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ABSTRACT

State-of-the-art machine learning techniques, particularly pre-trained language models, have

demonstrated exceptional performance across a range of computer science domains. These mod-

els, often fine-tuned for specific tasks, have shown exceptional proficiency in natural language

understanding, text generation, and various language-related tasks like sentiment analysis, ma-

chine translation, and question-answering. Their success can be attributed to extensive training

on vast amounts of text data, enabling them to capture intricate linguistic patterns and contextual

information. Furthermore, the accessibility of these pre-trained models has democratized research

and development, fostering innovation and advancements in fields such as information retrieval,

chatbots, and automated content generation.

However, it is crucial to recognize the vulnerability of these state-of-the-art language models

to adversarial attacks and tasks. Recent studies have revealed their susceptibility to subtle input

manipulations aimed at misleading them. Adversarial attacks on language models involve injecting

carefully crafted perturbations into input data, leading the model to produce incorrect or undesirable

outputs. This vulnerability raises concerns about the reliability and security of these models,

particularly in security-critical domains such as automated content moderation and fraud detection.

Addressing and mitigating these vulnerabilities are paramount to ensuring the responsible and

secure deployment of pre-trained language models in real-world applications.

To tackle these security challenges, this dissertation focuses on developing efficient adversarial

attacks and robust pre-trained language models against such attacks, highlighting the importance

of addressing this critical issue in natural language processing. In our first work, we introduce an

efficient adversarial attack model for generating context-aware adversarial examples to enhance

the adversarial training of pre-trained language models. Our subsequent work centers on the

design of a robust sentence embedding framework that improves generalization and robustness

across various text representation tasks, even when facing different adversarial attacks and tasks.



As a more comprehensive endeavor, we ultimately propose and implement straightforward yet

effective sentence embeddings utilizing a token-level perturbation generator with a novel adversarial

token-detection objective. This approach aims to generate high-quality and more resilient sentence

embeddings, thereby enhancing the overall robustness of language models in both adversarial and

non-adversarial settings.

INDEX WORDS: Natural Language Processing, Robust Machine Learning, Adversarial
Attack, Trustworthy Artificial Intelligence, Robust Sentence Embed-
dings, and Imperceptible Adversarial Examples
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Portions of this dissertation rely on either previously published material or work that is presently

undergoing review:

• Chapter 3 is based on A Semantic, Syntactic, And Context-Aware Natural Language Adversar-

ial Example Generator

Javad Rafiei Asl, Mohammad H Rafiei, Manar Alohaly and Daniel Takabi in IEEE Transac-

tions on Dependable and Secure Computing, Pages 1-17, 2024 Asl et al. (2024a)

• Chapter 4 is based on RobustEmbed: Robust Sentence Embeddings Using Self-Supervised

Contrastive Pre-Training

Javad Rafiei Asl, Eduardo Blanco and Daniel Takabi in Empirical Methods in Natural

Language Processing: EMNLP Findings, Pages 4587-4603, 2023 Asl et al. (2023a)

• Chapter 5 is based on RobustSentEmbed: Robust Sentence Embeddings Using Adversarial

Self-Supervised Contrastive Learning

Javad Rafiei Asl, Prajwal Panzade, Eduardo Blanco, Daniel Takabi and Zhipeng Cai in North

American Chapter of the Association for Computational Linguistics, under review, Asl et al.

(2024b)

1.1 Background and Motivation

The advent of state-of-the-art machine learning techniques, particularly emphasizing Pre-trained

Language Models (PLMs), has marked a significant turning point across various computer science
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domains. These models, meticulously pretrained on extensive text corpora and meticulously fine-

tuned for specific tasks, have showcased unparalleled proficiency in natural language understanding

and generation. Their remarkable performance spans critical areas such as Natural Language

Processing (NLP), sentiment analysis, machine translation, and question-answering, often surpassing

the capabilities of human experts. This exceptional success can be attributed to their adeptness in

capturing intricate linguistic nuances and contextual information, enabling them to excel across a

broad spectrum of language-related tasks.

Moreover, the widespread availability of PLMs has democratized Artificial intelligence (AI)

research and application development, democratizing access for both academia and industry profes-

sionals. This accessibility has led to an explosion of innovation in NLP applications, facilitating

the emergence of transformative technologies such as chatbots, automated content generation, and

voice assistants. The continuous refinement and expansion of these models continue to redefine

the boundaries of what is achievable across various computer science disciplines, ushering in an

era characterized by unprecedented linguistic sophistication and automated language processing

capabilities.

Within the realm of NLP, pre-trained language models, epitomized by Transformers, stand as the

bedrock of modern language processing technologies. These models have reshaped the landscape

by mastering intricate language representations drawn from vast text corpora, meticulously honing

their capabilities for specific NLP tasks. Transformers exhibit remarkable versatility, excelling

across a wide array of applications, including Natural Language Inference (NLI), paraphrasing,

sentiment analysis, and question-answering. Their strength lies in their ability to discern nuanced
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Figure 1.1 BERT’s Masked Language Modeling task

linguistic nuances and adapt to diverse tasks by capturing contextual and hierarchical relationships

in language. This adaptability enables them to navigate complex linguistic structures with ease,

providing developers with a powerful toolkit to achieve state-of-the-art performance in addressing a

myriad of NLP challenges.

BERT, standing for Bidirectional Encoder Representations from Transformers, is among the

most influential pre-trained language models. BERT undertakes two essential pre-training tasks:

Masked Language Modeling (MLM) and Next Sentence Prediction (NSP). In MLM, a subset of

words in the input text is randomly hidden, and the model is tasked with predicting these concealed

words based on the surrounding context, which encourages it to develop comprehensive bidirectional

representations. Conversely, in NSP, the model learns to differentiate whether two sentences in a

pair follow one another, thus augmenting its grasp of context and sentence relationships. These pre-

training procedures, visualized in Figures 1.1 and 1.2, equip BERT with a profound comprehension

of language semantics and syntax, rendering it highly proficient in various subsequent NLP tasks.
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Figure 1.2 BERT’s main architecture including Masked Language Modeling and Next Sentence
Prediction tasks

For a comprehensive examination of diverse PLMs and their respective capabilities, please refer to

Table 1.1.

Nevertheless, the impressive advancements in pre-trained language models are accompanied by

significant challenges, notably their susceptibility to adversarial attacks and adversarial NLP tasks.

These attacks involve intentionally introducing disturbances into input data, often undetectable

to human observers yet sufficient to deceive the model into generating inaccurate or undesirable

results. This vulnerability to subtle manipulations raises serious concerns regarding the reliability

and security of these models, especially in critical applications like automated content moderation,

fraud detection, and automated decision-making systems, where the consequences are high-stakes.

Adversarial NLP tasks go a step further by crafting inputs specifically tailored to exploit

weaknesses in the model, thereby highlighting its limitations in comprehending and reasoning

about language. These vulnerabilities extend beyond mere security implications, casting doubt
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Model Provider Year Description
BERT Google 2018 Excels in understanding the contextual nuances of

language, making it particularly effective for tasks
like sentiment analysis and natural language infer-
ence.

GPT-2 OpenAI 2019 Known for its exceptional text generation capabili-
ties, producing coherent and contextually relevant
language, which is valuable in applications like con-
tent generation and creative writing.

RoBERTa Facebook 2019 Excels in fine-tuning on various NLP tasks with
its robust pre-training on a massive text corpus,
making it highly effective for natural language un-
derstanding, sentiment analysis, and question an-
swering.

ALBERT Google Research 2019 Achieves strong performance on various NLP tasks,
making it well-suited for applications where com-
putational resources are limited, such as mobile
devices.

ELECTRA Stanford University 2020 Known for its efficiency and effectiveness in train-
ing, making it particularly suitable for large-scale
pre-training and downstream NLP tasks.

FAIRSEQ ASAPP 2021 Deploy custom models for a variety of natural lan-
guage processing (NLP) tasks, including transla-
tion, summarization, and language modeling.

QDQBert NVIDIA 2021 Reduce model size and improve inference perfor-
mance, making it ideal for deploying BERT on
mobile and resource-constrained devices

Megatron Nvidia and Microsoft 2022 Capable of generating realistic and coherent text,
translating languages, writing different kinds of
creative content, and answering your questions in
an informative way

Bard Google 2023 Capable of generating different creative text for-
mats, translating languages, writing different kinds
of creative content, and answering your questions
in an informative way

Table 1.1 Main capabilities of different pre-trained language models.
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on the trustworthiness and generalization capabilities of pre-trained language models in dynamic,

real-world environments. As we delve deeper into the complexities of AI systems, addressing

these vulnerabilities becomes imperative to ensure their robustness and effectiveness across various

applications.

1.2 Adversarial Attack and Defense

1.2.1 Foundational Concepts in Adversarial Attack and Defense

In the realm of Machine Learning (ML), a pivotal concept is that of Adversarial Examples (AEs).

Adversarial examples are carefully crafted perturbations applied to input data, designed to deceive

machine learning models, particularly pre-trained language models. These attacks exploit vul-

nerabilities in the models’ decision boundaries, revealing inherent weaknesses in their learning

algorithms. Mathematically, an adversarial example can be represented as X′ = X+ ϵ ·D, where

X is the original input data, ϵ controls the magnitude of perturbation, and D represents the direction

in which the perturbation is applied. The main objective of an ideal adversarial attack is to find the

optimal perturbation ϵ and D to maximize model misclassification or produce undesirable outputs.

Understanding these foundational concepts is crucial for developing robust machine learning models

that are resilient to adversarial attacks.

In the realm of adversarial attacks in machine learning, several approaches have been developed

to craft adversarial examples that deceive machine learning models. These approaches can be

broadly categorized into three main types Liang et al. (2022): gradient-based attacks, score-based

attacks, and optimization-based attacks.
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1. Gradient-Based Attacks: Gradient-based attacks Goodfellow et al. (2015a) leverage the

gradients of the model’s loss function concerning the input data to iteratively adjust the perturbation.

An example is the Fast Gradient Sign Method (FGSM), which alters the input data along the sign

of the gradient of the loss function, aiming to maximize the loss and induce misclassification.

Mathematically, FGSM can be expressed as:

Xadv = X+ ϵ · sign(∇XJ(θ,X, ytrue))

Here, Xadv is the adversarial example, X denotes the original input data, ϵ controls the perturbation

magnitude, J(θ,X, ytrue) represents the loss function with parameters θ, ytrue is the true label, and

∇XJ(θ,X, ytrue) is the gradient of the loss function concerning the input data.

2. Score-Based Attacks: Score-based attacks concentrate on optimizing the model’s output

scores directly to generate adversarial examples. For instance, the Basic Iterative Method (BIM)

Kurakin et al. (2017) iteratively updates the input data to maximize the probability of the target

class. Mathematically, BIM can be formulated as:

X
(t+1)
adv = clipX,ϵ

(
X

(t)
adv + α · sign(∇XJ(θ,X

(t)
adv, ytarget))

)
Here, X(t)

adv represents the adversarial example at iteration t, α denotes the step size, ytarget is the target

class label, and clipX,ϵ(·) ensures that the perturbed data remains within a specified ϵ neighborhood

of the original data.

3. Optimization-Based Attacks: Optimization-based attacks frame the creation of adversarial

examples as an optimization problem, aiming to find the perturbation that maximizes the loss

within certain constraints. The Carlini-Wagner (CW) attack Carlini & Wagner (2017) is a popular
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optimization-based approach that minimizes a loss function to encourage misclassification while

controlling the perturbation magnitude. Mathematically, CW attack can be represented as:

minimize
δ

∥δ∥p + c · f(X+ δ)

Here, δ denotes the perturbation to be optimized, ∥ · ∥p represents a norm constraint, c balances the

perturbation magnitude and the loss function, and f(·) is a loss function that promotes misclassifica-

tion.

These strategies exemplify the diverse methods employed in adversarial attacks in machine

learning, each with its strengths and limitations. Understanding these methods is essential for

developing robust machine learning models. ML models, including state-of-the-art neural networks,

while achieving remarkable performance in various downstream tasks, are particularly vulnerable to

these adversarial attacks. To mitigate this vulnerability, adversarial training is employed during

the model’s training phase to improve the robustness of machine learning models against adversarial

attacks. Adversarial training involves augmenting the training dataset with adversarial examples,

thus enhancing the model’s robustness against such attacks. To defend against adversarial attacks,

various adversarial training approaches have been proposed Silva & Najafirad (2020). Two main

approaches to adversarial training are:

1. Standard Adversarial Training: Standard adversarial training Madry et al. (2018a) involves

augmenting the training data with adversarial examples generated using gradient-based methods.

The objective is to make the model more robust by exposing it to adversarial perturbations during
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training. Mathematically, the objective function for SAT can be formulated as:

min
θ

1

N

N∑
i=1

L(fθ(xi), yi) + λ · 1
N

N∑
i=1

L(fθ(xi + δi), yi)

Here, θ represents the model parameters, xi and yi denote the input and target label of the ith

example, fθ(·) is the model’s output, δi is the adversarial perturbation, L(·) is the loss function, N

is the number of training examples, and λ is a hyperparameter controlling the trade-off between

standard and adversarial losses.

2. Robust Adversarial Training (RAT): Robust adversarial training Bai et al. (2021) aims to

enhance model robustness by generating adversarial examples that are specifically targeted at the

model’s vulnerabilities. This approach typically involves solving a min-max optimization problem,

where the inner maximization seeks adversarial perturbations, and the outer minimization updates

the model parameters to minimize the worst-case loss. Mathematically, the objective function for

RAT can be expressed as:

min
θ

1

N

N∑
i=1

max
∥δi∥≤ϵ

L(fθ(xi + δi), yi)

Here, ϵ represents the maximum allowable perturbation, and the inner maximization is performed

over the ϵ-ball around each input sample xi.

These approaches demonstrate two different strategies for training machine learning models

to be robust against adversarial attacks. Each method comes with its own trade-offs in terms of

computational complexity, effectiveness, and interpretability.
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1.2.2 Vulnerabilities of Pre-Trained Language Models

Despite the promising performance exhibited by pre-trained language models across various down-

stream classification tasks Sun et al. (2019); Gao et al. (2021), showcasing proficiency in general-

ization, these models are constrained by their susceptibility to adversarial attacks Nie et al. (2020);

Wang et al. (2021). This vulnerability stems from their heavy reliance on surface-level statistical

patterns, leading to a lack of robustness in adversarial settings. Additionally, they often struggle

to grasp semantic and contextual intricacies. Recent studies Garg & Ramakrishnan (2020); Wu

et al. (2023); Hauser et al. (2023) have underscored the inadequate robustness of representations

derived from PLMs like BERT, which can be easily misled by minor alterations (such as replacing a

few words) to the input sentence. However, while these vulnerabilities pose significant challenges,

ongoing research Asl et al. (2023b) aims to address these limitations and enhance the robustness of

PLMs in diverse contexts.

1.2.3 Taxonomy of Adversarial Attacks in Natural Language Processing

In this section, we review the categorization of adversarial attack approaches in NLP from various

perspectives. Figure 1.3 provides a detailed illustration of these viewpoints, and five distinct criteria

are employed to categorize the attack methods:

• Model Access pertains to the extent of knowledge about the targeted model at the time of the

attack.

• Semantic Application relates to the methods used in different NLP applications.

• Target Type signifies the objective of the attack, whether it aims to induce incorrect predic-
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Figure 1.3 Categories of adversarial attacks on textual deep-learning models.

tions or target specific outcomes.

• Semantic Granularity considers the level of granularity at which the model is attacked.

• Attacked DNNs represent the victim deep neural networks involved in the attacks.

In this proposal, our main focus is on categorizing attacks based on model access, which includes

two main groups: white-box and black-box attacks. In a white-box attack, the attacker requires

access to the model’s complete information, including architecture, parameters, loss functions,

activation functions, and input and output data. White-box attacks typically approximate the

worst-case attack for a particular model and input, incorporating a set of perturbations. We group

white-box attacks on textual Deep Neural Networks (DNNs) into five categories:

1. FGSM-based Attack: The FGSM-based attack, originally developed for image classification

tasks but adapted for use in NLP, perturbs input data (typically text) to maximize the loss or error
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of a neural network model. It computes the gradient of the model’s loss function with respect to

the input data and perturbs the input data in the direction that increases the loss most rapidly. The

amount of perturbation is controlled by a small value called epsilon (ϵ).

2. JSMA-based Attack: The JSMA-based attack, initially designed for image classification tasks

but adapted for NLP, perturbs text data to maximize the change in the model’s predicted output

while keeping perturbations minimal. It computes the Jacobian matrix, representing the sensitivity

of model predictions to each input feature (e.g., words in text), and strategically perturbs the most

salient input features to craft adversarial examples.

3. C&W-based Attack: The C&W-based attack, developed by Nicholas Carlini and David

Wagner, is a state-of-the-art adversarial attack method adapted for NLP from its original use in

image classification. C&W formulates an optimization problem to find the smallest perturbation to

input text while causing model misclassification. The optimization minimizes both the size of the

perturbation and a loss function quantifying model misclassification.

4. Direction-based Attack (HotFlip): HotFlip performs atomic flip operations to generate

adversarial examples. Instead of relying on the gradient of loss, HotFlip uses directional derivatives.

It represents character-level operations (e.g., swap, insert, delete) as vectors in the input space and

estimates loss changes by directional derivatives with respect to these vectors.

5. Attention-based Attack: In an attention-based white-box attack, the attacker manipulates the

attention mechanisms within the model. The primary goal is to perturb attention weights to cause

the model to make incorrect predictions while maintaining overall text structure and semantics. By

targeting attention, the attacker influences which parts of the input the model focuses on during
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Figure 1.4 General principle of concatenation adversaries.

processing.

The black-box attack does not require access to the details of the neural networks but can access

the input and output. These types of attacks often rely on heuristics to generate adversarial examples,

which is more practical since, in many real-world applications, the details of the DNN are a black

box to the attacker. We categorize black-box attacks on textual DNNs into five categories:

1. Concatenation Adversaries: Concatenation adversaries are adversarial strategies designed

to manipulate the concatenation process of multiple text segments, exploiting the way models or

systems process such concatenated inputs. As shown in Figure 1.4, these adversaries aim to create

adversarial examples by strategically arranging and altering the content of these text segments in

a way that leads to unintended outcomes, misclassification, or undesired interpretations when the

concatenated text is processed by the target NLP models.

2.) Edit Adversaries: Edit adversaries employ adversarial strategies aimed at manipulating text

inputs by making subtle and often imperceptible modifications to the content. These adversaries

operate under the assumption that only limited knowledge of the target model is available, such
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Figure 1.5 Edit adversarial attack on sentiment analysis DNN. After editing words (red), the
prediction changes from 100% of Negative to 89% of Positive

as the model’s input-output behavior. Edit adversaries employ various text-editing techniques,

including synonym substitution, character-level modifications, or grammatical alterations, with the

goal of creating adversarial examples.

3.) Paraphrase-based Adversaries: Paraphrase-based adversaries produce a paraphrase of the

given sentence with the desired syntax by inputting the sentence and a targeted syntactic form into

an encoder-decoder architecture. Specifically, the method first encodes the original sentence, and

then inputs the paraphrases generated by back-translation and the targeted syntactic tree into the

decoder, whose output is the targeted paraphrase of the original sentence.

4.) GAN-based Adversaries: GAN-based adversaries leverage the principles of Generative

Adversarial Networks (GANs) to craft adversarial examples. These adversaries comprise two neural

networks: a generator and a discriminator. The generator’s objective is to create text sequences that

are adversarial, while the discriminator’s role is to differentiate between genuine and adversarial

text. Through a competitive training process, the generator becomes adept at generating text that

resembles real language but subtly misleads the target NLP model, such as a classifier or language

model.

5.) Substitution-based Adversaries: Substitution-based adversaries consist of two key compo-
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Figure 1.6 General principle of paraphrase-based adversaries.

nents: a generative RNN and a substitute RNN. The generative RNN’s role is to produce adversarial

API sequences from existing malware API sequences. It accomplishes this by generating a small

segment of the API sequence and inserting it into the input sequence. On the other hand, the

substitute RNN, which incorporates a bidirectional RNN with an attention mechanism, aims to

emulate the behavior of the targeted RNN model.

1.2.4 Adversarial Defense Strategies in Natural Language Processing

One essential purpose of generating adversarial examples for neural networks is to utilize them

to enhance the model’s robustness (Goodfellow et al. 2015b). In textual deep neural networks,

two common approaches are employed to achieve this goal: adversarial training and knowledge

distillation. Adversarial training involves incorporating adversarial examples into the model training

process, while knowledge distillation manipulates the neural network model and trains a new model.

In this section, we introduce some representative studies belonging to these two directions.
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1.2.4.1 Adversarial Training

Szegedy et al. (Szegedy et al. 2014) introduced adversarial training, a strategy involving the training

of a neural network to correctly classify both normal and adversarial examples. Goodfellow et al.

(Goodfellow et al. 2015b) employed explicit training with adversarial examples. In this section, we

describe works that utilize data augmentation, model regularization, and robust optimization for

defense against textual adversarial attacks.

1. Data Augmentation: Data augmentation extends the original training set with the generated

adversarial examples, allowing the model to encounter a broader range of data during the training

process. Data augmentation is often employed as a defense strategy against black-box attacks,

involving additional training epochs on the targeted DNN using adversarial examples. In the context

of NLP, data augmentation typically involves tasks such as paraphrasing, synonym substitution,

or introducing minor textual alterations to the input data while preserving its original meaning.

By exposing the model to these perturbed examples during training, the model learns to be less

sensitive to small variations in the input and becomes more resilient to adversarial attacks. Data

augmentation not only helps improve the model’s generalization but also enhances its ability to

handle real-world noisy and diverse textual inputs, making it a valuable component of adversarial

training strategies for NLP deep learning models.

2. Model Regularization: Model regularization is a crucial aspect of adversarial training in NLP

deep learning models, designed to mitigate overfitting and enhance their robustness. In adversarial

training, regularization techniques typically involve adding a regularization term to the loss function,

encouraging the model to exhibit specific characteristics. Common forms of regularization include
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L1 and L2 regularization. Here’s an equation illustrating L2 regularization, where J(θ) represents

the original loss, θ denotes the model parameters, and λ controls the regularization strength:

Jregularized(θ) = J(θ) +
λ

2

n∑
i=1

θ2i (1)

In this equation, the regularization term λ
2

∑n
i=1 θ

2
i encourages smaller parameter values, preventing

the model from fitting the adversarial examples too closely. Regularization is a fundamental

component of adversarial training, ensuring that the model maintains its generalization capabilities

and robustness in the face of adversarial inputs.

3. Robust Optimization: Robust optimization is a fundamental concept in adversarial training

for NLP deep learning models, as exemplified by Madry et al.’s approach (Madry et al. 2018b).

It involves formulating the learning process as a min-max optimization problem, where the goal

is to simultaneously minimize the model’s loss function while maximizing its vulnerability to

adversarial attacks. This min-max formulation consists of an inner non-concave maximization

problem, representing the adversarial attack, and an outer non-convex minimization problem,

representing the model’s defense. Danskin’s theorem plays a pivotal role in this approach, as it

establishes that gradients at inner maximizers correspond to descent directions for the min-max

problem. This insight allows for the application of back-propagation to optimize the model’s

parameters iteratively. Through this robust optimization framework, the approach proposed by

Madry et al. successfully demonstrated the enhancement of DNNs’ robustness against adversarial

attacks in the context of image classification. The min-max optimization problem can be expressed
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as follows:

min
θ

max
δ

E(x,y)∼data

[
max

∥δ∥∞≤ϵ
L(θ, x+ δ, y)

]
(2)

In this equation, θ represents the model parameters, δ represents the perturbation added to the

input data, ϵ is the magnitude constraint on the perturbation, (x, y) denotes the data examples and

their labels, and L(θ, x + δ, y) is the loss function that combines the model’s prediction on the

adversarially perturbed input x+ δ and the true label y. This formulation captures the essence of

robust optimization in adversarial training, seeking to minimize the worst-case loss by finding both

the optimal model parameters θ and the adversarial perturbation δ that maximizes the loss.

1.2.4.2 Knowledge Distillation

Knowledge distillation is a technique used in adversarial training of NLP deep learning models,

as proposed by Papernot et al. (Papernot et al. 2016). The idea behind knowledge distillation is

to enhance the robustness of a second neural network (DNN) by training it using the knowledge

from a more complex original DNN. This process involves utilizing the softmax output, which

represents probabilities (e.g., class probabilities in classification DNNs) from the original DNN,

to train the second DNN. The second DNN has an identical structure to the original one. In this

knowledge distillation process, a temperature parameter denoted as T is introduced. This parameter

controls the level of knowledge distillation. When T is set to 1, Equation 3 represents the normal

softmax function. However, as T increases, the output probabilities qi become closer to a uniform

distribution, while lower values of T lead to more extreme values in the output. The equation for
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the modified softmax function is as follows:

qi =
ezi/T∑
j e

zj/T
(3)

Where: qi is the output probability for class i, zi is the input to the softmax layer, and T is the

temperature parameter. It’s worth noting that a higher temperature (T ) softens the probability

distribution, making it more uniform, while a lower temperature sharpens it, emphasizing the

highest probabilities.

1.3 Research Problem and Our Contribution

In this dissertation, we address several of the aforementioned challenges by proposing solutions.

Our investigation centers on descriptive pre-trained language models, including prominent ones such

as BERT and RoBERTa, with the aim of understanding and mitigating their vulnerabilities through

the introduction of an effective adversarial attack method. Additionally, we augment the robustness

of sentence embeddings derived from pre-trained language models during the pre-training phase,

rendering them suitable for deployment in both adversarial and non-adversarial contexts within

real-world applications. The contributions made throughout this dissertation are outlined as follows:

• First, we propose a practical and efficient adversarial attack model called SSCAE for generat-

ing Semantic, Syntactic, and Context-aware Adversarial Examples (AE). Previous research

has failed to produce natural and high-quality AEs. Therefore, there is a need for a com-

prehensive model that adheres to all linguistic principles for generating well-crafted AEs.

To address this issue, SSCAE identifies important words and employs a masked language

model to generate an initial set of substitutions. Subsequently, two well-known language
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models are utilized to evaluate the initial set in terms of semantic and syntactic characteristics.

We introduce (1) a dynamic threshold to capture more efficient perturbations and (2) a local

greedy search to generate high-quality AEs.

• We introduce RobustEmbed, a novel self-supervised framework for sentence embeddings that

generates robust representations capable of withstanding various adversarial attacks. Existing

sentence embeddings are susceptible to such attacks, highlighting a vulnerability in their

security. RobustEmbed fills this gap by generating high-risk adversarial perturbations in

the embedding space and leveraging the perturbation within a novel contrastive objective

approach.

• We develop a comprehensive text representation model aimed at establishing robustness at

both token and sentence levels. Through the generation of high-risk adversarial perturbations

designed to enhance invariance within the embedding space and their utilization in a novel

contrastive objective and effective difference prediction objective, the model adeptly learns

high-quality and robust sentence embeddings. Our experimental results demonstrate that our

approach is more robust against various adversarial attacks and adversarial tasks.

1.4 Organization

This dissertation is organized as follows. In Chapter 2, we discuss the existing research conducted in

the field of adversarial attacks and their respective defense techniques in the NLP domain. In Chap-

ter 3, we propose an efficient adversarial attack model for generating Semantic and Context-aware

AEs. In Chapter 4, we introduce robust sentence embeddings that achieve outstanding performance
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in various NLP tasks and adversarial scenarios. In Chapter 5, we present a comprehensive text rep-

resentation at both the sentence and token levels, which generates more robust sentence embeddings

in both adversarial and non-adversarial scenarios. Finally, we discuss future research directions and

provide conclusions in Chapter 6.
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CHAPTER 2

BACKGROUND

In this chapter, we present diverse text classification tasks employed to evaluate the efficacy of

different adversarial attacks and defense mechanisms. Subsequently, we offer a succinct overview

of state-of-the-art adversarial attack and defense methods. Furthermore, we explore techniques for

generating adversarial perturbations in the embedding space. We then delve into Text Representation

Learning methods, investigating the application of contrastive adversarial learning to produce

effective and robust text representations. Finally, we conclude with a section dedicated to discussions

and the exploration of open issues in the domain of adversarial attack techniques.

2.1 Text Classification Tasks

This section provides comprehensive details on the text classification tasks utilized to evaluate the

generalization and robustness capabilities of various adversarial attacks and defense mechanisms.

The MR (Movie Reviews) dataset Pang & Lee (2005a) comprises sentence-level instances annotated

with sentiment polarity. It consists of 8,530 training samples and 1,066 testing instances with highly

polar sentiments. The CR dataset Hu & Liu (2004) is constructed from customer reviews obtained in

three phases: product extraction with customer comments, identification of opinion sentences, and

sentiment labeling as positive or negative. Meanwhile, the SUBJ dataset Pang & Lee (2004) includes

5,000 subjective and 5,000 objective sentences extracted from movie reviews, categorized based

on subjectivity status and polarity. The MPQA dataset Wiebe et al. (2005) consists of annotated

documents sourced from various news outlets, classifying opinion states such as beliefs, emotions,

sentiments, and speculations.
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Furthermore, the SST2 dataset Socher et al. (2013a) is a sentence-level corpus with 8,544

training and 2,210 testing samples collected from movie reviews and classified into negative

or positive sentiments. The MRPC dataset Dolan & Brockett (2005) comprises 5,801 pairs of

sentences extracted from news articles, annotated by human labelers to indicate semantic equivalence

relationships. The YELP Polarity Review (YELP) dataset Zhang et al. (2015) contains document-

level instances, with 560,000 training and 38,000 testing samples labeled as negative (1- and 2-star)

or positive (4- and 5-star) reviews. The Internet Movie Database (IMDb) Review dataset Maas

et al. (2011) includes 25,000 training and 25,000 testing samples with highly polar sentiments,

categorized as negative (4 out of 10) or positive (7 out of 10) based on review scores.

Additionally, the Rotten Tomatoes Movie Reviews (MR) dataset Pang & Lee (2005b) is com-

posed of 8,530 training and 1,066 testing highly polar instances, with negative and positive classes

assigned based on consensus among various critics. SNLI Bowman et al. (2015) and MNLI Williams

et al. (2018) are three-class datasets consisting of 550,152 and 392,702 training samples, respec-

tively, and 10,000 and 19,643 testing samples. SNLI and MNLI utilize human-written sentence pairs

in English, generated using different image captions from the Flicker30K dataset Young et al. (2014)

and ten sources of text. Each set of three pairs in SNLI (MNLI) is categorized into entailment,

contradiction, and neutral categories based on the relationship between premise and hypothesis

sentences. While SNLI employs premise sentences from a relatively uniform image caption dataset,

MNLI covers a broader spectrum of text styles. The MNLI testing samples are further categorized

into "Matched" and "Mismatched" subsets, where MNLI-Matched pairs share similar contexts and

resemble the training pairs compared to MNLI-Mismatched pairs.
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2.2 Adversarial Attack Methods in Textual Data

This section provides a comprehensive overview of various adversarial attack methods targeting

textual data, categorized into two main groups: white-box and black-box attacks.

In the black-box setting, a range of approaches has been proposed, spanning from character-level

to sentence-level techniques, with word-level methods demonstrating superior performance Jia &

Liang (2017); Li et al. (2019); Zhang et al. (2020a). Jia & Liang (2017) introduced concatena-

tive adversaries, which append distracting sentences at the end of paragraphs to attack systems

like the Stanford Question Answering reading comprehension model. Jin et al. (2020) developed

TextFooler, which identifies crucial words, assembles a pool of potential synonyms, and substi-

tutes each significant word with the most semantically analogous and grammatically appropriate

synonym. Li et al. (2020b) proposed BERT-Attack, a two-step method involving the search for

vulnerable tokens and the use of BERT MLM to generate semantic-preserving substitutes. Garg &

Ramakrishnan (2020) presented the BAE model, utilizing four adversarial attack strategies based

on word replacement or insertion operations. Maheshwary et al. (2021) proposed a decision-based

attack strategy that discovers word replacements maximizing semantic similarity. Liu et al. (2023)

introduced a new score-based attack model that tackles the challenge of identifying critical words

in textual attack models. This model creates semantic adversarial instances to trick text classi-

fication models. It integrates a self-attention mechanism and confidence probabilities to assess

the importance of words. Lee et al. (2022) presented a black-box attack strategy that effectively

interrogates the target model through Bayesian optimization. Their method employs an automatic

relevance determination (ARD) categorical kernel to dynamically recognize crucial positions in the
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input. To improve scalability for longer input sequences, they introduced techniques such as block

decomposition and history subsampling within Bayesian optimization. Wu et al. (2023) introduced a

task aimed at improving the ranking of a particular document through the introduction of adversarial

perturbations in its text, termed the word substitution ranking attack. To achieve this objective,

they introduced a novel technique named Pseudo Relevance-based ADversarial ranking Attack

(PRADA). PRADA entails training a surrogate model utilizing Pseudo Relevance Feedback to derive

gradients, which are instrumental in identifying suitable adversarial perturbations. Fursov et al.

(2022) presented a sentence-level black-box attack technique, fine-tuning a pre-trained language

model with a differentiable loss function. Liu et al. (2022) introduced a mimicry-based adversarial

attack tailored for black-box neural passage ranking models. By employing a ranking mimicry

model, they strategically alter the ranking outcomes and transfer this manipulation attack to the

target ranking model. They introduced an innovative gradient-based attack approach to create

adversarial triggers using just a few tokens, resulting in deliberate disorder in the rankings. Lu et al.

(2023) presented two effective black-box adversarial attackers aimed at compromising three target

systems: MLP, AutoEncoder, and DeepLog. The first attacker, based on attention mechanisms,

utilizes attention weights to identify susceptible logkeys and produce adversarial examples. The

second attacker, based on gradient calculations, determines gradients based on potential vulnerable

logkeys to identify the optimal adversarial sample. Both attackers successfully compromise the

target systems, posing a threat to their security.

In contrast, the white-box setting provides access to the target model architecture, parameters,

and training dataset. Ebrahimi et al. (2018) introduced HotFlip, a pioneering method that leverages
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an atomic flip operation to enact character-level modifications. This approach revolutionized the

field by enabling precise and targeted alterations at the most granular level of textual data. By

employing this atomic flip operation, HotFlip allows for the seamless manipulation of individual

characters within text, facilitating the creation of adversarial examples with high precision and

efficacy. Li et al. (2019) proposed the TEXTBUGGER framework, designed to operate in both

white-box and black-box scenarios. In the white-box context, TEXTBUGGER identifies crucial

words by analyzing the Jacobian matrix of the target model and then selects the optimal perturbation

from among five types of generated perturbations. In the black-box context, the framework first

identifies significant sentences and subsequently determines important words using a scoring

mechanism. Finally, an optimal perturbation selection algorithm is employed to modify the selected

words. Song et al. (2021) introduced Natural Universal Trigger Search (NUTS), which utilizes

a regularized autoencoder to produce adversarial attack triggers. A gradient-based search is then

employed to identify triggers that demonstrate effective attack performance. Guo et al. (2021)

proposed Gradient-based Distributional Attack (GBDA), featuring two primary components: firstly,

adversarial examples (AEs) are instantiated using the Gumbelsoftmax distribution, and secondly,

perceptibility and fluency characteristics are enforced utilizing BERTScore and a causal language

model perplexity, respectively.

2.3 Generating Adversarial Perturbations

The process of generating adversarial perturbations involves introducing maliciously crafted alter-

ations to benign data, aiming to deceive Machine Learning (ML) models, including those based
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on deep learning architectures Goodfellow et al. (2015b). These perturbations are strategically

designed to be imperceptible to human observers while inducing the model to make erroneous

predictions Metzen et al. (2017). Adversarial training, which integrates adversarial perturbations

during the model training phase, has demonstrated efficacy in enhancing the model’s resilience

against adversarial attacks Madry et al. (2018c); Shafahi et al. (2020); Xu et al. (2020); Wang et al.

(2019b).

Despite advancements in perturbation generation techniques for machine vision tasks Chakraborty

et al. (2021), progress in the field of Natural Language Processing (NLP) has been comparatively

slower due to the discrete nature of textual data Jin et al. (2020). In recent years, rather than directly

applying adversarial perturbations to raw text, researchers have shifted focus towards perturbing

the embedding space Wang et al. (2019a); Dong et al. (2021). However, these methods encounter

challenges related to generalization, as they may not be universally applicable across different ML

models and NLP tasks.

A more generalized approach to generating high-risk adversarial perturbations involves intro-

ducing small perturbations δ within a specified norm ball in the embedding space, to maximize the

adversarial loss:

arg max
||δ||≤ϵ

L(fθ(X + δ), y), (4)

Here, fθ(·) represents an ML model parameterized with X as the sub-word embeddings, and y

denotes the true label. To tackle this optimization problem, several gradient-based algorithms have

been proposed. These algorithms aim to iteratively adjust the perturbations δ within the specified
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constraint, thereby maximizing the adversarial loss and generating effective adversarial examples.

Some notable gradient-based algorithms include the Fast Gradient Sign Method (FGSM) Goodfellow

et al. (2015b), the Basic Iterative Method (BIM) Kurakin et al. (2018), and the Projected Gradient

Descent (PGD) Madry et al. (2018c). These techniques iteratively perturb the input embeddings

based on the computed gradients of the loss function concerning the perturbations, effectively

generating adversarial examples with increased success rates.

2.4 Adversarial Defense Methods in Natural Language Processing

In the realm of Natural Language Processing (NLP), the discrete nature of text poses unique

challenges for developing robust adversarial defense methods. Unlike in image-based tasks where

perturbations can be applied directly to pixel values, textual perturbations must be carefully crafted

to preserve syntactic and semantic coherence. Additionally, the high computational cost associated

with vanilla adversarial training, which involves training models directly in the raw text space,

further complicates the development of effective defense strategies. However, researchers have

devised several innovative approaches to mitigate the vulnerability of NLP models to adversarial

attacks. This research explores three prominent approaches: Projected Gradient Descent (PGD),

Free Adversarial Training with Likelihood Boosting (FreeLB), and Smoothing with Adaptive

Regularization Techniques (SMART).

Projected Gradient Descent (PGD): Inspired by its success in image classification, PGD

iteratively modifies the input text along the direction of the gradient that increases the model’s loss

on the specific target label. Mathematically, let x be the original input and l be the target label. At
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each iteration t, PGD updates the input as:

x(t+1) = clip
(
x(t) + α · sign

(
∇xL(f(x

(t)), l)
)
,xmin,xmax

)
(2.1)

where α is the learning rate, L is the loss function, f is the NLP model, ∇x is the gradient with

respect to the input, and clip restricts the modified input to lie within a feasible range (xmin, xmax).

This process creates adversarial examples that are minimally different from the original text but

maximize the model’s confusion.

Free Adversarial Training with Likelihood Boosting (FreeLB): Unlike PGD’s targeted

approach, FreeLB leverages unlabeled data for defense. It first generates adversarial examples using

a multi-step PGD technique. Then, during training, it utilizes both labeled and unlabeled data, but

assigns an additional "boosting" weight to the loss calculated on adversarial examples:

LFreeLB = Llabeled + w · Ladversarial (2.2)

where LFreeLB is the overall loss, Llabeled is the loss on labeled data, Ladversarial is the loss on

adversarial examples, and w is the boosting weight. This encourages the model to learn features

that are robust to adversarial perturbations.

Smoothing with Adaptive Regularization Techniques (SMART): Recognizing that adver-

sarial examples often exploit the model’s overconfidence in low-probability predictions, SMART

introduces two regularization techniques:

1. Label Smoothing: This reduces the sharpness of the one-hot encoded label distribution by

distributing the probability mass more uniformly across all classes. Mathematically, let yi be the

original one-hot encoded label for class i and K be the total number of classes. The smoothed label
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ŷi is calculated as:

ŷi = (1− ϵ) · yi +
ϵ

K
(2.3)

where ϵ is the smoothing factor (typically a small value like 0.1).

2. Confidence Penalty: This discourages the model from assigning high confidence scores to

incorrect predictions. The confidence penalty term can be added to the loss function, for example:

LSMART = Loriginal + λ ·H(y, ŷ) (2.4)

where LSMART is the overall loss with SMART, Loriginal is the original loss, λ is a hyperparameter,

H(y, ŷ) is the cross-entropy between the true label y and the predicted label ŷ. These techniques,

incorporated during training, make the model more robust to small perturbations in the input.

Choosing the optimal defense method depends on various factors, including the NLP task,

available data, and computational resources. While PGD remains a powerful baseline, FreeLB

offers data-efficient training, and SMART introduces interpretability through its focus on model

confidence. The field of adversarial defense in NLP is constantly evolving, and combining these

methods or exploring novel approaches holds promise for building more robust and secure language

models.

2.5 Advancements in Text Representation Learning for Natural Language Processing

In the domain of natural language processing (NLP), the quest for effective text representations

has been a longstanding pursuit. Early endeavors in this area revolved around leveraging the

distributional hypothesis, which posits that words appearing in similar contexts tend to have similar
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meanings. This principle underpinned seminal works such as those by Mikolov and colleagues, who

introduced methods like Word2Vec Mikolov et al. (2013b,a). These approaches aimed to learn word

embeddings by predicting words within their contextual surroundings, thereby capturing semantic

relationships among words.

As research progressed, attention turned towards developing more comprehensive representa-

tions capable of capturing the meaning of entire sentences or documents. A prominent avenue of

exploration involved the creation of universal sentence embeddings, which aimed to encode the

semantic content of sentences in a fixed-length vector space. Both supervised and unsupervised

techniques were explored for this purpose. Notable contributions include Doc2Vec, proposed by Le

& Mikolov (2014), which extended the Word2Vec framework to learn document embeddings, and

SkipThought, introduced by Zhu et al. (2015), which aimed to generate sentence embeddings by

predicting the surrounding sentences in a sequence.

More recently, the development of the Universal Sentence Encoder (USE) by Cer et al. (2018)

marked a significant milestone in the field. USE utilized a deep neural network architecture

to generate high-quality sentence embeddings capable of capturing both semantic and syntactic

information. This model was trained on a diverse range of text data, making it adept at encoding the

meaning of sentences across various domains and languages.

Another noteworthy advancement came with the introduction of Sentence-BERT (SBERT)

by Reimers & Gurevych (2019). SBERT adapted the popular BERT (Bidirectional Encoder

Representations from Transformers) architecture to the task of sentence embedding. By fine-tuning

BERT on a siamese and triplet network structure, SBERT was able to learn sentence embeddings that
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effectively captured semantic similarity between sentences. This approach demonstrated superior

performance on various semantic textual similarity tasks, showcasing the efficacy of leveraging

pre-trained transformer models for sentence representation learning.

2.6 Enhancing Text Representation through Contrastive Adversarial Learning

The primary goal of contrastive learning is to acquire effective low-dimensional representations by

enhancing the similarity between semantically related samples while maximizing the dissimilarity

between unrelated ones Hadsell et al. (2006). Self-supervised contrastive learning has emerged as

a promising technique for data representation across various domains, including machine vision

Chen et al. (2020), natural language processing (NLP) Gao et al. (2021); Neelakantan et al. (2022),

and speech recognition Lodagala et al. (2023). In this study, we leverage the concept of contrastive

learning proposed by Chen et al. (2020) to generate high-quality representations.

Let {(xi, x
+
i )}Ni=1 denote a set of N positive pairs, where xi and x+

i represent semantically

correlated samples, and (zi, z
+
i ) are their corresponding embedding vectors. We define zi’s positive

set as {xpos
i } = z+i , and the negative set {xneg

i } as the set of other positive pairs. The contrastive

training objective can be formulated as follows:

Lcon,θ(xi, {xpos
i }, {x

neg
i }) = − log(

∑
{xpos

i } exp(sim(zi, {xpos
i })/τ)∑

{xpos
i , xneg

i } exp(sim(zi, {xpos
i , xneg

i })/τ)
), (2.5)

where τ represents a temperature hyperparameter, and sim(u, v) denotes the cosine similarity

between two representation vectors.

Recently, self-supervised contrastive learning methods have gained traction for learning robust

and effective text representations. For instance, SimCSE proposed by Gao et al. (2021) introduced
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minimal augmentation techniques involving the application of distinct dropout masks to predict

input sentences. The ConSERT model Yan et al. (2021) utilized various data augmentation strategies,

including adversarial attacks, token shuffling, cut-off, and dropout, to provide diverse perspectives

for contrastive objectives. Miao et al. (2021) integrated adversarial training into contrastive learning

to enhance robustness by incorporating regularization into the learning objective. Rima et al. (2022)

proposed a novel method that combines adversarial training and contrastive learning, introducing

linear perturbations to input embeddings to minimize the distance between original and perturbed

representations. Additionally, Pan et al. (2022) presented a technique to enhance the fine-tuning of

Transformer-based encoders, leveraging adversarial examples generated through word embedding

perturbations and employing contrastive learning to achieve noise-invariant representations.

These advancements highlight the effectiveness and versatility of self-supervised contrastive

learning methods in improving the quality and robustness of text representations across various

NLP tasks.

2.7 Discussions and Open Issues

The development of adversarial examples in textual data has a relatively shorter history compared

to the generation of adversarial examples in images for Deep Neural Networks (DNNs). This

discrepancy arises from the increased complexity of introducing perturbations in discrete data while

ensuring the preservation of valid syntax, grammar, and semantics. In this section, we delve into

these challenges and propose avenues for future exploration.
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2.7.1 Perceptibility

Perturbations in image pixels are typically imperceptible to human observers yet have the capacity

to deceive deep neural networks. Conversely, perturbations in text, such as character flips or word

substitutions, are often conspicuous. Invalid words and syntactic errors are readily detectable by

humans and grammar check software, rendering the perturbation ineffective against real Natural

Language Processing (NLP) systems. Despite these limitations, many research endeavors focus on

generating such adversarial examples. This approach may be acceptable if the aim is to bolster the

resilience of targeted DNN models. However, from a semantic preservation standpoint, altering a

word in a sentence can significantly alter its meaning, easily discernible by humans.

2.7.2 Transferability

Transferability is a common property observed in adversarial examples, reflecting the generalization

capability of attack methods. This phenomenon implies that adversarial examples crafted for one

DNN model on a particular dataset can effectively deceive another DNN model (cross-model

generalization) or dataset (cross-data generalization). Transferability is more commonly exploited

in black-box attacks, where the specific characteristics of the targeted DNN models have minimal

influence on the attack strategy. Moreover, it has been observed that untargeted adversarial examples

exhibit greater transferability compared to targeted ones. Within the realm of DNNs, transferability

can be categorized into three levels: (i) similar architectures with different datasets; (ii) different

architectures with similar applications; and (iii) different architectures with diverse datasets.
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2.7.3 Exploration of New Architectures

While many common DNN architectures for textual data have been scrutinized for adversarial

vulnerabilities, numerous other architectures remain largely unexplored in this context. For instance,

generative neural models like Generative Adversarial Networks (GANs) and Variational Auto-

Encoders (VAEs), frequently employed in NLP tasks for text generation, have received limited

attention regarding adversarial attacks. The training of deep generative models demands advanced

skills, potentially contributing to their relative absence from adversarial attack studies. Future

investigations may delve into the generation of adversarial examples tailored for these generative

DNN architectures.

2.7.4 Iterative versus One-shot Approaches

Iterative attacks entail a systematic search and update process for perturbations based on the gradient

of the targeted DNN model’s output. Consequently, these attacks often yield high-quality and effec-

tive perturbations, which may be subtle and difficult to defend against. However, iterative methods

typically require significant computational resources and time to discover optimal perturbations,

posing challenges for real-time attacks. To address this limitation, one-shot attacks have been

proposed, aiming to streamline the perturbation generation process.

In comparison to recent adversarial attack methodologies Maheshwary et al. (2021); Liu et al.

(2023); Li et al. (2020b), our proposal introduces novel enhancements. Firstly, we present a new

thresholding technique, termed dynamic thresholding, to refine efficient and context-aware pertur-

bations. Secondly, we introduce a word substitution technique called local greedy search, which
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generates high-quality adversarial examples capable of deceiving state-of-the-art target models

and exhibiting superior performance across various evaluation metrics compared to existing adver-

sarial attacks. Our proposed model incorporates a comprehensive array of linguistic refinements

to enhance the imperceptibility of the resulting adversarial examples from a human perspective.

Moreover, in contrast to several adversarial learning approaches in the text representation domain

Yan et al. (2021); Qiu et al. (2021); Rima et al. (2022); Pan et al. (2022), our framework stands

out by generating more efficient and high-risk iterative perturbations in the embedding space. This

framework introduces two main innovations: (a) the utilization of a practical token-level perturba-

tion generator based on an adversarial contrastive learning objective, and (b) the introduction of a

novel adversarial token-detection objective to generate more robust sentence embeddings.



37
CHAPTER 3

A Semantic, Syntactic, And Context-Aware Natural Language Adversarial Example
Generator

3.1 Introduction

Despite the dominance of machine learning across diverse computer science domains, the suscep-

tibility to Adversarial Examples (AEs), characterized as subtly crafted perturbations, remains a

focal point of investigation Goodfellow et al. (2015b); Kurakin et al. (2018); Zhang et al. (2020a).

These imperceptible alterations aim to coerce a finely tuned machine learning model, referred to as

the target model, into making erroneous decisions aligning with the attacker’s objectives. Recent

advancements advocate for integrating AEs into the training process, known as adversarial training,

to enhance the resilience and consistency of models against adversarial manipulations Shafahi et al.

(2020); Xu et al. (2020); Wang et al. (2019b). Such endeavors pave the way for the development of

computational frameworks capable of generating meticulously designed, humanly indistinguishable

adversarial examples tailored for adversarial training.

While strides have been made in adversarial attack and defense methodologies in machine

vision Goodfellow et al. (2015b); Papernot et al. (2017); Chakraborty et al. (2021), progress in

natural language processing (NLP) has been comparatively slower. The intricate nature of textual

data poses significant challenges in designing effective adversarial attack and defense strategies in

NLP Jin et al. (2020). Crafting perturbations in NLP necessitates adherence to three fundamental

principles: (1) congruence with human decision-making processes Jin et al. (2020); Li et al. (2020b),

(2) preservation of semantic fidelity to the original text Jin et al. (2020); Song et al. (2021), and (3)
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adherence to the syntactic and grammatical conventions of the source language Jin et al. (2020);

Song et al. (2021).

TextFooler Jin et al. (2020), a widely recognized adversarial attack model in Natural Language

Processing (NLP), initially employs word embeddings to explore synonymous replacements for

each crucial word. Subsequently, it conducts grammatical and semantic similarity assessments to

refine the set of synonyms, aiming to identify suitable substitutions as perturbations. Nonetheless,

studies have revealed that TextFooler tends to generate intricate, contextually incongruent, and easily

detectable perturbations Garg & Ramakrishnan (2020); Li et al. (2020b). To mitigate these issues,

recent advancements have introduced two alternative adversarial attack models: Bidirectional

Encoder Representations from Transformers (BERT) Attack (BERT-Attack) Li et al. (2020b)

and BERT-based Adversarial Examples (BAE) Garg & Ramakrishnan (2020). These models

focus on generating context-aware perturbations by masking and replacing crucial words with

substitutions provided by the BERT Masked Language Model (BERT MLM) Devlin et al. (2019a).

However, despite their efforts to create contextually sensitive substitutions, BERT-Attack and BAE

occasionally sacrifice the semantic and syntactic coherence of the original text Li et al. (2020b),

thereby compromising their robustness and efficacy. Hence, there is a compelling need for a

holistic model that concurrently satisfies all aforementioned principles for crafting well-calibrated

perturbations.

This study presents SSCAE (Semantic, Syntactic, and Context-aware Adversarial Examples), a

practical and efficient adversarial attack model tailored for generating natural language adversarial

examples that adhere to semantic consistency, syntactic coherence, and contextual relevance.
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SSCAE operates as a black-box attack method, producing humanly imperceptible and context-

aware adversarial examples while upholding semantic and syntactic integrity. Initially, SSCAE

utilizes the BERT MLM to generate an initial set of substitution candidates. Subsequently, it

leverages two well-established language models, namely the Universal Sentence Encoder (USE)

Cer et al. (2018) and the Generative Pre-trained Transformer 2 (GPT-2) Radford et al. (2019), to

assess the semantic and syntactic characteristics of the substitutions, respectively. Additionally, we

introduce a novel dynamic thresholding technique that adapts the semantic and syntactic thresholds

per crucial word, departing from the conventional static thresholding approach Jin et al. (2020);

Li et al. (2019); Garg & Ramakrishnan (2020). This dynamic thresholding method accounts for

variations in semantic similarity across different substitutions, thereby enhancing the efficacy

of perturbation generation. Furthermore, SSCAE incorporates a word permutation-substitution

technique named local greedy search to facilitate simultaneous substitution of multiple crucial words,

thereby generating high-quality adversarial examples. Local greedy search efficiently identifies

candidate substitutions that minimize the target model’s confidence score, leading to the production

of high-quality adversarial examples through diverse combinations of substitutions.

We conducted fifteen computational experiments across commonly used text classification

and Natural Language Inference (NLI) datasets to evaluate SSCAE’s performance against three

state-of-the-art methods: TextFooler, BERT-Attack, and BAE using the BERT target model (seven

experiments). Additionally, we assessed SSCAE’s effectiveness on other target models and diverse

NLP-based cloud applications (eight experiments). SSCAE consistently outperformed the other

methods across all experiments, demonstrating superior semantic consistency, lower query count,
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and comparable perturbation rates.

3.1.1 Contribution

Our primary contributions can be summarized as follows:

• We present SSCAE, an effective adversarial attack approach designed to generate context-

aware adversarial examples that are imperceptible to human observers. SSCAE incorporates

various contextual linguistic factors, such as semantic, syntactic, and grammatical features,

to refine candidate substitutions proposed by BERT-MLM, resulting in high-quality pertur-

bations. Notably, SSCAE introduces two innovative techniques: dynamic thresholding and

word permutation-substitution, which outperform existing adversarial attack models by a

considerable margin.

• We introduce dynamic thresholding to adaptively meet semantic and syntactic requirements

for each important word, departing from traditional constant threshold approaches. By

computing individual thresholds for every critical word, SSCAE leverages the non-linear

nature of semantic and syntactic correctness distributions, significantly improving after-attack

accuracy, average perturbation percentage, and semantic consistency across text classification

and natural language inference tasks.

• We propose a word permutation-substitution technique named local greedy search to con-

currently substitute multiple important words, yielding high-quality adversarial examples.

Experimental results demonstrate the effectiveness of local greedy search over conventional
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sequential substitution methods, as evidenced by improvements in after-attack accuracy,

average query number, and semantic consistency across different NLP tasks.

• We evaluate SSCAE across various deep learning models on four common text classification

and three natural language inference tasks. Our method surpasses state-of-the-art techniques

by maintaining higher after-attack accuracy and semantic consistency while requiring fewer

queries and achieving comparable perturbation rates.

3.1.2 Adversarial Examples

Table 3.1 presents qualitative instances of adversarial samples crafted by three distinct adversarial

attack techniques: TextFooler, BAE, and SSCAE methods. Unlike the former two adversarial

methods, our approach produces adversarial examples of superior quality and naturalness with

minimal substitutions, all while maintaining semantic coherence and adhering to the syntactical and

grammatical norms of the source language.

3.2 Proposed SSCAE Computational Model

Figure 3.1 illustrates the workflow of the proposed SSCAE model, which comprises five distinct

steps outlined in this section. We first provide a brief overview of two prominent NLP models

utilized to address linguistic constraints before delving into the details of the proposed model.
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Dataset Adversarial Attack Text Instance Label

YELP

Original Great location! Close to shops and theatre. Nice
staff.

Positive

TextFooler Poor location! Distance from shops and theatre.
Unpleasant staff.

Negative

BAE Excellent location! Incredibly near to shops
and theatre. Nice staff.

Negative

SSCAE (ours) Terrible location! Close to shops and theatre.
Nice staff.

Negative

MNLI

Original Hypothesis: Poirot was disappointed with me→
Premise: Still, it would be interesting to know.
109 Poirot looked at me very earnestly, and again
shook his head.

Neutral

TextFooler Still, it would be enthusiastic to know. 109
Poirot looked at me very cautious, and again
vibrate his head.

Entailment

BAE Still, it would be captivating to know. 109
Poirot gazed at me extremely earnestly, and
again shook his head

Entailment

SSCAE (ours) Still, it would be interesting to know. 109 Poirot
looked at me very carefully, and again shook
his head.

Entailment

IMDB

Original You’d better choose Paul Verhoeven’s even if
you have watched it.

Negative

TextFooler You’d brilliantly choose Paul Verhoeven’s even
if you have seen it.

Positive

BAE You’d certainly choose Paul Verhoeven’s even
if you haven’t watched it.

Positive

SSCAE (ours) You’d rather choose Paul Verhoeven’s even if
you have watched it.

Positive

Table 3.1 Qualitative examples of adversarial samples generated by different adversarial attack
methods (TextFooler, BAE, SSCAE). We only attack premises in the MNLI task.
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Figure 3.1 General architecture of the proposed SSCAE model

3.2.1 Background

3.2.1.1 Universal Sentence Encoder (USE) for Semantic Similarity Measurement

Cer et al. (2018) introduced the Universal Sentence Encoder (USE) for English, a model capable

of encoding textual content of varying lengths into embedding vectors of a fixed size (typically

512). These vectors statistically capture the semantic characteristics of the input text, making them
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suitable for measuring semantic similarity between texts of different lengths (Jin et al., 2020).

The proposed SSCAE model leverages USE to generate embedding vectors enriched with

semantic information from the input sentence (Vinput) and the encoded Answer Explanation (VAE).

The cosine similarity (Ssimilarity) between these vectors is then computed to assess the semantic

closeness of each generated AE to its corresponding input sentence:

Ssimilarity =
Vinput · VAE

||Vinput||||VAE||
(3.1)

3.2.1.2 Generative Pre-trained Transformer 2 (GPT-2) for Syntactic Fluency Assessment

Radford et al. (2019) introduced GPT-2, a transformer-based language model trained to predict the

next word in a sequence based on the preceding context. This powerful pre-trained model has been

employed in various studies (Chen et al., 2022; Pang et al., 2020) to evaluate the syntactic fluency

of text by leveraging its understanding of language structure and rules.

Within the SSCAE model, GPT-2 plays a key role in assessing the syntactic correctness of

proposed answer explanation substitutions. It calculates the probability of the original important

word, PI , and each of its suggested replacements, PS . The syntactic correctness score for each

substitution is then determined by:

Ssyntactic = PS − PI (3.2)
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3.2.2 Step 1: Selection of an Input Sample and Identification of Word Importance

A text input sample is chosen randomly from an available dataset and fed into the SSCAE model.

This input sample could be a sentence, a paragraph, or even an entire document. To identify the

important words within the input sample, we employ a greedy search technique Gao et al. (2018).

This method involves iteratively masking individual words in the input sample, replacing them

with a predefined symbol. Subsequently, the target model evaluates the modified input sample and

generates a confidence score for the true label. The confidence score, ranging from 0 to 1, indicates

the probability of the input belonging to a particular label, computed by feeding the input sample

(with or without masking) to a trained model (referred to as the target model). In the machine

learning literature, this confidence score is also known as logits Jordan & Mitchell (2015); LeCun

et al. (2015); Mahesh (2020). The difference between the confidence score before and after masking,

denoted as δ, is then calculated for each word in the input sample. This δ value is determined for all

words in the sample. Finally, the words are sorted based on their δ values; a higher δ value indicates

greater influence (importance) of the corresponding word in the input sample on the target model’s

prediction.

3.2.3 Step 2: Identifying Influential Words and Context-Aware Substitutions

The SSCAE model employs a two-step process to identify influential words and their corresponding

context-aware substitutions for adversarial attacks.

1. Influential Word Selection:

The model first identifies the M most influential words within the input text. These words are
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determined by their associated δ values, with larger values indicating greater impact on the target

model’s output. This selection process prioritizes words that can potentially lead to significant

changes in the target model’s prediction, maximizing the effectiveness of the attack.

2. Context-Aware Substitution Generation:

For each selected influential word, the model employs a context window to capture its surround-

ing textual context. This window, with a size of 2NW centered on the target word, incorporates NW

neighboring words both before and after. An empirical evaluation determined that a window size of

4 (NW = 2) provides a sufficient balance between capturing relevant context and computational

efficiency.

Instead of directly applying the BERT Masked Language Model (MLM) on the influential word,

the SSCAE model adopts an alternative approach. It applies the BERT MLM on each neighboring

word within the context window. This strategic shift allows the model to retrieve context-aware

substitutions that are specifically meaningful for the influential word considering its surrounding

context.

The BERT MLM applied to each neighboring word generates a distinct set of the top K

context-aware substitutions, resulting in a total of four sets (due to the four neighboring words).

These individual sets capture substitutions from different contextual perspectives surrounding the

influential word. Subsequently, the model combines these four sets using a union operation, creating

a comprehensive initial set of context-aware substitutions for the chosen influential word.

It is noteworthy that the initial set might exceed the size of K but remains close to it. This

is because some substitutions might be identical across several of the top K sets generated from
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different neighboring words. By incorporating both identical and non-identical substitutions, the

model enhances its ability to potentially bypass the target model’s defenses, as identical substitutions

offer opportunities to exploit known vulnerabilities, while non-identical ones explore alternative

attack vectors.

3.2.4 Step 3: Enhanced Refinement of Linguistic Requirements through Dynamic Thresholds

In response to the intricate distribution patterns of semantic similarity and syntactic correctness

observed in context-aware substitutions, we propose the integration of an adaptive and personalized

threshold for every significant word, which we term the "dynamic threshold." This innovative

approach is tailored to alleviate the constraints imposed by rigid, fixed thresholds. The dynamic

threshold dynamically computes an appropriate threshold based on linguistic features, specifically

semantic similarity and syntactic correctness, for each significant word’s candidate substitutions.

The overarching goal is to generate perturbations that surpass existing standards in quality and

fluency Devlin et al. (2019a); Liu et al. (2019); Lan et al. (2020).

Despite the established dominance of BERT-based models across a myriad of NLP tasks, a

substantial portion of top K-generated substitutions fail to yield valid adversarial examples (AEs)

that meet the benchmarks for language fluency, semantic consistency, and imperceptibility. It

is imperative to meticulously examine substitutions to ensure the credibility of the generated

perturbations and adherence to linguistic criteria. Each substitution must meticulously preserve

the input sample’s meaning and grammatical requisites while adhering to the syntactic structures

of the source language. The SSCAE model employs sophisticated refinement strategies aimed

at identifying substitutions with a heightened probability of preserving semantic, syntactic, and
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grammatical linguistic characteristics.

Semantic embedding models such as USE and transformer-based language models like GPT-2

are instrumental in this process, assigning semantic similarity and syntactic correctness scores

respectively to each substitution. These scores provide insights into the extent to which a substitution

maintains the input sample’s meaning and adheres to the syntactic norms of the source language.

Recent studies have predominantly relied on a constant threshold, either through iterative comparison

with a previous adversarial example Jin et al. (2020) or by filtering substitutions based on semantic

consistency with the original text Li et al. (2019, 2020b). However, the exclusive dependence on a

constant threshold proves to be inadequate for effective refinement, particularly when juxtaposed

with previously generated adversarial examples. While a fixed threshold may effectively refine

a subset of high-quality perturbations for a significant word, it often results in a compromise in

semantic similarity with the original text for other crucial words. Consequently, although such an

adversarial attack method may yield examples capable of deceiving the target model, the semantic

coherence of the final adversarial examples is severely undermined, rendering them susceptible to

detection from a human perspective.

This work delves into an exploration of four distinct potential heuristics for computing dynamic

thresholds to refine substitutions: (1) Average_threshold, (2) Median_threshold, (3) TopN_threshold,

and (4) Top_maxes_distance. The Average_threshold (Median_threshold) method computes the

average (median) of substitution scores. Meanwhile, TopN_threshold selects the score of the N th

substitution after descending sorting, where N serves as a minor hyper-parameter. On the other
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hand, Top_maxes_distance computes the threshold as delineated in Equation 3.3:

DT = SN − λ.∆SN , (3.3)

where SN represents the score corresponding to the N th substitution after descending sorting, λ

denotes a minor hyperparameter, and ∆SN signifies the difference between the highest score among

substitutions and SN . Collectively, these dynamic thresholds engender substitutions with elevated

semantic consistency, thereby substantially augmenting the quality of generated AEs. Through an

exhaustive array of trial and error experiments conducted across diverse datasets, it was discerned

that a lower bound of 0.7 proved optimal for the dynamic threshold, thereby ensuring the validity of

the substitutions.

Furthermore, the Part-Of-Speech (POS) tag of substitutions must align with that of the selected

word to uphold grammatical linguistic characteristics. Deviations from this criterion result in the

filtering out of substitutions. However, exceptions are made for singular/plural mismatches and verb

root similarities, thereby ensuring grammatical correctness during substitution implementation. It is

pertinent to note that in this method, the identification of correct substitution POS tags occurs upon

implementation of the substitution in the input sample.

3.2.5 Step 4: Enhancing Adversarial Example Generation with Local Greedy Search

In pursuit of an advanced and refined methodology, we propose the simultaneous substitution of

multiple significant words as a more effective alternative to the conventional sequential substitution

approach. This innovative technique, termed "local greedy search," represents a pragmatic and

intuitive concept that not only yields worst-case perturbations but also significantly expedites the
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process of deceiving the target model. Despite its simplicity, this approach ensures the generation

of high-quality and imperceptible adversarial examples Kurakin et al. (2018); Goodfellow et al.

(2015b).

The local greedy search method serves as a cornerstone in the proposed SSCAE model for

generating adversarial samples. Here’s how it works: For each of the M important words (i.e., the

M top words with the largest δs) specified in step 2, SSCAE selects the top N refined substitutions

that lead to the most significant reduction in confidence scores. Subsequently, to explore potential

adversarial samples, the local greedy search is employed to simultaneously substitute all M important

words. The values of M and N are carefully chosen to ensure that the number of combinations of

different substitutions, i.e., NM, remains within the available computation resources. For instance,

in our study, we investigated magnitudes ranging from 1 to 4 for both M and N, ensuring that the

total number of combinations does not exceed 256 (when N : = : 4 and M : = : 4). Leveraging

the adaptive refinements from the previous step, the adversarial samples generated through this

process have a significantly higher likelihood of preserving semantic, syntactic, and grammatical

consistency with the input samples.

Subsequently, the adversarial samples are estimated by the target model and are descendingly

sorted based on the confidence gap magnitude, as defined by Equation 3.4:

Gy
adv = Ty(S

orig)− Ty(S
adv), (3.4)

where T(.) denotes the target model, with Ty(.) assigning a confidence score corresponding to

the truth label y for a given input sentence. Here, Sorig and Sadv represent the input sample and
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adversarial sample, respectively. The term Gy
adv signifies the gap between the confidence scores of

the input sample and the adversarial sample for the truth label.

Through the comprehensive exploration of all NM possible combinations of substitutions,

wherein M important words are replaced with one of the combinations each time, the SSCAE model

evaluates a vast array of potential adversarial samples. This exhaustive search enables the model to

identify the most effective adversarial example early in the permutation process, thereby minimizing

the number of queries required to achieve the adversarial attack objective. Thus, the local greedy

search strategy proves instrumental in streamlining the adversarial example generation process and

enhancing the efficiency of adversarial attacks.

3.2.6 Step 5: Iterative Input Replacement for Enhanced Adversarial Example Generation

In scenarios where none of the generated adversarial samples manage to deceive the target model,

a systematic approach is employed to enhance the efficacy of the generated adversarial examples.

Specifically, the adversarial sample exhibiting the lowest probability of belonging to the truth

label, as determined by the highest confidence gap in Equation 3.4, is designated as the new input

text sample. Subsequently, steps 2 through 5 are iteratively repeated, thereby ensuring continual

refinement and optimization of the adversarial example generation process. It is important to

note that in this iterative process, the new input sample is poised to generate adversarial samples

with a heightened probability of deceiving the target model compared to the current input sample

Goodfellow et al. (2015b); Kurakin et al. (2018).

The pseudocode outlining the operations of the proposed SSCAE model is encapsulated in

Algorithm 1. This algorithm encompasses various essential functions aimed at facilitating the
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Algorithm 1: SSCAE Pseudocode
Input : input sentence S = [w1, ..., wn], truth label Y , target model T , Fixed-size window

W , thresholds’ lower bounds (STsemantic, STsyntactic)
Output :Adversarial Sentence Sadv

Function Compute_Importance (Sadv, T , Y ):
foreach word wi ∈ Sadv do

Calculate pi(Y ) of Sadv
i−masked through T

end
return Sorted words WL = [wmin1(P (Y )), wmin2(P (Y )), ...]

End Function

Procedure SSCAE_Attack (S, M , N , T , Y , W , STsemantic, STsyntactic):
Initialization Sadv ← S
WL = Compute_Importance(Sadv, T , Y )
foreach word wi ∈ WL do

Apply MLM_Bert on w(i±j) using W , gather semantic candidates (SC)
Ssemantic = USE(Sadv, SC,wi)
Ssyntactic = GPT_2(Sadv, SC,wi)
Calculate dynamic thresholds (DTsemantic, DTsyntactic) based on
(Ssemantic, Ssyntactic)

foreach semantic candidate sck ∈ SC do
if Ssemantic[sck] > (DTsemantic, STsemantic) AND
Ssyntactic[sck] > (DTsyntactic, STsyntactic) then

if POS_checker(wi, sck) == True then
PC.add(sck)

end
end

end
GAP = []
foreach purified candidate pck ∈ PC do

Sadv
t = [..., wi−1, pck, wi+1, ...]

if argmax(T (Sadv
t )) ̸= Y then

return Sadv
t

end
else if Ty(S

adv
t ) < Ty(S

adv) then
GAP.add(Ty(S

adv)− Ty(S
adv
t ))

end
end

end
return Sadv

End Procedure
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generation of robust adversarial examples.

In essence, the main function, SSCAE_Attack(), acts as the entry point, receiving parameters

such as the input text, truth label, target model, fixed-size window, hyper-parameters for local greedy

search, and lower bounds for semantic and syntactic requirements. Subsequently, it orchestrates the

iterative process of generating the ultimate adversarial example.

The Compute_Importance() function plays a pivotal role in computing the importance

score of words within the input text, subsequently sorting them based on their respective importance

levels. This step is crucial for identifying and prioritizing significant words for substitution.

The functions USE() and GPT_2() undertake the task of evaluating candidate substitutions

by assigning semantic and syntactic scores, respectively. These scores are instrumental in gauging

the suitability of substitutions in preserving the semantic and syntactic integrity of the input text.

Moreover, the POS_checker() function is responsible for validating the Part-Of-Speech

(POS) tags of substitutions, ensuring alignment with the corresponding important word upon

application to the input sample. This step is crucial for maintaining grammatical consistency

throughout the substitution process.

Lastly, the PRODUCT() function facilitates the generation of all possible combinations of

substitutions for M important words, thus enabling comprehensive exploration of substitution

options within the input text.

Through the orchestrated execution of these functions within the SSCAE model, a systematic

and iterative approach is employed to iteratively refine and optimize the generation of adversarial

examples, ultimately enhancing their efficacy in deceiving target models.
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3.3 Computational Experiments

Dataset Selection and Experimental Framework:

This section describes the text classification and Natural Language Inference (NLI) datasets

employed for evaluation, along with the target models fine-tuned on various subsets. To mitigate

statistical bias, each experiment is repeated five times with distinct randomly generated test samples.

Reported results represent the average across all five repetitions. We utilize a comprehensive set of

metrics to compare the adversarial attack performance of the proposed SSCAE model against recent

baselines on these diverse target models. Additionally, we assess the efficacy of SSCAE across

various Machine-Learning-as-a-Service (MLaaS) platforms encompassing diverse natural language

understanding tasks like text classification.

Implementation Details and Computational Resources:

The SSCAE model implementation leverages several popular libraries: PyTorch Paszke et al.

(2019) for deep learning operations, spaCy Honnibal & Montani (2017) for natural language

processing tasks, and Gensim Rehurek & Sojka (2011) for topic modeling and document similarity

computations. For loading target models and datasets, we utilize the transformers library Wolf et al.

(2020). Additionally, TextAttack Morris et al. (2020) is employed to implement other adversarial

attack methods for comparative analysis. Experiments were conducted on four Tesla V100 GPUs

with 32GB of memory each. On average, the SSCAE model requires 2-4 hours to process 1000

randomly selected test instances on this infrastructure.



55

3.3.1 Expanding Experimentation with Datasets and Target Models

To evaluate the robustness and efficacy of the SSCAE model comprehensively, a diverse array

of datasets and target models were leveraged across eleven distinct Natural Language Processing

(NLP) task experiments. The chosen datasets encompass four binary text classification datasets

tailored for text classification tasks and three Natural Language Inference (NLI) datasets aimed at

text entailment tasks.

The text classification datasets utilized in the experiments include the YELP Polarity Review

(YELP) Zhang et al. (2015), Internet Movie Database (IMDb) Review Maas et al. (2011), Rotten

Tomatoes Movie Reviews (MR) Pang & Lee (2005b), and Stanford Sentiment Treebank Version 2

(SST2) Socher et al. (2013b). On the other hand, the NLI datasets consist of Standford NLI (SNLI)

Bowman et al. (2015), Multi-NLI (MNLI) Williams et al. (2018), specifically MNLI-Matched, and

MNLI-Mismatched. Comprehensive details regarding these datasets can be found in section 2.1.

The initial seven experiments focus on benchmarking the SSCAE model against three leading

adversarial attack models, with the BERT model Devlin et al. (2019a) serving as the target model.

Each experiment involves fine-tuning the BERT model on a different dataset to assess the SSCAE

model’s performance across varied text classification tasks. Notably, BERT stands as a prominent

transformer-based language model that has demonstrated remarkable performance across diverse

NLP tasks, often achieving human-level accuracies Murugesan (????); Rajpurkar et al. (2016).

Subsequent experiments delve into assessing the SSCAE model’s effectiveness against four

neural network target models other than BERT, namely WordLSTM Hochreiter & Schmidhuber

(1997), ALBERT-Base Lan et al. (2020), ESIM Chen et al. (2017), and BERT-Large Devlin et al.
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(2019a). Each of these models brings unique architectural nuances and computational characteristics

to the table, contributing to a comprehensive evaluation of the SSCAE model’s robustness across

various NLP frameworks.

In the final set of experiments, the focus shifts towards evaluating the SSCAE model’s per-

formance on three prominent commercial MLaaS platforms: Google Cloud NLP, IBM Watson

Natural Language Understanding (IBM Watson), and Microsoft Azure Text Analytics (Microsoft

Azure). These experiments aim to gauge the SSCAE model’s efficiency in real-world deployment

scenarios where the attacker lacks intricate knowledge of the target model’s architecture and training

data. A comparative analysis is conducted against the TEXTBUGGER model Li et al. (2019), a

benchmark in adversarial attack methodologies, to validate the SSCAE model’s efficacy across

diverse deployment environments and platforms.

By diversifying the experimental setup to encompass a broad spectrum of datasets, target models,

and deployment scenarios, the SSCAE model’s versatility and effectiveness in generating robust

adversarial examples are comprehensively evaluated and validated.

3.3.2 Comparison of Adversarial Attack Models Against BERT

The outcomes of the initial seven experiments are summarized in Table 3.2, where the proposed

SSCAE model is juxtaposed against TextFooler, BERT-Attack, BAE, HardLabel Maheshwary et al.

(2021), and Liu2023 Liu et al. (2023) adversarial attack models. These experiments were conducted

using 1000 randomly selected testing instances and the BERT target model. In order to assess the

quality of the generated Adversarial Examples (AEs), four standard metrics Jin et al. (2020); Li

et al. (2020b) were employed: after-attack accuracy, average perturbation percentage, average query
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Dataset E# Original Acc Adversarial Attack Attacked Acc Perturb % Query # Semantic Sim

YELP 1 95.6

TextFooler 6.3 (0.5) 12.1 (0.8) 758 (32) 0.75 (0.03)
BERT-Attack/BAE 5.1 (0.4) 4.1 (0.3) 273 (19) 0.77 (0.03)

HardLabel 5.6 (0.5) 5.4 (0.5) 247 (18) 0.79 (0.04)
Liu2023 5.2 (0.3) 11.5 (0.9) 294 (21) 0.80 (0.03)

SSCAE (ours) 1.6 (0.2) 4.8 (0.3) 112 (14) 0.92 (0.03)

IMDB 2 90.9

TextFooler 13.4 (0.7) 6.5 (0.6) 1145 (52) 0.85 (0.04)
BERT-Attack/BAE 11.4 (0.5) 4.4 (0.4) 454 (31) 0.86 (0.03)

HardLabel 10.8 (0.6) 4.6 (0.5) 521 (38) 0.85 (0.03)
Liu2023 9.5 (0.4) 6.9 (0.6) 562 (36) 0.86 (0.04)

SSCAE (ours) 4.2 (0.3) 10.8 (0.5) 418 (26) 0.86 (0.03)

SST2 3 93.0

TextFooler 14.1 (0.3) 16.7 (1.0) 103 (9) 0.85 (0.05)
BERT-Attack/BAE 18.2 (0.4) 14.5 (0.3) 92 (8) 0.86 (0.04)

HardLabel 15.4 (0.3) 14.9 (0.4) 86 (7) 0.85 (0.03)
Liu2023 14.6 (0.3) 17.1 (0.5) 90 (6) 0.85 (0.04)

SSCAE (ours) 12.5 (0.2) 14.3 (0.3) 64 (5) 0.87 (0.03)

MR 4 85.3

TextFooler 24.8 (0.4) 15.7 (0.3) 173 (9) 0.90 (0.03)
BERT-Attack/BAE 19.2 (0.3) 15.2 (0.2) 126 (8) 0.91 (0.02)

HardLabel 18.4 (0.3) 15.0 (0.3) 119 (7) 0.88 (0.03)
Liu2023 18.1 (0.2) 17.3 (0.2) 135 (6) 0.89 (0.02)

SSCAE (ours) 15.6 (0.2) 17.4 (0.2) 54 (4) 0.91 (0.02)

SNLI 5 89.4 (H)

TextFooler 16.9 (0.3) 18.0 (0.5) 74 (6) 0.73 (0.02)
BERT-Attack/BAE 21.4 (0.4) 18.8 (0.5) 26 (3) 0.71 (0.02)

HardLabel 16.3 (0.4) 16.9 (0.4) 37 (4) 0.71 (0.03)
Liu2023 15.7 (0.4) 18.5 (0.6) 41 (5) 0.72 (0.03)

SSCAE (ours) 11.5 (0.3) 16.6 (0.4) 26 (3) 0.76 (0.02)

MNLI-Matched 6 85.1 (P)

TextFooler 31.4 (0.6) 26.5 (0.5) 232 (10) 0.76 (0.03)
BERT-Attack/BAE 18.9 (0.4) 14.5 (0.3) 64 (4) 0.78 (0.02)

HardLabel 20.9 (0.5) 13.6 (0.4) 114 (6) 0.75 (0.02)
Liu2023 18.2 (0.3) 24.4 (0.5) 127 (7) 0.77 (0.02)

SSCAE (ours) 9.2 (0.3) 12.3 (0.3) 42 (3) 0.82 (0.02)

MNLI-Mismatched 7 82.1 (P)

TextFooler 26.1 (0.5) 27.4 (0.6) 186 (8) 0.75 (0.03)
BERT-Attack/BAE 20.7 (0.4) 15.1 (0.3) 61 (4) 0.77 (0.02)

HardLabel 19.7 (0.4) 14.6 (0.4) 77 (5) 0.76 (0.03)
Liu2023 18.5 (0.5) 25.7 (0.6) 81 (6) 0.78 (0.03)

SSCAE (ours) 9.6 (0.3) 13.9 (0.3) 35 (3) 0.82 (0.02)

Table 3.2 Average results of the proposed SSCAE, TextFooler, BERT-Attack, and BAE adversarial
attack models on 1000 randomly selected testing instances from each of seven datasets using the
BERT target model. The standard deviation is included within the brackets. (E#: Experiment
Number; Perturb %: Perturbation Percentage; Query #: Query Number; H: Hypothesis; P: Premise.)
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number, and average semantic consistency.

The ideal adversarial attack model should exhibit lower after-attack accuracy, perturbation

percentage, and query number, while showcasing higher semantic consistency. Given the similarities

and dataset sensitivity of BERT-Attack and BAE models Li et al. (2020b); Garg & Ramakrishnan

(2020), we report the most favorable literature-available results across these two models in Table 3.2

(referred to as BERT-Attack/BAE). Overall, across the majority of datasets, SSCAE demonstrates

superior performance compared to TextFooler, BERT-Attack/BAE, HardLabel, and Liu2023 models,

as indicated in Table 3.2. This suggests the efficacy of the SSCAE model in generating high-quality

adversarial examples. However, a more in-depth analysis of the individual metrics is necessary to

fully understand the strengths and weaknesses of each model in different scenarios.

When considering the after-attack accuracy metric, it is evident that the SSCAE model con-

sistently achieves superior results compared to other adversarial attack models across various

experiments, particularly in datasets such as YELP, IMDB, SNLI, and MNLI. This margin of

improvement is significant, highlighting the effectiveness of the SSCAE approach in generating

AEs with lower after-attack accuracy.

In terms of perturbation percentage, the SSCAE model also demonstrates favorable outcomes,

outperforming TextFooler and Liu2023 in most cases, with notable exceptions observed in the

IMDB and MR datasets. However, when analyzing the MNLI dataset, the SSCAE model achieves

a substantially lower perturbation percentage compared to TextFooler and Liu2023, indicating its

efficacy in minimizing perturbations while maintaining adversarial potency.

Furthermore, when compared with Bert-Attack/BAE and HardLabel, the SSCAE model show-
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cases either lower or comparable perturbation percentages across NLI and text classification tasks,

except for the IMDB dataset where the results are on par. This consistency in perturbation reduction

underscores the reliability of the SSCAE approach.

Regarding the query number metric, the SSCAE model consistently outperforms other adversar-

ial attack models in all experiments, demonstrating a significant reduction in the number of queries

required to generate AEs. This efficiency is crucial in practical scenarios where minimizing query

overhead is essential.

In terms of semantic consistency, the SSCAE model exhibits superior performance across most

experiments, except for the IMDB and MR datasets where results are comparable to other models.

Notably, the SSCAE model maintains semantic consistency above 0.8 in the majority of experiments,

a remarkable achievement compared to similar studies Jin et al. (2020); Li et al. (2020b).

The SSCAE model’s superiority is particularly evident in text classification datasets, where it

achieves higher semantic similarity, lower after-attack accuracy, and query numbers, along with

a comparable perturbation rate. Notably, the dynamic threshold concept for semantic consistency

and syntactic correctness contributes significantly to the SSCAE model’s success in generating

high-quality AEs.

Additionally, the incorporation of local greedy search enables the SSCAE model to simulta-

neously replace multiple important words, resulting in worst-case perturbations and achieving

lower after-attack accuracy. Despite a slightly higher perturbation percentage observed in some

experiments compared to BERT-Attack/BAE and HardLabel, the SSCAE model maintains higher

semantic consistency using the dynamic threshold technique.
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In conclusion, the SSCAE model represents a significant advancement in adversarial attack

methods, generating imperceptible and efficient AEs across various datasets. Its ability to pre-

serve semantic consistency while minimizing perturbations underscores its efficacy in practical

applications.

Text entailment tasks (experiments 5 to 7) pose greater challenges compared to text classification

tasks (experiments 1 to 4) due to the nature of their datasets, which consist of shorter sentences

containing only a few words. Consequently, substituting crucial words in these short sentences

can significantly elevate the perturbation percentage and diminish the semantic consistency of

the generated examples. Even altering one or two essential words can substantially increase the

perturbation percentage, given the limited pool of words available for modification. Despite these

challenges, the SSCAE model demonstrates remarkable performance enhancements over other

contemporary models in text alignment experiments, achieving notably higher semantic consistency

alongside a considerable margin of after-attack accuracy.

It is important to highlight that in experiments involving document-level classification, such as

those conducted on the YELP and IMDB datasets, the relatively longer input samples contribute

to lower perturbation percentages. This observation suggests that the BERT model, serving as the

target model, heavily relies on a select few important words to formulate predictions. Consequently,

identifying and substituting these critical words can expose vulnerabilities inherent in Bert-base

target models Li et al. (2020b).
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Dataset E# Target Model Original Acc Attacked Acc Adversarial Attack Perturb % Semantic Sim

YELP

8 WordLSTM 96.0

TextFooler 2.3 (0.2) 10.8 (0.6) 0.77 (0.03)

BERT-Attack 1.7 (0.1) 5.5 (0.4) 0.80 (0.04)

SSCAE (ours) 0.56 (0.05) 5.3 (0.3) 0.93 (0.02)

9 ALBERT-Base 97.0

TextFooler 6.9 (0.3) 11.7 (0.4) 0.74 (0.02)

BERT-Attack 5.4 (0.2) 4.3 (0.3) 0.78 (0.03)

SSCAE (ours) 1.9 (0.1) 4.5 (0.2) 0.91 (0.02)

MNLI-Mismatched

10 ESIM 76.2

TextFooler 16.6 (0.6) 25.9 (0.7) 0.74 (0.03)

BERT-Attack 10.5 (0.3) 20.2 (0.5) 0.77 (0.02)

SSCAE (ours) 6.1 (0.3) 17.5 (0.4) 0.83 (0.03)

11 BERT-Large 86.4

TextFooler 26.4 (0.5) 26.8 (0.6) 0.73 (0.03)

BERT-Attack 20.3 (0.4) 14.9 (0.3) 0.76 (0.03)

SSCAE (ours) 9.9 (0.3) 13.6 (0.3) 0.81 (0.02)

Table 3.3 Average results of the proposed SSCAE, TextFooler, and BERT-Attack adversarial
attack models on 1000 randomly selected testing instances using WordLSTM (with YELP dataset),
ALBERT-Base (with YELP dataset), ESIM (with MNLI mismatched), and BERT-Large (with
MNLI mismatched) as the target models. The standard deviation is included within the brackets.
(E#: Experiment Number; Perturb %: Perturbation Percentage)

3.3.3 Exploring Adversarial Attack Across Diverse Target Models

Table 3.3 provides an in-depth analysis of the experimental outcomes achieved by the SSCAE,

TextFooler, and BERT-Attack adversarial attack methodologies across varied target models, namely

WordLSTM, ALBERT-Base, ESIM, and BERT-Large, using distinct datasets. This comprehensive

evaluation is conducted on 1000 randomly sampled test instances, shedding light on the effectiveness

of each attack model in diverse contexts.

Across all experiments, the SSCAE model consistently exhibits remarkable superiority over

TextFooler and BERT-Attack counterparts. Notably, it achieves a significant reduction in after-attack

accuracy, coupled with higher semantic consistency, while maintaining a comparable perturbation
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percentage.

In the context of text classification tasks, represented by WordLSTM-YELP and ALBERT-Base-

YELP experiments, the SSCAE model excels by achieving an after-attack accuracy of less than 2%

(specifically, 0.56% and 1.9% respectively), alongside perturbation percentages below 6% (5.3%

and 4.5% respectively) and semantic similarity exceeding 90% (93% and 91% respectively).

Furthermore, when evaluating the SSCAE model’s performance in the text entailment domain,

specifically with the BERT-Large-MNLI-Mismatched experiment, results akin to those observed

in Table 3.2 are obtained. This reaffirms the consistent effectiveness of the SSCAE model across

diverse target models and tasks, underscoring its potential for robust adversarial attack strategies.

Table 3.4 showcases the experimental outcomes of the proposed SSCAE and TEXTBUGGER

adversarial attack methodologies on 500 randomly selected testing instances sourced from the

IMDB and YELP datasets, utilizing various MLaaS platform APIs. Across all four experiments,

the SSCAE model demonstrates superior performance compared to the TEXTBUGGER model in

terms of after-attack accuracy and semantic consistency metrics, while maintaining a comparable

perturbation percentage.

TEXTBUGGER leverages a combination of word substitution and character manipulation

techniques, with character-level perturbations often leading to alterations in word meaning and

consequently resulting in a significant decrease in semantic similarity metric. In contrast, the

SSCAE model consistently produces results closely aligned with those observed in Table 3.2 across

all evaluation metrics.

Throughout the study’s extensive experimentation encompassing 15 distinct scenarios, in-
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Dataset E# Adversarial Attack Original Acc Targeted Model Attacked Acc Perturb % Semantic Sim

IMDB

12 TEXTBUGGER

86.2 Google Cloud NLP 23.3 (1.4) 2.6 (0.2) 0.72 (0.04)

91.8 Microsoft Azure 2.1 (0.3) 6.4 (0.4) 0.70 (0.03)

91.4 IBM Watson 4.7 (0.4) 8.9 (0.5) 0.69 (0.04)

13 SSCAE (ours)

86.2 Google Cloud NLP 17.6 (0.9) 2.6 (0.2) 0.87 (0.03)

91.8 Microsoft Azure 1.6 (0.2) 6.0 (0.4) 0.85 (0.02)

91.4 IBM Watson 2.8 (0.3) 7.5 (0.4) 0.85 (0.03)

YELP

14 TEXTBUGGER

90.6 Google Cloud NLP 8.3 (0.7) 4.5 (0.3) 0.75 (0.03)

85.2 Microsoft Azure 3.9 (0.3) 5.1 (0.3) 0.73 (0.04)

86.5 IBM Watson 4.6 (0.3) 5.9 (0.4) 0.72 (0.03)

15 SSCAE (ours)

90.6 Google Cloud NLP 5.6 (0.5) 4.7 (0.3) 0.91 (0.03)

85.2 Microsoft Azure 2.1 (0.2) 5.0 (0.3) 0.89 (0.03)

86.5 IBM Watson 2.8 (0.2) 5.6 (0.4) 0.87 (0.02)

Table 3.4 Average results of the proposed SSCAE and TEXTBUGGER adversarial attack models
on 500 randomly selected testing instances from the IMDB and YELP datasets using different
NLP-based cloud APIs. The standard deviation is included within the brackets. (E#: Experiment
Number; Perturb %: Perturbation Percentage)

corporating diverse datasets, target models, and adversarial attack methodologies for both text

classification and entailment tasks, the SSCAE model exhibits remarkable prowess in generating

imperceptible adversarial examples while preserving significantly higher semantic consistency

(typically exceeding 0.8) and substantially reducing query numbers.

3.4 Ablation Studies

This section delves into an ablation study aimed at scrutinizing several of SSCAE’s key hyperpa-

rameters and methodologies (illustrated by different steps in Figure 3.1). Additionally, it showcases

adversarial attack examples generated by SSCAE and demonstrates the model’s resilience through

a human evaluation, validating the findings from our automatic adversarial attack experiments.
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Figure 3.2 An ablation study of K context-aware substitutions set generated by the BERT-MLM
model in step 3 of the SSCAE model

3.4.1 Investigating the Impact of K in Context-Aware Substitutions

Figure 3.2 unveils an ablation study concerning the parameter K, which governs the number of

context-aware substitutions in step 3 of Figure 3.1. The x-axis denotes five potential values of K,

namely 10, 20, 35, 50, and 60, while the y-axis represents the Attack Success Percentage (ASP)

metric across six distinct experiments (experiments 1-5, 7) corresponding to YELP, IMDB, SST2,

MR, SNLI, and MLNI-Mismatched datasets.

ASP metric computation entails utilizing AEs exclusively from testing input samples correctly

classified by the target model to ensure a fair comparative analysis. Generally, a higher value of K

implies a greater number of substitutions for pivotal words, thereby enhancing the likelihood of
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Dataset E# Original Acc Method Attacked Acc Perturb % Semantic Sim

YELP 1 95.6
w Semantic 1.6 (0.2) 4.8 (0.3) 0.92 (0.03)

w/o Semantic 1.2 (0.1) 3.2 (0.2) 0.73 (0.02)

SNLI 5 89.4
w Semantic 11.5 (0.7) 16.6 (0.9) 0.76 (0.02)

w/o Semantic 7.5 (0.5) 10.4 (0.7) 0.60 (0.03)

Table 3.5 Results of an ablation study on the proposed SSCAE model using YELP (text classification
task) and SNLI (text entailment task) experiments with and without semantic refinement (semantic
similarity/consistency) in step 3 of the SSCAE model (Figure 3.2) (E#: Experiment Number; Perturb
%: Perturbation Percentage; w: With; wo: Without)

crafting AEs (characterized by a reduced perturbation percentage) capable of deceiving the model

(yielding a higher ASP) despite leveraging linguistic enhancements.

However, our experiments reveal a diminishing rate of ASP improvement (accompanied by

an increase in semantic consistency reduction) as K surpasses 50. Beyond K = 60, the ASP

improvement rate becomes negligible, while the semantic consistency reduction rate becomes

more pronounced. Consequently, for the proposed SSCAE model, K = 60 emerges as the near-

optimal choice across all experiments, ensuring a balance between ASP enhancement and semantic

consistency preservation.

3.4.2 Significance of Semantic Refinement

Table 3.5 outlines the outcomes of a sensitivity analysis conducted on the SSCAE model using the

YELP (representing the text classification task) and SNLI (representing the text entailment task)

datasets (experiments 1 and 5) with and without the semantic refinement step (semantic similarity

in step 3, Figure 3.1). Upon removing semantic refinement, after-attack accuracy, perturbation
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Dataset E# Semantic Embedding Method Attacked Acc Semantic Sim

YELP 1
USE 1.6 (0.2) 0.92 (0.04)

Sentence-BERT 2.8 (0.3) 0.92 (0.03)

IMDB 2
USE 4.2 (0.4) 0.86 (0.03)

Sentence-BERT 8.7 (0.7) 0.84 (0.04)

SNLI 5
USE 11.5 (1.1) 0.76 (0.03)

Sentence-BERT 13.6 (1.3) 0.74 (0.02)

MNLI-Mismatched 7
USE 9.6 (0.8) 0.82 (0.04)

Sentence-BERT 12.5 (0.9) 0.81 (0.03)

Table 3.6 A comparison study between the utilization of the USE and Sentence-BERT semantic
embedding models over experiments corresponding to YELP, SNLI, IMDB, and MNLI-Mismatched
datasets in step 3 of the SSCAE model (Figure 3.2). The standard deviation is included within the
brackets. (E#: Experiment Number; USE: Universal Sentence Encoder)

percentage, and semantic consistency respectively decreased from 1.6% to 1.2% (i.e., enhanced),

4.8% to 3.2% (i.e., enhanced), and 0.92 to 0.73 (i.e., deteriorated). While there was a marginal

improvement in after-attack accuracy and perturbation percentage metrics, the decline in semantic

consistency suggests that, on average, the AEs lost their original semantics. Consequently, the

AEs generated by SSCAE would likely be discernible to humans. Therefore, semantic refinement

emerges as a crucial component in crafting high-quality and imperceptible AEs within the proposed

SSCAE model.

In step 3 of the SSCAE model (Figure 3.1), USE assigns a semantic similarity score to each can-

didate substitution. Table 3.6 juxtaposes the use of USE with another potential semantic embedding

model, Sentence-BERT Reimers & Gurevych (2019), across experiments corresponding to YELP,

IMDB, SNLI, and MNLI-Mismatched datasets. These findings underscore that USE outperforms
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Dataset E# Method Attacked Acc Perturb % Semantic Sim

YELP 1

Constant Threshold 2.2 (0.3) 4.8 (0.4) 0.87 (0.02)

Average_threshold 3.0 (0.4) 6.4 (0.5) 0.90 (0.03)

Median_threshold 2.8 (0.4) 6.5 (0.5) 0.90 (0.04)

TopN_threshold 2.0 (0.3) 4.7 (0.4) 0.92 (0.03)

Top_maxes_distance 1.6 (0.2) 4.8 (0.3) 0.92 (0.03)

MNLI-Mismatched 7

Constant Threshold 11.2 (0.8) 13.7 (1.1) 0.78 (0.04)

Average_threshold 12.8 (0.9) 17.4 (1.4) 0.79 (0.02)

Median_threshold 12.6 (0.9) 17.5 (1.5) 0.81 (0.03)

TopN_threshold 10.9 (0.8) 13.9 (1.0) 0.81 (0.05)

Top_maxes_distance 9.6 (0.7) 13.9 (0.9) 0.82 (0.03)

Table 3.7 A comparative study of the Average_threshold, Median_threshold, TopN_threshold, and
Top_maxes_distance heuristics to compute the dynamic threshold in step 3 of the SSCAE model
(Figure 3.1). The standard deviation is included within the brackets. (E#: Experiment Number;
Perturb %: Perturbation Percentage)

Sentence-BERT not only in achieving lower after-attack accuracy but also in maintaining slightly

higher semantic consistency. Consequently, USE was chosen as the primary semantic embedding

model in the proposed SSCAE model.

3.4.3 Exploration of Dynamic Thresholds

Table 3.7 delineates a comparative analysis between the constant threshold and four proposed heuris-

tics (dynamic thresholds) for semantic and syntactic refinements in step 3 of the SSCAE model

(Figure 3.1). Both Average_threshold and Median_threshold yielded similar outcomes across all met-

rics of after-attack accuracy, perturbation percentage, and semantic consistency, likely due to their

analogous mathematical methodologies for the refinement process. Conversely, TopN_threshold and
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Dataset E# λ Attacked Acc Perturb % Semantic Sim

YELP 1

0.5 1.8 (0.1) 4.8 (0.4) 0.90 (0.04)
1 1.6 (0.2) 4.8 (0.5) 0.92 (0.03)
5 1.9 (0.2) 4.9 (0.3) 0.89 (0.02)

10 2.1 (0.2) 4.9 (0.5) 0.88 (0.02)

Table 3.8 The efficacy of the minor hyperparameter λ within the Top_maxes_distance technique.
(E#: Experiment Number; Perturb %: Perturbation Percentage)

Top_maxes_distance generally outperformed Average_threshold and Median_threshold. Notably,

Top_maxes_distance exhibited superior after-attack accuracy results compared to TopN_threshold,

albeit with comparable perturbation percentage and semantic consistency results. Additionally,

an investigation was conducted to ascertain the optimal value for the minor hyperparameter λ

in Top_maxes_distance. As depicted in Table 3.8, λ=1 demonstrated superior performance over

other examined values. Relative to the dynamic thresholds, the constant threshold exhibited better

perturbation percentage, inferior semantic consistency, and moderately satisfactory after-attack

accuracy results. In summary, Top_maxes_distance emerges as the preferred choice for the SS-

CAE model owing to its superior evaluation outcomes compared to other threshold techniques

(constant/dynamic).

3.4.4 Exploring Window Sizes

Figure 3.3 showcases an ablation study investigating the impact of various window sizes on the

selection of unique sets of the top K = 50 context-aware substitutions. Increasing the window size
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(|W |) leads to a higher number of substitutions, consequently elevating the probability of generating

adversarial examples that effectively deceive the target model. Notably, there is a substantial

enhancement in the Average Success Percentage (ASP) metric from |W | = 2 to |W | = 4. However,

beyond |W | = 4, the rate of ASP improvement begins to plateau. Moreover, at |W | ≥ 4, the

marginal gain in ASP diminishes, while the computational complexity associated with searching for

optimal adversarial samples escalates significantly. Consequently, a window size of |W | = 4 has

been selected for refining substitutions in our experiments.

Figure 3.3 An ablation study of the influence of different window sizes on the retrieval of distinct
sets of the top K = 50 context-aware substitutions.

3.4.5 Optimizing Local Greedy Search

The local greedy search method offers a theoretically broad spectrum of parameter values for M

and N. However, considering the substantial computational overhead involved in evaluating the
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Figure 3.4 The impact of the number of important words and candidate substitutions on the average
attack success percentage of the IMDB dataset.

numerous combinations of substitutions (denoted as NM), it becomes imperative to constrain the

range of these hyperparameters to smaller values. Based on our empirical findings, a pragmatic

approach for maintaining computational efficiency involves setting both M and N within the range

of 1 to 4 (i.e., [1, 4]). This strategy effectively limits the total number of combinations to a maximum

of 256, striking a balance between computational tractability and exhaustive evaluation.

Figure 3.4 illustrates the impact of varying numbers of important words, M, and refined sub-

stitutions, N, on the average ASP benchmark. When M = 1, the average ASP hovers around 85%

for different values of N (i.e., the number of substitutions). Increasing the number of important

words to two results in a notable enhancement, with the average ASP reaching 91.6% for N = 4
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substitutions. Similarly, for higher numbers of important words (e.g., M = 3 or M = 4), the average

ASP exhibits a consistent trend of improvement across varying N values. Opting for a larger N

offers a greater likelihood of discovering AEs with higher ASPs. Nonetheless, the exponentially

expanding search space associated with larger N values poses computational challenges. In our

experiments, we adopt N = 4 for refined substitutions and M = 3 for important words, striking a

balance between effectiveness and computational feasibility.

3.4.6 Illustrative Examples of Adversarial Texts

Table 3.9 showcases four pairs of original input samples alongside their corresponding SSCAE-

generated adversarial attack examples derived from experiments conducted on the YELP and

MNLI-Mismatch datasets. In the YELP dataset, the first pair exhibits the replacement of the

adjective "Nice" with "Fantastic," while in the second pair, the noun "clinic" is substituted with

"hospital." Despite the arguable differences in the nuances between these adjectives and nouns,

the overall semantics of the original samples remain largely preserved in the adversarial attack

examples. Moreover, the grammatical and syntactic integrity of the original samples is maintained

in the generated adversarial examples. These commendable outcomes are attributed to the linguistic

filters employed in step 3 of the SSCAE model (refer to Figure 3.1), which significantly enhance

the imperceptibility and fluency of the generated adversarial examples.

Similar lexical analyses can be applied to the adversarial examples generated for the MNLI-

Mismatch dataset, further highlighting the efficacy of the SSCAE model in crafting imperceptible

and contextually coherent adversarial texts.



72

Dataset E# Pair # Data Type (Prediction) Sentence

YELP 1

1

Input Sample (P) Yes! Awesome soy cap, scone, and atmosphere. Nice
place to hang out & read, and free WiFi with no login
procedure.

Adversarial Example (N) Yes! Awesome soy cap, scone, and atmosphere. Fan-
tastic place to hang out & read, and free WiFi with no
login procedure.

2

Input Sample (N) Refused to take my cat, which had passed away, for
cremation cause I had not been to the clinic previ-
ously...

Adversarial Example (P) Refused to take my cat, which had passed away, for
cremation cause I had not been to the hospital previ-
ously...

MNLI-Mismatched 7

1

Hypothesis Poirot was disappointed with me

Input Sample (NE) Still, it would be interesting to know. 109 Poirot
looked at me very earnestly, and again shook his head

Adversarial Example (E) Still, it would be interesting to know. 109 Poirot
looked at me very carefully, and again shook his head

2

Hypothesis Talking about privacy is a complicated topic, there are
a couple different ways of talking about it, for example
privacy is something that disturbs your private state...

Input Sample (E) The first kind of invasion of the first type of privacy
seems invaded to me in very much everyday in this
country but in the second type at least overtly uh where
someone comes in and uh finds out information about
you that should be private uh does not seem uh um
obviously everyday

Adversarial Example (NE) The first kind of invasion of the first type of privacy
seems invaded to me in very much everyday in this
country but in the second type at least overtly uh where
someone comes in and uh finds out information about
you that should be private uh does not seem uh um
obviously routine

Table 3.9 Examples of original and adversarial sentences from experiments corresponding to YELP
and MNLI datasets (E#: Experiment Number; Pair #: Pair Number; P: Positive; N: Negative; E:
Entailment; NE: Neutral)
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3.4.7 Adversarial Training

To bolster the resilience of target models against diverse adversarial attacks, particularly focusing on

the proposed SSCAE model, we employ the adversarial training technique. Additionally, fine-tuning

is performed on a target model, specifically the BERT-Large model, utilizing both the original

data and adversarial examples crafted by the SSCAE model. Adversarial examples from the MR

and SNLI training sets, which effectively deceived BERT-Large, are curated and merged with the

original training set. Subsequently, the augmented dataset is utilized to fine-tune the target model.

The objective is to assess the robustness of this adversarially fine-tuned model against two distinct

adversarial attack models: TextFooler and SSCAE.

In Table 3.10, it is observed that after adversarial fine-tuning, both the after-attack accuracy

and perturbation ratio increase for both the TextFooler and SSCAE attack methods. Moreover,

the original accuracy of the adversarially-trained model remains comparable to that of the model

trained on clean datasets. These results suggest that adversarial training using a high-quality set of

adversarial examples renders attacks more challenging, thereby enhancing the model’s robustness.

Remarkably, the target model demonstrates greater resilience against TextFooler compared to the

proposed SSCAE model, underscoring the potential for improving a model’s robustness against

future attacks by training it with efficient adversarial examples generated by the SSCAE model.

3.4.8 Human Evaluation

In the realm of computer science, particularly in the field of natural language processing (NLP), the

evaluation of adversarial examples (AEs) holds significant importance in assessing their correctness
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Dataset E# Train Method Original Acc Adversarial Attack Attacked Acc Perturb %

MR 4

Normal Fine-tune 85.3 SSCAE (ours) 15.6 (1.0) 17.4 (0.9)

Adversarial Fine-tune 84.8 TextFooler 38.2 (1.7) 24.6 (1.3)

Adversarial Fine-tune 84.8 SSCAE (ours) 32.4 (1.5) 21.6 (1.1)

SNLI 5

Normal Fine-tune 89.4 SSCAE (ours) 11.5 (0.6) 16.6 (0.8)

Adversarial Fine-tune 88.9 TextFooler 26.1 (1.4) 23.9 (1.4)

Adversarial Fine-tune 88.9 SSCAE (ours) 21.2 (1.2) 20.5 (1.0)

Table 3.10 Average results of adversarial attacks on the normal and adversarial fine-tuning of the
BERT-Large model using two different attack methods: TextFooler and the proposed SSCAE.
The standard deviation is included within the brackets. (E#: Experiment Number; Perturb %:
Perturbation Percentage)

across various dimensions such as imperceptibility, language fluency, and semantic consistency

Li et al. (2020b). Despite this significance, only a limited number of studies have undertaken

comprehensive human evaluations Li et al. (2020b).

Table 3.11 provides insights into a human assessment conducted to evaluate the quality and

fluency of AEs generated by different adversarial attack models, including the proposed SSCAE,

TextFooler, BERT-Attack, and BAE models. The evaluation was conducted on datasets representing

text classification tasks (YELP) and text alignment tasks (MLNI-mismatched) using BERT as the

target model (experiments 1 and 7).

For this evaluation, three PhD candidates from the Department of Applied Linguistics at Georgia

State University were selected based on their robust scientific backgrounds. It’s noteworthy that

these candidates maintained independence from the authors of this research work. They were tasked

with assessing 100 randomly selected input samples labeled as "Original" and their corresponding

adversarial samples labeled as "Adversarial". The samples were shuffled to ensure unbiased
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Dataset Adversarial Attack Data Type Human Accuracy Meaningfulness Grammar Correctness

YELP

- Original 92.5 4.2 4.0

TextFooler Adversarial 83.4 3.1 3.2

BERT-Attack Adversarial 84.7 3.8 3.6

BAE Adversarial 84.8 3.7 3.5

SSCAE (ours) Adversarial 86.0 4.0 3.8

MNLI-Mismatched

- Original 91.2 3.9 4.1

TextFooler Adversarial 74.2 3.0 3.1

BERT-Attack Adversarial 75.6 3.5 3.6

BAE Adversarial 75.3 3.5 3.5

SSCAE (ours) Adversarial 77.4 3.7 3.7

Table 3.11 Human Evaluation Task (E#: Experiment Number)

evaluation.

In determining the correctness of each sample, the majority opinion of the students was consid-

ered. If the majority correctly estimated the class of a sample, it was counted as one correct human

estimation.

The results revealed that the SSCAE model exhibited superior performance compared to other

adversarial attack methods, particularly in the YELP experiment. Despite this, there existed only a

small gap (6.5%) between human estimations of original samples and SSCAE-generated adversarial

samples, indicating the model’s capability to generate high-quality and imperceptible adversarial

examples.

However, in the MNLI-Mismatched experiment, where human-crafted hypothesis and premise

sentences share a considerable amount of the same words, the performance gap between original

and adversarial samples was more pronounced. This can be attributed to the negative impact of

perturbations introduced by adversarial attacks on human assessment accuracy.
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In addition to estimating the class of each sample, every student participating in the evaluation

process was tasked with providing two Likert scores ranging from 1 to 5 for each sample, regardless

of whether it was Original or Adversarial. The first score pertained to the meaningfulness of the

sample, where a score of 1 denoted meaninglessness and 5 indicated high meaningfulness. The

second score assessed the grammatical correctness of the sample, with a score of 1 representing

incorrect grammar and 5 representing grammatical correctness.

Interestingly, the results revealed that the SSCAE-generated adversarial samples consistently

achieved higher scores in both meaningfulness and grammatical correctness metrics compared to

adversarial samples generated by other state-of-the-art methods. Specifically, in terms of meaning-

fulness and grammatical correctness, the SSCAE-generated adversarial samples exhibited a small

gap of 0.2 (0.2 and 0.4, respectively) between the Original and Adversarial scores in both the YELP

and MNLI-Mismatched experiments.

This finding indicates that the SSCAE-generated adversarial samples were semantically and

grammatically aligned with the Original samples, showcasing the model’s ability to produce AEs

that are indistinguishable from genuine data. Such results underscore the effectiveness of SSCAE in

generating high-quality adversarial examples while preserving semantic and grammatical coherence.

3.5 Summary and Discussion

In this chapter, we introduced SSCAE, a novel framework aimed at producing contextually relevant

adversarial examples (AEs) while preserving fundamental linguistic features encompassing seman-

tics, syntax, and grammar within the realm of computer science. SSCAE leverages the Bidirectional
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Encoder Representations from Transformers (BERT) Masked Language Model (MLM) to generate

a pool of potential word substitutions crucial for the adversarial perturbation process. Additionally,

it integrates three refinement strategies to ensure the preservation of linguistic properties in the final

perturbations. Firstly, we proposed a dynamic thresholding technique, designed to enhance the

efficacy of perturbations by selectively incorporating substitutions surpassing a dynamically ad-

justed threshold. Secondly, we introduced a word permutation-substitution mechanism named local

greedy search, aimed at systematically generating high-quality adversarial examples by iteratively

exploring neighboring word substitutions.

The efficacy of the SSCAE model was empirically evaluated against three contemporary black-

box methods: TextFooler, BERT-Attack, and BAE, across a spectrum of popular and challenging

text classification and entailment tasks within the computer science domain. Our experiments

revealed that SSCAE consistently outperformed these baseline models by a significant margin, as

evidenced by metrics such as post-attack accuracy, average query count, and semantic consistency.

Moreover, SSCAE demonstrated superior performance in terms of average perturbation percentage

across four out of seven Natural Language Processing (NLP) tasks considered.

Furthermore, a human evaluation was conducted to assess the perceptual quality of the generated

adversarial examples, affirming the effectiveness of the proposed SSCAE model in producing

high-quality and imperceptible perturbations. Notably, the modular design of SSCAE facilitates its

seamless integration with advanced components, thus enabling flexible extensions tailored to diverse

research contexts. Nonetheless, certain practical operations such as insertion and deletion, while

integral to adversarial perturbation techniques, remain unexplored within the SSCAE framework,
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presenting avenues for future investigation and enhancement.
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CHAPTER 4

RobustEmbed: Robust Sentence Embeddings Using Self-Supervised Contrastive Pre-Training

4.1 Introduction

Recent studies have showcased the remarkable performance of Pre-trained Language Models

(PLMs) in acquiring contextual word embeddings Devlin et al. (2019b), thereby fostering enhanced

generalization across a myriad of Natural Language Processing (NLP) tasks Yang et al. (2019); He

et al. (2021); Ding et al. (2023). The scope of PLMs has expanded to encompass the acquisition of

universal sentence embeddings, exemplified by noteworthy models such as the Universal Sentence

Encoder (USE) Cer et al. (2018) and Sentence-BERT Reimers & Gurevych (2019), which adeptly

capture the semantic essence embedded within textual inputs. This paradigm shift in representation

learning not only facilitates feature extraction for classification endeavors but also bolsters the

efficacy of large-scale semantic search operations Neelakantan et al. (2022).

The evaluation of PLM-based sentence representations hinges upon two pivotal attributes: gener-

alization and robustness. Despite significant strides made in crafting universal sentence embeddings

leveraging PLMs Reimers & Gurevych (2019); Zhang et al. (2020b); Ni et al. (2022); Neelakantan

et al. (2022); Wang et al. (2023); Bölücü et al. (2023), it is imperative to acknowledge that while

these representations exhibit commendable performance across diverse downstream classification

tasks Sun et al. (2019); Gao et al. (2021), thereby showcasing proficiency in generalization, they

manifest limitations concerning robustness in adversarial scenarios and are susceptible to a plethora

of adversarial assaults Nie et al. (2020); Wang et al. (2021). Existing literature Garg & Ramakr-

ishnan (2020); Wu et al. (2023); Hauser et al. (2023) underscores the inherent fragility of these
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representations, particularly BERT-based representations, which can be easily deceived by minor

alterations (i.e. replacing a few words) to the input sentence structure.

In this work, we introduce RobustEmbed, a novel framework for generating robust sentence

embeddings that meticulously addresses both crucial attributes: generalization and robustness. The

central idea revolves around the introduction of minimal adversarial perturbations to the input text,

coupled with the utilization of the contrastive objective proposed by Chen et al. Chen et al. (2020)

to learn high-quality sentence embeddings. Unlike traditional approaches that perturb the raw text

directly, RobustEmbed operates on the embedding space, thereby fostering a positive correlation

with generalization and promoting increased invariance. Our framework leverages both the original

embedding and the perturbed embedding as "positive pairs," while concurrently utilizing other

sentence embeddings within the same mini-batch as "negatives." Through the contrastive objective

function, RobustEmbed effectively discriminates positive pairs from the negatives, enhancing the

discernibility between semantically similar sentences and dispersing those with divergent semantics.

By integrating norm-bounded adversarial perturbation and contrastive objectives, our method-

ology augments the robustness of similar sentences while concurrently dispersing sentences with

varying semantics. This straightforward yet efficient approach culminates in the generation of supe-

rior sentence embeddings, as evidenced by comprehensive evaluations across both generalization

and robustness benchmarks.

We conduct a comprehensive array of experiments spanning various text representation and

Natural Language Processing (NLP) tasks to thoroughly assess the efficacy of RobustEmbed. These

tasks encompass semantic textual similarity (STS) tasks Conneau & Kiela (2018), transfer tasks
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Conneau & Kiela (2018), and evaluations using TextAttack Morris et al. (2020).

The experimental setup comprises two primary series of evaluations. The first series focuses on

assessing the quality of sentence embeddings concerning semantic similarity and overall natural

language understanding tasks. Subsequently, the latter series scrutinizes the robustness of the

RobustEmbed framework against state-of-the-art adversarial attacks.

Noteworthy findings from our experiments indicate significant improvements in robustness

exhibited by RobustEmbed. Notably, it effectively reduces the attack success rate from 75.51% to

39.62% when subjected to the BERTAttack technique, showcasing remarkable resilience against

adversarial assaults. Similar enhancements in robustness are observed across other adversarial

attack strategies employed in our evaluations.

Furthermore, RobustEmbed achieves notable performance gains of 1.20% and 0.40% on STS

tasks and NLP transfer tasks, respectively, particularly when leveraging the BERTbase encoder.

These performance enhancements underscore the effectiveness and versatility of the RobustEmbed

framework across a diverse array of NLP tasks, further solidifying its potential for real-world

deployment and adoption.

4.1.1 Contribution

Our main contributions in this paper are summarized as follows:

• We introduce RobustEmbed, a novel self-supervised framework for sentence embeddings that

generates robust representations capable of withstanding various adversarial attacks. Existing

sentence embeddings are susceptible to such attacks, highlighting a vulnerability in their

security. RobustEmbed fills this gap by employing high-risk perturbations within a novel
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Figure 4.1 The general architecture of the RobustEmbed framework. In contrastive learning step,
a blue arrow indicate gathering positive pairs together, and a red arrow refers to keeping distance
among negative pairs

contrastive learning approach.

• We conduct extensive experiments to demonstrate the efficacy of RobustEmbed across various

text representation tasks and against state-of-the-art adversarial attacks. Empirical results

confirm the high efficiency of our framework in terms of both generalization and robustness

benchmarks.

• To facilitate further research in this important area, our source code is available in the

RobustEmbed Repository.

https://github.com/jasl1/RobustEmbed


83

4.2 The Proposed Adversarial Self-supervised Contrastive Learning

We present RobustEmbed, an elegant yet potent method devised to generate universal text repre-

sentations by subjecting a self-supervised contrastive learning model to adversarial training. By

leveraging a Pre-trained Language Model (PLM) denoted as fθ(.) as the encoder and operating

on a vast unsupervised dataset D, RobustEmbed endeavors to pre-train fθ(.) on D with the dual

objectives of bolstering the efficacy of sentence embeddings across a spectrum of Natural Language

Processing (NLP) tasks, thereby fostering improved generalization, while simultaneously fortifying

their resilience against an array of adversarial attacks, thus enhancing robustness. Algorithm 2

elucidates the methodology employed by our framework to engender norm-bounded perturbations

through an iterative process, strategically perturbing the fθ(.) model to treat the perturbed embed-

dings as distinct instances. Subsequently, our framework adopts a contrastive learning strategy to

maximize the similarity between the embedding of an input instance and the adversarial embedding

of its positive counterpart.

Moreover, Figure 4.1 furnishes an overarching depiction of our RobustEmbed framework,

which endeavors to instill adversarial robustness within representations. This framework entails

a collaborative iterative process between the perturbation generator and the fθ(.) model, aimed at

generating high-risk perturbations conducive to adversarial contrastive learning during the final

training phase. The ensuing sections delve into the primary constituents of our framework, offering

a comprehensive analysis of the underlying training objective.
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Algorithm 2: RobustEmbed Algorithm
Input :Epoch number E, PLM Encoder fθ, dataset of raw sentences D = {xi}Ni=1,

perturbation δ, dropout masks m1 and m2, perturbation bound ϵ, step sizes α and
β, learning rate η, perturbation modulator λ, regularization parameter γ,
perturbation generation iterators K and T , contrastive learning objective Lcon,θ

(eq. 5.9)
Output :Robust Sentence Representation
for epoch = 1, ..., E do

for minibatch B ⊂D do
δ1 ∼ N(0, σ2I)
X = fθ.embedding(B, m1)
X+ = fθ.embedding(B, m2)
for t = 1, ...,max(K, T ) do

g(δt) = ∇δLcon,θ(X + δt, {X+})
if t ≤ K then

δt+1
pgd = Π∥δ∥P≤ϵ(δ

t + αg(δt)/∥g(δt)∥P )
end
if t ≤ T then

δt+1
fgsm = Π∥δ∥P≤ϵ(δ

t + βsign(g(δt)))

end
end
δf = λδK

pgd + (1− λ)δT
fgsm

LRobustEmbed, θ := Lcon,θ(X, {X+, X + δf})
Ltotal := LRobustEmbed, θ + γLcon,θ(X + δf , {X+})
θ = θ − η∇θLtotal

end
end

4.2.1 Perturbation Generation

As the initial step, RobustEmbed endeavors to generate subtle perturbations capable of deceiving the

Machine Learning (ML) model, inducing erroneous predictions, while simultaneously maintaining

near-imperceptibility to human observers. The framework adopts an amalgamated approach,

combining elements from the Projected Gradient Descent (PGD) and Fast Gradient Sign Method

(FGSM) algorithms to craft a perturbation that maximizes the self-supervised contrastive loss,
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thereby facilitating effective discrimination among diverse instances. RobustEmbed iteratively

applies this combined approach, employing T-step FGSM and K-step PGD, meticulously reinforcing

invariance within the embedding space, ultimately culminating in augmented generalization and

robustness.

Specifically, leveraging the PLM-based encoder denoted as fθ(.) and an input sentence x,

RobustEmbed subjects the sentence to the fθ(.) model twice, employing standard dropout on each

occasion to obtain two distinct embeddings, denoted as (X,X+), serving as "positive pairs" Gao

et al. (2021). The framework follows a series of steps to update the perturbation independently for

PGD and FGSM in iterations k + 1 and t+ 1 respectively:

δk+1
pgd = Π∥δ∥P≤ϵ(δ

k + αg(δk)/∥g(δk)∥P ), (4.1)

δt+1
fgsm = Π∥δ∥P≤ϵ(δ

t + βsign(g(δt))), (4.2)

where g(δn) = ∇δLcon,θ(X + δn, {X+}) with n = t or k represents the gradient of the

contrastive learning loss concerning δ. The perturbation is constrained within the ℓ∞ norm-ball

around the input embedding with a radius of ϵ, and Π denotes the projection of the perturbation

onto the ϵ-ball. Furthermore, α and β denote the step sizes of the attacks, while sign(.) returns the

sign of the vector. Essentially, T-step FGSM and K-step PGD are mathematically analogous when

P is either 2 or∞. Their primary distinctions lie in the number of iterations (i.e., T and K) and the

step size of the attack (i.e., α and β) utilized to modify the input perturbation, ultimately yielding

a distinct high-level perturbation. The final perturbation is obtained through the combination of
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T-step FGSM and K-step PGD, as depicted by Equation 5.7:

δfinal = λδK
pgd + (1− λ)δT

fgsm, (4.3)

where 0 ≤ λ ≤ 1 modulates the relative significance of each individual perturbation in the

generation of the final perturbation.

4.2.2 Robust Contrastive Learning

In pursuit of robust representations via self-supervised contrastive learning, we define an adversarial

learning objective that follows a min-max formulation, aiming to minimize the maximum risk posed

by any perturbation δ Madry et al. (2018c):

argminθ E(x)∼D[max∥δ∥≤ϵ Lcon,θ(X + δ, {X+})], (4.4)

where X + δ denotes the adversarial embedding generated via iterative gradient-based per-

turbation generation (eq. 5.7). Our framework leverages adversarial examples crafted within the

embedding space, rather than operating on the original raw text, resulting in a pre-trained model

that exhibits robustness against m-way instance-wise adversarial attacks. The framework adopts

the contrastive learning objective to maximize the similarity between clean examples and their

adversarial perturbations by incorporating the adversarial example as an additional element in the

positive set:

LRobustEmbed, θ := Lcon,θ(x, {xpos, xadv}), (4.5)
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Ltotal := LRobustEmbed, θ + γLcon,θ(x
adv, {xpos}), (4.6)

where xadv denotes the adversarial perturbation of the input sample x in the embedding space,

and γ represents a regularization parameter. The first component of the total contrastive loss

(eq. 5.10) aims to optimize the similarity between the input sample x, its positive pair, and its

adversarial perturbation, while the second component serves to regularize the loss by encouraging

the convergence of the adversarial perturbation and the positive pair of x.

4.3 Evaluation and Experimental Results

This section presents a comprehensive array of experiments aimed at substantiating the efficacy of

our proposed framework concerning both generalization and robustness metrics. In the initial two

sets of experiments, we delve into the performance analysis of our framework across seven semantic

textual similarity (STS) tasks and six transfer tasks encompassed within the SentEval framework1,

thereby scrutinizing the inherent generalization prowess of our framework in generating proficient

sentence embeddings. Subsequently, the latter series of experiments undertakes an examination of

the resilience exhibited by the embeddings against a battery of five state-of-the-art adversarial attacks,

elucidating the robustness capacity of our framework in furnishing resilient text representations.

Additionally, Appendices A elucidate the intricate facets of our training procedure.

1https://github.com/facebookresearch/SentEval

https://github.com/facebookresearch/SentEval
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4.3.1 Semantic Textual Similarity (STS) Tasks

Our framework undergoes rigorous evaluation across a comprehensive array of seven semantic

textual similarity (STS) tasks, encompassing STS 2012–2016 Agirre et al. (2012, 2013, 2014, 2015,

2016), STS Benchmark Cer et al. (2017), and SICK-Relatedness Marelli et al. (2014). In these

experiments, we rely solely on fixed sentence embeddings without recourse to any training datasets

or regressors. To provide a benchmark for our framework’s performance, we subject it to comparison

against a spectrum of unsupervised sentence embedding methodologies, including: 1) fundamental

techniques such as GloVe Pennington et al. (2014) and average BERT or RoBERTa embeddings;

2) post-processing methodologies like BERT-flow Li et al. (2020a) and BERT-whitening Su et al.

(2021); and 3) cutting-edge methodologies such as SimCSE Gao et al. (2021), ConSERT Yan et al.

(2021), USCAL Miao et al. (2021), and ATCL Rima et al. (2022). To validate the findings of the

SimCSE, ConSERT, and USCAL frameworks, we endeavor to reproduce their results using our

customized configuration for BERT and RoBERTa encoders.

The empirical outcomes, as depicted in Table 4.1, unequivocally showcase the superior perfor-

mance of our RobustEmbed framework compared to a plethora of sentence embedding methodolo-

gies across a vast majority of the semantic textual similarity tasks. Our framework attains the highest

averaged Spearman’s correlation among the state-of-the-art approaches. Specifically, leveraging

the BERT encoder, our framework surpasses the second-best embedding methodology, USCAL,

by a margin of 1.20%. Furthermore, RobustEmbed emerges with the highest score in the majority

of individual STS tasks (6 out of 7) when juxtaposed with alternative embedding methodologies,

exhibiting comparable performance to the SimCSE methodology on the STS16 task. With regards
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

GloVe embeddings (avg.) ♡ 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32

BERTbase (first-last avg.) ♣ 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70

BERTbase-flow ♣ 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55

BERTbase-whitening ♣ 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28

ConSERT-BERTbase 64.56 78.55 69.16 79.74 76.00 73.91 67.35 72.75

ATCL-BERTbase 67.14 80.86 71.73 79.50 76.72 79.31 70.49 75.11

SimCSE-BERTbase 68.66 81.73 72.04 80.53 78.09 79.94 71.42 76.06

USCAL-BERTbase 69.30 80.85 72.19 81.04 77.52 81.28 71.98 76.31

⋆RobustEmbed-BERTbase 70.52 82.13 73.56 82.38 77.72 82.97 73.24 77.51

RoBERTabase-whitening □ 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73

ConSERT-RoBERTabase 66.90 79.31 70.33 80.57 77.95 81.42 68.16 74.95

SimCSE-RoBERTabase 68.75 80.81 71.19 81.79 79.35 82.62 69.56 76.30

USCAL-RoBERTabase 69.28 81.15 72.81 81.47 80.55 83.34 70.94 77.08

⋆RobustEmbed-RoBERTabase 69.71 81.77 73.34 81.98 79.74 83.70 71.10 77.33

USCAL-RoBERTalarge 68.70 81.84 74.26 82.52 80.01 83.14 76.30 78.11

⋆RobustEmbed-RoBERTalarge 68.92 81.53 74.35 82.91 79.98 83.93 76.93 78.36

Table 4.1 Semantic Similarity performance on STS tasks (Spearman’s correlation, “all” setting)
for sentence embedding models. We emphasize the top-performing numbers among models that
share the same pre-trained encoder. ♡: results from Reimers & Gurevych (2019); ♣: results from
Gao et al. (2021); All remaining results have been reproduced and reevaluated by our team. The ⋆
symbol shows our framework.

to the RoBERTa encoder, spanning both the base version and the large version, RobustEmbed

outshines state-of-the-art embeddings in five out of seven STS tasks while achieving the highest

averaged Spearman’s correlation.
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4.3.2 Transfer Tasks

In this experiment, we delve into transfer tasks to comprehensively gauge the efficacy and versatility

of our framework, RobustEmbed, across a diverse range of text classification tasks, spanning

sentiment analysis to paraphrase identification. Our evaluation encompasses six transfer tasks, each

representing a distinct facet of text classification prowess: CR Hu & Liu (2004), SUBJ Pang &

Lee (2004), MPQA Wiebe et al. (2005), SST2 Socher et al. (2013a), and MRPC Dolan & Brockett

(2005). For detailed insights into these tasks, refer to section 2.1. Adhering to the standardized

methodology delineated in Conneau & Kiela (2018), we adopt a logistic regression classifier,

leveraging the fixed sentence embeddings as the foundation for our experimental framework. To

validate the robustness and efficacy of our approach, we meticulously replicate the experimental

configurations of SimCSE, ConSERT, and USCAL frameworks, tailoring the settings to our bespoke

BERT and RoBERTa encoders.

The comprehensive tabulated results presented in Table 4.2 unequivocally attest to the superior

performance of our RobustEmbed framework in terms of average accuracy when juxtaposed with a

gamut of alternative sentence embedding methodologies. Noteworthy is the discernible superiority

exhibited by our framework, boasting a commendable margin of 0.40% over the second-best

embedding methodology when employing the BERT encoder. Moreover, RobustEmbed clinches the

top spot in four out of six text classification tasks, reaffirming its prowess and versatility. Analogous

trends persist with the RoBERTa encoder, spanning both the base version and the large version,

further consolidating the robustness and efficacy of our framework across diverse text classification

scenarios.
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Model MR CR SUBJ MPQA SST2 MRPC Avg.

GloVe embeddings (avg.) ♣ 77.25 78.30 91.17 87.85 80.18 72.87 81.27

Skip-thought ♡ 76.50 80.10 93.60 87.10 82.00 73.00 82.05

BERT-[CLS] embedding ♣ 78.68 84.85 94.21 88.23 84.13 71.13 83.54

ConSERT-BERTbase 79.52 87.05 94.32 88.47 85.46 72.54 84.56

SimCSE-BERTbase 81.29 86.94 94.72 89.49 86.70 75.13 85.71

USCAL-BERTbase 81.54 87.12 95.24 89.34 85.71 75.84 85.80

⋆RobustEmbed-BERTbase 81.94 87.45 95.04 89.88 86.47 76.40 86.20

SimCSE-RoBERTabase 81.15 87.15 92.38 86.79 86.24 75.49 84.87

USCAL-RoBERTabase 82.15 87.22 92.76 87.74 84.39 76.20 85.08

⋆RobustEmbed-RoBERTabase 81.49 87.54 93.37 87.95 84.63 76.62 85.27

USCAL-RoBERTalarge 82.84 87.97 93.12 88.48 86.28 76.41 85.85

⋆RobustEmbed-RoBERTalarge 82.38 88.27 93.91 88.79 86.01 77.11 86.08

Table 4.2 Results of transfer tasks for different sentence embedding models. ♣: results from Reimers
& Gurevych (2019); ♡: results from Zhang et al. (2020b); We emphasize the top-performing
numbers among models that share the same pre-trained encoder. All remaining results have been
reproduced and reevaluated by our team. The ⋆ symbol shows our framework.

4.3.3 Adversarial Attacks

In this section, we embark on a rigorous examination of the robustness of our sentence embedding

framework against an array of adversarial attacks, juxtaposed against two prominent state-of-the-art

sentence embedding models: SimSCE Gao et al. (2021) and USCAL Miao et al. (2021). Our

evaluation entails the fine-tuning of a BERT-based Pre-trained Language Model (PLM) employing

distinct embedding methodologies across seven distinct text classification and natural language

inference tasks, namely MRPC Dolan & Brockett (2005), YELP Zhang et al. (2015), IMDb Maas
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et al. (2011), Movie Reviews (MR) Pang & Lee (2005b), SST2 Socher et al. (2013a), Standford NLI

(SNLI) Bowman et al. (2015), and Multi-NLI (MNLI) Williams et al. (2018). For an exhaustive

elucidation of these tasks, refer to section 2.1.

To meticulously scrutinize the robustness of the fine-tuned models, we subject them to adversarial

onslaughts utilizing the TextAttack framework Morris et al. (2020), thereby probing the efficacy

against five highly efficient adversarial attack methodologies: TextBugger Li et al. (2019), PWWS

Ren et al. (2019), TextFooler Jin et al. (2020), BAE Garg & Ramakrishnan (2020), and BERTAttack

Li et al. (2020c). To gain profound insights into the intricacies of these attacks, we furnish detailed

expositions in Appendix C.

It’s imperative to note that adaptive attacks are incapable of generating adversarial assaults using

the primary algorithm of our framework, owing to its exclusive operation within the embedding

space, while the input instances of sentence embeddings are derived from raw textual data. To

uphold statistical integrity, each experiment undergoes five iterations, with each iteration comprising

1000 adversarial attack samples; the ensuing results depicted in this section represent the average

outcomes derived from these iterative trials.

Table 4.3 provides a comprehensive overview of the attack success rates exhibited by five

adversarial attack methodologies targeting three distinct sentence embeddings, inclusive of our

pioneering framework. Our embedding framework consistently surpasses the performance of the

other two embedding methodologies, showcasing notably diminished attack success rates across

the spectrum of text classification and natural language inference tasks. As a result, RobustEmbed

attains the paramount position, boasting the lowest average attack success rate across all adversarial
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Adversarial Attack Model IMDB MR SST2 YELP MRPC SNLI MNLI-Mismatched Avg.

TextFooler

SimCSE-BERTbase 75.32 65.53 71.49 79.67 80.07 72.65 68.54 72.61

USCAL-BERTbase 61.94 48.71 55.38 62.30 60.18 54.82 53.74 56.72

RobustEmbed-BERTbase 40.55 32.69 36.17 44.25 38.88 37.61 35.63 37.97

TextBugger

SimCSE-BERTbase 52.21 42.04 49.67 56.19 56.73 45.39 40.16 48.91

USCAL-BERTbase 39.16 27.37 31.90 41.25 37.86 30.79 25.45 33.40

RobustEmbed-BERTbase 23.70 18.03 20.24 28.58 20.89 19.07 16.33 20.98

PWWS

SimCSE-BERTbase 64.41 55.73 60.48 67.54 68.15 56.09 52.58 60.71

USCAL-BERTbase 51.95 40.67 45.29 52.30 46.86 50.92 39.37 46.77

RobustEmbed-BERTbase 33.63 28.15 30.56 29.94 25.51 27.16 28.49 29.06

BAE

SimCSE-BERTbase 73.50 61.83 68.27 75.15 77.84 69.06 65.43 70.15

USCAL-BERTbase 58.57 46.19 51.72 59.49 58.38 50.90 51.16 53.77

RobustEmbed-BERTbase 37.35 29.82 32.08 41.66 36.45 34.17 31.98 34.79

BERTAttack

SimCSE-BERTbase 78.42 66.94 73.59 80.87 82.16 74.35 72.22 75.51

USCAL-BERTbase 63.23 51.08 57.73 63.96 63.05 55.41 55.86 58.62

RobustEmbed-BERTbase 42.30 34.76 38.81 45.15 39.97 39.08 37.24 39.62

Table 4.3 Attack success rates of various adversarial attacks applied to three sentence embeddings
(SimCSE-BERT, USCAL-BERT, and RobustEmbed-BERT) across five text classification and two
natural language inference tasks.

attack techniques. These compelling results unequivocally affirm the robustness and resilience of

our embedding framework, while concurrently shedding light on the susceptibilities inherent in the

two prevailing state-of-the-art sentence embeddings when subjected to diverse adversarial attacks.

Figure 4.2 presents a graphical representation of the average number of queries and the conse-

quent accuracy reduction resulting from 1000 attacks on two distinct fine-tuned sentence embeddings.

The green data points correspond to attacks conducted on the RobustEmbed framework, while the

red points signify attacks on the USCAL approach Miao et al. (2021). Each pair of connected points



94

0 10 20 30 40 50 60 70 80
Accuracy Decrease

100

200

300

400

500

600
Qu

er
y 

Nu
m

be
r

Figure 4.2 Average number of queries and the resulting accuracy reduction for a set of 1000 attacks
on two fine-tuned sentence embeddings. Green points represent attacks on the RobustEmbed
framework, while red points represent attacks on the USCAL approach.

corresponds to a specific attack technique. Ideally, an ideal sentence embedding should reside in

the top-left quadrant of the diagram, indicating that the attack technique requires a larger number

of queries to deceive the target model while causing minimal degradation in performance. The

figure distinctly illustrates that, across all attack scenarios, RobustEmbed exhibits superior stability

compared to the USCAL method. Essentially, RobustEmbed necessitates a larger number of queries,

consequently resulting in a lower accuracy reduction, thereby indicating better performance when

compared to USCAL. This noteworthy observation persists across all employed adversarial attacks,

further corroborating the inherent robustness of our framework.
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4.3.4 Adversarial Semantic Textual Similarity (AdvSTS)

We present a novel evaluation task known as Adversarial Semantic Textual Similarity (AdvSTS) to

assess the robustness of sentence embeddings within our framework. AdvSTS adopts an efficient

adversarial technique, such as TextFooler, to manipulate a pair of input sentences, prompting the

target model to produce a regression score that significantly deviates from the ground truth label.

This manipulation leads to the creation of an adversarial STS dataset, where all benign instances

from the original dataset are transformed into adversarial examples. Similar to the traditional

STS task, AdvSTS employs Pearson’s correlation metric to evaluate the correlation between the

predicted similarity scores generated by the target model and the human-annotated similarity scores

for the adversarial dataset. This task provides insights into the resilience of our framework against

adversarial manipulations in semantic textual similarity assessments.

Table 4.4 displays the attack success rates of five distinct adversarial attack techniques, namely

TextFooler, TextBugger, PWWS, BAE, and BERTAttack, applied to three different sentence embed-

dings, including our framework. These assessments are conducted specifically for two AdvSTS

tasks, namely AdvSTS-B and AdvSICK-R. It is noteworthy that our embedding framework consis-

tently outperforms the other two embedding methods, demonstrating markedly lower attack success

rates across both AdvSTS tasks and all utilized adversarial attack techniques.

In conclusion, the comprehensive experiments conducted and the outcomes delineated in Tables

4.1, 4.2, 4.3, and 4.4, along with the insights presented in Figure 4.2, furnish compelling evidence

of the outstanding performance of RobustEmbed across a spectrum of text representation and

classification tasks, as well as its resilience against diverse adversarial attacks and tasks. These
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Adversarial Attack Model AdvSTS-B AdvSICK-R Avg.

TextFooler

SimCSE-BERTbase 21.07 24.17 22.62

USCAL-BERTbase 16.52 18.71 17.62

RobustEmbed-BERTbase 7.48 8.95 8.22

TextBugger

SimCSE-BERTbase 27.49 28.34 27.91

USCAL-BERTbase 21.52 24.88 23.20

RobustEmbed-BERTbase 11.76 13.01 12.39

PWWS

SimCSE-BERTbase 24.15 26.82 25.49

USCAL-BERTbase 21.28 23.65 22.47

RobustEmbed-BERTbase 13.56 14.44 14.00

BAE

SimCSE-BERTbase 26.92 28.81 27.86

USCAL-BERTbase 22.92 25.48 24.20

RobustEmbed-BERTbase 11.13 12.82 11.98

BERTAttack

SimCSE-BERTbase 31.60 32.85 32.23

USCAL-BERTbase 26.02 28.51 27.26

RobustEmbed-BERTbase 12.99 13.18 13.09

Table 4.4 Attack success rates of five adversarial attack techniques applied to three sentence
embeddings (SimCSE, USCAL, and RobustEmbed) across two Adversarial STS (AdvSTS) tasks
(i.e. AdvSTS-B and AdvSICK-R).

results substantiate the assertion that our framework exhibits exceptional capabilities in terms

of both generalization and robustness, thus highlighting its potential as a versatile and effective

approach for generating top-tier sentence embeddings.
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Figure 4.3 The impact of step sizes in perturbation generation on the average performance of STS
tasks.

4.4 Ablation Studies

This section delves into the analysis of the impact of four pivotal hyperparameters on the overall

performance of our methodology. Leveraging BERTbase as the encoder, we assess these hyperpa-

rameters using the development set of STS tasks.

4.4.1 Optimizing Step Sizes in Perturbation Generation

As outlined in Algorithm 2, the RobustEmbed framework integrates two step sizes, denoted as α

and β, to iteratively update the perturbations during the PGD and FGSM processes, respectively.

Figure 4.3 illustrates the collaborative impact of varying the ranges for these two step sizes in
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Figure 4.4 The effect of the step number (denoted as N = K or T) in the T-step FGSM and K-step
PGD methods on the averaged correlation of the different Semantic Textual Similarity (STS) tasks.

generating high-risk perturbations, a crucial aspect for achieving an effective contrastive learning

objective. The findings reveal significant enhancements when β is constrained to a lower range

while α is expanded to an upper range. Specifically, superior performance is observed when α and

β are confined within the ranges of [1e-4, 1e-6] and [1e-2, 1e-4], respectively. Consequently, we

opt for α = 1e-5 and β = 1e-3 for our experiments, as this configuration yields the most favorable

outcomes among the various combinations. Additionally, fine-tuning the step sizes in perturbation

generation contributes to optimizing the efficiency and effectiveness of the contrastive learning

process within our framework, ultimately enhancing the robustness and generalization capabilities

of the generated sentence embeddings.
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4.4.2 Optimizing Step Numbers in Perturbation Generation

In the perturbation generation process, RobustEmbed employs T-step FGSM and K-step PGD

iterations to derive high-risk adversarial perturbations crucial for the contrastive learning objective.

For ease of analysis, we simplify the perturbation generation iterations by setting K = T.

Figure 4.4 elucidates the influence of varying step numbers (N = K or T) on effectiveness. It is

observed that there is a gradual enhancement in performance as N escalates from 1 to 9; however,

beyond N=9, the degree of improvement diminishes significantly. Additionally, higher values of

N result in prolonged running times and inequitable resource allocation. Therefore, we opt for

N=5 for our experiments, as it strikes a balance between computational efficiency and performance

optimization.

4.4.3 Norm Constraint

In ensuring the imperceptibility of the generated adversarial instances, RobustEmbed regulates the

magnitude of the perturbation vector, denoted as δ. This control over the perturbation magnitude is

vital to maintain the natural appearance of the adversarial examples. To achieve this, three widely

used norm functions, namely L1, L2, and L∞, are employed to constrain the magnitude of δ to

small values.

Norm Correlation

L∞ 77.51
L2 76.82

L1 75.28

Table 4.5 The influence of the norm constraint on perturbation generation on the average performance
of various Semantic Textual Similarity (STS) tasks.
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Table 4.5 provides the averaged Spearman’s correlation scores for these norm functions across

various Semantic Textual Similarity tasks. It is observed that the L∞ norm exhibits superior

correlation compared to the other two norms, thereby establishing itself as the norm function of

choice for our experimental assessment.

4.4.4 Modulation Factor

Incorporating a modulation factor, denoted as 0 ≤ λ ≤ 1, RobustEmbed provides a mechanism to

finely tune the relative importance of each individual perturbation (PGD and FGSM) in the creation

of the final perturbation. This modulation factor plays a crucial role in determining the overall

efficacy of the generated perturbation.

λ Correlation

0 76.36

0.25 76.91

0.5 77.51
0.75 77.04

1 76.48

Table 4.6 The impact of the modulation factor on the average performance of different Semantic
Textual Similarity (STS) tasks in generating the final perturbation.

Table 4.6 showcases the performance variation across semantic textual similarity tasks for differ-

ent values of λ. The experimental results reveal that λ = 0.5 yields the highest averaged correlation

among the tested magnitudes, underscoring its effectiveness in generating potent perturbations.

Consequently, we adopt this particular setting in the configuration of our framework.
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Model STS Transfer TextFooler TextBugger BERTAttack

PGD 76.37 79.15 50.33 31.05 49.72

FreeLB 81.91 86.03 48.70 27.11 47.83

SMART 82.65 87.34 45.46 26.08 47.39

RobustEmbed 85.79 89.86 37.12 20.43 39.25

Table 4.7 Performance Comparison of Adversarial Training Methods

4.4.5 Comparison of Adversarial Training Techniques

In order to assess the effectiveness of our framework in comparison to conventional adversarial

training methods, we conducted experiments by fine-tuning our pre-trained model using a similar

adversarial training strategy as employed during the pre-training phase. Subsequently, we compared

the performance of our fine-tuned model against three standard adversarial training techniques,

namely PGD, FreeLB Zhu et al. (2020), and SMART Jiang et al. (2020), after the fine-tuning step.

The experimental results, presented in Table 4.7, offer insights into the comparative efficacy

of these approaches. It is evident from the results that our framework outperforms the three

conventional adversarial training methods across various metrics. Specifically, our approach

achieves the highest average accuracy for both STS and transfer tasks, while also exhibiting the

lowest average attack success rate under TextFooler, TextBugger, and BERTAttack attacks.

4.4.6 Contrastive Learning Loss

The initial segment of the overall contrastive loss function (Equation 5.10) focuses on refining the

similarity between the input instance x and its positive counterpart (xpos), as well as enhancing

the alignment between x and its adversarial perturbation (xadv). While this indirectly narrows the
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gap between xpos and xadv, our empirical observations indicate that integrating a direct contrastive

learning component between xpos and xadv, as outlined in the secondary part of Equation 5.10,

contributes to notable enhancements in both clean accuracy and robustness.

γ STS Transfer TextFooler

1/64 76.46 85.93 44.37

1/128 77.51 86.20 37.97
1/256 77.06 85.87 40.32

1/512 75.84 84.66 42.58

Table 4.8 Effect of Regularization Parameter (γ) on our Framework Performance

The impact of various values of the regularization parameter (γ) on the ultimate performance

of our framework is depicted in Table 4.8. The findings demonstrate that employing γ = 1/128

yields the highest average accuracy across STS and transfer tasks, along with the lowest average

attack success rate under the TextFooler attack. Consequently, we adopt γ = 1/128 for all

subsequent experiments, leveraging its optimal performance. Through this approach, our framework

achieves enhanced performance and resilience, underscoring the efficacy of our contrastive learning

enhancement strategy.

4.5 Evaluation of Sentence Embedding Distribution

We adopted the evaluation methodology proposed by Wang & Isola (2020) to leverage two crucial

assessment metrics, denoted as alignment and uniformity, aimed at gauging the quality of our

sentence representations. In the context of positive pairs characterized by the distribution ppos,

alignment quantifies the expected distance between the embeddings of paired instances, formulated
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as follows:

ℓalign ≜ E
(x,x+)∼ppos

∥f(x)− f(x+)∥2. (4.7)

On the other hand, uniformity assesses the extent to which the embeddings are uniformly distributed

within the representation space, defined by:

ℓuniform ≜ log E
x,y

i.i.d.∼ pdata

e−2∥f(x)−f(y)∥2 , (4.8)

where pdata denotes the data distribution. The underlying principle behind these metrics posits that

embeddings for positive instances should remain closely clustered, while those for random instances

should be evenly dispersed across the hypersphere.

Figure 4.5 visualizes the uniformity and alignment metrics for different sentence embedding

models, where lower values indicate better performance. Relative to alternative representations,

RobustEmbed attains a comparable level of uniformity (-2.293 vs. -2.305) but exhibits superior

alignment (0.058 vs. 0.073). This underscores the enhanced efficacy of our framework in refining

the representation space along two distinct axes.

4.6 Summary and Discussion

In this chapter, we introduce RobustEmbed, a novel self-supervised framework tailored for sentence

embeddings, aiming to bolster resilience against an array of adversarial attacks while concur-

rently achieving cutting-edge performance across diverse text representation and natural language

processing (NLP) domains.

Standard sentence embedding methods are susceptible to adversarial perturbations, which
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Figure 4.5 ℓalign − ℓuniform plot of models based on BERTbase

can compromise their integrity and utility in practical applications. RobustEmbed addresses this

vulnerability by capitalizing on high-risk adversarial perturbations within a unique contrastive

learning framework.

Our framework’s efficacy is extensively evaluated through a series of experiments encompassing

semantic textual similarity assessments and transfer learning tasks. These evaluations underscore

the superior performance of RobustEmbed compared to existing methods. Furthermore, empirical

evidence solidifies the robustness of RobustEmbed in the face of varied adversarial attack strategies.
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CHAPTER 5

RobustSentEmbed: Robust Sentence Embeddings Using Adversarial Self-Supervised
Contrastive Learning

5.1 Introduction

In recent years, Pre-trained Language Models (PLMs) have emerged as pivotal tools in Natural

Language Processing (NLP), exhibiting unparalleled prowess in learning contextual word embed-

dings Devlin et al. (2019b). The advent of models such as BERT Devlin et al. (2019b) and GPT-3

Brown et al. (2020) has propelled NLP to new heights, revolutionizing various tasks including text

classification, sentence representation, and machine translation Yang et al. (2019); He et al. (2021);

Ding et al. (2023).

Despite the remarkable achievements of PLMs in capturing intricate linguistic nuances, their

application to sentence embeddings presents notable challenges. While PLM-based sentence

representations excel in capturing semantic content, they often fall short in two critical aspects:

generalization and robustness. In other words, PLM-derived sentence embeddings may struggle to

generalize across diverse linguistic contexts and exhibit vulnerability to adversarial perturbations.

Extensive efforts have been directed towards the advancement of universal sentence embeddings

leveraging Pre-trained Language Models (PLMs) Reimers & Gurevych (2019); Zhang et al. (2020b);

Neelakantan et al. (2022); Wang et al. (2023). These embeddings have showcased adeptness in

generalizing across a spectrum of downstream tasks Sun et al. (2019); Gao et al. (2021). However,

their susceptibility to adversarial environments and attacks has been underscored in recent studies

Nie et al. (2020); Wang et al. (2021). Despite their proficiency, PLM-based embeddings exhibit a
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significant drawback in terms of robustness Garg & Ramakrishnan (2020); Wu et al. (2023); Hauser

et al. (2023). Their vulnerability lies in the ease with which they can be misled by subtle alterations

to the input text, rendering them susceptible to adversarial manipulation.

To overcome these limitations, we introduce a novel approach for acquiring robust sentence

embeddings termed RobustSentEmbed. Our methodology is rooted in the generation of subtle

adversarial perturbations coupled with the utilization of an efficient contrastive objective Chen

et al. (2020). The primary aim is to bolster the adversarial robustness of the sentence embeddings.

In essence, our framework orchestrates an iterative interplay between an adversarial perturbation

generator and the PLM-based encoder to craft high-risk perturbations within both the token-level

and sentence-level embedding domains. Subsequently, RobustSentEmbed integrates a contrastive

learning objective alongside a token replacement detection objective, seeking to optimize the

similarity between the embedding of the original sentence and the adversarial embedding of a

positive pair (the former objective), as well as its modified counterpart (the latter objective).

We have conducted extensive experiments to validate the effectiveness of the RobustSentEmbed

framework. Our experimental evaluations encompass a diverse range of tasks, including Tex-

tAttack assessments Morris et al. (2020), adversarial Semantic Textual Similarity (STS) tasks,

non-adversarial STS tasks Conneau & Kiela (2018), and transfer tasks Conneau & Kiela (2018).

Initially, two comprehensive series of experiments were devised to scrutinize the robustness of our

sentence embeddings against a multitude of adversarial attacks and tasks. Subsequently, we pro-

ceeded with two additional series of experiments to gauge the quality of our embeddings concerning

semantic similarity and natural language understanding.



107

The empirical results reveal significant enhancements achieved by RobustSentEmbed in terms

of robustness. For instance, the framework substantially reduces the attack success rate, plummeting

from 75.51% to 38.81% against the BERTAttack attack and from 71.86% to 12.80% on adversarial

STS tasks. Furthermore, RobustSentEmbed surpasses existing methods in ten out of thirteen tasks,

demonstrating notable improvements of 1.59% and 0.23% on STS tasks and NLP transfer tasks,

respectively, while achieving comparable results in the remaining three tasks.

5.1.1 Contribution

Our primary contributions can be summarized as follows:

• We present RobustSentEmbed, an innovative framework devised to generate sentence em-

beddings resilient against adversarial attacks. Existing methodologies are susceptible to such

adversarial challenges. RobustSentEmbed addresses this vulnerability by generating high-risk

perturbations and employing an efficient adversarial objective function.1

• We conduct extensive experiments to empirically assess the effectiveness of the Robust-

SentEmbed framework. The empirical results substantiate the efficacy of our approach, as

evidenced by its superior performance across both robustness and generalization benchmarks.

5.2 The Proposed Approach

We introduce RobustSentEmbed, a straightforward yet highly effective method devised for generat-

ing robust text representations. Given a Pre-trained Language Model (PLM) fθ(·) as the encoder

and a raw dataset D, our approach aims to pre-train fθ(·) on D to enhance the efficacy of sentence

1Our implementation is publicly accessible at https://github.com/GoodFlower123/RobustSentEmbed

https://github.com/GoodFlower123/RobustSentEmbed
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Figure 5.1 The general architecture of the RobustSentEmbed framework.

embeddings across a wide array of Natural Language Processing (NLP) tasks, thereby improving

generalization, while also fortifying its resilience against various adversarial attacks, thus enhancing

robustness. Figure 5.1 illustrates the conceptual overview of our approach.

The framework encompasses an iterative interplay between the perturbation generator and

the fθ(·) encoder to generate high-risk adversarial perturbations in both token-level and sentence-

level embedding spaces. These perturbations serve as crucial adversarial examples required for

adversarial training by both the fθ(·) encoder and a PLM-based discriminator. The subsequent

sections will delve into the primary components of our approach.
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5.2.1 RobustSentEmbed Algorithm

Algorithm 3 outlines the procedure employed by our framework to generate a norm-bounded

perturbation at both the token-level and sentence-level through an iterative process. This process

aims to perturb the embeddings in a manner that confounds the fθ(·) encoder by treating the

perturbed embeddings as distinct instances. Subsequently, our framework utilizes a contrastive

learning objective along with a replaced token detection objective to maximize the similarity

between the embedding of the input sentence and the adversarial embedding of its positive pair (the

former objective), as well as its edited sentence (the latter objective).

5.2.2 Adversarial Perturbation Generator

Adversarial perturbation involves the addition of meticulously crafted perturbations into benign

data, aimed at deceiving Machine Learning (ML) models Goodfellow et al. (2015b). A highly

efficient and widely applicable approach for generating adversarial perturbations is to introduce

small noise δ within a norm-constrained ball, to maximize the adversarial loss function:

arg max
||δ||≤ϵ

L(fθ(X + δ), y), (5.1)

where fθ(·) represents an ML model parameterized with X as the sub-word embeddings and

y as the corresponding labels. Various gradient-based algorithms have been devised to tackle this

optimization challenge. Our framework extends the token-level perturbation method proposed by

Li & Qiu (2021) by augmenting the perturbation with an innovative sentence-level perturbation

generator to produce worst-case adversarial examples. The fundamental concept is to train a
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Algorithm 3: RobustSentEmbed Algorithm
Input :Epoch number E, PLM Encoder fθ, dataset of raw sentences D , embedding perturbation

{δ, η}, dropout masks m1 and m2, perturbation bound ϵ, adversarial step sizes {α, β, γ},
learning rate ξ, perturbation modulator ρ, weighting coefficients {λ1, λ2}, adversarial steps
{K, T}, contrastive learning objective Lcon,θ (eq. 5.9), ELECTRA generator G(.) and
discriminator D(.)

Output :Robust Sentence Representation
V ∈ RN∗D ← 1√

D
U(−σ, σ)

for epoch = 1, ..., E do
for minibatch B ⊂D do

δ0 ← 1√
D
U(−σ, σ) , η0

i ← V[wi]

X = fθ.embedding(B, m1)
X+ = fθ.embedding(B, m2)
for t = 1, ...,max(K, T ) do

gδ = ∇δLcon,θ(X + δt−1 + ηt−1, {X+})
if t ≤ K then

δtpgd = Π∥δ∥P≤ϵ(δ
t−1 + αg(δt−1)/∥g(δt−1)∥P )

end
if t ≤ T then

δtfgsm = Π∥δ∥P≤ϵ(δ
t−1 + βsign(g(δt−1)))

end
gηi = ∇ηLcon,θ(X + δt−1 + ηt−1, {X+})
ηt
i = ni ∗ (ηt

i−1 + γgηi/∥gηi∥P )
ηt ← Π∥η∥P≤ϵ(η

t)

end
V[wi]← η

max(K, T )
i

δf = ρδKpgd + (1− ρ)δTfgsm
for x ∈ B do

x
′′
= G(MLM(x))

Xadv = X
′′
+ η

max(K, T )
i

Lx
RTD, θ =

∑|x|
j=1[−1(Xadv

j = Xj) logD(Xadv, fθ(x), j)

−1(Xadv
j ̸= Xj) log (1−D(Xadv, fθ(x), j))]

end
LRTD, θ =

∑|B|
i=1L

xi
RTD

LRobustEmbed, θ := Lcon, θ(X, {X+, X + δf})
Ltotal = LRobustEmbed,θ + λ1 · Lcon,θ(X + δf , {X+}) + λ2 · LRTD,θ

θ = θ − ξ∇θLtotal

end
end
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PLM-based model to withstand a wide array of adversarial attacks, encompassing both word and

instance levels. This augmentation aims to enhance the robustness of the model against adversarial

perturbations, thus bolstering its reliability in real-world applications.

Recognizing the intricate roles individual tokens play within a sentence, the RobustSentEmbed

framework incorporates a scaling index to accommodate larger perturbations for tokens exhibiting

greater gradients during the normalization of token-level perturbations. This approach aims to

effectively capture the varying importance of tokens within the context of the sentence:

ni =
∥ηt

i∥P
maxj∥ηt

j∥P
, (5.2)

Here, ηt
i represents the token-level perturbation for word i at step t of the gradient ascent, and

P denotes the type of norm constraint utilized. Leveraging an encoder fθ(.) and an input sentence

x, RobustSentEmbed applies standard dropout twice to produce two distinct embeddings, referred

to as "positive pairs" and denoted as (X,X+). Subsequently, the updated token-level perturbation

is expressed as follows:

ηt+1
i = ni ∗ (ηt

i + γ
gηi

∥gηi
∥P )

, (5.3)

ηt+1 ← Π∥η∥P≤ϵ(η
t), (5.4)

Where gηi
= ∇ηLcon,θ(X+δt−1+ηt−1, {X+}) denotes the gradient of the contrastive learning

loss concerning η. This perturbation generation process is bounded by the ℓ∞ norm-ball with radius

ϵ, with Π serving to project the perturbation onto the ϵ-ball, ensuring adherence to the norm
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constraint.

To generate adversarial perturbations at the sentence-level, RobustSentEmbed employs a com-

bination of the Fast Gradient Sign Method (FGSM) and the Projected Gradient Descent (PGD)

technique. This iterative approach, involving T-step FGSM and K-step PGD, systematically rein-

forces invariance within the embedding space, ultimately enhancing generalization and robustness

Goodfellow et al. (2015b); Madry et al. (2018c). The process iteratively updates the perturbation

for PGD in iteration k + 1 and FGSM in iteration t+ 1 according to the following equations:

δk+1
pgd = Π∥δ∥P≤ϵ(δ

k + αg(δk)/∥g(δk)∥P ), (5.5)

δt+1
fgsm = Π∥δ∥P≤ϵ(δ

t + βsign(g(δt))), (5.6)

where g(δn) = ∇δLcon,θ(X + δn, {X+}) with n = t or k represents the gradient of the

contrastive learning loss with respect to δ. Here, α and β denote the step sizes for the attacks, while

sign(.) yields the sign of the vector. The final perturbation is obtained by a practical combination of

T-step FGSM and K-step PGD, controlled by a modulation factor ρ:

δfinal = ρδK
pgd + (1− ρ)δT

fgsm, (5.7)

where 0 ≤ ρ ≤ 1 modulates the relative importance of each separate perturbation in the

formation of the final perturbation. This efficient approach to perturbation generation ensures the

creation of robust adversarial examples while maintaining a bounded perturbation size Goodfellow

et al. (2015b); Madry et al. (2018c).
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5.2.3 Robust Contrastive Learning

To fortify text representations against adversarial perturbations, we adopt a straightforward strategy

that combines a Replaced Token Detection (RTD) objective with a novel self-supervised contrastive

learning objective.

Our approach builds upon an adversarial variant of the RTD task introduced in ELECTRA Clark

et al. (2020). In this method, when presented with an input sentence x, ELECTRA leverages a

pre-trained masked language model as the generator G to reconstruct randomly masked tokens in

x
′
= Mask(x), resulting in the modified sentence x′′

= G(x
′
). Following this, a discriminator D is

assigned the task of discerning whether token replacements have been made, thereby constituting

the RTD task. As depicted in Figure 5.1, our perturbation generator module introduces token-

specific perturbations into the embedding of each individual token, rendering it more difficult for

discriminator D to effectively perform the RTD task. The gradient of D is then propagated back

into the encoder f through h = fθ(x). This mechanism encourages f to produce informative vector

representations h, thereby bolstering its resilience against token-level adversarial attacks.

By integrating both the RTD and contrastive learning objectives, our framework not only

enhances the robustness of text representations but also promotes their discriminative capacity in

the face of adversarial perturbations. This combined approach enables the model to effectively learn

to differentiate between genuine and adversarially altered instances, thus contributing to improved

performance across various natural language processing tasks.

In consequence, our methodology incorporates the ensuing adversarial objective for an individual

sentence x:
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Lx
RTD =

|x|∑
j=1

[−⊮(Xadv
j = Xj) logD(Xadv, h, j)

−⊮(Xadv
j ̸= Xj) log (1−D(Xadv, h, j))], (5.8)

where Xadv = X
′′
+ η

max(K, T )
i denotes the ith altered token in x. The training objective for the

batch B is LRTD, θ =
∑|B|

i=1L
xi
RTD.

The adversarial loss function Lx
RTD is formulated to penalize the discriminator’s misclassi-

fication of perturbed tokens. It sums the negative logarithm of the discriminator’s prediction

probabilities for each token in the sentence x. If a token is successfully discriminated as being

replaced (Xadv
j ̸= Xj), the corresponding term aims to minimize the probability of D predicting

a replacement (i.e., 1−D(Xadv, h, j)). Conversely, if the discriminator fails to identify a token

replacement (Xadv
j = Xj), the objective seeks to minimize the probability of D predicting a non-

replacement (i.e., D(Xadv, h, j)). This adversarial objective is employed during training to guide

the model towards generating robust and discriminative embeddings, thereby enhancing its ability to

resist adversarial attacks while preserving the semantic information encoded in the input sentences.

Moreover, we employ self-supervised contrastive learning to obtain compact and informative

representations by pulling together semantically similar instances while pushing apart dissimilar

ones. Let {(xi, x
+
i )}Ni=1 represent a collection of N positive pairs, where xi and x+

i exhibit semantic

correlation, and (zi, z
+
i ) denotes the corresponding embedding vectors for the positive pair (xi, x

+
i ).

We define the positive set zposi for zi as zposi = {z+i }, and the negative set znegi as znegi = {z−i },
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comprising positive pairs from other sentences in the same batch. Subsequently, the contrastive

training objective is delineated as follows:

Lcon,θ(zi, z
pos
i , znegi ) =

− log(

∑
zposi

exp(sim(zi, z
+
i )/τ)∑

(zposi ∪ zneg
i ) exp(sim(zi, z

+ or−
i )/τ)

), (5.9)

where τ represents a temperature hyperparameter, and sim(u, v) = u⊤v
∥u∥.∥v∥ signifies the cosine

similarity between two representations. Our methodology leverages contrastive learning to maxi-

mize the similarity between clean examples and their adversarial perturbations by integrating the

adversarial example as an additional element within the positive set:

LRobustSentEmbed, θ := Lcon,θ(z, {zpos, zadv}, {zneg}).

Ltotal :=LRobustSentEmbed, θ + λ1 · Lcon, θ(z
adv, {zpos}, {zneg}) + λ2 · LRTD, θ, (5.10)

Here, zadv = z + δfinal denotes the adversarial perturbation of the input sample x in the embedding

space, and λ1, λ2 serve as weighting coefficients. The initial part of the total contrastive loss (Eq.

5.10) is crafted to optimize the sentence-level similarity between the input sample x, its positive

pair, and its adversarial perturbation, whereas the subsequent part functions to regularize the loss

by fostering the alignment of the adversarial perturbation and x’s positive pair. The final segment

introduces the adversarial Replaced Token Detection (RTD) objective into the total contrastive loss.
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5.3 Evaluation and Experimental Results

This section provides an extensive array of experiments conducted to ascertain the efficacy of the

proposed framework concerning both robustness and generalization metrics. Robustness evaluation

encompasses adversarial attacks and adversarial Semantic Textual Similarity (STS) tasks. On the

other hand, generalization evaluation comprises non-adversarial STS and transfer tasks integrated

within the SentEval framework Conneau & Kiela (2018). Appendix B furnishes detailed training

specifics for our proposed framework. These experiments collectively serve to comprehensively

validate the capabilities and performance of the proposed framework across a spectrum of tasks and

scenarios, shedding light on its robustness and generalization prowess.

5.3.1 Evaluation Against Adversarial Attacks

The robustness of our framework against a spectrum of adversarial attacks is rigorously evaluated,

juxtaposing its performance with two contemporary sentence embedding models: SimSCE Gao

et al. (2021) and USCAL Miao et al. (2021). Fine-tuning of the BERT-based Pre-trained Language

Model (PLM) is conducted across seven distinct text classification and natural language inference

tasks, namely MRPC Dolan & Brockett (2005), YELP Zhang et al. (2015), IMDb Maas et al.

(2011), Movie Reviews (MR) Pang & Lee (2005b), SST2 Socher et al. (2013a), Stanford NLI

(SNLI) Bowman et al. (2015), and Multi-NLI (MNLI) Williams et al. (2018). The assessment

of our fine-tuned model’s robustness entails the exploration of five prevalent adversarial attacks:

TextBugger Li et al. (2019), PWWS Ren et al. (2019), TextFooler Jin et al. (2020), BAE Garg &

Ramakrishnan (2020), and BERTAttack Li et al. (2020c). Appendix C furnishes further elucidation
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Adversarial Attack Model IMDB MR SST2 YELP MRPC SNLI MNLI-Mismatched Avg.

TextFooler

SimCSE-BERTbase 75.32 65.53 71.49 79.67 80.07 72.65 68.54 72.61

USCAL-BERTbase 61.94 48.71 55.38 62.30 60.18 54.82 53.74 56.72

RobustSentEmbed-BERTbase 40.02 31.39 35.83 43.78 37.54 36.99 34.15 37.10

TextBugger

SimCSE-BERTbase 52.21 42.04 49.67 56.19 56.73 45.39 40.16 48.91

USCAL-BERTbase 39.16 27.37 31.90 41.25 37.86 30.79 25.45 33.40

RobustSentEmbed-BERTbase 23.16 17.49 19.62 27.93 19.37 18.05 15.51 20.16

PWWS

SimCSE-BERTbase 64.41 55.73 60.48 67.54 68.15 56.09 52.58 60.71

USCAL-BERTbase 51.95 40.67 45.29 52.30 46.86 50.92 39.37 46.77

RobustSentEmbed-BERTbase 32.94 28.05 29.28 29.14 24.72 26.28 27.90 28.33

BAE

SimCSE-BERTbase 73.50 61.83 68.27 75.15 77.84 69.06 65.43 70.15

USCAL-BERTbase 58.57 46.19 51.72 59.49 58.38 50.90 51.16 53.77

RobustSentEmbed-BERTbase 37.16 29.12 31.43 40.96 35.53 33.87 31.85 34.27

BERTAttack

SimCSE-BERTbase 78.42 66.94 73.59 80.87 82.16 74.35 72.22 75.51

USCAL-BERTbase 63.23 51.08 57.73 63.96 63.05 55.41 55.86 58.62

RobustSentEmbed-BERTbase 41.51 34.19 38.16 44.96 38.26 38.60 35.98 38.81

Table 5.1 Attack success rates (lower is better) of various adversarial attacks applied to three
sentence embeddings (SimCSE, USCAL, and RobustSentEmbed) across five text classification and
two natural language inference tasks. RobustSentEmbed reduces the attack success rate to less than
half across all attacks.

on these attack methodologies. To uphold statistical rigor, each experiment is iterated five times,

with every iteration comprising 1000 samples subjected to adversarial manipulation.

In Table 5.1, the average attack success rates of five distinct adversarial attacks are presented

concerning three different sentence embeddings. It is noteworthy that our embedding framework

consistently surpasses the other two embedding methods, exhibiting significantly reduced attack

success rates (less than half) across all text classification and natural language inference tasks.

Consequently, RobustSentEmbed attains the lowest average attack success rate against all adversarial
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Figure 5.2 Average number of queries and the resulting accuracy reduction for two fine-tuned
embeddings.

attack techniques. These findings robustly support the efficacy of our embedding framework while

simultaneously illuminating the vulnerabilities present in other state-of-the-art sentence embeddings

when subjected to diverse adversarial attacks.

Figure 5.2 illustrates the outcomes of 1000 attacks conducted on two fine-tuned sentence

embeddings, evaluating the average number of queries required and the consequent accuracy

reduction. The attacks targeting the RobustSentEmbed framework are denoted by green data points,

while those aimed at the USCAL approach Miao et al. (2021) are represented by red points. Each

pair of connected points corresponds to a specific attack. Ideally, a robust sentence embedding



119

should be situated in the top-left region of the graph, indicating that it necessitates a higher number of

queries for an attack to deceive the model while causing minimal performance degradation. Across

all adversarial attacks, RobustSentEmbed consistently demonstrates greater stability compared

to the USCAL method. In other words, RobustSentEmbed requires a larger number of queries,

resulting in a lower accuracy reduction (i.e., better performance) in comparison to USCAL. This

graph visually reinforces the robustness of the RobustSentEmbed framework against adversarial

attacks.

5.3.2 Assessment of Robustness

We propose a novel task termed Adversarial Semantic Textual Similarity (AdvSTS) to evaluate

the robustness of sentence embeddings. AdvSTS utilizes an effective adversarial technique, such

as TextFooler, to manipulate a given input sentence pair from a non-adversarial Semantic Textual

Similarity (STS) task in a manner that induces the target model to produce a regression score

significantly divergent from the ground truth label. Consequently, we construct an adversarial STS

dataset by transforming all benign instances from the original (i.e., non-adversarial) dataset into

adversarial examples.

Table 5.2 illustrates the success rates of five adversarial attacks on three different sentence em-

beddings, including our proposed framework. These assessments are carried out for two Adversarial

Semantic Textual Similarity (AdvSTS) tasks, namely AdvSTS-B (derived from STS Benchmark

Cer et al. (2017)) and AdvSICK-R (derived from SICK-Relatedness Marelli et al. (2014)). Re-

markably, our framework consistently outperforms the other two sentence embedding methods,

demonstrating significantly lower attack success rates across both AdvSTS tasks and all utilized
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Adversarial Attack Model AdvSTS-B AdvSICK-R Avg.

TextFooler

SimCSE-BERTbase 21.07 24.17 22.62

USCAL-BERTbase 16.52 18.71 17.62

RobustSentEmbed-BERTbase 7.18 8.53 7.86

TextBugger

SimCSE-BERTbase 27.49 28.34 27.91

USCAL-BERTbase 21.52 24.88 23.20

RobustSentEmbed-BERTbase 11.32 12.94 12.13

PWWS

SimCSE-BERTbase 24.15 26.82 25.49

USCAL-BERTbase 21.28 23.65 22.47

RobustSentEmbed-BERTbase 12.68 13.90 13.29

BAE

SimCSE-BERTbase 26.92 28.81 27.86

USCAL-BERTbase 22.92 25.48 24.20

RobustSentEmbed-BERTbase 10.53 12.09 11.31

BERTAttack

SimCSE-BERTbase 31.60 32.85 32.23

USCAL-BERTbase 26.02 28.51 27.26

RobustSentEmbed-BERTbase 12.58 13.02 12.80

Table 5.2 Attack success rates (lower is better) of five adversarial attack techniques applied to three
sentence embeddings (SimCSE, USCAL, and RobustSentEmbed) across two Adversarial Semantic
Textual Similarity (AdvSTS) tasks (i.e. AdvSTS-B and AdvSICK-R). RobustSentEmbed reduces
the attack success rate to less than half across all attacks.

adversarial attacks. These findings provide additional empirical evidence supporting the robustness

of the RobustSentEmbed approach in generating resilient text representations.



121

5.3.3 Evaluation of Semantic Textual Similarity (STS)

In this section, we embark on an exhaustive examination of our framework’s performance across

seven Semantic Textual Similarity (STS) tasks, spanning datasets from 2012 to 2016 Agirre et al.

(2012, 2013, 2014, 2015, 2016), STS Benchmark, and SICK-Relatedness. To ascertain the efficacy

of our framework, we undertake a meticulous comparative analysis against a diverse array of

unsupervised sentence embedding methodologies. These encompass: 1) fundamental techniques

like GloVe Pennington et al. (2014) and average BERT embeddings; 2) post-processing strategies

such as BERT-flow Li et al. (2020a) and BERT-whitening Su et al. (2021); and 3) cutting-edge

approaches like SimCSE Gao et al. (2021) and USCAL Miao et al. (2021). To validate the integrity

of our comparison, we meticulously replicate the results documented by the SimCSE, ConSERT,

and USCAL frameworks.

The empirical findings, as depicted in Table 5.3, consistently affirm the superior efficacy of our

RobustSentEmbed framework compared to a myriad of alternative sentence embeddings. Across

a spectrum of STS tasks, our framework consistently attains the highest average Spearman’s

correlation score when juxtaposed with state-of-the-art methodologies. Specifically, leveraging the

BERT encoder, our framework outshines the second-best embedding method, USCAL, by a notable

margin of 1.59%. Furthermore, RobustSentEmbed emerges as the top performer in the majority

of individual STS tasks, exhibiting superior performance in 6 out of 7 tasks when pitted against

other embedding methodologies. When employing the RoBERTa encoder, RobustSentEmbed

outperforms prevailing embeddings in five out of seven STS tasks and achieves the pinnacle of the

average Spearman’s correlation score.
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

GloVe embeddings (avg.) ♡ 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32

BERTbase (first-last avg.) ♣ 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70

BERTbase-flow ♣ 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55

BERTbase-whitening ♣ 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28

ConSERT-BERTbase 64.56 78.55 69.16 79.74 76.00 73.91 67.35 72.75

ATCL-BERTbase 67.14 80.86 71.73 79.50 76.72 79.31 70.49 75.11

SimCSE-BERTbase 68.66 81.73 72.04 80.53 78.09 79.94 71.42 76.06

USCAL-BERTbase 69.30 80.85 72.19 81.04 77.52 81.28 71.98 76.31

RobustSentEmbed-BERTbase 71.90 81.12 74.92 82.38 79.43 82.02 73.53 77.90

RoBERTabase-whitening 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73

ConSERT-RoBERTabase 66.90 79.31 70.33 80.57 77.95 81.42 68.16 74.95

SimCSE-RoBERTabase 68.75 80.81 71.19 81.79 79.35 82.62 69.56 76.30

USCAL-RoBERTabase 69.28 81.15 72.81 81.47 80.55 83.34 70.94 77.08

RobustSentEmbed-RoBERTabase 70.03 82.15 73.27 82.48 79.61 83.82 71.66 77.57

USCAL-RoBERTalarge 68.70 81.84 74.26 82.52 80.01 83.14 76.30 78.11

RobustSentEmbed-RoBERTalarge 69.30 81.76 75.14 83.57 79.74 83.90 77.08 78.64

Table 5.3 Semantic Similarity performance on STS tasks (Spearman’s correlation, “all” setting)
for sentence embedding models. We emphasize the top-performing numbers among models that
share the same pre-trained encoder. ♡: results from Reimers & Gurevych (2019); ♣: results
from Gao et al. (2021); All remaining results have been reproduced and reevaluated by our team.
RobustSentEmbed produces the most effective sentence representations that are more general in
addition to robust representation (section 5.3.2 and 5.3.1).

5.3.4 Transfer Learning Evaluation

Transfer learning serves as a pivotal technique for evaluating the versatility and effectiveness of our

RobustSentEmbed framework across a broad spectrum of text classification tasks, encompassing

domains like sentiment analysis and paraphrase identification. Our comprehensive evaluation
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Model MR CR SUBJ MPQA SST2 MRPC Avg.

GloVe embeddings (avg.) ♣ 77.25 78.30 91.17 87.85 80.18 72.87 81.27

Skip-thought ♡ 76.50 80.10 93.60 87.10 82.00 73.00 82.05

BERT-[CLS] embedding ♣ 78.68 84.85 94.21 88.23 84.13 71.13 83.54

ConSERT-BERTbase 79.52 87.05 94.32 88.47 85.46 72.54 84.56

SimCSE-BERTbase 81.29 86.94 94.72 89.49 86.70 75.13 85.71

USCAL-BERTbase 81.54 87.12 95.24 89.34 85.71 75.84 85.80

RobustSentEmbed-BERTbase 82.06 86.28 95.42 89.61 86.12 76.69 86.03

SimCSE-RoBERTabase 81.15 87.15 92.38 86.79 86.24 75.49 84.87

USCAL-RoBERTabase 82.15 87.22 92.76 87.74 84.39 76.20 85.08

RobustSentEmbed-RoBERTabase 81.57 87.66 93.51 87.94 85.04 76.89 85.44

USCAL-RoBERTalarge 82.84 87.97 93.12 88.48 86.28 76.41 85.85

RobustSentEmbed-RoBERTalarge 82.56 88.51 93.84 88.65 86.18 77.01 86.13

Table 5.4 Results of transfer tasks for different sentence embedding models. ♣: results from Reimers
& Gurevych (2019); ♡: results from Zhang et al. (2020b); We emphasize the top-performing
numbers among models that share the same pre-trained encoder. All remaining results have
been reproduced and reevaluated by our team. RobustSentEmbed outperforms all other methods,
regardless of the pre-trained language model (BERTbase, RoBERTabase, or RoBERTalarge).

spans six transfer tasks, including CR Hu & Liu (2004), SUBJ Pang & Lee (2004), MPQA Wiebe

et al. (2005), SST2 Socher et al. (2013a), and MRPC Dolan & Brockett (2005). By training

logistic regression classifiers atop the fixed sentence embeddings, we ensure the robustness and

accuracy of our assessments. To uphold the credibility of our findings, we meticulously replicate

the experimental setups of benchmark frameworks such as SimCSE, ConSERT, and USCAL.

The outcomes, meticulously documented in Table 5.4, unequivocally attest to the unparalleled

performance of our framework in terms of average accuracy when juxtaposed with competing
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sentence embeddings. Notably, leveraging the BERT encoder, our framework surpasses the second-

best embedding methodology by an appreciable margin of 0.23%. Furthermore, RobustSentEmbed

emerges as the top performer in four out of six text classification tasks. A similar trend is observed

for the RoBERTa encoder.

Analyzing the cumulative results presented in Tables 5.3 and 5.4, it becomes evident that

RobustSentEmbed not only facilitates robust representation (as evidenced in Section 5.3.1 and

Section 5.3.2), but also excels in providing general sentence representations across diverse text

classification tasks. This corroborates the robustness and versatility of our proposed framework in

real-world applications.

In conclusion, the exhaustive array of experiments, delineated by the results presented in Tables

5.1, 5.2, 5.3, and 5.4, alongside the graphical depiction in Figure 5.2, unequivocally validate the

remarkable efficacy of RobustSentEmbed in the domain of text representation. Moreover, these

experiments demonstrate its robustness against adversarial attacks and tasks. These empirical

observations serve to accentuate the framework’s unparalleled resilience and its capacity for gen-

eralization, thereby positioning it as a versatile tool for the generation of high-fidelity sentence

embeddings. The findings from these evaluations not only bolster confidence in the efficacy of

RobustSentEmbed but also underscore its potential to significantly contribute to the advancement of

natural language processing and related fields in computer science.
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5.4 Evaluation of Sentence Embedding Distribution

In our analysis, we assessed the quality of our sentence embeddings using two pivotal metrics,

namely alignment and uniformity Wang & Isola (2020). These metrics are essential for gauging the

effectiveness and robustness of the representations generated. The concept of alignment revolves

around computing the anticipated distance between embeddings of paired instances, which is

represented by the distribution of positive pairs ppos. Mathematically, the alignment metric, denoted

as ℓalign, is defined as the expected squared Euclidean distance between the embeddings of paired

instances, as illustrated by the equation:

ℓalign ≜ E
(x,x+)∼ppos

∥f(x)− f(x+)∥2 (5.11)

Furthermore, uniformity serves as a crucial indicator of how uniformly the embeddings are dis-

tributed across the representation space. This metric assesses the diversity and spread of embeddings

across the data distribution, which is represented by pdata. The uniformity metric, denoted as ℓuniform,

is calculated using the logarithm of the expected value of pairwise distances between embeddings

of independently and identically distributed (i.i.d.) instances sampled from the data distribution, as

depicted by the equation:

ℓuniform ≜ log E
x,y

i.i.d.∼ pdata

e−2∥f(x)−f(y)∥2 (5.12)

These metrics provide a comprehensive understanding of the distribution and quality of sentence em-

beddings, offering insights into their alignment, uniformity, and overall effectiveness in representing

textual information in the computer science domain.

Figure 5.3 provides a visual depiction of the metrics uniformity and alignment across various
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Figure 5.3 ℓalign − ℓuniform plot of models based on BERTbase. Lower uniformity and alignment is
better.

sentence embedding models, crucial factors in evaluating the quality and effectiveness of these

representations within the realm of computational linguistics. Lower values of these metrics are

indicative of better performance in representing textual semantics. Upon comparative analysis,

it is evident that RobustSentEmbed attains a comparable level of uniformity (-2.295 compared

to -2.305) when juxtaposed against alternative embedding methodologies. However, what sets

RobustSentEmbed apart is its superior alignment score (0.051 versus 0.073). This discrepancy

underscores the efficacy of our framework in optimizing the representation space along distinct axes,

thereby enhancing the overall semantic coherence and interpretability of the generated embeddings.

Such insights not only validate the robustness and efficiency of RobustSentEmbed but also offer
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valuable guidance for practitioners and researchers in selecting optimal embedding models for

various natural language processing tasks within the computer science domain.

5.5 Ablation Studies

In this section, we delve into a comprehensive analysis aimed at understanding the effects of

five critical hyperparameters on the overall performance of the RobustSentEmbed framework.

Leveraging BERTbase as our encoder of choice, we meticulously evaluate these hyperparameters

using the development set of STS tasks, a widely recognized benchmark in the field of natural

language processing. Through this meticulous examination, we aim to uncover insights into the

intricate relationship between hyperparameter configuration and framework performance, providing

valuable guidance for optimizing the RobustSentEmbed framework in practical applications.

5.5.1 Optimizing Step Sizes for Perturbation Generation

Within the RobustSentEmbed framework, the generation of perturbations through PGD and FGSM

processes relies on the adjustment of two critical step sizes, denoted as α and β respectively.

Illustrated in Figure 5.4, the collaborative influence of modifying the ranges associated with these

step sizes plays a pivotal role in generating perturbations with heightened adversarial potency, a

fundamental requirement for achieving an effective contrastive learning objective. The results

underscore the significance of fine-tuning β towards a lower bound while simultaneously setting α

to an upper bound, leading to more pronounced enhancements in performance.

Specifically, the experiments reveal that allocating ranges of [1e-4, 1e-6] for α and [1e-3,

1e-4] for β yields substantial improvements in perturbation generation. Consequently, for our



128

Figure 5.4 The impact of step sizes in perturbation generation on the average performance of STS
tasks.

experimental setup, we adopt the configuration α = 1e-5 and β = 1e-3, as it demonstrates superior

performance compared to alternative configurations.

5.5.2 Impact of Step Numbers in Perturbation Generation

The method employed in RobustSentEmbed utilizes both T-step FGSM and K-step PGD iterations

to obtain adversarial perturbations with a high potential for risk, which are crucial for fulfilling

the contrastive learning objective. To simplify the analysis of perturbation generation, we set K

equal to T. The effect of varying step numbers (denoted as N, where N equals either K or T) on the

effectiveness of the process is depicted in Figure 5.5.

The results indicate a gradual enhancement in effectiveness as N increases from 1 to 12.

However, beyond the threshold of N=12, the observed improvement becomes negligible. Moreover,
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Figure 5.5 The impact of the step number (represented by N = K or T) in the T-step FGSM and
K-step PGD methods on the averaged correlation of the STS tasks.

it’s noteworthy that higher values of N lead to increased computational overhead and may result in

unequal allocation of computational resources. As a consequence, a careful balance must be struck

between computational efficiency and effectiveness. Based on our experimentation, we have chosen

to set N=5 in order to strike an appropriate balance between computational cost and perturbation

effectiveness.

5.5.3 Magnitude Regulation for Imperceptibility

In order to maintain imperceptibility in the generated adversarial instances, RobustSentEmbed

employs a strategy to control the magnitude of perturbation vectors (δ or η). This regulation is

crucial to ensure that the perturbations remain subtle and indiscernible to human perception. The

method achieves this control by employing three widely used norm functions: L1, L2, and L∞.



130

These norms serve to constrain the magnitude of the perturbation vectors, thereby limiting their

impact on the input data.

Norm Correlation

L∞ 77.90

L2 76.84

L1 76.52

Table 5.5 The impact of the norm constraint on perturbation generation on the average performance
of various STS tasks.

Table 5.5 provides an overview of the averaged Spearman’s correlation values for these norm

functions across various Semantic Textual Similarity tasks. It is observed that the L∞ norm demon-

strates a notably higher correlation compared to the L1 and L2 norms. This superior correlation

suggests that the L∞ norm is more effective in capturing the imperceptibility of the perturbations in

the context of our experiments. The selection of the L∞ norm as the primary norm function for our

experimental evaluation is thus justified based on its superior correlation performance.

5.5.4 Enhancing Contrastive Learning for Improved Performance

The total loss function (referenced as Equation 5.10) consists of multiple components aimed at

optimizing various aspects of the learning process. The initial segment of the loss function focuses

on enhancing the similarity between the input instance x and its positive counterpart (xpos), along

with the similarity between x and its corresponding adversarial perturbation (xadv). While this

indirectly fosters a convergence between xpos and xadv, our research suggests that the incorporation

of direct contrastive learning between these entities (as depicted in the second part of Equation 5.10),

achieved through regularization within the primary objective function, significantly contributes to
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Figure 5.6 The impact of weighting coefficients in the total loss function on the average performance
of STS tasks.

improved performance metrics such as clean accuracy and robustness.

Moreover, to introduce additional challenges for adversarial training convergence, the third

segment of the total loss function integrates an objective related to adversarial replaced token

detection. This inclusion complicates the training process, thereby enhancing the robustness of the

model against adversarial attacks.

The impact of varying weighting coefficients (λ1 and λ2) on the overall performance of our

framework is illustrated in Figure 5.6. It is evident from the illustration that specific values, such

as λ1 = 1/128 and λ2 = 0.005, yield optimal results in terms of average accuracy across semantic

textual similarity tasks. Consequently, we adopt these values, λ1 = 1/128 and λ2 = 0.005, as the

standard configuration for all our experiments.
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5.5.5 Adjusting Perturbation Importance with Modulation Factor

Incorporated within RobustSentEmbed is a modulation factor, denoted as 0 ≤ ρ ≤ 1, designed to

fine-tune the relative significance of individual perturbations (PGD and FGSM) during the creation

of sentence-level perturbations. Table 5.6 provides a comprehensive analysis of the effectiveness of

varying values of this modulation factor across semantic textual similarity tasks.

ρ Correlation

0 76.06

0.25 76.85

0.5 77.90

0.75 77.34

1 76.34

Table 5.6 The impact of the modulation factor on the average performance of different Semantic
Textual Similarity (STS) tasks in generating the final perturbation.

The results elucidate that setting ρ = 0.5 leads to the highest averaged correlation among the

different magnitudes investigated, indicating its capacity to generate perturbations of increased

potency. As a result, we opt to adopt this particular configuration for our framework setup.

5.6 Summary and Discussion

In this study, we have introduced RobustSentEmbed, a pioneering self-supervised framework tailored

to fortify the resilience of sentence embeddings against adversarial attacks, while simultaneously

achieving remarkable performance levels across a spectrum of text representation and natural

language processing (NLP) tasks. The vulnerability of existing sentence embedding methodologies

to adversarial attacks necessitated the development of RobustSentEmbed, which addresses this
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critical issue through the generation of high-risk perturbations at both token and sentence levels.

The incorporation of these perturbations into innovative contrastive and difference prediction

objectives represents a significant advancement in the field, as it empowers RobustSentEmbed

to effectively counteract adversarial vulnerabilities while enhancing the quality of the resulting

sentence embeddings.

The validation of the RobustSentEmbed framework through extensive experimentation on

semantic textual similarity tasks and transfer learning scenarios has provided compelling evidence

of its robustness against adversarial attacks, as well as its proficiency in tasks requiring nuanced

semantic similarity assessments.
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CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

This dissertation delves into the realm of trustworthy AI within the domain of Natural Language

Processing (NLP), exploring the intricacies of developing efficient adversarial attacks and robust

Pre-trained Language Model (PLM)-based text representations.

Initially, we introduce SSCAE, a pragmatic Adversarial Example (AE) generator designed

to craft contextually sensitive AEs while preserving crucial linguistic attributes encompassing

semantics, syntax, and grammar. SSCAE implements practical refinement methodologies to uphold

the linguistic integrity of the final perturbations. Notably, we introduce two innovative techniques:

(1) a dynamic thresholding mechanism, termed as the dynamic threshold, to capture more potent

perturbations, and (2) a word permutation-substitution technique known as local greedy search, to

produce high-quality adversarial examples. Comparative evaluations against three state-of-the-art

adversarial attack methodologies reveal SSCAE’s superior performance, showcasing significant

improvements across a spectrum of popular and challenging text classification and text entailment

tasks.

Furthermore, we present RobustEmbed, a self-supervised framework for sentence embeddings,

which substantially enhances resilience against diverse adversarial attacks while achieving cutting-

edge performance across a broad spectrum of text representation and NLP tasks. Recognizing

the vulnerability of current sentence embeddings to adversarial attacks, RobustEmbed bridges

this gap by leveraging high-risk adversarial perturbations within a novel contrastive objective
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framework. Through extensive experimentation on semantic textual similarity and transfer learning

tasks, we validate the efficacy of our framework. Empirical findings provide compelling evidence

of RobustEmbed’s robustness against a diverse array of adversarial attacks.

Lastly, in a bid to address token-level adversarial defense, we introduce RobustSentEmbed,

a novel self-supervised framework for sentence embeddings, integrating perturbations at both

token and sentence levels. Distinguished from RobustEmbed, this new framework introduces two

primary innovations: (a) the adoption of a pragmatic token-level perturbation generator based on an

adversarial contrastive learning objective, and (b) the incorporation of a novel adversarial token-

detection objective to generate more robust sentence embeddings. Experimental results validate the

efficacy of our approach, demonstrating its heightened resilience against various adversarial attacks

and adversarial tasks within the NLP domain.

In conclusion, the research-based exploration conducted in this dissertation, aimed at refining

and optimizing adversarial attack methodologies and robust text representations, holds the potential

to yield valuable insights and advancements in the field of trustworthy AI within NLP.

6.2 Future Work

The models and methodologies introduced in this dissertation possess considerable potential for

further development into more adaptable and widely applicable solutions or for utilization in other

machine learning frameworks.
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6.2.1 Future work 1: Advancing SSCAE with Advanced Language Models

One promising avenue for future investigation lies in exploring advanced language models beyond

Universal Sentence Encoder (USE) and GPT-2, capitalizing on the modular nature of SSCAE model.

By replacing SSCAE’s components with more efficient language models like Roberta, Albert, and

GPT-4, researchers can gain novel insights into generating more effective perturbations, particularly

concerning semantic and syntactic features. This exploration holds the potential to enhance the

robustness and adaptability of the SSCAE model across various linguistic contexts and applications.

Moreover, investigating the replacement of the BERT MLM component with Transformer-based

models, such as Roberta and BART, presents another compelling area for study. These models

offer distinct capabilities and architectures that may yield superior performance in extracting

contextualized substitutions for generating high-quality adversarial examples, potentially leading to

significant advancements in adversarial machine learning and natural language processing.

6.2.2 Future work 2: Enhancing Robustness in Generative Pre-Trained Models

Another compelling avenue for future research involves developing the applicability of robustness-

enhancing techniques, such as adversarial training, to generative pre-trained models like GPT. While

RobustEmbed and RobustSentEmbed have demonstrated remarkable efficacy in bolstering the

robustness of descriptive models against adversarial attacks, their direct applicability to generative

models remains a challenge due to inherent differences in model architecture and task objectives.

To address this limitation, future research could focus on developing tailored methodologies

and optimization strategies specifically designed to enhance the generalization and robustness
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characteristics of generative pre-trained models. By leveraging insights from existing techniques

and adapting them to the unique characteristics of generative models, such as GPT, researchers can

pave the way for advancements in adversarial machine learning and natural language processing,

ultimately contributing to the development of more resilient and trustworthy AI systems.
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Appendices



139

A Training Details (RobustEmbed)

In our experimental configuration, we initialize our sentence encoder, denoted as fθ, utilizing the

pre-trained checkpoints obtained from both BERT Devlin et al. (2019b) and RoBERTa Liu et al.

(2019). RobustEmbed employs the representation of the [CLS] token as the initial embedding for

sentence encoding, supplemented by a pooler layer atop the [CLS] representations to facilitate

the fulfillment of contrastive learning objectives. The training regimen of RobustEmbed spans

over 2 epochs, with model evaluation carried out at intervals of every 250 training steps. The

optimal checkpoint, as determined by the highest average STS (Semantic Textual Similarity) score,

is cherry-picked for final evaluation. To fuel the model’s training, we harness a dataset comprising

106 randomly sampled sentences harvested from English Wikipedia, as made available by the

SimCSE framework Gao et al. (2021). The typical training duration for RobustEmbed spans

between 2 to 4 hours. Owing to the utilization of pre-trained checkpoints, our framework showcases

robustness that remains impervious to fluctuations in batch sizes, thereby affording us the flexibility

to employ batch sizes ranging from 64 to 128. In the realm of transfer tasks, we ascertain the

optimal hyperparameters based on the averaged score gleaned from the development sets associated

with six transfer tasks.
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B Training Details (RobustSentEmbed)

To initialize our sentence encoder, we utilize the pre-trained checkpoints obtained from BERT Devlin

et al. (2019b) and RoBERTa Liu et al. (2019). RobustSentEmbed leverages the representation of the

[CLS] token as the initial embedding and incorporates a pooler layer atop the [CLS] representations

to facilitate contrastive learning objectives. The training process of RobustSentEmbed spans across

four epochs. The selection of the best checkpoint, determined by the highest average STS score, is

crucial for final evaluation. For training purposes, we leverage a dataset comprising 106 randomly

sampled sentences from English Wikipedia, as provided by the SimCSE framework Gao et al.

(2021). On average, the training duration for RobustSentEmbed ranges from 2 to 4 hours. Since our

framework is initialized with pre-trained checkpoints, it exhibits robustness that is not contingent

upon batch sizes, thereby enabling us to utilize batch sizes of either 64 or 128 during training.
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C Adversarial Attack Methods

This section presents additional details on the diverse adversarial attack techniques employed to

assess the robustness of our sentence embedding framework. The TextBugger method Li et al.

(2019) identifies important words using the Jacobian matrix of the target model and selects an

optimal perturbation from five types of generated perturbations. The PWWS method Ren et al.

(2019) utilizes a synonym-swap technique based on a combination of word saliency scores and

maximum word-swap effectiveness. TextFooler Jin et al. (2020) identifies important words, gathers

synonyms, and replaces each important word with the most semantically similar and grammatically

correct synonym. The BAE method Garg & Ramakrishnan (2020) employs four adversarial attack

strategies involving word replacement or/and word insertion operations, where a portion of the text

is masked and BERT MLM is used to generate substitutions. The BERTAttack method Li et al.

(2020c) consists of two steps: (a) searching for vulnerable words/sub-words and (b) using BERT

MLM to generate semantic-preserving substitutes for the vulnerable tokens.
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