. However, the F1-score

for RCNN and BiLSTM are 68.23% and 66.32%, respectively. A similar scenario in all other

datasets. A possible reason behind the poor performance of DL models could be the size of

the data corpus. We know DL models are called data-hungry models. Their performances

largely rely on the availability of a bulk amount of label data. However, all our datasets are

small.

From Table 4.2, and 4.3, we can observe that the performance of Node2vec, Graph2vec,

and GAT on the Anticancer peptides dataset is convincing, but their performances on other

datasets are abysmal. The network structure of these datasets may be a contributing factor

to this discrepancy. To further investigate, we calculate the average network density of each

dataset by computing the mean density of its corresponding graphs. For each dataset, the

best k-mer is chosen based on the performances of Seq-HyGAN models on that dataset. We

find that the Anticancer peptides dataset exhibits the highest average network density of
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0.3868, while the Human DNA, Bach Choral, and CoV-S-Protein-Seq dataset graphs have

lower densities of 0.0100, 0.2702, and 0.0031, respectively. This disparity in network density

could explain the subpar performance of Node2vec, Graph2vec, and GAT on these datasets.

In brief, Seq-HyGAN with k-mer delivers better performances than Seq-HyGAN with ESPF.

This may be because ESPF assumes frequent subsequences are the only important ones and

eliminates many infrequent subsequences. However, some infrequent subsequences may also

be important. Thus, using ESPF, we may seldom lose some infrequent important ones.

On the contrary, k-mer does not lose any subsequences; rather, it fetches all and lets the

attention model discover the critical ones. In general, a larger k-mer is preferable since it

provides greater uniqueness and helps to eliminate the repetitive substrings. Moreover, we

choose the best-performing method from each baseline model for each dataset; for example,

in the case of the Human DNA dataset, we choose LR from the ML models, BiLSTM from

the DL models, LR from Graph2vec, DNA-GCN from GNN, HyperGAT from HNN and

25-mer from our Seq-HyGAN models. Then, we compare our models’ performances with the

baselines by varying the training data sizes from 10% to 80%. A comparison of performance

in terms of the F1-score is shown in Fig 4.3. Results indicate Seq-HyGAN to be the best-

performing model, and it still delivers very good results with small training data. However,

decreasing the training size affects some baseline models significantly.

The hypergraph’s innate ability to capture complex higher-order relationships has made

it an effective model for many scientific studies. Seq-HyGAN leverages a hypergraph struc-

ture and captures higher-order intricate relations of subsequences within a sequence and
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Figure 4.3 Performance comparison of models for different training sizes

between the sequences. Furthermore, it generates a much more robust representation of

sequence by utilizing an attention mechanism that discovers the important subsequences of

that sequence. While GAT [121] also uses an attention mechanism, it is limited to learn-

ing important neighbors of a node and cannot learn significant edges. Additionally, GAT

is unsuitable for complex networks with triadic or tetradic relations. The key strength of

our proposed model, Seq-HyGAN, lies in its three-level attention mechanism, which effectively

captures both local and global information. This mechanism allows for the generation of node

representations by aggregating information from connected hyperedges (global information)
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Dataset # of nodes # of edges
|N | |E|

Human DNA 5,422,447 5,418,151
Bach choral 34111 31890

Anticancer peptides 11939 11058
Cov-S-Protein-Seq 1,576,019 1,574,782

Table 4.4 Number of Nodes (N) and Edges (E) in De-Bruijn Graphs

and neighboring nodes (local information) within the same hyperedge, with a specific em-

phasis on important ones. Likewise, it enables the generation of hyperedge representations

by aggregating member nodes, with a particular focus on critical ones.

4.3.4.3 Space Analysis

Our models demonstrate efficient memory usage by creating only one hypergraph per dataset.

Regardless of the chosen thresholds for ESPF and k for k-mer, the number of hyperedges

remains consistent across the hypergraphs. In contrast, the De-Bruijn method constructs

a separate graph for each sequence, resulting in a significant number of nodes and edges.

For instance, in Table 4.1, we can see that the hypergraph constructed from the Human

DNA dataset with a k-mer value of 25 contains 1,467,256 nodes and where the number of

hyperedges is the same as the number of sequences in that dataset as mentioned in 4.3.1

which is 4380. However, in Table 4.4, we can see that the De-Bruijn graph constructed from

the same dataset with the same k-mer value comprises 5,422,447 nodes and 5,418,151 edges.

Similar trends are observed in other datasets as well.
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Dataset Line graph Seq-HyGAN
GCN GAT w/o attn w/ attn

Human DNA 37.08 39.19 94.13 98.83
Bach coral 75.41 77.65 91.21 93.18

Anticancer peptides 83.52 86.86 89.88 92.33
Host species 72.70 75.31 90.16 97.01
CoV species 80.83 86.50 95.77 99.45

Table 4.5 F1-score scores for different variants of the model

4.3.4.4 Case Study - Impact of hypergraph structure

In contrast to standard graphs, hypergraphs offer the ability to capture higher-order com-

plex relationships that are not easily represented by standard graphs. To demonstrate this

capability, we conduct a comparison between our hypergraph-based Seq-HyGAN model and

standard graphs. To facilitate this comparison, we construct line graphs from the same

datasets, where each sequence is represented as a node, and nodes are connected if they

share a certain number (S) of common subsequences (with S = 2 in our case). Subse-

quently, we apply GCN and GAT independently to learn node representations and classify

sequences. The performance results are presented in Table 4.5. The results clearly indicate

that our hypergraph-based Seq-HyGAN models outperform line graph GCN and GAT models

in terms of the F1-score.

4.3.4.5 Case Study - Impact of Attention Network

In this research paper, we aim to investigate the impact of the attention network in the

proposed Seq-HyGAN model on classification performance. To achieve this, we train the model

separately with and without the attention network on all datasets and classification problems.

The corresponding F1-scores for the test datasets were recorded and are presented in Table
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4.5. The results show that the proposed Seq-HyGAN model with the attention network (w/

attn) outperforms the model without the attention network (w/o attn). Specifically, for

CoV-S-Protein-Seq: Host species, the F1-score improved from 90.16% without the attention

network to 97.01% with the attention network, representing a significant 7.59% improvement.

This improvement can be attributed to the attention network’s ability to discover crucial

subsequences while learning the sequence representation, which ultimately leads to better

performance.
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CHAPTER 5

SAHT: STRUCTURE-AWARE HYPERGRAPH TRANSFORMER

5.1 Introduction

In this paper, we present SaHT, a novel Structure-aware Hypergraph Transformer model,

which generates node representations using a new structure-aware self-attention mechanism

that identifies the importance of nodes and hyperedges from both semantic and structural

perspectives.

First, we create hypergraphs from standard graphs, preserving higher-order structural

information. Our SaHT model then employs a learnable structure encoding scheme in the in-

put layer, capturing local and global structural information through local structure encoding,

centrality encoding, and uniqueness encoding. We also use a learnable hypergraph Laplacian

eigenvector as a position encoder to incorporate distance-aware spatial information.

To capture the varying degrees of structural and semantic importance of nodes and hy-

peredges, we introduce a structure-aware self-attention mechanism consisting of two layers.

The Local Structure-Aware Node-to-Hyperedge Attention layer aggregates node representa-

tions into hyperedge representations by emphasizing structurally and semantically significant

nodes, using node-local clustering coefficient and node coreness. The Global Structure-Aware

Hyperedge-to-Node Attention layer aggregates hyperedge representations into node represen-

tations by highlighting important hyperedges, using hyperedge density score and hyperedge

clustering coefficient.

Our contributions are summarized as follows:
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• Hypergraph Construction: Unlike existing methods that create hypergraphs by

grouping nodes with similar attributes, potentially losing structural information, we

construct hypergraphs by discerning higher-order connections between nodes, preserv-

ing node structural integrity.

• Node Feature Enrichment via Structural and Spatial Encoding: SaHT intro-

duces three structure encoding schemes and a position encoder to enhance the capture

of structural and spatial information, allowing the model to leverage both initial node

features and discovered structural-spatial patterns.

• Structure-Aware Self-Attention: Our structure-aware self-attention mechanism

incorporates both attribute-based semantic features and structural information, iden-

tifying crucial nodes for hyperedges and important hyperedges for nodes from both

perspectives. We introduce four measures to discover structurally significant nodes

and hyperedges.

5.2 Background

In this section, we first outline the basics of transformer. Then, we review the literature on

graph and hypergraph neural networks, including their transformer variants, emphasizing

key contributions and findings in these areas.
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5.2.1 Preliminaries

5.2.1.1 Transformer

The transformer is a neural network architecture that exploits a self-attention mechanism to

capture local and global dependencies in the input data. The main components of the model

are a multi-head self-attention (MHA) module and a position-wise feed-forward network

(FFN). The MHA module computes attention weights by projecting the input into a query

(Q), key (K), and value (V ) vectors. If Z ∈ Rn×d is a d dimensional input feature where

Z = [z1, z2, ...., zn]T , the MHA first projects it to Q, K, and V using three learnable weight

matrices WQ ∈ Rd×dQ , WK ∈ Rd×dK , and W V ∈ Rd×dV as

Q = ZWQ, K = ZWK , and V = ZW V . (5.1)

Then in each head h ∈ {1, 2, 3, ..., H}, the self-attention mechanism is applied to the corre-

sponding (Qh, Kh, Vh) as

∆h = (QhK
T
h )/
√︁
dK , (5.2)

outputh = softmax(∆h)Vh. (5.3)

Here, ∆ represents the attention map and the dimensions of dQ = dK = dV = d. The outputs

from different heads are concatenated and transformed to get the MHA output, which is

further fed into a position-wise FFN layer. Residual connections and layer normalization are

used to stabilize and normalize the outputs.
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b) Structure-Aware Self-Attention for Hypergraph Transformer

Initial Node
Feature

Hyperedge
Feature

Output
Global Structure-Aware

 Hyperedge-to-Node
Level Attention

Structure-Aware
Self-Attention

Add & Norm

Feed Forward
Network

Add & Norm

Local Structure
Importance  Mining

Local Structure-Aware
 Node-to-Hyperedge

Level Attention

Structure-Aware 
Self-Attention
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Feed Forward
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a) Structural and Spatial Encoding

Hyperedge
Importance via
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Hyperedge Importance
via Clustering
Coefficient: cc

Global Structure
Importance  Mining

Node Importance
via local clustering
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Node Importance
via Coreness: kc

Hypergraph
Construction

Figure 5.1 Structure-aware Hypergraph Transformer, SaHT, consists of a) Structural and Spa-
tial Encoding that enriches initial node representation via learnable structural and spatial
node features and b) Structure-Aware Self-Attention that enables the integration of struc-
tural importance of nodes for a hyperedge and hyperedges for a node into regular attribute-
based semantic attention to derive the ultimate node representations.

5.3 Methodology

In this section, we outline components of our SaHT model. As the first step of SaHT, we

present the structure and spatial encoding module as the initial node feature enrichment

process. Next, we propose a structure-aware self-attention module that integrates both the

local and global structural information of nodes and hyperedges into the regular semantic

feature-based self-attention network as an inductive bias.

In Section 5.3.3, we explain how we create our structure-based hypergraph from a stan-

dard graph. Unlike existing works that construct hypergraphs by grouping semantically
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similar nodes into hyperedges [7, 9, 8], which may result in a loss of critical structural infor-

mation, we develop a hypergraph from an input graph by identifying subgraphs considering

higher-order structural relations of nodes and representing these subgraphs as hyperedges.

We can consider different measures to define higher-order structures such as communities,

cliques, and motifs. Details about hypergraph construction are presented in Section 5.3.3.

We present the system architecture of our SaHT in Figure 5.1.

5.3.1 Node Feature Enrichment via Structural and Spatial Encoding

In graph data, a node’s significance extends beyond its individual attributes. Its position,

connections, and unique characteristics within the entire graph determine its relevance. Tra-

ditional feature representation methods often miss this nuanced information, as two nodes

might share attributes but differ in roles due to their connections and positions. Similarly, a

uniquely attributed node might still be peripheral in the overall structure. Moreover, while

we create hypergraphs from graphs, we lose the nodes’ local connection information. Thus,

in order to incorporate the important structural and spatial information of the nodes into

their representations via a transformer, we introduce four different encoding methods from

both graph and hypergraph perspectives: (1) local structure encoding lse, (2) centrality

encoding ce, (3) uniqueness encoding ue and (4) position encoding pe. We combine all these

encodings and integrate them into initial (i.e., 0th layer) node features of a node vi, x
0
i , as

follows

xi = Aggregate(x0i , lsei, cei, uei, pei). (5.4)
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By integrating these encodings with the original input features, the transformer can better

learn node representations, encoding both structural-spatial and semantic context. The

subsequent sections will dig deeper into each encoding, elucidating their formulation and

contributions.

5.3.1.1 Local Structure Encoding

As mentioned earlier, we create a hypergraph from a given graph by representing subgraphs

as hyperedges. However, while creating a hyperedge from a subgraph, we lose the local con-

nection information between nodes, which might be crucial for the hyperedge representation

and thus the hypergraph. To preserve the local connection information, we apply GCNs to

the input graph. GCNs adeptly capture and retain local connection information by propa-

gating information across node neighborhoods, thus discerning each node’s local structure

encoding (lse). This encoded information is combined with the input node features.

lsei = FGCN (N (i); θ) , (5.5)

where lsei denotes the local structure encoding for node vi, calculated using a GCN func-

tion, represented as FGCN . This function is applied to the node’s neighborhood, N (i), and

is parametrized by θ, a set of learnable parameters, to adaptively capture the localized

information around node vi.
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5.3.1.2 Centrality Encoding

In line with our hypergraph construction strategy, we employ closeness centrality to discern

the significance of nodes within the graph structure. Nodes with high closeness centrality

are integral for efficient information propagation due to their shorter distances to other

nodes. In SaHT, we leverage closeness centrality as an additional signal to enhance the input

node features. To be specific, we develop a learnable centrality encoding function Fcentrality;

given the closeness centrality scores as input; it generates a centrality embedding vector for

each node. By integrating the original nodes’ features with these embedding vectors, the

transformer is better equipped to grasp the nodes’ roles and influence within the graph.

Centrality encoding ce can be formulated as

ce = Fcentrality(c;ψ), (5.6)

where c is a vector of centrality scores of all the nodes, and ψ is a learnable parameter.

5.3.1.3 Uniqueness Encoding

If a node appears in multiple hyperedges, it may not possess a distinct identity within

any specific hyperedge, and as a result, its significance within those hyperedges could be

diminished. To encode the importance of nodes based on their appearance in different

hyperedges, we introduce a uniqueness score ⊓, and for node vi, defined as

⊓i = 1− CA(i)

CT

, (5.7)
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where CA(i) is the number of hyperedges that node vi appears, CT is the total number of

hyperedges in the hypergraph. The more a node appears in different hyperedges, the less

uniqueness the score is. We store the uniqueness scores of all the nodes into a vector u. Given

the u as an input, we exploit a learnable function Funiqueness that assigns an embedding vector

to each node according to its uniqueness score, which is further added with the input node

features. Uniqueness encoding ue is defined as

ue = Funiqueness (u; ζ) , (5.8)

where u is a vector of uniqueness scores of all the nodes, and ζ is a learnable parameter.

5.3.1.4 Position Encoding

Position encoding (pe) plays a crucial role in the transformer architecture for capturing se-

quential information using different position functions (e.g., sine, cosine). However, when

dealing with arbitrary graphs, the direct application of positional encoding becomes challeng-

ing due to the absence of a clear positional notion. To overcome this limitation, researchers

have introduced the use of eigenvectors derived from the graph Laplacian as a graph-specific

alternative to sine and cosine functions [109, 135].

We adopt the method in [136] to calculate the hypergraph Laplacian eigenvector ev.

Then, we apply a learnable function, Fspatial, which, when provided with the ev, produces

an embedding for each node, serving as the node positional encoding. This captures the

nodes’ structural information, considers their relationships, and incorporates the connectiv-

ity patterns within the hypergraph. It also encodes distance-aware (spatial) information
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where nearby nodes or nodes connected by hyperedges share similar positional features.

We incorporate this positional information with the node input features. Additionally, we

address eigenvector multiplicity by randomly flipping the sign during training. This regular-

ization technique prevents the model from overfitting to specific sign patterns and promotes

the learning of more robust and generalized representations. Position encoding pe can be

expressed as

pe = Fspatial(ev;ϕ), (5.9)

where ev is hypergraph Laplacian eigenvectors and ϕ is a learnable parameter.

5.3.2 Structure-Aware Self-Attention

In this section, we describe our structure-aware self-attention mechanism capturing high-

order relationships between nodes and hyperedges. This model incorporates novel two-level

attention, encompassing both node-to-hyperedge and hyperedge-to-node information prop-

agation via considering their semantic and structural importance for each other, facilitating

the integration of local and global contexts into node representation learning.

The first level, node-to-hyperedge, aggregates node information to create hyperedge repre-

sentations via local structure-aware self-attention. Conversely, the second level, hyperedge-

to-node, gathers hyperedge representations to generate the final node representation via

global structure-aware self-attention. As shown in Equation 5.2, the self-attention network

in traditional transformer architecture calculates attention scores between different nodes and
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hyperedges by evaluating the attribute-based semantic similarity whereas the vital structural

information is ignored. To address this, at each attention level, we introduce different struc-

tural inductive biases that allow the model to capture both semantic and vital structural

information simultaneously.

5.3.2.1 Local Structure-Aware Node-to-Hyperedge Level Attention.

Hyperedge is degree-free and consists of an arbitrary number of nodes. However, the con-

tribution of nodes and their importance in hyperedge construction could be different. To

identify the important nodes for a given hyperedge, we leverage a self-attention mechanism

that aggregates node representations and assigns higher weights to crucial ones. In addition

to a semantic perspective of regular self-attention, we inherit the local structure of subgraphs

as hyperedges to extract the structural significance of nodes within hyperedges. Since we

represent each subgraph as a hyperedge, the structurally significant nodes for a subgraph

will also be important for that corresponding hyperedge. To determine these nodes, we cal-

culate the structural importance of nodes for that subgraph (hyperedge). Then, we combine

nodes’ structural importance with the attention map as a structure inductive bias. With the

modified attention mechanism, the l-th layer representation qlj of a hyperedge ej is defined

as

qlj = α

(︄∑︂
vi

[ΓjiW1p
l−1
i | vi ∈ ej]

)︄
, (5.10)

where α is a nonlinear activation function, W1 is a trainable weight matrix, and Γji is the

attention coefficient of node vi in the hyperedge ej. The attention coefficient is defined as
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Γji =
exp(rji)∑︁

vk
[exp(rjk) | vk ∈ ej]

, (5.11)

and

rji =
β(W2p

l−1
i ∗W3q

l−1
j )

√
dK

+ Ωji, (5.12)

where β is a LeakyReLU activation function, vk is the node that belongs to hyperedge ej,

W2, W3 are the trainable weight matrices, ∗ is the element-wise multiplication, Ωji is the

total structural importance of node vi for hyperedge ej. We first start by presenting how we

calculate nodes’ structural importance, namely the local clustering coefficient (lc) and k-core

(kc) values. We will eventually add these values to get the total local structural importance

of a node for a hyperedge as

Ωji = lcji + kcji. (5.13)

i. Node Importance via Local Clustering Coefficient. Understanding the structural

significance of individual nodes within a network is crucial for various applications such as

information dissemination and influence assessment. One effective way to quantify a node’s

structural importance is by examining its local clustering coefficient. For our subgraphs, it

can be defined as follows.

Definition 1 (Node local clustering coefficient). The local clustering coefficient (lc) of a

node in a subgraph is the ratio of the number of connections between the node’s neighboring

nodes (within the subgraph) to the total number of possible connections between them (within
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the subgraph), i.e.,

lcji =
Iji

gji(gji−1)

2

.

In this formula, Iji represents the number of connections existing among the neighbors of

the node vi within the subgraph that pertains to hyperedge ej. Conversely, the term
gji(gji−1)

2

computes the maximum possible number of connections among all neighbors of vi, where gji

indicates the degree of the node vi in the subgraph associated with hyperedge ej.

The lc of nodes measures the density of connections among their neighbors, indicating

the presence of tightly-knit clusters. Nodes with high lc are important as they are likely to

facilitate information flow, influence spreading, and contribute to network resilience.

ii. Node Importance via Coreness. The concept of k-core decomposition is rooted in

the identification of a graph’s maximal subgraphs, where each node is connected to at least

k other nodes within the network. It assigns a k-core (kc) value to each node, representing

the highest level of connectivity it shares with its neighbors. Consequently, nodes with

high kc values are considered more central and pivotal within the network. The process

begins by assigning a k-core value to each node of the subgraph, quantifying its connectivity

level within the network. The decomposition process then systematically prunes nodes with

lower connectivity, starting from those with the least connections and progressively moving

towards nodes with higher degrees of connectivity. This pruning process is dynamic, with

the connectivity degrees of neighboring nodes adjusted accordingly. Nodes persisting in the

highest k-core constitute the network’s core structure, showcasing robust connections.
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5.3.2.2 Global Structure-Aware Hyperedge-to-Node Level Attention.

In hypergraphs, a node can be part of several hyperedges, yet not all hyperedges hold equal

significance for a node. This necessitates a self-attention mechanism to emphasize the key

hyperedges associated with a specific node. Moreover, employing vanilla self-attention as

defined in Equation 5.2 will only capture the importance of hyperedges from a semantic

point of view, ignoring structural importance. To address this issue, we dive into the struc-

tural properties of hyperedges, and the corresponding subgraphs and calculate the structural

importance of the subgraphs (hyperedges) for each node.

After determining the structural importance of hyperedges, we combine them with the

attention map of the hyperedge-to-node level attention network as a structure inductive bias.

With the modified attention mechanism, the l-th layer representation pli of node vi is defined

as

pli = α

⎛⎝∑︂
ej

[ΛijW4q
l
j | ej ∈ Ei]

⎞⎠ , (5.14)

where α is a nonlinear activation function, W4 is a trainable weight matrix, Ei is the set of

hyperedges connected to node vi, and Λij is the attention coefficient of hyperedge ej on node

vi. The attention coefficient is defined as

Λij =
exp(tij)∑︁

ek
[exp(tik) | ek ∈ Ei]

, (5.15)

and

tij =
β(W5q

l
j ∗W6p

l−1
i )

√
dK

+ Υij, (5.16)
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Algorithm 5: Hyperedge Clustering Coefficient Computation

Input: Subgraph Hs = (Vs, Es)
Output: Clustering Coefficients cc of Hs

nodes← list(Vs)
triangle count← 0
for (idx, u) ∈ enumerate(nodes) do

for v ∈ nodes[idx+ 1 :] do
if H.has edge(u, v) then

com neig ← list(common neighbors(Hs, u, v))
triangle count← triangle count+ len(com neig)

end

end

end
triangle count← triangle count/3 ; /* Each triangle is counted three times

*/

mH ← |VH| total possible triangles← mH(mH−1)(mH−2)
6

if total possible triangles > 0 then

clustering coefficient← triangle count
total possible triangles

end
else

clustering coefficient← 0.0
end
return cc← clustering coefficient

where W5 and W6 are the trainable weight matrices, and Υij is the total structural impor-

tance of hyperedge ej for node vi. To calculate the structural significance of a hyperedge

for its member nodes, we introduce two new measures: hyperedge density (hd) and hyper-

edge clustering coefficient (cc). By computing these measures, we can determine the relative

importance of hyperedges in terms of their structural impact on the connected nodes. Calcu-

lated measures are simply added to get the total global structural importance of a hyperedge

for a node as

Υij = hdij + ccij. (5.17)
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i. Hyperedge Importance via Density Score. Understanding the significance of hyperedges

within a hypergraph is essential for analyzing network connectivity and cohesiveness. One

effective way to measure the importance of a hyperedge is its density score.

Definition 2 (Hyperedge Density). The hyperedge density (hd) quantifies the proportion

of nodes that a hyperedge ej consists of compared to the total number of nodes in the hyper-

graph. If a hyperedge ej consists of mej nodes and m is the total number of nodes in the

hypergraph, then hd can be expressed as
mej

m
.

A higher hd indicates stronger interconnectivity among the nodes within the hyperedge,

implying a more cohesive and significant grouping. Hyperedges consisting of a larger number

of nodes are deemed more significant for a given node compared to hyperedges with fewer

nodes.

ii. Hyperedge Importance via Clustering Coefficient. In hypergraphs, hyperedges are

crucial for representing complex relationships and patterns. To evaluate the structural im-

portance of these hyperedges, we introduce the hyperedge clustering coefficient.

Definition 3 (Hyperedge clustering coefficient). The hyperedge clustering coefficient (cc) is

defined from its subgraph, which is the ratio of the number of existing triangles between all

pairs of nodes to the total number of possible triangles in that subgraph.

The cc provides insights into the cohesive structure of a subgraph by quantifying the

extent of interconnectivity among its nodes. A higher cc signifies that the nodes within

a subgraph are densely interconnected, indicating a strong level of cohesion. A subgraph
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(hyperedge) with a larger cc score is considered important for a node. Algorithm 5 outlines

the steps to compute the hyperedge clustering coefficient from the subgraph.

Like the transformer paper [41], the output of each self-attention layer is fed into a

position-wise FFN layer. Moreover, residual connections and layer normalization are used

to stabilize and normalize the output. SaHT generates the node representations by utilizing

these two levels of attention. Finally, the output of SaHT is linearly projected with a shared

trainable weight matrix WS to generate an S dimensional output for each node as O = pWS,

where S is the number of classes, p is the output of the SaHT. We train our entire model

using a cross-entropy loss function.

5.3.3 Hypergraph Construction

Existing models for creating hypergraphs from standard graphs typically utilize node at-

tributes and methods like k-means/k-NN to group semantically similar nodes into a single

hyperedge [7, 9, 8]. That may cause a loss of structural insight in the graph, which is vital

for effective node representation learning in a hypergraph setting. To address this challenge,

We develop a hypergraph from an input graph by identifying subgraphs considering higher-

order structural relations of nodes and representing these subgraphs as hyperedges. We can

consider different measures to define higher-order structures such as communities, cliques,

and motifs. In this study, we use communities to represent higher-order structural relations

of nodes. Communities are densely connected subgraphs capturing group interaction beyond

the pairwise interaction. While representing each community as a hyperedge, there should be

overlaps between communities to make the hypergraph connected. To identify these commu-
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Figure 5.2 Hypergraph Construction: Each community is represented as a hyperedge.

nities, we evaluate various overlapping community detection methods and eventually adopt

the algorithm described in [137], which exhibits better performance in our experiments. This

algorithm utilizes edge attributes as weights; in cases where the input graph does not provide

these attributes, we assign a uniform weight of 1 to each edge. Each detected community is

then represented as a hyperedge in the hypergraph, with the community members serving

as nodes within these hyperedges.

While employing an overlapping community detection algorithm, it’s notable that not

all communities will overlap, occasionally resulting in isolated hyperedges that lack connec-

tions to others. This isolation can hinder the flow of information within the hypergraph.

To mitigate this and enhance connectivity between hyperedges, we strategically incorporate

global nodes chosen based on their high closeness centrality scores from the input graph.

Closeness centrality, measuring the average shortest distance of a node to all other nodes,

helps identify nodes that can rapidly disseminate information across the network. By linking

these centrally located global nodes to hyperedges, we significantly boost the interconnectiv-

ity and information exchange across the hypergraph, ensuring a more cohesive and efficient

network structure. Figure 5.2 provides a detailed visual representation of the hypergraph
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construction process.

5.3.4 Complexity

Given the f dimensional initial feature of a node, SaHT exploits a two-level attention network

and generates f
′

dimensional embedding vector for the node. Thus, the time complexity of

SaHT can be expressed in terms of the cumulative complexity of the attention networks along

with the structure encoding involved in each attention module.

To formulate the total time complexity for the Local Structure-Aware Node-to-Hyperedge

Level Attention, we divide it into two parts. The first part involves calculating the time

complexity of the node-to-hyperedge level attention, which can be formulated as O(|V|ff ′
+

|E|def
′
), wherein |V| represents the number of nodes, |E| represents the number of hyper-

edges, and de denotes the average size of each hyperedge, typically a minimal value. In the

second part, we calculate the time complexity of the local clustering coefficient and k-core.

The local clustering coefficient exhibits a time complexity of O(|E|de). Analogously, the

time complexity of the k-core decomposition can be expressed as O(|E|de). So, the over-

all time complexity involved in Local Structure-Aware Node-to-Hyperedge Level Attention is

O(|V|ff ′
+ |E|def

′
)+2O(|E|de).

Similarly, if dn represents the average node degree (i.e., the average number of hyperedges

to which a node belongs), the time complexity for the hyperedge-to-node level attention can

be expressed as O(|E|ff ′
+ |V|dnf

′
). The cumulative time complexity required to calculate

hd is demonstrable O(|V|dn). Consequently, the overarching time complexity incurred for

determining the hyperedge clustering coefficient is calculated to be O(|E|(decn)3/2), where
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cn is the average number of common neighbors between any two nodes in a hyperedge. So,

the overall time complexity involved in Global Structure-Aware Hyperedge-to-Node Level

Attention is O(|E|ff ′
+ |V|dnf

′
)+O(|V|dn)+O(|E|(decn)3/2).

5.4 Experiment

5.4.1 Experimental Setup

We evaluate SaHT on five distinct datasets including citation network and social network

datasets [138]. Detailed statistics for these datasets are provided in Table 5.1. The com-

munity detection algorithm follows [137] with default settings. We also present constructed

hypergraph statistics of these datasets in Table 5.1. The number of global nodes for the

Cora and the Citeseer, PubMed, DBLP, and LastFMAsia (LFMA) datasets is set to 3, 1, 4,

5, and 4, respectively. Our experiments follow a standard split of 50% for training, 25% for

validation, and 25% for testing.

To assess performance, we benchmark SaHT against sixteen models using their default

settings. These models are categorized based on their architectural design: models intended

for standard graphs are referred to as graph-based models, while those designed for hyper-

graphs are referred to as hypergraph-based models. The baseline hypergraph-based models

utilize hypergraphs constructed according to the methodologies described in their respec-

tive original studies. The graph-based models include Graph Transformer (GT) full and

sparse versions [109], Graphormer [42], ANS-GT [44], NAGphormer [43], GPRGNN [139],

GCNII [55]. The hypergraph-based models include HGNN [7], HCHA [50], HyperGCN [79],
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Dataset #N #E #C #HyE*
Cora 2,708 5,429 7 263

Citeseer 3,312 4,715 6 563
PubMed 19,717 44,338 3 168
DBLP 17,716 105,734 4 739
LFMA 7,624 55,612 18 46

Table 5.1 Dataset Statistics. Here, #N, #E, and #C are the number of nodes, number of
edges, and number of classes, respectively. Furthermore, #HyE* indicates the number of
hyperedges in the hypergraphs derived from these datasets via our hypergraph construction
method.

DHGNN [8], HNHN [140], UniGCNII [82], AllSetTransformer [83], SheafHyperGCN and

SheafHyperGNN [141], HSL [142], and DHKH [143].

In the structural and spatial encoding methods described in Section 5.3.1, we employ four

different encoding functions to capture distinct aspects of the input graph and constructed

hypergraph. To integrate local connectivity information with lse, we utilize a two-layer

GCN implemented in Deep Graph Library (DGL) [144]. To compute ce and ue, we develop

learnable encoding functions by utilizing PyTorch’s learnable Embedding layer. pe is executed

using PyTorch’s learnable Linear layer that leverages hypergraph Laplacian eigenvectors to

generate positional embeddings for each node.

In SaHT, we conduct semi-supervised node classification in a transductive setting, repeat-

ing experiments ten times with different random splits. Node and hyperedge features are

one-hot encoded, and we employ a single-layer SaHT with Adam optimization. The optimal

hyperparameters are determined through a grid search on the validation set. Based on our

grid search, we chose a learning rate of 0.001 and a dropout rate of 0.5 for regularization. The

LeakyReLU activation function is applied, and the model has four attention heads. Training

spans 500 epochs, incorporating early stopping if the validation accuracy does not change
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Method Model Cora Citeseer PubMed DBLP LFMA

Graph-based

GT-full 63.10 59.05 77.02 78.85 79.23
GT-sparse 72.04 66.12 80.11 82.15 81.21

Graphormer 70.76 67.52 82.17 80.01 83.23
ANS-GT 86.70 73.52 87.92 82.52 86.88

NAGphormer 86.12 71.55 87.51 81.89 86.15
GPRGNN 86.17 76.11 86.96 81.78 85.92

GCNII 86.71 75.86 88.07 81.58 85.96

Hypergraph-based

HGNN 79.39 72.45 86.44 78.25 80.48
HCHA 79.14 72.42 86.41 79.52 82.44

HyperGCN 78.45 71.28 82.84 82.78 80.20
DHGNN 79.52 73.59 80.50 80.37 80.22
HNHN 76.36 72.64 86.90 80.72 84.17

UniGCNII 78.81 73.05 88.25 82.17 84.49
AllSetTransformer 78.59 73.08 88.72 83.15 86.21
SheafHyperGCN 80.06 73.27 87.09 82.37 86.88
SheafHyperGNN 81.30 74.71 87.68 83.11 87.14

HSL 79.88 73.79 - - -
DHKH 82.60 71.68 77.50 81.48 83.25
SaHT 88.48 78.09 89.01 84.38 88.58

Table 5.2 Performance Comparisons: Mean accuracy (%)

for 100 consecutive epochs. The hidden dimension of SaHT is set to 64. SaHT is implemented

using the DGL with PyTorch on a Tesla V100-SXM2-32GB GPU.

5.4.2 Result

We evaluate the performance of our model by conducting experiments on five distinct

datasets and comparing the results with thirteen state-of-the-art baselines. The baselines

are considered if their experimental results or codes are available. The outcomes, presented

in Table 5.2, unambiguously demonstrate the superiority of our model across all datasets.

Specifically, our model excels on the Cora dataset, achieving an impressive accuracy of

88.48%. This significantly surpasses the accuracy of the best-performing graph-based base-

line model, GCNII, at 86.71% and exceeds the top-reported accuracy of the hypergraph-based

baseline, DHKH, which stands at 82.60%. In the case of the Citeseer dataset, our model

attains an accuracy of 78.09%, outperforming the graph-based leading baseline GPRGNN
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with an accuracy of 76.11%, and the hypergraph-based top-performing baseline, SheafHyper-

GNN, at 74.71%. The trend continues with the PubMed, DBLP, and LastFMAsia datasets,

where our model substantially outperforms the baselines. The results underscore our model’s

substantial enhancements in classifying the datasets, setting a new standard compared to

existing state-of-the-art methods.

A closer look at Table 5.2 reveals that the performance of hyper-graph-based models is

promising. This success might be attributed to their ability to efficiently learn the intri-

cate higher-order structure within the hypergraph. In general, hypergraph-based baseline

models present stiff competition, with DHGNN, AllSetTransformer, and SheafHyperGNN

slightly outpacing others. Specifically, DHGNN, DHKH, and HSL acknowledge that the

input hypergraph structure might not adequately represent the underlying relations in the

data. Consequently, they simultaneously learn the hypergraph structure and hypergraph

neural network, enabling them to prune noisy task-irrelevant and false-negative connections,

producing better output. On the other hand, the AllSetTransformer framework blends Deep

Sets [84] and Set Transformers [85] with hypergraph neural networks to learn multiset func-

tions. This synergy provides substantial modeling flexibility and expressive power, elevating

the performance in various tasks. SheafHyperGNN and SheafHyperGCN enhance hyper-

graph representation by introducing cellular sheaves, a mathematical construction that adds

additional structure to the conventional hypergraph while preserving their local, higher-order

connectivity. This enhancement increases the expressivity of the models, enabling them to

capture more nuanced and complex interactions within the hypergraph, leading to better
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SaHT Cora Citeseer PubMed DBLP LFMA
LS 83.12 73.89 85.32 81.13 83.86
GS 79.68 70.56 82.88 79.32 80.36

Table 5.3 Impact of local and global structural knowledge on the model performance (accu-
racy) for only local structures (LS) (first row) and only global structures (GS) (second row).

overall representation.

Hypergraphs, known for their adeptness at representing intricate higher-order relation-

ships, have become invaluable in numerous scientific endeavors. The proposed SaHT model

builds on this, representing communities as hyperedges and thus forming a hypergraph that

captures intricate node relations. In contrast to existing models that do not consider local

connection information during hypergraph construction, SaHT leverages GCN to preserve this

vital information. Additionally, SaHT integrates unique encoding modules to learn structural-

spatial information and a structure-aware self-attention module. These modules enable SaHT

to produce robust node representations, recognizing key nodes and hyperedges from both

structural and semantic perspectives.

5.4.2.1 Case study - Examining the impact of local and global structural knowledge

To delve deeper into the roles of local and global structural knowledge, we train SaHT ex-

cluding local structural components (specifically, lse, ce, lc, and kc) and omitting global

structural elements (namely, ue, hd, and cc) on all dataset. Outcomes in Table 5.3 illustrate

that local structural information significantly influences SaHT efficacy more than its global

counterpart. Given that hypergraphs inherently harness higher-order global structural de-

tails from the graph, the omission of global encodings in SaHT does not critically hinder its

performance. On the other hand, converting a graph to a hypergraph can result in a loss of
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Dataset

SaHT

W/O pe ce ue lse lc kc hd cc

Cora 85.51 84.19 84.93 81.50 84.64 84.34 86.21 85.12
PubMed 86.22 85.52 86.68 82.44 85.88 86.72 87.34 86.57

Table 5.4 Comparative impact of different design schemes on the model performance (accu-
racy) for Cora and PubMed datasets.

local structural details, underscoring the importance of integrating local structural insights

into hypergraph learning.

5.4.2.2 Case study - Examining the impact of different design schemes

To better understand the impact of each design scheme, we conduct ablation studies on a

small and a large dataset, Cora and PubMed, respectively. We consider running SaHT without

(W/O) considering a specific design scheme each time. The results are presented in Table

5.4, which implies the impact of the individual design scheme on the model performance. For

instance, removing positional encoding (pe) results in an accuracy of 85.51% for the Cora

dataset and 86.22% for the PubMed dataset. This table shows that for both datasets, the

greatest performance degradation occurs when the local structure encoding (lse) is excluded

from the input node feature. When we create hyperedge from a community, we lose the

local connection information between the nodes, which might be very important for the

hyperedges. lse preserves local connection information by applying GCN to the input graph.

The significant decrease in performance without lse highlights its crucial contribution to the

model’s overall performance.
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Model Cora Citeseer PubMed DBLP LFMA
SaHT 88.48 78.09 89.01 84.38 88.58
SaHTN 86.88 76.23 88.41 85.46 87.26
SaHTC 89.13 77.83 87.18 79.32 87.78

Table 5.5 Impact of feature normalization and concatenation on the model performance
(accuracy).

5.4.2.3 Case Study - Examining the Impact of Feature Normalization and Concatenation

As illustrated in Equation 4, our method combines various structural and spatial features

(i.e., encodings) with the initial features of the nodes by summing them. To investigate the

effect of normalizing these features before combining them with the node’s initial features,

we conduct an additional experiment. In this experiment, we normalize the features prior

to their integration. The results of this experiment are presented in Table 5.5 and are

labeled as SaHTN. Additionally, we perform another experiment to evaluate the impact of

concatenating the features instead of summing them. The outcomes of this approach are

also shown in Table 5.5 and are referred to as SaHTC. A comparative analysis of the different

versions of SaHT presented in the table reveals that each version performs better on different

datasets. However, the original SaHT method generally outperforms both the normalized

variant (SaHTN) and the concatenated variant (SaHTC).

5.4.2.4 Case study - Examining the impact of global nodes

We investigate the effect of global nodes (ng) on the model’s performance, illustrated in

Figure 5.3. As per Figure 5.3 (a), the Cora dataset reveals a rising trend in accuracy as the

global nodes ng increase, peaking at 88.48% with ng = 3, followed by a decline. Analogously,

Figure 5.3 (b) presents the Citeseer dataset, where an increment in global nodes prompts an
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Figure 5.3 The performance of SaHT with different numbers of global nodes (ng).

upsurge in accuracy, achieving a maximum of 78.09% at ng = 1 before the accuracy trend

reverses. Similarly, we get the best performance for the PubMed, DBLP, and LastFMAsia

datasets for ng = 4, ng = 5, and ng = 4, respectively. Overall, this trend suggests that

an optimal number of global nodes can effectively incorporate relevant global information.

However, exceeding this optimal number may introduce excessive parameters and reduced

generalization ability. Thus, selecting an appropriate number of global nodes is crucial for

optimal performance.
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CHAPTER 6

HYPERGCL: GRAPH CONTRASTIVE LEARNING VIA LEARNABLE
AUGMENTED HYPERGRAPH VIEWS

6.1 Introduction

In this paper, we model HyperGCL, an Attribute-Structure aware Graph Contrastive Learn-

ing framework from a Hypergraph perspective. To capture various granularities of higher-

order information from graphs, we design three hypergraphs based on the input graph and

its attributes: an attribute-driven hypergraph, a local structure-infused hypergraph, and a

global structure-infused hypergraph. The attribute-driven hypergraph groups semantically

similar nodes, capturing semantic similarities but potentially losing structural details. The

structure-infused hypergraphs preserve local and global structural information.

Instead of predefined augmentations, we use an adaptive technique with a learnable

Gumbel-Softmax function, introducing controlled stochasticity and enhancing training di-

versity. This dynamic augmentation improves the quality and discriminative power of the

views by selectively highlighting important relationships.

We apply view-specific encoders to the augmented views. For the attribute-driven hyper-

graph, we use the Hypergraph Attention Network (HyGAN) to learn node embeddings through

a two-layer attention network. To extract critical structural information from the structure-

infused hypergraphs, we design Structure-aware HyGAN (SHyGAN), which incorporates node

structure encodings and structural inductive biases in the attention networks.

Unlike traditional GCL methods using computer vision contrastive losses like InfoNCE
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or NT-Xent, we introduce a novel network-aware contrastive loss, NetCL. This loss extends

NT-Xent by using network topology as supervised signals to define multiple positive pairs

per anchor. These multiple positives are drawn from the same node in different hypergraph

views, the neighbors of the anchor within a hypergraph view, or from a different hypergraph

view, or the neighbors of the anchor within the input graph. To efficiently manage negative

samples, we propose distance-based and similarity-based negative sampling strategies.

The contributions of this work are:

• View Generation: HyperGCL constructs three different hypergraph views capturing

various granularities of information from the input graph and its attributes, addressing

limitations of existing GCL approaches that mainly focus on local structure.

• Adaptive View Augmentation: HyperGCL employs a learnable Gumbel-Softmax

function to adaptively augment each hypergraph view, ensuring robust training samples

and overcoming the limitations of predefined augmentations.

• View-Specific Encoder: HyperGCL uses view-specific encoders, leveraging HyGAN

for attribute-driven hypergraphs and introducing SHyGAN for structure-infused hyper-

graphs to capture critical structural information effectively.

• Network-Aware Contrastive Loss (NetCL): We propose NetCL, which uses network

structure to define positive and negative samples, and introduce strategies to reduce

the number of negative samples, lowering memory and computational costs.
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6.2 Preliminaries

Hypergraphs provide a more versatile framework for representing relationships among en-

tities than traditional graphs. Unlike graphs, which only allow edges between two nodes,

hypergraphs feature hyperedges that can connect multiple nodes, accommodating varying

degrees of relationships. State-of-the-art approaches to encoding hypergraph structures in-

clude different variants of Hypergrpah Neural Network (HyperGNN) such as HGNN [7], HAN

[9], etc. These methods map the hypergraph to a D-dimensional latent space via a function

f : A → RD. This mapping is achieved through higher-order message passing, effectively

capturing the intricate relationships within the hypergraph. Motivated by advancements in

learning from images, NLP, and graphs, we adopt CL with HyperGNN to further improve

node embeddings. The main components of our HyperGCL, include (i) hypergraph view gen-

eration and augmentations for creating contrasting samples, (ii) view-specific hypergraph

encoders, and (iii) a network-guided contrastive loss that preserves network structure for

optimization. The overall pipeline is shown in Figure 6.1.

6.3 Methodology

In this section, we outline the components of our proposed HyperGCL model. First, we

describe the three different hypergraph view generation processes from the input graph.

Next, we explain the Gumbel-Softmax-based adaptive view augmentation process, followed

by an overview of the hypergraph encoders. Finally, we introduce our proposed network-

aware contrastive loss.
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Figure 6.1 System architecture of HyperGCL. The first step is constructing three different
hypergraph views from the input graph and its node attributes. Then it exploits a learnable
view augmentation technique to generate adaptive views. View-specific encoders are used to
learn each view and finally, a network-aware contrastive loss is used with a supervised loss
to train the model in an end-to-end fashion.

6.3.1 Hypergraph View Generation

Given an input graph G = (V,E) where V is the set of nodes and E is the set of edges,

with m = |V |. We begin by creating multiple hypergraph views from the G and its node

attributes X, capturing various granularities of information. Specifically, we create attribute-

driven, local structure-infused, and global structure-infused hypergraph views to preserve

both attribute and structural information comprehensively.

6.3.1.1 Attribute-driven Hypergraph View (Ha)

Graph data is typically used to model pairwise relationships between nodes. However, graphs

may also contain hidden higher-order complex relations that are not adequately captured by

simple pairwise interactions. To capture these complex higher-order relations, we construct
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a hypergraph exploiting node attributes, named attribute-driven hypergraph view.

In this process, we group semantically similar nodes into hyperedges. To accomplish this,

we apply the k-nearest neighbors (k-NN) and k-means clustering algorithms on the node

attributes X. Each node vi ∈ V and its k nearest neighbors form the initial hyperedges.

Formally, for each node vi, a hyperedge ej̄ is formed, where

ej̄ = {vi} ∪ {vk ∈ V | vk is k nearest neighbors of vi}.

Additionally, all the clusters obtained from k-means are used as additional hyperedges. Each

cluster Cc from k-means clustering is considered a hyperedge:

ec = Cc

Thus, each node vi belongs to both its k nearest neighbors hyperedge and its s closest

clusters hyperedges, where s closest clusters are selected based on the smallest Euclidean

distances between the node and the cluster centers. Formally, let C = {C1, C2, . . . , Ck} be

the set of clusters obtained from k-means. For each node vi, the set of hyperedges it belongs

to is given by:

eaj = {ej̄ | vi ∈ ej̄} ∪ {ej | vi ∈ Cj and

Cj is one of the s closest clusters to vi}.

By combining these hyperedges, we form the hypergraph Ha = (V, Ea), where Ea is the

set of all hyperedges. This attribute-driven hypergraph effectively captures the higher-order
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relationships between nodes based on their semantic similarities, allowing for more detailed

analysis and modeling of the data’s complex interactions.

While this approach is effective in capturing semantic similarities of nodes, it may result

in a loss of detailed structural information in the standard graph. To capture the nodes’

local and global structure, we construct local structure-infused hypergraph view and global

structure-infused hypergraph view.

6.3.1.2 Local Structure-infused Hypergraph View (Hl)

The goal of constructing this hypergraph view is to capture the local structure of each node in

the input graph. To achieve this, we extract a subgraph for each node, specifically considering

the node and its ego network (1-hop neighbors). This subgraph is then represented by a

hyperedge. In the input graph G, each node vi ∈ V is connected to its neighbors through

edges in E. For each node vi ∈ V , we identify its immediate neighbors and create a hyperedge

elj that includes vi and all its immediate neighbors. Formally, the construction of a hyperedge

for a node vi is defined as follows:

elj = {vi} ∪ {vk ∈ V | (vi, vk) ∈ E}.

Then we combine all the hyperedges to form the hypergraph Hl = (V, E l), where E l is the set

of all hyperedges generated from the nodes’ ego-networks. This approach effectively captures

the local context of each node within the hypergraph structure, allowing for more detailed

analysis and modeling of the graph’s local connectivity patterns.
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6.3.1.3 Global Structure-infused Hypergraph View (Hg)

Unlike the hyperedges in Hl, which are constructed based on the local structure of nodes

limited to their ego-network (1-hop neighbors), the hyperedges in Hg are designed to capture

a more comprehensive global perspective from the input graph G. This involves identifying

subgraphs that account for higher-order structural relationships among nodes and represent-

ing these subgraphs as hyperedges. Various measures can be used to define these higher-order

structures, such as communities, cliques, and other configurations. In this study, we utilize

communities to represent the higher-order structural relationships among nodes. Communi-

ties are subgraphs with dense connections that encapsulate group interactions beyond simple

pairwise interactions.

To construct the global structure-infused hypergraph, we identify communities within the

graph G. Formally, let CM = {CM1, CM2, . . . , CMk} be the set of identified communities.

Each community CMc is then represented as a hyperedge, with the community members

acting as nodes within these hyperedges:

ec = CMc

When representing each community as a hyperedge, it is crucial to ensure overlaps be-

tween communities to maintain the connectivity of the hypergraph. To identify these com-

munities, we explore various overlapping community detection methods and ultimately adopt

the algorithm described in [137], as it demonstrated superior performance in our experiments.

This algorithm uses edge attributes as weights. In cases where the input graph lacks these
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attributes, we assign a uniform weight of 1 to each edge. By combining all the hyperedges,

we form the hypergraph Hg = (V, Eg), where Eg represents the set of all hyperedges.

It is important to note that even after applying the overlapping community detection

algorithm, some communities may remain isolated, resulting in hyperedges that are not

interconnected. This isolation can impede the flow of information within the hypergraph.

To address this and enhance connectivity, we incorporate global nodes selected based on their

high closeness centrality scores from the input graph. Closeness centrality, which measures

the average shortest distance of a node to all other nodes, helps identify nodes that can

efficiently disseminate information across the network. By linking these centrally located

global nodes to hyperedges, we significantly improve the interconnectivity and information

exchange across the hypergraph, ensuring a more cohesive and efficient network structure.

6.3.2 Adaptive View Augmentation

For each view, we employ a learnable Gumbel-Softmax function to perform adaptive aug-

mentation. Initially, logits representing the probability of node associations with hyperedges

are initialized as learnable parameters. To introduce controlled stochasticity, these logits

are perturbed with Gumbel noise and subsequently processed through a Softmax function,

yielding a probabilistic mask. A hard threshold is then applied to the probabilistic mask to

derive a binary mask, m, indicating the inclusion of nodes in the hyperedges for the aug-

mented view. To ensure differentiability, we use the straight-through estimator technique.

This technique allows gradients to propagate through the Softmax probabilities by combin-

ing the binary mask m with the probabilistic mask p. Formally, for each node vi, the logits



108

ϕvi are perturbed with Gumbel noise ϵ, and the Softmax function is applied as follows:

pvi = softmax

(︃
ϕvi + ϵ

τ

)︃
, (6.1)

where τ is the temperature parameter. The binary mask for node vi, mvi , is obtained by

applying a threshold θ to pvi :

mvi = (pvi > θ) . (6.2)

To ensure gradients propagate through the Softmax probabilities pvi instead of the binary

mask mvi , we employ the straight-through estimator as follows:

m̃vi = (mvi − pvi) + pvi . (6.3)

The final augmented hypergraph view is produced by element-wise multiplying the binary

mask matrix M, composed of all m̃, with the original hypergraph incidence matrix A:

Ã = M⊙A. (6.4)

This adaptive augmentation technique also works as a method for refining the hypergraph

views. By leveraging this learnable Gumbel-Softmax-based augmentation strategy, our ap-

proach ensures the generation of diverse samples, enhancing the effectiveness of CL in hy-

pergraph settings.

After calculating the gradients during the backward pass, we update the logits of these

matrices using the captured gradients. Additionally, we use the gradient information to guide

the initialization of the mask matrices at each iteration, ensuring that the model starts from
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a more informed state. This iterative update process is expressed as:

Θ(t+1) = Θ(t) − λ · ∇ΘL(t), (6.5)

where Θ = {ϕvi | vi ∈ V } represents the set of all logits, t refers to the current iteration

of the training process, λ is the learning rate, and ∇ΘL(t) denotes the gradient of the loss

function L at iteration t with respect to the logits. By iteratively refining the logits through

this gradient-based update and using gradient information to guide the initialization, we

ensure continuous improvement in the quality of the probabilistic masks and, consequently,

the augmented hypergraph views.

6.3.3 View-Specific Hypergraph Encoder

To generate node embeddings from each view, we utilize view-specific encoders that capture

different granularities of information. Motivated by [10, 73], initially, we design and employ

the Hypergraph Attention Network (HyGAN) on the attribute-driven hypergraph view focusing

on capturing attribute-based semantic information. HyGAN accomplish this by employing a

two-level attention mechanism: node-to-hyperedge level attention and hyperedge-to-node level

attention.

HyGAN: Hyperedge consists of multiple number of nodes. However, all the nodes might not

be equally important for a hyperedge. In HyGAN, Node-to-hyperedge level attention aggregates

node information to produce hyperedge representations. It employs an attention mechanism

to discover the semantically important nodes for that hyperedge and assign greater weight

to them in the aggregation process. The representation of a hyperedge ej at the l-th layer,
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denoted as qlej , is defined as follows:

qlej = α

⎛⎝∑︂
vi∈ej

[︄
exp(rji)∑︁

vk∈ej exp(rjk)

]︄
W1p

l−1
vi

⎞⎠ , (6.6)

where α is a nonlinear activation function, all the Ws are trainable weight matrices, and rji

is calculated as

rji = β(W2p
l−1
vi
⊙W3q

l−1
ej

), (6.7)

with β being a LeakyReLU activation function, ⊙ representing hadamard product.

Similarly, a node may belong to multiple hyperedges but not all hyperedges are equally

important for that node. In HyGAN, Hyperedge-to-node level attention aggregates hyperedges

to generate node representation. It employs an attention mechanism to discover semantically

important hyperedges for that node and assign greater weight to them in the aggregation

process. The l-th layer representation plvi of node vi is defined as

plvi = α

⎛⎝∑︂
ej∈Evi

[︄
exp(yij)∑︁

ek∈Evi
exp(yik)

]︄
W4q

l
vj

⎞⎠ , (6.8)

where Evi is the set of hyperedges connected to node vi, and yij is calculated as

yij = β(W5q
l
ej
⊙W6p

l−1
vi

). (6.9)

SHyGAN: While HyGAN focuses on attribute-based semantic features to identify important

nodes and hyperedges, this approach can lead to a loss of structural information when

applied directly to the structure-infused hypergraph. To address this limitation, we introduce

a specialized variant of HyGAN called Structure-aware HyGAN (SHyGAN). SHyGAN incorporates
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learnable node structure encodings to enhance the initial node features. Additionally, SHyGAN

extends HyGAN by introducing a two-level topology-guided attention network. This network

leverages structural inductive biases in the attention layers to identify significant nodes and

hyperedges from both semantic and structural perspectives.

Node Structure Encoding : A node’s significance in graph data is defined by its connectiv-

ity and role within the graph’s structure, not just its individual features. Standard techniques

often miss these distinctions, as nodes with similar attributes can differ greatly due to their

network connections. To capture these structural details, we introduce three novel embed-

ding techniques: (1) Local Connectivity Encoding (lce), (2) Centrality Encoding (ce), and

(3) Distinctiveness Encoding (de). These are combined with the initial node features x0vi for

node vi as follows:

xvi = Aggregate(x0vi , lcevi , cevi , devi),
(6.10)

Integrating these encodings with original features allows SHyGAN to learn node representations

that reflect both structural and semantic contexts. Detailed explanations of each encoding

method are given below.

6.3.3.1 Local Connectivity Encoding

Converting subgraphs into hyperedges loses crucial local connectivity among nodes, which

might be essential for accurate hypergraph representation. To retain this, we use GCNs, that

effectively capture local connectivity by aggregating information from each node’s neighbors.

This results in a local connectivity encoding (lce), which is then combined with the original
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node features to enrich the overall representation.

lcevi = Gconn (vi,N(vi); Φ) , (6.11)

where lcevi denotes the local connectivity encoding for node vi, derived using the function

Gconn, which processes the neighborhood N(vi), and Φ represents the set of trainable param-

eters

6.3.3.2 Centrality Encoding

Closeness centrality is a measure that captures how close a node is to all other nodes in a

graph. Nodes with high closeness centrality scores can quickly interact with all other nodes,

facilitating efficient information dissemination across the graph. In SHyGAN, we enhance node

features using a learnable centrality encoding function, Gcentral, which generates embedding

vectors from centrality scores. By integrating these embeddings with the original node

features, the model better understands nodes’ roles and influence. Centrality encoding ce is

defined as:

ce = Gcentral(c;ψ), (6.12)

where c is the vector of centrality scores, and ψ is a learnable parameter.

6.3.3.3 Distinctiveness Encoding

Nodes appearing in multiple hyperedges may lose distinctiveness, reducing their significance.

We define a Distinctiveness score d for node vi as:

dvi = 1− (|Evi|/|E|), (6.13)
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where |Evi | is the number of hyperedges node vi belongs to, and |E| is the total number of

hyperedges. Higher counts result in lower Distinctiveness scores. The Distinctiveness scores

are stored in a vector d. Using d, a learnable function GDistinct generates an embedding for

each node, combined with the node’s initial features. Distinctiveness encoding de is given

by:

de = GDistinct(d; ζ), (6.14)

where d is the vector of Distinctiveness scores, and ζ is a learnable parameter.

Topology-Guided Attention Network : HyGAN identifies semantically important nodes and

hyperedges using attribute information but misses structurally important ones. To address

this, we design a topology-guided attention network that employs structural inductive biases

in the attention layers, enabling the model to identify key nodes and hyperedges from both

semantic and structural perspectives. We define two structural inductive biases: Node Local

Clustering Coefficient and Hyperedge Density to identify important nodes within a hyperedge

and significant hyperedges for a node, respectively.

i. Node Significance via Local Clustering Coefficient. In network analysis, determining

the importance of individual nodes is key for applications such as information dissemination

and influence measurement. A useful metric for this purpose is the local clustering coefficient,

which assesses the degree to which a node’s neighbors are interconnected. For our subgraphs,

it can be defined as follows.

Definition 4 (Node Local Clustering Coefficient). For a given node within a subgraph, the

local clustering coefficient (lc) is defined as the proportion of the actual connections among
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its neighbors to the maximum possible connections that could exist among those neighbors

within the subgraph. Mathematically, it is represented as

lcji =
2Iji

gji(gji − 1)
,

In this formula, Iji denotes the actual number of links among the neighbors of node vi

within the subgraph tied to hyperedge ej. The expression
gji(gji−1)

2
calculates the maximum

potential number of links that could exist among all neighbors of vi, where gji is the degree

of node vi within the subgraph linked to hyperedge ej.

The local clustering coefficient lc measures how densely connected a node’s neighbors are,

revealing the presence of closely-knit clusters. Nodes with a high lc are seen as pivotal since

they likely enhance information dissemination, influence propagation, and the robustness of

the network. We incorporate lc as a structural inductive bias into Equation 6.7 as follows:

rji = β(W2p
l−1
vi
⊙W3q

l−1
ej

) + lcji. (6.15)

i. Hyperedge Significance via Density Score Understanding the structural importance

of hyperedges is essential for analyzing the connectivity and cohesion within a hypergraph.

One useful metric for determining the significance of a hyperedge is its density score.

Definition 5 (Hyperedge Density). The hyperedge density (hd) measures the fraction of

nodes within a hyperedge ej relative to the total number of nodes in the hypergraph. If a

hyperedge ej contains mej nodes and the hypergraph has a total of m nodes, the hd is given

by hd =
mej

m
.

A higher hd value signifies greater interconnectivity among the nodes within the hyper-
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edge, indicating a more cohesive and significant group. Hyperedges with more nodes are

considered more influential for a specific node than those with fewer nodes. We integrate hd

as a structural inductive bias into Equation 6.9 as follows:

yij = β(W5q
l
ej
⊙W6p

l−1
vi

) + hdij. (6.16)

We apply HyGAN to the attribute-driven hypergraph view to generate the node embedding

matrix Za. Similarly, we apply SHyGAN to a local structure-infused hypergraph view and a

global structure-infused hypergraph view, generating the node embedding matrices Zl and

Zg, respectively. These embeddings are then utilized in contrastive loss functions to preserve

different granularities of information.

6.3.4 Network-Aware Contrastive Loss (NetCL)

Unlike previous GCL methods that directly utilize contrastive losses originally proposed

in computer vision (e.g., InfoNCE [74] or NT-Xent [55]), we devise a new network-aware

contrastive loss, termed NetCL. NetCL is a novel extension of the NT-Xent loss, incorporating

network topology as supervised signals to define positive and negative samples in HyperGCL.

Specifically, instead of forming only a single positive pair per anchor as in NT-Xent, NetCL

allows for multiple positives per anchor. These multiple positives are defined as follows:

Positive Samples (PosS) for a node vi include the same node vi in two different views,

nodes that are neighbors of vi within the input graph, and nodes that belong to the same

hyperedges as vi in at least one of the views. Conversely, Negative Samples (NegS) for a

node vi include all other nodes that do not meet these criteria. Mathematically, they can be
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defined as:

PosSvi ={same node in two different views}

∪ {vj | vj is a neighbor of vi in the input graph}

∪ {vj | vj belongs to the same hyperedges as vi}

in one of the views}

NegSvi ={otherwise}

Considering all these NegS instances is computationally expensive. To address this, we

propose two selective negative sampling strategies: distance-based negative sampling and

similarity-based negative sampling.

Definition 6 (Distance-Based Negative Sampling). For an anchor node vi, we select the

top ’a’ nodes from NegSvi that are the most distant from the anchor in the input graph. Let

dis(vi, vk) represent the distance from node vi to node vk. The set of distance-based negative

samples Ndis(vi) for anchor node vi can be expressed as:

Ndis(vi) = {vk1 , . . . , vka | dis(vi, vk1) ≥ · · · ≥ dis(vi, vka)},

where vk1 , . . . , vka ∈ NegSvi are the top ’a’ most distant nodes from vi.

Definition 7 (Similarity-Based Negative Sampling). In this strategy, we select the top

’a’ nodes from NegSvi that are the least similar to anchor node vi in terms of cosine similarity.

Let sim(vi, vk) represent the cosine similarity. The set of similarity-based negative samples

Nsim(vi) for the anchor node vi can be expressed as:

Nsim(vi) = {vk1 , . . . , vka | sim(vi, vk1) ≤ · · · ≤ sim(vi, vka)},
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where vk1 , . . . , vka ∈ NegSvi are the top ’a’ least similar nodes to vi. Using these def-

initions, the contrastive loss can be applied with either distance-based or similarity-based

negative samples, providing a comprehensive approach to estimating the mutual information

between node embeddings.

In this research, we employ three distinct contrastive learning modules to capture and

preserve various granularities of information within the node embeddings produced by the

encoders. These modules are as follows: i) Contrast between the attribute-driven view and

the local structure-infused view, ii) Contrast between the global structure-infused view and

the attribute-driven view, iii) Contrast between the local structure-infused view and the

global structure-infused view.

After obtaining the node embeddings Za and Zl from attribute-driven and local structure-

infused hypergraphs, respectively, we adopt InfoNCE [145] to estimate the lower bound of the

mutual information between them. By defining positive and negative samples, the contrastive

loss function can be expressed as follows:

La-l = − 1

m

∑︂
vi∈V

log

⎛⎝ ∑︁
vj∈PosSvi

e
sim(zavi ,z

l
vj

)/η∑︁
vj∈(PosSvi∪NegSvi )

e
sim(zavi ,z

l
vj

)/η

⎞⎠ . (6.17)

Where η is a temperature parameter. Similarly, the contrastive loss for contrasting the node

representation from the global structure-infused view Zg with the local structure-infused

view Zl can be expressed as:

Lg-l = − 1

m

∑︂
vi∈V

log

⎛⎝ ∑︁
vj∈PosSvj

e
sim(zgvi ,z

l
vj

)/η∑︁
vj∈(PosSvi∪NegSvi )

e
sim(zgvi ,z

l
vj

)/η

⎞⎠ . (6.18)

Finally, we employ contrastive learning between the node representation from the attribute-
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driven view Za and the global structure-infused view Zg, as defined below:

La-g = − 1

m

∑︂
vi∈V

log

⎛⎝ ∑︁
vj∈PosSvi

esim(zavi ,z
g
vj

)/η∑︁
vj∈(PosSvi∪NegSvi )

esim(zavi ,z
g
vj

)/η

⎞⎠ . (6.19)

Thus, the total contrastive loss Lcon can be expressed as:

Lcon = La-l + Lg-l + La-g. (6.20)

Here, as NegSvi we use Ndis(vi) or Nsim(vi). Their impact on the overall model performance

is described in Table 6.2. We combine this contrastive loss with our supervised loss Lsup,

which is a simple cross-entropy loss. Thus the total loss L can be expressed as:

L = Lcon + Lsup. (6.21)

Dataset #N #E #C #Ea #E l #Eg

Cora 2,708 5,429 7 2758 2708 263

Citeseer 3,312 4,715 6 3362 3312 563

Wiki 2,405 17,981 17 2455 2405 59

PT 1,912 64,510 2 1962 1912 112

LFMA 7,624 55,612 18 7674 7624 46

Table 6.1 Dataset Statistics. #N, #E, and #C represent the number of nodes, edges, and
classes, respectively. Additionally, #Ea, #E l, and #Eg denote the number of hyperedges in
the hypergraphs Ha, Hl, and Hg, which are derived from these datasets.
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6.4 Experiment

6.4.1 Experimental Setup

We conduct our evaluation of HyperGCL using five diverse datasets, which include citation

networks and social networks [146]. Table 6.1 offers detailed statistics for these datasets,

along with constructed hypergraph statistics. The global node counts for the Cora, Citeseer,

Wiki, Twitch-PT (PT), and LastFMAsia (LFMA) datasets are set at 3, 1, 4, 5, and 4,

respectively. We employ the community detection algorithm as described by [137] with its

default parameters. Our experimental protocol adheres to a standard data split: 10% for

training, 10% for validation, and 80% for testing.

To evaluate performance, we compare HyperGCL with sixteen baseline models, applying

their default configurations. These models are grouped by their architecture: graph-based

models for standard graphs and hypergraph-based models for hypergraphs. The baseline

hypergraph-based models construct hypergraphs according to the methodologies in their

original publications. The graph-based models include GCN [75], GAT [121], GraphSage

[76], DGI [114], GMI [64], MVGRL [65], GraphCL [69], and GraphMAE [147]. Hypergraph-

based models encompass HGNN [7], HCHA [50], HyperGCN [79], DHGNN [8], HNHN [140],

UniGCNII [82], AllSetTransformer [83], and DHKH [143].

In the node structure encoding methods outlined in Section 6.3.3, we utilize three different

encoding functions to capture various aspects of the input graph and constructed hypergraph.

For integrating local connectivity information with lce, a two-layer GCN implemented in the

Deep Graph Library (DGL) [144] is used. To compute ce and de, we develop learnable
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encoding functions using PyTorch’s learnable Embedding layer. Since Hl is constructed

focusing on the nodes’ local structure, lce is not considered in SHyGAN when applied to Hl.

We conduct ten experiments using different random splits for each run. Both node and

hyperedge features are one-hot encoded, and a single-layer HyperGCL model optimized with

Adam is utilized. Optimal hyperparameters are determined through a grid search on the

validation set. The chosen hyperparameters include a learning rate of 0.001 and a dropout

rate of 0.1 for regularization. For the k-NN and k-means algorithms, k values of 50 and

60 are selected, respectively. The hyperparameter s discussed in Section 6.3.1.1 is set to 2.

The hyperparameters τ and θ from Section 6.3.2 are set to 0.2 and 0.8, respectively. The

hyperparameter ’a’ in Section 6.3.4 is set to 25, and the temperature parameter η is set

to 0.5. We employ the LeakyReLU activation function, and the model is configured with

two attention heads. Training is conducted over 500 epochs, with early stopping applied if

validation accuracy does not improve for 100 consecutive epochs. The hidden dimension for

HyGAN and SHyGAN is set to 64. We implement HyperGCL by using DGL with PyTorch. Our

experiments are performed on an NVIDIA L40S-46GB GPU.

6.4.2 Result

We evaluate the performance of our model by conducting experiments on five distinct

datasets and comparing the results with sixteen state-of-the-art baselines. The baselines

are considered if their experimental results or codes are available. The outcomes, presented

in Table 6.2, demonstrate the superiority of our model across all datasets.

Specifically, our model excels on the Cora dataset, achieving an impressive accuracy of
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Method Model Cora Citeseer Wiki PT LFMA

Graph-based

GCN 80.88 67.65 60.66 65.85 80.23
GAT 81.08 68.32 61.79 66.30 82.21

GraphSage 80.64 69.28 60.17 63.35 79.66
DGI 81.70 71.50 64.89 66.82 83.17
GMI 82.70 73.0 66.12 66.98 83.55

MVGRL 82.90 72.60 66.78 67.18 84.65
GraphCL 82.50 72.80 67.32 67.58 83.28

GraphMAE 83.80 72.40 67.93 67.92 84.01

Hypergraph-based

HGNN 71.31 65.12 65.24 66.41 78.26
HCHA 71.41 65.43 64.41 63.52 79.44

HyperGCN 60.96 53.20 65.84 62.44 77.89
DHGNN 72.22 64.59 65.87 65.37 77.22
HNHN 65.76 63.93 63.92 66.12 81.17

UniGCNII 70.20 65.57 66.25 64.24 80.49
AllSetTransformer 70.99 66.60 67.44 65.15 82.42

DHKH 64.21 66.34 66.50 67.04 80.25
HyperGCLsim 84.38 71.35 68.11 68.88 84.12
HyperGCLdis 85.88 73.12 69.22 70.10 85.15

Table 6.2 Performance Comparisons: Mean accuracy (%)

85.88%. This significantly surpasses the accuracy of the best-performing graph-based base-

line model, GraphMAE, at 83.80% and exceeds the top-reported accuracy of the hypergraph-

based baseline, DHGNN, which stands at 72.22%. In the case of the Citeseer dataset,

our model attains an accuracy of 73.12%, outperforming the graph-based leading baseline

GraphCL with an accuracy of 72.80%, and the hypergraph-based top-performing baseline,

AllSetTransformer, at 66.60%. The trend continues with the Wiki, Twitch-PT, and LastF-

MAsia datasets, where our model substantially outperforms the baselines. The results un-

derscore our model’s substantial enhancements in classifying the datasets, setting a new

standard compared to existing state-of-the-art methods. Moreover, this table shows that

our model with distance-based negative sampling performs better than similarity-based neg-

ative sampling. Distance-based negative sampling chooses negative samples for a node based

on network connectivity information, whereas similarity-based negative sampling uses node

feature information to choose negative samples. Thus, based on the performance, we can
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infer that network connectivity information is more important.

A closer look at Table 6.2 reveals that hypergraph-based models generally lag behind

the top-performing graph-based models. Traditional HyperGNNs are effective at captur-

ing higher-order global structural information from the data. However, they might miss

some important local structural information as they do not consider local connection de-

tails. Additionally, the baseline models typically create hypergraphs based on a single

aspect of the underlying data. In contrast, our approach generates different types of hy-

pergraphs by leveraging multiple aspects of the input data. Nonetheless, hypergraph-based

models like DHGNN, AllSetTransformer, and DHKH show better performance compared

to other hypergraph-based models. Specifically, DHGNN and DHKH simultaneously learn

the hypergraph structure and hypergraph neural network, enabling them to prune noisy and

task-irrelevant connections, thus improving performance. The AllSetTransformer framework,

which blends Deep Sets and Set Transformers with hypergraph neural networks, offers sub-

stantial modeling flexibility and expressive power, enhancing performance in various tasks.

6.4.2.1 Case Study: Impact of Hypergraph Views

In our model, we generate three different hypergraph views expecting that each of them

captures different aspects of information. To understand their impact, we consider running

HyperGCLdis without (W/O) considering a specific hypergraph view at a time. The results

are presented in Table 6.3, illustrating the influence of each individual hypergraph view on

the model’s performance. The data shows that the most significant performance degradation

occurs when we remove the global structure-infused hypergraph view Hg.
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HyperGCLW/O Cora Citeseer Wiki PT LFMA
Hg 82.65 70.84 66.89 68.23 82.42
Hl 83.78 71.05 67.92 67.25 83.11
Ha 83.15 71.23 67.74 68.11 81.98

Augmentation 83.88 72.36 67.52 67.78 83.20
SHyGAN 84.05 72.28 68.49 68.66 84.29
NetCL 82.45 72.03 67.88 68.17 83.89

HyperGCLdis 85.88 73.12 69.22 70.10 85.15

Table 6.3 Impact of different components of HyperGCL on the model performance (accuracy).

6.4.2.2 Case Study: Impact of Adaptive View Augmentation

After creating hypergraph views, our model applies a learnable Gumbel-Softmax function

to adaptively augment each view. This process is intended to generate robust samples for

contrastive learning, enhancing the diversity of training examples. It also refines the con-

structed views by selectively highlighting important relationships within the hypergraph. To

assess its impact on the model’s overall performance, we remove the adaptive augmentation

component and compare the outputs with those of the main model across all datasets. The

results, shown in Table 6.3, indicate that removing this component leads to a noticeable

decline in the model’s performance.

6.4.2.3 Case Study: Impact of SHyGAN

To learn the view representations, we utilize view-specific encoders. We use HyGAN to Ha and

Hl and present a special variant of HyGAN named SHyGAN to Hg. It incorporates learnable

node structure encodings to improve the node representations. Moreover, employ a topology-

guided attention network to discover the important nodes and hyperedges from both semantic

and structural viewpoints. To evaluate the effect of SHyGAN we perform an experiment where

we replace HyGAN with SHyGAN. The results in Table 6.3 demonstrate its impact.
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6.4.2.4 Case study- Impact of NetCL

Traditional GCL methods often use contrastive loss from computer vision, treating an an-

chor node and its representations across views as positive samples, while considering all other

nodes as negative samples. This approach overlooks the network’s structural information.

Our approach defines NetCL to incorporate network connectivity information when defining

positive and negative samples. To evaluate the effectiveness of NetCL, we conduct an exper-

iment without it, treating the anchor node and its representations across views as positive

samples and all others as negative samples. The results, detailed in Table 6.3, demonstrate

that removing NetCL results in a reduction in the model’s overall performance.
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CHAPTER 7

FUTURE WORK

The research presented in this dissertation has made significant strides in developing hy-

pergraph neural networks (HyperGNNs) for drug-drug interaction prediction, sequence clas-

sification, structure-aware hypergraph transformers, and graph contrastive learning from

hypergraph viewpoints. However, several promising avenues for future research can build

upon these contributions.

• Enhanced Hypergraph Representations While the current work leverages Hyper-

GNNs to capture higher-order relationships in data, future research could explore more

sophisticated hypergraph construction techniques. This includes dynamically adapting

the hypergraph structure based on the evolving data context or incorporating addi-

tional domain-specific knowledge to improve representation quality.

• Scalability and Efficiency Improvements The models proposed in this disserta-

tion, such as SaHT, HyperGCL demonstrate state-of-the-art performance but often come

with high computational costs. Future work should focus on optimizing these models

for better scalability and efficiency. Techniques like model pruning, quantization, and

the development of more efficient training algorithms (e.g., distributed training) could

be investigated to reduce resource consumption without compromising performance.

• Integration with Large Language Models (LLMs) Given the recent advance-

ments in LLMs, integrating these models with HyperGNNs could open new possibilities

for enhanced learning and inference. Future research can explore hybrid architectures
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that leverage the strengths of both LLMs and HyperGNNs to improve tasks such as

node classification, link prediction, and graph generation.

• Explainability and Interpretability One of the ongoing challenges in deep learn-

ing, including HyperGNNs, is the interpretability of the models. Future work should

prioritize enhancing the explainability of these models, making their predictions more

transparent and understandable to end-users. This could involve developing novel

visualization tools, interpretability algorithms, and integrating explainable AI (XAI)

techniques into the hypergraph learning framework.

• Robustness and Adversarial Resistance Ensuring the robustness of HyperGNNs

against adversarial attacks is essential for their deployment in critical applications. Fu-

ture research should focus on identifying vulnerabilities in the current models and de-

veloping robust training methods that can withstand adversarial manipulations. This

includes investigating adversarial training techniques specifically tailored for hyper-

graph structures.

• Hybrid and Multi-modal Approaches The integration of HyperGNNs with other

machine learning paradigms, such as reinforcement learning, transfer learning, and

multi-modal learning, represents a fertile ground for future research. Exploring how

these combined approaches can enhance performance and expand the applicability of

hypergraph-based models will be a key area of interest.

• Continuous Learning and Adaptation In dynamic environments, it is crucial for
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models to adapt continuously to new data and evolving patterns. Future work could

explore continuous learning frameworks for HyperGNNs, enabling them to learn incre-

mentally from new data without forgetting previously acquired knowledge.

By addressing these future directions, the field of HyperGNNs and their applications can

continue to evolve, pushing the boundaries of what is possible in graph learning and its

intersection with other areas of artificial intelligence.
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CHAPTER 8

CONCLUSION

In this dissertation, we have explored various facets of hypergraph neural networks (Hy-

perGNNs) and their applications across different domains. Through four distinct yet inter-

connected research projects, we have advanced the state of the art in hypergraph learning,

emphasizing the importance of HyperGNNs in graph mining, bioinformatics, and network

science. The key contributions and findings from each paper are summarized below.

HyGNN: In the first project, we introduced HyGNN a novel model designed for drug-drug

interaction (DDI) prediction. By constructing a drug hypergraph from SMILES strings and

modeling a novel HyperGNN, we were able to depict complex similarities between chemical

structures and predict DDIs with higher accuracy than traditional methods.

Seq-HyGAN: In the first project, we introduced Seq-HyGAN which leverages an attention

network within hypergraph for sequence classification, capturing higher-order structural sim-

ilarities among sequences. The proposed three-level attention model effectively learns hy-

peredge representations, leading to superior performance on various biological datasets.

SaHT: In the third project, we presented a transformer network for hypergraphs named

SaHT that incorporates both semantic and topological information for node classification.

By integrating structural and spatial encoding with a self-attention mechanism, SaHT sig-

nificantly outperforms existing graph and hypergraph transformer models, showcasing its

potential to revolutionize hypergraph analytics.

HyperGCL: In the fourth project, we developed HyperGCL a graph contrastive learning
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framework that utilizes three distinct hypergraph views to capture comprehensive attribute

and structural information. Through a learnable Gumbel-Softmax function, view-specific

encoders, and a network-aware contrastive loss, HyperGCL addresses critical limitations in

existing methods, achieving state-of-the-art performance in node classification tasks.

These projects collectively demonstrate the versatility and effectiveness of HyperGNNs

in addressing complex problems across various domains. Our research advances the capabili-

ties of HyperGNNs, showcasing their superior performance compared to existing methods in

diverse applications. The advancements presented in this dissertation establish a solid foun-

dation for further exploration and innovation in hypergraph neural networks, paving the way

for the development of more robust, interpretable, and practical models in the future.
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