
Georgia State University Georgia State University

ScholarWorks @ Georgia State University ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

8-7-2024

Towards Pruning and Parameter Efficient Fine-tuning of Deep Towards Pruning and Parameter Efficient Fine-tuning of Deep

Neural Networks Neural Networks

Yang Li

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

Recommended Citation Recommended Citation
Li, Yang, "Towards Pruning and Parameter Efficient Fine-tuning of Deep Neural Networks." Dissertation,
Georgia State University, 2024.
doi: https://doi.org/10.57709/37370410

This Dissertation is brought to you for free and open access by the Department of Computer Science at
ScholarWorks @ Georgia State University. It has been accepted for inclusion in Computer Science Dissertations by
an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact
scholarworks@gsu.edu.

https://scholarworks.gsu.edu/
https://scholarworks.gsu.edu/cs_diss
https://scholarworks.gsu.edu/computer_science
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.57709/37370410
mailto:scholarworks@gsu.edu

Towards Pruning and Parameter Efficient Fine-tuning of Deep Neural Networks

by

Yang Li

Under the Direction of Shihao Ji, Ph.D.

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2024

ABSTRACT

Deep Neural Networks (DNNs) have achieved significant success across various appli-

cations. However, the increasing number of parameters in state-of-the-art architectures

presents challenges such as overfitting and high computational costs. Additionally, with the

rising adoption of large language models (LLMs) and the growing demand for per-user or

per-task model customization, parameter-efficient fine-tuning has become crucial. Conse-

quently, the exploration of neural network efficiency has emerged as a vibrant and dynamic

research area, focusing on optimizing model performance while minimizing resource usage.

This dissertation explores neural network efficiency in two directions: pruning and parameter-

efficient fine-tuning. Three novel pruning algorithms—L0-ARM, NPN, and Dep-L0—are in-

troduced. L0-ARM enhances L0-based pruning with the Augment-Reinforce-Merge gradient

estimator, demonstrating superior performance in sparsifying networks. Building on L0-

ARM, the Neural Plasticity Network (NPN) enables both network pruning and expansion

within the same framework. To address the inconsistencies of L0-based methods on large-

scale tasks, Dep-L0 introduces dependency-enabled L0 regularization, leveraging dependency

modeling for binary gates.

In the realm of parameter-efficient fine-tuning (PEFT), this dissertation introduces VB-

LoRA, which implements a novel ”divide-and-share” paradigm to address the limitations of

low-rank decomposition across matrix dimensions, modules, and layers by globally sharing

parameters through a vector bank. The proposed VB-LoRA method composites all low-rank

matrices of LoRA from a shared vector bank using a differentiable top-k admixture module.

This approach enables VB-LoRA to achieve extreme parameter efficiency while maintaining

performance that is comparable to or better than state-of-the-art PEFT methods.

INDEX WORDS: Efficient neural networks, Pruning method, L0 regularization,
Parameter-efficient fine-tuning, Low-rank adaptation, Top-k ad-
mixture module

Copyright by
Yang Li

2024

Towards Pruning and Parameter Efficient Fine-tuning of Deep Neural Networks

by

Yang Li

Committee Chair:

Committee:

Shihao Ji

Rajshekhar Sunderraman

Murray Patterson

WenZhan Song

Electronic Version Approved:

Office of Graduate Services

College of Arts and Sciences

Georgia State University

August 2024

iv

CHAPTER 0

DEDICATION

I dedicate this work to my parents, Yongtai Li and Xinrong Yang. Their unwavering

support, encouragement, and unconditional love have made this possible.

v

CHAPTER 0

ACKNOWLEDGMENTS

I am profoundly grateful to my advisor, Dr. Jonathon Shihao Ji, whose unwavering

support has been the cornerstone of my Ph.D. journey. His insightful guidance and deep

expertise were instrumental in shaping this dissertation and navigating the challenges of

research.

I sincerely appreciate my esteemed thesis committee members: Dr. Rajshekhar Sunderra-

man, Dr. Murray Patterson, and Dr. WenZhan Song. Their insightful feedback, constructive

critiques, and thought-provoking questions pushed me to explore the depths of my research,

greatly enhancing its quality.

My heartfelt thanks go to Dr. Shaobo Han, my mentor at NEC Labs, for his invaluable

guidance and encouragement. I extend special thanks to my dedicated colleagues in the

research group: Dr. Xiang Li, Dr. Xiulong Yang, Dr. Yang Ye, Qing Su, Hui Ye, and Parsa

Ghazvinian. Their collaboration and support were invaluable.

I am deeply thankful to my friends Changlei Li, Dr. Kiril Kuzmin, Dr. Dongjie Wang,

Wei Wang, and Mu Ge for their unwavering support and friendship.

Lastly, I extend my gratitude to everyone who contributed to the completion of this

dissertation. Although I cannot individually name each person, please accept my deepest

thanks. This research would not have been possible without the collaborative support and

encouragement of these individuals, for which I am truly grateful.

vi

CHAPTER 0

TABLE OF CONTENTS

ACKNOWLEDGMENTS . v

LIST OF TABLES . x

LIST OF FIGURES . xii

1 INTRODUCTION . 1

1.1 Network Pruning . 1

1.2 Pruning Methods . 3

1.3 Parameter Efficient Fine-tuning . 4

1.4 Dissertation Organization . 5

1.5 List of Publications . 7

2 L0-ARM: Network Sparsification via Stochastic Binary Optimization . . 9

2.1 Formulation . 10

2.2 L0-ARM: Stochastic Binary Optimization 13

2.2.1 Choice of g(ϕ) . 15

2.2.2 Sparsifying Network Architectures for Inference 17

2.2.3 Imposing Shrinkage on Model Parameters θ 18

2.2.4 Group Sparsity Under L0 and L2 Norms 19

2.3 Related Work . 20

2.4 Experimental Results . 21

2.4.1 Implementation Details . 22

2.4.2 MNIST Experiments . 23

2.4.3 CIFAR Experiments . 26

2.5 Conclusion . 29

vii

3 Neural Plasticity Networks . 31

3.1 Neural Plasticity Networks: Formulation 33

3.2 Learning Stage Scheduler . 39

3.2.1 Dropout as k = 0 . 40

3.2.2 Pre-training as k = ∞ at the beginning of NPN training . . 41

3.2.3 Fine-tuning as k = ∞ at the end of NPN training 41

3.2.4 Modulating learning stages by k 42

3.3 Network Expansion . 42

3.4 Related Work . 44

3.4.1 Network Sparsification . 44

3.4.2 Neural Architecture Search . 45

3.4.3 Dynamic Network Expansion . 46

3.5 Experimental Results . 46

3.5.1 Synthetic Dataset . 48

3.5.2 MNIST . 50

3.5.3 CIFAR-10/100 . 51

3.6 Conclusion . 53

4 Dep-L0: Improving L0-based Network Sparsification via Dependency
Modeling . 57

4.1 Method . 58

4.1.1 Sparse Structure Learning . 59

4.1.2 Group Sparsity . 63

4.1.3 Gate Partition . 64

4.1.4 Neural Dependency Modeling . 66

4.2 Related Work . 68

4.3 Experiments . 69

4.3.1 Experimental Details . 70

4.3.2 CIFAR10 Results . 72

viii

4.3.3 CIFAR100 Results . 74

4.3.4 ImageNet Results . 74

4.3.5 Study of Learned Sparse Structures 75

4.3.6 Run-time Comparison . 78

4.4 Ablation Study of the Gate Generator 79

4.4.1 MLP variants . 79

4.4.2 CNN . 80

4.4.3 LSTM . 80

4.4.4 Summary . 81

4.5 Conclusion and Future Work . 81

5 VB-LoRA: Extreme Parameter Efficient Fine-Tuning with Vector Banks 83

5.1 Introduction . 83

5.2 Related Work . 85

5.2.1 Exploit Global Redundancy for Enhanced Parameter Effi-
ciency . 85

5.2.2 Parameter Modeling based on Sparse Admixture Models . . 86

5.3 Proposed Method . 87

5.3.1 Preliminaries: Transformer Architecture and LoRA Adapters 87

5.3.2 Divide-and-Share: a New Paradigm for Parameter Sharing 88

5.3.3 Breaking Boundaries of LoRA for Global Parameter Sharing 91

5.3.4 Parameter Count . 92

5.4 Experiments . 94

5.4.1 Natural Language Understanding 94

5.4.2 Natural Language Generation 98

5.4.3 Instruction Tuning . 98

5.4.4 Ablation Study . 100

5.5 Conclusion . 102

6 CONCLUSION AND FUTURE WORK 105

ix

6.1 Pruning Transformer-based Models . 105

6.2 Multi-task Parameter-efficient Fine-tuning 107

6.3 Distributed Parameter-efficient Fine-tuning 107

REFERENCES . 109

x

CHAPTER 0

LIST OF TABLES

Table 2.1 Architectural details of WRN incorporated with L0-ARM. 23

Table 2.2 Performance comparison on MNIST. 24

Table 2.3 Performance comparison of WRN on CIFAR-10. 27

Table 2.4 Performance comparison of WRN on CIFAR-100. 28

Table 3.1 The network sparsification and expansion with LeNet5 on MNIST. . . 51

Table 3.2 The network sparsification and expansion with ResNet56 on CIFAR10
and CIFAR100. 52

Table 4.1 Comparison of pruning methods on CIFAR10. 73

Table 4.2 Comparison of pruning methods on CIFAR100. 73

Table 4.3 Comparison of pruning methods on ImageNet. 75

Table 4.4 Run-time comparison between Dep-L0 and L0-HC. 78

Table 4.5 Ablation study of the gate generator architecture with VGG16 on CI-
FAR10. 79

Table 5.1 Hyperparameters and computing resources for natural language under-
standing experiments on the GLUE benchmark. 95

Table 5.2 Hyperparameters and computing resources on natural language gener-
ation experiments on the E2E dataset. 96

Table 5.3 Hyperparameters and computing resources on instruction tuning on the
Cleaned Alpaca Dataset. 96

Table 5.4 Results with RoBERTabase and RoBERTalarge on the GLUE benchmark. 97

Table 5.5 Results with GPT-2 Medium and GPT-2 Large on the E2E benchmark. 98

Table 5.6 Results with Llama2 on the MT-Bench dataset. 100

Table 5.7 Ablation study of different vector selection methods. 102

xi

Table 5.8 Ablation study of sub-vector length. 102

xii

CHAPTER 0

LIST OF FIGURES

Figure 1.1 Visualization of the weights of a convolutional filter and different prun-
ing granularities. 2

Figure 2.1 The plots of g(ϕ) with different k for sigmoid and hard sigmoid functions. 16

Figure 2.2 Evolution of the histogram of g(ϕ) over training epochs. 18

Figure 2.3 Comparison of prune rate of sparsified network as a function of epoch
for different algorithms. 26

Figure 2.4 Comparison of expected FLOPs as a function of epoch for different
algorithms during training and inference. 26

Figure 2.5 Comparison of expected FLOPs as a function of iteration during train-
ing and inference. 29

Figure 2.6 Comparison of test accuracy as a function of epoch for different algo-
rithms on CIFAR-10. 30

Figure 3.1 The plots of g(ϕ) with different k for sigmoid and hard sigmoid functions. 39

Figure 3.2 The evolution of the decision boundaries of NPNs for network expan-
sion (a,b,c) and network sparsification (d,e,f). 55

Figure 3.3 The evolution of network capacity and test accuracy as a function of
epoch for NPN network sparsification and expansion with LetNet5 on MNIST. 56

Figure 4.1 Illustration of (a) element-wise sequential dependency modeling, and
(b) partition-wise dependency modeling. 65

Figure 4.2 The computational graph of Dep-L0. 67

Figure 4.3 The layer-wise prune ratios (red curves) of learned sparse structures. . 76

Figure 4.4 The layer-wise prune ratios (red curves) of learned sparse structures. . 77

Figure 5.1 Overview of VB-LoRA. 84

Figure 5.2 Comparison of the PEFT methods on RoBERTa-Large. 84

xiii

Figure 5.3 VB-LoRA’s vector selection footprints during training. 103

1

CHAPTER 1

INTRODUCTION

Deep Neural Networks (DNNs) have achieved great success in a broad range of applications

in image recognition (Deng et al. 2009a), natural language processing (Devlin et al. 2018),

and games (Silver et al. 2016). Latest DNN architectures, such as DenseNet (Huang et al.

2017), ResNet (He et al. 2016a) and Transformer (Vaswani et al. 2017), incorporate hundreds

of millions of parameters to achieve state-of-the-art predictive performance. However, the

expanding number of parameters not only increases the risk of overfitting, but also leads

to high computational costs. Many practical real-time applications of DNNs, such as for

smart phones, drones and the IoT (Internet of Things) devices, call for compute and mem-

ory efficient models as these devices typically have very limited computation and memory

capacities.

1.1 Network Pruning

It has been shown that DNNs can be pruned or sparsified significantly with minor accuracy

losses (Han et al. 2015, 2016), and sometimes sparsified networks can even achieve higher

accuracies due to the regularization effects of the network sparsification algorithms (Neklyu-

dov et al. 2017; Louizos et al. 2018b). Driven by the widely spread applications of DNNs

in real-time systems, there has been an increasing interest in pruning or sparsifying net-

works recently (Han et al. 2015, 2016), (Wen et al. 2016a; Li et al. 2016; Louizos et al.

2017; Molchanov et al. 2017; Neklyudov et al. 2017; Louizos et al. 2018b). The existing

network pruning algorithms can be roughly categorized into two categories according to the

2

pruning granularity: unstructured pruning (LeCun et al. 1990; Han et al. 2015; Ding et al.

2019b; Park et al. 2020) and structured pruning (Li et al. 2016; Wen et al. 2016b; Liu et al.

2017; Zhuang et al. 2018; Ding et al. 2019a; You et al. 2019; Lin et al. 2020). As shown in

Fig. 1.1, unstructured pruning includes weight-level, vector-level and kernel-level pruning,

while structured pruning normally refers to filter-level pruning. Although unstructured prun-

ing methods usually lead to higher prune rates than structured ones, they require specialized

hardware or software to fully utilize the benefits induced by the high prune rates due to the

irregular network structures yielded by unstructured pruning. On the other hand, struc-

tured pruning can maintain the regularity of network structures, while pruning the networks

effectively, and hence can fully utilize the parallel computing resources of general-purpose

CPUs or GPUs. Because of this, in recent years structured pruning has attracted a lot of

attention and achieved impressive performances (Liu et al. 2017; Zhuang et al. 2018; Ding

et al. 2019a; Lin et al. 2020).

Kernel level

Weight level

Filter level

Vector level

Figure 1.1: Visualization of the weights of a convolutional filter and different pruning
granularities.

3

1.2 Pruning Methods

A large subset of pruning methods is heuristic-based, which assigns an importance score to

each weight and prune the weights whose importance scores are below a threshold. The

importance scores are usually devised according to types of networks, e.g., the magnitude

of weights (LeCun et al. 1990; Han et al. 2015) (Feed-forward NNs), the L1 or L2 norm of

filters (Li et al. 2016) (CNNs), and the average percentage of zero activations (Hu et al.

2016) (CNNs). However, Ye et al. (Ye et al. 2018) point out that the assumption that

weights/filters of smaller norms are less important may not hold in general, challenging the

heuristic-based approaches. These methods usually follow a three-step training procedure:

training - pruning - retraining in order to achieve the best performance.

Another subset of pruning methods focuses on training networks with sparsity inducing

regularizations. For example, L2 and L1 regularizations (Liu et al. 2015; Wen et al. 2016b) or

L0 regularization (Louizos et al. 2018a) can be incorporated into the objective functions to

train sparse networks. Similarly, Molchanov et al. (Molchanov et al. 2017) propose variational

dropout, a sparse Bayesian learning algorithm under an improper logscale uniform prior, to

induce sparsity. In this framework, network pruning can be performed from scratch and

gradually fulfilled during training without separated training stages.

Recently, the L0-norm based regularization method (Louizos et al. 2018b) is getting

attraction as this approach explicitly penalizes number of non-zero parameters and can drive

redundant or insignificant parameters to be exact zero. However, the gradient of the L0

regularized objective function is intractable. Louizos et al. (Louizos et al. 2018b) propose

4

to use the hard concrete distribution as a close surrogate to the Bernoulli distribution, and

this leads to a differentiable objective function while still being able to zeroing out redundant

or insignificant weights during training.

1.3 Parameter Efficient Fine-tuning

Parameter-efficient fine-tuning (PEFT) casts a new paradigm that leverages strong prior

knowledge built in foundation models and adapts them to a wide range of downstream

tasks by updating a small amount of trainable parameters (He et al. 2021). Compared to

prefix/prompt tuning (Li & Liang 2021; Lester et al. 2021) or in-context learning (Brown

et al. 2020), fine-tuning a large-scale pre-trained model yields better domain specialization

dictated by high-quality datasets (Brown et al. 2020; Liu et al. 2022; Zhao et al. 2023).

This process can be repeated to suit the needs of ever-changing deployment scenarios and

personalizations. However, the sheer volume of parameter space across a multitude of in-

stantiations (Sheng et al. 2023) poses challenges for storage, transmission, and computation,

especially for low-resource hardware and consumer-grade networks (Borzunov et al. 2024).

To mitigate these challenges, various PEFT methods have been proposed by adding

or adapting a small amount of trainable parameters per task without sacrificing perfor-

mance (Houlsby et al. 2019; Karimi Mahabadi et al. 2021; Ding et al. 2023). These methods

exploit the dependencies among model parameters to reduce the redundancy. For exam-

ple, Hu et al. (2021) propose the low-rank adaptation (LoRA) to approximate the accumu-

lated gradient update for self-attention modules, and induces the intra-matrix parameter

5

coupling. Renduchintala et al. (2023) further study the options of allowing the inter-matrix

parameter sharing via weight tying across all the layers. In both cases, the number of train-

able parameters is reduced significantly. These two methods stand at the two extremes of

spectrum in deciding the range of model components reuse (locally or across-layers) and des-

ignating which low-rank matrices needs to be shared and updated. However, as the model

size increases and the demand for user-customized models across various services rises, the

expense of storing and transmitting the customizations for each combination escalates and

emerges as a critical issue. Hence, investigating PEFT methods with significantly smaller

number of trainable parameters has attracted a flurry of research interests (Kopiczko et al.

2024; Renduchintala et al. 2023).

1.4 Dissertation Organization

The overall structure of this dissertation is organized as below. We introduce the background

of neural networks pruning and Parameter-efficient fine-tuning in Chapter 1. From Chapter

2 to Chapter 5, we will present four proposed algorithms.

In Chapter 2, we propose an L0-norm based pruning algorithm L0-ARM. L0-ARM is

built on top of the L0 regularization framework of Louizos et al. (Louizos et al. 2018b).

However, instead of using a biased hard concrete gradient estimator, we investigate the

Augment-Reinforce-Merge (ARM) (Yin & Zhou 2019), a recently proposed unbiased gradi-

ent estimator for stochastic binary optimization. Extensive experiments on multiple public

datasets demonstrate the superior performance of L0-ARM at sparsifying networks with fully

6

connected layers and convolutional layers.

In Chapter 3, we propose Neural Plasticity Network (NPN) which can prune or expand a

network depending on the initial capacity of network provided by the user. Neural plasticity

is an important functionality of human brain, in which number of neurons and synapses

can shrink or expand in response to stimuli throughout the span of life. We model this

dynamic learning process as an L0-norm regularized binary optimization problem. We show

that both network sparsification and network expansion can yield compact models of similar

architectures, while retaining competitive accuracies of the original networks.

In Chapter 4, we propose an algorithm Dep-L0 as it prunes networks via a dependency-

enabled L0 regularization. Based on the observation (Gale et al. 2019a) that although

L0-based pruning method yields high compression rates on smaller datasets, it performs

inconsistently on large-scale learning tasks, such as ResNet50 on ImageNet. We analyze this

phenomenon through the lens of variational inference and find that it is likely due to the

independent modeling of binary gates, the mean-field approximation (Blei et al. 2017), which

is known in Bayesian statistics for its poor performance due to the crude approximation.

To mitigate this deficiency, we propose a dependency modeling of binary gates, which can

be modeled effectively as a multi-layer perceptron (MLP). Compared with the state-of-

the-arts network sparsification algorithms, our dependency modeling makes the L0-based

sparsification once again very competitive on large-scale learning tasks.

In Chapter 5, we introduce a ”divide-and-share” paradigm that breaks the barriers of

low-rank decomposition across matrix dimensions, modules and layers by sharing parame-

7

ters globally via a vector bank. As an instantiation of the paradigm to LoRA, our proposed

VB-LoRA composites all the low-rank matrices of LoRA from a shared vector bank with

a differentiable top-k admixture module. VB-LoRA achieves extreme parameter efficiency

while maintaining comparable or better performance compared to state-of-the-art PEFT

methods. Extensive experiments demonstrate the effectiveness of VB-LoRA on natural lan-

guage understanding, natural language generation, and instruction tuning tasks. When

fine-tuning the Llama2-13B model, VB-LoRA only uses 0.4% of LoRA’s stored parameters,

yet achieves superior results.

1.5 List of Publications

• Yang Li, Shihao Ji, Dep-L0: Improving L0-based Network Sparsification via

Dependency Modeling, The European Conference on Machine Learning 2021. (Li

& Ji 2021a)

• Yang Li, Shihao Ji, Neural Plasticity Networks, International Joint Conference on

Neural Networks 2021. (Li & Ji 2021b)

• Yang Li, Shihao Ji, L0-ARM: Network Sparsification via Stochastic Binary

Optimization, The European Conference on Machine Learning 2019. (Li & Ji 2019)

• Yang Li, Shaobo Han, and Shihao Ji, VB-LoRA: Extreme Parameter Efficient

Fine-Tuning with Vector Banks, arXiv preprint arXiv:2405.15179 (2024). (Li et al.

2024)

8

• Yang Li, Xin Ma, Raj Sunderraman, Shihao Ji, and Suprateek Kundu. Accounting

for temporal variability in functional magnetic resonance imaging improves

prediction of intelligence, Human Brain Mapping 44, no. 13 (2023): 4772-4791.

(Li et al. 2023)

• K. Sarker, X. Yang, Y. Li, S. Belkasim, and Shihao Ji, A Unified Density-Driven

Framework for Effective Data Denoising and Robust Abstention, IEEE In-

ternational Conference on Image Processing 2021. (Sarker et al. 2020)

• Fatih Yaman, Yang Li, Shaobo Han, Takanori Inoue, Eduardo Mateo, and Yoshihisa

Inada. Polarization sensing using polarization rotation matrix eigenvalue

method, Optical Fiber Communication Conference 2023. (Yaman et al. 2023)

9

CHAPTER 2

L0-ARM: Network Sparsification via Stochastic Binary Optimization

In this chapter, we propose L0-ARM for network sparsification. L0-ARM is built on top of the

L0 regularization framework of Louizos et al. Louizos et al. (2018b). However, instead of us-

ing a biased hard concrete gradient estimator, we investigate the Augment-Reinforce-Merge

(ARM) Yin & Zhou (2019), a recently proposed unbiased gradient estimator for stochas-

tic binary optimization. Because of the unbiasness and flexibility of the ARM estimator,

L0-ARM exhibits a significantly faster rate at pruning network architectures and reducing

FLOPs than the hard concrete estimator. Extensive experiments on multiple public datasets

demonstrate the superior performance of L0-ARM at sparsifying networks with fully con-

nected layers and convolutional layers. It achieves state-of-the-art prune rates while retaining

similar accuracies compared to baseline methods. Additionally, it sparsifies the Wide-ResNet

models on CIFAR-10 and CIFAR-100 while the original hard concrete estimator cannot.

This chapter is organized as follows. In Sec. 2.1 we describe the L0 regularized em-

pirical risk minimization for network sparsification and formulate it as a stochastic binary

optimization problem. A new unbiased estimator to this problem L0-ARM is presented in

Sec. 2.2, followed by related work in Sec. 2.3. Example results on multiple public datasets

are presented in Sec. 2.4, with comparisons to baseline methods and the state-of-the-art

sparsification algorithms. Conclusions and future work are discussed in Sec. 2.5.

10

2.1 Formulation

Given a training set D = {(xi, yi) , i = 1, 2, · · · , N}, where xi denotes the input and yi

denotes the target, a neural network is a function h(x;θ) parametrized by θ that fits to

the training data D with the goal of achieving good generalization to unseen test data. To

optimize θ, typically a regularized empirical risk is minimized, which contains two terms –

a data loss over training data and a regularization loss over model parameters. Empirically,

the regularization term can be weight decay or Lasso, i.e., the L2 or L1 norm of model

parameters.

Since the L2 or L1 norm only imposes shrinkage for large values of θ, the resulting model

parameters θ are often manifested by smaller magnitudes but none of them are exact zero.

Intuitively, a more appealing alternative is the L0 regularization since the L0-norm measures

explicitly the number of non-zero elements, and minimizing of it over model parameters will

drive the redundant or insignificant weights to be exact zero. With the L0 regularization,

the empirical risk objective can be written as

R(θ) =
1

N

N∑
i=1

L (h(xi;θ), yi) + λ∥θ∥0 (2.1.1)

where L(·) denotes the data loss over training data D, such as the cross-entropy loss for

classification or the mean squared error (MSE) for regression, and ∥θ∥0 denotes the L0-

norm over model parameters, i.e., the number of non-zero weights, and λ is a regularization

hyper-parameter that balances between data loss and model complexity.

To represent a sparsified model, we attach a binary random variable z to each element

11

of model parameters θ. Therefore, we can re-parameterize the model parameters θ as an

element-wise product of non-zero parameters θ̃ and binary random variables z:

θ = θ̃ ⊙ z, (2.1.2)

where z ∈ {0, 1}|θ|, and ⊙ denotes the element-wise product. As a result, Eq. 2.1.1 can be

rewritten as:

R(θ̃, z) =
1

N

N∑
i=1

L
(
h
(
xi; θ̃ ⊙ z

)
, yi

)
+ λ

|θ̃|∑
j=1

1[zj ̸=0], (2.1.3)

where 1[c] is an indicator function that is 1 if the condition c is satisfied, and 0 otherwise.

Note that both the first term and the second term of Eq. 2.1.3 are not differentiable w.r.t.

z. Therefore, further approximations need to be considered.

According to stochastic variational optimization Bird et al. (2018), given any function

F(z) and any distribution q(z), the following inequality holds

min
z

F(z) ≤ Ez∼q(z)[F(z)], (2.1.4)

i.e., the minimum of a function is upper bounded by the expectation of the function. With

this result, we can derive an upper bound of Eq. 2.1.3 as follows.

Since zj, ∀j ∈ {1, · · · , |θ|} is a binary random variable, we assume zj is subject to a

Bernoulli distribution with parameter πj ∈ [0, 1], i.e. zj ∼ Ber(z; πj). Thus, we can upper

12

bound minz R(θ̃, z) by the expectation

R̂(θ̃,π) = Ez∼Ber(z;π)R(θ̃, z)

= Ez∼Ber(z;π)

[
1

N

N∑
i=1

L
(
h(xi; θ̃ ⊙ z), yi

)]
+ λ

|θ̃|∑
j=1

πj. (2.1.5)

As we can see, now the second term is differentiable w.r.t. the new model parameters π, while

the first term is still problematic since the expectation over a large number of binary random

variables z is intractable and so its gradient. Since z are binary random variables following

a Bernoulli distribution with parameters π, we now formulate the original L0 regularized

empirical risk (2.1.1) to a stochastic binary optimization problem (2.1.5).

Existing gradient estimators for this kind of discrete latent variable models include RE-

INFORCE Williams (1992), Gumble-Softmax Jang et al. (2017); Maddison et al. (2017),

REBAR Tucker et al. (2017), RELAX Grathwohl et al. (2018) and the Hard Concrete esti-

mator Louizos et al. (2018b). However, these estimators either are biased or suffer from high

variance or computationally expensive due to auxiliary modeling. Recently, the Augment-

Reinforce-Merge (ARM) Yin & Zhou (2019) gradient estimator is proposed for the optimiza-

tion of binary latent variable models, which is unbiased and exhibits low variance. Extending

this gradient estimator to network sparsification, we find that ARM demonstrates superior

performance of prunning network architectures while retaining almost the same accuracies of

baseline models. More importantly, similar to the hard concrete estimator, ARM also enables

conditional computation Bengio et al. (2013) that not only sparsifies model architectures for

13

inference but also accelerates model training.

2.2 L0-ARM: Stochastic Binary Optimization

To minimize Eq. 2.1.5, we propose L0-ARM, a stochastic binary optimization algorithm

based on the Augment-Reinforce-Merge (ARM) gradient estimator Yin & Zhou (2019). We

first introduce the main theorem of ARM. Refer readers to Yin & Zhou (2019) for the proof

and other details.

Theorem 2.2.1. (ARM) Yin & Zhou (2019). For a vector of V binary random variables

z = (z1, · · · , zV), the gradient of

E(ϕ) = Ez∼
∏V

v=1 Ber(zv ;g(ϕv))
[f(z)] (2.2.1)

w.r.t. ϕ = (ϕ1, · · · , ϕV), the logits of the Bernoulli distribution parameters, can be expressed

as

∇ϕE(ϕ)=Eu∼
∏V

v=1Uniform(uv ;0,1)

[(
f(1[u>g(−ϕ)]) − f(1[u<g(ϕ)])

)
(u− 1/2)

]
, (2.2.2)

where 1[u>g(−ϕ)] :=
(
1[u1>g(−ϕ1)], · · · ,1[uV >g(−ϕV)]

)T
and g(ϕ) = σ(ϕ) = 1/(1 + exp(−ϕ)) is

the sigmoid function.

14

Parameterizing πj ∈ [0, 1] as g(ϕj), Eq. 2.1.5 can be rewritten as

R̂(θ̃,ϕ) = Ez∼Ber(z;g(ϕ)) [f(z)] + λ

|θ̃|∑
j=1

g(ϕj)

= Eu∼Uniform(u;0,1)

[
f(1[u<g(ϕ)])

]
+ λ

|θ̃|∑
j=1

g(ϕj), (2.2.3)

where f(z) = 1
N

∑N
i=1L

(
h(xi; θ̃ ⊙ z), yi

)
.

Now according to Theorem 1, we can evaluate the gradient of Eq. 2.2.3 w.r.t. ϕ by

∇ARM
ϕ R̂(θ̃,ϕ) = Eu∼Uniform(u;0,1)

[(
f(1[u>g(−ϕ)]) − f(1[u<g(ϕ)])

)
(u− 1/2)

]
+ λ

|θ̃|∑
j=1

∇ϕj
g(ϕj), (2.2.4)

which is an unbiased and low variance estimator as demonstrated in Yin & Zhou (2019).

Note from Eq. 2.2.4 that we need to evaluate f(·) twice to compute the gradient, the

second of which is the same operation required by the data loss of Eq. 2.2.3. Therefore,

one extra forward pass f(1[u>g(−ϕ)]) is required by the L0-ARM gradient estimator. This

additional forward pass might be computationally expensive, especially for networks with

millions of parameters. To reduce the computational complexity of Eq. 2.2.4, we further

15

consider another gradient estimator – Augment-Reinforce (AR) Yin & Zhou (2019):

∇AR
ϕ R̂(θ̃,ϕ) = Eu∼Uniform(u;0,1)

[
f(1[u<g(ϕ)])(1 − 2u)

]
+ λ

|θ̃|∑
j=1

∇ϕj
g(ϕj), (2.2.5)

which requires only one forward pass f(1[u<g(ϕ)]) that is the same operation as in Eq. 2.2.3.

This L0-AR gradient estimator is still unbiased but with higher variance. Now with L0-AR,

we can trade off the variance of the estimator with the computational complexity. We will

evaluate the impact of this trade-off in our experiments.

2.2.1 Choice of g(ϕ)

Theorem 1 of ARM defines g(ϕ) = σ(ϕ), where σ(·) is the sigmoid function. For the purpose

of network sparsification, we find that this parametric function isn’t very effective due to

its slow transition between values 0 and 1. Thanks to the flexibility of ARM, we have

a lot of freedom to design this parametric function g(ϕ). Apparently, it’s straightforward

to generalize Theorem 1 for any parametric functions (smooth or non-smooth) as long as

g : R → [0, 1] and g(−ϕ) = 1 − g(ϕ) 1. Example parametric functions that work well in our

experiments are the scaled sigmoid function

gσk
(ϕ) = σ(kϕ) =

1

1 + exp(−kϕ)
, (2.2.6)

1The second condition is not necessary. But for simplicity, we will impose this condition to select para-
metric function g(ϕ) that is antithetic. Designing g(ϕ) without this constraint could be a potential area that
is worthy of further investigation.

16

-10 -5 0 5 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g(
)

sigmoid (k=1)
sigmoid (k=2)
sigmoid (k=7)
hard sigmoid (k=1)
hard sigmoid (k=7)
step function

Figure 2.1: The plots of g(ϕ) with different k for sigmoid and hard sigmoid functions.

and the centered-scaled hard sigmoid

gσ̄k
(ϕ) = min(1,max(0,

k

7
ϕ + 0.5)), (2.2.7)

where 7 is introduced such that gσ̄1(ϕ) ≈ gσ1(ϕ) = σ(ϕ). See Fig. 2.1 for some example plots

of gσk
(ϕ) and gσ̄k

(ϕ) with different k. Empirically, we find that k = 7 works well for all of

our experiments.

One important difference between the hard concrete estimator from Louizos et al. Louizos

et al. (2018b) and L0-ARM is that the hard concrete estimator has to rely on the hard sigmoid

gate to zero out some parameters during training (a.k.a. conditional computation Bengio

et al. (2013)), while L0-ARM achieves conditional computation naturally by sampling from

17

the Bernoulli distribution, parameterized by g(ϕ), where g(ϕ) can be any parametric function

(smooth or non-smooth) as shown in Fig. 2.1. We validate this in our experiments.

2.2.2 Sparsifying Network Architectures for Inference

After training, we get model parameters θ̃ and ϕ. At test time, we can use the expectation

of z ∼ Ber(z; g(ϕ)) as the mask ẑ for the final model parameters θ̂:

ẑ = E[z] = g(ϕ), θ̂ = θ̃ ⊙ ẑ. (2.2.8)

However, this will not yield a sparsified network for inference since none of the element of

ẑ = g(ϕ) is exact zero (unless the hard sigmoid gate gσ̄k
(ϕ) is used). A simple approximation

is to set the elements of ẑ to zero if the corresponding values in g(ϕ) are less than a threshold

τ , i.e.,

z̄j =

{
0, g(ϕj) ≤ τ
g(ϕj), otherwise

j = 1, 2, · · · , |z| (2.2.9)

We find that this approximation is very effective in all of our experiments as the histogram

of g(ϕ) is widely split into two spikes around values of 0 and 1 after training because of the

sharp transition of the scaled sigmoid (or hard sigmoid) function. See Fig. 2.2 for a typical

plot of the histograms of g(ϕ) evolving during training process. We notice that our algorithm

isn’t very sensitive to τ , tuning which incurs negligible impacts to prune rates and model

accuracies. Therefore, for all of our experiments we set τ = 0.5 by default. Apparently,

better designed τ is possible by considering the histogram of g(ϕ). However, we find this

18

Figure 2.2: Evolution of the histogram of g(ϕ) over training epochs.
All g(ϕ) are initialized by random samples from a normal distribution N(0.5, 0.01), which are split

into two spikes during training.

isn’t very necessary for all of our experiments in the paper. Therefore, we will consider this

histogram-dependent τ as our future improvement.

2.2.3 Imposing Shrinkage on Model Parameters θ

The L0 regularized objective function (2.2.3) leads to sparse estimate of model parameters

without imposing any shrinkage on the magnitude of θ. In some cases it might still be

desirable to regularize the magnitude of model parameters with other norms, such as L1 or

L2 (weight decay), to improve the robustness of model. This can be achieved conveniently

by computing the expected L1 or L2 norm of θ under the same Bernoulli distribution:

19

z ∼ Ber(z; g(ϕ)) as follows:

Ez∼Ber(z;g(ϕ)) [||θ||1] =

|θ|∑
j=1

Ezj∼Ber(zj ;g(ϕj))

[
zj|θ̃j|

]
=

|θ|∑
j=1

g(ϕj)|θ̃j|, (2.2.10)

Ez∼Ber(z;g(ϕ))

[
||θ||22

]
=

|θ|∑
j=1

Ezj∼Ber(zj ;g(ϕj))

[
z2j θ̃

2
j

]
=

|θ|∑
j=1

g(ϕj)θ̃
2
j , (2.2.11)

which can be incorporated to Eq. 2.2.3 as additional regularization terms.

2.2.4 Group Sparsity Under L0 and L2 Norms

The formulation so far promotes a weight-level sparsity for network architectures. This spar-

sification strategy can compress model and reduce memory footprint of a network. However,

it will usually not lead to effective speedups because weight-sparsified networks require sparse

matrix multiplication and irregular memory access, which make it extremely challenging to

effectively utilize the parallel computing resources of GPUs and CPUs. For the purpose of

computational efficiency, it’s usually preferable to perform group sparsity instead of weight-

level sparsity. Similar to Wen et al. (2016a); Neklyudov et al. (2017); Louizos et al. (2018b),

we can achieve this by sharing a stochastic binary gate z among all the weights in a group.

For example, a group can be all fan-out weights of a neuron in fully connected layers or all

weights of a convolution filter. With this, the group regularized L0 and L2 norms can be

20

conveniently expressed as

Ez∼Ber(z;g(ϕ)) [||θ||0] =

|G|∑
g=1

|g|g(ϕg) (2.2.12)

Ez∼Ber(z;g(ϕ))

[
||θ||22

]
=

|G|∑
g=1

g(ϕg)

|g|∑
j=1

θ̃2j

 (2.2.13)

where |G| denotes the number of groups and |g| denotes the number of weights of group

g. For the reason of computational efficiency, we perform this group sparsity in all of our

experiments.

2.3 Related Work

It is well-known that DNNs are extremely compute and memory intensive. Recently, there

has been an increasing interest to network sparsification Han et al. (2015, 2016); Wen et al.

(2016a); Li et al. (2016); Louizos et al. (2017); Molchanov et al. (2017); Neklyudov et al.

(2017); Louizos et al. (2018b) as the applications of DNNs to practical real-time systems,

such as the IoT devices, call for compute and memory efficient networks. One of the earliest

sparsification methods is to prune the redundant weights based on the magnitudes LeCun

et al. (1990), which is proved to be effective in modern CNN Han et al. (2015). Although

weight sparsification is able to compress networks, it can barely improve computational

efficiency due to unstructured sparsity Wen et al. (2016a). Therefore, magnitude-based group

sparsity is proposed Wen et al. (2016a); Li et al. (2016), which can compress networks while

reducing computation cost significantly. These magnitude-based methods usually proceed in

21

three stages: pre-train a full network, prune the redundant weights or filters, and fine-tune

the pruned model. As a comparison, our method L0-ARM trains a sparsified network from

scratch without pre-training and fine-tuning, and therefore is more preferable.

Another category of sparsification methods is based on Bayesian statistics and informa-

tion theory Molchanov et al. (2017); Neklyudov et al. (2017); Louizos et al. (2017). For

example, inspired by variational dropout Kingma et al. (2015), Molchanov et al. propose

a method that unbinds the dropout rate, and also leads to sparsified networks Molchanov

et al. (2017).

Recently, Louizos et al. Louizos et al. (2018b) propose to sparsify networks with L0-norm.

Since the L0 regularization explicitly penalizes number of non-zero parameters, this method

is conceptually very appealing. However, the non-differentiability of L0 norm prevents an

effective gradient-based optimization. Therefore, Louizos et al. Louizos et al. (2018b) propose

a hard concrete gradient estimator for this optimization problem. Our work is built on top

of their L0 formulation. However, instead of using a hard concrete estimator, we investigate

the Augment-Reinforce-Merge (ARM) Yin & Zhou (2019), a recently proposed unbiased

estimator, to this binary optimization problem.

2.4 Experimental Results

We evaluate the performance of L0-ARM and L0-AR on multiple public datasets and multiple

network architectures. Specifically, we evaluate MLP 500-300 LeCun et al. (1998) and LeNet

5-Caffe 2 on the MNIST dataset Lecun et al. (1998), and Wide Residual Networks Zagoruyko

2https://github.com/BVLC/caffe/tree/master/examples/mnist

https://github.com/BVLC/caffe/tree/master/examples/mnist

22

& Komodakis (2016a) on the CIFAR-10 and CIFAR-100 datasets Krizhevsky (2009). For

baselines, we refer to the following state-of-the-art sparsification algorithms: Sparse Vari-

ational Dropout (Sparse VD) Molchanov et al. (2017), Bayesian Compression with group

normal-Jeffreys (BC-GNJ) and group horseshoe (BC-GHS) Louizos et al. (2017), and L0-

norm regularization with hard concrete estimator (L0-HC) Louizos et al. (2018b). For a

fair comparison, we closely follow the experimental setups of L0-HC 3. The code is public

available at https://github.com/leo-yangli/l0-arm.

2.4.1 Implementation Details

We incorporate L0-ARM and L0-AR into the architectures of MLP, LeNet-5 and Wide

ResNet. As we described in Sec. 2.2.4, instead of sparsifying weights, we apply group sparsity

on neurons in fully-connected layers or on convolution filters in convolutional layers. Once

a neuron or filter is pruned, all related weights are removed from the networks.

The Multi-Layer Perceptron (MLP) LeCun et al. (1998) has two hidden layers of size 300

and 100, respectively. We initialize g(ϕ) = π by random samples from a normal distribution

N(0.8, 0.01) for the input layer and N(0.5, 0.01) for the hidden layers, which activate around

80% of neurons in input layer and around 50% of neurons in hidden layers. LeNet-5-Caffe

consists of two convolutional layers of 20 and 50 filters interspersed with max pooling layers,

followed by two fully-connected layers with 500 and 10 neurons. We initialize g(ϕ) = π for

all neurons and filters by random samples from a normal distribution N(0.5, 0.01). Wide-

ResNets (WRNs) Zagoruyko & Komodakis (2016a) have shown state-of-the-art performance

3https://github.com/AMLab-Amsterdam/L0_regularization

https://github.com/leo-yangli/l0-arm
https://github.com/AMLab-Amsterdam/L0_regularization

23

on many image classification benchmarks. Following Louizos et al. (2018b), we only apply

L0 regularization on the first convolutional layer of each residual block, which allows us to

incorporate L0 regularization without further modifying residual block architecture. The

architectural details of WRN are listed in Table 2.1. For initialization, we activate around

70% of convolutional filters.

Table 2.1: Architectural details of WRN incorporated with L0-ARM.

Group name Layers

conv1 [Original Conv (16)]
conv2 [L0 ARM (160); Original Conv (160)] × 4
conv3 [L0 ARM (320); Original Conv (320)] × 4
conv4 [L0 ARM (640); Original Conv (640)] × 4

The number in parenthesis is the size of activation map of each layer. For brevity, only the
modified layers are included.

For MLP and LeNet-5, we train with a mini-batch of 100 data samples and use Adam Kingma

& Ba (2015) as optimizer with initial learning rate of 0.001, which is halved every 100 epochs.

For Wide-ResNet, we train with a mini-batch of 128 data samples and use Nesterov Momen-

tum as optimizer with initial learning rate of 0.1, which is decayed by 0.2 at epoch 60 and

120. Each of these experiments run for 200 epochs in total. For a fair comparison, these

experimental setups closely follow what were described in L0-HC Louizos et al. (2018b) and

their open-source implementation 3.

2.4.2 MNIST Experiments

We run both MLP and LeNet-5 on the MNIST dataset. By tuning the regularization strength

λ, we can control the trade off between sparsity and accuracy. We can use one λ for all layers

or a separate λ for each layer to fine-tune the sparsity preference. In our experiments, we set

24

λ = 0.1/N or λ = (0.1, 0.3, 0.4)/N for MLP, and set λ = 0.1/N or λ = (10, 0.5, 0.1, 10)/N

for LeNet-5, where N denotes to the number of training datapoints.

We use three metrics to evaluate the performance of an algorithm: prediction accuracy,

prune rate, and expected number of floating point operations (FLOPs). Prune rate is defined

as the ratio of number of pruned weights to number of all weights. Prune rate manifests the

memory saving of a sparsified network, while expected FLOPs demonstrates the training /

inference cost of a sparsification algorithm.

Table 2.2: Performance comparison on MNIST.

Network Method Pruned Architecture Prune rate (%) Accuracy (%)

MLP
784-300-100

Sparse VD 219-214-100 74.72 98.2
BC-GNJ 278-98-13 89.24 98.2
BC-GHS 311-86-14 89.45 98.2
L0-HC (λ = 0.1/N) 219-214-100 73.98 98.6
L0-HC (λ sep.) 266-88-33 89.99 98.2
L0-AR (λ = 0.1/N) 453-150-68 70.39 98.3
L0-ARM (λ = 0.1/N) 143-153-78 87.00 98.3
L0-AR (λ sep.) 464-114-65 77.10 98.2
L0-ARM (λ sep.) 159-74-73 92.96 98.1

LeNet-5-Caffe
20-50-800-500

Sparse VD 14-19-242-131 90.7 99.0
GL 3-12-192-500 76.3 99.0
GD 7-13-208-16 98.62 99.0
SBP 3-18-284-283 80.34 99.0
BC-GNJ 8-13-88-13 99.05 99.0
BC-GHS 5-10-76-16 99.36 99.0
L0-HC (λ = 0.1/N) 20-25-45-462 91.1 99.1
L0-HC (λ sep.) 9-18-65-25 98.6 99.0
L0-AR (λ = 0.1/N) 18-28-46-249 93.73 98.8
L0-ARM (λ = 0.1/N) 20-16-32-257 95.52 99.1
L0-AR (λ sep.) 5-12-131-22 98.90 98.4
L0-ARM (λ sep.) 6-10-39-11 99.49 98.7

Each experiment was run five times and the median (in terms of accuracy) is reported. All the
baseline results are taken from the corresponding papers.

We compare L0-ARM and L0-AR to five state-of-the-art sparsification algorithms on

MNIST, with the results shown in Table 2.2. For the comparison between L0-HC and L0-

AR(M) when λ = 0.1/N , we use the exact same hyper-parameters for both algorithms (the

25

fairest comparison). In this case, L0-ARM achieve the same accuracy (99.1%) on LeNet-5

with even sparser pruned architectures (95.52% vs. 91.1%). When separated λs are consid-

ered (λ sep.), since L0-HC doesn’t disclose the specific λs for the last two fully-connected

layers, we tune them by ourselves and find that λ = (10, 0.5, 0.1, 10)/N yields the best per-

formance. In this case, L0-ARM achieves the highest prune rate (99.49% vs. 98.6%) with

very similar accuracies (98.7% vs. 99.1%) on LeNet-5. Similar patterns are also observed on

MLP. Regarding L0-AR, although its performance is not as good as L0-ARM, it’s still very

competitive to all the other methods. The advantage of L0-AR over L0-ARM is its lower

computational complexity during training. As we discussed in Sec. 2.2, L0-ARM needs one

extra forward pass to estimate the gradient w.r.t. ϕ; for large DNN architectures, this extra

cost can be significant.

To evaluate the training cost and network sparsity of different algorithms, we compare

the prune rates of L0-HC and L0-AR(M) on LeNet-5 as a function of epoch in Fig. 2.4.

Similarly, we compare the expected FLOPs of different algorithms as a function of epoch in

Fig. 2.3. As we can see from Fig. 2.4, L0-ARM yields much sparser network architectures

over the whole training epochs, followed by L0-AR and L0-HC. The FLOPs vs. Epoch plots

in Fig. 2.3 are more complicated. Because L0-HC and L0-AR only need one forward pass

to compute gradient, they have the same expected FLOPs for training and inference. L0-

ARM needs two forward passes for training. Therefore, L0-ARM is computationally more

expensive during training (red curves), but it leads to sparser / more efficient architectures

for inference (green curves), which pays off its extra cost in training.

26

0 25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

100

Pr
un

e
ra

te
 (%

)

L0-HC, =0.1/N
L0-AR, =0.1/N
L0-ARM, =0.1/N

(a) λ = 0.1/N

0 25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

100

Pr
un

e
ra

te
 (%

)

L0-HC, =sep.
L0-AR, =sep.
L0-ARM, =sep.

(b) λ = sep.

Figure 2.3: Comparison of prune rate of sparsified network as a function of epoch for
different algorithms.

0 20000 40000 60000 80000 100000 120000
Iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

FL
OP

s (
×1

06)

L0-HC, =0.1/N
L0-AR, =0.1/N
L0-ARM, =0.1/N (training)
L0-ARM, =0.1/N (inference)

(a) λ = 0.1/N

0 20000 40000 60000 80000 100000 120000
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

FL
OP

s (
×1

06)

L0-HC, =sep.
L0-AR, =sep.
L0-ARM, =sep. (training)
L0-AR, =sep. (inference)

(b) λ = sep.

Figure 2.4: Comparison of expected FLOPs as a function of epoch for different algorithms
during training and inference.

2.4.3 CIFAR Experiments

We further evaluate the performance of L0-ARM and L0-AR with Wide-ResNet Zagoruyko &

Komodakis (2016a) on CIFAR-10 and CIFAR-100. Following Louizos et al. (2018b), we only

27

apply L0 regularization on the first convolutional layer of each residual block, which allows

us to incorporate L0 regularization without further modifying residual block architecture.

Table 2.3 and 2.4 shows the performance comparison between L0-AR(M) and three base-

line methods. We find that L0-HC cannot sparsify the Wide-ResNet architecture (prune

rate 0%) 4, while L0-ARM and L0-AR prune around 50% of the parameters of the impacted

subnet. As we activate 70% convolution filters in initialization, the around 50% prune rate

is not due to initialization. We also inspect the histograms of g(ϕ): As expected, they are

all split into two spikes around the values of 0 and 1, similar to the histograms shown in

Fig. 2.2. In terms of accuracies, both L0-ARM and L0-AR achieve very similar accuracies

as the baseline methods.

Table 2.3: Performance comparison of WRN on CIFAR-10.

Network Method Pruned Architecture Prune rate (%) Accuracy (%)

WRN-28-10
CIFAR-10

WRN full model 0 96.00
WRN-dropout full model 0 96.11
L0-HC (λ = 0.001/N) full model 0 96.17
L0-HC (λ = 0.002/N) full model 0 96.07

L0-AR (λ = 0.001/N)
83-77-83-88-

169-167-153-165-
324-323-314-329

49.49 95.58

L0-ARM (λ = 0.001/N)
74-86-83-83-

164-145-167-153-
333-333-310-330

49.46 95.68

L0-AR (λ = 0.002/N)
82-75-82-87-

164-169-156-161-
317-317-317-324

49.95 95.60

L0-ARM (λ = 0.002/N)
75-72-78-78-

157-165-131-162-
336-325-331-343

49.63 95.70

Each experiment was run five times and the median (in terms of accuracy) is reported. All the
baseline results are taken from the corresponding papers. Only the architectures of pruned layers
are shown. The results for WRN and WRN-dropout are taken from Zagoruyko & Komodakis

(2016a).

To evaluate the training and inference costs of different algorithms, we compare the

4This was also reported recently in the appendix of Gale et al. (2019b), and can be easily reproduced by
using the open-source implementation of L0-HC 3.

28

Table 2.4: Performance comparison of WRN on CIFAR-100.

Network Method Pruned Architecture Prune rate (%) Accuracy (%)

WRN-28-10
CIFAR-100

WRN full model 0 78.82
WRN-dropout full model 0 81.15
L0-HC (λ = 0.001/N) full model 0 81.25
L0-HC (λ = 0.002/N) full model 0 80.96

L0-AR (λ = 0.001/N)
78-78-79-85-

168-168-162-164-
308-326-319-330

49.37 80.50

L0-ARM (λ = 0.001/N)
75-83-80-58-

172-156-160-165-
324-311-313-318

50.51 80.74

L0-AR (λ = 0.002/N)
75-76-72-80-

158-158-137-168-
318-295-327-324

50.93 80.09

L0-ARM (λ = 0.002/N)
81-74-77-73-

149-157-156-152-
299-332-305-325

50.78 80.56

Each experiment was run five times and the median (in terms of accuracy) is reported. All the
baseline results are taken from the corresponding papers. Only the architectures of pruned layers
are shown. The results for WRN and WRN-dropout are taken from Zagoruyko & Komodakis

(2016a).

expected FLOPs of L0-HC and L0-AR(M) on CIFAR-10 and CIFAR-100 as a function of

iteration in Fig. 2.5. Similar to Fig. 2.4 and 2.3, L0-ARM is more computationally expensive

for training, but leads to sparser / more efficient architectures for inference, which pays off

its extra cost in training. It’s worth to emphasize that for these experiments L0-AR has

the lowest training FLOPs and inference FLOPs (since only one forward pass is needed

for training and inference), while achieving very similar accuracies as the baseline methods

(Table 2.3 and 2.4).

Finally, we compare the test accuracies of different algorithms as a function of epoch on

CIFAR-10, with the results shown in Fig. 2.6. We apply the exact same hyper-parameters of

L0-HC to L0-AR(M). As L0-AR(M) prunes around 50% parameters during training (while

L0-HC prunes 0%), the test accuracies of the former are lower than the latter before conver-

gence, but all the algorithms yield very similar accuracies after convergence, demonstrating

29

0 10000 20000 30000 40000 50000 60000 70000 80000
Iterations

2.6

2.8

3.0

3.2

3.4

3.6

FL
OP

s (
×1

010
)

L0-HC, =0.001/N
L0-AR, =0.001/N
L0-ARM (training), =0.001/N
L0-ARM (inference), =0.001/N
L0-HC, =0.002/N
L0-AR, =0.002/N
L0-ARM (training), =0.002/N
L0-ARM (inference), =0.002/N

(a) CIFAR-10

0 10000 20000 30000 40000 50000 60000 70000 80000
Iterations

2.6

2.8

3.0

3.2

3.4

FL
OP

s (
×1

010
)

L0-HC, =0.001/N
L0-AR, =0.001/N
L0-ARM (training), =0.001/N
L0-ARM (inference), =0.001/N
L0-HC, =0.002/N
L0-AR, =0.002/N
L0-ARM (training), =0.002/N
L0-ARM (inference), =0.002/N

(b) CIFAR-100

Figure 2.5: Comparison of expected FLOPs as a function of iteration during training and
inference.

the effectiveness of L0-AR(M).

2.5 Conclusion

We propose L0-ARM, an unbiased and low-variance gradient estimator, to sparsify network

architectures. Compared to L0-HC Louizos et al. (2018b) and other state-of-the-art spar-

sification algorithms, L0-ARM demonstrates superior performance of sparsifying network

architectures while retaining almost the same accuracies of the baseline methods. Extensive

experiments on multiple public datasets and multiple network architectures validate the ef-

fectiveness of L0-ARM. Overall, L0-ARM yields the sparsest architectures and the lowest

inference FLOPs for all the networks considered with very similar accuracies as the baseline

methods.

As for future extensions, we plan to design better (possibly non-antithetic) parametric

30

0 25 50 75 100 125 150 175 200
Epoch

20

30

40

50

60

70

80

90

100
Ac

cu
ra

cy
 (%

)

L0-HC, =0.001/N
L0-AR, =0.001/N
L0-ARM, =0.001/N
L0-HC, =0.002/N
L0-AR, =0.002/N
L0-ARM, =0.002/N

Figure 2.6: Comparison of test accuracy as a function of epoch for different algorithms on
CIFAR-10.

function g(ϕ) to improve the sparsity of solutions. We also plan to investigate more efficient

algorithm to evaluate L0-ARM gradient (2.2.4) by utilizing the antithetic structure of two

forward passes.

31

CHAPTER 3

Neural Plasticity Networks

© [2021] IEEE. Reprinted, with permission, from [Yang Li, Shihao Ji, Neural Plasticity

Networks, 2021 International Joint Conference on Neural Networks (IJCNN), 18 July]

In this chapter, we will present Neural Plasticity Networks (NPNs). Neural plasticity is

an important functionality of human brain, in which number of neurons and synapses can

shrink or expand in response to stimuli throughout the span of life. We model this dynamic

learning process as an L0-norm regularized binary optimization problem, in which each unit

of a neural network (e.g., weight, neuron or channel, etc.) is attached with a stochastic

binary gate, whose parameters determine the level of activity of a unit in the whole network.

Our proposed algorithm unifies network sparsification and network expansion in an end-to-

end training pipeline, in which number of neurons and synapses can shrink or expand as

needed to solve a given learning task.

Compared with network sparsification, network expansion is less explored. This paradigm

is in the opposite to network sparsification, but might be more desirable because (1) we don’t

need to set an upper-bound on the network capacity (e.g., number of weights, neurons or

channels, etc.) to start with, and the network can shrink or expand as needed for a given

task; (2) it’s computationally more efficient to train a small network and expand it to a larger

one as redundant neurons are less likely to emerge during the whole training process; and

(3) network expansion is more biologically plausible than network sparsification according

to our current understanding to human brain development Stiles & Jernigan (2010).

32

NPN is built on top of our previous L0-ARM algorithm Li & Ji (2019). However, the

original L0-ARM algorithm only explores network sparsification, in which it demonstrates

state-of-the-art performance at pruning networks, while here we extend this framework to

network expansion. On the algorithmic side, we further investigate the Augment-Reinforce-

Merge (ARM) Yin & Zhou (2019), a recently proposed unbiased gradient estimator for

binary latent variable models. We show that due to the flexibility of ARM, many smooth

or non-smooth parametric functions, such as scaled sigmoid or hard sigmoid, can be used

to parameterize the L0-norm regularized binary optimization problem and the unbiasness of

the ARM estimator is retained, while a closly related hard concrete estimator Louizos et al.

(2017) has to rely on the hard sigmoid function for binary optimization. It is this difference

that entails NPN the capability of shrinking or expanding network capacity as needed for

a given task. We also introduce a learning stage scheduler for NPN and demonstrate that

many training stages of network sparsification and expansion, such as pre-training, sparsi-

fication/expansion and fine-tuning, can be modulated by a single parameter k seamlessly;

along the way, we also give a new interpretation of dropout Srivastava et al. (2014). Exten-

sive experiments on synthetic dataset and multiple public datasets demonstrate the superior

performance of NPNs for network sparsification and network expansion with fully connected

layers, convolutional layers and skip connections. Our experiments show that both network

sparsification and network expansion can converge to similar network capacities with similar

accuracies even though they are initialized with networks of different sizes. To the best of

our knowledge, this is the first learning framework that unifies network sparsification and

33

network expansion in an end-to-end training pipeline modulated by a single parameter.

The remainder of this chapter is organized as follows. In Sec. 3.1 we describe the L0-norm

regularized empirical risk minimization for NPN and its solver L0-ARM Li & Ji (2019) for

network sparsification. A new learning stage scheduler for NPN is introduced in Sec. 3.2. We

then extend NPN to network expansion in Sec. 3.3, followed by the related work in Sec. 3.4.

Experimental results are presented in Sec. 3.5. Conclusions and future work are discussed

in Sec. 3.6.

3.1 Neural Plasticity Networks: Formulation

Our Neural Plasticity Network (NPN) is built on the basic framework of L0-ARM Li &

Ji (2019), which was proposed in our previous work for network sparsification. We extend

L0-ARM to network expansion, and unify network sparsification and expansion in an end-

to-end training pipeline. For the sake of clarity, we first introduce NPN in the context of

network sparsification, and later extend it to network expansion. The formulation below

largely follows that of L0-ARM Li & Ji (2019).

Given a training set D = {(xi, yi) , i = 1, 2, · · · , N}, where xi denotes the input and yi

denotes the target, a neural network is a function h(x;θ) parametrized by θ that fits to

the training data D with the goal of achieving good generalization to unseen test data. To

optimize θ, typically a regularized empirical risk is minimized, which contains two terms –

a data loss over training data and a regularization loss over model parameters. Empirically,

the regularization term can be weight decay or Lasso, i.e., the L2 or L1 norm of model

34

parameters.

Intuitively, network sparsification or expansion is a model selection problem, in which a

suitable model capacity is selected for a given learning task. In this problem, how to measure

model complexity is a core issue. The Akaike Information Criterion (AIC) Akaike (1998)

and the Bayesian Information Criterion (BIC) Schwarz (1978), well-known model selection

criteria, measure model complexity by counting number of non-zero parameters. Since the L2

or L1 norm only imposes shrinkage on large values of θ, the resulting model parameters θ are

often manifested by smaller magnitudes but none of them are exact zero. Therefore, the L2 or

L1 norm is not suitable for measuring model complexity. A more appealing alternative is the

L0 norm of model parameters as it measures explicitly the number of non-zero parameters,

which is the exact model complexity measured by AIC and BIC. With the L0 regularization,

the empirical risk objective can be written as

R(θ) =
1

N

N∑
i=1

L (h(xi;θ), yi) + λ∥θ∥0 (3.1.1)

where L(·) denotes the data loss over training data D, such as the cross-entropy loss for

classification or the mean squared error (MSE) for regression, and ∥θ∥0 denotes the L0-

norm over model parameters, i.e., the number of non-zero weights, and λ is a regularization

hyperparameter that balances between data loss and model complexity. For network sparsi-

fication, minimizing of Eq. 3.1.1 will drive the redundant or insignificant weights to be exact

zero and thus pruned away. For network expansion, adding additional neurons will increase

model complexity (the second term) but potentially can reduce data loss (the first term) and

therefore the total loss. Thus, we will use Eq. 3.1.1 as our guiding principle for sparsifying

35

or expanding a network.

To represent a sparsified network, we attach a binary random variable z to each element

of model parameters θ. Therefore, we can reparameterize the model parameters θ as an

element-wise product of non-zero parameters θ̃ and binary random variables z:

θ = θ̃ ⊙ z, (3.1.2)

where z ∈ {0, 1}|θ|, and ⊙ denotes the element-wise product. As a result, Eq. 3.1.1 can be

rewritten as:

R(θ̃, z) =
1

N

N∑
i=1

L
(
h
(
xi; θ̃ ⊙ z

)
, yi

)
+ λ

|θ̃|∑
j=1

1[zj ̸=0], (3.1.3)

where 1[c] is an indicator function that is 1 if the condition c is satisfied, and 0 otherwise.

Note that both the first term and the second term of Eq. 3.1.3 are not differentiable w.r.t.

z. Therefore, further approximations need to be considered.

Fortunately, we can approximate Eq. 3.1.3 through an inequality from stochastic varia-

tional optimization Bird et al. (2018). Specifically, given any function F(z) and any distri-

bution q(z), the following inequality holds

min
z

F(z) ≤ Ez∼q(z)[F(z)], (3.1.4)

i.e., the minimum of a function is upper bounded by the expectation of the function. With

this result, we can derive an upper bound of Eq. 3.1.3 as follows.

Since zj, ∀j ∈ {1, · · · , |θ|} is a binary random variable, we assume zj is subject to a

36

Bernoulli distribution with parameter πj ∈ [0, 1], i.e. zj ∼ Ber(z; πj). Thus, we can upper

bound minz R(θ̃, z) by the expectation

R̂(θ̃,π) = Ez∼Ber(z;π)R(θ̃, z) (3.1.5)

= Ez∼Ber(z;π)

[
1

N

N∑
i=1

L
(
h(xi; θ̃ ⊙ z), yi

)]
+ λ

|θ̃|∑
j=1

πj.

As we can see, now the second term is differentiable w.r.t. the new model parameters π,

while the first term is still problematic since the expectation over a large number of binary

random variables z ∈ {0, 1}|θ| is intractable, so is its gradient.

To minimize Eq. 3.1.5, L0-ARM utitlizes the Augment-Reinforce-Merge (ARM) Yin &

Zhou (2019), an unbiased gradient estimator, to this stochastic binary optimization problem.

Specifically,

Theorem 1 (ARM) Yin & Zhou (2019). For a vector of V binary random variables

z = (z1, · · · , zV), the gradient of

E(ϕ) = Ez∼
∏V

v=1 Ber(zv ;g(ϕv))
[f(z)] (3.1.6)

w.r.t. ϕ = (ϕ1, · · · , ϕV), the logits of the Bernoulli distribution parameters, can be expressed

as

∇ϕE(ϕ) =Eu∼
∏V

v=1Uniform(uv ;0,1)

[(
f(1[u>g(−ϕ)])−

f(1[u<g(ϕ)])
)
(u− 1/2)

]
, (3.1.7)

37

where 1[u>g(−ϕ)] := 1[u1>g(−ϕ1)], · · · ,1[uV >g(−ϕV)] and g(ϕ) = σ(ϕ) = 1/(1 + exp(−ϕ)) is the

sigmoid function.

Parameterizing πj ∈ [0, 1] as g(ϕj), we can rewrite Eq. 3.1.5 as

R̂(θ̃,ϕ) = Ez∼Ber(z;g(ϕ)) [f(z)] + λ

|θ̃|∑
j=1

g(ϕj) (3.1.8)

= Eu∼Uniform(u;0,1)

[
f(1[u<g(ϕ)])

]
+ λ

|θ̃|∑
j=1

g(ϕj),

where f(z) = 1
N

∑N
i=1L

(
h(xi; θ̃ ⊙ z), yi

)
. From Theorem 1, we can evaluate the gradient

of Eq. 3.1.8 w.r.t. ϕ by

∇ϕR̂(θ̃,ϕ) = Eu∼Uniform(u;0,1)

[(
f(1[u>g(−ϕ)])−

f(1[u<g(ϕ)])
)
(u− 1/2)

]
+ λ

|θ̃|∑
j=1

∇ϕj
g(ϕj), (3.1.9)

which is an unbiased and low variance estimator as demonstrated in Yin & Zhou (2019).

Choice of g(ϕ)

Theorem 1 of ARM defines g(ϕ) = σ(ϕ), where σ(·) is the sigmoid function. For the

purpose of network sparsification and expansion, we find that this parametric function isn’t

very effective due to its fixed rate of transition between values 0 and 1. Thanks to the

flexibility of ARM, we have a large freedom to design this parametric function g(ϕ). Appar-

ently, it’s straightforward to generalize Theorem 1 for any parametric functions (smooth or

38

non-smooth) as long as g : R → [0, 1] and g(−ϕ) = 1− g(ϕ)1. Example parametric functions

that work well in our experiments are the scaled sigmoid function

gσk
(ϕ) = σ(kϕ) =

1

1 + exp(−kϕ)
, (3.1.10)

and the centered-scaled hard sigmoid

gσ̄k
(ϕ) = min(1,max(0,

k

7
ϕ + 0.5)), (3.1.11)

where 7 is introduced such that gσ̄1(ϕ)≈gσ1(ϕ)=σ(ϕ). See Fig. 3.1 for some example plots

of gσk
(ϕ) and gσ̄k

(ϕ) with different ks. Empirically, we find that k=7 works well for network

sparsification, and k = 0.5 for network expansion. More on this will be discussed when we

present results.

One important difference between the hard concrete estimator from Louizos et al. Louizos

et al. (2018b) and L0-ARM is that the hard concrete estimator has to rely on the hard sigmoid

gate to zero out some parameters during training (a.k.a. conditional computation Bengio

et al. (2013)), while L0-ARM achieves conditional computation naturally by sampling from

the Bernoulli distribution, parameterized by g(ϕ), where g(ϕ) can be any parametric function

(smooth or non-smooth) as shown in Fig. 3.1. The consequence of using the hard sigmoid

gate is that once a unit is pruned, the corresponding gradient will be always zero due to the

1The second condition is not necessary. But for simplicity, we will impose this condition to select para-
metric function g(ϕ) that is antithetic. Designing g(ϕ) without this constraint could be a potential area that
is worthy of further investigation.

39

-10 -5 0 5 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g(
)

sigmoid (k=1)
sigmoid (k=2)
sigmoid (k=7)
hard sigmoid (k=1)
hard sigmoid (k=7)
step function

Figure 3.1: The plots of g(ϕ) with different k for sigmoid and hard sigmoid functions.

exact 0 gradient at the left tail of the hard sigmoid gate (see Fig. 3.1) and therefore it can

never be reactivated in the future. To mitigate this issue of the hard concrete estimator,

L0-ARM can utilize the scaled sigmoid gate (3.1.10), which has non-zero gradient everywhere

(−∞,∞), and therefore a unit can be activated or deactivated freely and thus be plastic.

3.2 Learning Stage Scheduler

As far as we know, all network sparsification algorithms either operate in a three-stage of

pre-training, sparsification, and fine-tuning Han et al. (2016, 2015); Wen et al. (2016a) or

only have one sparsification stage from scratch Louizos et al. (2018b). It has been shown

that the three-stage sparsification leads to better predictive accuracies than the one-stage

40

alternatives Lee et al. (2018). To support this three-stage learning process, previous meth-

ods Han et al. (2016, 2015); Wen et al. (2016a) however manage this tedious process manually.

Thanks to the flexibility of NPN, we can modulate these learning stages by simply adjusting

k of the gk(ϕ) function at different training stages. Along the way, we also discover a new

interpretation of dropout Srivastava et al. (2014).

3.2.1 Dropout as k = 0

When k = 0, it is readily to verify that gσk
(ϕ) = gσ̄k

(ϕ) = 0.5, and the objective func-

tion (3.1.8) is degenerated to

R̂(θ̃,ϕ) = Eu∼Uniform(u;0,1)

[
f(1[u<0.5])

]
+ λ|θ̃|/2, (3.2.1)

which is in fact the standard dropout with a dropout probability of 0.5 Srivastava et al.

(2014). Note that the value of 0.5 is due to the artifact of the antithetic constraint on the

parametric function g(ϕ). As we discussed in Sec. 3.1, this constraint isn’t necessary and

we have freedom of designing g(0) = c with c ∈ [0, 1], which corresponds to any dropout

probability of the standard dropout. From this point of view, dropout is just a special case

of NPN when k = 0, and this is a new interpretation of dropout.

41

3.2.2 Pre-training as k = ∞ at the beginning of NPN training

At the beginning of NPN training, we initialize all ϕ’s to some positive values, e.g., ϕ > 0.1.

If we set k = ∞, then gσ∞(ϕ) = gσ̄∞(ϕ) = 1 and the objective function (3.1.8) becomes

R̂(θ̃,ϕ) = Eu∼Uniform(u;0,1)

[
f(1[u<1])

]
+ λ|θ̃|, (3.2.2)

which corresponds to the standard training of DNNs with all neurons activated. Moreover,

the gradient w.r.t. ϕ is degenerated to

∇ϕR̂(θ̃,ϕ) = Eu∼Uniform(u;0,1)

[(
f(1[u>0]) (3.2.3)

− f(1[u<1])
)
(u− 1/2)

]
+ λ

|θ̃|∑
j=1

∇ϕj
1 = 0,

such that ϕ will not be updated during the training and the architecture is fixed. This

corresponds to the pre-training of a network from scratch.

3.2.3 Fine-tuning as k = ∞ at the end of NPN training

At the end of NPN training, the histogram of g(ϕ) is typically split to two spikes of values

around 0 and 1 as demonstrated in L0-ARM Li & Ji (2019). If we set k = ∞, then the values

of g(ϕ) will be exactly 0 or 1. In this case, the gradient w.r.t. ϕ is zero, the neurons with

g(ϕ) = 1 are activated and the neurons with g(ϕ) = 0 are deactivated. This corresponds to

the case of fine-tuning a fixed architecture without the L0 regularization.

42

3.2.4 Modulating learning stages by k

As discussed above, we can now integrate the three-stage of pre-training, sparsification and

fine-tuning into one end-to-end pipeline, modulated by a single parameter k. At the begin-

ning of the training, we set k = ∞ to pre-train a network from scratch. Upon convergence,

we can set k to some small values (e.g., k = 7) to enable the L0 regularized optimization for

network sparsification. After the convergence, we can set k = ∞ again to fine-tune the final

learned architecture without the L0 regularization. To the best of our knowledge, there is

no other network sparsification algorithm that supports this three-stage training in a native

end-to-end pipeline. As an analogy to the common learning rate scheduler, we call k as a

learning stage scheduler. We will demonstrate this when we present results.

3.3 Network Expansion

So far we have described NPN in the context of network sparsification. Thanks to the

flexibility of L0-ARM, it is straightforward to extend it to network expansion. Instead of

starting from a large network for pruning, we can expand a small network by adding neurons

during training, an analogy of growing a brain from small to large. Specifically, given the

level of activity of a neuron is determined by its ϕ, a new neuron can be added to the network

with a large ϕ such that it will be activated in future training epochs. If this neuron is useful

at reducing the L0-regularized loss function (3.1.8), its ϕ value will be increased such that

it will be activated more often in the future; otherwise, it will be gradually deactivated and

pruned away in the future. At each training iteration, we add a new neuron to a layer if (a)

43

the validation loss is lower than its previous value when a neuron was added last time, and (b)

all neurons in the layer are activated (i.e., no redundant neurons in the layer). The network

expansion will terminate when the L0-regularized loss plateaus or some added neurons are

deactivated due to the L0-norm regularization. This network expansion procedure is detailed

in Algorithm 1.

Algorithm 1 Network Expansion

Require: number of iterations T , deep network f , number of layers L, lossold = +∞,
lossval = 0
for t = 1 to T do

Train f on a mini-batch of training examples
lossval = Validate f on validation dataset
if lossval < lossold then
for l = 1 to L do
if all neurons in layer l are activated then

Add a new neuron to layer l
end if

end for
lossold = lossval

end if
end for

Thanks to the learning stage scheduler discussed in Sec. 3.2, we can simulate network

expansion easily by manipulating k. Specifically, we can initialize a very large network to

represent an upper-bound on network capacity. To start with a small network, we randomly

select a small number of neurons and initialize the corresponding ϕs to large positive values

and set all the remaining ϕ’s to large negative values, such that only a small portion of the

neurons will be activated while the remaining neurons are in a hibernation mode. Since

they will not be activated, these hibernating neurons consume no computation resources.

To pretrain the initial small network, we can train NPN with k = ∞. Upon convergence, we

44

can randomly activate a few hibernating neurons (under the conditions discussed above) and

switch k to a small value (e.g., k = 0.5). Along with the original neurons, we can optimize

the expanded network by reducing the L0-regularized loss. In such a way, we can readily

simulate network expansion. Upon the network expansion terminates, we can set k = ∞ to

fine-tune the final network architecture. In the experiments, we will resort to this approach

to simulate network expansion.

3.4 Related Work

Our NPN has a built-in support to network sparsification, network expansion, and can

automatically determine an appropriate network capacity for a given learning task. In this

section, we review related works in these areas.

3.4.1 Network Sparsification

Driven by the widespread applications of DNNs in resource-limited embedded systems, re-

cently there has been an increasing interest in network sparsification Han et al. (2015, 2016);

Wen et al. (2016a); Li et al. (2016); Louizos et al. (2017); Molchanov et al. (2017); Neklyudov

et al. (2017); Louizos et al. (2018b); Li & Ji (2019). One of the earliest sparsification methods

is to prune the redundant weights based on the magnitudes LeCun et al. (1990), which is

proved to be effective in modern CNNs Han et al. (2015). Although weight sparsification is

able to compress networks, it can barely improve computational efficiency due to unstruc-

tured sparsity. Therefore, magnitude-based group sparsity is proposed Wen et al. (2016a);

Li et al. (2016), which can prune networks while reducing computation cost significantly.

45

These works are mainly based on the L2 or L1 regularization to penalize the magnitude

of weights. A more appealing approach is based on the L0 regularization Louizos et al.

(2018b); Li & Ji (2019) as this corresponds to the well-known model selection criteria such

as AIC Akaike (1998) and BIC Schwarz (1978). Our NPN is built on the basic framework

of L0-ARM Li & Ji (2019) and extend it for network expansion. In addition, as far as we

know almost all the network sparsification algorithms Han et al. (2015, 2016); Wen et al.

(2016a); Li et al. (2016) usually proceed in three stages manually: pretrain a full network,

prune the redundant weights or filters, and fine-tune the pruned network. In contrast, our

NPN can support this three-stage training by simply adjusting the learning stage scheduler

k at different stages in an end-to-end fashion.

3.4.2 Neural Architecture Search

Another closely related area is neural architecture search Zoph & Le (2017); Zoph et al.

(2018); Real et al. (2019) that searches for an optimal network architecture for a given learn-

ing task. It attempts to determine number of layers, types of layers, layer configurations,

different activation functions, etc. Given the extremely large search space, typically rein-

forcement learning algorithms are utilized for efficient implementations. Our NPN can be

categorized as a subset of neural architecture search in the sense that we start with a fixed

architecture and aim to determine an optimal capacity (e.g., number of weights, neurons or

channels) of a network.

46

3.4.3 Dynamic Network Expansion

Compared to network sparsification, network expansion is a relatively less explored area.

There are few existing works that can dynamically increase the capacity of network during

training. For example, DNC Ash (1989) sequentially adds neurons one at a time to the

hidden layers of network until the desired approximation accuracy is achieved. Zhou et al.

(2012) proposes to train a denoising autoencoder (DAE) by adding in new neurons and

later merging them with other neurons to prevent redundancy. For convolutional networks,

Wang et al. (2017) proposes to widen or deepen a pretrained network for better knowledge

transfer. Recently, a boosting-style method named AdaNet Cortes et al. (2017) is used to

adaptively grow the structure while learning the weights. However, all these approaches

either only add neurons or add/remove neurons manually. In contrast, our NPN can add or

remove (deactivate) neurons during training as needed without human intervention, and is

an end-to-end unified framework for network sparsification and expansion.

3.5 Experimental Results

We evaluate the performance of NPNs on multiple public datasets with different network

architectures for network sparsification and network expansion. Specifically, we illustrate

how NPN evolves on a synthetic “moons” dataset Miyato et al. (2018) with a 2-hidden-layer

MLP. We also demonstrate LeNet5-Caffe2 on the MNIST dataset Lecun et al. (1998), and

ResNet56 He et al. (2016a) on the CIFAR10 and CIFAR100 datasets Krizhevsky & Hinton

(2009). Similar to L0-ARM Li & Ji (2019) and L0-HC Louizos et al. (2017), to achieve

2https://github.com/BVLC/caffe/tree/master/examples/mnist

https://github.com/BVLC/caffe/tree/master/examples/mnist

47

computational efficiency, only neuron-level (instead of weight-level) sparsification/expansion

is considered, i.e., all weights of a neuron or filter are either pruned from or added to a

network altogether. For the comparison to the state-of-the-art network sparsification algo-

rithms Louizos et al. (2018b); Molchanov et al. (2017); Louizos et al. (2017), we refer the

readers to L0-ARM Li & Ji (2019) for more details since NPN is an extension of L0-ARM

for network sparsification and expansion.

As discussed in Sec. 3.1, each neuron in an NPN is attached with a Bernoulli random

variable parameterized by g(ϕ). Therefore, the level of activity of a neuron is determined

by the value of ϕ. To initialize an NPN, in our experiments we activate a neuron by setting

ϕ = 3/k. Since gσk
(ϕ) = σ(3) ≈ 0.95, this means that the corresponding neuron has a 95%

probability of being activated. Similarly, we set ϕ = −3/k to deactivate a neuron with a

95% probability.

As discussed in Sec. 3.2, all of our experiments are performed in three stages: (1) pre-

training, (2) sparsification/expansion, and (3) fine-tuning, in an end-to-end training pipeline

modulated by parameter k. In pre-training and fine-tuning stages, we set k = 5000 (as a

close approximation to k = ∞) to train an NPN with a fixed architecture. In sparsification/-

expansion stage, we set k to a small value to allow NPNs to search for a suitable network

capacity freely.

The final architecture of a network is influenced significantly by two hyperparameters:

(1) the regularization strength λ, and (2) k of the gσk
(.) function, which determine how

aggressively to sparsify or expand a network. Typically, a positive λ is used both for spar-

48

sification and expansion. However, in some expansion experiments, we notice that λ = 0

is beneficial because λ = 0 essentially encourages more neurons to be activated, which is

important for network expansion to achieve competitive accuracies. For the hyperparameter

k used in stage 2, in all of our experiments we set k = 7 for sparsification and k = 0.5

for expansion. The reason that different ks are used is because for expansion we need to

encourage the network to grow and a small k is more amenable to keep neurons activated.

The rest of hyperparameters of NPNs are determined via cross validation on the validation

datasets.

Unless specifically noted, we use the Adam optimizer Kingma & Ba (2015) with an initial

learning rate of 0.001. Our experiments are performed on NVIDIA Titan-Xp GPUs. Our

source code is available at https://github.com/leo-yangli/npns.

3.5.1 Synthetic Dataset

To demonstrate that NPNs can adapt their capacities for a learning task, we visualize the

learning process of NPNs on a synthetic “moons” dataset Miyato et al. (2018) for network

sparsification and network expansion. The “moons” dataset contains 1000 data points dis-

tributed in two moon-shaped clusters for binary classification. We randomly pick 500 data

points for training and use the rest 500 data points for test. Two different MLP architec-

tures are used for network sparsification and network expansion, respectively. For network

sparsification, we train an MLP with 2 hidden layers of 100 and 80 neurons, respectively.

The input layer has 2 neurons corresponding to the 2-dim coordinates of each data point,

which is transformed to a 100-dim vector by a fixed matrix. The output layer has two

https://github.com/leo-yangli/npns

49

neurons for binary classification. The overall architecture of the MLP is 2-100 (fixed)-80-2

with the first weight matrix fixed, and the overall number of trainable model parameters is

8,160 (excluding biases for clarity). The binary gates are attached to the outputs of the two

hidden layers for sparsification. For the expansion experiment, we start an MLP with a very

small architecture of 2-100 (fixed)-3-2. Initially, only three neurons at each hidden layer are

activated, and therefore the total number of trainable model parameters is 15 (excluding

biases for clarity). Apparently, the first MLP is overparameterized for this synthetic binary

classification task, while the second MLP is too small and doesn’t have enough capacity to

solve the classification task with a high accuracy.

To visualize the learning process of NPNs, in Fig. 3.2 we plot the decision boundaries

and confidence contours of the NPN-sparsified MLP and NPN-expanded MLP on the test set

of “moons”. We pick three snapshots from each experiment. The evolution of the decision

boundaries of the NPN-expanded MLP is shown in Fig. 3.2 (a, b, c). At the end of pre-

training (a. epoch 99), the decision boundary is mostly linear and the capacity of the network

is obviously not enough. During the stage 2 expansion (b. epoch 199), more neurons are

added to the network and the decision boundary becomes more expressive as manifested by

a piece-wise linear function, and at the same time the accuracy is significantly improved to

about 96%. At the end of stage 3 fine-tuning (c. epoch 1999), the accuracy reaches 99.2%

with more neurons being added. Similarly, Fig. 3.2 (d, e, f) demonstrates the evolution of the

decision boundaries of NPN-sparsified MLP on the test set. The model achieves an accuracy

of 99.2% at the end of stage 1 pre-training (d. epoch 499). Then 47.6% of weights are

50

pruned without any accuracy loss during stage 2 sparsification (e. epoch 999). The model

finally prunes 60.4% of neurons at the end of stage 3 fine-tuning (f. epoch 1999). In this

sparsification experiment, across different training stages, the shapes of decision boundaries

are appropriately the same even though a large amount of neurons are pruned.

Interestingly, the final architectures achieved by network expansion and network sparsi-

fication are very similar (3300 vs. 3234), so are their accuracies (99.6% vs. 99.00%) even

though the initial network capacities are quite different (15 vs. 8160). This experiment

demonstrates that given an initial network architecture either large or small, NPNs can

adapt their capacities to solve a learning task with high accuracies.

3.5.2 MNIST

In the second part of experiments, we run NPNs with LeNet5-Caffe on the MNIST dataset

for network sparsification and expansion. LeNet5-Caffe consists of two convolutional layers

of 20 and 50 neurons, respectively, interspersed with max pooling layers, followed by two

fully-connected layers with 800 and 500 neurons. We start network sparsification from the

full LeNet5 architecture (20-50-800-500, in short), while in the expansion experiment we

start from a very small network with only 3 neurons in the first two convolutional layers,

48 and 3 neurons in the fully-connected layers (3-3-48-3, in short). We pre-train the NPNs

for 100 epochs, followed by sparsification/expansion for 250 epochs and fine-tuning for 150

epochs. For both experiments, we use λ = (10, 0.5, 0.1, 10)/N where N is the number of

training images.

The results are shown in Table 3.1 and Fig. 3.3. For the sparsification experiment, the

51

Table 3.1: The network sparsification and expansion with LeNet5 on MNIST.

Stage Arch. (# of Parameters) Accuracy (%)
Baseline - 20-50-800-500 (4.23e5) 99.40

Sparsification
stage 1 20-50-800-500 (4.23e5) 99.36
stage 2 7-9-109-30 (5320) 98.90
stage 3 7-9-109-30 (5320) 98.91

Expansion
stage 1 3-3-48-3 (474) 93.85
stage 2 8-8-53-8 (2304) 96.71
stage 3 8-8-53-8 (2304) 98.31

NPN achieves 99.36% accuracy at the end of pre-training, and yields a sparse architecture

with a minor accuracy drop at the end of sparsification. With the fine-tuning at stage 3, the

accuracy reaches 98.91% in the end. For the expansion experiment, the NPN achieves a low

accuracy of 93.85% after pre-training due to insufficient capacity of the initial network, then

it expands to a larger network and improves the accuracy to 96.71%. Finally, the accuracy

reaches 98.31% after fine-tuning. Fig. 3.3 demonstrate the learning processes of NPNs on

MNIST for network sparsification and network expansion. It is interesting to note that

both network sparsification and expansion reach the similar network capacity with similar

classification accuracies at the end of the training even though they are started from two

significantly different network architectures. It’s worth emphasizing that both sparsification

and expansion reach similar accuracies to the baseline model, while over 99% weights are

pruned.

3.5.3 CIFAR-10/100

In the final part of experiments, we evaluate NPNs with ResNet56 on CIFAR-10 and CIFAR-

100 for network sparsification and network expansion. Due to the existence of skip connec-

tions, we do not sparsify the last convolutional layer of each residual block to keep a valid

52

addition operation. To train NPNs with this modern CNN architecture, two optimizers are

used: (1) SGD with momentum for ResNet56 parameters with an initial learning rate of 0.1,

and (2) Adam for the binary gate parameters ϕ with an initial learning rate of 0.001. The

batch size, weight decay and momentum of SGD are set to 128, 5e-4 and 0.9, respectively.

The learning rate is multiplied by 0.1 every 60 epochs for SGD optimizer, while for Adam

optimizer we multiplied learning rate by 0.1 at epoch 120 and 180.

As before, the networks are training in three stages by leveraging k. We pre-train the

network for the first 20 epochs. In the expansion experiments, we pre-train a small network

which only has 20% of neurons, while in the sparsification experiments, we pre-triain the full

architecture. The network is then trained in stage 2 for 180 epochs, and finally is fine-tuned

in stage 3 for 20 epochs. For the sparsification experiments, we use λ = 1e− 5 for all layers,

while for the expansion experiments we use λ = 0 to encourage more neurons to be activated.

Table 3.2: The network sparsification and expansion with ResNet56 on CIFAR10 and
CIFAR100.

Model Method Acc. (%) ∆Acc FLOPs (P.R. %) Params. (P.R. %)

CIFAR10

SFP (He et al. 2018a) 93.6→93.4 -0.2 59.4M (53.1) -
AMC (He et al. 2018b) 92.8→91.9 -0.9 62.5M (50.0) -
FPGM (He et al. 2019) 93.6→93.5 -0.1 59.4M (52.6) -
TAS (Dong & Yang 2019) 94.5→93.7 -0.8 59.5M (52.7) -
HRank (Lin et al. 2020) 93.3→93.5 +0.2 88.7M (29.3) 0.71M (16.8)
NPN Sparsification 93.2→93.0 -0.2 76.1M (40.1) 0.33M (61.2)
NPN Expansion 93.2→92.7 -0.5 100.5M (20.9) 0.55M (35.3)

CIFAR100

SFP (He et al. 2018a) 71.4→68.8 -2.6 59.4M (52.6) -
FPGM (He et al. 2019) 71.4→69.7 -1.7 59.4M (52.6) -
TAS (Dong & Yang 2019) 73.2→72.3 -0.9 61.2M (51.3) -
NPN Sparsification 71.1→70.9 -0.2 101.8M (19.8) 0.61M (28.2)
NPN Expansion 71.1→69.9 -0.5 102.8M (19.1) 0.60M (29.4)

“∆”: ‘+’ denotes accuracy gain; ‘-’ denotes accuracy loss. “Params. (P.R. %)”: prune ratio in
parameters.

We compare the performance of NPNs with the state-of-the-art pruning algorithms, in-

53

cluding SFP He et al. (2018a), AMC He et al. (2018b), FPGM He et al. (2019), TAS Dong

& Yang (2019) and HRank Lin et al. (2020), with the results shown in Table 3.2. Since the

baseline accuracies in all the reference papers are different, we follow the common practice

and compare the performances of all competing methods by their accuracy gains ∆Acc and

their pruning rates in terms of FLOPs and network parameters. It can be observed that

NPN sparsification and NPN expansion achieve very competitive performances to the state-

of-the-arts in terms of classification accuracies and prune rates. More interestingly, similar

to the results on MNIST, both network sparsification and expansion reach the similar net-

work capacities with similar classification accuracies at the end of the training even though

they are started from two significantly different network architectures, demonstrating the

plasticity of NPN for network sparsification and expansion.

3.6 Conclusion

We propose neural plasticity networks (NPNs) for network sparsification and expansion by

attaching each unit of a network with a stochastic binary gate, whose parameters are jointly

optimized with original network parameters. The activation or deactivation of a unit is

completely data-driven and determined by an L0-regularized objective. Our NPN unifies

dropout (when k = 0), traditional training of DNNs (when k=∞) and interpolate between

these two. To the best of our knowledge, it is the first learning framework that unifies network

sparsification and network expansion in an end-to-end training pipeline that supports pre-

training, sparsification/expansion, and fine-tuning seamlessly. Along the way, we also give

54

a new interpretation of dropout. Extensive experiments on multiple public datasets and

multiple network architectures validate the effectiveness of NPNs for network sparsification

and expansion in terms of model compactness and predictive accuracies.

As for future extensions, we plan to design better (possibly non-antithetic) parametric

function g(ϕ) to improve the compactness of learned networks. We also plan to extend the

framework to prune or expand network layers to further improve model compactness and

accuracy altogether.

55

2 1 0 1 22

1

0

1

2#99, Accuracy: 70.60%, # of parameters: 15

0.05

0.20

0.35

0.50

0.65

0.80

0.95

(a) Expansion: epoch 99

2 1 0 1 22

1

0

1

2#199, Accuracy: 95.80%, # of parameters: 2600

0.05

0.20

0.35

0.50

0.65

0.80

0.95

(b) Expansion: epoch 199

2 1 0 1 22

1

0

1

2#1999, Accuracy: 99.60%, # of parameters: 3300

0.05

0.20

0.35

0.50

0.65

0.80

0.95

(c) Expansion: epoch 1999

2 1 0 1 22

1

0

1

2#499, Accuracy: 99.20%, # of parameters: 8160

0.05

0.20

0.35

0.50

0.65

0.80

0.95

(d) Sparsification: epoch 499

2 1 0 1 22

1

0

1

2#999, Accuracy: 99.20%, # of parameters: 4275

0.05

0.20

0.35

0.50

0.65

0.80

0.95

(e) Sparsification: epoch 999

2 1 0 1 22

1

0

1

2#1999, Accuracy: 99.00%, # of parameters: 3234

0.05

0.20

0.35

0.50

0.65

0.80

0.95

(f) Sparsification: epoch 1999

Figure 3.2: The evolution of the decision boundaries of NPNs for network expansion (a,b,c)
and network sparsification (d,e,f).

56

0 100 200 300 400 500
Epoch

0

1

2

3

4

Nu
m

be
r o

f p
ar

am
et

er
s

×105

Expansion (stage 1)
Expansion (stage 2)
Expansion (stage 3)
Sparsification (stage 1)
Sparsification (stage 2)
Sparsification (stage 3)

(a) LeNet5: # of parameters

0 100 200 300 400 500
Epoch

20

40

60

80

100
Ac

cu
ra

cy
 (%

)

Expansion (stage 1)
Expansion (stage 2)
Expansion (stage 3)
Sparsification (stage 1)
Sparsification (stage 2)
Sparsification (stage 3)

(b) LetNet5: Test accuracy

Figure 3.3: The evolution of network capacity and test accuracy as a function of epoch for
NPN network sparsification and expansion with LetNet5 on MNIST.

57

CHAPTER 4

Dep-L0: Improving L0-based Network Sparsification via Dependency Modeling

Training deep neural networks with an L0 regularization is one of the prominent approaches

for network pruning or sparsification. This method attaches a binary gate to each weight of a

neural network, and penalizes the complexity of the network, measured by the L0 norm of the

weight matrix. However, recent work of Gale et al. Gale et al. (2019a) reveals that although

L0-HC works well on smaller datasets, it fails to prune very deep networks on large-scale

datasets, such as ResNet50 on ImageNet. The original L0-HC algorithm was proposed and

evaluated on filter-level pruning, while Gale et al. Gale et al. (2019a) focus on the weight-level

pruning. Therefore, it is unclear if the observation of Gale et al. (2019a) is due to pruning

granularity or the deficiency of the L0 regularization based method. To understand this, we

evaluate the original L0-HC to sparsify ResNet50 at filter level on ImageNet, and find that it

indeed cannot prune ResNet50 without a significant damage of model quality, confirming the

observation made by Gale et al. (2019a). This indicates that the failure of L0-HC is likely

due to the deficiency of the L0-norm based approach. We further analyze L0-HC in the lens

of variational inference Blei et al. (2017), and find that the failure is likely due to an

over-simplified assumption that models the variational posterior of binary gates

to be element-wise independent. To verify this hypothesis, we propose to incorporate

the dependency into the binary gates, and model the gate dependency across CNN layers

with a multi-layer perceptron (MLP). Extensive experiments show that our dependency-

enabled L0 sparsification, termed Dep-L0, once again is able to prune very deep networks

58

on large-scale datasets, while achieving competitive or sometimes even better performances

than the state-of-the-art pruning methods.

Our main contributions can be summarized as follows:

• From a variational inference perspective, we show that the effectiveness of L0-HC Louizos

et al. (2018a) might be hindered by the implicit assumption that all binary gates at-

tached to a neural network are independent to each other. To mitigate this issue, we

propose Dep-L0 that incorporates the dependency into the binary gates to improve the

original L0-based sparsification method.

• A series of experiments on multiple datasets and multiple modern CNN architectures

demonstrate that Dep-L0 improves L0-HC consistently, and is very competitive or

sometimes even outperforms the state-of-the-art pruning algorithms.

• Moreover, Dep-L0 converges faster than L0-HC in terms of network structure search,

and reduces the time to solution by 20%-40% compared to L0-HC in our experiments.

4.1 Method

Our algorithm is motivated by L0-HC Louizos et al. (2018a), which prunes neural networks

by optimizing an L0 regularized loss function and relaxing the non-differentiable Bernoulli

distribution with the Hard Concrete (HC) distribution. Since L0-HC can be viewed as a

special case of variational inference under the spike-and-slab prior Louizos et al. (2018a), in

this section we first formulate the sparse structure learning from this perspective, then discuss

the deficiency of L0-HC and propose dependency modeling, and finally present Dep-L0.

59

4.1.1 Sparse Structure Learning

Consider a dataset D = {xi, yi}Ni=1 that consists of N pairs of instances, where xi is the

ith observed data and yi is the associated class label. We aim to learn a model p(D|θ),

parameterized by θ, which fits D well with the goal of achieving good generalization to unseen

test data. In order to sparsify the model, we introduce a set of binary gates z = {z1, · · · , z|θ|},

one gate for each parameter, to indicate whether the corresponding parameter being kept

(z = 1) or not (z = 0).

This formulation is closely related to the spike-and-slab distribution Mitchell & Beauchamp

(1988), which is widely used as a prior in Bayesian inference to impose sparsity. Specifically,

the spike-and-slab distribution defines a mixture of a delta spike at zero and a standard

Gaussian distribution:

p(z) = Bern(z|π)

p(θ|z = 0) = δ(θ), p(θ|z = 1) = N(θ|0, 1), (4.1.1)

where Bern(·|π) is the Bernoulli distribution with parameter π, δ(·) is the Dirac delta func-

tion, i.e., a point probability mass centered at the origin, and N(θ|0, 1) is the Gaussian

distribution with zero mean and unit variance. Since both θ and z are vectors, we assume

the prior p(θ, z) factorizes over the dimensionality of z.

In Bayesian statistics, we would like to estimate the posterior of (θ, z), which can be

60

calculated by Bayes’ rule:

p(θ, z|D) =
p(D|θ, z)p(θ, z)

p(D)
. (4.1.2)

Practically, the true posterior distribution p(θ, z|D) is intractable due to the non-conjugacy

of the model likelihood and the prior. Therefore, here we approximate the posterior dis-

tribution via variational inference Blei et al. (2017). Specially, we can approximate the

true posterior with a parametric variational posterior q(θ, z), the quality of which can be

measured by the Kullback-Leibler (KL) divergence:

KL[q(θ, z)||p(θ, z|D)], (4.1.3)

which is again intractable, but can be optimized by maximizing the variational lower bound

of log p(D), defined as

L = Eq(θ,z)[log p(D|θ, z)] −KL[q(θ, z)∥p(θ, z)], (4.1.4)

where the second term can be further expanded as:

KL[q(θ, z)∥p(θ, z)] =Eq(θ,z)[log q(θ, z) − log p(θ, z)]

=Eq(θ,z)[log q(θ|z) − log p(θ|z) + log q(z) − log p(z)]

=KL[q(θ|z)||p(θ|z)] + KL[q(z)||p(z)]. (4.1.5)

In L0-HC Louizos et al. (2018a), the variational posterior q(z) is factorized over the dimen-

sionality of z, i.e., q(z) =
∏|θ|

j=1 q(zj) =
∏|θ|

j=1 Bern(zj|πj). By the law of total probability,

61

we can further expand Eq. 4.1.5 as

KL[q(θ, z)∥p(θ, z)]

=

|θ|∑
j=1

(
q(zj = 0)KL[q(θj|zj = 0)||p(θj|zj = 0)]+

+ q(zj = 1)KL[q(θj|zj = 1)||p(θj|zj = 1)]
)

+

|θ|∑
j=1

KL[q(zj)||p(zj)]

=

|θ|∑
j=1

q(zj = 1)KL[q(θj|zj = 1)||p(θj|zj = 1)] +

|θ|∑
j=1

KL[(q(zj)||p(zj)]. (4.1.6)

The last step holds because KL[q(θj|zj = 0)||p(θj|zj = 0)] = KL[q(θj|zj = 0)||δ(θj)] = 0.

Furthermore, letting θ = θ̃ ⊙ z and assuming λ = KL[q(θj|zj = 1)||p(θj|zj = 1)], the

lower bound L (4.1.4) can be simplified as

L = Eq(z)[log p(D|θ̃ ⊙ z)] −
|θ|∑
j=1

KL (q (zj) ||p (zj)) − λ

|θ|∑
j=1

q (zj = 1)

≤ Eq(z)[log p(D|θ̃ ⊙ z)] − λ

|θ|∑
j=1

πj, (4.1.7)

where the inequality holds due to the non-negativity of KL-divergence.

Given that our model is a neural network h(x; θ̃, z), parameterized by θ̃ and z, Eq. 4.1.7

turns out to be an L0-regularized loss function Louizos et al. (2018a):

R(θ̃,π) = Eq(z)

[
1

N

N∑
i=1

L
(
h(xi; θ̃ ⊙ z), yi

)]
+ λ

|θ|∑
j=1

πj, (4.1.8)

where L(·) is the cross entropy loss for classification.

In the derivations above, the variational posterior q(z) is assumed to factorize over the

62

dimensionality of z, i.e., q(z) =
∏|θ|

j=1 q(zj). This means all the binary gates z are assumed

to be independent to each other – the mean-field approximation Blei et al. (2017). In vari-

ational inference, it is common to assume the prior p(z) to be element-wise independent;

the true posterior p(z|D), however, is unlikely to be element-wise independent. Therefore,

approximating the true posterior by an element-wise independent q(z) is a very restrict con-

straint that limits the search space of admissible q(z) and is known in Bayesian statistics

for its poor performance Bishop (2007); Blei et al. (2017). We thus hypothesize that this

mean-field approximation may be the cause of the failure reported by Gale et al. Gale et al.

(2019a), and the independent assumption hinders the effectiveness of the L0-based prun-

ing method. Therefore, we can potentially improve L0-HC by relaxing this over-simplified

assumption and modeling the dependency among binary gates z explicitly.

Specifically, instead of using a fully factorized variational posterior q(z), we can model

q(z) as a conditional distribution by using the chain rule of probability

q(z) = q(z1)q(z2|z1)q(z3|z1, z2) · · · q(z|θ||z1, · · · , z|θ|−1),

where given an order of binary gates z = {z1, z2, · · · , z|θ|}, zi is dependent on all previous

gates z<i. With this, Eq. 4.1.8 can be rewritten as

R(θ̃,π) = λ

|θ|∑
j=1

πj + Eq(z1)···q(z|θ||z1,··· ,z|θ|−1)

[
1

N

N∑
i=1

L
(
h(xi; θ̃ ⊙ z), yi

)]
, (4.1.9)

which is a dependency-enabled L0 regularized loss function for network pruning. Detailed

design of the dependency modeling is to be discussed in later sections.

63

4.1.2 Group Sparsity

So far we have modeled a sparse network by attaching a set of binary gates z to the network

at the weight level. As we discussed in the introduction, we prefer to prune the network

at the filter level to fully utilize general purpose CPUs or GPUs. To this end, we consider

group sparsity that shares a gate within a group of weights. Let G = {g1, g2, · · · , g|G|} be a

set of groups, where each element corresponds to a group of weights, and |G| is the number

of groups. With the group sparsity, the expected L0-norm of model parameters (the first

term of Eq. 4.1.9) can be calculated as

Eq(z)∥θ∥0 =

|θ|∑
j=1

q(zj = 1|z<j) =

|G|∑
k=1

|gk|πk, (4.1.10)

where |gk| denotes the number of weights in group k.

In all our experiments, we perform filter-level pruning by attaching a binary gate to all

the weights of a filter (i.e., a group). Since modern CNN architectures often contain batch

normalization layers Ioffe & Szegedy (2015), in our implementation we make a slight modifi-

cation that instead of attaching the gates to filters directly, we attach the gates to the feature

maps after batch normalization. This is because batch normalization accumulates a moving

average of feature statistics for normalization during the training process. Simply attaching

a binary gate to the weights of a filter cannot remove the impact of a filter completely when

z = 0 due to the memorized statistics from batch normalization. By attaching the gates to

the feature maps after batch normalization, the impact of the corresponding filter can be

completely removed when z = 0.

64

4.1.3 Gate Partition

Modern CNN architectures, such as VGGNet Simonyan & Zisserman (2014), ResNet He

et al. (2016b) and WideResNet Zagoruyko & Komodakis (2016b), often come with a large

number of weights and filters. For example, VGG16 Simonyan & Zisserman (2014) contains

138M parameters and 4,224 filters. Since we attach a binary gate to each filter, the number

of gates would be large and modeling the dependencies among them would lead to a huge

computational overhead and optimization issues. To make our dependency modeling more

practical, we propose gate partition to simplify the dependency modeling among gates.

Specifically, the gates are divided into blocks, and the gates within each block are considered

independent to each other, whereas the gates cross blocks are considered dependent. Fig. 4.1

illustrates the difference between an element-wise sequential dependency modeling and a

partition-wise dependency modeling. Let’s consider z1, z2, z3 and z4 in these two cases. In the

element-wise sequential dependency modeling, as shown in Fig. 4.1(a), z2 is dependent on z1,

z3 is dependent on z1 and z2, and so on. As number of gates could be very large, the element-

wise sequential modeling would lead to a very long sequence, whose calculation would incur

huge computational overhead. Instead, we can partition the gates, as in Fig. 4.1(b), where

z1, z2 and z3 are in block b1 so they are considered independent to each other, while z4 in

block b2 is dependent on all z1, z2 and z3.

We formally describe the gate partition as following. Given a set of gates G = {g1, g2, · · · , g|G|},

let B = {b1, b2, · · · , b|B|} be a partition of G, where bi denotes block i, and |B| is the total

number of blocks. Then we can approximate the variational posterior of z by modeling the

65

𝑧! 𝑧! 𝑧"

𝑧#…

𝑧$

𝑧%𝑧&

(a) element-wise dependency

𝑧!

𝑧!

𝑧"

𝑧#

𝑧$

𝑧%

𝑧& …

𝑏' 𝑏! 𝑏" 𝑏|)|…

…

(b) partition-wise dependency

Figure 4.1: Illustration of (a) element-wise sequential dependency modeling, and (b)
partition-wise dependency modeling.

distribution over blocks as

q(z) ≈ q(b1)q(b2|b1)q(b3|b1, b2) · · · q(b|B||b1, · · · , b|B|−1).

To reduce the complexity, we can further simplify it as

q(z) ≈ q(b1)q(b2|b1)q(b3|b2) · · · q(b|B||b|B|−1), (4.1.11)

where block i only depends on previous block i − 1, ignoring all the other previous blocks,

i.e., q(bi|bi−1), – the first-order Markov assumption.

In our experiments, we define a layer-wise partition, i.e., a block containing all the filters

in one layer. For example, in VGG16 after performing a layer-wise gate partition, we only

need to model the dependency within 16 blocks instead of 4,224 gates, and therefore the

computational overhead can be reduced significantly.

66

4.1.4 Neural Dependency Modeling

Until now we have discussed the dependency modeling in a mathematical form. To incorpo-

rate the dependency modeling into the original deep network, we adopt neural networks to

model the dependencies among gates. Specifically, we choose to use an MLP network as the

gate generator. With the proposed layer-wise gate partition (i.e., attaching an MLP layer

to a convolutional layer and a gate to a filter; see Fig. 4.1(b)), the MLP architecture can

model the dependency of gates, as expressed in Eq. 4.1.11, effectively.

Formally, we represent the gate generator as an MLP, with genl denoting the operation

of the lth layer. The binary gate zlk (i.e. the kth gate in block l) can be generated by

logα0 = 1

logαl = genl(logαl−1) with genl(·) = c · tanh(Wl·),

zlk ∼ HC(logαlk, β), (4.1.12)

where Wl is the weight matrix of MLP at the lth layer, c is a hyperparameter that bounds

the value of logα in the range of (−c, c), and HC(logα, β) is the Hard Concrete distribution

with the location parameter logα and the temperature parameter β Louizos et al. (2018a)1,

which makes the sample zlk differentiable w.r.t. logαlk. We set c = 10 as default, which

works well in all our experiments.

Fig. 5.1 illustrates the overall architecture of Dep-L0. The original network is shown on

1Following L0-HC Louizos et al. (2018a), β is fixed to 2/3 in our experiments.

67

Conv layer 1

Batch norm
Activation

Conv layer 2

…

Sparse

gates gates gates

1

1

1

1’s as input

Forward Dependency Backward Dependency

1

1

1

1’s as input

…

⊙

⊙

⊙

⊙

⊙

Batch norm
Activation

Sparse

Figure 4.2: The computational graph of Dep-L0.
The original CNN network is shown on the top, and the gate generator network (MLP) is shown
at the bottom. Instead of attaching gates directly to filters, we attach gates to the feature maps
after batch normalization (as shown by the red dotted lines). The gate can be generated by

propagating the generator networks in either forward or backward direction. Both the original
network and the gate generator are trained together as the whole pipeline is fully differentiable.

{W1,W2,W3, · · · } are the parameters of the MLP gate generator.

the top, and the gate generator (MLP) is shown at the bottom. Here we have a layer-wise

partition of the gates, so the gate generator has the same number of layers as the original

network. As we discussed in group sparsity, each gate is attached to a filter’s output feature

map after batch normalization. The input of the gate generator is initialized with a vector

of 1’s (i.e., logα0 = 1, such that all the input neurons are activated at the beginning).

The values of gates z are generated as we forward propagate the generator. The generated

zs are then attached to original networks, and the gate dependencies can be learned from

the data directly. The whole pipeline (the original network and the gate generator) is fully

differentiable as the Hard Concrete distribution (instead of Bernoulli) is used to sample z,

68

so that we can use backpropagation to optimize the whole pipeline.

Furthermore, as shown in Fig. 5.1, the dependencies can be modeled in a backward

direction as well, i.e., we generate the gates from the last layer L of MLP first, and then

generate the gates from layer L − 1, and so on. In our experiments, we will evaluate the

performance impacts of both forward and backward modeling.

In addition to MLPs, other network architectures such as LSTMs and CNNs can be

used to model the gate generator as well. However, neither LSTMs nor CNNs achieves a

competitive performance to MLPs in our experiments. Detailed ablation study is provided

in the appendix.

4.2 Related Work

Model compression Deng et al. (2020) aims to reduce the size of a model and speed up its

inference at the same time. Recently, there has been a flurry of interest in model compression,

ranging from network pruning LeCun et al. (1990); Han et al. (2015); Louizos et al. (2018a);

?); Lin et al. (2019a), quantization and binarization Courbariaux et al. (2016); Gupta et al.

(2015), tensor decomposition Jaderberg et al. (2014); Denton et al. (2014), and knowledge

distillation Hinton et al. (2015). Since our algorithm belongs to the category of network

pruning, we mainly focus on reviewing related work in pruning.

Dependency Modelling

Even though there are many network pruning algorithms today, most of them (if not all)

implicitly assume all the neurons of a network are independent to each other when selecting

69

neurons for pruning. There are quite few works exploring the dependency inside neural

networks for pruning. The closest one is LookAhead Park et al. (2020), which reinterprets

the magnitude-based pruning as an optimization of the Frobenius distortion of a single

layer, and improves the magnitude-based pruning by optimizing the Frobenius distortion

of multiple layers, considering previous layer and next layer. Although the interaction of

different layers is considered, the authors do not model the dependency of them explicitly.

To the best of our knowledge, our Dep-L0 is the first to model the dependency of neurons

explicitly for network pruning.

4.3 Experiments

In this section we compare Dep-L0 with the state-of-the-art pruning algorithms for CNN

architecture pruning. In order to demonstrate the generality of Dep-L0, we consider multi-

ple image classification benchmarks (CIFAR10, CIFAR100 Krizhevsky & Hinton (2009) and

ImageNet Deng et al. (2009b)) and multiple modern CNN architectures (VGG16 Simonyan

& Zisserman (2014), ResNet50, and ResNet56 He et al. (2016b)). As majority of the com-

putations of modern CNNs are in the convolutional layers, following the competing pruning

methods, we only prune the convolutional filters and leave the fully connected layers intact

(even though our method can be used to prune any layers of a network). For a fair compar-

ison, our experiments closely follow the benchmark settings provided in the literature. All

our experiments are performed with PyTorch on Nvidia V100 GPUs.

70

4.3.1 Experimental Details

The experimental details are provided for the purpose of reproducibility. For a fair compar-

ison, our experiments closely follow the benchmark settings provided in the literature.

4.3.1.1 VGG16 on CIFAR10/100

We adopt a tailored VGG16 network Liu & Deng (2015) to the CIFAR10/100 datasets. The

network contains 13 convolutional layers and 1 fully connected layer. To sparisfy the convo-

lutional layers, the binary gates are attached to the output feature maps of all convolutional

filters and the dependencies of the gates are modeled by an MLP in either forward or back-

ward direction, as described in Sec. 3.4. The models are trained on CIFAR10/100 for 300

epochs with a batch size of 128. We apply two different optimizers for two different groups of

parameters: SGD with momentum for VGG16 parameters, and Adam Kingma & Ba (2015)

for the parameters of the gate generator. The initial learning rate is set to 0.05 for SGD

and 0.001 for Adam. The momentum and weight decay is set to 0.9 and 5e-4, respectively.

The learning rate is multiplied by 0.2 every 60 epochs. For the gate generator, we initialize

the bias terms of each MLP layer with samples from a Gaussian distribution N(3, 0.01) to

encourage gates being activated at the beginning of training.

4.3.1.2 ResNet56 on CIFAR10/100

To evaluate the effectiveness of our Dep-L0 on a more compact and modern CNN architecture,

we further conduct experiments on ResNet56 He et al. (2016b). Due to the existence of skip

connections, we do not sparsify the last convolutional layer of each residual block to keep

71

a valid addition operation. The dependencies of gates across layers are then built as an

MLP. The training has been done in 300 epochs. Two optimizers are used: SGD with

momentum for ResNet56 parameters with an initial learning rate of 0.1 and Adam for the

gate generator parameters with an initial learning rate of 0.001. The batch size, weight

decay and momentum of SGD are set to 128, 5e-4 and 0.9, respectively. The learning rate

is multiplied by 0.1 and 0.2 every 60 epochs for SGD and Adam optimizer, respectively.

4.3.1.3 ResNet50 on ImageNet

Following Gale et al. (2019a), we perform experiments on ImageNet Deng et al. (2009b)

with ResNet50 to evaluate our algorithm on a large-scale benchmark. This is one of our

main experiments since Gale et al. Gale et al. (2019a) claim that L0-HC fails to sparsify

ResNet50 on ImageNet. Similar to the settings of ResNet56, we do not prune the last layer

of each residual block. We train the model for 90 epochs and fine-tune for another 10 epochs

with the gate generator frozen. We again use two optimizers: SGD with momentum as

the optimizer for the parameters of ResNet50 with initial learning rate of 0.1 and Adam

for the gate generator with initial learning rate of 0.001. The batch size, weight decay and

momentum are set to 256, 1e-4 and 0.9, respectively. The learning rate is multiplied by 0.1

and 0.2 every 30 epochs for SGD and Adam optimizer, respectively.

72

4.3.1.4 L0-HC implementations

From our experiments, we found that the original L0-HC implementation2 has a couple issues.

First, the binary gates are not properly attached after batch normalization, which results in

pruned neurons still having impact after being removed. Second, it only uses one optimizer

– Adam for the original network parameters and the hard concrete parameters. We noted

that using two optimizers: SGD with momentum for the original network and Adam for the

hard concrete parameters works better. Therefore, we fixed these issues of L0-HC for all the

experiments and observed improved performance. For a fair comparison, we follow the same

experiment settings as in Dep-L0, and tune L0-HC for the best performance.

4.3.2 CIFAR10 Results

We compare Dep-L0 with ten state-of-the-art filter pruning algorithms, including our main

baseline L0-HC, in this experiment. Since the baseline accuracies in all the reference papers

are different, we compare the performances of all competing methods by their accuracy

gains ∆Acc and their pruning rates in terms of FLOPs and network parameters. For Dep-

L0, we evaluate our algorithm with forward and backward dependency modeling. Table 4.1

provides the results on CIFAR10. As can be seen, for VGG16, our algorithm (with backward

dependency modeling) achieves the highest FLOPs reduction of 65.9% on CIFAR10 with

only 0.1% of accuracy loss. For ResNet56, our forward dependency modeling achieves the

highest accuracy gain of 0.2% with a very competitive FLOPs reduction of 45.5%.

Since L0-HC is our main baseline, we highlight the comparison between Dep-L0 and

2https://github.com/AMLab-Amsterdam/L0_regularization

https://github.com/AMLab-Amsterdam/L0_regularization

73

Table 4.1: Comparison of pruning methods on CIFAR10.

Model Method Acc. (%) ∆Acc FLOPs (P.R. %) Params. (P.R. %)

VGG16

Slimming (Liu et al. 2017) 93.7→93.8 +0.1 195M (51.0) 2.30M (88.5)
DCP (Zhuang et al. 2018) 94.0→94.6 +0.6 109.8M (65.0) 0.94M (93.6)
AOFP (Ding et al. 2019a) 93.4→93.8 +0.4 215M (31.3) -
HRank (Lin et al. 2020) 94.0→93.4 -0.6 145M (53.5) 2.51M (82.9)
L0-HC (Our implementation) 93.5→93.1 -0.4 135.6M (39.8) 2.8M (80.9)
Dep-L0 (forward) 93.5→93.5 0 111.9M (64.4) 2.1M (85.7)
Dep-L0 (backward) 93.5→93.4 -0.1 107.0M (65.9) 1.8M (87.8)

ResNet56

SFP (He et al. 2018a) 93.6→93.4 -0.2 59.4M (53.1) -
AMC (He et al. 2018b) 92.8→91.9 -0.9 62.5M (50.0) -
DCP (Zhuang et al. 2018) 93.8→93.8 0 67.1M (47.1) 0.25M (70.3)
FPGM (He et al. 2019) 93.6→93.5 -0.1 59.4M (52.6) -
TAS (Dong & Yang 2019) 94.5→93.7 -0.8 59.5M (52.7) -
HRank (Lin et al. 2020) 93.3→93.5 +0.2 88.7M (29.3) 0.71M (16.8)
L0-HC (Our implementation) 93.3→92.8 -0.5 71.0M (44.1) 0.46M (45.9)
Dep-L0 (forward) 93.3→93.5 +0.2 69.1M (45.5) 0.48M (43.5)
Dep-L0 (backward) 93.3→93.0 -0.3 66.7M (47.4) 0.49M (42.4)

“∆Acc”: ‘+’ denotes accuracy gain; ‘-’ denotes accuracy loss; the worst result is in red. “FLOPs
(P.R. %)”: pruning ratio in FLOPs. “Params. (P.R. %)”: prune ratio in parameters. “-”: results

not reported in original paper.

Table 4.2: Comparison of pruning methods on CIFAR100.

Model Method Acc. (P.R. %) ∆Acc FLOPs (P.R. %) Params. (%)

VGG16

Slimming (Liu et al. 2017) 73.3→73.5 +0.2 250M (37.1) 5.0M (75.1)
L0-HC (Our implementation) 72.2→70.0 -1.2 138M (56.2) 4.1M (72.5)
Dep-L0 (forward) 72.2→71.6 -0.6 98M (68.8) 2.1M (85.7)
Dep-L0 (backward) 72.2→72.5 +0.3 105M (66.6) 2.2M (85.0)

ResNet56

SFP (He et al. 2018a) 71.4→68.8 -2.6 59.4M (52.6) -
FPGM (He et al. 2019) 71.4→69.7 -1.7 59.4M (52.6) -
TAS (Dong & Yang 2019) 73.2→72.3 -0.9 61.2M (51.3) -
L0-HC (Our implementation) 71.8→70.4 -1.4 82.2M (35.2) 0.73M (15.2)
Dep-L0 (forward) 71.8→71.7 -0.1 87.6M (30.9) 0.56M (34.9)
Dep-L0 (backward) 71.8→71.2 -0.6 93.4M (26.3) 0.52M (39.5)

“∆Acc”: ‘+’ denotes accuracy gain; ‘-’ denotes accuracy loss; the worst result is in red. “FLOPs
(P.R. %)”: pruning ratio in FLOPs. “Params. (P.R. %)”: prune ratio in parameters. “-”: results

not reported in original paper.

L0-HC in the table. As we can see, Dep-L0 outperforms L0-HC consistently in all the

experiments. For VGG16, L0-HC prunes only 39.8% of FLOPs but suffers from a 0.4% of

accuracy drop, while our algorithm prunes more (65.9%) and almost keeps the same accuracy

(-0.1%). For ResNet56, our algorithm prunes more (45.5% v.s. 44.1%) while achieves a higher

accuracy (0.2% vs. -0.5%) than that of L0-HC.

74

4.3.3 CIFAR100 Results

Experimental results on CIFAR100 are reported in Table 4.2, where Dep-L0 is compared

with four state-of-the-arts pruning algorithms: Slimming Liu et al. (2017), SFP He et al.

(2018a), FPGM He et al. (2019) and TAS Dong & Yang (2019). Similar to the results on

CIFAR10, on this benchmark Dep-L0 achieves the best accuracy gains and very competitive

or sometimes even higher prune rates compared to the state-of-the-arts. More importantly,

Dep-L0 outperforms L0-HC in terms of classification accuracies and pruning rates consis-

tently, demonstrating the effectiveness of dependency modeling.

4.3.4 ImageNet Results

The main goal of the paper is to make L0-HC once again competitive on the large-scale bench-

mark of ImageNet. In this section, we conduct a comprehensive experiment on ImageNet,

where the original L0-HC fails to prune without a significant damage of model quality Gale

et al. (2019a). Table 4.3 reports the results on ImageNet, where eight state-of-the-art filter

pruning methods are included, such as SSS-32 Huang & Wang (2018), DCP Zhuang et al.

(2018), Taylor Molchanov et al. (2019), FPGM He et al. (2019), HRank Lin et al. (2020) and

others. As can be seen, Dep-L0 (forward) prunes 36.9% of FLOPs and 37.2% of parameters

with a 1.38% of accuracy loss, which is comparable with other state-of-the-art algorithms as

shown in the table.

Again, since L0-HC is our main baseline, we highlight the comparison between Dep-L0

and L0-HC in the table. We tune the performance of L0-HC extensively by searching for

75

Table 4.3: Comparison of pruning methods on ImageNet.

Model Method Acc. (%) ∆Acc FLOPs (P.R.%) Params. (P.R.%)

ResNet50

SSS-32 (Huang & Wang 2018) 76.12 → 74.18 -1.94 2.82B (31.1) 18.60M (27.3)
DCP (Zhuang et al. 2018) 76.01 → 74.95 -1.06 1.82B (55.6) 12.40M (51.5)
GAL-0.5 (Lin et al. 2019b) 76.15 → 71.95 -4.2 2.33B (43.1) 21.20M (17.2)
Taylor-72 (Molchanov et al. 2019) 76.18 → 74.50 -1.68 2.25B (45.0) 14.20M (44.5)
Taylor-81 (Molchanov et al. 2019) 76.18 → 75.48 -0.70 2.66B (34.9) 17.90M (30.1)
FPGM-30 (He et al. 2019) 76.15 → 75.59 -0.56 2.36B (42.2) -
FPGM-40 (He et al. 2019) 76.15 → 74.83 -1.32 1.90B (53.5) -
LeGR (Chin et al. 2019) 76.10 → 75.70 -0.40 2.37B (42.0) -
TAS (Dong & Yang 2019) 77.46 → 76.20 -1.26 2.31B (43.5) -
HRank (Lin et al. 2020) 76.15 → 74.98 -1.17 2.30B (43.8) 16.15M (36.9)
L0-HC (Our implementation) 76.15 → 76.15 0 4.09B (0.00) 25.58M (0.00)
Dep-L0 (forward) 76.15 → 74.77 -1.38 2.58B (36.9) 16.04M (37.2)
Dep-L0 (backward) 76.15 → 74.70 -1.45 2.53B (38.1) 14.34M (43.9)

“∆Acc”: ‘+’ denotes accuracy gain; ‘-’ denotes accuracy loss; the worst result is in red. “FLOPs
(P.R. %)”: pruning ratio in FLOPs. “Params. (P.R. %)”: prune ratio in parameters. “-”: results

not reported in original paper.

the best hyperparameters in a large space. However, even with extensive efforts, L0-HC

still fails to prune the network without a significant damage of model quality, confirming

the observation made by Gale et al. (2019a). On the other hand, our Dep-L0 successfully

prunes ResNet50 with a very competitive pruning rate and high accuracy compared to the

state-of-the-arts, indicating that our dependency modeling indeed makes the original L0-HC

very competitive on the large-scale benchmark of ImageNet – the main goal of the paper.

4.3.5 Study of Learned Sparse Structures

To understand of the behavior of Dep-L0, we further investigate the sparse structures learned

by Dep-L0 and L0-HC, with the results reported in Fig. 4.4. For VGG16 on CIFAR10,

Figs. 4.4(a-b) demonstrate that both algorithms learn a similar sparsity pattern: the deeper

a layer is, the higher prune ratio is, indicating that the shallow layers of VGG16 are more

important for its predictive performance. However, for deeper networks such as ResNet56

76

0 1 2 3 4 5 6 7 8 9 10 11 12

0

100

200

300

400

500

of

 c
ha

nn
el

s

Sparisty Distribution (VGG, Dep-L0-forward, C10)

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

(a) VGG16-C10 (Dep-L0)

0 1 2 3 4 5 6 7 8 9 10 11 12

0

100

200

300

400

500

of

 c
ha

nn
el

s

Sparisty Distribution (VGG, L0-HC, C10)

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

(b) VGG16-C10 (L0-HC)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0

10

20

30

40

50

60

of

 c
ha

nn
el

s

Sparisty Distribution (R56, Dep-L0-forward, C10)

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

(c) R56-C10 (Dep-L0)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0

10

20

30

40

50

60

of
 c

ha
nn

el
s

Sparisty Distribution (R56, L0-HC, C10)

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

(d) R56-C10 (L0-HC)

Figure 4.3: The layer-wise prune ratios (red curves) of learned sparse structures.
The height of a bar denotes the number of filters of a convolutional layer and gray (green) bars

correspond to the original (pruned) architecture, respectively. “R50/R56”: ResNet 50/56;
“C10/C100”: CIFAR10/100.

and ResNet50, the two algorithms perform very differently. For ResNet56 on CIFAR100,

Figs. 4.4(c-d) show that Dep-L0 sparsifies each layer by a roughly similar prune rate: it

prunes around 20% of the filters in first 12 layers, and around 30% of the filters in the rest of

layers. However, on the same benchmark L0-HC tends to prune all or nothing : it completely

prunes 5 out of 28 layers, but does not prune any filters in other six layers; for the rest of

layers, the sparsity produced by L0-HC is either extremely high or low. As of ResNet50

77

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0

10

20

30

40

50

60

of

 c
ha

nn
el

s

Sparisty Distribution (R56, Dep-L0-forward, C100)

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

(a) R56-C100 (Dep-L0)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0

10

20

30

40

50

60

of

 c
ha

nn
el

s

Sparisty Distribution (R56, L0-HC, C100)

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

(b) R56-C100 (L0-HC)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

100

200

300

400

500

of

 c
ha

nn
el

s

Sparisty Distribution (R50, Dep-L0-backward)

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

(c) R50-ImageNet (Dep-L0)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

0

100

200

300

400

500

of
 c

ha
nn

el
s

Sparisty Distribution (R50, L0-HC)

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

sit
y

(d) R50-ImageNet (L0-HC)

Figure 4.4: The layer-wise prune ratios (red curves) of learned sparse structures.
The height of a bar denotes the number of filters of a convolutional layer and gray (green) bars

correspond to the original (pruned) architecture, respectively. “R50/R56”: ResNet 50/56;
“C10/C100”: CIFAR10/100.

on ImageNet, Figs. 4.4(e-f) show that the difference between Dep-L0 and L0-HC is more

significant: Dep-L0 successfully prunes the model with a roughly similar prune rate across

all convolutional layers, while L0-HC fails to prune any filters.

78

Table 4.4: Run-time comparison between Dep-L0 and L0-HC.

Benchmark Method # Epochs # Epochs BC Per-epoch Time BC TTS
L0-HC 300 218 37.9 sec 160 min

R56-C10 Dep-L0 (forward) 300 106 42.2 sec 124 min
Dep-L0 (backward) 300 140 42.6 sec 141 min
L0-HC 300 117 38.7 sec 167 min

R56-C100 Dep-L0 (forward) 300 58 43.9 sec 127 min
Dep-L0 (backward) 300 61 43.6 sec 133 min
L0-HC 90 fail to prune 4185 sec 104.6 h

R50-ImageNet Dep-L0 (forward) 90 30 4342 sec 59.5 h
Dep-L0 (backward) 90 32 4350 sec 60.1 h

“R50/R56”: ResNet50/56; “C10/C100”: CIFAR10/100. “BC”: Before Convergence; “TTS”:
Time to Solution.

4.3.6 Run-time Comparison

The main architectural difference between Dep-L0 and L0-HC is the gate generator. Even

though the gate generator (MLP) is relatively small compared to the original deep network

to be pruned, its existence increases the computational complexity of Dep-L0. Thus, it is

worth comparing the run-times of Dep-L0 and L0-HC as well as their convergence rates in

terms of sparse structure search. Once a sparse structure is learned by a pruning algorithm,

we can extract the sparse network from the original network and continue the training on

the smaller structure such that we can reduce the total time to solution (TTS). To this end,

we compare Dep-L0 with L0-HC in terms of (1) structure search convergence rate, i.e., how

many training epochs are needed for a pruning algorithm to converge to a sparse structure?

(2) Per-epoch training time before convergence, and (3) the total time to solution (TTS).

The results are reported in Table 4.4. As can be seen, Dep-L0 (both forward and backward)

converges to a sparse structure in roughly half of the epochs that L0-HC needs (column 4).

Even though the per-epoch training time of Dep-L0 is 12% (4%) larger than that of L0-HC

on CIFAR10/100 (ImageNet) due to the extra computation of the gate generator (column

79

5), the total time to solution reduces by 22.5% (43.1%) on the CIFAR10/100 (ImageNet)

benchmarks thanks to the faster convergence rates and sparser models induced by Dep-L0

as compared to L0-HC (column 6).

4.4 Ablation Study of the Gate Generator

So far we have modelled the dependency among the binary gates with an MLP network. We

note that other network architectures, such as MLP variants, CNN and LSTM Gers et al.

(1999), can also be used to model the dependency. We therefore provide an ablation study

to analyze their performances on VGG16-CIFAR10, with the results reported in Table 4.5.

Table 4.5: Ablation study of the gate generator architecture with VGG16 on CIFAR10.

Dependency Modeling Acc. (%) FLOPs (P.R. %) Params. (P.R. %)
FC(c1, c2) → selected model 93.5 111.9M (64.4) 2.1M (85.7)
FC(c1, c2 ∗ 2) ReLU FC(c2 ∗ 2, c2) 92.8 97.1M (69.1) 2.4M (83.7)
FC(c1, c2 ∗ 2) Tanh FC(c2 ∗ 2, c2) 92.9 85.3M (72.8) 1.3M (91.1)
Conv1d ReLU FC 93.4 162.3M (48.3) 5.6M (61.9)
Conv1d ReLU Conv1d ReLU Conv1d ReLU FC 93.4 155.8M (50.4) 5.4M (63.3)
LSTM not converged

“FLOPs”: pruning ratio in FLOPs. “Params.”: prune ratio in parameters.

4.4.1 MLP variants

In Sec. 3.4, we propose to use a fully connected (FC) layer, parameterized by Wl, to connect

the gates between two consecutive layers. Other variants of MLP can also be used to model

the dependency. Suppose the two consecutive layers have c1 and c2 gates, respectively. The

single-FC-layer model used in the main text can be denoted as FC(c1, c2) (the 1st row of

Table 4.5). Alternatively, we can also use two FC layers interspersed by ReLU or Tanh to

represent the dependency among gates (the 2nd and 3rd rows of Table 4.5). As can be seen,

80

these two MLP variants suffer from non-trivial accuracy drops, even though they achieve

higher prune rates.

4.4.2 CNN

We can also use a 1-D ConvNet as the gate generator. Specifically, we can model the

dependency among gates in two consecutive layers by a 1-D convolution with the kernel size

of 3 × 1, followed by ReLU and a FC layer (the 4th row in Table 4.5). Moreover, deep 1-D

ConvNet, such as the one listed in the 5th row of Table 4.5 can be used. Even though they

achieve similar accuracies as that of FC(c1, c2), their prune rates are not competitive.

4.4.3 LSTM

Finally, we exploit an LSTM as the gate generator to model the element-wise dependency

autoregressively. We first experiment this LSTM gate generator with a small-scale CNN

architecture – LeNet5 (LeCun et al. 1998), which only contains 70 filters. We achieve a

competitive pruning rate with almost no accuracy loss. However, when it comes to VGG16,

which contains 4,224 filters, the LSTM gate generator has to predict 4,224 binary gates

autoregressively. After exhaustive hyperparameter tuning, we still cannot get the LSTM

gate generator converged and thus fail to sparsify VGG16. In addition, training of the

LSTM is very time consuming due to the autoregressive modeling of 4,224 binary gates.

81

4.4.4 Summary

The ablation study presented in Table 4.5 show that FC(c1, c2), the MLP network used in

the main text, achieves the best balance between classification accuracy and the prune rate.

Moreover, this MLP network is also computational efficient as it is relatively small compared

to the original networks to be pruned. Therefore, we select FC(c1, c2) as our MLP network

in all the experiments.

4.5 Conclusion and Future Work

We propose Dep-L0, an improved L0 regularized network sparsification algorithm via de-

pendency modeling. The algorithm is inspired by a recent observation of Gale et al. Gale

et al. (2019a) that L0-HC performs inconsistently in large-scale learning tasks. Through the

lens of variational inference, we found that this is likely due to the mean-field assumption in

variational inference that ignores the dependency among all the neurons for network prun-

ing. We further propose a dependency modeling of binary gates to alleviate the deficiency

of the original L0-HC. A series of experiments are performed to evaluate the generality of

our Dep-L0. The results show that our Dep-L0 outperforms the original L0-HC in all the

experiments consistently, and the dependency modeling makes the L0-based sparsification

once again very competitive and sometimes even outperforms the state-of-the-art pruning al-

gorithms. Further analysis shows that Dep-L0 also learns a better structure in fewer epochs,

and reduces the total time to solution by 20%-40%.

As for future work, we plan to explore whether dependency modeling can be used to

82

improve other pruning methods. To the best of our knowledge, there are very few prior

works considering dependency for network pruning (e.g., Park et al. (2020)). Our results

show that this may be a promising direction to further improve many existing pruning

algorithms. Moreover, the way we implement dependency modeling is still very preliminary,

which can be improved further in the future.

83

CHAPTER 5

VB-LoRA: Extreme Parameter Efficient Fine-Tuning with Vector Banks

5.1 Introduction

In this chapter, we will introduce VB-LoRA, extreme parameter-efficient fine-tuning with

vector banks based on a simple yet effective ”divide-and-share” paradigm. We push the

limits of LoRA (Hu et al. 2021) parameter efficiency by breaking the two barriers of low-

rank decomposition: (1) locally within each module and each layer, and (2) only across the

two original matrix dimensions (without division; see Sec. 5.3.2 for details). We argue that

the parameters across different modules and layers can be shared, and thus the redundancy

in parameters can be further reduced. In addition, by partitioning rank-one component

vectors into sub-vectors, we introduce ”virtrual” dimensions such that deep structure in the

parameter space can be represented by a highly compressed matrix factorization.

VB-LoRA draws inspirations from previous line of work on quantized tensor networks (Os-

eledets 2010; Cichocki 2014) in breaking the constraint of physical dimension for extreme

parameter compression. Specifically, VB-LoRA reparameterizes LoRA’s low-rank adapta-

tion by a rank-one decomposition and then divides the resulting vectors into sub-vectors of

the same size. A global sharing mechanism is then learnt based on a sparse top-k admix-

ture module. The same sized sub-vectors allows parameters to be shared across modules and

layers at the sub-vector level. Moreover, compared to the post-hoc matrix compression meth-

ods (Oseledets 2010; Khoromskij 2011), VB-LoRA is end-to-end differentiable, and therefore

the fine-tuning process is aware of the compressed form, enabling task-oriented compression.

84

sub-vector
#2

Logits

Topk-softmax

Multi-Head
Attention

Q K V

Feed-Forward

O

Add & Norm

Add & Norm

Wdown

Wup

Vector Bank
Logits
for sub-vector #1

Top-K Softmax

 + Wpretrained

LoRA

A B

⨂
⨂

sub-vector
#1

⊕

Select

Tile

🔥

🔥

❄
...

💾

💾

sub-vector
#8

💾

Select and pool

🔥 Trainable parameters

❄ Frozen parameters

💾 Stored parameters

Modules

Q K V O

WdownWup

Vector Bank

Layers
Layer 1

Layer 2

...

Pool

Sub-vectors
A B

Figure 5.1: Overview of VB-LoRA.
Left: The model parameters can be represented as a composition of vectors from a vector bank,
which is shared across sub-vectors, modules and layers. Right: Architecture of VB-LoRA. We
use a top-k softmax function to select k vectors from the vector bank. The selected vectors are
then pooled into a sub-vector, which is arranged at a desired position, forming the parameters of

LoRA.

104 105 106

of stored parameters

65

66

67

68

69

M
at

th
ew

s c
or

re
la

tio
n

VB-LoRA (Ours)
VeRA
Tied-LoRA
LoRA

Figure 5.2: Comparison of the PEFT methods on RoBERTa-Large.
Our VB-LoRA achieves higher scores with significantly smaller number of stored parameters.

Figure 5.2 illustrates the parameter efficiency of VB-LoRA as compared with state-of-the-art

PEFT methods. Our contributions are summarized as follows:

1. We introduce a ”divide-and-share” paradigm that breaks the barriers of low-rank de-

composition across matrix dimensions, modules, and layers by sharing parameters glob-

ally via a vector bank.

85

2. We reparameterize LoRA’s low-rank decomposition by a rank-one decomposition, and

divide the resulting vectors further into sub-vectors of the same size, enabling extreme

parameter efficiency at the sub-vector level.

3. We propose a sparse top-k module based on the admixture model to learn a global

sharing mechanism, making our framework end-to-end differentiable and compression-

aware.

4. Our method achieves extreme parameter efficiency while maintaining comparable or

better empirical performance compared to the state-of-the-art PEFT methods on natu-

ral language understanding, natural language generation, and instruction tuning tasks.

5.2 Related Work

5.2.1 Exploit Global Redundancy for Enhanced Parameter Efficiency

The parameters of deep neural networks (DNNs) can be naturally divided by layers, heads,

or types (MHA or FFN). While LoRA (Hu et al. 2021) only exploits the intra-matrix depen-

dency, Tied-LoRA (Renduchintala et al. 2023) employs a simple weight tying scheme on the

low-rank matrices A and B across layers to reduce the inter-matrix redundancy. When A

and B are randomly initialized, frozen, and shared across all layers, Tied-LoRA degenerates

to VeRA (Kopiczko et al. 2024), which only requires two scaling vectors to be updated, lead-

ing to impressive parameter efficiency. Our VB-LoRA pushes the limits of LoRA parameter

efficiency by sharing parameters globally across modules and layers at the sub-vector level.

86

On the low-dimensional reparameterization, Aghajanyan et al. (2020) empirically show

that there exists a low-dimensional reparameterization that is as effective for fine-tuning as

the full parameter space. The actualization of the random projection is achieved through

the Fastfood transform (Le et al. 2013) for large-scale pre-trained language models. To make

it structure-aware, a set of layer-wise scaling parameters are included as part of the training

parameters. Following this intuition, we study the lightweight fine-tuning performance within

LoRA based on the customized reparameterization that arises from the rank-one matrix

decomposition.

Moreover, tensor decomposition has been leveraged for PEFT in ViT models (Jie & Deng

2023) based on classical formats, such as tensor-train or Tucker (Kolda & Bader 2009). We

find that forcing multilinear decomposition across multiple modes results in a higher rank

number, which is detrimental to the objective of parameter compression. An indirect com-

parison of VB-LoRA to Jie & Deng (2023) can be conducted by referring the compression

rate to LoRA. From this perspective, our VB-LoRA can be viewed as a customized ten-

sor format endowed by a convex geometry structure, which is enabled by a sparse top-k

admixture model we proposed.

5.2.2 Parameter Modeling based on Sparse Admixture Models

Admixture models have been widely used in population genetics (Pritchard et al. 2000),

topic modeling (Reisinger et al. 2010; Inouye et al. 2014), and hyperspectral unmixing (Li

& Bioucas-Dias 2008; Fu et al. 2015) to extract archetypal (or endmember) components

from observed data. The archetypal components can be relaxed to have mixed sign (Ding

87

et al. 2008) with identifiability guarantees (Lin et al. 2015). Conventionally, parameters

estimation are conducted based on linear programming (Chan et al. 2009) or combinato-

rial algorithms (Arora et al. 2013). However, an involved integer programming problem

arises when incorporating an extra top-k constraint into the mixing weights that is espe-

cially challenging for the large-scale language models. In this work, we propose learning

archetypal vector banks not from observed data but from model parameters of LLMs. By

modifying the sparse top-k module (Shazeer et al. 2016) commonly used in Mixture-of-

Expert models (Jiang et al. 2024), the mixing weights and vector banks are optimized by

backpropgatation under the objective of downstream fine-tuning tasks. The proposed top-k

admixture model is model-agnostic in the sense that it can be readily integrated into any

neural network parameters or accumulated gradient updates.

5.3 Proposed Method

5.3.1 Preliminaries: Transformer Architecture and LoRA Adapters

The transformer architecture (Vaswani et al. 2017) consists of L layers, each containing

two types of blocks: Multi-Head Attention (MHA) and Feed-Forward Network (FFN). We

denote the query, key, value, and output matrices of MHA at layer ℓ as Wℓ
t = {W i

t }
Nh
i=1,

t ∈ {q, k, v, o}, where W i
t ∈ Rd×d, and Nh is the number of heads. Given FFN(x) =

WdownReLU(Wupx) with x ∈ Rd, viewing FFN as a multi-head operation, we further divide

Wup ∈ Rcd×d and Wdown ∈ Rd×cd into c matrices of size d× d, denoted by Wℓ
up = {W ℓ,i

up}ci=1

and Wℓ
down = {W ℓ,i

down}ci=1, c = 4.

88

Given a pre-trained matrix W0 ∈ Rm×n, LoRA (Hu et al. 2021) constrains the weight

increments ∆W as a low-rank decomposition ∆W = BA, where B ∈ Rm×r, A ∈ Rr×n are

trainable parameters, with r ≪ min(m,n). VeRA (Kopiczko et al. 2024) further limits the

trainable parameters to two scaling vectors b and d, which form the diagonal elements of two

diagonal matrices Λb and Λd. Hence, VeRA can be expressed as ∆W = ΛbBΛdA, where B

and A are randomly initialized, frozen and shared across layers.

Collectively, we denote the model parameters of transformer as Ω={{Wℓ
q,W

ℓ
k,W

ℓ
v,W

ℓ
o}∪

{Wℓ
up,W

ℓ
down}}Lℓ=1 ∈ R12L×d×d. In the sequel, we propose a global reparameterization on the

weight increments of W ∈ Ω based on the LoRA decomposition ∆W = BA. we will

show how extreme parameter efficiency can be achieved by (1) parameter sharing across

matrix dimensions of A and B based on a rank-one decomposition and sub-vector parti-

tions (Sec. 5.3.2), and (2) across modules and layers regardless of the index or matrix type

(Sec. 5.3.3).

5.3.2 Divide-and-Share: a New Paradigm for Parameter Sharing

The low rank decomposition of LoRA can be equivalently expressed in a rank-one form as

follows:

∆W = BA =
∑r

k=1
bk ⊗ ak =

∑r

k=1
⊗2

i=1 v
(i)
k , v

(1)
k = bk, v

(2)
k = ak, (5.3.1)

where ⊗ denotes the outer product operator and v
(i)
k is a vector of size di.

89

5.3.2.1 Divide

Based on the rank-one decomposition above, we further represent each component vector

v
(i)
k as a concatenation of a set of sub-vectors,

v
(i)
k = concat(u

(i)
k,1,u

(i)
k,2, . . . ,u

(i)

k,d′i
), u

(i)
k,j ∈ Rb, j ∈ {1, . . . , d′i}, (5.3.2)

where {di}i=1,2 represents the size of the matrix dimension of ∆W . In general, {di}i=1,2 are

not equal across A and B, and we choose b as a common factor of di such that d′i = di/b

and d′i ∈ Z.

Remarks The divide operator was first introduced in Quantized Tensor Train (QTT)

for super compression of large-scale matrices (Oseledets 2010; Cichocki 2014). For example,

dyadic division reshapes a vector of length L = 2p into a p-dimensional array which facilitates

the efficient Tensor Train decomposition to be used. Our divide operator instead applies to

the rank-one component vectors v
(i)
k , and the resulting hierarchical tensorial representation

of ∆W can be viewed as a Canonical Polyadic Decomposition (CPD) (Kolda & Bader

2009) with component vectors v
(i)
k folded into 2- dimensional arrays with sub-vectors u

(i)
k,j as

columns.

5.3.2.2 Share

To facilitate parameter sharing across model dimensions, we assume each sub-vector u
(i)
k,j as

a top-k admixture of basic elements from vector bank B = {α1, . . . ,αh}, where αi ∈ Rb for

90

i ∈ {1, . . . , h}, and is defined as follows (with the subscripts omitted for clarity):

u =
∑h

s=1
ws(σ)αs, w(σ) = Softmax(TopK(σ, k)), (5.3.3)

where TopK (σ, k)i = σi if σi is among the top-k of σ and TopK (σ, k)i = −∞ otherwise.

For each sub-vector u, we introduce logits σ ∈ Rh as its learnable parameters. We call the

model expressed in Eq. 5.3.3 as the top-k admixture module (TKAM), which is differentiable.

This design enables the joint learning of vector bank B and logits σ in an end-to-end manner,

which is amenable for model fine-tuning to the downstream tasks.

Remarks The TKAM module promotes sparsity by selecting k vectors of the largest logits

from the vector bank. By setting k ≪ h, we restrict the sub-vector u to be sparse. That is,

in each iteration, the updates to the vector bank remain locally dominated – with at most

k basis vectors α ∈ B affected by the backpropagation through u – in the hope that the

learnt vectors can be more specialized and the knowledge encapsulated in the vector bank

can be activated and updated sparsely.

The TKAM module can also be viewed as a factor model with simplex constraints on the

mixing weight (e.g., k = 2, the sub-vector u lies on the edges of the simplex) and common

factors stored in B. Let u ∈ Rb and u =
∑h

s=1αsws, where αs is the s-th factor, and

w is the factor score for the sub-vector u. We consider the following options for w: (1)

Admixture (convex combination): w ∈ [0, 1]h and
∑h

s=1 ws = 1, which is commonly used

in various communities. (2) Sparse Admixture (TKAM): w ∈ [0, 1]h and
∑h

s=1 ws = 1 with

only k ≪ h non-zero elements allowed.

91

In addition, the Noisy Top-k Gating module (Shazeer et al. 2016) has been widely used to

replace the fully connected layers with the Mixture of Experts (MoE) layers in large language

models (Jiang et al. 2024). In contrast, we use Eq. 5.3.3 to learn the selective sharing scheme

across the rank-one component vectors without changing the original model. We find that

the decomposed cumulative gradient parameter are more sensitive than the original model

parameters during training process. Therefore, keeping zero noise in the gating function

can help make the learning more efficient and stable. An ablation study of different vector

selection methods is provided in Sec. 5.4.4.

5.3.3 Breaking Boundaries of LoRA for Global Parameter Sharing

While LoRA only applies the low rank decomposition to each individual weight increment,

the boundary can be broken by the divide-and-share scheme we proposed in Sec. 5.3.2. In

our global parameter sharing scheme, each sub-vector ui is composed from a globally shared

vector bank B via TKAM, where i = [j,v] is a multi-index including physical indices j, such

as module, layer, head, and left/right decomposed matrix, and virtual indices v (created

from vector partition).

Specifically, LoRA provides a local low-rank factorization for each d1 × d2 matrix ∆W

independently. In contrast, our VB-LoRA proposes a global low-rank factorization on a

b× |{i}| matrix, where |{i}| represents the cardinality of the index set including both phys-

ical and virtual indices. As we will see below, this differentiation can better leverage the

redundancy in the cumulative gradients, leading to extreme parameter efficiency. It’s worth

mentioning that adding the multi-index information to the vector selection mechanism can

92

make the TKAM model structure-aware, potentially yielding additional benefits. But we

will leave this as future work.

Figure 5.1 provides an overview of our method. The left section demonstrates the high-

level idea of VB-LoRA: the vector bank is shared across sub-vectors, modules, and layers.

The right section details the architecture of VB-LoRA. To form each sub-vector, we use a

top-k softmax function to select k vectors from the vector bank, which are then pooled into a

sub-vector. These sub-vectors are arranged in the desired positions, forming the parameters

for LoRA with negligible computational overhead. Our method can be seamlessly integrated

into the PyTorch framework and the HuggingFace PEFT library1. Algorithm 2 provides the

PyTorch-like pseudocode for VB-LoRA.

5.3.4 Parameter Count

In full fine-tuning, the number of trainable parameters is equal to the model size, i.e., LMd2,

where L is the numebr of layers, M is the number of fine-tuned modules, and d is hidden

dimension. LoRA reduces this number to 2LMdr, while VeRA further reduces it to LM(d+

r). The trainable parameters of LoRA and VeRA are the same as the parameters they need

to store.

In VB-LoRA, the trainable parameters consist of two parts: the parameters of the vector

bank B and the parameters of logits σ. However, at the end of training, the logit parameters

can be discarded and only the k selected indices and the top-k admixture weights need to

be stored. Therefore, the stored parameters can be represented by a triplet Θ = {B, I,V},

1https://github.com/huggingface/peft

https://github.com/huggingface/peft

93

Algorithm 2 Pseudocode of VB-LoRA in a PyTorch-like style

d: hidden dimension; b: length of sub-vectors; r: rank; h: size of vector bank

k: number of selected vectors used in the top-k admixture module

logits: Each linear layer has two trainable parameters: logits_A and logits_B.

Both parameters have a shape of (d/b)*r*h.

vector_bank: The shared vector bank with a shape of h*b.

def get_low_rank_matrix(logits, vector_bank, k):

topk_logits, topk_indices = logits.topk(k, dim=-1)

topk_weights = torch.softmax(topk_logits, dim=-1)

matrix = (topk_weights * vector_bank[topk_indices]).sum(-2)

return matrix

def VBLoRA_forward(vector_bank, logits_A, logits_B, k):

r = logits_A.shape[1]

A = get_low_rank_matrix(logits_A, vector_bank, k).transpose(0, 1).reshape(r,

-1)

B = get_low_rank_matrix(logits_B, vector_bank, k).transpose(1, 2).reshape(-1,

r)

delta_W = B @ A

return delta_W

where B ∈ Rh×b is a vector bank containing h vectors of b-dimensional, I ∈ RL×M×r×(d/b)×k

is the top-k indices of the vectors in B for all sub-vectors, and V ∈ RL×M×r×(d/b)×(k−1) is

the top-k admixture weights used to composite the sub-vectors from the bank. It is worth

noting that the top-k admixture weights have only k− 1 degrees of freedom since they must

be summed to 1. Additionally, depending on the size of the vector bank h, the indices I can

be efficiently stored as unsigned integers (e.g., uint8 when h ≤ 256), and hence, we count the

number of parameters as the float32-equivalent size for a fair comparison. When we use k = 2

and uint8 for indices, the number of stored parameters of VB-LoRA is hb + 1.5LMr(d/b).

Unlike LoRA and VeRA, the number of parameters in VB-LoRA does not increase linearly

with the model size (determined by L and d) or the number of fine-tuned modules, i.e., M .

94

While the second term of VB-LoRA’s parameters is a linear function of LMd, the coefficient

is 1.5r/b, which is typically very small. For example, in our experiments, the typical values

are r = 4 and b = 256, leading to a coefficient of 0.02, whereas the coefficient is 2r for LoRA

and 1 for VeRA. Most of the parameters in VB-LoRA reside within the shared vector bank,

whose size does not increase linearly with the model size or number of fine-tuned modules.

5.4 Experiments

In this section, we conduct a comprehensive evaluation of our method through a series of

experiments. We begin by comparing VB-LoRA to the state-of-the-art PEFT methods:

LoRA, VeRA, and Tied-LoRA on the GLUE benchmark. Next, we extend our analysis to

natural language generation tasks using GPT-2, as well as instruction tuning tasks on the

Llama2 models with 7B and 13B parameters. All our experiments were conducted on a

server equipped with 8 A100 GPUs. The hyperparameters used for the natural language

understanding, natural language generation and instruction tuning are provided in Table

5.1, 5.2 and 5.3. All experiments were conducted on a server equipped with 8 A100 80GB

GPUs.

5.4.1 Natural Language Understanding

We adopt the General Language Understanding Evaluation (GLUE) benchmark2 (Wang

et al. 2018) to assess the performance of VB-LoRA across various natural language under-

standing tasks, including similarity, paraphrase, and inference tasks. Following Kopiczko

2https://gluebenchmark.com/

https://gluebenchmark.com/

95

Table 5.1: Hyperparameters and computing resources for natural language understanding
experiments on the GLUE benchmark.

Model Hyperparameter SST-2 MRPC CoLA QNLI RTE STS-B

Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear
Init. of the Vector Bank U(−0.02, 0.02)
Init. of the Logits N(0, 0.01)

B
a
se

GPUs 1
Epochs 60 30 80 25 160 80
Learning Rate (Head) 4E-3 4E-3 2E-2 1E-2 2E-2 2E-2
Learning Rate (Logits) 1E-2
Learning Rate (Vector Bank) 1E-3
Vector Bank Size 90
Vector Length 256
Rank 4
Max Seq. Len. 512
Batch Size Per GPU 32
Training Time 8h / 10h 27m / 40m 80m / 100m 5h / 6.5h 50m / 1h 1h / 80m
GPU Memory 24,552 MiB / 28,120 MiB

L
a
r
g
e

GPUs 1
Epochs 20 40 40 20 40 40
Learning Rate (Head) 3E-3 3E-3 3E-3 2E-3 2E-3 6E-3
Learning Rate (Logits) 1E-2
Learning Rate (Vector Bank) 1E-3
Vector Bank Size 90
Vector Length 256
Rank 4
Max Seq. Len. 128
Batch Size Per GPU 32
Training Time 2h / 3h 12m / 20m 30m / 45m 3h / 4.5h 10m / 15m 20m / 30m
GPU Memory 9,804 MiB / 12,170 MiB

Training time and GPU memory are reported as ”query and value only” / ”all linear modules”. h: hour,
m: minute.

et al. (2024), we focus on six tasks from GLUE: CoLA (Warstadt et al. 2019) (linguistic

acceptability), SST-2 (Socher et al. 2013) (sentiment analysis), MRPC (Dolan & Brock-

ett 2005) (paraphrase detection), STS-B (Cer et al. 2017) (semantic textual similarity),

QNLI (Rajpurkar et al. 2018) (inference), and RTE (inference).

Our experiments are performed with RoBERTabase and RoBERTalarge (Liu et al. 2019).

While LoRA and VeRA only finetune the query and value modules, we explore two fine-

tuning strategies: query and value only (VB-LoRAqv), and all linear modules (VB-LoRAall),

including Wq,Wk,Wv,Wo, Wup, and Wdown. We create a vector bank of 90 vectors of a

length of 256, initialized with a uniform distribution U(−0.02, 0.02). The logits are initialized

96

Table 5.2: Hyperparameters and computing resources on natural language generation
experiments on the E2E dataset.

Hyperparameter Medium Large

GPUs 1
Optimizer AdamW
Learning Rate Schedule Linear
Weight Decay 0.01
Batch Size 8
Epochs 5
Warmup Steps 500
Label Smooth 0.1
Rank 4
Vector Length 256
Vector Bank Size 256 350
Learning Rate (Vector Bank) 1E-3 1E-3
Learning Rate (Logits) 1E-2 1E-2
Training Time 3h 3h
GPU Memory 29,061 MiB 29,282 MiB

Training time and GPU memory are reported as ”query and value only” / ”all linear modules”. h: hour,
m: minute.

Table 5.3: Hyperparameters and computing resources on instruction tuning on the Cleaned
Alpaca Dataset.

Hyperparameter LoRA, 7B LoRA, 13B VB-LoRA, 7B VB-LoRA, 13B

GPUs 1
Optimizer AdamW
Warmup Ratio 0.1
Batch Size 4
Accumulation Steps 4
Epochs 1
LR Schedule Linear
Vector Length N/A N/A 256 256
Rank 64 64 4 6
Vector Bank Size N/A N/A 2048 2048
Learning Rate (Vector bank) N/A N/A 1E-3 1E-3
Learning Rate (Logits) N/A N/A 1E-2 1E-2
Learning Rate (LoRA) 4e-4 4e-4 N/A N/A
Training Time 2h 2.6h 2.5h 3h
GPU Memory 8,467 MiB 11,624 MiB 6,872 MiB 11,486 MiB

h: hour. 7B: llama2 7B, 13B: llama2 13B.

with a normal distribution N(0, 0.01). The learning rates for the vector bank and logit

parameters are set to 0.001 and 0.01, respectively. We set the rank to 4 and k = 2 for all

our experiments.

Table 5.4 reveals that VB-LoRA achieves competitive or superior performance compared

to VeRA and Tied-LoRA, while being more parameter efficient. For example, when fine-

97

Table 5.4: Results with RoBERTabase and RoBERTalarge on the GLUE benchmark.

Method # Params SST-2 MRPC CoLA QNLI RTE STS-B Avg.

FT 125M 94.8 90.2 63.6 92.8 78.7 91.2 85.2
LoRAqv 0.295M 95.1±0.2 89.7±0.7 63.4±1.2 93.3±0.3 86.6±0.7 91.5±0.2 86.6

VeRAqv 0.043M 94.6±0.1 89.5±0.5 65.6±0.8 91.8±0.2 78.7±0.7 90.7±0.2 85.2
Tied-LoRAqv 0.043M 94.4±0.5 88.5±1.0 61.9±1.6 92.0±0.1 76.2±1.0 89.8±0.3 83.8
VB-LoRAqv (Ours) 0.023M 94.4±0.2 89.5±0.5 63.3±0.7 92.2±0.2 82.3±1.3 90.8±0.1 85.4

VeRAall 0.157M 95.1±0.4 88.7±0.5 64.5±1.0 92.3±0.2 81.9±1.4 90.2±0.3 85.5
Tied-LoRAall 0.109M 94.7±0.2 88.5±0.8 64.7±0.8 92.4±0.1 76.5±1.3 90.3±0.1 84.5

B
a
se

VB-LoRAall (Ours) 0.027M 95.0±0.2 89.7±0.2 64.3±1.4 92.3±0.2 82.3±0.9 90.7±0.2 85.7

L
a
r
g
e

LoRAqv 0.786M 96.2±0.5 90.2±1.0 68.2±1.9 94.8±0.3 85.2±1.1 92.3±0.5 87.8

VeRAqv 0.061M 96.1±0.1 90.9±0.7 68.0±0.8 94.4±0.2 85.9±0.7 91.7±0.8 87.8
Tied-LoRAqv 0.066M 94.8±0.6 89.7±1.0 64.7±1.2 94.1±0.1 81.2 ±0.1 90.8 ±0.3 85.9
VB-LoRAqv (Ours) 0.024M 96.1±0.2 91.4±0.6 68.3±0.7 94.7±0.5 86.6±1.3 91.8±0.1 88.2

VeRAall 0.258M 96.6±0.5 90.9±0.8 68.5±1.4 94.4±0.4 85.9±1.2 92.2±0.2 88.1
Tied-LoRAall 0.239M 94.8±0.3 90.0±0.4 66.8±0.1 94.1±0.1 82.3±2.0 91.6±0.2 86.6
VB-LoRAall (Ours) 0.033M 96.3±0.2 91.9±0.9 69.3±1.5 94.4±0.2 87.4±0.7 91.8±0.2 88.5

The best results in each group are shown in bold. We report Matthew’s correlation for CoLA, Pearson
correlation for STS-B, and accuracy for all other datasets. Results for LoRAqv and VeRAqv are sourced

from their respective original papers, while the other results are based on our implementations. We report
the median performance from 5 runs using different random seeds.

tuning the query and value modules on the RoBERTalarge model, our method reduces the

stored parameters to less than 40% of those required by VeRA or Tied-LoRA, while outper-

forming them across all tasks.

Moreover, the results consistently indicate that fine-tuning all modules, beyond just the

query and value modules, enhances performance for all the methods. However, LoRA, VeRA

and Tied-LoRA requires 2–4 times of the parameters in this case because their parameter

counts increase linearly with the number of fine-tuned modules. In contrast, our method

uses only 37.5% additional parameters as we maintain the same vector bank size but add

additional parameters for indices and top-k weights. Thus, with only 12.8% of the parameters

compared to VeRAall (4% compared to LoRAqv), our method achieves the best average

performance.

98

Table 5.5: Results with GPT-2 Medium and GPT-2 Large on the E2E benchmark.

Method # Params BLEU NIST METEOR ROUGE-L CIDEr
M
e
d
iu
m FT 354.92M 68.2 8.62 46.2 71.0 2.47

LoRA 0.35M 68.9 8.69 46.4 71.3 2.51
VeRA 0.098M 70.1 8.81 46.6 71.5 2.50
VB-LoRA (Ours) 0.076M 70.0 8.81 46.6 71.5 2.52

L
a
r
g
e FT 774.03M 68.5 8.78 46.0 69.9 2.45

LoRA 0.77M 70.1 8.80 46.7 71.9 2.52
VeRA 0.17M 70.3 8.85 46.9 71.6 2.54
VB-LoRA (Ours) 0.13M 70.3 8.86 46.7 72.2 2.54

The results for FT and LoRA are taken from Hu et al. (2021), and the results for VeRA are taken from
Kopiczko et al. (2024). We report the mean of 3 runs using different random seeds.

5.4.2 Natural Language Generation

For natural language generation experiments, we fine-tune the GPT-2 Medium and Large

models Radford et al. (2019) on the E2E dataset3 (Novikova et al. 2017), which contains

approximately 42,000 training examples, 4,600 validation examples, and 4,600 test examples

from the restaurant domain. We use a vector bank of size 256 for GPT-2 Medium and

350 for GPT-2 Large. The vector length is set to 256 and the rank is set to 4 for both

models. To achieve the best performance, we fine-tune all attention layers and FFN layers.

As shown in Table 5.5, our approach achieves competitive performance compared to VeRA,

while requiring about 20% less stored parameters for both models.

5.4.3 Instruction Tuning

Instruction tuning is a process of fine-tuning model with a set of instructions or prompts

to enhance its performance on specific instructions (Ouyang et al. 2022). Following Kopiczko

et al. (2024), we fine-tune the Llama2 model (Touvron et al. 2023) within the QLoRA (Dettmers

et al. 2023) framework4, which aims to reduce memory usage when fine-tuning large language

3Licensed under CC BY-SA 4.0. URL: https://github.com/tuetschek/e2e-dataset
4https://github.com/artidoro/qlora

https://github.com/tuetschek/e2e-dataset
https://github.com/artidoro/qlora

99

models on a single GPU. We utilize the quantization strategy provided by QLoRA, including

4-bit NormalFloat for storage data, BFloat16 for computation parameters, double quantiza-

tion and paged optimizers to train it on a single GPU. We use the Cleaned Alpaca Dataset

5, which improves the data quality of the original Alpaca dataset (Taori et al. 2023). We

evaluate the fine-tuned models on the MT-Bench6 (Zheng et al. 2024), which contains 80

multi-turn questions. Our fine-tuned models generate responses to these questions, and sub-

sequently, GPT-4 is employed to review and evaluate the generated answers, assigning a

quantitative score on a scale of 10. Note that aligning with VeRA, we report the score of the

first turn of the conversation. We apply VB-LoRA to all linear layers except the top one,

following Kopiczko et al. (2024). For Llama2 7B, we use a vector bank of 2,048 vectors, each

with a length of 256, and the rank is set to 4, resulting in a total of 0.8M stored parameters.

For Llama2 13B, we use the same-sized vector bank but increase the rank to 6, leading to

1.1M stored parameters. For all the experiments, we train for one epoch.

The results are reported in Table 5.6. Notably, we report two sets of LoRA results for

each experiment: one from our implementation and the other from Kopiczko et al. (2024),

due to a noticeable discrepancy between the scores. Since we closely follow the experimental

settings of Kopiczko et al. (2024), we speculate that the difference is due to changes in

the GPT-4 model over time. However, comparing the relative improvements of VeRA and

VB-LoRA with their respective implementations of LoRA remains fair. VB-LoRA achieves

5The original and cleaned Alpaca datasets are licensed under CC BY-NC 4.0. URLs:
https://huggingface.co/datasets/tatsu-lab/alpaca, https://huggingface.co/datasets/yahma/

alpaca-cleaned
6Licensed under CC BY 4.0. URL: https://huggingface.co/datasets/lmsys/mt_bench_human_

judgments

https://huggingface.co/datasets/tatsu-lab/alpaca
https://huggingface.co/datasets/yahma/alpaca-cleaned
https://huggingface.co/datasets/yahma/alpaca-cleaned
https://huggingface.co/datasets/lmsys/mt_bench_human_judgments
https://huggingface.co/datasets/lmsys/mt_bench_human_judgments

100

higher scores than LoRA while using only 0.5% (Llama2 7B) and 0.4% (Llama2 13B) of

the stored parameters. While VeRA can reach similar scores with their implementation of

LoRA, it requires more than twice of parameters compared to VB-LoRA.

Table 5.6: Results with Llama2 on the MT-Bench dataset.

Model Method # Parameters Score

Llama2 7B

w/o FT - 4.79

LoRA† 159.9M 5.19
VeRA 1.6M 5.08

LoRA‡ 159.9M 5.63
VB-LoRA (Ours) 0.8M 5.71

Llama2 13B

w/o FT - 5.38

LoRA† 250.3M 5.77
VeRA 2.4M 5.93

LoRA‡ 250.3M 6.13
VB-LoRA (Ours) 1.1M 6.31

The scores are assigned by GPT-4 on a scale of 10. LoRA† and VeRA are sourced from Kopiczko et al.
(2024). LoRA‡ and VB-LoRA are from our implementations. The discrepancy between LoRA† and LoRA‡

may be due to changes in the GPT-4 model over time.

5.4.4 Ablation Study

We conduct an ablation study to examine the impact of each individual component of VB-

LoRA. The experiments are performed on RoBERTa-large, fine-tuning only the query and

value modules.

5.4.4.1 Vector Selection Methods

Besides the top-k admixture module (abbreviated as Top-k below), there exist several

commonly used discrete optimization methods for vector selection, including Noisy Top-

k (Shazeer et al. 2016), Gumbel-Softmax (GS), and Straight-Through Gumbel-Softmax (Jang

et al. 2016; Maddison et al. 2016). For Top-k and Noisy Top-k, we evaluate the impact of

101

different k to the performances on the CoLA dataset. For GS and Straight-Through GS, we

set the temperature τ = 1/3 during training and use Top-1 and Top-2 Softmax for inference.

Additionally, we explore ”Select All”, a special case of Top-k with k equals to the vector

bank size h. As shown in Table 5.7, Noisy Top-k, GS, and Straight-Through GS significantly

underperform Top-k and ”Select All”. We hypothesize that random noise injected by these

methods likely disrupts the parameters of vector bank, leading to instability in the learning

process.

We further investigate the impact of k to the training dynamics and performance of VB-

LoRA. As discussed in Sec. 5.3.4, the choice of k affects not only the model’s performance

but also the number of parameters to be stored. Hence, a smaller k is generally preferred for

improved parameter efficiency. Table 5.7 shows that k = 2 yields the best result on CoLA,

whereas k = 1 performs significantly worse. To explain this, we delve into the training

dynamics of VB-LoRA. As shown in Figure 5.3 (a), when k = 1, the selected vectors remain

largely unchanged during training. In contrast, when k > 1, the model actively explore the

vector bank as illustrated in Figure 5.3 (b) and (c), i.e., different vectors are selected and

updated actively during the training process.

5.4.4.2 Sub-vector Length b

VB-LoRA introduces a new virtual dimension b that divides the original dimensions of

LoRA matrices into sub-vectors. As discussed in Sec. 5.3.2, using finer granularity in sub-

vectors promotes sharing across modules and layers, leading to extreme parameter efficiency.

Furthermore, such a division is also necessary when the weight matrices have different shapes.

102

Table 5.7: Ablation study of different vector selection methods.

Method Training Inference CoLA

Select All S. S. 67.5±1.2

Top-k
Top 1 S. Top 1 S. 66.9±0.5
Top 2 S. Top 2 S. 68.3±0.7
Top 3 S. Top 3 S. 68.1±1.3
Top 6 S. Top 6 S. 67.1±0.5

Noisy Top-k Noisy Top 1 S. Top 1 S. 45.3±2.2
Noisy Top 2 S. Top 2 S. 62.6±0.2

GS GS (τ=1/3) Top 1 S. 57.1±0.6
GS (τ=1/3) Top 2 S. 57.3±1.6

ST-GS ST-GS (τ=1/3) Top 1 S. 55.6±1.6
ST-GS (τ=1/3) Top 2 S. 54.7±1.2

S.: Softmax, GS: Gumbel-Softmax, ST-GS: Straight Through Gumbel-Softmax.

Table 5.8: Ablation study of sub-vector length.

Length b Vector Bank Size CoLA

128 240 67.0±0.8
256 120 68.7±0.7
512 60 67.8±0.8
1024 30 67.3±1.1

As shown in Table 5.8, we maintain the same number of parameters in the vector bank while

varying the sub-vector length b. The best performance is achieved with a sub-vector length

of 256.

5.5 Conclusion

This paper introduces a ”divide-and-share” paradigm and a differentiable top-k admixture

module for extreme parameter-efficient fine-tuning with vector banks. Our proposed VB-

LoRA achieves the competitive or higher accuracy while using significantly smaller number of

stored parameters compared to the state-of-the-art PEFT methods, including LoRA, VeRA,

and Tied-LoRA. In addition, VB-LoRA is model-agnostic and applicable to other PEFT

methods (Ding et al. 2023), including inserted adapters (Karimi Mahabadi et al. 2021),

103

0 20 40 60 80
Sub-vector #

0
10
20
30
40
50
60
70
80Ve

ct
or

 #
 in

 th
e

ve
ct

or
 b

an
k

(a) When k = 1

0 20 40 60 80
Sub-vector #

0
10
20
30
40
50
60
70
80Ve

ct
or

 #
 in

 th
e

ve
ct

or
 b

an
k

(b) When k = 2

0 20 40 60 80
Sub-vector #

0
10
20
30
40
50
60
70
80Ve

ct
or

 #
 in

 th
e

ve
ct

or
 b

an
k

(c) When k = 3

0 20 40 60 80
Sub-vector #

0
10
20
30
40
50
60
70
80Ve

ct
or

 #
 in

 th
e

ve
ct

or
 b

an
k

(d) Noisy Top-2

Figure 5.3: VB-LoRA’s vector selection footprints during training.
The x-axis represents the 96 sub-vectors formed by the vectors from a bank of 90 vectors, while
the y-axis represents the indices of selected vectors from the bank. The blue blocks indicate the

selection footprint during training.

104

prompt tuning (Qin et al. 2021), and BitFit (Ben Zaken et al. 2022). Although VB-LoRA

focuses on reducing the storage and transmission costs for LLM fine-tuning, we believe the

proposed scheme can be extended to memory-efficient fine-tuning and parameter-efficient

pre-training. But we leave these for future exploration.

105

CHAPTER 6

CONCLUSION AND FUTURE WORK

This dissertation revolves around the efficiency of deep neural networks. In Chapter 2,

we proposed an L0 regularization-based network pruning method, L0-ARM. In Chapter 3,

we introduced Neural Pruning Networks (NPNs), which unify network sparsification and

network expansion in an end-to-end training pipeline. In Chapter 4, we examined the lim-

itations of existing pruning algorithms on large datasets and proposed Dep-L0, which en-

hances L0-based network pruning algorithms through dependency modeling. In Chapter 5,

we presented a ”divide-and-share” paradigm and a differentiable top-k admixture module

for extreme parameter-efficient fine-tuning with vector banks.

For future work, several promising directions can be pursued. One potential avenue is

the application of the L0-based pruning method to more diverse and complex neural net-

work architectures, such as transformers. Another direction involves extending the ”divide-

and-share” paradigm to multi-task learning and distributed training scenarios, potentially

unveiling new strategies for parameter-efficient transfer learning and adaptation.

6.1 Pruning Transformer-based Models

The transformer (Vaswani et al. 2017) architecture has been widely used for natural lan-

guage processing (NLP) tasks over the past years, significantly improving the performance

of Neural Machine Translation (NMT) tasks. Moreover, the transformer structure has also

been applied to the computer vision area, such as image classification (Touvron et al. 2021),

object detection (Carion et al. 2020), and video segmentation (Wang et al. 2021). However,

106

the growing size of transformer models makes them challenging to deploy on smartphones,

drones, and Internet of Things (IoT) devices. Thus, compressing transformer models is a

critical problem. There are existing works on pruning transformer models (Fan et al. 2019;

Behnke & Heafield 2020; Zhu et al. 2021). For instance, Zhu et al. (2021) proposed a method

to prune Vision Transformer (ViT).

In terms of pruning granularity level, most methods fall into four categories: layer-wise,

head-wise, line-wise, and element-wise. (1) Layer-wise pruning takes transformer layers as

the smallest granularity. For example, Fan et al. (2019) proposed LayerDrop, which reduces

the depth of transformer layers at inference time. (2) Head-wise pruning takes attention

heads as the smallest granularity. One example is Behnke & Heafield (2020), which applies

the lottery ticket hypothesis to prune attention heads in the early stages of training. (3)

Line-wise pruning focuses on rows or columns in Transformer layer matrices. (4) Element-

wise pruning uses random weights as the smallest pruning granularity. For example, Cheong

(2019) prunes based on the magnitude of weights.

In our previous work, we mainly focused on pruning Multi-Layer Perceptron (MLP)

and Convolutional Neural Networks (CNN). However, we can naturally extend our L0-based

pruning method to transformers. We can attach binary masks to transformers at all different

granularity levels and penalize the number of pruning units by adding L0-norm regulariza-

tion. Considering the large scale of transformers, we may benefit from dependency learning

and potentially improve the accuracy of the pruned network.

107

6.2 Multi-task Parameter-efficient Fine-tuning

Fine-tuning a pre-trained model requires making design choices about which layers of the

model should be frozen or updated. Multitask fine-tuning adds extra complexity about

which parameters should be shared or task-specific. Along this line of work, Polytropon

(Ponti et al. 2022) jointly learns a small inventory of LoRA adapters and a routing function

that selects a variable-sized subset of adapters for few-shot adaptation. Caccia et al. (2023)

emphasize the importance of routing granularity and further propose a finer-grained mixing

across multiple heads. Following these works, it would be interesting to explore a finer-

grained parameter transfer across tasks, heads, types, and layers at the sub-vector level for

multitask fine-tuning.

6.3 Distributed Parameter-efficient Fine-tuning

Distributed parameter-efficient fine-tuning is an emerging area that addresses the challenge of

fine-tuning large-scale models across multiple devices or nodes in a distributed system. This

approach leverages the strengths of distributed computing to enable efficient training and

fine-tuning of deep learning models, particularly in scenarios where computational resources

are spread across various locations.

One promising direction in this area is to develop techniques that can distribute the fine-

tuning process across multiple devices while minimizing communication overhead and ensur-

ing consistent model updates. For instance, federated learning paradigms can be adapted to

fine-tune models in a decentralized manner, where each node performs local updates on its

108

subset of data and shares only the necessary gradients or model parameters with a central

server (McMahan et al. 2017). This approach not only reduces the communication burden

but also enhances data privacy. It would be interesting to extend our proposed VB-LoRA

to this new scenario, as the vector bank is a compact representation of model parameters.

109

CHAPTER 6

REFERENCES

Aghajanyan, A., Zettlemoyer, L., & Gupta, S. 2020, arXiv preprint arXiv:2012.13255

Akaike, H. 1998, Selected Papers of Hirotugu Akaike (Springer), 199–213

Arora, S., Ge, R., Halpern, Y., Mimno, D., Moitra, A., Sontag, D., Wu, Y., & Zhu, M. 2013,

in International Conference on Machine Learning, PMLR, 280–288

Ash, T. 1989, Connection Science, 1, 365–375

Behnke, M., & Heafield, K. 2020, in Proceedings of the 2020 Conference on Empirical Meth-

ods in Natural Language Processing (EMNLP), 2664–2674

Ben Zaken, E., Goldberg, Y., & Ravfogel, S. 2022, in Proceedings of the 60th Annual

Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), ed.

S. Muresan, P. Nakov, & A. Villavicencio, Dublin, Ireland, 1–9

Bengio, Y., Leonard, N., & Courville, A. 2013, arXiv preprint arXiv:1308.3432

Bird, T., Kunze, J., & Barber, D. 2018, arXiv preprint arXiv:1809.04855

Bishop, C. M. 2007, Pattern Recognition and Machine Learning (Information Science and

Statistics) (Springer)

Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. 2017, Journal of the American Statistical

Association, 859

Borzunov, A., Ryabinin, M., Chumachenko, A., Baranchuk, D., Dettmers, T., Belkada, Y.,

Samygin, P., & Raffel, C. A. 2024, Advances in Neural Information Processing Systems,

36

110

Brown, T. et al. 2020, Advances in Neural Information Processing Systems, 33, 1877

Caccia, L., Ponti, E., Su, Z., Pereira, M., Le Roux, N., & Sordoni, A. 2023, in Advances in

Neural Information Processing Systems

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. 2020, in

European conference on computer vision, Springer, 213–229

Cer, D., Diab, M., Agirre, E., Lopez-Gazpio, I., & Specia, L. 2017, in Proceedings of the

11th International Workshop on Semantic Evaluation (SemEval-2017), ed. S. Bethard,

M. Carpuat, M. Apidianaki, S. M. Mohammad, D. Cer, & D. Jurgens, Vancouver, Canada,

1–14

Chan, T.-H., Chi, C.-Y., Huang, Y.-M., & Ma, W.-K. 2009, IEEE Transactions on Signal

Processing, 57, 4418

Cheong, R. 2019

Chin, T.-W., Ding, R., Zhang, C., & Marculescu, D. 2019, arXiv, arXiv

Cichocki, A. 2014, arXiv preprint arXiv:1403.2048

Cortes, C., Gonzalvo, X., Kuznetsov, V., Mohri, M., & Yang, S. 2017, in International

Conference on Machine Learning (ICML)

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., & Bengio, Y. 2016, arXiv preprint

arXiv:1602.02830

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. 2009a, in IEEE Conference

on Computer Vision and Pattern Recognition (CVPR)

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. 2009b, in 2009 IEEE conference

111

on computer vision and pattern recognition, Ieee, 248–255

Deng, L., Li, G., Han, S., Shi, L., & Xie, Y. 2020, in Proceedings of the IEEE, Vol. 108,

485–532

Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., & Fergus, R. 2014, in Advances in neural

information processing systems, 1269–1277

Dettmers, T., Pagnoni, A., Holtzman, A., & Zettlemoyer, L. 2023, in Advances in Neu-

ral Information Processing Systems, ed. A. Oh, T. Naumann, A. Globerson, K. Saenko,

M. Hardt, & S. Levine, Vol. 36, 10088–10115

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. 2018, arXiv preprint arXiv:1810.04805

Ding, C. H., Li, T., & Jordan, M. I. 2008, IEEE transactions on pattern analysis and machine

intelligence, 32, 45

Ding, N. et al. 2023, Nature Machine Intelligence, 5, 220

Ding, X., Ding, G., Guo, Y., Han, J., & Yan, C. 2019a, arXiv preprint arXiv:1905.04748

Ding, X., Ding, G., Zhou, X., Guo, Y., Han, J., & Liu, J. 2019b, in Advances in neural

information processing systems

Dolan, W. B., & Brockett, C. 2005, in Proceedings of the Third International Workshop on

Paraphrasing (IWP2005)

Dong, X., & Yang, Y. 2019, in Advances in Neural Information Processing Systems, 760–771

Fan, A., Grave, E., & Joulin, A. 2019, arXiv preprint arXiv:1909.11556

Fu, X., Ma, W.-K., Huang, K., & Sidiropoulos, N. D. 2015, IEEE Transactions on Signal

Processing, 63, 2306

112

Gale, T., Elsen, E., & Hooker, S. 2019a, arXiv preprint arXiv:1902.09574

——. 2019b, arXiv preprint arXiv:1902.09574

Gers, F. A., Schmidhuber, J., & Cummins, F. 1999

Grathwohl, W., Choi, D., Wu, Y., Roeder, G., & Duvenaud, D. 2018, in International

Conference on Learning Representations (ICLR)

Gupta, S., Agrawal, A., Gopalakrishnan, K., & Narayanan, P. 2015, in International Con-

ference on Machine Learning, 1737–1746

Han, S., Mao, H., & Dally, W. J. 2016, in International Conference on Learning Represen-

tations (ICLR)

Han, S., Pool, J., Tran, J., & Dally, W. 2015, in Advances in neural information processing

systems, 1135–1143

He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., & Neubig, G. 2021, in International Confer-

ence on Learning Representations

He, K., Zhang, X., Ren, S., & Sun, J. 2016a, in IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 770–778

He, K., Zhang, X., Ren, S., & Sun, J. 2016b, in Proceedings of the IEEE conference on

computer vision and pattern recognition, 770–778

He, Y., Kang, G., Dong, X., Fu, Y., & Yang, Y. 2018a, arXiv preprint arXiv:1808.06866

He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., & Han, S. 2018b, in Proceedings of the European

Conference on Computer Vision (ECCV), 784–800

He, Y., Liu, P., Wang, Z., Hu, Z., & Yang, Y. 2019, in Proceedings of the IEEE Conference

113

on Computer Vision and Pattern Recognition, 4340–4349

Hinton, G., Vinyals, O., & Dean, J. 2015, arXiv preprint arXiv:1503.02531

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A.,

Attariyan, M., & Gelly, S. 2019, in International Conference on Machine Learning, PMLR,

2790–2799

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W., et al. 2021, in

International Conference on Learning Representations

Hu, H., Peng, R., Tai, Y.-W., & Tang, C.-K. 2016, arXiv preprint arXiv:1607.03250

Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. 2017, in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR)

Huang, Z., & Wang, N. 2018, in Proceedings of the European conference on computer vision

(ECCV), 304–320

Inouye, D., Ravikumar, P., & Dhillon, I. 2014, in International Conference on Machine

Learning, PMLR, 683–691

Ioffe, S., & Szegedy, C. 2015, International Conference on Machine Learning (ICML)

Jaderberg, M., Vedaldi, A., & Zisserman, A. 2014, arXiv preprint arXiv:1405.3866

Jang, E., Gu, S., & Poole, B. 2016, arXiv preprint arXiv:1611.01144

Jang, E., Gu, S., & Poole, B. 2017, in International Conference on Learning Representations

(ICLR)

Jiang, A. Q. et al. 2024, arXiv preprint arXiv:2401.04088

Jie, S., & Deng, Z.-H. 2023in , 1060–1068

114

Karimi Mahabadi, R., Henderson, J., & Ruder, S. 2021, Advances in Neural Information

Processing Systems, 34, 1022

Khoromskij, B. N. 2011, Constructive Approximation, 34, 257

Kingma, D. P., & Ba, J. 2015, in International Conference on Learning Representations

(ICLR)

Kingma, D. P., Salimans, T., & Welling, M. 2015, in Advances in Neural Information Pro-

cessing Systems, 2575–2583

Kolda, T. G., & Bader, B. W. 2009, SIAM review, 51, 455

Kopiczko, D. J., Blankevoort, T., & Asano, Y. M. 2024, in International Conference on

Learning Representations

Krizhevsky, A. 2009, Learning multiple layers of features from tiny images, Tech. rep.

Krizhevsky, A., & Hinton, G. 2009, Master’s thesis, Department of Computer Science, Uni-

versity of Toronto

Le, Q., Sarlós, T., Smola, A., et al. 2013in

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. 1998, in Proceedings of the IEEE, 2278–2324

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. 1998, Proceedings of the IEEE, 86,

2278

LeCun, Y., Denker, J. S., & Solla, S. A. 1990, in Advances in neural information processing

systems, 598–605

Lee, J., Kim, S., Yoon, J., Lee, H. B., Yang, E., & Hwang, S. J. 2018, arXiv preprint

arXiv:1805.10896

115

Lester, B., Al-Rfou, R., & Constant, N. 2021, in Proceedings of the 2021 Conference on

Empirical Methods in Natural Language Processing, Association for Computational Lin-

guistics

Li, H., Kadav, A., Durdanovic, I., Samet, H., & Graf, H. P. 2016, arXiv preprint

arXiv:1608.08710

Li, J., & Bioucas-Dias, J. M. 2008, in IGARSS 2008-2008 IEEE International Geoscience

and Remote Sensing Symposium, Vol. 3, IEEE, III–250

Li, X. L., & Liang, P. 2021, in Proceedings of the 59th Annual Meeting of the Association

for Computational Linguistics and the 11th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers), 4582–4597

Li, Y., Han, S., & Ji, S. 2024, arXiv preprint arXiv:2405.15179

Li, Y., & Ji, S. 2019, in The European Conference on Machine Learning (ECML)

Li, Y., & Ji, S. 2021a, in Joint European Conference on Machine Learning and Knowledge

Discovery in Databases, Springer, 167–183

Li, Y., & Ji, S. 2021b, in 2021 International Joint Conference on Neural Networks (IJCNN),

IEEE, 1–9

Li, Y., Ma, X., Sunderraman, R., Ji, S., & Kundu, S. 2023, Human Brain Mapping, 44, 4772

Lin, C.-H., Ma, W.-K., Li, W.-C., Chi, C.-Y., & Ambikapathi, A. 2015, IEEE Transactions

on Geoscience and Remote Sensing, 53, 5530

Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., & Shao, L. 2020, in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1529–1538

116

Lin, S., Ji, R., Li, Y., Deng, C., & Li, X. 2019a, IEEE transactions on neural networks and

learning systems, 31, 574

Lin, S., Ji, R., Yan, C., Zhang, B., Cao, L., Ye, Q., Huang, F., & Doermann, D. 2019b,

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2790–2799

Liu, B., Wang, M., Foroosh, H., Tappen, M., & Pensky, M. 2015, in Proceedings of the IEEE

conference on computer vision and pattern recognition, 806–814

Liu, H., Tam, D., Muqeeth, M., Mohta, J., Huang, T., Bansal, M., & Raffel, C. A. 2022,

Advances in Neural Information Processing Systems, 35, 1950

Liu, S., & Deng, W. 2015, in 2015 3rd IAPR Asian conference on pattern recognition

(ACPR), IEEE, 730–734

Liu, Y. et al. 2019, arXiv preprint arXiv:1907.11692

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., & Zhang, C. 2017, in Proceedings of the IEEE

International Conference on Computer Vision, 2736–2744

Louizos, C., Ullrich, K., & Welling, M. 2017, in Advances in Neural Information Processing

Systems, 3288–3298

Louizos, C., Welling, M., & Kingma, D. P. 2018a, International Conference on Learning

Representations (ICLR)

Louizos, C., Welling, M., & Kingma, D. P. 2018b, in International Conference on Learning

Representations (ICLR)

Maddison, C. J., Mnih, A., & Teh, Y. W. 2016, arXiv preprint arXiv:1611.00712

117

Maddison, C. J., Mnih, A., & Teh, Y. W. 2017, in International Conference on Learning

Representations (ICLR)

McMahan, B., Moore, E., Ramage, D., Hampson, S., & Arcas, B. A. y. 2017, in Proceedings

of Machine Learning Research, Vol. 54, Proceedings of the 20th International Conference

on Artificial Intelligence and Statistics, ed. A. Singh & J. Zhu (PMLR), 1273–1282

Mitchell, T. J., & Beauchamp, J. J. 1988, Journal of the american statistical association, 83,

1023

Miyato, T., Maeda, S.-i., Ishii, S., & Koyama, M. 2018, IEEE transactions on pattern analysis

and machine intelligence

Molchanov, D., Ashukha, A., & Vetrov, D. 2017, in Proceedings of the 34th International

Conference on Machine Learning-Volume 70, JMLR. org, 2498–2507

Molchanov, P., Mallya, A., Tyree, S., Frosio, I., & Kautz, J. 2019, in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 11264–11272

Neklyudov, K., Molchanov, D., Ashukha, A., & Vetrov, D. 2017, in Advances in Neural

Information Processing Systems (NIPS)

Novikova, J., Dušek, O., & Rieser, V. 2017, in Proceedings of the 18th Annual SIGdial

Meeting on Discourse and Dialogue, ed. K. Jokinen, M. Stede, D. DeVault, & A. Louis,

Saarbrücken, Germany, 201–206

Oseledets, I. V. 2010, SIAM Journal on Matrix Analysis and Applications, 31, 2130

Ouyang, L. et al. 2022, Advances in Neural Information Processing Systems, 35, 27730

Park, S., Lee, J., Mo, S., & Shin, J. 2020, arXiv preprint arXiv:2002.04809

118

Ponti, E. M., Sordoni, A., Bengio, Y., & Reddy, S. 2022, arXiv preprint arXiv:2202.13914

Pritchard, J. K., Stephens, M., & Donnelly, P. 2000, Genetics, 155, 945

Qin, Y. et al. 2021, arXiv preprint arXiv:2110.07867

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. 2019

Rajpurkar, P., Jia, R., & Liang, P. 2018, in Proceedings of the 56th Annual Meeting of the

Association for Computational Linguistics (Volume 2: Short Papers), ed. I. Gurevych &

Y. Miyao, Melbourne, Australia, 784–789

Real, E., Aggarwal, A., Huang, Y., & Le, Q. V. 2019, in AAAI

Reisinger, J., Waters, A., Silverthorn, B., & Mooney, R. J. 2010, in International Conference

on Machine Learning, Citeseer, 903–910

Renduchintala, A., Konuk, T., & Kuchaiev, O. 2023, arXiv preprint arXiv:2311.09578

Sarker, K., Yang, X., Li, Y., Belkasim, S., & Ji, S. 2020, arXiv preprint arXiv:2009.12027

Schwarz, G. 1978, The Annals of Statistics, 6, 461

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., & Dean, J. 2016, in

International Conference on Learning Representations

Sheng, Y. et al. 2023, arXiv preprint arXiv:2311.03285

Silver, D. et al. 2016, Nature, 529, 484

Simonyan, K., & Zisserman, A. 2014, arXiv preprint arXiv:1409.1556

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., & Potts, C. 2013,

in Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-

cessing, ed. D. Yarowsky, T. Baldwin, A. Korhonen, K. Livescu, & S. Bethard, Seattle,

119

Washington, USA, 1631–1642

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. 2014, Journal

of Machine Learning Research, 15, 1929

Stiles, J., & Jernigan, T. L. 2010, Neuropsychology Review, 20, 327

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X., Guestrin, C., Liang, P., & Hashimoto,

T. B. 2023, Stanford Alpaca: An Instruction-following LLaMA model, https://github.

com/tatsu-lab/stanford_alpaca

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., & Jégou, H. 2021, in Inter-

national Conference on Machine Learning, PMLR, 10347–10357

Touvron, H. et al. 2023, arXiv preprint arXiv:2307.09288

Tucker, G., Mnih, A., Maddison, C. J., Lawson, J., & Sohl-Dickstein, J. 2017, in Advances

in Neural Information Processing Systems (NIPS)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., &

Polosukhin, I. 2017

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. 2018, in Proceedings of

the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks

for NLP, ed. T. Linzen, G. Chrupa la, & A. Alishahi, Brussels, Belgium, 353–355

Wang, Y., Xu, Z., Wang, X., Shen, C., Cheng, B., Shen, H., & Xia, H. 2021, in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8741–8750

Wang, Y.-X., Ramanan, D., & Hebert, M. 2017, in IEEE Conference on Computer Vision

and Pattern Recognition (CVPR)

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

120

Warstadt, A., Singh, A., & Bowman, S. R. 2019, Transactions of the Association for Com-

putational Linguistics, 7, 625

Wen, W., Wu, C., Wang, Y., Chen, Y., & Li, H. 2016a, in Advances in Neural Information

Processing Systems (NIPS)

Wen, W., Wu, C., Wang, Y., Chen, Y., & Li, H. 2016b, in Advances in neural information

processing systems

Williams, R. J. 1992, Machine Learning, 8, 229

Yaman, F., Li, Y., Han, S., Inoue, T., Mateo, E., & Inada, Y. 2023, in Optical Fiber

Communication Conference, Optica Publishing Group, W1J–7

Ye, J., Lu, X., Lin, Z., & Wang, J. Z. 2018, arXiv preprint arXiv:1802.00124

Yin, M., & Zhou, M. 2019, in International Conference on Learning Representations (ICLR)

You, Z., Yan, K., Ye, J., Ma, M., & Wang, P. 2019, in Advances in Neural Information

Processing Systems, 2133–2144

Zagoruyko, S., & Komodakis, N. 2016a, in The British Machine Vision Conference (BMVC)

Zagoruyko, S., & Komodakis, N. 2016b

Zhao, X. et al. 2023, arXiv preprint arXiv:2305.18703

Zheng, L. et al. 2024, Advances in Neural Information Processing Systems, 36

Zhou, G., Sohn, K., & Lee, H. 2012, in International Conference on Artificial Intelligence

and Statistics (AIStats), 1453–1461

Zhu, M., Tang, Y., & Han, K. 2021, arXiv preprint arXiv:2104.08500

Zhuang, Z., Tan, M., Zhuang, B., Liu, J., Guo, Y., Wu, Q., Huang, J., & Zhu, J. 2018, in

121

Advances in Neural Information Processing Systems, 875–886

Zoph, B., & Le, Q. V. 2017, in International Conference on Learning Representations (ICLR)

Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. 2018, in IEEE Conference on Computer

Vision and Pattern Recognition (CVPR)

	Towards Pruning and Parameter Efficient Fine-tuning of Deep Neural Networks
	Recommended Citation

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Network Pruning
	Pruning Methods
	Parameter Efficient Fine-tuning
	Dissertation Organization
	List of Publications

	L0-ARM: Network Sparsification via Stochastic Binary Optimization
	Formulation
	L0-ARM: Stochastic Binary Optimization
	Choice of g()
	Sparsifying Network Architectures for Inference
	Imposing Shrinkage on Model Parameters
	Group Sparsity Under L0 and L2 Norms

	Related Work
	Experimental Results
	Implementation Details
	MNIST Experiments
	CIFAR Experiments

	Conclusion

	Neural Plasticity Networks
	Neural Plasticity Networks: Formulation
	Learning Stage Scheduler
	Dropout as k=0
	Pre-training as k= at the beginning of NPN training
	Fine-tuning as k= at the end of NPN training
	Modulating learning stages by k

	Network Expansion
	Related Work
	Network Sparsification
	Neural Architecture Search
	Dynamic Network Expansion

	Experimental Results
	Synthetic Dataset
	MNIST
	CIFAR-10/100

	Conclusion

	Dep-L0: Improving L0-based Network Sparsification via Dependency Modeling
	Method
	Sparse Structure Learning
	Group Sparsity
	Gate Partition
	Neural Dependency Modeling

	Related Work
	Experiments
	Experimental Details
	CIFAR10 Results
	CIFAR100 Results
	ImageNet Results
	Study of Learned Sparse Structures
	Run-time Comparison

	Ablation Study of the Gate Generator
	MLP variants
	CNN
	LSTM
	Summary

	Conclusion and Future Work

	VB-LoRA: Extreme Parameter Efficient Fine-Tuning with Vector Banks
	Introduction
	Related Work
	Exploit Global Redundancy for Enhanced Parameter Efficiency
	Parameter Modeling based on Sparse Admixture Models

	Proposed Method
	Preliminaries: Transformer Architecture and LoRA Adapters
	Divide-and-Share: a New Paradigm for Parameter Sharing
	Breaking Boundaries of LoRA for Global Parameter Sharing
	Parameter Count

	Experiments
	Natural Language Understanding
	Natural Language Generation
	Instruction Tuning
	Ablation Study

	Conclusion

	CONCLUSION AND FUTURE WORK
	Pruning Transformer-based Models
	Multi-task Parameter-efficient Fine-tuning
	Distributed Parameter-efficient Fine-tuning

	REFERENCES

