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ABSTRACT 

With recent technological advances in acquiring multimodal brain imaging data and high-

throughput genomics data, brain imaging genomics is emerging as a rapidly growing research 

field. This field performs integrative studies that analyze genetic variations such as single 

nucleotide polymorphisms (SNPs), and brain imaging quantitative traits (QTs), coupled with other 

biomarkers, clinical, and environmental data. The goal is to gain new insights into the phenotypic 

characteristics and the genetic mechanisms of the brain, as well as their impact on normal and 

disordered brain function and behavior. Our research proposes a series of algorithms to analyze 

imaging genomics. Initially, we investigated the ability to predict the trajectory of symptoms in 

both inattention and hyperactivity domains using features from sMRI images and genomics of an 

ADHD cohort of 77 subjects. We performed stepwise linear regression coupled with stability 

selection and permutation tests to identify the top predictive features. In the inattention domain, 

age, genes OSBPL1A, CTNNB1, PRPSAP2, ACADM, and one GM component in the insula 

region were associated with symptom change, while in the hyperactivity domain, no features were 

associated with symptom change. In our second study, we proposed a strategy for training 

convolutional neural networks (CNN) with limited samples using a self-transfer-training (STT) 

method, which refines and reuses layers to optimize model performance. Thirdly, we examined 

the potential of CNN models trained on structural MRI images to classify working memory 

capacity and understand the brain regions contributing to memory tasks. A CNN model trained on 

brain age prediction of 39,755 subjects was transferred to a working memory classification task 

with fewer subjects, leveraging the features learned on brain age prediction. Lastly, our fourth 

study integrates neuroimaging and genetics via contrastive learning for working memory 

prediction. We utilized data from the UK Biobank, combining structural MRI and SNP data with 



advanced machine learning techniques, including contrastive learning and sparse canonical 

correlation analysis (sCCA), to uncover significant relationships between genetic variants and 

brain regions. This integrated approach achieved superior classification accuracy, providing new 

insights into the genetic and neural mechanisms underlying working memory, and demonstrating 

the potential of multi-modal data integration in cognitive research. 
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1 INTRODUCTION  

Imaging genomics, also known as imaging genetics, is a burgeoning interdisciplinary field 

that combines neuroimaging and genetic data to investigate the genetic basis of brain structure and 

function (Bodalal et al., 2019). The field leverages advanced imaging technologies, such as 

magnetic resonance imaging (MRI) and positron emission tomography (PET), alongside high-

throughput genomic techniques, including genome-wide association studies (GWAS) and single 

nucleotide polymorphism (SNP) analysis. This integrative approach aims to understand how 

genetic variations influence brain morphology, connectivity, and activity, thereby impacting 

cognitive functions and behaviors (Liu et al., 2021). 

Cognition encompasses a range of mental processes that are essential for acquiring 

knowledge and understanding through thought, experience, and the senses. The primary 

components of cognition include attention, memory, language, perception, and executive 

functions. Attention is the cognitive process that allows individuals to focus on specific stimuli 

while ignoring others, and it is crucial for effectively processing information in our environment 

(Posner & Petersen, 1990). Memory, another key component, involves encoding, storing, and 

retrieving information, and it is divided into various types such as short-term memory, long-term 

memory, and working memory (Baddeley, 2000). Language is the ability to understand and 

produce spoken and written communication, playing a critical role in cognitive development and 

social interaction (Pinker, 1994). 

The human brain's complexity, encompassing billions of neurons and intricate networks, 

is influenced by a combination of genetic and environmental factors. Understanding the genetic 

basis of brain structure and function has been a longstanding goal in neuroscience. Traditional 

genetic studies have identified numerous genes associated with neurological and psychiatric 
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disorders, but these studies often lack the spatial resolution to pinpoint how genetic variations 

manifest in brain structures and functions. Conversely, neuroimaging studies provide detailed 

insights into brain morphology and activity but often overlook genetic contributions. Imaging 

genomics bridges this gap by integrating genetic data with brain imaging, offering a 

comprehensive view of how genes influence the brain. 

1.1 Background and Motivation 

The primary goal of imaging genomics is to uncover the complex interactions between 

genetic factors and brain imaging phenotypes, which can provide insights into the underlying 

mechanisms of various neuropsychiatric and neurodevelopmental disorders. By mapping genetic 

variations to specific brain structures and functions, researchers can identify potential biomarkers 

for early diagnosis and targets for therapeutic interventions (Glahn et al., 2007). 

Technological advancements have significantly propelled the field of imaging genomics. 

High-resolution neuroimaging techniques allow for detailed visualization of brain anatomy and 

function, while next-generation sequencing technologies enable comprehensive analysis of the 

genome (Shen & Thompson, 2020). The integration of these modalities has led to discoveries 

linking genetic polymorphisms to brain phenotypes associated with conditions such as Alzheimer's 

disease, schizophrenia, and attention-deficit/hyperactivity disorder (ADHD). 

Medical imaging plays a vital role in patient healthcare. It aids in disease prevention, early 

detection, diagnosis, and treatment. However, efforts to employ machine learning algorithms to 

support in clinical settings are often hampered by the high costs of required expert annotations 

(Grünberg et al., 2017). At the same time, large-scale biobank studies have recently started to 

aggregate unprecedented scales of multimodal data on human health. For example, the UK 
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Biobank (UKB) contains data on 500,000 individuals, including a wide range of imaging 

modalities such as cardiac, abdominal, and brain MRI (Alfaro-Almagro et al., 2018).  

On the other hand, genetic data is increasingly abundant. While chip-based genotyping 

technology has enabled the study of common genetic variation at scale (Verlouw et al., 2021), the 

exponentially decreasing costs of genomic sequencing is driving progress for rare genetic variation 

(Park & Kim, 2016). Due to these advances, the UKB and other biobanks often contain a rich array 

of genetic and genomic measurements. Genetic data is generally less susceptible to biased factors, 

and many diseases have at least a partially genetic cause, with some genetic disorders being almost 

exclusively attributed to genetic mutations. Similarly, most other traits – not directly related to 

diseases, e.g., height and human personality, are also strongly influenced by genetics (Lippert et 

al., 2017; Zwir et al., 2020). 

The field has also benefited from the development of sophisticated computational methods. 

Machine learning and statistical modeling techniques are employed to analyze large-scale, high-

dimensional data, facilitating the identification of significant genetic-imaging associations (Duan 

et al., 2023; Jiang et al., 2020; Liu et al., 2020). These methods include univariate approaches such 

as Genome-Wide Association Studies (GWAS) to multivariate approaches such as sparse 

canonical correlation analysis (sCCA), which can handle the complexity and high dimensionality 

of imaging genomics data.  

Despite significant progress, several challenges remain in the field of imaging genomics. 

One of the primary challenges is the integration of multimodal data from diverse sources, such as 

structural MRI, functional MRI, and genomic data, which requires sophisticated computational 

methods. Additionally, the high dimensionality and complexity of these datasets necessitate 

advanced machine learning techniques to extract meaningful patterns and associations. Our 



4 

research aims to address these challenges by developing and applying novel algorithms to analyze 

imaging genomics data. This dissertation focuses on two main areas: understanding the genetic 

basis of cognitive functions, specifically working memory, and predicting symptom trajectories in 

neuropsychiatric disorders like ADHD. 

1.2 Research Objectives 

The overarching aim of this dissertation is to deepen our understanding of the genetic and 

neural mechanisms underlying cognitive functions and their disorders, particularly focusing on 

working memory and ADHD. This research is motivated by the need to address existing challenges 

in the integration and analysis of multimodal data, including neuroimaging and genomics. Our 

specific research objectives are as follows: 

Aim 1: To investigate the ability to predict the trajectory of symptoms in both inattention 

and hyperactivity domains using features derived from structural MRI (sMRI) images and genomic 

data from an ADHD cohort. ADHD is a common neurodevelopmental disorder characterized by 

persistent patterns of inattention, hyperactivity, and impulsivity. Understanding the genetic and 

neural bases of these symptoms can aid in early diagnosis and personalized treatment. This 

objective focuses on identifying key predictive features from sMRI and SNP data to predict 

changes in ADHD symptoms over time. 

Aim 2: To develop a strategy for training convolutional neural networks (CNN) models 

effectively with limited sample sizes using a self-transfer-training (STT) method. One of the 

significant challenges in neuroimaging and genomics research is the limited availability of large 

datasets, which can hinder the training and generalization of machine learning models. The STT 

method aims to optimize the training process of CNNs by reusing and refining layers from pre-

trained models.  
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Aim 3: To examine the potential of CNN models trained on structural MRI images to 

classify working memory capacity and identify relevant brain regions. Working memory is a 

critical cognitive function, and its capacity varies across individuals. Understanding the neural 

correlates of working memory can provide insights into cognitive processes and their genetic 

bases. This objective focuses on using CNNs to learn from structural MRI data to classify 

individuals' working memory capacity. 

Aim 4: To integrate neuroimaging and genetic data using contrastive learning for the 

prediction of working memory, utilizing data from the UK Biobank. The integration of multimodal 

data is crucial for a comprehensive understanding of cognitive functions and their genetic 

underpinnings. Contrastive learning allows for the alignment of imaging and genetic modalities, 

improving the identification of significant associations. 

1.3 Significance of the Study 

The significance of this research lies in its potential to advance the field of cognitive 

neuroscience and improve clinical outcomes. By elucidating the genetic and neural underpinnings 

of cognitive functions, this study could lead to the development of more precise diagnostic tools 

and personalized therapeutic strategies for cognitive impairments and neuropsychiatric disorders. 

Furthermore, the methodologies developed in this dissertation could be applied to other complex 

traits and conditions, broadening the impact of this work. 

1.4 Overview of Research Methodology 

Our research methodology involves the integration of multimodal data, including sMRI 

and SNP data, with advanced machine learning techniques. We employ stepwise linear regression 

coupled with stability selection and permutation tests, convolutional neural networks (CNN) with 

self-transfer-training (STT), and contrastive learning with sparse canonical correlation analysis 



6 

(sCCA). These methods are designed to address the complexity and high dimensionality of 

imaging genomics data, facilitating the identification of significant genetic-imaging associations. 

1.5 Structure of the Dissertation 

This dissertation is structured to provide a comprehensive examination of the genetic and 

neural mechanisms underlying cognitive functions, particularly focusing on working memory 

and ADHD. The research is presented in a series of interconnected chapters, each dedicated to 

specific aspects of the study. Below is an overview of each chapter and its contribution to the 

overall research objectives. 

Chapter 1 introduces the field of imaging genomics, outlining the significance of 

integrating neuroimaging and genetic data to understand brain structure and function. It includes 

the background and motivation for the study, defines the research objectives, highlights the 

significance of the study, and gives an overview of the research methodology and the structure of 

the dissertation. 

Chapter 2: Literature Review reviews the current state of research in imaging genomics, 

covering theoretical frameworks, key concepts, and previous studies relevant to the dissertation. It 

identifies research gaps and provides a foundation for the subsequent chapters.  

Chapter 3: Predicting Symptom Trajectories in ADHD Using Imaging Genomics 

investigates the ability to predict the trajectory of symptoms in ADHD, focusing on inattention 

and hyperactivity domains using features from sMRI images and genomic data. The methods 

include stepwise linear regression, stability selection, and permutation tests. The results identify 

key predictive features, and the discussion interprets these findings in the context of existing 

literature. 
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Chapter 4: Training CNN Models with Limited Samples Using Self-Transfer-

Training (STT) addresses the challenge of limited sample sizes in neuroimaging and genomics 

research by developing a self-transfer-training (STT) method for training convolutional neural 

networks (CNN) models. It describes the initial training and hyperparameter tuning, followed by 

retraining with frozen and refined layers. The results demonstrate the effectiveness of the STT 

approach, with a discussion on its benefits and limitations. 

Chapter 5: Classifying Working Memory Capacity Using CNN Models examines the 

potential of CNN models trained on structural MRI images to classify working memory capacity 

and identify relevant brain regions. It details the training process, the application of transfer 

learning techniques, and the results, which highlight the classification accuracy and the brain 

regions involved in working memory. The discussion provides an interpretation of these findings. 

Chapter 6: Integrating Neuroimaging and Genetics via Contrastive Learning for 

Working Memory Prediction focuses on the integration of neuroimaging and genetic data using 

contrastive learning techniques to predict working memory capacity. It combines structural MRI 

and SNP data from the UK Biobank, employing contrastive learning and sparse canonical 

correlation analysis (sCCA) to uncover significant genetic-imaging associations. The results and 

discussion explore the implications for understanding the genetic basis of working memory. 

Chapter 7: Conclusions and Future Directions summarizes the research aims, methods, 

and key findings of the dissertation. It highlights the main contributions to the field, discusses 

potential limitations, and provides recommendations for future research directions. The chapter 

emphasizes the significance of the study and its potential applications in cognitive neuroscience 

and clinical practice. 
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2 LITERATURE REVIEW 

The field of imaging genomics, also known as imaging genetics, is a rapidly evolving 

interdisciplinary area that combines neuroimaging and genetic data to investigate the genetic basis 

of brain structure and function. This literature review aims to provide a comprehensive overview 

of the current state of research in imaging genomics, focusing on advancements in neuroimaging 

techniques, the role of genetic variations in cognitive functions, and the integration of these 

modalities through advanced computational techniques. By reviewing key studies and 

methodologies, this chapter aims to identify research gaps and establish a theoretical and empirical 

foundation for the current dissertation. 

The purpose of this literature review is to critically evaluate existing research on the 

intersection of neuroimaging and genomics, with a particular emphasis on understanding cognitive 

functions such as working memory and disorders like ADHD. The scope of the review includes 

advancements in neuroimaging technologies, genetic analyses, and the computational methods 

employed to integrate and analyze multimodal data. This review also aims to highlight the 

challenges and limitations in the current research landscape and suggest potential areas for future 

investigation. 

2.1 Structure of the Literature Review 

This literature review is organized into several key sections: 

1. Theoretical Framework: An overview of the key theories and concepts that underpin the 

field of imaging genomics. This section will discuss the theoretical foundations that guide 

the integration of neuroimaging and genetic data. 

2. Advancements in Neuroimaging Techniques: A detailed examination of the various 

neuroimaging technologies, including structural MRI (sMRI), functional MRI (fMRI), and 
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other imaging modalities such as PET and EEG. This section will highlight significant 

studies and findings that have advanced our understanding of brain structure and function. 

3. Genomics and Genetic Variations: An exploration of genomic technologies and the 

genetic variations that are most relevant to cognitive functions. This section will review 

key genetic factors identified through genome-wide association studies (GWAS) and other 

genomic analyses. 

4. Imaging Genomics: Integrating Neuroimaging and Genetic Data: An analysis of the 

methods used to combine neuroimaging and genetic data, including both univariate and 

multivariate approaches. This section will discuss significant findings from imaging 

genomics studies that have provided insights into the genetic basis of brain phenotypes. 

5. Machine Learning and Computational Techniques in Imaging Genomics: A review of 

the computational methods, particularly machine learning techniques, used to analyze 

imaging genomics data. This section will cover convolutional neural networks (CNN), 

contrastive learning, and sparse canonical correlation analysis (sCCA), among others. 

6. Specific Focus Areas in Imaging Genomics: Focused reviews on specific applications of 

imaging genomics, particularly in ADHD and working memory research. This section will 

summarize the key studies that have linked neuroimaging and genetic data to these 

cognitive functions and disorders. 

7. Challenges and Research Gaps in Imaging Genomics: An identification of the main 

challenges and limitations in current imaging genomics research, such as data integration 

issues and the high dimensionality of datasets. This section will also highlight the gaps in 

literature and propose areas for future research. 
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8. Summary: A recap of the main points covered in the literature review, emphasizing the 

relevance of the reviewed literature to the current dissertation's research objectives. 

9. Conclusion: A summary of the theoretical and empirical background, leading into the 

methodology chapter. 

By systematically reviewing the existing literature, this chapter aims to provide a 

comprehensive background for understanding the complex interactions between genetic variations 

and brain phenotypes. This foundation is critical for advancing our knowledge of cognitive 

functions and their disorders, ultimately guiding the research presented in this dissertation. 

2.2 Theoretical Framework 

Imaging genomics, also known as imaging genetics, is a multidisciplinary field that 

bridges neuroimaging and genetics to elucidate how genetic variations affect brain structure and 

function. This section outlines the fundamental theories and concepts underpinning imaging 

genomics, including neurogenetics, neuroimaging principles, multimodal data integration, and 

the application of machine learning techniques. 

2.2.1 Genetics 

Genetics is the study of heredity and the variation of inherited characteristics. In the 

context of imaging genomics, it focuses on identifying genetic variations that influence brain 

structure and function. The following are key genetic modalities used in this field: 

2.2.1.1 Single Nucleotide Polymorphisms (SNPs) 

Single nucleotide polymorphisms, commonly known as SNPs (pronounced "snips"), 

represent the most frequent type of genetic variation among humans. Each SNP involves a 

variation at a single position in the DNA sequence, where one nucleotide is substituted for another. 

For example, a SNP may change the DNA sequence from AAGGCT to ATGGCT, where the 
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nucleotide adenine (A) is replaced by thymine (T). SNPs occur approximately once in every 300 

nucleotides, which means there are roughly 10 million SNPs in the human genome. This high 

frequency makes SNPs valuable markers for studying human genetic diversity and disease 

susceptibility (Health, 2019). 

 

Figure 2.1: Single-nucleotide polymorphism (SNP) 

 

SNPs are widely used in genetic research because they can serve as biological markers, 

helping scientists locate genes associated with disease. By comparing SNP patterns between 

individuals with and without a particular disease, researchers can identify genetic differences that 

may contribute to the disease's development. Genome-wide association studies (GWAS) leverage 

this approach to scan the entire genome of many individuals, searching for SNPs that occur more 
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frequently in people with a specific condition than in those without it (Visscher et al., 2012). These 

studies have successfully identified numerous SNPs linked to complex diseases such as diabetes, 

cancer, and neuropsychiatric disorders, including schizophrenia and Alzheimer's disease (Visscher 

et al., 2012). 

In the context of imaging genomics, SNPs play a crucial role in understanding the genetic 

basis of brain structure and function. Researchers analyze the association between SNPs and 

various neuroimaging phenotypes, such as brain volume, cortical thickness, and connectivity 

patterns. For example, studies have identified SNPs in the gene BDNF (Brain-Derived 

Neurotrophic Factor) that are associated with differences in hippocampal volume, a brain region 

critical for memory and learning (Stein et al., 2012). These findings suggest that genetic variations 

can influence brain morphology, potentially affecting cognitive abilities and risk for neurological 

disorders. 

The functional impact of SNPs can vary widely. Some SNPs may have no effect on gene 

function or protein production, while others can influence how a gene is expressed or alter the 

function of a protein. Non-coding SNPs, which are located in regions of the DNA that do not 

encode proteins, can affect gene regulation by altering transcription factor binding sites or RNA 

stability. Coding SNPs, which occur within gene exons, can lead to amino acid substitutions in 

proteins, potentially affecting their structure and function. Understanding the functional 

consequences of specific SNPs is essential for elucidating the molecular mechanisms underlying 

their associations with complex traits and diseases. 

Furthermore, SNPs are valuable in personalized medicine, an emerging approach that 

tailor’s medical treatment to an individual’s genetic makeup. By identifying SNPs that influence 

drug metabolism, efficacy, and risk of adverse reactions, healthcare providers can optimize drug 
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selection and dosing for each patient. For instance, certain SNPs in the CYP2C19 gene affect the 

metabolism of the antiplatelet drug clopidogrel, influencing treatment outcomes in patients with 

cardiovascular disease. Genotyping these SNPs allows for more precise and effective medical 

interventions (Mega et al., 2009) (Pezawas et al., 2005). 

Overall, SNPs are a fundamental tool in genetic research, providing insights into human 

diversity, disease mechanisms, and personalized medicine. Their application in imaging genomics 

enhances our understanding of how genetic variations shape brain structure and function, 

contributing to the broader field of cognitive neuroscience and mental health research. 

2.2.1.2 Genome-Wide Association Studies (GWAS) 

Genome-wide association studies (GWAS) are a powerful and widely used method for 

identifying genetic variations associated with complex traits and diseases. Unlike traditional 

genetic studies that focus on a small number of candidate genes, GWAS scan the entire genome to 

uncover associations between single nucleotide polymorphisms (SNPs) and specific traits (Tam et 

al., 2019). This comprehensive approach has revolutionized the field of genetics, leading to 

significant discoveries across a broad range of medical and biological research areas. 

The fundamental principle behind GWAS is the use of high-throughput genotyping 

technologies to assess millions of SNPs across the genomes of large cohorts. These studies require 

a substantial sample size to detect genetic variants with modest effects, which are typical for 

complex traits influenced by multiple genes and environmental factors. The statistical power of 

GWAS lies in its ability to detect associations between SNPs and traits without prior hypotheses 

about candidate genes, making it an unbiased and comprehensive approach to genetic discovery 

(Visscher et al., 2012). 
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One of the landmark successes of GWAS is the identification of numerous genetic loci 

associated with common diseases such as diabetes, cardiovascular disease, and various forms of 

cancer. For instance, GWAS have uncovered several risk alleles in the FTO gene linked to obesity 

and type 2 diabetes, providing insights into the biological pathways involved in these conditions 

(Loos & Yeo, 2014). Similarly, multiple loci associated with coronary artery disease have been 

identified, shedding light on the genetic architecture of cardiovascular risk and highlighting 

potential targets for therapeutic intervention (Tcheandjieu et al., 2022). 

In the context of neuropsychiatric disorders, GWAS have significantly advanced our 

understanding of the genetic basis of conditions like schizophrenia (Ripke et al., 2014), bipolar 

disorder (Mullins et al., 2021), and major depressive disorder (Meng et al., 2024). For example, a 

large-scale GWAS conducted by the Psychiatric Genomics Consortium identified over 100 loci 

associated with schizophrenia, implicating genes involved in synaptic function, neurotransmitter 

pathways, and immune system processes (Ripke et al., 2014). These findings have provided a 

deeper understanding of the molecular mechanisms underlying schizophrenia and have opened 

new avenues for research into its pathophysiology and treatment. 

GWAS have also been instrumental in elucidating the genetic influences on brain structure 

and function. Studies integrating GWAS with neuroimaging data have identified SNPs associated 

with variations in brain morphology, such as cortical thickness and hippocampal volume 

(Horgusluoglu-Moloch et al., 2019). For instance, research has linked variants in the gene KIBRA 

to hippocampal volume and memory performance, suggesting a genetic basis for individual 

differences in cognitive abilities (Kirchner et al., 2023). These integrative approaches, often 

referred to as imaging genomics, bridge the gap between genetics and neuroscience, offering 

insights into how genetic variations influence brain phenotypes and cognitive functions. 
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Despite their successes, GWAS face several challenges and limitations. One significant 

challenge is the need for large sample sizes to achieve sufficient statistical power, particularly for 

detecting variants with small effect sizes. Additionally, GWAS typically identify associations 

rather than causal relationships, requiring further functional studies to elucidate the biological 

mechanisms underlying the identified loci. Another limitation is that GWAS findings can 

sometimes be difficult to replicate across different populations, highlighting the importance of 

considering population stratification and genetic diversity in study designs. 

Moreover, while GWAS have been successful in identifying common variants associated 

with complex traits, they often leave a substantial portion of the heritability unexplained, a 

phenomenon known as "missing heritability." This suggests that other types of genetic variation, 

such as rare variants, structural variants, and gene-gene interactions, may also play crucial roles. 

Advances in sequencing technologies and analytical methods are helping to address these gaps, 

providing a more comprehensive understanding of the genetic architecture of complex traits 

(Manolio et al., 2009). 

2.2.1.3 Epigenetics 

Epigenetics is the study of heritable changes in gene expression that do not involve 

alterations to the underlying DNA sequence. These changes are mediated by various mechanisms, 

including DNA methylation, histone modification, and non-coding RNAs, which collectively 

influence how genes are turned on or off. Unlike genetic mutations, which alter the DNA sequence, 

epigenetic modifications are reversible and can be influenced by environmental factors, making 

epigenetics a dynamic interface between the genome and the environment (Bird, 2007). 

One of the primary mechanisms of epigenetic regulation is DNA methylation, which 

involves the addition of a methyl group to the cytosine nucleotide in the context of a CpG 



16 

dinucleotide. DNA methylation typically acts to repress gene expression when located in gene 

promoter regions. Aberrant DNA methylation patterns have been implicated in various diseases, 

including cancer, where hypermethylation of tumor suppressor genes and hypomethylation of 

oncogenes can contribute to tumorigenesis. In neuropsychiatric disorders, alterations in DNA 

methylation have been associated with conditions such as schizophrenia, autism spectrum disorder, 

and depression, suggesting that epigenetic changes can significantly impact brain function and 

behavior (Tammen et al., 2013). 

The field of epigenetics has profound implications for understanding complex traits and 

diseases. One of the most exciting aspects of epigenetic research is the concept of epigenetic 

plasticity, which refers to the ability of the epigenome to change in response to environmental 

stimuli. This plasticity means that lifestyle factors, such as diet, exercise, stress, and exposure to 

toxins, can influence epigenetic marks and, consequently, gene expression patterns. For example, 

studies have shown that early-life stress can lead to long-lasting changes in DNA methylation and 

histone modifications, affecting stress-response genes and potentially contributing to the 

development of mental health disorders later in life (Kular & Kular, 2018). 

In the context of neuropsychiatric disorders, epigenetic modifications have been shown to 

play a critical role in brain development and function. For instance, aberrant DNA methylation 

patterns in genes involved in synaptic plasticity, neurodevelopment, and neurotransmitter systems 

have been associated with schizophrenia and autism spectrum disorder. These findings suggest 

that epigenetic dysregulation can disrupt normal brain function and contribute to the 

pathophysiology of these disorders. Moreover, epigenetic research has opened new avenues for 

therapeutic interventions. Drugs targeting epigenetic modifications, such as DNA 

methyltransferase inhibitors and histone deacetylase inhibitors, are being explored for their 
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potential to reverse aberrant epigenetic marks and restore normal gene expression patterns 

(Griffiths & Gore, 2008). 

2.2.2 Neurogenetics 

Neurogenetics is the study of how genetic variations influence the development, structure, 

and function of the nervous system. The field explores the role of genes in brain development and 

the manifestation of neurological and psychiatric disorders. Key theories in neurogenetics include 

the concept of gene-environment interactions, where genetic predispositions interact with 

environmental factors to influence brain phenotypes and behaviors. 

2.2.2.1 Gene-Environment Interactions 

Gene-environment interactions (GxE) refer to the complex interplay between genetic 

predispositions and environmental factors in determining an individual's phenotype. This concept 

underscores that neither genetic factors nor environmental influences alone can fully explain the 

variability in traits or the development of complex diseases. Instead, it is the interaction between 

these elements that shapes outcomes, contributing to the diversity seen in human health and 

behavior (Virolainen et al., 2022-12-30). 

One example of GxE interactions is the relationship between genetic susceptibility to 

mental health disorders and exposure to stressful life events. For instance, individuals carrying a 

specific variant of the serotonin transporter gene (5-HTTLPR) are more likely to develop 

depression following stressful life events compared to those without this genetic variant (Goldman 

et al., 2010). This interaction was highlighted in a landmark study by Caspi et al. (2003), which 

demonstrated that the presence of the short allele of the 5-HTTLPR gene moderated the effect of 

stressful life events on the risk of developing depression (Caspi et al., 2003). This finding 
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emphasizes that genetic predispositions can influence how individuals respond to environmental 

stressors, leading to different psychological outcomes. 

Another well-documented case of GxE interactions is in the development of asthma. 

Genetic factors such as variations in the IL4R gene, which encodes a receptor involved in the 

immune response, have been linked to an increased risk of asthma. However, environmental 

factors such as exposure to allergens, air pollution, and tobacco smoke also play a crucial role. 

Studies have shown that children with certain genetic variants are more susceptible to developing 

asthma when exposed to high levels of air pollution, illustrating the significant impact of GxE 

interactions on respiratory health (Wenzel et al., 2007). 

In the realm of neurodevelopmental disorders, GxE interactions are equally significant. 

Autism spectrum disorder (ASD) is influenced by both genetic and environmental factors 

(Tordjman et al., 2014). For example, prenatal exposure to environmental toxins such as pesticides 

or maternal infection during pregnancy has been associated with an increased risk of ASD, 

particularly in genetically susceptible individuals. Research indicates that certain genetic 

mutations related to synaptic function and neural development can increase vulnerability to these 

environmental insults, thereby contributing to the development of ASD (Tordjman et al., 2014). 

The study of GxE interactions also extends to cognitive functions. Cognitive abilities, such 

as intelligence and memory, are influenced by both genetic factors and environmental conditions, 

including education, nutrition, and social interactions (von Stumm et al., 2023). Twin studies have 

been instrumental in disentangling the relative contributions of genes and environment (Dick, 

2011). For instance, the heritability of intelligence has been estimated to be around 50%, but this 

estimate can vary significantly depending on the environmental context. Children raised in 

enriched environments, with access to better educational resources and stimulation, often show 
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higher cognitive performance regardless of genetic background, highlighting the profound impact 

of GxE interactions on cognitive development (Provençal & Binder, 2015). 

2.2.2.2 Endophenotypes 

Endophenotypes are measurable components along the pathway between a genetic 

predisposition and the clinical manifestation of a disorder. These intermediate phenotypes are more 

closely related to the underlying genetic mechanisms than the complex traits or diseases 

themselves, making them valuable in genetic and neuropsychiatric research. The concept of 

endophenotypes bridges the gap between observable symptoms and the genetic architecture, 

providing a more straightforward target for genetic analysis (Irving I. Gottesman & Todd D. 

Gould, 2003). 

The utility of endophenotypes lies in their ability to decompose complex traits into simpler, 

more quantifiable elements. This decomposition is particularly useful in the study of 

neuropsychiatric disorders, where symptoms can be highly heterogeneous and influenced by a 

myriad of genetic and environmental factors. By identifying endophenotypes, researchers can 

focus on specific biological or cognitive processes that may be disrupted in these disorders, thereby 

improving the power to detect genetic associations and understanding the underlying 

pathophysiology. For instance, in schizophrenia research, cognitive deficits such as working 

memory impairment and abnormal eye-tracking movements have been identified as potential 

endophenotypes (Park & Gooding, 2014). These traits are more heritable and less influenced by 

external factors compared to the broader clinical diagnosis of schizophrenia, making them more 

reliable indicators of genetic risk (Turetsky et al., 2007). 

One of the key criteria for an endophenotype is that it must be heritable and co-segregate 

with the disorder within families. Additionally, endophenotypes should be present in unaffected 
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family members of individuals with the disorder, albeit to a lesser extent. This characteristic 

indicates that endophenotypes are not merely symptoms but are fundamentally linked to the 

genetic basis of the disorder. For example, studies have shown that first-degree relatives of 

individuals with schizophrenia exhibit similar, albeit milder, deficits in cognitive functions such 

as attention and memory, supporting the role of these cognitive deficits as endophenotypes. 

In the realm of affective disorders, neuroimaging has been instrumental in identifying 

potential endophenotypes. Structural and functional brain abnormalities, such as reduced 

hippocampal volume and altered activity in the prefrontal cortex and amygdala, have been 

observed in individuals with major depressive disorder (MDD) and their unaffected relatives. 

These findings suggest that such brain abnormalities could serve as endophenotypes for MDD, 

reflecting underlying genetic vulnerabilities that predispose individuals to the disorder. Similarly, 

in bipolar disorder, traits like increased sensitivity to reward and emotional dysregulation have 

been proposed as endophenotypes, given their heritability and presence in unaffected family 

members. 

The identification of endophenotypes extends beyond neuropsychiatric disorders to other 

complex traits and diseases. In addiction research, endophenotypes such as impulsivity, stress 

reactivity, and reward sensitivity are used to explore the genetic basis of substance use disorders. 

These traits are heritable, stable over time, and observed in individuals at risk for addiction, making 

them valuable targets for genetic studies. By focusing on these intermediate traits, researchers can 

better understand the genetic and neurobiological mechanisms that contribute to the development 

and maintenance of addictive behaviors (Belin et al., 2016). 

Moreover, endophenotypes can facilitate the development of more precise and 

personalized treatment strategies. By targeting specific endophenotypes, interventions can be 
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tailored to address the underlying cognitive or biological deficits rather than just the symptoms of 

the disorder. For instance, cognitive remediation therapies designed to improve working memory 

and executive function have shown promise in individuals with schizophrenia, potentially 

ameliorating some of the cognitive deficits associated with the disorder. Similarly, interventions 

aimed at reducing impulsivity and improving stress management may be effective in preventing 

substance abuse in at-risk populations (Barlati et al., 2013). 

Overall, the concept of endophenotypes provides a robust framework for dissecting the 

complexity of genetic influences on behavior and disease. By identifying and studying these 

intermediate phenotypes, researchers can gain deeper insights into the biological pathways that 

link genes to clinical outcomes, ultimately advancing our understanding of the etiology and 

treatment of complex disorders. 

2.3 Advancements in Neuroimaging Techniques 

Neuroimaging encompasses a range of techniques that allow scientists to visualize the 

structure and function of the brain in unprecedented detail. These techniques provide critical 

insights into the organization and workings of the brain, facilitating the study of neurological and 

psychiatric disorders, as well as normal cognitive functions. The ability to non-invasively examine 

the brain's architecture and activity has revolutionized neuroscience, offering a window into the 

neural substrates underlying behavior and mental processes. 

2.3.1 Structural Magnetic Resonance Imaging (sMRI) 

Structural magnetic resonance imaging (sMRI) is a pivotal neuroimaging technique that 

provides detailed images of the brain's anatomy. Utilizing strong magnetic fields and 

radiofrequency pulses, sMRI produces high-resolution images that allow for precise measurement 

of brain structures, including cortical thickness, surface area, and volumetric properties of different 
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brain regions. This non-invasive method is instrumental in both clinical and research settings, 

offering invaluable insights into brain morphology and its alterations associated with various 

neurological and psychiatric conditions (Jack et al., 1998). 

One of the primary advantages of sMRI is its ability to detect subtle changes in brain 

structure. This capability is particularly important in the study of neurodegenerative diseases such 

as Alzheimer's disease, where early diagnosis and monitoring of disease progression are critical. 

sMRI can reveal brain atrophy patterns, such as the reduction in hippocampal volume, which is a 

hallmark of Alzheimer's disease (Jack et al., 1998). Longitudinal sMRI studies have shown that 

hippocampal atrophy rates correlate with the progression of cognitive decline, making sMRI a 

crucial tool for tracking disease progression and evaluating the efficacy of therapeutic 

interventions (Xiao et al., 2023). 

In addition to its application in neurodegenerative diseases, sMRI is widely used in 

psychiatric research. Studies employing sMRI have identified structural brain abnormalities 

associated with various psychiatric disorders, including schizophrenia (Honea et al., 2005), bipolar 

disorder (Macoveanu et al., 2021), and major depressive disorder (Wu et al., 2020). For instance, 

individuals with schizophrenia often exhibit reduced gray matter volume in the prefrontal cortex, 

temporal lobes, and other brain regions involved in cognitive and emotional processing (Wu et al., 

2020). These findings have provided insights into the neuroanatomical underpinnings of 

schizophrenia, supporting the hypothesis that the disorder involves widespread brain network 

dysfunctions. 

sMRI also plays a crucial role in understanding brain development and aging. In 

developmental neuroscience, sMRI has been used to study the maturation of brain structures 

during childhood and adolescence (Johnson et al., 2009). These studies have revealed that brain 
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development follows a non-linear trajectory, with different regions maturing at different rates. For 

example, the prefrontal cortex, which is essential for executive functions such as decision-making 

and impulse control, continues to develop well into young adulthood (Gogtay et al., 2004). 

Conversely, in aging research, sMRI has been utilized to investigate age-related changes in brain 

volume and cortical thickness, contributing to our understanding of cognitive decline in older 

adults (Johnson et al., 2009). 

Moreover, sMRI's ability to measure white matter integrity has expanded its applications 

to studying brain connectivity. Techniques such as diffusion tensor imaging (DTI), which is often 

performed in conjunction with sMRI, allow researchers to examine the microstructural properties 

of white matter tracts. This combination provides a comprehensive view of both gray and white 

matter structures, enabling a better understanding of how brain regions are interconnected and how 

these connections may be disrupted in various conditions. For example, reduced white matter 

integrity in the corpus callosum has been associated with impaired interhemispheric 

communication in multiple sclerosis and other neurodegenerative diseases (Basser et al., 1994). 

structural MRI is a versatile and powerful neuroimaging tool that has significantly 

advanced our understanding of brain structure and its alterations in health and disease. Its ability 

to provide detailed and accurate measurements of brain morphology makes it indispensable for 

diagnosing and monitoring neurological and psychiatric conditions, studying brain development 

and aging, and exploring the structural basis of brain connectivity. As sMRI technology continues 

to evolve, it will undoubtedly continue to play a crucial role in neuroscience research and clinical 

practice. 
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2.3.2 Functional Magnetic Resonance Imaging (fMRI) 

Functional magnetic resonance imaging (fMRI) is a pivotal neuroimaging technique that 

measures brain activity by detecting changes associated with blood flow. The fundamental 

principle behind fMRI is the blood-oxygen-level-dependent (BOLD) signal, which relies on the 

fact that cerebral blood flow and neuronal activation are coupled. When a brain region becomes 

more active, it consumes more oxygen, leading to an increase in local blood flow to meet the 

metabolic demands. This hemodynamic response results in a relative decrease in deoxygenated 

hemoglobin, which has different magnetic properties than oxygenated hemoglobin, thereby 

altering the MR signal and allowing the detection of brain activity (Logothetis, 2008). 

One of the major advantages of fMRI is its ability to non-invasively map functional activity 

across the entire brain with high spatial resolution. This capability has revolutionized cognitive 

neuroscience by enabling researchers to investigate the neural correlates of a wide range of 

cognitive processes, such as perception, memory, attention, and emotion. For instance, studies 

using fMRI have elucidated the brain networks involved in working memory, highlighting the 

roles of the prefrontal cortex and parietal lobes in maintaining and manipulating information 

(Emch et al., 2019). Similarly, fMRI research has advanced our understanding of the neural basis 

of emotional processing by identifying key regions such as the amygdala and prefrontal cortex, 

which are involved in the regulation of emotional responses (Kustubayeva et al., 2023). 

The versatility of fMRI extends to its use in studying the functional connectivity of the 

brain. Functional connectivity refers to the temporal correlation between spatially remote brain 

regions, indicating that these areas are functionally linked. Resting-state fMRI (rs-fMRI) is a 

popular approach to studying functional connectivity, as it measures spontaneous brain activity 

while the subject is not engaged in any specific task. Rs-fMRI has revealed the existence of 
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intrinsic brain networks, such as the default mode network (DMN), which is active during rest and 

involved in self-referential and introspective activities. Alterations in the connectivity of these 

networks have been implicated in various neurological and psychiatric disorders, including 

Alzheimer's disease, schizophrenia, and depression (Brandman et al., 2021). 

fMRI has also been instrumental in clinical research and applications. For example, pre-

surgical fMRI is used to map critical functional areas in patients undergoing brain surgery, such 

as those with tumors or epilepsy. By identifying regions involved in language, motor functions, 

and sensory processing, surgeons can minimize the risk of impairing essential cognitive and motor 

abilities. Furthermore, fMRI is increasingly employed in neurofeedback and brain-computer 

interface (BCI) applications, where real-time feedback of brain activity is used to train individuals 

to modulate their brain functions, potentially offering therapeutic benefits for conditions like 

chronic pain, ADHD, and depression (Pilmeyer et al., 2022). 

Functional MRI has become an indispensable tool in neuroscience, offering profound 

insights into the functional architecture of the brain. Its ability to non-invasively map brain activity 

and connectivity has facilitated the study of complex cognitive processes and the identification of 

neural abnormalities associated with various disorders. As technology and analytical methods 

continue to evolve, fMRI is poised to further our understanding of brain function and contribute 

to the development of novel therapeutic strategies. 

2.3.3 Other Imaging Modalities 

In addition to structural MRI (sMRI) and functional MRI (fMRI), several other 

neuroimaging modalities provide complementary insights into brain structure and function. These 

techniques, including positron emission tomography (PET), electroencephalography (EEG), and 
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magnetoencephalography (MEG), offer unique advantages that enhance our understanding of the 

brain's intricate workings. 

2.3.3.1 Positron Emission Tomography (PET) 

Positron emission tomography (PET) is a powerful imaging modality that provides detailed 

images of metabolic processes and molecular activity within the brain. PET involves the use of 

radiotracers—radioactive substances that are injected into the bloodstream and accumulate in 

specific brain regions based on their metabolic activity. By detecting the gamma rays emitted from 

these tracers, PET scans can measure various physiological processes, including glucose 

metabolism, blood flow, and neurotransmitter activity. This technique is particularly valuable for 

studying the brain's chemical environment and identifying abnormalities in neurotransmitter 

systems. For example, PET has been used to investigate the dopaminergic system in Parkinson's 

disease, revealing reduced dopamine activity in the basal ganglia, which correlates with motor 

symptoms (Loane & Politis, 2011). Similarly, PET studies in depression have identified alterations 

in serotonin and dopamine pathways, providing insights into the neurochemical basis of mood 

disorders (Singh et al., 2024). 

2.3.3.2 Electroencephalography (EEG) 

Electroencephalography (EEG) is a non-invasive technique that measures electrical 

activity generated by the brain's neurons. By placing electrodes on the scalp, EEG captures the 

brain's electrical signals, or brain waves, which reflect synchronous neuronal firing. EEG is 

renowned for its excellent temporal resolution, allowing researchers to track brain activity in real 

time with millisecond precision. This makes EEG particularly useful for studying dynamic 

cognitive processes, such as attention, perception, and sensory processing. For instance, event-

related potentials (ERPs), derived from EEG data, are used to investigate the timing and sequence 
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of neural responses to specific stimuli, shedding light on cognitive and sensory processing stages. 

EEG is also widely used in clinical settings for diagnosing and monitoring neurological conditions 

such as epilepsy, where abnormal electrical activity patterns can be detected during seizures (Ein 

Shoka et al., 2023). 

2.3.3.3 Magnetoencephalography (MEG) 

Magnetoencephalography (MEG) is another technique that measures brain activity, but it 

detects the magnetic fields produced by neuronal electrical activity rather than the electrical signals 

themselves. MEG offers a combination of high temporal resolution, similar to EEG, and better 

spatial resolution, making it a powerful tool for mapping brain function. The magnetic fields 

measured by MEG are less distorted by the skull and scalp compared to the electrical signals 

detected by EEG, allowing for more precise localization of neural activity. MEG is particularly 

valuable for studying brain dynamics and connectivity, providing insights into how different brain 

regions interact during various cognitive tasks. It is also used in pre-surgical planning for epilepsy 

patients, helping to identify and preserve critical functional areas during surgery (Barlow, 1983). 

Each of these imaging modalities—PET, EEG, and MEG—offers unique advantages that 

complement the capabilities of MRI. By integrating data from multiple imaging techniques, 

researchers can obtain a more comprehensive understanding of the brain's structure, function, and 

neurochemical environment. This multimodal approach is essential for advancing our knowledge 

of the brain's complexities and developing targeted interventions for neurological and psychiatric 

disorders. 

2.4 Methodologies of Multimodal Imaging Genetic Integration 

Imaging genomics, or imaging genetics, is an interdisciplinary field that aims to understand 

how genetic variations influence brain structure and function. By integrating neuroimaging and 
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genetic data, researchers can explore the complex interactions between genes and the brain, 

providing insights into the biological underpinnings of cognitive functions and neuropsychiatric 

disorders. This section of the literature review discusses the methodologies, findings, and 

implications of integrating neuroimaging and genetic data. 

2.4.1 Univariate Approaches to Imaging Genomics 

Univariate approaches to brain imaging genomics are foundational techniques that 

investigate the relationship between genetic variations and brain imaging phenotypes on a single-

variable basis. These methods are often used to identify associations between specific genetic 

markers (such as single nucleotide polymorphisms, SNPs) and individual imaging measures (e.g., 

volume of a particular brain region, functional connectivity strength). The univariate approach is 

advantageous due to its simplicity and interpretability, making it a popular choice in early 

neuroimaging genetics studies.  

2.4.1.1 Voxel Based Morphometry 

Voxel-Based Morphometry (VBM) is a neuroimaging analysis technique that enables the 

investigation of focal differences in brain anatomy. It is widely used in brain imaging genomics to 

assess the relationship between genetic variations and brain structure. The process involves 

segmenting the brain into gray matter, white matter, and cerebrospinal fluid, and then comparing 

these segments across individuals to identify areas where local brain volume or concentration 

differ significantly (Ashburner & Friston, 2000). 

The VBM process typically begins with the acquisition of high-resolution MRI scans, 

which are then preprocessed to ensure alignment and normalization to a standard brain template. 

This preprocessing involves steps such as segmentation of the brain into different tissue types (gray 

matter, white matter, and cerebrospinal fluid), spatial normalization to align individual brains to a 
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common space and smoothing to enhance the signal-to-noise ratio. These steps are crucial for 

ensuring that the subsequent statistical analyses are robust and reliable (R. G. Brans et al., 2010; 

Stein et al., 2010). The resulting preprocessed images can then be subjected to voxel-wise 

comparisons to identify regions where gray matter concentration correlates with genetic variants 

(Nemoto, 2017). 

One of the key strengths of VBM in brain imaging genomics is its ability to conduct whole-

brain analyses without a priori hypotheses about specific regions (Takeuchi & Kawashima, 2017). 

This unbiased approach allows for the discovery of novel brain-genetic associations that might not 

be identified using region-of-interest (ROI) methods. For instance, studies using VBM have 

identified associations between certain single nucleotide polymorphisms (SNPs) and gray matter 

volume in regions implicated in neuropsychiatric disorders (Stein et al., 2010). These findings 

provide valuable clues about the biological pathways through which genetic variations may 

contribute to the risk of developing such disorders (R. G. H. Brans et al., 2010). 

Moreover, VBM has been effectively utilized in longitudinal studies to investigate how 

genetic factors influence brain development and aging (R. G. H. Brans et al., 2010). By comparing 

brain images from the same individuals at different time points, researchers can track changes in 

gray matter over time and relate these changes to genetic variations. This approach has revealed 

important insights into the genetic underpinnings of brain plasticity and the progression of 

neurodegenerative diseases. For example, VBM studies have shown how specific genetic variants 

can accelerate or decelerate age-related gray matter loss, highlighting potential targets for 

therapeutic intervention (R. G. H. Brans et al., 2010). 
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2.4.1.2 Region of Interest Analysis 

Region of Interest (ROI) analysis is a pivotal method in the field of brain imaging 

genomics, offering a focused approach to understanding the relationships between genetic 

variations and specific brain structures or functions. Unlike whole-brain analyses, which examine 

the entire brain simultaneously, ROI analysis concentrates on predefined regions based on prior 

knowledge or hypotheses about their involvement in particular cognitive functions or neurological 

conditions (Fischl et al., 2002). This targeted approach allows for a more detailed and statistically 

powerful investigation of these regions, making it particularly useful in studies where the regions 

of interest are well-defined and hypothesized to be affected by genetic variations. 

ROI analysis in structural MRI involves several key steps to ensure precise and reliable 

measurements. Initially, high-resolution T1-weighted MRI scans are acquired, offering detailed 

images of brain anatomy. These images undergo preprocessing steps, including skull stripping, 

bias field correction, and spatial normalization to a standard brain template, such as the Montreal 

Neurological Institute (MNI) template. The preprocessing ensures that individual brain images 

are aligned in a common space, facilitating accurate comparison across subjects (Ashburner & 

Friston, 2000). 

Following preprocessing, the ROIs are delineated, either manually or using automated 

parcellation methods. Manual delineation involves an expert tracing the regions of interest based 

on anatomical landmarks, which can be time-consuming and subject to inter-rater variability. 

Automated methods, such as the use of atlases or machine learning algorithms, provide a more 

standardized approach, reducing subjectivity and enhancing reproducibility (Fischl et al., 2002). 

These methods can segment the brain into various regions, such as the hippocampus, amygdala, 

and prefrontal cortex, which are commonly studied in neurological and psychiatric research. 
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Once the ROIs are defined, the structural properties of these regions, such as volume, 

thickness, and surface area, are extracted and subjected to statistical analysis. These measures can 

then be correlated with behavioral data, clinical variables, or genetic markers to identify 

associations. For instance, ROI analysis has been pivotal in identifying volumetric reductions in 

the hippocampus in patients with Alzheimer's disease and in linking genetic polymorphisms to 

variations in cortical thickness (Raz et al., 2007). 

The strength of ROI analysis lies in its ability to test specific hypotheses with high 

anatomical precision. By focusing on predefined regions, researchers can achieve greater statistical 

power to detect effects, especially in studies with limited sample sizes. Additionally, ROI analysis 

can be tailored to the research question at hand, whether it involves investigating disease-related 

atrophy, developmental changes, or genetic influences on brain structure. However, the method is 

not without limitations; it requires a priori selection of regions, which may bias the results if critical 

areas are overlooked. Despite this, ROI analysis remains an essential tool in the field of structural 

neuroimaging, providing valuable insights into the localized brain changes associated with various 

conditions and genetic factors 

2.4.1.3 Statistical Parametric Mapping (SPM) Analysis 

Statistical Parametric Mapping (SPM) is a comprehensive framework widely used in 

neuroimaging to analyze brain imaging data, particularly structural MRI (sMRI) images. 

Developed originally for functional MRI, SPM has been adapted for structural MRI to facilitate 

the investigation of brain morphology and its association with various clinical and cognitive 

variables. The primary advantage of SPM lies in its ability to perform voxel-wise statistical 

analysis across the entire brain, allowing researchers to identify subtle structural differences and 

their potential causes or correlates. 
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The SPM process for structural MRI analysis begins with the acquisition of high-resolution 

T1-weighted images, which provide detailed anatomical information (Khadka et al., 2016). These 

images undergo several preprocessing steps to ensure they are suitable for statistical analysis. The 

preprocessing pipeline typically includes bias correction to correct for intensity non-uniformities, 

skull stripping to remove non-brain tissues, and spatial normalization to align the brain images to 

a standard anatomical space, such as the Montreal Neurological Institute (MNI) template. This 

normalization ensures that brain structures are in the same coordinate system across all subjects, 

facilitating voxel-wise comparisons (Khadka et al., 2016). 

Following preprocessing, the normalized brain images are smoothed using a Gaussian 

kernel. Smoothing enhances the signal-to-noise ratio and accommodates anatomical variability 

between subjects by averaging voxel intensities with their neighbors (Smith et al., 2022/04/25). 

This step is crucial for ensuring that the subsequent statistical tests are robust and reliable. The 

choice of the smoothing kernel size can affect the sensitivity of the analysis; larger kernels increase 

sensitivity to larger structures, while smaller kernels are more sensitive to finer details (Worsley 

et al., 1992). 

The core of SPM analysis involves constructing a general linear model (GLM) at each 

voxel to test hypotheses about the relationship between brain structure and various explanatory 

variables, such as age, disease status, or genetic variants. The GLM allows for the inclusion of 

covariates, making it possible to control for confounding factors. After fitting the model, statistical 

tests are performed at each voxel to generate statistical parametric maps, which display the 

significance of the associations across the brain. These maps are then thresholded to correct for 

multiple comparisons, typically using family-wise error (FWE) correction or false discovery rate 

(FDR) methods, to ensure that the identified regions are not due to chance (Friston et al., 1994). 
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One of the key applications of SPM in structural MRI is the investigation of brain changes 

associated with neurological and psychiatric disorders. For example, SPM has been used to 

identify regional atrophy in Alzheimer's disease, schizophrenia, and depression. By comparing the 

brain images of patients with those of healthy controls, researchers can pinpoint specific regions 

that show significant structural differences. Additionally, SPM has been instrumental in studying 

the effects of genetic variations on brain morphology. Genome-wide association studies (GWAS) 

combined with SPM have revealed how certain genetic polymorphisms are linked to changes in 

brain structure, providing insights into the genetic basis of brain development and disease (Stein 

et al., 2010/11/11). 

Despite its powerful capabilities, SPM analysis also has limitations. The reliance on spatial 

normalization and smoothing can introduce biases, especially when dealing with populations that 

have significant anatomical variability. Moreover, the interpretation of SPM results requires 

careful consideration of the underlying biological processes, as the relationship between voxel 

intensity and brain structure is complex. Nevertheless, SPM remains a pivotal tool in the field of 

neuroimaging, offering a robust framework for exploring the intricate relationships between brain 

anatomy and various biological and clinical factors. 

2.4.1.4 Single Nucleotide Polymorphism (SNP) Analysis 

Single Nucleotide Polymorphism (SNP) analysis is a fundamental technique in the field of 

genomics that focuses on identifying genetic variations associated with phenotypic traits, including 

brain structure and function. SNPs are the most common type of genetic variation among people, 

consisting of single base-pair changes in the DNA sequence. In brain imaging genomics, SNP 

analysis aims to uncover how these genetic variations influence brain morphology and function, 

offering insights into the genetic underpinnings of neurological and psychiatric conditions. 
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SNP analysis in brain imaging genomics typically begins with the collection of genetic 

data through genome-wide genotyping arrays or whole-genome sequencing. Concurrently, high-

resolution structural MRI (sMRI) scans are obtained to capture detailed images of the brain. The 

genetic data and imaging data are then integrated to explore associations between specific SNPs 

and various brain phenotypes, such as gray matter volume, cortical thickness, and white matter 

integrity (Visscher et al., 2012). 

One of the primary methods for SNP analysis in brain imaging is the Genome-Wide 

Association Study (GWAS). GWAS involves scanning the entire genome to identify SNPs that 

are significantly associated with brain imaging traits. This approach is hypothesis-free, allowing 

for the discovery of novel genetic associations without prior assumptions. The process involves 

quality control steps to filter out poorly genotyped SNPs and individuals with excessive missing 

data, followed by statistical tests to examine the association between each SNP and the imaging 

phenotype. Corrections for multiple comparisons, such as the Bonferroni correction or false 

discovery rate (FDR) adjustment, are applied to account for the large number of tests performed 

(Elliott et al., 2018).  

The integration of SNP analysis with brain imaging has led to significant discoveries in the 

field. For example, studies have identified SNPs associated with variations in hippocampal 

volume, providing insights into genetic factors contributing to cognitive aging and 

neurodegenerative diseases (Stein et al., 2012). Additionally, SNP analysis has been used to 

explore the genetic architecture of psychiatric disorders, revealing genetic variants that affect brain 

regions implicated in conditions such as schizophrenia, bipolar disorder, and autism spectrum 

disorder (Ripke et al., 2013). These findings highlight the potential of SNP analysis to uncover the 

biological pathways through which genetic variations influence brain structure and function. 
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Despite its powerful capabilities, SNP analysis also faces several challenges. The detection 

of true associations requires large sample sizes due to the small effect sizes of individual SNPs. 

Moreover, the interpretation of significant SNPs can be complex, as they often reside in non-

coding regions of the genome and may influence gene expression through regulatory mechanisms. 

Functional validation studies are needed to elucidate the biological impact of these SNPs on brain 

structure and function. Nevertheless, advances in statistical methods and the increasing availability 

of large, well-characterized datasets are enhancing the ability of SNP analysis to contribute to our 

understanding of brain imaging genomics. 

2.4.2 Multivariate Approaches in Structural Imaging Genomics 

Multivariate approaches in structural imaging genomics are essential for handling the 

complex and high-dimensional data that arise from integrating genetic information with 

neuroimaging measures. These approaches enable researchers to uncover relationships between 

multiple genetic variants and brain structures, providing a more comprehensive understanding of 

the genetic influences on brain morphology. Here are some of the key multivariate approaches 

used in structural imaging genomics. 

2.4.2.1 Sparse Canonical Correlation Analysis (sCCA) 

Sparse Canonical Correlation Analysis (sCCA) is a powerful multivariate statistical 

technique designed to identify and quantify the relationships between two sets of variables. This 

method extends traditional canonical correlation analysis (CCA) by incorporating sparsity 

constraints, which allow for the selection of a subset of relevant features from each dataset. This 

makes sCCA particularly well-suited for high-dimensional data, such as those encountered in 

imaging genomics, where the number of variables (e.g., genetic markers and brain imaging 

measures) can far exceed the number of observations (Witten & Tibshirani, 2009). 
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The primary objective of CCA is to find linear combinations of the variables in each 

dataset that are maximally correlated with each other. Given two datasets, 𝑋 𝑎𝑛𝑑 𝑌, CCA seeks 

to identify vectors 𝑎 and 𝑏 such that the correlation between 𝑋𝑎 and 𝑌𝑏 is maximized. 

Mathematically, this can be expressed as: 

(𝑎, 𝑏)  = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑎,𝑏) 𝑐𝑜𝑟𝑟(𝑋𝑎, 𝑌𝑏) (2.1) 

In sCCA, sparsity constraints are added to this optimization problem to ensure that the 

resulting vectors 𝑎 and 𝑏 have only a few non-zero elements. This is achieved by adding penalty 

terms to the objective function, typically using 𝑙1-norm regularization. The optimization problem 

for sCCA can be formulated as: 

(𝑎, 𝑏) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎,𝑏 𝑐𝑜𝑟𝑟(𝑋𝑎, 𝑌𝑏) 𝑠𝑢𝑏𝑗𝑒𝑐𝑐𝑡 𝑡𝑜 ||𝑎||1 ≤ 𝜆1, ||𝑏||1 ≤  𝜆2 (2.2)    

where 𝜆1 and 𝜆2 are regularization parameters that control the degree of sparsity. By 

enforcing sparsity, sCCA can effectively handle the curse of dimensionality and identify 

meaningful associations between the two datasets. 

sCCA is particularly valuable in imaging genomics, where researchers aim to uncover the 

relationships between genetic variations (e.g., SNPs) and brain imaging phenotypes (e.g., cortical 

thickness, gray matter volume). The high-dimensional nature of these datasets poses significant 

challenges for traditional analytical methods, but sCCA's ability to perform feature selection 

makes it well-suited for this context. For instance, in a study examining cortical thickness, 

researchers might employ sCCA to correlate a set of single nucleotide polymorphisms (SNPs) with 

measurements of cortical thickness across different brain regions. By imposing sparsity 

constraints, sCCA ensures that only the most relevant genetic variants and brain regions are 

highlighted, thereby simplifying the interpretation and reducing the likelihood of spurious findings 

(Jang et al., 2017). 
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Several studies have successfully utilized sCCA to reveal genetic influences on brain 

structure. For example, Shen et al. (2010) applied sCCA to integrate SNP data with voxel-based 

morphometry measures from MRI scans in a cohort of Alzheimer's disease patients and healthy 

controls. Their analysis identified specific genetic variants associated with brain atrophy patterns 

characteristic of Alzheimer's disease, providing insights into the genetic underpinnings of this 

neurodegenerative disorder. Such findings underscore the potential of sCCA to pinpoint genetic 

factors that contribute to structural brain changes in various conditions (Shen & Thompson, 2020).  

In another study, Ge et al. (2012) used sCCA to investigate the genetic basis of cortical 

thickness in a large sample of healthy individuals. They identified significant associations between 

several SNPs and cortical thickness in regions implicated in cognitive functions, such as the 

prefrontal cortex and parietal lobes. These results not only highlighted the genetic architecture of 

cortical development but also provided a basis for understanding how genetic variations contribute 

to individual differences in cognitive abilities (Ge et al., 2012). 

The application of sCCA in imaging genomics extends beyond identifying genetic 

influences on normal brain structure to understanding the genetic basis of neuropsychiatric 

disorders. For example, research utilizing sCCA has identified genetic variants that correlate with 

structural brain abnormalities in schizophrenia, such as reduced gray matter volume in the 

prefrontal cortex and temporal lobes. These findings support the hypothesis that schizophrenia 

involves widespread disruptions in brain structure influenced by genetic risk factors (Glahn et al., 

2007). 

Sparse Canonical Correlation Analysis (sCCA) has proven to be a valuable tool in 

understanding the genetic underpinnings of neuropsychiatric disorders. These disorders, such as 

schizophrenia, bipolar disorder, and major depressive disorder, are characterized by complex and 
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heterogeneous symptoms that are influenced by both genetic and environmental factors. By 

integrating genetic data with neuroimaging measures using sCCA, researchers can identify specific 

genetic variants that contribute to brain abnormalities associated with these conditions, thereby 

elucidating the biological mechanisms underlying these disorders. 

Schizophrenia, for instance, has been extensively studied using sCCA to uncover the 

relationships between genetic variations and structural brain changes. Studies have consistently 

found that patients with schizophrenia exhibit reduced gray matter volume in regions such as the 

prefrontal cortex, temporal lobes, and hippocampus. These structural abnormalities are thought to 

be influenced by genetic risk factors. For example, a study by Meda et al. (2012) applied sCCA to 

integrate genome-wide SNP data with voxel-based morphometry (VBM) measures in a cohort of 

schizophrenia patients and healthy controls. The analysis identified several genetic variants 

associated with reduced gray matter volume in the prefrontal cortex, providing insights into the 

genetic basis of the structural brain changes observed in schizophrenia (Song et al., 2022). 

In bipolar disorder, sCCA has also been used to explore the genetic factors contributing to 

brain structure alterations. Research has shown that individuals with bipolar disorder often exhibit 

abnormalities in brain regions involved in emotional regulation, such as the amygdala and 

prefrontal cortex. By applying sCCA to integrate genetic and neuroimaging data, researchers have 

identified genetic variants associated with these structural changes. For instance, an sCCA study 

identified SNPs in genes related to synaptic function and neural plasticity that were linked to 

reduced gray matter volume in the prefrontal cortex of bipolar disorder patients. These findings 

suggest that genetic variations affecting synaptic pathways may play a crucial role in the 

neurobiological basis of bipolar disorder (Leonenko et al., 2018). 
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Major depressive disorder (MDD) is another neuropsychiatric condition where sCCA has 

been instrumental in revealing genetic influences on brain structure. Patients with MDD often 

exhibit structural abnormalities in the hippocampus and prefrontal cortex, regions critical for mood 

regulation and cognitive functions. sCCA studies have identified genetic variants associated with 

these brain changes, providing insights into the genetic predispositions that may contribute to 

MDD. For example, a study by Shen et al. (2010) used sCCA to integrate SNP data with sMRI 

measures, identifying variants in the BDNF gene associated with reduced hippocampal volume in 

MDD patients. This highlights the role of genetic factors in the neuroanatomical alterations linked 

to depressive symptoms (Buch & Liston, 2021). 

Moreover, sCCA has facilitated the identification of biomarkers for neuropsychiatric 

disorders, aiding in early diagnosis and personalized treatment strategies. By uncovering specific 

genetic and brain imaging features that distinguish patients from healthy individuals, sCCA helps 

in developing predictive models that can be used in clinical settings. For instance, combining 

genetic risk scores with neuroimaging markers identified through sCCA can improve the accuracy 

of early diagnosis for disorders like schizophrenia and bipolar disorder. This approach not only 

enhances our understanding of the genetic and neurobiological basis of these disorders but also 

paves the way for targeted therapeutic interventions that address the underlying genetic and 

structural abnormalities. 

2.4.2.2 Independent Component Analysis (ICA) 

Independent Component Analysis (ICA) is a computational technique widely used in 

imaging genomics to disentangle complex and mixed signals into statistically independent 

components. This method is particularly valuable for analyzing neuroimaging data, where it can 
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separate signals originating from different brain sources, and for integrating these data with genetic 

information to uncover underlying genetic influences on brain structure and function. 

ICA is based on the assumption that observed data are linear mixtures of independent 

source signals. The goal of ICA is to identify these source signals and the mixing matrix by 

maximizing the statistical independence of the components. Given a matrix of observed signals 𝑋, 

ICA seeks to find a matrix 𝑊 such that: 

𝑆 = 𝑊𝑋 (2.3) 

where 𝑆 represents the matrix of independent components. Unlike traditional methods such 

as Principal Component Analysis (PCA), which assumes orthogonality of components, ICA does 

not require orthogonality, making it more flexible in capturing complex and biologically 

meaningful patterns in the data. 

One of the primary applications of ICA in imaging genomics is the decomposition of 

neuroimaging data, such as functional MRI (fMRI) and structural MRI (sMRI), into independent 

components. This allows researchers to isolate signals related to specific brain functions or 

structures. For example, ICA has been used to identify resting-state networks in fMRI data, such 

as the default mode network (DMN), which are then analyzed for genetic associations (Beckmann 

& Smith, 2004). 

By integrating ICA-derived components with genetic data, researchers can investigate how 

genetic variations influence specific brain networks. For instance, an ICA study might reveal that 

certain genetic variants are associated with alterations in the connectivity of the DMN, providing 

insights into the genetic basis of cognitive and behavioral traits. A study used ICA to identify 

independent components of brain activity that were then linked to genetic variants, revealing 
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associations between specific SNPs and functional brain networks in schizophrenia patients 

(Salman et al., 2019). 

ICA is also employed in multimodal data integration, combining information from 

different imaging modalities and genetic data. Parallel Independent Component Analysis (pICA) 

extends ICA to jointly analyze multiple datasets, identifying shared independent components that 

capture the common variance across modalities. For example, pICA can be used to integrate fMRI 

and sMRI data with genomic information, uncovering genetic variants that simultaneously affect 

brain structure and function (Meda et al., 2010). 

ICA has been instrumental in studying neuropsychiatric disorders, where it helps to identify 

brain abnormalities associated with genetic risk factors. In bipolar disorder and schizophrenia, ICA 

has revealed altered functional and structural brain components that correlate with genetic 

variations, offering insights into the neurobiological mechanisms of these disorders. For example, 

Calhoun et al. (2012) applied ICA to fMRI data from schizophrenia patients, identifying 

independent components of brain activity that were significantly associated with genetic risk 

scores (Calhoun & Adalı, 2012). 

The key advantage of ICA in imaging genomics is its ability to isolate independent signals 

from complex, mixed data. This makes it particularly useful for identifying specific brain networks 

and their genetic associations, which might be obscured by noise and confounding factors in 

traditional analyses. Additionally, ICA’s flexibility in dealing with non-Gaussian and non-

orthogonal components enhances its applicability to real-world neuroimaging data. 

However, ICA also presents challenges. The identification of independent components 

depends on the initial assumptions and the specific algorithm used, which can lead to variability 

in the results. Moreover, the interpretation of ICA-derived components requires careful 
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validation, as the components may not always correspond to anatomically or functionally distinct 

brain regions. Selecting the appropriate number of components is also critical, as over- or under-

estimation can affect the quality of the results (Sui et al., 2012). 
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3 EVALUATING THE NEUROIMAGING-GENETIC PREDICTION OF SYMPTOM 

CHANGES IN INDIVIDUALS WITH ADHD 

3.1 Introduction 

Attention-deficit/hyperactivity disorder (ADHD) is one of the most common 

neurodevelopmental disorders of childhood. It is usually first diagnosed in childhood and could 

persist into adulthood (Duan et al., 2018). Children with ADHD may have trouble paying attention, 

controlling impulsive behaviors (may act without thinking about what the result will be), or be 

overly active (Jiang et al., 2020), and may also have various types of cognitive impairments (Liu 

et al., 2020). A meta-analysis of follow-up studies has shown that in about 15% children with 

ADHD the disorder persists into adulthood, and the persistence percentage increases to 65% if 

partially remitted patients are considered (Jiang et al., 2020). Although the classification of ADHD 

and the persistence of ADHD are binary, highly dependent on the threshold used by the clinicians 

following the Diagnostic and Statistical Manual of Mental Disorders (DSM) or International 

Classification of Diseases (ICD), the symptoms themselves are continuously distributed among 

individuals, as are the symptom changes. Predicting the trajectories of ADHD symptoms along the 

disorder progression can have huge impact in the development of effective prevention and 

treatment; it can classify individuals whose symptoms aggravate in the future, and thus early 

intervention can be provided in time. 

Many longitudinal studies have been devoted to uncovering the factors influencing the 

course of ADHD symptoms and to improve the prediction of symptom trajectories (Sasser et al., 

2016). As reviewed by Caye, et al. a meta-analysis summarized the consistent predictors of 

symptom trajectory including characteristics of the clinical syndrome, ADHD symptom severity, 

treatment, comorbidities, and parental mental health problems, etc. (Caye et al., 2016). However, 
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little is known about the relation between brain structure and function factors and the symptom 

trajectory, despite abundant evidence supporting association of brain anomalies with ADHD and 

its symptoms. Structural MRI studies have suggested that gray and/or white-matter structural 

underdevelopment in frontal lobe, thalamus, and striatum significantly contribute to the emergence 

of ADHD during childhood (Cupertino et al., 2020; Damatac et al., 2022; Ellison-Wright et al., 

2008; Xia et al., 2012). Furthermore, persistence of ADHD symptoms is linked to reduced regional 

cortical gray matter thickness in frontal and parietal cortices (Almeida Montes et al., 2013; Batty 

et al., 2010). Our team also found frontal, and cerebellum gray matter variations consistently 

associated with working memory deficit and inattention symptoms in both adolescents and adults 

with ADHD (Duan et al., 2018; Jiang et al., 2020; Liu et al., 2020). Functionally, lower connection 

efficiency in right inferior frontal gyrus and left-side frontal-parietal functional interactions were 

observed in both adult remitters and persisters, and unique lower connection efficiency in right 

middle frontal gyrus and hyper-interactions between bilateral middle frontal gyrus in persisters 

(Francx et al., 2015; Luo et al., 2018). How brain structural and functional alterations relate to 

symptom trajectory is yet to be studied (Sudre et al., 2021) 

The heritability of ADHD Is estimated between 30%- 80% in twin and family studies 

(Pettersson et al., 2019). Strongly increased risks for ADHD (57%) among the offspring of adults 

with ADHD have been reported (Biederman et al., 1995). Longitudinal studies that investigated 

the genetic contributions to the long-term ADHD suggested while persistence of ADHD symptoms 

is predominantly due to the same genetic influences as its onset, changes of symptoms are to a 

large extent due to new genetic effects beginning in early adolescence, as well as environmental 

factors (Larsson et al., 2004). More recently, large sample genome-wide association studies 

(GWAS) have reported several genetic risk loci for ADHD [18]. Polygenic risk score (PRS) based 
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on GWAS risk profile, estimating an individual’s genetic liability for a particular disorder or trait, 

were able to explain significant variance (5.5%) in ADHD (Demontis et al., 2019). Genetic risk 

for ADHD is highly correlated to the risk to other disorders or traits, and one of the highest 

correlations are from genetics for college completion (Demontis et al., 2019). To what extent 

genetics could influence the course of ADHD symptoms is largely unstudied. 

Although various genetic, cognitive, and neural factors have been associated with ADHD, 

very little is known about their combined ability to predict the symptom trajectory. In this study 

we leveraged longitudinal data collected from individuals with ADHD and investigated the 

prediction power of brain structure and genomic features, as well as cognition assessments, for 

future symptom changes. Based on the previous findings we hypothesize that the interplay of the 

examined factors might better explain the trajectory of symptoms in both domains (inattention and 

hyperactivity) than any individual feature set. Assessing the neural, genetic, and cognitive factors 

of subjects can enrich our understanding of the symptom trajectory and thereby aid in creating 

personalized prevention and treatment. 

3.2 Materials and Methods 

3.2.1 Participants 

We employed a subset of data from NeuroIMAGE project (von Rhein et al., 2015). The 

NeuroIMAGE is a multi-site prospective cohort study designed to investigate the course of ADHD, 

its genetic and environmental determinants, its cognitive and neurobiological underpinnings, and 

its presentations in adolescence and adulthood. The study was approved by the regional ethics 

committee and the medical ethical committee of the VU University Medical Center. All 

participants provided a written consent form. From all participants, we selected 77 participants, 

including 43 male and 34 female, who 1) met the ADHD diagnostic criteria based on DSM-IV at 
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one time point (here named baseline), 2) provided good quality neuroimaging and genetic data at 

baseline, and 3) had cognitive and symptom assessments at both baseline and follow up time 

points. The average age of the participants was 16.30 and 19.97 years old for the baseline and 

follow up timepoint respectively. 

Symptoms were measured in both domains: inattention and hyperactivity/impulsivity. 

Symptom change between the two time points reflects the progression of disorder and is the 

variable we want to predict. WAIS Digit Span test (maximum forward and maximum backward 

scores) was utilized to gauge working memory capacity, as it showed persistent impairment in 

adolescents and adults with ADHD (Schoenmacker et al., 2019). Base-line working memory 

scores are the features tested for prediction. 

3.2.2 Neuroimaging Data and Features 

T1-weighted MRI images after quality control were normalized, modulated, segmented, 

and smoothed with 6mm Gaussian kernel using SPM12, and the resultant gray matter maps were 

further regressed out age, sex, and site effects. Independent component analysis was then applied 

to the whole brain voxels with gray matter density >0.2, resulting in 24 components. The details 

of the preprocess can be seen in (Duan et al., 2018). 

Each component is a brain network, and the relative gray matter density of this network is 

measured by the component loadings. Also, we added 5 more components we identified in our 

previous studies that are associated with adult ADHD symptom and cognitive impairment (Duan 

et al., 2018). These 29 gray matter components’ loadings were the input features for prediction 

model. 
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3.2.3 Genomic Data and Features 

From genomic SNP data after imputation, we computed two sets of genetic scores: 

Quantative Genetic Score (QGS) (Schoenmacker et al., 2019), and Polygenic Risk Score (PRS) 

(Choi et al., 2020). QGS assigns a numeric value 0 ≤ QGS ≤ 1 to any preselected genetic region, 

based on the average difference between an individual’s genetic information (in the form of 

genotypes) and that of a reference population (i.e., the same reference used to impute genetic 

information to said individual). QGS can be interpreted as a measure of individual’s genetic 

“distance” to the reference population: a lower score indicates higher similarity to the reference 

population, whereas a high score indicates a lower similarity (Schoenmacker et al., 2019). We 

selected 29 genes whose QGS scores were stably associated with the five gray matter components 

underlying adult ADHD symptoms and working memory impairments. See details of QGS method 

in (Schoenmacker et al., 2019). PRS is the weighted summary score of individual SNPs’ risk to a 

specific disease or trait based on genome-wide association study results. We computed PRS for 

education attainment (Lee et al., 2018), intelligence (Jansen et al., 2020), ADHD (Demontis et al., 

2019), and major disorder (Wray et al., 2018) using pRsice2 (Choi et al., 2020). 

3.2.4 Data Analysis 

In this study we focused on using baseline brain images, working memory tests, and genetic 

scores to predict symptom changes in both inattention and hyperactivity/impulsivity domains. 

Specifically, tested predictors include age, sex, baseline 29 gray matter components, QGS of 29 

genes, four PRS, baseline working memory scores, and the interval between two timepoints. To 

build a reliable prediction model, we implemented stepwise linear regression with forward feature 

selection, LOOCV, stability selection with resampling (two resampling strategies: subsamples and 
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bootstrapping with replacement), permutation test. We combined stepwise linear regression 

feature selection with LOOCV (FS-LOOCV), which is useful when a small sample size cannot 

afford withholding data from the training set (Hawkins et al., 2003). As shown in Figure 3.1, we 

performed FS-LOOCV in full training samples. To further reduce overfitting, we performed 

stability selection with resampling, and permutation tests with different feature sets. Finally, we 

performed a validation test on independent holdout samples. The details of each step are explained 

next.

 

Figure 3.1 Analysis performed on the ADHD data. 

 

FS-LOOCV: The performance of any machine learning model is sensitive to the set of 

features that are used in the training of the model. Determining the best set of features for the final 

model is called feature selection. Here we used forward stepwise regression, a procedure that 

selects the best set of features iteratively. Specially for a prediction model, starting with no 

predictors in the working set, at each iteration the algorithm tests model accuracies for individual 
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predictors when added to the working set, and selects only one predictor with the best model fit to 

the working set. We used LOOCV R2 to measure model fit. All training samples except one were 

used to build a linear regression model, which was then used to predict the value of the one sample 

not used. Repeat this procedure for N times (N = size of training samples) to generate predicted 

values for all training samples. LOOCV R2 is then computed as 

LOOCV𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡

(3.1) 

where, 𝑆𝑆𝑟𝑒𝑠 = ∑ (𝑦𝑖 − 𝑓𝑖)2
𝑖 ; 𝑓𝑖 = predicted value and yi is true value; SStot = ∑ (𝑦𝑖 − �̅�)2

𝑖 ; 

yi is the true value and �̅� is the mean of true values  

The pseudocode of the FS-LOOCV stepwise regression is as follows: 

1) Starting with an empty working set, S, and all available predictors, Predictors Set  

2) Iterate over available predictors in the Predictors Set  

a) Add each predictor to the working set S  

b) Test the model estimate using LOOCV when the predictor is added.  

c) Remove the added predictor from S  

3) Add the best predictor to the working set S  

4) Remove the best predictor from Predictors Set  

5) Repeat Step 2, 3 and 4. 

To further reduce possible overfitting, we performed stability selection with resampling for 

the feature set after FS-LOOCV. Stability selection identifies the most stable predictors by 

assuming that the same algorithm should yield similar results on similar datasets if the results are 

“stable” (Meinshausen & Bühlmann, 2010). To generate similar data, we implemented 

subsampling and bootstrapping strategies. For sub-sampling, sample sizes of 50, 55, 60, and 65 

were selected. 64 sub-samples, including 16 random sub-samples of each sample size, are 
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generated and FS-LOOCV is applied. The features selected from each sub-sample are aggregated. 

The frequency of each feature being selected indicates its stability. Whereas for bootstrapping, in 

each iteration, an instance is drawn from the same original dataset such that certain instance may 

appear more than once in a bootstrap sample (Efron, 1979). We applied FS-LOOCV to each of the 

bootstrap samples, aggregate the features selected, and compute the feature frequency. For both 

resampling strategies, a preset threshold is used to select stable features, i.e., features with 

frequency higher than the threshold will be selected as stable features. 

3.2.5 Permutation Tests 

To select the best threshold for stability frequency and empirical significance, we 

performed a permutation test. We performed two permutation tests using, 1) all the 65 features in 

the dataset to set up the best threshold on stability selection and to test the power of samples to 

select the features, and 2) the selected features from the selected threshold to test the empirical 

significance of model prediction on symptom change. 

For the permutation test using the full 65 features, we generated 100 datasets by randomly 

permuting the sample symptom scores of the full training data. For each dataset, the analysis 

methods used on the original data were applied, i.e., FS-LOOCV stepwise regression followed by 

stability selection. On the aggregated features derived from multiset resampling, different 

thresholds (50% to 100% in steps of 5) were applied to select stable features, and then using 

selected features the model was trained and tested using LOOCV. The model’s performance was 

measured by R2. For each threshold, we calculated p-value as the probability of obtaining the R2 

on permuted samples equal to or greater than the observed R2 in the original data at the same 
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threshold. For example, a p-value of 0.23 at threshold 90% indicates a 23% chance of getting 

higher LOOCV explained. 

variance (R2) in the randomly permuted samples than the observed explained variance in 

original data with the features selected at the same threshold of 90% (R2 calculated using the same 

analysis method). The threshold that gave the best p-value (smallest p-value) was used to set the 

threshold for selecting final features.  

Another permutation test was performed in the same manner but only using the selected 

features of all training samples. The null hypothesis is the selected features cannot predict 

dependent variable. Analysis was performed on data with the selected features and permuting the 

symptom scores (Ojala & Garriga, 2009) to test the empirical significance. 

3.2.6 Holdout Test 

Finally, we used the 6 hold out samples to verify the final prediction model, which is 

estimated using the linear regression on all 71 samples with the final selected features. We 

calculated the model estimate on the holdout dataset using the linear model trained on all 71 

samples with the final selected features. We used 6 datapoints that were not included in the 

original dataset. 

3.3 Results 

First, using feature selection we reduced the feature space from 65 to 25 features in 

inattention domain (14 in the hyperactivity domain). Further, using stability selection with 

subsampling, to counter overfitting, we further reduced the feature space to 7 features. In the 

bootstrap method of stability selection, the resulting frequencies of each aggregated feature are 

very low. Standard data analysis was performed (training, testing, and holdout testing) and selected 
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features explained significant variance in training and testing in both domains. However, the 

holdout testing in both the domains was not significant. 

3.3.1 Inattention Domain 

Using the FS-LOOCV stepwise regression we selected 25 features that gave maximum 

LOOCV R2. Figure 3.2(a) plots the R2 of the linear model trained with all the samples and LOOCV 

R2 at each iteration of stepwise regression. After the 25th iteration with 25 features the LOOCV R2 

reaches the highest values and with each additional iteration 𝑅2 value starts diminishing. 

Table 3-1: Performance of the model on the inattention symptom change prediction.  

Phase R-square Correlation 

Training 0.41 0.64 

LOOCV Testing 0.26 0.53 

Holdout Testing -0.018 0.46 

Using stability selection with 64 sub-samples, we computed the frequency of the 25 

features from the stepwise regression. Figure 3.2(b) shows the frequency distribution of the 

features. There are 5 features which were included by all the stability models i.e., these features 

are strongly associated with symptom change. 19 features were selected at least by 50% of the 

subsample models. In contrast, Figure 3.2(c) shows the frequency distribution of features 

computed using bootstrapping (subsampling with replacement). The maximum frequency attained 

by the bootstrap method is 33%. Most of the features are selected only by 20% of the bootstrap 
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models.

 

Figure 3.2: Results from prediction of inattention symptom change. 

 

Figure 3.2(d) shows the frequency thresholds and their respective p-values calculated using 

permutation tests (tests performed using the full feature set). The p-value is highest at 50% 

threshold and starts decreasing while the threshold increases. The most significant result among 

all feature sets is p-value of 0.23 achieved by the features thresholding at frequency of 90%. Of 

the 25 features selected in stepwise regression with forward selection, 7 features had frequency 

greater than 90%. 

The 7 features include Age, gene OSBPL1A, CTNNB1, GM in Insula region (Figure 3.3) 

which are negatively correlated to the symptom change, while genes PRPSAP2, ACADM, and 

PRS of education attainment were positively correlated to the symptom change. The permutation 

test performed using these 7 selected features has a p-value < 0.05. Table 1 summarizes the model 

training, testing, and holdout results in the inattention domain. The training model fits using all 

points with these 7 selected features has R2 = 0.418 whereas the LOOCV testing R2 = 0.26. Also, 

the correlation between the predicted values and true value in both the phases, training, and testing, 

is 0.64 and 0.53 respectively. On the other hand, in the holdout test, the R2 is negative (-0.018) 

while the correlation is positive (0.46). The empirical p-value obtained by the permutation tests 

with these selected 7 features is less than 0.05. 
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Figure 3.3: Grey matter component from the insula region 

 

3.3.2 Hyperactivity Domain 

Similar to inattention domain, in the hyperactivity domain, using FS-LOOCV stepwise 

regression we selected 14 features that gave LOO R2. The plot shown in Figure 3.4 (a) compares 

the training R2 vs the LOOCV testing R2. The LOOCV R2 is maximum after 15 iterations and 

starts decreasing when further features are added. Moreover, the R2 becomes negative on further 

iterations. 

Using stability selection with 64 sub-samples, we computed the frequency of the 14 

features from the stepwise regression. Figure 3.4(b) shows the frequency distribution of the 

features. There are 5 features which were included by all the stability models i.e., their frequency 

is greater than 95%. 11 features were selected at least by 50% of the subsample models. On the 

other hand, Figure 3.4 (c) shows the frequency distribution of features computed using 
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bootstrapping (subsampling with replacement). The maximum frequency attained by the bootstrap 

method is 32%. Most of the features are selected with equal frequency. 

Figure 3.4 (d) shows the frequency thresholds and their respective p-values calculated 

using permutation tests (tests performed using the full feature set). The p-value is highest at 50% 

threshold and starts decreasing while the threshold increases. The most significant result among 

all feature sets is p-value of 0.33 achieved by the features that are threshold at frequency of 80%. 

Of the 14 features selected in stepwise regression with forward selection, 6 features had frequency 

greater than 80%. 

  

 
Figure 3.4: Results from prediction of inattention symptom change. 

 

At threshold of 80%, we selected 6 features that include genes CTNNB1, DYNC1I1, GM 

component (negatively correlated), genes PRPSAP2, LING02, and AC104662 2 (positively 

corelated) were selected. The permutation test performed using these 6 features has a p-value < 

0.05. Model fit with all data points with these features has an R2 of 0.31 and in the LOOCV testing 

the R2 is 0.17. But the permutation p-value is 0.38. The holdout test result showed correlation r= 

0.017 whereas R2 = -2.82. 

    

Table 3-2: Performance of the model on hyperactivity symptom change prediction. 

Phase  R-square  Correlation (r) 

Training 0.31   0.56 
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LOOCV Testing 0.17   0.43 

Holdout testing -2.82   0.025 

 

3.4 Discussion 

In this study, we investigated the ability to predict the trajectory of the symptoms in both 

domains—–inattention, and hyperactivity—–using features from sMRI images and genomics of 

ADHD cohort of 77 subjects. Using stepwise regression with forward selection, we selected 

features that explain maximum variance in the symptom change. But testing results indicated the 

model to be overfitting. Using stability selection coupled with permutation tests, we further 

reduced the feature space. Permutation tests suggested we do not have the power for selecting 

features. But given the final selected features, for inattention, the prediction performance is very 

promising within our samples. In inattention domain, we identified age, genes OSBPL1A, 

CTNNB1, PRPSAP2, ACADM, and one GM component in the insula region associated with 

symptom change. 

In both symptom domains, using the stepwise regression with forward selection we 

selected the set of features that has maximum testing LOOCV R2. Even though this is a standard 

approach for feature selection and model training, however, as shown in the Figures 2(a) and 4(a), 

the improvement of testing LOOCV R2 from a lower feature set (16 for inattention and 10 for 

hyperactivity) to the top feature set is small compared to the gap between training R2 and testing 

LOOCV R2. These results indicate that 1) the set of features that gave maximum LOOCV R2 are 

overfitting, and 2) a smaller set of features can explain similar variance. 



57 

Thus, we applied stability selection in combination with permutation tests to further reduce 

feature set to alleviate overfitting. Two sampling strategies were used for stability selection. In 

most studies the threshold value for stable feature selection has been a tuning parameter i.e., no 

objective way to determine the value. In this study, we used permutation tests to determine the 

threshold such that the variance explained by features selected at the threshold is significant (or 

the most significant) compared to the null distribution simulated by permuted samples using 

features selected at same threshold. The difference between the training and testing R2 results 

summarized in Table 1 and Table 2 show that the smaller set of features has reduced overfitting. 

However, the best p-value obtained using the permutation tests to identify the threshold of 

frequency, are 0.23 and 0.36 in the inattention and hyperactivity domains respectively. These 

results indicate that the selection of features using the threshold are non-significant; we do not 

have the power to select the features. On the contrary, the permutation tests performed using the 

selected features has empirical p-value < 0.05 which indicate that these features are significantly 

associated with the symptom changes within our training samples, but we do not know whether 

this is true for other independent samples. 

On the other hand, the bootstrap method for stability selection was unable to select stable 

features due to heterogeneity in the data sample. We observed each data sampling produces a 

model with similar performance (R2) but different feature sets. We speculate that within our small 

samples there are large heterogenous properties, so that each bootstrapping sampling has a 

different property distribution, leading to a different feature set and model. Compared to 

subsampling strategy, common samples between any two samplings in bootstrapping are less, 

leading to low frequencies as shown in figure 2d and 4d. 
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The LOOCV testing results in both the domains were promising. However, LOOCV is 

known to have inferior performance for model estimation, risk for overfitting (Pontil, 2002). The 

additional validation test results are not significant and suggest the features selected lack 

generalizable power to significantly explain the symptom changes. Though the validation R2 is 

small in the inattention domain, the correlation between the true value and the predicted value is 

high (r=0.46) and at the same level as training and testing results. The consistent effect size 

provides very promising indication of strong association among the features selected and the 

symptom change. This non-significance might be the result of small sample size of validation sets. 

We speculate that with large sample size these features may be proven significantly associated 

with symptom changes. On the other hand, the results in the hyperactivity domain indicate no 

association of features with the symptom change.  

The features identified in the inattention domain include genes OSBPL1A and PRPSAP2 

that have been previously reported to be associated with ADHD (Xu et al., 2001). The gene 

CTNNB1 was discovered recently to be responsible for developmental delay/intellectual disability 

(Kharbanda et al., 2017). CTNNB1 is important in the development and maturation of the brain 

and loss of its function causes learning and memory problems (Kharbanda et al., 2017). Aging 

effects on ADHD has been researched extensively (Biederman & Faraone, 2005; Holland & Sayal, 

2019). Furthermore, the GM components reported in our results —component in the insula region, 

are also previously reported to be associated with ADHD problem (Lopez-Larson et al., 2012). 

However, the effect of postcentral gyrus on ADHD is yet to be studied.  

The small sample size of 77 hinders our statistical analyses from being generalizable to 

other data. This is demonstrated by the inability to obtain significant results using validation 

testing. To sum up, in this study we aimed to predict the trajectory of the ADHD symptoms in both 



59 

the domains – inattention, and hyperactivity using genetics and neuroimaging data. Using data of 

77 subjects from two time points (6 subjects used for holdout testing) we performed variable 

selection using stepwise regression using forward selection, leave one out cross validation. The 

selected variables were still overfitting, to further reduce overfitting we performed stability 

selection in combination with permutation tests and selected top features. In both the domains, the 

features selected were unable to explain the symptom change in the test samples. However, in the 

inattention domain, the features selected do have a strong association with the symptom change 

and can be studied further to predict the trajectory of ADHD symptoms. 
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4 EFFECTIVE TRAINING STRATEGY FOR NN MODELS OF WORKING 

MEMORY CLASSIFICATION WITH LIMITED SAMPLES 

4.1 Introduction 

Working memory refers to the amount of information retained in memory for a short 

duration, which can be recalled for cognitive tasks. Previous studies have shown that an average 

adult can retain about three or four random items, abstract or concrete, in their working memory 

(Cowan, 2001) and up to seven items when associated with a pattern (Miller, 1956). Working 

memory capacity in an individual affects their cognitive development, learning, and attention 

(Pascual-Leone & Smith, 1969). For cognitive development, working memory capacity is directly 

proportional to the ability to comprehend ideas of various complexity. In addition, staying focused 

on a task is essential to learning. Individuals who test well on working memory tasks have been 

shown to focus better on the task at hand and learn effectively (Kane et al., 2001). 

In the recent past, immense research efforts have been made in the statistical modeling of 

brain imaging to uncover the neuronal underpinnings of working memory. Investigations of neural 

correlates of age-related working memory deficit among 56 older adults using general linear 

models showed a significant difference in the cortical surface area of the right frontal lobe between 

high and low-memory performers (Nissim et al., 2016). In another study, Gorbach et al. examined 

the correlations of structural changes to the cognitive trajectories in the aging of 155 subjects. They 

observed that atrophy in the hippocampus was related to episodic-memory decline (Gorbach et al., 

2017). The number of samples available for analysis limits both these studies and utilizes ROI 

(Region of Interest) extracted to perform the analysis. 

Contrary to the existing studies, we hypothesized that we might be able to differentiate 

individuals with higher and lower working memory capacity by utilizing hierarchical information 
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directly from minimally processed structural MRI(SMRI) images through deep learning. 

Moreover, we analyzed a relatively larger dataset from Uk biobank; the details are presented in 

the next section. To our knowledge, this is the first study that employed statistical modeling— 

either machine learning or deep learning techniques that utilize voxel-wise data of structural MRI 

scans to differentiate between the lower and higher working memory capacity. 

Convolutional Neural Networks (CNNs) have shown tremendous medical image analysis 

breakthroughs (Litjens et al., 2017). They can extract discriminating, non-linear, higher-level 

features from the images that effectively and accurately represent the data for the problem. A CNN 

model generally has a very flexible configuration, consisting of a few convolutional layers 

followed by one or more fully-connected (FC) layers. 

To determine the optimum number of convolutional layers, FC layers, as well as learning 

rate, requires model tuning, referred to as hyper-parameter tuning. CNN model has been applied 

to brain MRIs and has shown its effectiveness. For instance, 3D convolutional neural networks 

based on MRI (Magnetic resonance images) scans of the brain to predict cognitive impairment. 

However, to accurately capture the non-linearity of the data, CNNs require vast amounts of data 

often unavailable for medical image analysis. The transfer learning technique is commonly used 

to overcome the data scarcity impediment. Using transfer learning, the CNNs are pre-trained on a 

large sample on a source task that closely resembles the target task. Later, these pre-trained model 

weights are refined or reused for the target CNN models. Because the publicly available pertained 

models, such as VGG-16 (Simonyan & Zisserman, 2014), are not trained on biomedical images, 

the knowledge being transferred is limited, hindering the power of direct transfer learning from 

such models. In this study, we propose an effective training strategy under limited samples, which 

leverages self-transfer learning ability. 
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4.2 Materials and Methods 

In the present study, we analyzed data from UkBiobank, a large-scale biomedical database 

that contains health information of over a million UK participants and over 40,000 brain imaging 

MRI data (Alfaro-Almagro et al., 2018). Informed consent was obtained from all UKB 

participants. Ethics and Guidance Council (http://www.ukbiobank.ac.uk/ethics) has developed 

UKB Ethics and Governance Framework with IRB approval from the Northwest Multi-center 

Research Ethics Committee. We analyzed the T1-weighted structural MRI data of 5469 subjects 

to classify short-term memory ability. The memory scores indicate the maximum number of digits 

recalled correctly by the individual. The test starts with two digits being displayed for a short while 

for participants to remember. The number became one digit longer each time they remembered 

correctly (up to a maximum of 12 digits). For our task of classifying the subjects with high or low 

scores, we divided these 5469 subjects into two groups: i) subjects with memory scores ranging 

from 2-5 and ii) subjects with scores of 9-12. The demographic details of the two groups are shown 

in.  

   

Table 4-1: Demographic of the two groups used for working memory classification. 

 

 Low Memory High Memory 

No. of Participants 3501 1968 

Male/Female 1435/2066 1108/860 

Age 55.85 ±7.58 52.28 ± 7.08 

 

T1-weighted MRI images were collected at three imaging centers with identical scanners, 

free from major significant software or hardware updates throughout the study (Alfaro-Almagro 
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et al., 2018). The images were segmented into six types of tissues (gray matter, white matter, etc.) 

using SPM 12. Subsequently, gray matter images were normalized into Montreal Neurological 

Institute space, modulated, and smoothed with a 6×6×6 mm Gaussian kernel. Further quality 

control was conducted to retain samples with a correlation greater than 0.9 with the mean gray 

matter map across all the individuals, yielding 5469 subjects. Each map has a 3D voxel matrix of 

128 × 141 × 128 as inputs for the following analyses. 

4.2.1 Model Configuration 

In this study, we modified the SFCN, Simple Fully Convolutional Network, architecture 

by removing the sixth block and replacing the final seventh block with FC layers for brain age 

prediction. SFCN is a convolutional neural network model proposed by Peng et al. for accurate 

brain age prediction using T1-weighted structural MRI data. As shown in Figure 4.1, our neural 

network architecture consists of 5 convolutional blocks followed by FC layers. Each convolutional 

block consists of a 3D convolutional layer, a batch normalization layer, a max pooling layer, and 

finally, a ReLU activation layer. We used 32, 64, 128, 256, and 256 channels (filters) of shape 3 × 

3 × 3, respectively, for each convolutional layer. The final FC layer has an output shape of 2. In 

addition, we added dropout (p=0.20) after each convolution block to account for generalizability. 

   

 

Figure 4.1: Modified SFCN architecture used for classifying working short-term memory 

task. 
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4.2.2 Self-Transfer-Training Strategy (STT) 

This framework is motivated by the observation that CNN, when trained on a small sample 

size, is stuck in a suboptimal minimum and hyperparameter tuning (finding the best set of model 

layers, number of channels, learning rate, batch size, dropout, random weight initialization, and 

different optimization techniques such as ADAM etc.), often results in low to no improvement in 

the prediction. Previous studies have shown that the initial layers of a CNN capture generic 

imaging features and quickly reach near-optimality after a certain number of epochs. In contrast, 

deep layers of CNN provide more task-specific information. Thus, we design a practical yet 

effective hierarchical self-transfer-training strategy, where the model’s different layers are trained 

hierarchically, and transfer learning techniques are leveraged where the source and target tasks are 

the same to promote self-transfer. We applied this STT strategy to brain structural MRI data to 

classify memory capacity to demonstrate its effectiveness. STT consists of two steps. First, we 

train a CNN for the task and perform hyperparameter tuning to find the optimal model. Second, 

using the optimal model performance as the baseline, we retrain the optimal model by freezing the 

first and refining the latter layers. The number of layers to freeze is part of hyper-parameter tuning. 

4.2.3 Statistical Analysis 

First, we performed a stratified data split into training (90%) and holdout (10%) sets. To 

optimize the hyperparameters– learning rate, dropout probability, and the number of FC layers, we 

performed stratified 5-fold cross-validation using the training set on each set of hyperparameters. 

Initially, we started training the model with one FC layer and optimizing the model for learning 

rate, momentum, and dropout probability. Then, we varied the number of FC layers from two to 

four and optimized the model for other hyperparameters. On each fold, we trained the model for 
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75 epochs with exponential decay of the learning rate if the training loss did not change for three 

consecutive epochs. We used Stochastic Gradient Descent as an optimizer and computed the 

Binary Cross Entropy loss (BCE). After identifying the best setting, we tested the performance of 

the best model (epoch where the model is neither overfitting nor underfitting) from every fold on 

the holdout set. We used balanced accuracy as our metric to judge the model. Balanced accuracy 

is measured as the means of sensitivity and specificity and helps estimate the performance of a 

model when dealing with an imbalanced dataset. 

Second, we further trained the best model from the previous step using 5-fold cross-

validation using the same data split by freezing various layers. Initially, we started by freezing all 

the convolution layers except the final FC layer, i.e., reusing all the higher-level brain imaging 

features for prediction. And then, we unfreeze the convolution layers one by one, moving from the 

final (higher) layer to the initial (lower) one in each subsequent analysis. Under each condition, 

we performed hyperparameter tuning to find the best combination of the learning rate, dropout, 

and momentum. We tested the performance on the holdout set using the best model from each fold 

for each experiment. We reported the balanced accuracy averaged across five folds for all the 

experiments. 

4.3 Results 

In Table 4-2, we show the best inter-fold balanced accuracy obtained for the models with 

a different number of FC layers without self-transfer training. Among the different trained models, 

the model with one FC layer and a dropout of 0.20 between the convolutional layers performed 

better with a mean balanced accuracy of 67.80, 64.42, and 70.41 for training, validation, and 

testing, respectively. Although the model with two FC layers has a mean balanced accuracy of 

67.43 with a standard deviation of 0.59 in training, the variation of validation accuracy indicates 
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that some of the folds are not generalized, i.e., either overfitting or underfitting. The performance 

of the models with three or more FC layers is low compared to those with a smaller number of FC 

layers, indicating insufficient samples for more complex models. 

 

Table 4-2: Inter-fold balanced accuracy of model with fully-connected layers. 

Number of 

fully-connected layers 

Balanced Accuracy 

Train Validation Holdout 

1 67.80 ± 0.69 64.42 ± 0.51 70.41 ± 0.86 

2 67.43 ± 0.59 60.45 ± 3.45 62.12 ± 0.89 

3 59.26 ± 2.45 58.32 ± 1.89 59.62 ± 2.69 

4 57.25 ± 2.43 55.32 ± 1.25 56.45 ± 1.45 

 

Table 4-3shows the model’s performance with the best hyperparameters (model with one 

FC layer, dropout of 0.2 between convolutional layers) when further trained using step two of self-

transfer-training. The model performed better when the initial convolutional layers were frozen, 

and the final few layers were open to train. When trained by freezing only the two convolutional 

layers, the model performed best with the mean balanced accuracy of 73.12, 70.20, and 76.15 on 

training, validation, and holdout sets, respectively. 

Table 4-3: Inter- fold balanced accuracy achieved by the model.  

Layers trained 
Balanced Accuracy 

Train Validation Holdout 

Fully-connected 

layer 

68.24 ± 0.46 68.42 ± 3.13 66.15 ± 0.39 

5th Convolutional 

layer and FC layer 

69.77 ± 0.41 67.77 ± 2.82 70.21 ± 0.73 

4th and 5th conv 

and FC layers 

72.53 ± 1.58 69.83 ± 3.61 73.80 ± 3.41 
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3rd, 4th, and 5th 

conv and FC layers  

73.12 ± 2.08 70.20 ± 2.77 76.15 ± 1.96 

2nd, 3rd, 4th, and 

5th conv and FC layers 

71.90 ± 1.14 69.39 ± 2.39 75.15 ± 1.20  

 

4.4 Discussion 

Our present study modified the SFCN architecture to classify the working memory. We 

grouped the working memory scores as high and low, which induced data imbalance. Our results 

indicate that the model with fewer fully connected layers performed better. Adding more non-

linearity to the model by increasing the number of FC layers hindered its generalizability, indicated 

by the massive difference between training and validation balanced accuracy. Moreover, with the 

current best practice of initialization and adaptive learning (ADAM), the model performance 

saturated at a suboptimal solution.  

However, we improved the model performance by adopting self-transfer-training– early 

stopping when the model hits suboptimal solution and retraining by freezing the initial 

convolutional layers. Model training on a small sample size with data imbalance saturated the 

model after a few epochs. Freezing some of the layers from the saturated model and training the 

rest of the layers helped the later layers to learn the non-linearity of the features and decision 

function better and faster. Another reason behind the success of the self-transfer-training strategy 

is that we assume features in initial layers in CNN models represent more local, generic features. 

In contrast, deep layers provide more task-specific features. Thus, the model could provide better 

task performance by focusing on training later layers. 

 Using this empirical self-transfer-training strategy for classifying the working memory, 

we showed that the strategy works with a relatively small imbalanced dataset. The underpinning 
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of this strategy is the observation that the initial convolution layers extract the generic imaging 

features common to many prediction tasks in CNNs. These initial layers reach near optimality 

quickly, which can be inferred by the model’s performance improvement after freezing the initial 

two convolutional layers. On the other hand, the deep layers of CNN are task-specific, and fine-

tuning them improved the performance of our current task. 

4.5 Conclusion 

In conclusion, we have shown that the same model architecture, when trained differently, 

could produce improved results to predict the working memory with limited unbalanced data. The 

empirical Self-Transfer-Training strategy aids in improving the performance of the model by 

freezing the initial layers of the CNN and training the deep layers for our task. In addition, this 

finding indicates that the same brain features with different non-linear connections can predict 

different variables. 

Based on our finding that different tasks share the same brain features, we speculate that 

transfer learning techniques might help us improve the model’s decision-making, mainly when 

applied to medical imaging. In addition, we also speculate that any dataset with class imbalance 

will benefit from our self-transfer-training strategy. 
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5 TRANSFER STRUCTURAL MRI BRAIN AGE MODEL TO WORKING MEMORY 

PREDICTION IN UK BIOBANK COHORT 

5.1 Introduction 

Working memory (WM) functioning is a cognitive process responsible for temporarily 

holding and manipulating information in our minds during complex cognitive tasks (Baddeley, 

2000; Baddeley & Hitch, 1974; Cowan, 2014). Understanding working memory functioning is 

essential for comprehending how our brains hold, reason and execute information (D’Esposito & 

Postle, 2015; Miyake & Shah, 1999). WM plays a crucial role in a wide range of cognitive 

activities, including learning, problem-solving, decision-making, attention control(Unsworth & 

Spillers, 2010) and language comprehension (Oberauer, 2019), highly correlated to overall 

intelligence(Ackerman et al., 2005). The impairment of working memory has been associated with 

a large number of mental disorders including ADHD (Duan et al., 2021), autism spectrum 

disorders (Rabiee et al., 2020), major depression (Nikolin et al., 2021), schizophrenia (Forbes et 

al., 2009), and more (Henseler & Gruber, 2007). More particularly, working memory deficits are 

apparent in older individuals, not only presenting as age related decline (Bopp & Verhaeghen, 

2005) but also as susceptibility to cognitive deterioration such as Alzheimer’s disease related 

dementia (BADDELEY et al., 1991), and mild cognitive impairment (A.-M. Kirova et al., 2015). 

Understanding working memory capacity and its changes in the older population is of 

great importance, according to the WHO report on aging and health [18], as globally there is a 

shift towards older populations in more countries. Age-related cognitive decline and memory 

impairment have become significant concerns worldwide (Association, 2015; Tomaszewski 

Farias et al., 2009). Working memory is more sensitive to ageing than other spectrum of 

memory; its capacity in the older population decreases to 74% compared to younger adults 
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(Bopp & Verhaeghen, 2005).  Furthermore, pathological working memory deficits in the older 

population serves as an essential diagnostic and prognostic marker for cognitive impairments and 

neurodegenerative disorders (Bleckley et al., 2003; Kane et al., 2001). Thus, it is crucial to 

delineate neuronal mechanisms of working memory functioning decline in older population.  

Neuroimaging studies have been instrumental in the investigation of working memory, 

providing insights into the underlying brain mechanisms and networks involved. Using Voxel 

Based Morphometry (VBM) analysis, studies have found that older adults with larger volumes in 

the prefrontal cortex, anterior cingulate cortex, and parietal cortex performed better on working 

memory tasks (Nyberg et al., 2010). Older populations with cognitive impairment were observed 

to have reduced grey matter (GM) volume in the prefrontal cortex, hippocampus, caudate, and 

cerebellum (Dennis & Cabeza, 2011; Nyberg et al., 2010; Raz & Rodrigue, 2006). A functional 

MRI study of 163 subjects revealed lower connectivity within the fronto-parietal network (FPN) 

as well as between FPN and striatum in subjects with lower working memory capacity (Salami et 

al., 2018). More recently, a study of the working memory deficits in schizophrenia patients found 

disfunction in Heschl gyri, insular and amygdala, in addition to superior frontal gyrus and superior 

temporal gyrus, are associated with working memory deficit of patients(Chatterjee et al., 2019). A 

meta-analysis of 42 studies of neural-correlates of verbal working memory highlighted the 

activation in a large network including fronto-parietal areas, right cerebellum, insular and basal 

ganglia structures (Emch et al., 2019). Angular gyri as part of  default mode network interacting 

with other brain networks serves as an indicator of reaction times to n-back tests, implying a role 

in working memory (Vatansever et al., 2017). Another study which examined the temporal 

dynamics of visual working memory found more pronounced activations in inferior frontal cortex 

that were more pronounced during maintenance than in encoding (Sobczak-Edmans et al., 2016). 
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Gender differences in neural networks underlying working memory have been documented in a 

meta-analysis with females activating more limbic system (hippocampal and amygdala), males 

activating more distributed network (Hill et al., 2014).             

Until recently, neuroimaging studies were limited in sample size (Suresh et al., 2021), 

precluding the use of predictive learning models such as deep learning, which have proven useful 

in many other fields. This changed as larger cohorts of neuroimaging resources, such as UK 

biobank, Adolescent Brain Cognitive Development (ABCD), and Alzheimer's Disease 

Neuroimaging Initiative (ADNI), have been made available (Petersen et al., 2010; Saragosa-Harris 

et al., 2022; Sudlow et al., 2015). Even so, these numbers are still suboptimal for the data-hungry 

deep learning models to be used to their full potential. For example, more than 14 million natural 

images in ImageNet dataset (Deng et al., 2009) are available for deep learning models to recognize 

objects with high levels of accuracy. To mitigate the limitation of smaller sample sizes, the transfer 

learning technique enables researchers to leverage a model trained with big data for a source task 

and then fine-tune the model on a smaller dataset for a target task (Ardalan & Subbian, 2022; 

Weiss et al., 2016). This approach has been shown to lead to improved performance particularly 

for the homogeneous transfer within the same domain (Raza et al., 2023; Weiss et al., 2016), as 

the pre-trained models already have a strong initial understanding of the data. We propose, in this 

study, a transfer learning within neuroimaging domain, instead of commonly implemented across 

natural image and neuroimage domains, and transferring knowledge learned from related source 

task (brain age) to a target task (working memory capacity). 

Brain age prediction done by deep learning models has improved significantly over the 

past decade (Han et al., 2021; Ray et al., 2021). In an older population of the UK biobank cohort, 

a simply fully connected convolutional network (SFCN) (Han et al., 2021) architecture introduced 
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by Peng et. al at Predictive Analysis Challenge 2019 has achieved an accuracy of about 2 years for 

subjects ranged 40-70 years of age when trained with relatively large dataset. During training, the 

learned features capture important structural characteristics of the brain that are related to aging. 

We believe by leveraging the pre-trained features related to ageing, transfer learning will enable 

efficient feature extraction for our task of working memory capacity classification, therefore 

reducing the need for large, labeled data. Currently, deep learning methods that have only trained 

using working memory capacity and sMRI have much lower mean balanced accuracy of 73.12 

(Pranav Suresh, 2023).  To improve this, we will first build a brain age prediction model trained 

with the sMRI images of 39,755 subjects, and then transfer the learned brain features from the 

brain age model to the deep neural networks that we will use on the sMRI images of the subset of 

5,469 subjects to classify them into high or low memory categories. Our aim is to demonstrate the 

higher accuracy of deep neural networks trained first on brain age models and reveal a more 

complete picture of the neuronal underpinnings of working memory capacity differences. 

5.2 Materials and Methods 

Data used for this study was obtained from UK Biobank (Sudlow et al., 2015). UK Biobank 

is a large-scale biomedical database containing in-depth genetic and health information from half 

a million UK participants, over 40,000 of whom also had brain MRI imaging data. Informed 

consent was obtained from all UKB participants. Ethics and Guidance Council 

(http://www.ukbiobank.ac.uk/ethics) has developed UKB Ethics and Governance Framework with 

IRB approval obtained from the North-West Multi-center Research Ethics Committee. We focused 

on T1-weighted sMRI data in this study. After quality control as described later, there were valid 

data from 39,755 participants who had a mean age of 54.81 years old and a standard deviation of 

7.46, range 40-70 years.  
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WM was assessed by recording the maximum digits remembered correctly during a 

backward digit span task. The test starts with two digits being displayed for a short period for 

participants to memorize. For each test, if subjects memorized the number correctly in the reverse 

order, then for the subsequent test the length of the number increased by one digit (up to a 

maximum of 12 digits). The working memory scores from 26,534 participants roughly follow a 

normal distribution as shown in supplementary Figure 1. For our task of classifying the participants 

with high memory capacity vs. low memory capacity, of 26,534 participants we selected 

subpopulation of 5469 and divided into two groups: i) subjects with memory scores ranging from 

2-5 and ii) subjects with scores of 9-12. The segregation was based on the Miller’s Law of clinical 

psychology which states that individuals, on average, can hold about 7 ± 2 items at a time in their 

working memory (Miller, 1956). However, based on the distribution of our dataset we presumed 

7 ± 1 as the average capacity. Table 5-1 shows the demographic distribution of the subjects with 

low memory scores and high memory scores. 

    

Table 5-1: Demographic data of the two groups used for working memory classification. 

 Low Memory High Memory 

No. of Participants 3501 1968 

Male/Female 1435/2066 1108/860 

Age (p = 3.02e-14) 55.85 ±7.58 52.28 ± 7.08 

Memory score 4.6 ± 0.6  9.22 ± 0.48 

 

T1-weighted MRI images were collected at three imaging centers with identical scanners, 

free from major software or hardware updates throughout the study (Alfaro-Almagro et al., 2018). 

The images were segmented into six types of tissues (gray matter, white matter, etc.) using SPM 
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12. Subsequently, gray matter images were normalized into Montreal Neurological Institute space, 

modulated, and smoothed with a 6 × 6 × 6 mm3 Gaussian kernel. Each map consists of a 3D voxel 

matrix of 128 × 141 × 128. Further quality control was conducted to retain samples with a 

correlation larger than 0.9 with the mean gray matter map across all the individuals, yielding 

39,755 subjects. 

5.2.1 Classification of working memory using SVM 

To establish a baseline for our task of working memory classification, we have fitted a 

model using a standard machine learning method. A L1 regularized support vector machine 

classifier (SVC) with radial basis function as the non-linear kernel was used to learn the underlying 

gray matter patterns to classify the subjects as high or low working memory. Previous work has 

shown that feature reduction plays an important role in boosting performance of the machine 

learning models (Suresh et al., 2021). After quality control, using the subjects from the training 

set, we computed the mean gray matter image and removed the voxels with gray matter volume 

less than 0.2 resulting in dataset with shape of 4423 X 472,035. Next, we performed principal 

component analysis (PCA) to extract 741 components that explain 80% of the variance. The PCA 

transformed matrix was used to train the regularized SVC. Finally, the trained SVC’s performance 

was computed on the holdout set. We’ve also tested the performance of SVC using a different 

number of PCA components. In addition, to examine the effect of age on the baseline classifier we 

have trained the baseline classifier with age as a predictor along with the PCA components. 
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Figure 5.1: Overview of the analyses performed.  

Top) CNN for predicting brain age. CNN consists of five convolutional blocks and each 

block consists of a Convolutional layer, a batch norm layer, a max pool layer, and ReLU layer. 

Bottom) CNN model transferred from brain age to classify the working memory. The two CNN 

blocks in the grey shaded region are frozen with parameters transferred from brain age model 

while learning to classify working memory groups. 

5.2.2 Transfer Learning Model 

We previously classified working memory capacity on the same dataset using directly 

trained deep learning models on structural images achieving a modest mean balanced accuracy of 

73.12% (Pranav Suresh, 2023) and the reason could be attributed to the limited sample size. In 

contrast, brain age models have demonstrated better performance with large samples to learn from 

(Han et al., 2021). The effect of aging on working memory has been extensively studied in the 

field of cognitive neuroscience. Accumulated evidence revealed that working memory has steeper 

decline as age progresses (Fournet et al., 2012), and the decline could be a linear function of age 

(Bopp & Verhaeghen, 2005; Pliatsikas et al., 2019). Together, we are motivated to propose a 

transfer leaning model as in Error! Reference source not found.. 

Error! Reference source not found. shows the overview of the analysis performed for 

the classification task. First, we built a neural network model for brain age prediction using all 
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available gray matter data from 39,755 participants. Then another neural network model was 

trained using a transfer learning technique for classification of working memory capability for the 

5469 participants. In particular, we implemented a heuristic training strategy (Pranav Suresh, 

2023) coupled with transfer learning from brain age model, which improved the prediction 

accuracy of the model. Finally, to understand the brain regions that have significant contribution 

to the prediction, we employed model interpretability using region occlusion approach to generate 

sensitivity maps.  

5.2.3 Brain Age Prediction 

In this study, we modified the SFCN model (Han et al., 2021) by removing the sixth block 

and replacing the final seventh block with fully-connected layers for brain age prediction. Our 

final neural network architecture for brain age prediction, shown in Error! Reference source not 

found., consists of 5 convolutional blocks followed by one fully-connected layer. The model takes 

128 × 141 × 128 3D brain image data and contains 5 convolutional blocks followed by one fully-

connected layer. Each of the 5 consecutive blocks consists of a 3 × 3 × 3 3D convolution layer, a 

Batch Norm layer, a 3D Max Pooling layer and a ReLU. Each of the convolutional layers used 32, 

64, 128, 256, 256 channels, respectively, with stride of one and no padding was used. The output 

images from the final convolutional block are flattened and passed to the fully-connected layer 

which takes 1024 inputs and outputs the predicted brain age. The fully-connected layer has a 

dropout rate of 0.2. 

5.2.4 Transfer Learning for Working Memory Classification 

For prediction of working memory capacity, we applied the concept of transfer learning in 

combination with our heuristic self-transfer-training method (Pranav Suresh, 2023). The best 

trained model (source) for brain age was used to initialize the target model for the prediction of 
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the working memory. We replaced the fully-connected layer from the source model to 

accommodate for the classification task. The model architecture is shown in Error! Reference 

source not found.. Each of the 5 consecutive blocks consists of a 3 × 3 × 3 3D convolution layer, 

a Batch Norm layer, a Max Pooling layer and a ReLU. The fully-connected layer takes 1024 inputs 

with a dropout rate of 0.2, and its two outputs are passed on to the soft-max function to calculate 

the probabilities of each label.  

5.2.5 Model Training 

During the training process, we used Stochastic Gradient Descent (SGD) as our optimizer 

to minimize the Mean Absolute Error (MAE) for brain age model and Binary Cross Entropy (BCE) 

for working memory classification model. All models were trained in batches of 15 images per 

GPU, with the learning rate initialized to 0.001 for each individual layer. For each model, we 

performed hyperparameter tuning to determine the optimal set of learning rate for each layer, 

dropout rate, and the number of fully-connected layers. To reduce overfitting, two data 

augmentation methods were applied during the training phase. In every epoch, the training input 

is 1) randomly shifted by 0, 1 or 2 voxels along every axis; 2) has a probability of 50% to be 

mirrored about the sagittal plane. 

We used the same setup for training both the brain age model and the working memory 

classification model. The whole dataset was split into a training set (90%) and a holdout set (10%). 

The training set was used in the 5-fold cross-validation to select the best model configuration. For 

each training fold, we trained a total of 75 epochs, where training each epoch with model replicated 

on each of the 4 GPUs using PyTorch Data Parallel (Li et al., 2020). The learning rate was 

multiplied by 0.1 if the change in loss between two consecutive epochs was less than 0.0001. For 

each fold, the epoch with the least MAE in the case of the brain age model, and highest sensitivity 
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score on the validation set for the working memory classification model, was selected, and tested 

on the holdout dataset. The model configuration that gave the best results for brain age model was 

used as source for transfer training working memory classification model. To avoid data leakage 

from brain age model into the working memory model, the holdout set for the later task was 

selected to be a subset of the former task’s holdout set.  

During training of classification model, we started from the best trained brain-age model 

(base), replaced the fully-connected layer to adapt for classification, and retrain the model with all 

parameters in all layers free to be updated, conducted as the typical transfer learning approach. 

Furthermore, we trained the models by freezing selected individual blocks (setting learning rate to 

0) and updating the rest, starting from freezing all convolutional blocks and updating the fully 

connected layer, then freezing the first 4 convolutional blocks and updating the last and fully 

connected layer, to freezing only the first convolutional blocks and updating all other layers.   

Finally, we test the contribution of age to the overall prediction of the CNN model. We 

added age to the flattened features from the final convolutional layer and trained only the fully 

connected layer. Moreover, to test if the working memory CNN model has learnt to classify the 

subjects based on the memory capacity or based on their age, we created ten subsamples of size 

four hundreds using stratified bootstrapping with replacement from the holdout set. Each of these 

subsamples consisted of age matched samples from high and low memory groups. Further, on each 

of these subsamples, using average age of the holdout set, 56, as the pivot, we encoded the age of 

the sample as 0 if the actual age was less than 56, and 1 if the actual age was greater than or equal 

to 56. Then, we tested the performance of the working memory model by computing the balanced 

accuracy of the prediction of the encoded age as compared to the accuracy of the memory 

classification. 
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5.2.6 Model Interpretation 

To understand the brain regions that are significant for the classification task, we have 

explored three gradient based approaches, gradient * input, DeepLift, integrated gradients method 

(Ancona et al., 2017) and occlusion based method. All three gradient based methods seek to create 

attention maps by assigning a contribution score to each voxel indicating the importance of the 

voxel to the classification. Our experiments showed all interpretation methods highlighted similar 

regions that were obtained using occlusion method. In here, we have reported the experiments and 

observations from network occlusion method.  

Network occlusion sensitivity is a simple technique for understanding which parts of an 

image are most important for a deep network's classification (Zeiler & Fergus, 2014). We used the 

AAL3 (Rolls et al., 2020) brain atlas with 116 regions to perform region occlusion. Using region 

occlusion, the contribution score of each region to the overall prediction is the difference between 

the probability score of the original image and the probability score of the region occluded image. 

For occluding a region, we replaced original values in the region with the mean value of the region 

across all holdout subjects.  

Finally, to determine the contribution significance of each region, a one sample t-test is 

applied to the contribution scores of all correctly classified subjects. The p-value obtained for each 

region indicates the likelihood that the region’s mean contribution score across subjects is different 

from zero by chance. Multiple comparisons correction using Bonferroni correction was applied to 

correct for 116 tests. Regions that passed the multiple comparisons correction and with positive 

mean contribution values were identified to significantly contribute to memory prediction. 

Furthermore, to quantitatively examine differences in regional contribution across groups (i.e., low 

memory, or high memory) and sex, and relationship with age, ANCOVA model was used for each 



80 

significantly contributing region with age, sex, group as variates. Similarly, Bonferroni correction 

was applied to detect the significant influence of each variate on regional contribution. Statistical 

significance was considered at α = 0.05. 

5.3 Results 

5.3.1 Baseline model using Support Vector Classifier 

As the benchmark comparison for the transfer learning model, we first tested an SVC 

model for WM classification. To specifically mitigate the bias induced by relative smaller input 

variables to the baseline SVR model, compared to CNN model, we tested a range of number of 

input variables (from 50 to 750 PCA components), the best performed model was selected for 

comparison. Table 5-2 shows the balanced accuracy achieved by the SVC models on the training, 

validation, and the holdout set using different numbers of PCA components. The accuracy of the 

SVC increased gradually with the increase of the number of components and peaked at 150 

components (68.57%) during the training, and validation and testing accuracies are saturated at 

64.33% and 64.85%. With the inclusion of age as a predictor, we observed the model peak 

performance with mean balanced accuracy of 71.29% on training, 67.25% on validation, and 

66.96% across five folds when trained using 250 PCA components, shown in Table 5-3. Overall, 

there is about 3% increase of accuracy after including age.     

Table 5-2: Balanced accuracies achieved by the regularized SVC on PCA components 

Number of 

components 

Training (%) Validation 

(%) 

Testing (%) 

50 63.73 ± 0.49 61.30 ± 0.43 63.63 ± 0.64 

100 68.32 ± 0.87 64.47 ± 0.77 65.60 ± 1.26 

150 68.57 ± 0.97 64.33 ± 0.59 64.85 ± 0.75 

200 68.15 ± 0.72 63.64 ± 0.99 64.44 ± 0.56 
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250 68.50 ± 0.31 63.56 ± 0.50 64.89 ± 0.37 

300 67.02 ± 0.71 62.44 ± 0.60 63.52 ± 0.73 

350 65.56 ± 0.75 61.01 ± 0.81 62.12 ± 0.78 

400 65.10 ± 0.59 60.67 ± 0.73 61.83 ± 0.49 

450 63.43 ± 0.46 59.61 ± 0.51 60.02 ± 0.54 

500 62.86 ± 0.47 58.69 ± 0.54 59.33 ± 0.78 

550 62.07 ± 0.39 58.26 ± 0.41 58.74 ± 0.53 

600 61.26 ± 0.50 57.75 ± 0.59 57.92 ± 0.64 

650 60.87 ± 0.54 57.36 ± 0.52 57.90 ± 0.62 

700 60.48 ± 0.44 57.23 ± 0.37 58.03 ± 0.58 

741 59.75 ± 0.45 56.58 ± 0.12 57.20 ± 0.65 

 

Table 5-3 Balanced accuracies achieved on by the regularized SVC function fit on age. 

NUMBER 

OF 

COMPONENTS 

TRAINING 

(%) 

VALIDATION 

(%) 

HOLDOUT 

(%) 

50 65.38 ± 0.55 63.59 ± 0.73 65.26 ± 0.42 

100 69.93 ± 0.95 67.15 ± 0.54 67.48 ± 0.97 

150 70.63 ± 0.90 67.02 ± 0.78 67.17 ± 0.49 

200 70.84 ± 0.66 66.88 ± 0.68 67.15 ± 0.35 

250 71.29 ± 0.61 67.25 ± 0.52 66.96 ± 0.71 

300 70.21 ± 0.75 66.17 ± 0.72 65.90 ± 0.56 

350 69.12 ± 0.58 65.02 ± 0.70 65.02 ± 0.66 

400 68.13 ± 0.68 64.20 ± 0.77 64.18 ± 0.57 
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450 66.72 ± 0.67 62.87 ± 0.76 63.00 ± 0.53 

500 66.04 ± 0.79 61.98 ± 0.58 62.42 ± 0.66 

550 65.43 ± 0.57 61.64 ± 0.33 61.37 ± 0.71 

600 64.33 ± 0.52 60.83 ± 0.54 60.43 ± 0.69 

650 63.35 ± 0.62 59.83 ± 0.51 59.98 ± 0.70 

700 63.08 ± 0.56 59.59 ± 0.61 59.96 ± 0.91 

741 62.34 ± 0.39 59.12 ± 0.34 59.01 ± 0.63 

 

5.3.2 Brain Age Prediction 

As stated earlier, we used data of 39,755 subjects for brain age prediction. We achieved 

the best results (MAE of 2.82 ± 0.04 on training, 2.88 ± 0.05 on validation, 2.47 ± 0.2 on holdout 

set) when the network was trained with one fully-connected layer, learning rate of 0.001, a dropout 

rate of 0.2. This accuracy is comparable to that reported in the original brain age study using UK 

biobank data with MAE of 2.14 years (Han et al., 2021). 

5.3.3 Working Memory Classification  

The best model from the brain-age prediction was transferred for working memory 

classification. Table 5-4 shows the balance accuracy (averaged accuracy for high memory and low 

memory groups) while training the model by freezing different numbers of layers. Best results 

were obtained when the model was trained only for the high-level representations (layers 3 to 5) 

and used the low-level representations (first and second convolutional layer) learnt from the brain 

age model. Table 5-5 shows the balanced accuracy, accuracy for high memory group (sensitivity), 

and accuracy for the low memory group (specificity) across all five-folds of the models trained 

while freezing first two convolutional layers and training the rest.  
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Table 5-4: Balanced accuracy trained by freezing different number of layers. 

Layers trained 

Balanced Accuracy 

Train Validation Holdout 

All layers 67.80 ± 0.69  64.42 ± 0.51 70.41 ± 0.86 

Fully-connected 

layer 

68.73 ± 1.52 70.83 ± 1.37 68.25 ± 1.36 

5th Convolutional 

layer and FC layer 

71.77 ± 0.21 68.77 ± 2.42 70.21 ± 0.73 

4th and 5th conv 

and FC layers 

73.63 ± 1.04 70.24 ± 0.61 72.16 ± 1.41 

3rd, 4th, and 5th 

conv and FC layers  

81.34 ± 2.34 75.32 ± 0.49 87.02 ± 1.31 

2nd, 3rd, 4th, and 

5th conv and FC layers 

74.90 ± 0.67 73.39 ± 0.68 74.15 ± 1.08  

 

Table 5-5: Balanced Accuracy, accuracy of low group, and accuracy of high group 

across five folds.  
 Fold 1 2 3 4 5 Mean ± 

STD 

T
ra

in
in

g
 

Balanced 

Accuracy 

83.78 84.04 79.45 81.38 78.09 81.34 ± 

2.34 

Accuracy 

of low 

group 

94.8 95.35 93.88 93.92 93.2 94.22 ± 

0.75 

Accuracy 

of high 

group 

72.72 72.72 65.01 68.83 62.96 68.44 ± 

3.96 

V
a

li
d

a
ti

o
n

 Balanced 

Accuracy 

75.16 74.84 76.25 75.01 75.35 75.32 ± 

0.49  
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Accuracy 

of low 

group 

73.76 80.76 74.24 79.96 83.46 78.43 ± 

3.80 

Accuracy 

of high 

group 

76.55 68.92 78.24 70.05 67.23 72.19 ± 

4.37 

T
es

ti
n

g
 

Balanced 

Accuracy 

88.35 88.7 86.64 86.26 85.19 87.02 ± 

1.31 

Accuracy 

of low 

group 

84.7 89.16 79.16 87.5 87.5 85.60 ± 

3.52 

Accuracy 

of high 

group 

91.9 88.23 94.11 85.02 82.88 88.42 ± 

4.16 

      

To test if the model has learnt to classify subjects based on the working memory or age, 

we tested its performance on ten bootstrapped subsamples which had age matched individuals 

from high and low working memory groups. The performance is shown in Error! Reference 

source not found.. On each of the subsamples, the model has achieved better accuracy 

classifying working memory rather than age. On average, for the classification of memory group 

the model has achieved mean accuracy of 79.20%, while the accuracy for age classification was 

mere 58.99%. Moreover, by adding age to the flattened features and training only the fully-

connected layer we observed mean balanced accuracy of 81.54% on training, 75.62% on 

validation, and 87.05% on the holdout set. 

Table 5-6: Accuracy of the model for classification of encoded age and working memory 

on the ten bootstrapped subsamples.   

Subsample Accuracy of encoded 

age 

Accuracy of memory 

classification 

1 58.88 78.42 

2 57.57 80.80 

3 59.39 79.94 

4 54.84 81.37 

5 56.88 77.80 
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6 61.59 79.12 

7 62.06 77.38 

8 64.21 77.15 

9 57.61 77.66 

10 56.92 82.30 

Mean 58.99 79.20 

 

5.3.4 Model Interpretation 

To understand the final working memory prediction model, regional contribution scores 

were calculated. T-test after correction for multiple comparisons on the region contributions 

revealed that 73 regions had significant contribution to the prediction. The full list of 73 regions 

plotted in Figure 5.2. Among the 73 regions the top five contributors are Right Putamen (p=1.27e-

26), Right Parahippocampus (p = 3.29e-25), Left Angular gyrus (p= 1.17e-22), Left Amygdala (p= 

1.47e-22), and Left Para hippocampus(p= 3.95e-21), followed by other cortical regions, where left 

and right hippocampus are ranked 26 and 9 respectively. 
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Figure 5.2: Regions that significantly contribute to the overall classification of the 

working memory group. 

 

Further, to test the influence of either age, sex, or working memory groups on a region’s 

contribution score, ANCOVA was performed.  Right Heschl’s gyrus (p = 2.89e-57), Right 

Temporal Superior gyrus (p = 2.71e-54), Left Rolandic Operculum (p = 2.54e-53), Left calcarine 

fissure and surrounding cortex (V1) (p = 9.17e-53), Right frontal medial orbital gyrus (p = 1.12e-

50) are the top five regions of the sixty-two significant regions that showed group differences in 

contributions. 60 out of the 62 regions showed significantly higher contributions in the high 

memory group than the low group, and the only two regions contributed more to the low memory 

group but with less effect sizes. Figure 5.3 illustrates the top five regions (Right Heschl (red), Right 

Temporal Superior (blue), Left Rolandic Operculum (green), Left Calcarine (pink), Right Medial 

Orbitofrontal (yellow) showing significantly high contributions in high memory group and two 
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regions, Left Inferior Frontal gyrus Triangular (p = 8.36e-08; cyan), and Right parahippocampal 

gyrus (p = 7.54e-06; copper) with higher contribution in the low memory group.    

 

 

Figure 5.3: Regions that show significantly different contributions in the high versus low 

working memory groups. 

 

Meanwhile, sex had significant influence on fifty region’s contribution scores 

(supplementary Table 3). Females had higher contributions in all fifty regions. Right Putamen (red; 

p=4.84e-25), Left inferior frontal gyrus, triangular (blue; p=3.89e-17), Left parahippocampal 

gyrus (green; p = 5.29e-17), Right parahippocampal gyrus (pink; p = 5.5e-17), Left Amygdala 

(yellow; p = 9.97e-16), Right Hippocampus (cyan; p = 1.01e-14), and Right Amygdala (copper; p 

= 2.20e-14) are the top seven regions, plotted in Figure 5.4 for illustration purpose. ANCOVA 

analysis showed only one region, Left Heschl’s gyrus, has contribution influenced by age, where 

increased age is associated with less contribution. 

  

 

Figure 5.4: Regions whose contribution score is influenced by gender.  
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5.4 Discussion 

The goal of the study was to examine the potential of the convolution neural network 

(CNN) model trained on structural MRI images to classify working memory capacity, while also 

enabling us to understand the relevant brain regions that contribute to the memory task. To this 

end, we devised a simple, yet effective model based on transfer learning technique. First, we 

established a baseline using a regularized SVC which achieved the best performance of mean 

balanced accuracies of 68.50%, 63.56%, and 64.89% on the training and holdout set, respectively. 

The addition of age to the baseline model improved its performance by approximately 3% which 

suggests that the baseline SVC classifier must have not captured the neuronal patterns related to 

the ageing process. Next, we trained a CNN model to learn the brain age of 39,755 subjects. The 

convolution layers in the brain age model best present brain structural nonlinear abstract 

presentations to estimate brain age. Based on assumption that the brain age presentations could be 

helpful for prediction of memory capacity, we applied transfer learning technique that leverages 

features learnt on brain age prediction, which is trained on relatively large number of subjects, and 

trained another CNN model for the working memory classification task which has fewer subjects 

to learn from. 

In particular, using transfer learning, we reused the lower-level features (first several layers 

of CNN model) learnt on the brain age model and re-trained the high-level features to accurately 

capture the representations for the working memory classification task. Previous studies have 

shown that lower layers of CNN model capture local features such as lines, curves, edges etc. 

(Santosh et al., 2022), we suspect that lower layers of brain age model capture local brain 

characteristics such as local surface, curvature or volume, which are fundamental and common for 

any brain function including aging process and working memory.  While high level features from 
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later layers of the CNN model are more task specific, those are different for brain age and memory 

task. Our study demonstrated the best model for working memory prediction was achieved when 

the first and second layers of CNN model of brain age were reused, while the rest layers of the 

model were retrained.  Our previous study without transfer learning from brain age model (Pranav 

Suresh, 2023) reported the best balanced accuracy for prediction of working memory capacity was 

73.46%, here with transfer leaning from brain age model, the training accuracy improved to 

81.34%, supporting our hypothesis that transfer leaning from brain age model could help in better 

prediction of working memory. Moreover, our test of the model on the bootstrapped subsamples 

indicated that the model has indeed learned to classify subjects based on the working memory 

capacity. In addition, minor improvement of the CNN model with age indicates that most of ageing 

related neural patterns have already been captured by the model. We speculate that contribution of 

ageing to the working memory capacity is captured by the lower CNN layers of the pretrained 

brain age model.  

Even though deep learning models have been depicted as black box, many approaches have 

been proposed to explain the contribution of features including occlusive, gradient based, and 

Shapely value based methods (Erion et al., 2021; Sundararajan et al., 2017; Zeiler & Fergus, 2014).  

We have applied gradient based method (Sundararajan et al., 2017) and occlusive method, which 

provided similar results at large. Here we reported results from occlusive method for simple 

interpretation. From contribution scores of the best model, T-test results have shown that 73 

regions out of 116 are significant for the overall prediction. Among these 73 regions the most 

significant regions are subcortical regions including the well-known memory related hippocampus 

and Parahippocampus (Aminoff et al., 2013; Ranganath et al., 2005; Schon et al., 2004),  and insula 

and amygdala. Even though subcortical regions have not been often studied for working memory, 
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a few studies have emphasized the role of these regions on both the long term memory and working 

memory (Menon & Uddin, 2010; Schaefer et al., 2006; Yun et al., 2010). In particular, Emch and 

colleagues reported in a meta-analysis of 42 studies of neural-correlates of verbal working memory 

that a large network including fronto-parietal areas, right cerebellum, insular and basal ganglia 

structures are activated [26]. Our results show consistent implications, suggesting broad brain 

regions including subcortical and cortical regions contribute to working memory, with subcortical 

regions playing a more important role relatively. While many fMRI studies of working memory 

highlight the prominent activation of frontal-parietal regions, we speculate that, based on our 

findings, frontal-parietal regions are most active in working memory process, but their structure 

variations do not have enough power to differentiate high and low working memory capacity.    

The ANCOVA test for group differences with gender and age as covariates has shown 62 

regions of the 73 regions had significant discriminating contribution between low and high 

memory. Of these 62 regions, 60 regions showed higher contribution in the high memory group 

with much larger effect sizes. The other two regions that had lower contribution in the high 

memory are Left Frontal Inferior gyri and Right parahippocampal region. The top regions that 

showed significant group differences are cortical regions, specifically right Heschl’s gyrus and 

right temporal superior gyrus from temporal lobe, left rolandic operculum and right frontal medial 

orbital gyrus from frontal lobe, and left calcarine fissure and surrounding cortex from occipital 

lobe. Interestingly, these regions are different from the top regions that contribute to overall 

prediction. Our results indicate that the high memory group depends on the cortical regions to a 

much higher degree along with sub-cortical regions, compared to the low memory group. In other 

words, while subcortical regions are crucial for memory tasks, cortical regions’ involvement is 

also the key to distinguish low and high memory capacity.     
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To our surprise, all the regions whose contribution differs between sex have significantly 

higher contribution scores in females, highlighting subcortical and inferior frontal regions with the 

top five regions as right putamen, left inferior frontal gyrus triangular, left, and right 

parahippocampal gyrus, and left amygdala. This finding indicates that females involve much more 

sub-cortical and cortical regions in memory tasks than males which has been found previously. 

Even though sex differences in brain anatomy and function in context of working memory is well 

documented (Hill et al., 2014), this wide-range enhanced brain regional participation in females 

for memory is interesting and warrants further in-depth investigation.    

5.5 Conclusion 

In sum, we have examined the statistical power of CNN model to discriminate individuals 

with low vs. high working memory capacity using their structural MRI. To this end, by reusing 

the low-level features from the brain-age prediction task we were able to achieve higher 

performance. The final model revealed that 73 regions are significant to the prediction of the 

working memory capacity. The most significant regions are the subcortical regions including left, 

right parahippocampal gyri and hippocampus. However, cortical regions play a more significant 

role in differentiating individuals with high vs. low working memory, individuals with high 

memory capacity recruit more cortical regions than individuals with low memory capacity. In 

addition, females have more contributions from fifty regions than males. Clinically, our study 

supports that normal ageing processing is involved in working memory of older populations, but 

only to a limited extent through lower level or local brain structures. Working memory capacity in 

older populations depends on a large integrated brain network of subcortical-cortical regions. 

Thus, working memory deficit is less likely a specific local brain disfunction.    
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Our results should be interpreted with the consideration of the following limitations. Our 

decision on the cut-off for the high memory versus low memory groups was based on sample size 

and cohort distribution. Future work on more precise memory groups, maybe based on clinical 

assessments, will be important to confirm our findings. Participants in the UK biobank cohort were 

recruited from the general population of which some might have various mental health problems. 

The potential confounding effect of mental condition is not examined in this study. Since we try 

to leverage as many samples as possible, we do not exclude anyone with known mental disorders. 

Future works on relationships between brain variations underlying memory capacity and 

Alzheimer’s disease, mood disorder and others in the older population will be vital to enhance the 

understanding of neurological mechanisms for memory related aging processing.   
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6 INTEGRATING NEUROIMAGING AND GENETICS VIA CONTRASTIVE 

LEARNING FOR WORKING MEMORY 

6.1 Introduction 

Working memory is a fundamental cognitive function, enables individuals to hold and 

manipulate information over short periods, essential for reasoning, learning, and decision-making. 

It is influenced by both genetic and neural factors. Understanding its genetic and neural basis can 

help identify biomarkers for cognitive impairment in neurodegenerative diseases (BADDELEY et 

al., 1991; Perpetuini et al., 2020)  in the old population, as working memory declines in normal 

aging, Mild Cognitive Impairment and Alzheimer's disease (AD) (A. M. Kirova et al., 2015).  

Furthermore, working memory is also one of earliest key symptoms in AD (Germano & Kinsella, 

2005; Huntley & Howard, 2010), making it a good phenotypical outcome to study for genetic 

mutations associated with AD.  

    Previous research has established various links between genetic variants and brain 

structure/function that underpin working memory performance. As reviewed in (Knowles et al., 

2014) one of the most studied genes is COMT (Catechol-O-Methyltransferase), which encodes an 

enzyme that degrades dopamine in the prefrontal cortex, a region critical for working memory 

(Meyer-Lindenberg et al., 2005). Yet its genetic variants may code normal working memory 

variation in the population. Specifically interested in the working memory decline in the old 

population, we leverage the knowledge of protein-protein interaction networks in AD (V. M. 

Perreau et al., 2010), and conduct a focused study on genetics involved in pathogenesis of AD with 

brain structure serving WM function. Among many genes, for instance, ADAM10 (a member of 

the A Disintegrin And Metalloproteinase (ADAM) family) is known to be involved in the cleavage 
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of amyloid precursor protein, a key process of AD pathogenesis, and also helps normal synaptic 

functions and hippocampal neurogenesis (Huang et al., 2018; Yuan et al., 2017). 

    Neuroimaging studies have identified specific brain regions whose function or structural 

variations are crucial for WM. Functional MRI (fMRI) studies consistently show that the prefrontal 

cortex, particularly the dorsolateral prefrontal cortex (DLPFC), is heavily involved in WM tasks 

(Owen et al., 2005; Rottschy et al., 2012).  Recent studies have highlighted the role of the 

cerebellum in WM, especially the left cerebellum being implicated in verbal WM tasks (Ben-

Yehudah et al., 2007; Hayter et al., 2007; Stoodley & Schmahmann, 2010). A transdiagnostic study 

has revealed consistent patterns of dysfunction in the prefrontal and parietal cortices, as well as 

cerebellum, across various psychiatric and neurological diagnoses (Robbins, 1996). In parallel, 

structural MRI (sMRI) studies echo the findings of fMRI, where DLPFC surface area 

independently contributes to WM performance (Evangelista et al., 2021), and grey matter volumes 

in the inferior frontal and cerebellum are associated with WM across age groups (Duan et al., 

2021).  

 The integration of genetic and imaging data provides deeper insights into how 

genetic variants influence brain, thereby affecting WM. Heck et al. performed genome-wide gene 

set enrichment analyses in multiple data sets, young and aged, and identified the voltage-gated 

cation channel activity gene set was linked to WM-related tasks and parietal cortex and the 

cerebellum (Heck et al., 2014). Our group linked a set of single nucleotide polymorphisms (SNP) 

to gray matter alterations in the frontal region underlying WM deficits in adults and adolescents 

with attention-deficit/hyperactivity disorder. The SNPs highlighted MEF2C, CADM2, and 

CADPS2, relevant for modulating neuronal substrates underlying high-level cognition (Duan et 

al., 2023). 
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 Both traditional data fusion approaches, such as Canonical Correlation Analysis 

(CCA) (Sapkota et al., 2024; Thompson et al., 2013) and parallel independent component analyses 

(Pearlson et al., 2015), and deep learning based approaches (Kim et al., 2020) have been 

implemented for integrating neuroimaging data and genetics. Yet due to heterogeneous 

characteristics of imaging and genetics, it is a still changeling task to effectively integrate datasets. 

Contrastive learning techniques have recently emerged as powerful tools for multi-modal data 

integration. These methods learn shared representations from different data types by maximizing 

their agreement, making them particularly suitable for tasks involving genetic and imaging data. 

A recent study by Taleb et al. (2022) introduced ContIG, a self-supervised multimodal contrastive 

learning framework for medical imaging with genetics. ContIG effectively learns joint 

representations by contrasting positive pairs (genetic and imaging data from the same subject) 

against negative pairs (data from different subjects), and subsequently enhances the performance 

of prediction tasks (Taleb et al., 2022). 

 In this study, we leverage the strength of both CCA and contrastive learning for 

integration, along with transfer learning Convolutional Neural Network (CNN) and MLP for latent 

feature extraction and build a three-stage imaging guided SNP representation model for 

classification of WM capacity. The contribution of this project includes: 1) a transfer learning 

component from brain aging to WM for neuroimaging feature extraction, 2) a multi-modal 

contrastive learning approach that integrates genetic and imaging data to capture their complex 

relationships, 3) a sCCA interpretation for the learned representations to identify significant 

imaging and genetic components with shared variance. The findings could provide new insights 

into the biological pathways for both risk genetics and brain structure involved in WM, identify 

potential biomarkers for cognitive decline and impairment.    
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6.2 Materials and Methods 

In this section we first introduce our cohort and data. Then we detail the proposed novel 

model, followed by baseline models for comparison. Finally, we explain the post analyses for 

model and results interpretation.   

6.2.1 Cohort 

UK Biobank (Sudlow et al., 2015), a large-scale open access biomedical database, contains 

de-identified data of a million UK participants and over 40,000 participants with brain MRI and 

genetic data. Informed consent was obtained from all participants, and the study follows UKB 

Ethics and Governance Framework, approved by the North-West Multi-center Research Ethics 

Committee. We focused on T1-weighted MRI and SNP (Single Nucleotide Polymorphism) data 

in this study. 

26,534 subjects participated in the WM assessment and the scores ranged from 2 to 12 with 

distribution as shown in Figure 6.1. We selected a subpopulation of 5469 participants divided into 

two groups i) participants with memory scores ranging from 2 to 5 and ii) participants with scores 

in the range of 9 to 12. The segregation was based on the Miller's Law of clinical psychology 

which states that individuals, on average, can hold about 7 ± 2 items at a time in their WM (Miller, 

1956). And we adjusted based on the distribution of our dataset to 7 ± 1 as the average capacity. 

Thus, group I is termed as low WM capacity and group II is high WM capacity.Error! Reference 

source not found. Among them, 4995 had both MRI and genetic data for our analyses , with 3192 

in low WM group (age: 55.95±7.58, 1317 male), and 1803 in high WM group (age: 42.35±7.08, 

1034 male). 
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Figure 6.1: Distribution of working memory scores of 26,534 participants. 

 

T1-weighted MRI images were segmented into six types of tissues (gray matter, white 

matter, etc.) using SPM 12. Gray matter images were normalized into Montreal Neurological 

Institute space, modulated, and smoothed with a 6×6×6mm3 Gaussian kernel. Each image has a 

voxels matrix of 128×141×128. Further quality control was conducted to retain individual 

images with a correlation larger than 0.9 with the averaged gray matter image.  

6.2.2 Single Nucleotide Polymorphisms (SNP) Preprocessing 

A subset of SNPs were selected from the genomic data, after imputation using Michigan 

imputation server(Wightman et al., 2021), which are expression quantitative trait loci (eQTL) for 

brain tissue published by PsychENCODE (Wang et al., 2018), i.e., regulating gene expression in 

brain. Further, to increase the likelihood of identifying the biologically relevant genes we selected 

SNPs that are also part of the Protein-Protein Interaction (PPI) interaction network of amyloid 

precursor protein and Abeta of Alzheimer's disease, yielding 1060 SNPs (Victoria M. Perreau et 

al., 2010).  
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6.2.3  Contrastive Genetic-Neuroimaging Integration (CGNI) 

We propose a three-stage imaging genetic integration framework as shown in Figure 6.2. 

The input includes whole brain gray matter images and 1060 SNPs. The output is twofold: one is 

the classification of WM group, and the other is associated with latent representations of imaging 

and genetic data. Stage 1 is to extract imaging latent representations using transfer learning. 

Stage 2 is to extract genetic representations guided by the imaging representations via contrastive 

learning. Finally, Stage 3 combines these representations to perform WM classification. The 

details of each stage are provided in the following sections. 

 

Figure 6.2: Schematic illustration for the steps of our proposed method.  

 

6.2.3.1 Imaging Representation Learning Using Transfer Learning 

Stage 1 shows the model to extract imaging representation. First, we pre-trained a 3D CNN 

model for brain age prediction task following the work of (Han et al., 2021), using a large sample 

size of 39,755. The 3D CNN architecture is composed of five convolutional blocks and each block 

has a 3D convolutional layer, a batch normalization layer, followed by a max pool layer, and a 
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ReLU. The convolutional layers used 32, 64, 128, 256, 256 channels, respectively, with stride of 

one and no padding was used. The output images from the final convolutional block are flattened 

and passed to the fully-connected layer which takes 1024 inputs and outputs the predicted brain 

age. The fully-connected layer has a dropout rate of 0.2. 

 Using transfer learning combined with heuristic self-transfer-training (Pranav 

Suresh, 2023) method, the best trained brain age model was used to initialize the classification  

model for the prediction of the WM. We denote the flattened outputs of the final convolutional 

block of the 3D CNN model as ℎ𝑣
𝑖 = 𝑓𝑣(𝑥𝑣

𝑖 ), where 𝑥𝑣
𝑖  is the imaging modality of the participant 

i ∈ {1, … ,4995}.  

6.2.3.2 Imaging Guided SNP Representation Learning via Contrastive Learning 

Each individual sample, 𝑋𝑖, where i ∈ {1, … ,4995}, has an imaging modality, 𝑥𝑣
𝑖 , a genetic 

modality, 𝑥𝑔
𝑖 , and a label 𝑦𝑖 ∈ {low = 0, high = 1}. We train our contrastive model in batches of 

size b, where b >1. Our model, as shown in stage 2 of Error! Reference source not found., is 

comprised of two encoders, one for each modality.  

The encoders transform each modality into respective representations using the contrastive 

loss functions described in the following section. For imaging encoder, denoted as 𝑒𝑣, we use the 

output from the 3D CNN of the baseline model (see section D.i), ℎ𝑣
𝑖 , as the input. The imaging 

encoder input layer takes 512 inputs and has three hidden layers. The size of each hidden layer is 

250, 200, and 150 neurons, respectively. The output layer is of size 100, denoted as 𝑧𝑣
𝑖 = 𝑒𝑣(ℎ𝑣

𝑖 )  ∈

ℝ100.Similarly, the genetic encoder, denoted as 𝑒𝑔, is a fully-connected neural network with 1060 

SNPs as input and has five hidden layers of size 400, 600, 400, 300, and 150 neurons, respectively. 

The output layer is of size 100, denoted as 𝑧𝑔
𝑖 = 𝑒𝑔(𝑥𝑔

𝑖 )  ∈ ℝ100.  
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For every ith pair of imaging representation and genetic data, (ℎ𝑣
𝑖 , 𝑥𝑔

𝑖 ), (𝑧𝑣
𝑖 , 𝑧𝑔

𝑖 ) are 

representations from the encoders (𝑒𝑣, 𝑒𝑔), in a batch of b samples. We constrain our batch 

selection such that |{𝑦𝑖 = 0}| > 0, and |{𝑦𝑖 = 1}| > 0, to ensure at least one sample from each label. 

We then define our loss function using following loss terms where τ is a temperature parameter 

that scales the embeddings to control the range of the dot product, and 𝑃(𝑖) ≡ {𝑝 ∈

{1 … 𝒃} \ 𝑖 : 𝑦𝑝 = 𝑦𝑖} 

L(v, g) = − ∑ log

exp (
zv
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i

τ )

∑ exp (
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In Eq. (6.1)—image-to-genetics, for every imaging modality (ℎ𝑣
𝑖 ) in a batch, we consider 

its corresponding genetic pair (𝑥𝑔
𝑖 ) as the positive sample with all other genetic samples (𝑥𝑔

𝑗
;  𝑗 ≠
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𝑖) as negatives to be contrasted against. Similarly, in Eq. (6.2)—genetics-to-imaging, imaging ℎ𝑣
𝑖  

is the positive of the genetic sample 𝑥𝑔
𝑖  and contrasted against all other images in the batch (ℎ𝑣

𝑗
;  𝑗 ≠

𝑖). In Eq. (3)—imaging-to-imaging, and Eq. (4)—genetic-to-genetic loss terms, by taking 

advantage of the labels, we use intra-modal contrasting to align the representations of the samples 

of same class to be close to each other, while the samples from the other class are pushed apart.  

Finally, we combine the four loss terms and define the contrastive batch loss function as: 

 

𝐿𝑐𝑜𝑛𝑡(𝑣, 𝑔) = λ𝐿(𝑣, 𝑔) + 𝜎𝐿(𝑔, 𝑣) + 𝛾𝐿(𝑣, 𝑣)

+ 𝜃𝐿(𝑔, 𝑔) (6.5)
 

  

where λ, σ, γ, θ ∈ [0,1] are weighting hyperparameters. By incorporating these inter- and 

intra-modal contrastive losses, our model ensures that each modality independently learns 

meaningful and discriminative representations. These representations are then combined for the 

final classification task, enhancing the overall performance of the model. In addition, we trained 

the model with different combinations of these loss terms and compare the quality of the 

representations by fine-tuning to the classification task shown in Stage 3. 

6.2.4 Classification of Working Memory 

In stage 3, we combined genetic representations obtained from the contrastive training (𝑧𝑔
𝑖 ) with 

the imaging representations from the 3D CNN model (ℎ𝑣
𝑖 ), resulting in an input dimension of 612 

(100 from genetic encoder and 512 from the imaging CNN) and trained a fully-connected neural 

network. The neural network has three hidden layers of size 250, 200, and 150, respectively. The 

output layer has two neurons for classification of WM.Error! Reference source not found. 
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6.2.5 Baseline Models 

We compare the performance of our model with the following four baseline models. For 

the first two models, we trained two supervised models for each modality separately. Next, we 

combined the latent representations from the individual modalities and trained iii) a linear classifier 

using Support Vector Machine (SVM), and iv) a fully-connected neural network classifier. 

 Imaging CNN: For classification of WM using only the imaging modality we used 

the same model described in the stage 1 of the CGNI framework.  

 Genetic Classification Models: The genetic data was processed using a fully 

connected neural network (NN) designed to capture the complex relationships within the 1060 

SNPs. The architecture of the NN is as follows: the input layer of the network takes an input of 

1060 SNP features. The hidden layers are of size 800, 600, and 400 neurons respectively. The final 

layer is a 2-neuron output layer to classify the WM scores. To prevent overfitting and ensure 

sparsity, L1 regularization was applied to the hidden layers.  The activation function used for the 

hidden layers is the ReLU.  We denote the output of the last hidden layer (size of 400 neurons) as 

ℎ𝑔
𝑖 = 𝑓𝑔(𝑥𝑔

𝑖 )  ∈ ℝ400, where 𝑥𝑔
𝑖  is the genetic modality of the participant i ∈ {1, …, 4995}. 

 Imaging Genetic Integration Models (linear and non-linear): Finally, we 

combined the output embeddings of the two modalities,  ℎ𝑣
𝑖 ⊕  ℎ𝑔

𝑖 , and trained a Support Vector 

Machine (SVM) for linear classification and a fully-connected NN. The input layer of this NN has 

912 neurons. The input layer is followed by two hidden layers of size 500 and 200 neurons. The 

output layer has 2 nodes corresponding to high memory or low memory. ReLU activation was 

used after each layer to incorporate non-linearity into the model. While training, L1 regularization 

was applied to all the layers to prevent overfitting. 
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6.2.6 Post Analyses for results interpretation 

In our post analyses, first, we utilized Sparse Canonical Correlation Analysis (SCCA) to 

identify the relationships between the imaging and genetic latent representations, and top 

contributing features. Next, from the identified genetic features, we further performed gene 

enrichment analysis to reveal their biological significance.  

6.2.6.1 Sparse CCA Analysis for Understanding Imaging-Genetics Relationships 

To understand the relationships between the imaging and genetic representations of the 

contrastive training, we performed SCCA on the encoder outputs 𝑧𝑣
𝑖 , 𝑧𝑔

𝑖 . We utilized the iterative 

penalized SCCA method proposed by Mai et. al. (Mai & Zhang, 2019) due to its ability to handle 

high-dimensional and enforce sparsity to reduce overfitting. We considered the number of 

components as one of the hyperparameter along with the sparsity penalization for each modality 

and selected the sCCA model via GridSearchCV and 5-fold cross validation. We used the 

implementation provided by Chapman et. al. (Chapman & Wang, 2021).  

For the correlated components from the imaging and genetic modalities, to identify the top 

contributing important features, we used feature occlusion sensitivity method. We denote the ith 

sample with kth feature occluded as 𝑥𝑚𝑘
𝑖 , where m is the modality. The feature occluded imaging 

encoder𝑧𝑣𝑘
𝑖 =  𝑒𝑣 (𝑓𝑣(𝑥𝑣𝑘

𝑖 )) and𝑧𝑔𝑘
𝑖 =  𝑒𝑔(𝑥𝑔𝑘

𝑖 ) as the genetic encoder output. For imaging 

modality, we partitioned the brain into 116 brain regions based on(Edmund et al., 2020)  For 

genetic modality, we considered the individual SNPs as features and computed their contribution. 

Given for each correlated component identified from sCCA, only fewer latent representation nodes 

are involved. We computed the contribution of each feature to the largest weighted (highest 

absolute canonical weight) representation node. The contribution value is computed as the mean 
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difference of the actual encoder output 𝑧𝑚
𝑖 ), and encoder output with feature occluded𝑧𝑚𝑘

𝑖 ) as 

shown in Eq. (6.6). 

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑘 =  
∑ 𝑧𝑚

𝑖 −  𝑧𝑚𝑘
𝑖𝑁

𝑖=0  

𝑁
 ∀ 𝑘 ∈ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (6.6) 

 

The top contributing features to each component are the brain regions and SNPs whose 

contribution scores are greater than 2.5 and 3 standard deviations away, respectively, from the 

mean contribution scores. 

  

6.2.6.2 Gene Set Enrichment Analysis 

To further understand the biological significance of the set of SNPs that are identified to 

have significant contribution to the sCCA components, we have performed a gene enrichment 

analysis using the gProfiler online software (Raudvere et al., 2019). First, we matched the SNPs 

to the Ensemble ID of the genes (these were part of the eQTL dataset obtained from psychEncode) 

and used the g:Convert function to get the gene names, then used g:GOSt function to perform the 

enrichment test (Raudvere et al., 2019). 

6.2.7 Experimental Setup 

Across all experiments, we used the same splits of data for training, validation, and test set. 

We ensured there was no cross-contamination of samples between the splits. We split the data into 

two sets, 90% for training and 10% for test set. Using the training set we performed five-fold cross 

validation for each set of hyperparameters. For fully-connected networks, we vary the number of 

hidden layers and the size of each layer, learning rate. We used the Adam optimizer for optimizing 

the neural networks. For the CNN models we used a batch size of 25 images on A100 GPU. For 
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the contrastive model we used a batch size of 50 and for the WM classification model the batch 

size is 75. For classification tasks we used balanced accuracy as our metric. 

6.3 Results 

6.3.1 Baseline Model Results 

As a benchmark comparison for the contrastive training model, we have reported the 

performance of several baselines. In Table 6-1, we report the mean balanced accuracy across five-

folds of the imaging-genetic baseline model along with other models trained on individual 

modalities. 

Table 6-1: Comparison of balanced accuracies of models 

 

WM 

Classification  

Training Validation Holdout  

Imaging 

CNN    

81.34 ± 2.34 75.32 ± 0.49 87.02 ± 1.31 

Sparse 

Genetic NN  

59.80 ± 0.42 59.35 ± 0.45 59.28 ± 0.57 

Imaging-

Genetic SVM 

95.5 ± 2.59 65.08 ± 1.56 65.23 ± 2.38 

Imaging-

Genetic NN 

87.47 ± 0.45 87.08 ± 0.80 87.02 ± 0.67 

 

To pre-train the CNN model for brain age prediction task, we achieved the best results 

(MAE of 2.82 ± 0.04 on training, 2.88 ± 0.05 on validation, 2.47 ± 0.2 on test set). By transferring 

the first two layers of the brain age model, we achieved high mean balanced accuracy (87.02) on 

the holdout set. For genetic modality, With the addition of L1 sparsity explicitly and L2 sparsity 

via the weight decay parameter of the Adam optimizer the model achieved balanced accuracies 

around 59% Finally, the multi-modal imaging-genetic model exhibited the highest performance 

with balanced accuracies above 87% across all splits, indicating robust generalization. 
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6.3.2 Comparison of Combinations of Contrastive Loss Terms 

We systematically tested various combinations of loss terms in (5) and recorded the 

balanced accuracies on the training, validation, and test sets. The results are summarized in the 

Error! Reference source not found.. 

Table 6-2: Balanced accuracies achieved for different loss term combinations 

Loss Term Train Validation Holdout 

Imaging-

to-genetics (L1) 
89.96 ± 0.80 88.55 ± 1.10 88.31 ± 0.31 

Genetics-

to-imaging (L2) 
89.81 ± 0.95 87.97 ± 0.91 87.51 ± 0.20 

Imaging-

to-imaging (L3) 
88.99 ± 0.74 87.45 ± 1.60  86.80 ± 0.34 

Genetics-

to-genetics (L4)  
90.03 ± 0.87 88.04 ± 0.76 88.1 ± 0.41 

L1 + L2  88.98 ± 1.13 88.03 ± 1.26 87.76 ± 0.94 

L1 + L3 90.09 ± 1.1 88.14 ± 0.98 88.19 ± 0.67 

L1 + L4  89.75 ± 1.21 89.33 ± 0.11 88.01 ±  0.08 

L2 + L3 90.45 ± 0.37 87.89 ± 0.87 89.66 ± 0.31 

L2 + L4 90.49 ±0.84 88.27 ± 1.31 88.07 ± 0.83 

L3 + L4 88.95 ± 1.71  87.96 ± 0.86 87.74 ±  0.43 

L1 + L2 + 

L3  
89.60 ± 0.98 88.22 ± 1.03 88.18 ± 0.34 

L2 + L3 + 

L4 
90.00 ± 1.09 88.14 ± 1.01  87.79 ± 0.33 

L1 + L2 + 

L4 
91.37 ±  0.30 90.39 ± 0.11 88.91 ±  0.66 

L1+ L2+ 

L3+ L4  
89.81 ± 0.73 88.38 ± 0.99 88.61 ± 0.56 

 

All individual loss terms have shown improvement over the baseline accuracies. The 

combination of loss terms (1), (2), and (4) yielded the highest balanced accuracies on the training 

(91.37 ± 0.30%), validation (90.39 ± 0.11%), and test sets (88.91 ± 0.66%). The values of the loss 

term weighting hyperparameters (λ, σ, θ) for each of the loss term were 0.7, 0.3, and 0.4, 
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respectively. Individual loss terms (1) and (4) also performed well, particularly in the holdout sets 

(88.31 ± 0.31% and 88.10 ± 0.41%, respectively). 

6.3.3 Post Analysis Results 

The SCCA analysis performed on the representations of the contrastive model with loss 

terms (1), (2), and (4) using the GridSearchCV resulted in selection of five components. In , we 

reported the correlation coefficients for these five component pairs across the training, validation, 

and holdout sets. The correlations for each component pair are relatively consistent between the 

training and validation sets, indicating the stability of the CCA model. The top contributing brain 

regions and SNPs are listed in Table 6-4 and Table 6-5 and plotted in Figure 6.3: Significant brain 

regions identified across five SCCA components. Brain regions in red indicate increased effect 

and blue regions indicate decreased effect. 

 

Figure 6.3: Significant brain regions identified across five SCCA components 

 

Table 6-3: CCA correlation of components 

Component Training Validation  Holdout 

1 0.68 0.67 0.57 
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2 0.67 0.65 0.54 

3 0.66 0.65 0.55 

4 0.65 0.65 0.52 

5 0.63 0.63 0.57 

 

Across five SCCA components Error! Reference source not found.we identified seven 

brain regions and Error! Reference source not found.Error! Reference source not found. the 

28 genes corresponding to the identified SNPs. Most of the selected regions and SNPs are similar 

among all the components. 

Table 6-4: Genes with significant contribution scores for each component 

Component Genes 

1 

ADAM10, LRRK2, RAB6A, GSK3B, BTBD1, RBM11, BIN1, 

FIS1, RNH1, STAU1, CD9 

2 

ADAM10, LRRK2, RAB6A, ATP9A, BTBD1, MAPT, 

CALHM1, RPL28, FIS1, STAU1, GSE1, CD9 

3 

ADAM10, LRRK2, RAB6A, BTBD1, MAPT, RPL28, RCAN1, 

FYN, KLHL35, STAU1, CD9 

4 

MFF, RAB6A, BTBD1, BIN1, CALHM1, FIS1, SLC40A1, 

CENPV, RNH1, STAU1 

5 

LRRK2, ATP9A, BTBD1, CALHM1, FIS1, CCNA1, SLC40A1, 

RNH1, STAU1 

 

Table 6-5: Brain regions with significant contribution scores for each component 

Component Brain Regions 
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1 Left Cerebellum, Left Insula, Left Putamen, Left Caudate 

2 Right Occipital Inferior, Left Caudate, Right Cuneus 

3 Left Cerebellum, Left Insula, Left Caudate 

4 Left Temporal Middle, Right Cuneus, Left Caudate 

5 Right Occipital Inferior, Right Cuneus, Left Caudate 

 

6.3.4 Gene Enrichment Pathway Analysis 

The gene enrichment test in three GO categories revealed enrichment in dendrite (p = 

9.69e-6), synapse (p= 5.08e-5), and exocytic vesicle (p = 3.87e-4) in cellular components; 

regulation of mitochondrial fission, and developmental process in biological pathways, and protein 

binding in molecular function. The results of the analysis can be found here 

(https://biit.cs.ut.ee/gplink/l/H8Pp77ilQy). 

6.4 Discussion 

This study aimed to integrate genetic and imaging data using a novel contrastive learning 

framework to identify significant associations between genetic variants and brain regions 

associated with cognitive function of WM. Our comprehensive analysis, which included transfer 

learning contrastive learning, SCCA, and gene enrichment tests, yielded several important 

findings. 

The performance of various models on WM classification tasks demonstrated that integrating 

imaging and genetic data outperformed models using only one data type. The Imaging-genetic 

neural network achieved the highest balanced accuracy (87.02 ± 0.67) on the holdout set, 

indicating the potential of multi-modal approaches in classification of WM. The study of different 

combinations of the loss terms further showed that including terms (L1, L2, L4) resulted in the 

https://biit.cs.ut.ee/gplink/l/H8Pp77ilQy
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best performance, highlighting the importance of capturing relationships between both modalities. 

The inclusion of (4) in the loss function (i.e., the loss term L(g,g)) showed substantial improvement 

in validation accuracy (89.33 ± 0.11%) compared to other combinations, indicating its importance 

for generalization. This combination effectively leverages the complementary information from 

both imaging and genetic data, resulting in superior performance in WM classification tasks. 

Our post analysis performed to identify the associations between brain regions and genes 

indicate that a decrease in the Grey Matter Volume (GMV) of regions left cerebellum, left insula, 

left putamen, left Caudate, and increase in the GMV of regions right occipital inferior, right 

cuneus, and left temporal middle is associated with the increase in the minor allele in the SNPs of 

all identified genes except gene STAU1. Recent research has shown that the reductions in 

cerebellar volume accompanying aging and are correlated with cognitive decline (Arleo et al., 

2024) which underscores our finding regarding left cerebellum in relation to working memory in 

older population.    

 The gene enrichment analysis highlighted several biological processes and cellular 

components significantly associated with the identified genes. The identified SNPs and associated 

genes provide insights into the genetic underpinnings of cognitive function. Notably, the regulation 

of mitochondrial fission and developmental processes were prominent, suggesting that these 

pathways may play crucial roles in maintaining WM capacity and preventing neurodegeneration. 

Recent research has identified several genetic variants that significantly impact WM performance. 

For instance, genes like ADAM10, LRRK2, RAB6A, and BTBD1 have been implicated in various 

neural processes relevant to WM. ADAM10, involved in amyloid precursor protein processing, 

has been linked to Alzheimer's disease and cognitive decline (Huang et al., 2018). Variants in 

LRRK2, associated with synaptic vesicle trafficking, also play a role in neurodegenerative diseases 
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such as Parkinson's, influencing cognitive functions (Zimprich et al., 2004). The integration of 

these genetic data with neuroimaging findings helps elucidate the complex interplay between 

genetic predispositions and brain structure in maintaining WM. While our study provides valuable 

insights, several limitations should be noted. The sample size, while sufficient for the current 

analysis, limits the generalizability of the findings. Larger, more diverse cohorts are needed to 

validate these results. The identified genetic variants and pathways require further functional 

validation to establish causal relationships with WM capacity.  

6.5 Conclusion 

In conclusion, our study demonstrates the power of integrating genetic and imaging data 

using contrastive learning techniques. The identified genetic variants and brain regions, along with 

their associated biological pathways, provide a foundation for further exploration into the genetic 

basis of WM. This integrated approach holds promise for advancing our understanding of the 

complex interactions underlying WM capacity and its decline in neurodegenerative diseases. 



112 

7 CONCLUSIONS AND FUTURE DIRECTIONS 

7.1 Summary of Key Findings 

This dissertation has explored the integration of neuroimaging and genetic data to predict 

cognitive functions and symptoms in both small and large cohorts. The research focused on the 

following key areas: 

1. Neuroimaging-Genetic Prediction of Symptom Changes in ADHD: By integrating 

structural MRI (sMRI) and genetic data, we identified significant genetic variants and brain 

regions associated with changes in ADHD symptoms. This study demonstrated the 

potential of multimodal data integration in understanding the genetic underpinnings of 

neuropsychiatric disorders. 

2. Training Strategy for Neural Network Models with Limited Samples: We proposed a 

novel self-transfer-training (STT) strategy for training convolutional neural networks 

(CNNs) with limited samples. This approach improved the performance of CNN models 

in predicting cognitive functions from neuroimaging data, highlighting the importance of 

effective training strategies in machine learning applications.  

3. CNN Models for Working Memory Classification Using sMRI: By applying CNNs to 

sMRI data, we were able to classify working memory capacity with high accuracy. This 

study demonstrated the utility of deep learning techniques in identifying relevant brain 

regions and predicting cognitive functions from structural neuroimaging data. 

4. Integration of Neuroimaging and Genetics via Contrastive Learning for Working 

Memory: Using contrastive learning, we integrated neuroimaging and genetic data to 

enhance the prediction of working memory capacity. This approach revealed significant 
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associations between specific genetic variants and brain imaging phenotypes, providing 

insights into the genetic basis of cognitive functions. 

7.2 Contributions to the Field 

The research presented in this dissertation makes several important contributions to the 

field of imaging genomics: 

1. Advancement in Multimodal Data Integration: The studies demonstrate the 

effectiveness of integrating neuroimaging and genetic data to uncover the genetic 

basis of cognitive functions and neuropsychiatric disorders. This approach provides 

a more comprehensive understanding of the complex interactions between genes 

and brain structure. 

2. Development of Novel Machine Learning Strategies: The self-transfer-training 

strategy and the application of contrastive learning represent significant 

advancements in the use of machine learning techniques for neuroimaging 

genomics. These methods enhance the predictive power and interpretability of 

models, particularly in the context of limited sample sizes. 

3. Identification of Genetic Influences on Brain Structure and Function: The 

findings from the studies contribute to our understanding of how specific genetic 

variants influence brain morphology and cognitive functions. This knowledge can 

inform the development of targeted interventions and personalized treatment 

strategies for neuropsychiatric disorders. 

7.3 Limitations of the Study 

Despite the significant contributions, this dissertation also has several limitations: 
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1. Sample Size: Some studies were conducted with relatively small sample sizes, 

which may limit the generalizability of the findings. Larger cohorts are needed to 

validate the results and improve the robustness of the models. 

2. Complexity of Multimodal Data Integration: Integrating neuroimaging and 

genetic data is inherently complex and computationally intensive. The 

methodologies used in this dissertation, while effective, could benefit from further 

refinement and optimization to handle even larger and more diverse datasets. 

3. Interpretability of Machine Learning Models: Although the machine learning 

models used in this research provided valuable insights, their interpretability 

remains a challenge. Future work should focus on developing more interpretable 

models to better understand the underlying biological mechanisms. 

7.4 Recommendations for Future Research 

Based on the findings and limitations of this dissertation, several recommendations for 

future research are proposed: 

1. Increase Sample Sizes: Future studies should aim to include larger and more 

diverse cohorts to validate the findings and enhance the generalizability of the 

results. Collaborative efforts and data-sharing initiatives can help achieve this goal. 

2. Refine Multimodal Integration Techniques: Continued development and 

refinement of multimodal data integration techniques are needed to handle the 

increasing complexity and volume of neuroimaging and genetic data. This includes 

improving computational efficiency and addressing potential confounding factors. 

3. Focus on Interpretability: Developing more interpretable machine learning 

models is crucial for translating research findings into clinical practice. Efforts 
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should be made to design models that not only provide accurate predictions but also 

offer insights into the underlying biological mechanisms. 

4. Explore Longitudinal Studies: Longitudinal studies tracking individuals over 

time can provide valuable information on the dynamics of brain development and 

the progression of neuropsychiatric disorders. Future research should incorporate 

longitudinal data to capture these temporal changes. 

5. Investigate Additional Cognitive Functions and Disorders: Expanding the scope 

of research to include other cognitive functions and neuropsychiatric disorders can 

provide a broader understanding of the genetic and neuroimaging correlates of brain 

function. This can help identify common and distinct mechanisms underlying 

different conditions. 

 

In conclusion, this dissertation has demonstrated the potential of integrating neuroimaging 

and genetic data to predict cognitive functions and symptoms in both small and large cohorts. The 

findings contribute to the growing field of imaging genomics and provide a foundation for future 

research aimed at understanding the genetic basis of brain function and developing personalized 

interventions for neuropsychiatric disorders. 
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