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ABSTRACT 

Humans and nonhuman animals categorize the natural world, and their behaviors 

can reveal how they use the stimulus information they encounter in service of these 

categorizations. Rigorous psychological study of categorization has offered many insights 

into the processes of categorization and their relative strengths and weaknesses across 

species. Probabilistic categorization, in which the relationships among stimulus 

information and category membership that are observed by an individual are 

fundamentally probabilistic, presents unique challenges both to the categorizer and to the 

psychologist attempting to model their behavior. Challenges notwithstanding, 

probabilistic categorization is an exceptionally ecologically relevant problem to human 

and nonhuman animal cognition alike. This dissertation reports the effects of many 

manipulations of theoretical interest on computer-trained rhesus macaques’ and 



capuchin monkeys’ inferred cognitive strategy use in a computerized version of a classic 

probabilistic categorization task. Experiment 1 probed cognitive strategy use across five 

variants of the same task in which the probability structure was constant, but the 

appearances and onscreen locations of cues and responses changed. Experiment 2 

presented a series of manipulations of theoretical interest to the animals by changing the 

probability and reward structures of the task. Experiment 3 manipulated the stimuli of 

the task in ways motivated by findings across perceptual psychology literature. 

Experiment 4 extended the reward rate manipulations of Experiment 2 even further. 

Across four experiments, inferred strategy use was remarkably stable. Those animals that 

used cue-based strategies often returned to the same specific strategy experiment after 

experiment, as the cues, responses, probabilities, and contingencies changed around 

them. This finding is discussed in relation to questions of a real or functional ceiling on 

sophistication of strategy use, the robustness of cognitive individual differences in 

nonhuman primates, and future directions for comparative study of cognitive strategy use 

in probabilistic categorization.  
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1 INTRODUCTION  

 The relationships among minds, behaviors, and environments are fundamentally 

uncertain, and in many ways the cognitive competencies of mind can be understood as 

specific adaptations that serve to mediate this uncertainty (Glimcher, 2005). For 

example, the structure of many behavioral economic games is such that one or more 

players attempts to maximize the unpredictability of their responses as observed by other 

players (e.g., Rapoport & Budescu, 1992). Likewise, the structure of complex nervous 

systems are such that neuronal activity and neurotransmitter release are probabilistic 

events (Stevens, 2003). Cognitive scientists need not appeal to such evolutionarily 

ultimate or neuroscientifically molecular processes to find unpredictability in animal 

brains and behaviors, as the stimulus environments we interact with daily do not present 

us with transparent, deterministic, causal relationships.  

 A mind’s transformation of the uncertainty of the environment into discrete 

representations, decisions, and behaviors is termed inference. Inference from 

probabilistic evidence is a key feature of human and nonhuman animal (hereafter: 

animal) life. A jury can only be uncertain as to a defendant’s guilt or innocence, but they 

can make an informed inference via physical evidence, witness testimony, and reasonable 

doubt. The new restaurant on the corner may be delicious or nauseating, but inference 

from online reviews, a health inspector’s report, and word of mouth can rapidly clarify 

the relative likelihood of food poisoning. A hungry monkey faces a similar dilemma, when 

a nearby fungus might be a poisonous toadstool or an edible mushroom. The relative 

probabilities of fitness advantage and disadvantage that might be won by consuming the 

fungus must be evaluated amidst considerable uncertainty and nontrivial stakes. 
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 One way to describe this practice of inference is by using principles of probability 

theory, especially the rearrangement of conditional probabilities described by Bayes’ rule 

(Etz & Vandekerckhove, 2018). Bayes’ rule offers a straightforward way to synthesize 

probabilistic information into a form that is useful to a decision-maker: it is the 

probability that one event will occur over another, or that one hypothesis will be 

supported versus another. Interestingly, to cognitive psychologists, normative human 

behavior does not typically reflect these calculations in any straightforward way (Tversky 

& Kahneman, 1974). Moreover, there are other ways, beyond differing from Bayesian 

computation, in which inferences of humans and other species are not so sterile as 

probability theory might suggest. Adult humans (Washburn et al., 2005), human children 

(Beran et al., 2012), chimpanzees (Pan troglodytes; Beran et al., 2015), orangutans (genus 

Pongo; Marsh & MacDonald, 2012), rhesus macaques (Macaca mulatta; Tu et al., 2015), 

Guinea baboons (Papio papio; Malassis et al., 2015), a dolphin (Tursiops truncatus; 

Smith, 2010), and rats (Rattus norvegicus; Foote & Crystal, 2007) are among the 

populations that have demonstrated the ability to behave in accordance with recognition 

of their own uncertainty.  

 At least for humans, this relationship with uncertainty is fraught. Objectively, there 

are few situations in which it is adaptive to be underinformed about the contingencies of 

one’s environment. But subjectively, the story is not so clear. On one hand, live events like 

sports are uniquely profitable entertainment (with 89 of the 100 most watched broadcasts 

in the United States in 2018 related to live sports), in no small part because their contents 

are fundamentally uncertain (Crupi, 2019). On the other hand, and less trivially, 

individuals at risk of high trait anxiety or clinically significant anxiety disorders are 

intolerant of the subjective feeling of not knowing that comes with such uncertainty 
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(Carleton et al., 2007). These examples are expository only, and scarcely scratch the 

surface of how probability and psychological processes intersect. Uncertainty is, to a large 

or small degree, explicitly or implicitly, a component of any psychological process 

concerned with information (Garner, 1962). 

 This dissertation will describe the strategies that species use when identifying 

objects (categorizing a stimulus into one or many unique psychological groups) and 

coordinating behavior on the basis of such judgments (engaging in decision-making by 

using the external and internal stimulus information at its disposal to guide behavior) in 

service of probabilistic inference. I will use this introductory chapter to catalog previous 

research on the cognitions and behaviors that are characteristic of categorization and 

decision-making in conditions of uncertainty. Next, I will introduce one specific 

methodology for bringing into the psychology laboratory the types of probabilistic 

categorization and decision-making that organisms face in their environments, discuss 

what this methodology has already contributed to our understanding of such constructs, 

and identify its limitations. In the second chapter, I will present a role for comparative 

psychology in answering a number of outstanding questions about probabilistic 

categorization, alongside discussion of species-specific considerations that suggest a 

match between mechanisms of probabilistic categorization and the cognitive 

competencies of New World and Old World monkeys. Further chapters will describe a set 

of experiments that probed the degree to which these characteristic cognitions and 

behaviors are specific to the stimulus properties and/or embedded probabilities of 

previously published experiments, the results of these experiments, and implications for 

the comparative study of how cognition intersects with chance. 
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1.1 Probabilistic Categorization  

Very high categorization performance must be required of humans and nonhuman 

animals in their natural habitats, where dangerous predators cannot be mistaken as 

benign and new chances to elect political officials in the United States come only every 

two to six years (Ashby & Ennis, 2006; Kruschke, 2005; Smith, 2014). Psychologists often 

present relationships between psychological inputs and their observable outputs as if they 

were deterministic: an organism that perfectly used the information at its disposal would 

unerringly predict the toxicity of a mushroom or the danger posed by a large animal's 

silhouette (Ashby & Maddox, 2005). Indeed, three of the four major classes of 

categorization experiments identified by Ashby and Ell (2001) model relationships of this 

kind. In the first, rule-based tasks, including the influential Wisconsin Card Sort Task, an 

explicit, verbally declarable stimulus dimensions or some conjunction of such stimulus 

dimensions are mapped to categories (Eling et al., 2008). In the second, information-

integration tasks, like many variants of the sinewave grating task of Ashby and colleagues 

(1998), stimulus dimensions are mapped to categories in a way that cannot be explicitly 

declared (e.g., Qadri et al., 2019; Smith et al., 2012). In the third, prototype-distortion 

tasks, like the “A, not A” tasks of Posner & Keele (1968, 1970), stimulus dimensions are 

mapped to categories based on the degree of similarity a prospective category member 

shares with an unseen, prototypical category member. It is only the fourth major class of 

categorization experiment, unstructured tasks, that maps items to categories arbitrarily 

without regard to any stimulus dimension (Little et al., 2006).  

In each of these designs, with few exceptions (the subset of information-

integration tasks that does not provide deterministic mappings between stimulus 

properties and category membership will be discussed later in this chapter), any object 
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with a given set of values on stimulus dimensions of interest is mapped, with absolute 

certainty, to a specific category member or response. From these experiments, a 

psychologist can evaluate the degree to which an individual or population evidenced 

learning of these deterministic mappings of stimulus information to a category. Where 

perfect utilization of the available information is not achieved, a mélange of exploratory 

behaviors, novelty biases, and motoric considerations is often assumed to be to blame. 

Any deterministic conception of categorization understates the degree to which 

real relationships of interest between psychological inputs and observable outputs are 

probabilistic (Kruschke & Johansen, 1999). Most charitably, deterministic categorization 

tasks are a simplification of how a human or animal's categorization mechanisms work in 

a single, specific context. For example, a child is either tall enough to ride a roller coaster, 

or not tall enough to ride it. A single, deterministic dimension of height guides 

categorization, and many other dimensions (e.g., clothing, hairstyle, freckle count) are 

irrelevant. Decades of categorization research might inform whether such a 

categorization is made by explicit, rule-based reasoning, or implicit, procedural learning, 

or other orthodoxy. Both this depiction of real-life categorization and its experimental 

models face limits to their validity and implementation. Such a perspective can only be 

agnostic about how learners manage less deterministic cue information across contexts. 

This is a serious shirking of duty, because demand for the ability to combine many 

probabilistically noisy, conflicting cues is high. Many other categorizations about our 

prospective coaster rider would require an evaluation of many dimensions that combine 

far more fitfully. A school administrator would, one hopes, categorize the child into an 

advanced, remedial, or on-level classroom based on an exceedingly complex mixture of 

teacher impressions, classroom behavior, and scores from math, reading, and science 
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assessments. None of these cues are perfect, and the administrator can only hope to make 

an informed probabilistic categorization about the student's true category membership. 

In addition to these questions of the ecological validity of classic categorization 

tasks, other domains of the social sciences also caution against simplifications of natural 

category structures. To economists, there are insidious consequences to positing any 

stable, deterministic relationship between an observable stimulus dimension and 

category membership (Goodhart, 1984). To adopt a popular example: in academic 

settings there is probably some relationship between a citation metric and the quality of 

scholarship of an academic (i.e., a citation metric dimension can be used to categorize 

academics as high quality or low quality scholars). However, as soon as the citation metric 

becomes conventionally used as a deterministic predictor of scholarly quality, it ceases to 

be one, because selection pressure for both academic and categorizer is to maximize on 

that metric instead of maximizing on scholarly quality. In education policy a similar 

caution is made regarding standardized achievement testing. Standardized tests may 

deterministically predict scholastic success in normal teaching and testing conditions, but 

not when school and student resources are subverted to maximize standardized test 

scores (Sidorkin, 2016). Even in a relatively sterile social science like applied statistics, 

the concept of overfitting codifies this idea that a well-validated relationship observed in 

one context cannot be expected to be perfectly maintained in a new context (Babyak, 

2004).  

Psychologists use weather prediction tasks to model naturalistic, probabilistic 

category structures by structuring the cue information available to an organism to be 

probabilistically related to the value of the responses an organism can make (Gluck & 

Bower, 1988). In this way, the uncertainty that permeates real life categorization contexts 
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can be accounted for with exacting specificity, and titrated continuously. In most classic 

weather prediction designs, each trial presents a participant with one to three imperfect 

cues (often stylized as medical symptoms or tarot cards; Knowlton et al., 1994). The 

participant is asked to choose which of two outcomes will be scored as correct in that trial. 

Perfect performance is impossible in such a task, because even the greatest weight of cue 

information a participant might receive will still underspecify the correct outcome. 

Instead, the participant, like the school administrator, must work within their uncertainty 

to make the best decision possible with the information that they have. 

 

1.2 Probabilistic Decision-Making  

The inferences made during these probabilistic categorizations are observable in 

how individuals behave in naturally-occurring and experimentally-derived decision-

making contexts. Humans and animals are often found to deviate from probability 

theories’ recommendations given a set of probabilistic information, even when the task is 

well-learned (Nickerson, 2004). To chronicle these deviations, cognitive psychologists 

have cultivated an impressive bestiary of the many heuristics and biases that blight civil, 

rational minds (e.g., Kahneman & Tversky, 1984, Tversky & Kahneman, 1974; Tversky & 

Kahneman, 2014). For example, humans and pigeons neglect the prior probability of an 

estimable occurrence and conversely assign undue decisional weight to any predictive 

information, termed base-rate neglect (Bar-Hillel, 1980; Fantino et al., 2005; Tversky & 

Kahneman, 1982; Zentall & Clement, 2002). A positive test for a rare disease might be 

understood as highly likely to reflect that the disease is present, even though the low prior 

probability of the presence of the disease would instead suggest that a false alarm by the 

test is much more likely. In a related example, this cue information is weighted so greatly 
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that human evaluations of the probability space are not internally, logically consistent 

(Tversky & Kahneman, 1983). This conjunction fallacy is frequently illustrated via a short 

vignette about a young woman with a history of social activism (sometimes called the 

Linda problem). Human participants often evaluate that she is more likely to be a bank 

teller who is active in feminist causes than that she is “merely” a bank teller. The young 

woman’s activism is so strongly weighted by human observers that they propose the 

logical impossibility that the conjunction of two states could be greater than one of the 

states in isolation. Even at the earliest stages of probabilistic decision-making, humans 

are not particularly successful at identifying where probabilistic information is and where 

it is not. Humans routinely report that probabilistic relationships exist among sequences 

or stimuli when the process that generated them was actually paradigmatically random 

(Zhao et al., 2014). 

There is a sense in which the size of this apparent gulf between recommendations 

derived from Bayesian computation of probabilistic information and observed human 

behavior has been exaggerated. The way in which such probabilistic decision-making 

problems are typically framed, with percentile probabilities disseminated in words, is 

ideal for Bayesian computation. This is highly different from how humans and animals 

would sample probabilistic information from their natural environments (Gigerenzer & 

Hoffrage, 1995). When experimenters present human participants with mechanically 

identical probabilistic decision-making problems in a representational format more akin 

to how evolution shaped minds to intuit probabilistic information, many of the irrational 

biases can be substantially or entirely muted (Gigerenzer, 1991; Gigerenzer et al., 1991).  

Accounts of human probabilistic decision-making behavior that seek to coax biases 

from participants and those that forgive these biases as part of an entropy or effort 
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reduction shorthand compete to provide superior accounts for probabilistic decision-

making behavior (Gigerenzer & Goldstein, 1996; Kahneman & Tversky, 1996; Shah & 

Oppenheimer, 2008). Similarly, conceptions of probability theory that draw from perfect 

knowledge of the problem space compete with subjective, observed event frequency to 

describe human interactions with probability theory best (Gigerenzer, 1991; Gigerenzer, 

1994). Post-hoc labeling of characteristic responses of humans in highly specific, highly 

verbal probabilistic decision-making contexts is common. In contrast, process-based or 

mechanistic accounts of cognition and behavior are relatively uncommon (Gigerenzer, 

1996). Stanovich and West (2000), and more popularly Kahneman (Kahneman, 2011; 

Kahneman & Frederick, 2002), understand the cognitive processes that produce these 

characteristic responses as derived from two systems: one quick, effortless, intuitive, and 

automatic and the other deliberate, effortful, and systematic. This clustering represents 

an improvement on merely labeling biases, and is intellectually fruitful in that the 

individual and correlational psychologies of how individuals may deploy these systems 

can be explored (Cronbach, 1957). But even this approach reduces to a fairly trivial 

labeling of inferred cognitive processing: “fast” or “slow”, with some inconsistently 

correlated features (Melnikoff & Bargh, 2018).  

The restricted nature of these dual-process accounts distracts from the substantial 

challenge that cognitive psychologists face in seeking to describe decision-making 

processes molecularly, via their inputs, outputs, processes, neuronal substrates, and 

proximate and ultimate causes. Kruschke and Johansen (1999) took up this challenge 

with their Rapid Attention SHifts N Learning (RASHNL) model for probabilistic 

cognition in which mathematical relationships among inputs from the environment, their 

representation by an individual, and behavioral outputs can be specified exactly. More 
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specifically, the RASHNL model built on previous connectionist models of human 

cognition (e.g., Gluck & Bower, 1988) to describe a probabilistic cognition that changes 

continuously and dynamically across experience. More recently Trueblood, Busemeyer, 

Pothos and their collaborators have advanced models of human probabilistic decision-

making that trade connectionist principles for those borrowed from particle physics and, 

in doing so, make explicit the characteristic indeterminacy of human brains and behaviors 

(Pothos & Busemeyer, 2009; Trueblood & Busemeyer, 2011; Trueblood et al., 2017). This 

computationally intensive account, termed quantum cognition, has furnished formal 

mathematical descriptions of how many of the characteristic responses humans make in 

probabilistic situations may arise. These formal models, and others like them, provide 

accounts of human probabilistic decision-making at unprecedented levels of detail. 

Interestingly, the degree to which these models impact scientific discourse would seem to 

be less a question of their accuracy (they provide a good fit to data, both real and 

simulated) and more of the degree to which their core ideas can be disseminated to and 

internalized by cognitive and applied psychologists who have already adopted the 

fundamentally intuitive, but scientifically fraught dual-process typology. 

Probabilistic decision-making theories thus appear to fall along a continuum. At 

one extreme, researchers figuratively plant a tiny flag on the response that they will 

consider rational and hundreds or thousands of additional flags on every other point 

(each with its own unique identifier and publication). At the other extreme, researchers 

seek to recreate, via pure mathematics, artificial neural networks, and/or principles of 

particle physics, the computations undertaken by the brain-shaped black box that 

transforms psychological inputs into behavioral outputs. An approach that appreciates 

each of these perspectives may be uniquely valuable. Rigorously and mathematically 
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defining experimentally derived inputs and predicted outputs is a requirement of 

scientific progress, and a prerequisite of most statistical analyses of merit. That said, in 

many contexts people and their cognitive processes really are clustered, such that labels 

can properly represent psychological relationships (Bartlema et al., 2014). An 

epistemological midpoint might borrow features from each extreme to make predictions 

that are not only accurate, but are also transparently interpretable, accessible to other 

scientists, and portable to new areas of cognitive inquiry.  

Lee and colleagues have done much to advance such a perspective by using 

principles of statistical model selection to identify which account, among competing 

theories of involved cognitive processes, best accords with behavioral data of probabilistic 

decision-making tasks. For example, Lee and Newell (2011) applied this strategy to a 

classic decision-making problem in which the size of German cities is estimated. They 

used behavioral and simulated data with competing formal models arranged using the 

principles of the “Take-the-Best” heuristic and the influential weighted-additive rule. In 

this way classic ideas about normative human decision-making behavior, complete with 

heuristics and biases, are ported intact for principled, statistical evaluation alongside 

competing accounts. Critically, these evaluations may inform what information was 

utilized by participants and how participants’ cognitive competencies utilized this 

information, alongside estimation of which rule or process provided the best fit. In the 

case of Lee and Newell (2011), this approach facilitated novel inferences about participant 

search strategies and stopping rules. In other cases, this approach has served to 

discriminate among categorical and continuous differences in human cognitive processes 

in a Multidimensional Scaling design (Bartlema et al., 2014) and demonstrate participant 

sensitivity to probabilistically weighted evidence in a decision-making task (Lee, 2016). 
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1.3 Strategy Analyses in Weather Prediction 

A key feature of weather prediction tasks is that they can be completed at high rates 

of success by any one of many different response strategies (Gluck et al., 2002; Meeter et 

al., 2006). For example, in the set of relationships between cues and response 

probabilities that is often used by weather prediction researchers, a simple Take-the-Best-

style heuristic is nearly optimal (Ashby & Maddox, 2005; Todd & Gigerenzer, 1999). For 

this reason, the more meaningful inference about participant performance in a weather 

prediction task is not merely the proportion at which participants chose the correct 

outcome, but rather the degree to which participants' responses are consistent with use 

of one strategy or another. Because equivalent task performance by individual 

participants does not require equivalent response mechanisms, response strategy use in 

the task can vary wildly within the realm of roughly-equivalent rates of correct 

responding.  

These inferences are arrived at via strategy analyses techniques that compare many 

theoretically-interesting models that make different, explicit predictions about 

participant behavior in the task. Gluck, Shohamy, and Myers (2002) inaugurated the use 

of such techniques in weather prediction designs. In their task, participants were asked 

to predict whether ‘sun’ or ‘rain’ was a likelier outcome on the basis of a set of 1-3 

arbitrary, probabilistic cues. To infer participant strategy use, they used a simple least 

mean squared error measure in which a normalized count of the expected number of sun 

responses predicted by each strategy minus the observed number of sun responses was 

computed for each candidate model. Candidate models fell into three major designations. 

Multi-Cue strategies assumed the optimal response (i.e., response that would be correct 
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most often given the available cue information) to every cue combination, as if the 

participant perfectly integrated the cue information they received. Single-cue strategies 

assumed that responses were made based on the presence or absence of one cue. This type 

of strategy assumed fundamentally rule-based responses (e.g., if cue1 is present, choose 

response 1. if cue1 is not present, choose response 2). Finally, Singleton strategies 

assumed that the participant made the optimal response any time only one cue was 

presented, but failed to successfully integrate the information yielded by multiple cues. 

The initial strategy analysis of Gluck and colleagues described most participants as best 

fit by Singleton strategies, with few participants best fit by Single-Cue strategies and even 

fewer best fit by optimal, Multi-Cue strategies. 

Substantial elaborations on the strategy analysis of Gluck and colleagues were 

made by Meeter, Myers, Shohamy, Hopkins, and Gluck (2006). Meeter and colleagues 

translated the analysis to one that could be guided by standardized principles of model 

selection and fit measures like Akaike's Information Criterion (Akaike, 1974), rather than 

the opaquer inference yielded by the least mean squared error measure. Model 

parameters representing participants' response rates to a predicted outcome were fixed 

at a proportion less than one, modeling the assumption that even at mature responding 

participants don't respond in perfect accordance with their strategy, and then simulated 

response data were used to guide parameter assignment in the model. With their refined 

modeling procedures, Meeter and colleagues tested a greater variety of plausible response 

strategies. A class of Intermediate strategies was considered, including strategies that 

integrate information across multiple cues so long as the cues provide converging 

evidence. Perhaps most importantly, Meeter and colleagues included a Random strategy 

that acted as a buffer against false alarms of strategy use when none was really present. 
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These strategy analyses are part of a larger movement in the psychological sciences 

towards categorical inferences about participant brains and behaviors. As previously 

discussed, Lee (2016) expanded upon an earlier analysis of Hilbig and Moshagen (2014) 

to make inferences about probable models for participant decision-making. In cognitive 

neuroscience, mode networks like the default mode network (Greicius et al., 2003) or, 

more recently, quasi-periodic patterns (Abbas et al., 2019), are similar conceits for 

describing consistent patterns among isolable observations. In each of these analyses, as 

in that of Meeter and colleagues, many correlated observations, be they consistent 

patterns of activation and inhibition of independent neural networks or consistently 

strategic responses made to specific sets of cue information, were synthesized using 

modern model selection tools to offer novel insights into the phenomena of interest. In 

each, the phenomena of interest were better understood by describing where they were 

consistent with an unobservable, common cause. Indeed, this exact manner of inference 

is precisely the one sought by the scientific method: which of the available candidate sets 

of predictions (e.g., models, hypotheses, theories) best predicts observed data?  

In weather prediction applications, these analyses reveal a characteristic pattern 

of responses made by neurotypical adult humans. Responses are initially unstructured 

and best fit by the Random strategy, as in the absence of any experience with the task any 

relationship between cues and outcomes cannot be known (there is no logical relationship 

between cues and outcomes to which a participant might reason). Random responses 

typically give way to Single-Cue or Singleton responses based on single elements of the 

available cue information. This trend mirrors inferences from absolute categorization 

tasks in which rule-based responding is dominant over other types of responding such 

that if an explicit rule is made available to participants, they will invariably use it (Church 
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et al., 2018, but see Duncan et al., 2018 for demonstration of a preference for multicue 

strategies over single-cue responding in an atypical weather prediction task). In many 

weather prediction designs, the majority of participants do not use more complex 

strategies than these rule-based, Take-the-Best strategies. These results are not 

surprising, with analogs in the human decision-making literature (Lee & Newell, 2011; 

Todd & Gigerenzer, 2000) and deterministic categorization literature across species 

(Smith et al., 2012). A minority of adult, neurotypical humans have sometimes used more 

optimal strategies that include Multi-Cue integration of the cue information at late stages 

of the task (Gluck et al., 2002; Kemény & Lukács, 2010; Meeter et al., 2006; Newell et al., 

2007). 

 

1.4 Cognitive Neuroscience of Weather Prediction 

Of greater theoretical significance are the inferences made about participant 

populations other than neurotypical adults. Theories of language impairment, like the 

procedural deficit hypothesis, posit that cognitive impairments to processing of 

probabilistic information are the root cause of diagnoses like specific language 

impairment or developmental dyslexia (Ullman & Pierpont, 2005; West et al., 2018). 

Theorists have tested such theories by comparing weather prediction performances of 

groups with and without these diagnoses. Finn and colleagues (2016) reported that 10-

year-old children made optimal responses in a weather prediction task at the same rate 

as adults, but did not report the results of a strategy analysis comparing the two 

populations. This result contrasts sharply with measures of declarative cognition of the 

two groups, with adults demonstrably superior in working memory and long-term 

memory measures. Gabay and colleagues (2015) reported that adults with developmental 
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dyslexia demonstrated impaired learning on weather prediction tasks relative to matched 

controls but were not significantly different from controls in their frequency of use of 

Single-cue, Singleton, or Multicue strategies. Kemény and Lukács (2010) compared 

language-impaired children (age M = 11.3 years, SD = 1.3), with age-matched typically-

developing children and adults. Language-impaired children performed at chance levels 

across increasing experience in the task, and 11 out of 13 participating language-impaired 

children were not well fit by any cue-based strategy. In contrast, both typically-developing 

children and adults performed at above-chance levels within the first 50 trials and 

adopted increasingly complex strategies over the course of testing.  

Use of weather prediction tasks across participant populations have also been 

important to the formulation and development of dual-process theories of learning and 

memory that posit dissociable memory systems that vary in, among other things, the 

degree to which the participant has conscious access to the inputs, outputs, and processes 

of the system (Ashby et al., 1998). Knowlton et al. (1994) innovated this application of 

weather prediction tasks in their exploration of the learning and memory abilities of eight 

amnesic patients (two Korsakoff's diagnoses, one bilateral medial thalamic infarction 

diagnosis, four with known or strongly evidenced hippocampal damage diagnoses, and 

one idiopathic case). The amnesic participants performed as well as matched, 

neurotypical control participants early in learning, but were markedly worse than controls 

later in learning. The authors argued that because early weather prediction responding is 

better accomplished without declarative memory (the probabilistic nature of the task 

means that relying on discrete memory of what happened in a previous trial may be 

misleading), amnesic participants' performance was not impaired. It was only later in 

learning, after many opportunities to cultivate declarative knowledge about the 
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probabilistic structure of the task, that control participants performed better than 

participants with amnesia.  

Knowlton et al. (1996) offered additional support to this argument. They presented 

a weather prediction task to 7 participants with medial-temporal lobe amnesia and 5 

participants with diencephalic amnesia, to 20 participants with Parkinson's disorder 

(damage to striatal regions and others), and to age-matched control participants. As an 

additional measure, they also asked participants verbally to report what they had learned 

from the task. As in Knowlton et al. (1994), participants with amnesia were as effective at 

the weather prediction task as controls during early task performance. However, these 

participants could not answer basic multiple-choice questions about their testing 

experience. In contrast, participants with Parkinson's disorder were not effective at the 

core weather prediction task, but they were as effective as controls in reporting basic facts 

about the testing session. This double-dissociation has been considered prime evidence 

for the existence of two separable neurocognitive systems: a conscious, explicit, 

declarative system underpinned by the hippocampus and mediotemporal regions (and 

expressed via frontal regions) and an unconscious, implicit, procedural system 

underpinned by the basal ganglia (and expressed via motor regions). 

Neuronal encoding of the probabilisitic information associated with visual cues in 

weather prediction tasks is thought to occur via the plasticity of synapses in the lateral 

intraparietal cortex (Soltani & Wang, 2010; Yang & Shadlen, 2007). This region is 

implicated in a variety of primate psychological processes, including memory for and 

attention to visual stimuli (Sereno & Maunsell, 1998) and reinforcement learning in the 

more probabilistic games of behavioral economics (Seo, Barraclough, & Lee, 2009). 

Unlike the structured deviations from normative probability theory that humans 
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frequently evidence in their behavior in the task, extracellular recordings of the synaptic 

activity of the lateral intraparietal cortex have been found to very faithfully represent the 

probability structure of a weather prediction task (Yang & Shadlen, 2007). The nature of 

this synaptic activity can even explain certain systematic biases that are typically 

exhibited in specific probabilistic decision-making contexts, like base rate neglect (Soltani 

& Wang, 2010). Given this relatively precise encoding of probabilistic information at the 

neuronal level, it is interesting that humans who complete weather prediction tasks are 

reliably highly variable in both their task behavior and in their explicit reports about their 

cognitive strategy use in the task.  

These data are from a small number of neurons, from a small number of 

nonhuman primates. As such, the generalizability of these neuronal readings is extremely 

restricted. These reports perhaps suggest that not only is the probability structure of the 

task identical across variably behaving animals, but also the encoding of this probability 

structure is equivalent across variably behaving animals. In that case the variability must 

arise somewhat further down the [neuro]cognitive stream, perhaps at one or both of the 

regions identified by the separable systems account. The more rule-like processes 

described by the separable systems account (and modeled by weather prediction strategy 

analyses) take on a special role in culling the variability in psychology of probabilistic 

inference that remains unexplained. 

 

1.5 Interim Summary of Weather Prediction Research 

Critically, the reviewed weather prediction studies (1) report behavioral 

dissociations that reveal differential engagement of multiple memory systems over the 

course of the task, and (2) demonstrate a marked link between the requirements of the 
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task and clinical language and memory deficits. Such a link would have substantial 

neurocognitive and clinical applications (Krishnan et al., 2016). However, other lines of 

research make such a conclusion more fraught. Newell, Lagnado, and Shanks (2007) 

presented multiple experiments that tested the predictions of dual-process theories in 

weather prediction tasks. If classic weather prediction performance is the product of 

implicit, procedural learning mechanisms, not explicit, declarative mechanisms, then the 

inclusion of a concurrent task that taps into more declarative mechanisms should not 

meaningfully disrupt weather prediction performance. Their Experiment 1 demonstrated 

that inclusion of a verbal Stroop-like concurrent task disrupted learning of the weather 

prediction task and changed the distribution of strategies used by participants. Dual-

process descriptions of weather prediction tasks also suggest that the task is completed 

by procedural learning mechanisms because reward feedback is administered to 

participant responses, and that more declarative mechanisms would be involved when 

reward feedback is not administered in this way. Newell and colleagues' Experiment 2 

tested groups of participants on weather prediction tasks either in which feedback was 

administered after responses or in which participants passively viewed cues and their 

associations to outcomes and reported that participant performance and strategy use did 

not significantly differ between groups. Taken together, the invariability of classic 

weather prediction tasks to changes in feedback contingencies and primary reinforcers 

suggests no special role for uniquely procedural learning mechanisms in the task. In 

contrast, declarative insight into what was learned in the task was strong throughout. No 

manipulation in either experiment affected the accuracy of participants' verbal 

estimations of the relationships between cues and outcomes. 
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Classic conceptions of weather prediction are also critiqued on grounds of 

philosophy of science (e.g., Keren & Schul, 2009). Newell, Dunn, and Kalish (2011) argued 

that the dual-systems conception of weather prediction performance is presented in such 

a way that it cannot be readily falsified. That the performance of amnesic participants is 

equivalent to that of control participants early in learning but not as good late in learning 

is regarded as key evidence for both the mostly-procedural nature of weather prediction 

tasks and the existence of dissociable memory systems (Knowlton et al., 1994). However, 

precise behavioral indicators for when a participant might be using procedural versus 

declarative mechanisms to complete the weather prediction task are conspicuously 

absent. Instead, the structure of the argument from dual-systems theorists seems to be 

one that fallaciously affirms the consequent: a theory that permits fluid switching 

between procedural and declarative systems could accommodate the behavioral data 

from amnesic and control participants, so the theory is supported. In such a case the fluid 

switching offers its own inferential minefield, since the dual-systems are malleable 

enough to accommodate nearly any behavioral data (Newell et al., 2011; Palmeri & 

Flanery, 1999). Ashby and Maddox (2005) offered the more moderate criticism of classic 

weather prediction designs in which what they call "explicit memorization" might be so 

dominant a response strategy that much of the nuance of weather prediction tasks and 

their analyses is ultimately wasted, and the centrality of weather prediction to dual-

process theory-crafting is overstated. 

An alternative conception of weather prediction tasks and data (implied by the 

earlier claim of affirming the consequent) is a family of theories and analyses that have 

described weather prediction learning as happening gradually (Speekenbrink et al., 

2008). In these conceptions, any observed differences in weather prediction 



21 

performances by different participant populations are described as the product of 

differences in learning rates, not discrete, rule-like shifts. In a way that makes explicit the 

distinction between processes of categorization and decision-making response behavior 

outlined at the outset of this manuscript, Speekenbrink et al. (2008) utilized an analysis 

strategy that divorces modeling of learning from modeling of responding (Cooksey, 1996). 

This lens model yielded similar inferences to those of previous weather prediction 

analyses; that is, that amnesic participants are very nearly as good as controls at the task, 

they learn much about specifics of the task, and suffer an episodic memory deficit about 

other aspects of the experiment. Their analyses differ in that they describe nuances of 

participant performance via quantitative differences in learning rate between the groups 

rather than the types of modular, systematic, qualitative differences described by dual-

process theorists. 

Notably, at least in the case of weather prediction tasks, there is not disagreement 

about whether the competing models fit to data (they do). Indeed, the opposed theorists 

and their opposed models make largely the same predictions about each dataset (Meeter 

et al., 2008). As in other realms of cognitive psychology in which complementary models 

are wielded by theoretically opposed parties, relatively semantic explanatory virtues are 

leveraged against one another in relatively subjective ways (Barsalou, 1992; Fidler, 2018; 

Smith et al., 2016; Wills & Pothos, 2012). A strategy analysis perspective assumes discrete 

shifts in behavior and describes them using language that implies dual influences of 

procedural learning and cognitive control (i.e., participants [choose to] adopt one 

[cognitive] strategy or another to complete the task). The lens model perspective assumes 

gradual updating of learned associations between cues and outcomes, and gradual 
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updating of the utilization of those learned associations. Each approach has its merits, but 

a strategy analysis perspective boasts the following explanatory virtues (Fidler, 2018):  

• Analogy between the inferences of strategy analyses and those of other disciplines 

are many, and were reviewed above (e.g., comparable models from the judgment 

and decision-making psychological literatures, neuroscience mode networks, etc.).  

• The assumptions of strategy analyses are testable in a more robust manner - 

strategies posit specific behaviors to specific sets of cues and test whether 

responses conform to that specification at an arbitrarily frequent rate (e.g., 

thousands of times in Whitham & Washburn, 2020).  

• Ultimately a strategy analysis perspective is more intellectually fruitful. The 

perspective yields a dissertation of theoretically interesting confirmatory and 

exploratory hypotheses that can enrich our understanding of an important set of 

cognitions, whether or not the strategy analysis perspective itself withstands the 

tests of time.  

[For reasons of aesthetic sensibility, the remainder of this manuscript will use 

strategy use to connote response strategy use inferred by strategy analysis. I will imply 

discrete shifts from one strategy to another, pursuant to published research that makes a 

well-evidenced case that weather predictions tasks are better understood as mostly 

declarative and rule-based in nature (Newell et al., 2007). Note that despite this choice, 

these conclusions are analytically-derived inferences about discrete behaviors (not the 

direct observation of mind the concise language may imply), and but one among many 

interesting ways of exploring mind and behavior via weather prediction tasks.] 

Divorced from any role as standard-bearer in dual-process theorizing, weather 

prediction tasks are in many ways an ideal model of human and animal cognition and 
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behavior in response to complex, probabilistic information. Unlike nearly every 

experimental task of probabilistic decision-making research programs, the task need not 

be a verbal problem in which each word is subject to etymological scrutiny (Hertwig & 

Gigerenzer, 1999) and changing just a few words changes the nature of the problem 

(Dulany & Hilton, 1991). Instead, probabilistic information can be disseminated across 

experience in a way more akin to how natural frequencies are sampled by many species 

(Gallistel & Gibbon, 2000). Indeed, how this probabilistic information is disseminated is 

in many ways as flexible as the experimenter is: cues need not be restricted to one 

modality or another, the number of cues can be as high or as low as needed (e.g., Soltani 

& Wang, 2010; Yang & Shadlen, 2007), cue information can be weighted continuously, 

and so forth. Common analyses of weather prediction, too, facilitate flexible matching of 

statistics to experimental design. So long as a stable probability structure for the task can 

be crafted, and theoretically interesting hypotheses for how individuals solve the task can 

be specified, weather prediction tasks represent a well of potential for the experimental 

study of probabilistic cognition in humans and animals. 
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2 CORRELATIONAL, EXPERIMENTAL, AND COMPARATIVE 

PSYCHOLOGY OF WEATHER PREDICTION 

 Previous research programs have provided rich descriptions of different individual 

humans' brains and behaviors in a weather prediction task. What these studies cannot 

answer is the degree to which the strategy use is a trait of an individual that is stable across 

time, context, task manipulation, or other intraindividual factors. In the language of 

Cronbach (1957), much research has been done on the correlational psychology of 

weather prediction tasks and relatively little on their experimental psychology (Conway 

& Kovacs, 2013). Indeed, many designs are fundamentally correlational - how do different 

people with different neuronal structures, or different ages, or different diagnoses, solve 

the weather prediction task (see Table 2.1) - with titles that follow a discrete Mad Lib 

format: "How does [population] solve the weather prediction task" (Gluck et al., 2002; 

Meeter, et al., 2008; Whitham & Washburn, 2020).  

 The strategy analysis perspective often adopted by weather prediction researchers 

offers promise for an experimental psychology component in the form of the longitudinal 

tracking of participant strategy use. Whereas comparisons of the strategy-use trajectories 

of different participants, from different participant populations, is fundamentally a 

correlational psychology pursuit, that a trajectory of individual inferences - that is, a set 

of inferences made about cognition as it is manifest across experience - was charted in the 

first place is a nontrivial step toward understanding the intraindividual factors that guide 

probabilistic categorization. 

 Comparative psychology has much to offer to the study of outstanding questions 

about probabilistic cognition. Many of the characteristic behaviors that humans evidence 

in probabilistic decision-making tasks are present in animal species as well (Blanchard et 
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al., 2014; Klein et al., 2013; Mazur & Kahlbaugh, 2012; Watzek et al., 2018). Most species 

have not been demonstrated to monitor their own uncertainty, and are likely to engage 

processes of categorization and decision-making without actually evaluating the amount 

of uncertainty in their environment. That these species solve probabilistic categorization 

and decision-making tasks is tautology – they make decisions in their native 

environments, and their native environments are rife with probabilistic cues. But despite 

some animals’ demonstration of flexible, strategic leveraging of rule-based responses in 

other categorization tasks, they have rarely been previously studied in such terms (Smith 

et al., 2012). Furthermore, comparative psychology can offer a greater wealth of data from 

individuals within and across task manipulations, great potential for correlation of 

strategic behavior to other cognitive measures, and a window into the evolutionary 

trajectory of this fundamental cognitive competency. 

 Whitham and Washburn (2020) explored what patterns of responses nonhuman 

primates would spontaneously use to solve a classic weather prediction task. These 

monkeys were not constrained to ~200 trials of the task in an hour or less, like most 

weather prediction designs with humans, and therefore had their strategy use assessed at 

unprecedented levels of experience in the task. The authors adapted the weather 

prediction task of Gluck and colleagues (2002) for use with a computerized test system 

for nonhuman primates (the Language Research Center - Computerized Test System; 

Evans et al., 2008; Richardson et al., 1990). Cue information was disseminated via clipart 

images on a nearby computer screen, instead of via manipulable tarot card cues. Monkeys 

used a joystick apparatus to make a response towards one of two additional clipart images 

that acted as the binary response options ‘Sunny’ and ‘Rainy’. The authors maintained all 

probability and relative frequency information from Gluck, Shohamy, and Myers, with 
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the key difference that the overall exposure to the task was far greater (with many 

monkeys completing thousands of trials). 

 These monkeys followed a distinctly different trajectory of strategy use in 

probabilistic categorization tasks than do typical adult human participant populations 

(Whitham & Washburn, 2020). Whereas humans often transition smoothly from using 

responses that are not strategic to responses that depend on only a single item of cue 

information to (in some cases) responses that flexibly integrate multiple sources of cue 

information, many monkeys used no cue information at all in favor of other vaguely 

strategic responding (e.g., use of only one response per session). Many other monkeys 

were eventually best fit by a Single-Cue strategy that depended on the presence or absence 

of the same, single, highly-predictive cue, with some monkeys shifting to this strategy only 

after many hundreds of trials. No monkeys were consistently best fit by Singleton 

strategies (that respond optimally to any trial that has only one cue onscreen) or to 

strategies requiring integration of probabilistic information yielded by multiple cues. 

Most divergent from studies with healthy human adults, the monkeys adopted a strategy 

very quickly and adhered to it with incredible fidelity. No monkey smoothly transitioned 

from less sophisticated strategy use to more sophisticated strategy use (beyond the initial 

transition away from random responding). In this sense the monkeys’ strategy use was 

more like that of language-impaired children than typically-developing adults (although 

whether this apparent similarity is due to task motivation, cognitive similarities, both, or 

neither is an outstanding question; Kemény & Lukács, 2010),  

 Whitham and Washburn (2020) were the first to apply the strategy analyses of 

Meeter et al. (2006) to weather prediction task performance of animals. However, using 

relative probabilities of participant responses to specifically structured stimuli to yield 
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unique information about how participants learn and utilize the information with which 

they are presented is a classic technique in cognitive psychology. Indeed, weather 

prediction designs and analyses have much in common with identification and 

[deterministic] categorization designs that have played a crucial role in cognitive 

psychology's understanding of object identification and categorization processes (with 

weather prediction tasks taxonomized as "probabilistic categorization" here and 

elsewhere). These literatures even share the useful metaphor of stimulus representations 

and response probabilities as distributed in geometric (typically 2-dimensional, 

Euclidean) space (e.g., Ashby & Maddox, 2005). In each case, structure in the 

experimentally observed behaviors of an individual is used to reveal how an individual 

psychologically clustered the information they learned from the presented stimuli. 

 For example, multidimensional scaling has proven an exceptionally powerful tool 

for identifying these clusters and how they are distributed in different kinds of stimuli 

and by different individuals or groups. Shepard (1957, 1958) inaugurated the study of how 

minds represent physically different stimuli as conceptually so by innovating 

multidimensional scaling analyses for the metaphorical mapping of psychology to 

geometric space. This core conceit, initially relatively exploratory in scope, is among the 

most influential confluences of mathematics and psychology (Jaworska & Chupetlovska-

Anastasova, 2009). Multidimensional scaling underpins many influential models of 

human [deterministic] categorization (Nosofsky, 1992; Smith & Minda, 1998), and has 

been extended to considerations of decision-making utility and evolutionary optimality 

(Herbranson et al., 1999). In this way it can inform our understanding of the cognitive 

evolution of human and animal minds by quantifying the degree of similarity with which 

psychologically relevant clusters are distributed across taxa (Smith et al., 2012). 
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 Furthermore, the challenge faced by Whitham and Washburn (2020) of using 

nonverbal, behavioral measures to describe how animals complete tasks is endemic to 

comparative psychology and vital to its progress as a discipline. Rumbaugh (1971) 

described the ways in which the distribution of cognitive-behavioral data from disparate 

primate taxa were poorly accounted for by associative principles alone, and how 

percentage differences in percent correct in a simple learning task were better understood 

as the product of qualitatively different cognitive processes rather than of differences in 

parameters of associative value like learning rate. Cook, Brown, and Riley (1985) 

demonstrated differential leveraging of retrospective and prospective memory processes 

by rats as they completed radial arm mazes with interspersed interruptions. More 

generally, many of the scholars in comparative psychology’s long tradition of maze-

running designs have registered dissatisfaction with the limitations of using response 

latency or maze errors alone to describe the complex cognition evidenced by an animal in 

a maze, and sought alternative measures to offer a more complete account of how the 

animal completed the task (Fragaszy et al., 2003; Washburn, 1992). In these examples 

and many others, a premium is placed on accounts that appreciate psychology as a science 

of process-based accounts for psychological data and not ‘merely’ the rate at which 

animals can earn rewards in different kinds of tasks (Dutilh et al., 2019). 

 This dissertation will borrow liberally from these traditions in order to describe 

more fully the conditions in which rhesus macaques and capuchin monkeys adopt more 

optimal use of the provided probabilistic cues. This will allow us to better understand the 

processes that underpin a complex, ecologically-valid cognitive-behavioral task. These 

species have been previously used as an appropriate model for many high-level cognitive-

behavioral phenomena of interest, including analogical reasoning (Basile et al., 2015; 
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Flemming et al., 2011), self-control (Beran et al., 2016; Evans et al., 2014), artificial 

grammar abstraction (Wilson et al., 2013; Wilson et al., 2015), and many others. Each of 

these species contributes uniquely to this dissertation beyond their ability to complete 

many thousands of trials. Both species are hardy, long-lived, omnivorous primates with 

relatively large brains and highly complex social dynamics, with each of these features 

among the strongest predictors of sophisticated cognition in animals (Deaner et al., 2007; 

Dunbar & Schultz, 2007; Fragaszy et al., 2004; Lindburg, 1971). Comparison of Old World 

(i.e., macaque) and New World (i.e., capuchin) monkey species that diverged some 40 

million years ago may enrich our understanding of the evolution of the cognitive 

competencies that facilitate probabilistic cognition. Critically, the two species seem to 

vary in the degree to which they mobilize what would be called the more explicit, 

declarative aspects of cognition in dual-process typology. Hampton, Engelberg, and 

Brady (2020) reviewed a wealth of cognitive-behavioral data from rhesus macaques to 

conclude that these animals indeed have explicit dimensions to their cognition that are 

inconsistently engaged by experimental tasks, especially a restricted subset of memory, 

selective attention, and metacognition paradigms. Capuchin monkeys are often found to 

engage less successfully with this same set of memory, selective attention, and 

metacognition tasks (Basile et al., 2009; Beran et al., 2014; Beran et al., 2015; Beran & 

Smith, 2011). Newell, Lagnado, and Shanks (2007, reviewed above) convincingly 

demonstrated that, in humans, weather prediction tasks are principally rule-based and 

explicit. The apparent distinction between explicit cognition utilization of the two species, 

along with the greater trial experience the monkeys will receive, thus affords a unique 

description of the trajectory of rule-based responding as it evolves across low versus high 

levels of task experience for species with relatively lower and relatively higher degrees of 
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explicit cognition. These pre-existing group differences set up interesting comparisons 

which are complementary to more focal hypotheses about the underpinnings of 

probabilistic cognition. 

 By better understanding the network of individual predictors and task conditions 

associated with different patterns of performance on the weather prediction task, we may 

better understand the processes involved in the real-life situation for which the weather 

prediction task is a sincere model. By understanding predictors of more optimal 

responding specifically, we may more fully understand how to elicit more sophisticated 

response patterns to the situations modeled by weather prediction tasks. Finally, the 

inferences about probabilistic categorization gleaned by the exceedingly large trial counts 

and statistical precision afforded by comparative psychology may be applied to renewed 

explorations of how optimal responding may be encouraged in humans. In particular, it 

is unclear what has limited the ability of humans and other animals to make decisions 

that make use of more of the available cue evidence in previous weather prediction tasks. 

One possibility is that the 30 to 60 minute experimental sessions that human participants 

complete in typical weather prediction designs yields too few exposures to the embedded 

probabilistic relationships of the task, and that this restricts the range and complexity of 

strategy use. Although studies that offer humans more comprehensive experience with 

the task have not been published, the comparative data of Whitham and Washburn 

(2020) demonstrated very little continued elaboration of strategy use after initial strategy 

adoption. For monkeys, at least, the more fundamental determinant of behavior must be 

more cognitive, perceptual, motivational, or procedural. A comprehensive evaluation of 

the evidence for each of these possibilities may guide both the basic science of 

probabilistic cognition and application of this science wherever inferences are made. 
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2.1 Experiment 1 

Experiment 1 was designed as a set of conceptual replications of Whitham and 

Washburn (2020) to explore the extent to which strategy use by an animal was consistent 

across mechanically identical weather prediction tasks. Rhesus macaques (Macaca 

mulatta) and capuchin monkeys (Cebus [Sapajus] apella) completed five iterations of a 

computerized adaptation of the cognitive-behavioral weather prediction task of Gluck, 

Shohamy, and Myers (2002), with each iteration using a different set of onscreen stimuli 

for each cue and response. If cognitive strategy use during probabilistic categorization 

was indeed a reliable trait of an individual, strategy analysis should reveal a similar set of 

strategies for the same animal across each iteration of the task. If responses were 

qualitatively changed by the practice that five iterations of the design might afford, 

disproportionately guided by early experience in the task, or demonstrably unstructured 

across the animals' experience with the task, strategy analysis should reveal no such 

consistency. 

 

H0: The null hypothesis for each of the succeeding experiments suggests that strategy 

use is the product of random sampling from a population-level distribution of strategies 

and their frequencies, and that the strategy adopted in each new task by each monkey 

is a random draw from that distribution. 

 

Hypothesis I: Strategy use during probabilistic categorization is a stable trait of an 

individual animal, and the same strategies used by an animal in one weather prediction 

task will be those used in another task. 
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2.2 Experiment 2 

In contrast, Experiment 2 was a set of directly theory-motivated attempts to upset 

any consistent strategy use observed in Experiment 1 and to encourage use of multicue 

strategies. Experiments 2a, 2b, and 2c assessed the degree to which strategy use by the 

animals was dictated by parameters of rote associative evaluation like reward rate. 

Optimal foraging theory, monkeys' behavior in other cognitive-behavioral computer 

games, and motivational/associative theory converge to predict that when additional 

cognitive or motoric effort is required to acquire primary reinforcement, organisms are 

likely to adjust their behavior to meet that challenge (in a way consistent with their species 

and individual powers; Blanchard & Hayden, 2015; Kangas et al., 2016; Ross & 

Winterhalder, 2015; Washburn & Rumbaugh, 1992). In probabilistic decision-making 

designs with humans, the nature of strategy use has been demonstrated to change with 

endogenous motivation (Giner-Sorolila & Chaiken, 1997). As the reward rate for chance 

performance is made less and less lucrative, any animals that had not previously 

demonstrated above-chance performance on the weather prediction task should adopt a 

strategy that will yield a success rate that maintains the animal at the individual reward 

rate it expects of its tasks. It is possible that some animals may use more complex, 

multicue strategies to maximize a decremented reward rate, but this is unlikely in weather 

prediction designs in which single-cue and multicue strategies are nearly equivalently 

successful. 

 

Hypothesis II: Behavior in weather prediction tasks is guided by factors other than an 

individual's preferred strategy, and titration of overall reward rate in the task will alter 
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strategy use accordingly. Specifically, the animals that used Random or Side-Bias 

strategies in Experiment 1 will use cue information to guide responding in Experiments 

2a, 2b, and 2c. 

 

Experiments 2d and 2e similarly probed the degree to which another relationship 

of fundamentally associative value – that of the reward frequency of responses in the 

presence of the different cues – guided strategy use. Nearly every previous weather 

prediction design has used the table of cue validities and probabilities introduced by 

Experiment 2 of Gluck, Shohamy, and Myers (2002) (e.g., Meeter et al., 2006; Newell et 

al., 2007; Shohamy et al., 2008). Although this makes the differential psychology of 

weather prediction easier (see Table 2.1) by facilitating comparisons across groups on the 

same task, other probability tables may be crafted that might yield different strategy use 

trajectories. As the amount of information yielded by each cue becomes more similar, 

multicue strategies (especially those that optimize according cue information) may 

become relatively more attractive whereas single-cue strategies become relatively less so. 

As above, we would expect the animals' behavior in the task to change accordingly. 

 

Hypothesis III: Behavior in weather prediction tasks is guided by factors other than an 

individual's preferred strategy, and a set of more egalitarian cue probabilities will beget 

greater multicue responding in the animals that readily use strategies. Animals that do 

not readily use strategies will revert to Random or Side-biased strategies. 
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2.3 Experiment 3 

 In Experiment 2, each manipulation of psychological significance was titrated 

exactly by the experimenter to test theory-motivated hypotheses. In contrast, the 

manipulations included in Experiment 3 were exploratory and designed to probe 

theoretically interesting questions about the nature of probabilistic categorization in 

animals. Note that throughout Experiment 3, manipulation checks of whether monkeys 

perceived the stimuli in the intended manner were not readily available.  

 Monkeys process complex visual stimuli locally, via their more minute features, 

rather than globally via the whole stimulus array in its entirety (Hopkins & Washburn, 

2002; Spinozzi et al., 2003). In the task of Whitham and Washburn (2020), the cue 

information was distributed across the computer screen such that animals might 

reasonably have only processed one cue or region of the screen each trial. To test whether 

animals might more optimally integrate cue information when local processing of this 

kind is discouraged, Experiment 3a explored strategy use by monkeys to a weather 

prediction task in which the cue information was presented in such a way that this local 

processing bias could be minimized. In Experiment 3a, simple cue images appeared in 

close spatial proximity. Another way to manipulate local processing biases of the monkeys 

may be to present the cue information in a context in which monkeys have been 

demonstrated to process information more globally, like illusory motion or faces (Leopold 

& Rhodes, 2010; Taubert et al., 2017). Experiment 3b oriented the probabilistic cue 

information as a face that the animals might be more likely to process holistically.  
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Hypothesis IV: Utilization of cues is, in part, a perceptual process, and design 

considerations that have been demonstrated to engender multicue perception will 

engender multicue strategy use. 

 

 Similarly, many cognitive processes are seemingly deployed differently in social 

contexts than they are in nonsocial contexts (Jack et al., 2013). Moreover, weather 

prediction tasks can be understood to mimic problems presented in many social decision-

making situations. For example, a socially subordinate monkey assessing whether or not 

an attempt to exploit food resources would be punished by dominant conspecifics would 

do well to assess probabilistic information yielded by the number and identities of nearby 

conspecifics, the direction of conspecifics' gazes, the severity of recent aggression events, 

and so forth. Although a computerized task struggles to model such a context exactly, an 

exploration of whether strategy use is sharper (or duller) when cues resemble highly 

salient, socially interesting information is a natural extension of the present research. 

Experiments 3c and 3d provided animals with weather prediction tasks in which the 

predictive cues were photographs of conspecific faces and bodies, respectively.  

 

Hypothesis V: Utilization of cues is, in part, a perceptual process, and cues that are 

qualitatively different than those of other experiments (socially interesting rather than 

asocial; discrete rather than abstract; inherently salient rather than sterilely 

controlled) should engender qualitatively different strategy use. 
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2.4 Experiment 4 

 Because many monkeys did not use cue information in Experiments 1, 2, or 3, the 

reward rate manipulations of Experiments 2a, 2b, and 2c were extended even further. The 

hypotheses and rationale for this manipulation were unchanged from Experiment 2. 
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Table 2.1 Correlational Psychology of Weather Prediction 
 

Diagnosis Citation Clinical N Performance deficit? 

Alzheimer's 
disorder 

Eldridge, Masterman, & 
Knowlton, 2002 

8 No performance deficit, declarative knowledge of task 
environment impaired. 

Anterograde 
amnesia 

Knowlton, Squire, & Gluck, 
1994 

8 Performance deficit appears only late in testing, declarative 
knowledge of task environment impaired. 

Knowlton, Squire, & Mangels, 
1996 

12 Performance deficit appears only late in testing, declarative 
knowledge of task environment impaired. 

Speekenbrink, Channon, & 
Shanks, 2008 

9 No performance deficit, declarative knowledge of task 
environment intact. 

Meeter et al., 2006 7 Deficit to ability to utilize and elaborate response strategy. 

Developmental 
dyslexia 

Gabay, Vakil, Schiff, & Holt, 
2015 

15 Performance deficits throughout testing on weather prediction 
tasks both with and without trial-by-trial feedback. 

Parkinson's 
disorder 

Knowlton, Squire, & Mangels, 
1996 

20 Performance deficits throughout testing, declarative knowledge 
of task environment intact. 

Moody, Bookheimer, Vanek, 
& Knowlton, 2004 

8 No performance deficit, declarative knowledge of task 
environment intact. 

Specific 
language 
impairment 

Kemény & Lukács, 2010 16 Performance deficits throughout testing. 
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3 METHODS 

3.1 Participants 

Seven rhesus macaques (Macaca mulatta) and twenty capuchin monkeys (Cebus 

[Sapajus] apella) housed at the Language Research Center of Georgia State University 

took part in the series of experiments. Due to time and testing constraints, and differences 

in monkeys’ enthusiasm for the task, every animal did not complete every experiment 

(specific participant numbers will be reported in the Results chapter). Each animal had 

an extensive history participating in computerized cognitive-behavioral research on tasks 

that probed the cognitive and comparative psychology of phenomena as diverse as 

perception of visual illusions (e.g., Parrish et al., 2015), self control (e.g., Evans et al., 

2014), metacognition (e.g., Smith et al., 2010), and behavioral economics (Parrish et al., 

2014). Many of these animals (~41%) also participated in the weather prediction task of 

Whitham and Washburn (2020). 

Capuchin monkeys were housed in small social groups of 2 to 9 animals in large 

indoor enclosures with attached outdoor enclosures. Each morning, animals were given 

the opportunity to voluntarily separate from their main enclosure and social group into a 

smaller, testing enclosure. Any animal that voluntarily separated was given access to a 

testing apparatus for four to six hours before being returned to their main enclosure and 

social group. Rhesus macaques were single-housed in indoor enclosures with daily access 

to an outdoor play area. Testing apparatus was available to each animal 23-24 hours per 

day, six days per week. Animals with a socially-compatible conspecific often spent one 

hour each day in their outside play area with that conspecific and without access to testing 

apparatus.  



39 

Animals were not food- or water-deprived at any time for testing purposes, and 

elected to participate in the task or pursue other activities at their individual discretion. 

All animals were maintained on a nutritionally-complete diet of nuts, fruits, vegetables, 

and commercial primate food independently of their participation in any research 

activities. All research protocols were approved by an Institutional Animal Care and Use 

Committee. 

 

3.2 Apparatus and General Procedure 

Animals were tested using an adapted version of the Language Research Center - 

Computerized Test System (Evans et al., 2008; Richardson et al., 1990). Computer-

generated stimuli were presented to the animal on a computer monitor positioned just 

outside the animal's testing enclosure. Animals responded to these stimuli using a joystick 

mounted inside their testing enclosure (capuchin monkeys) or within an arm's reach 

outside of their enclosure (rhesus macaques). Each correct joystick response to onscreen 

stimuli was rewarded with a 45 mg banana-flavored primate pellet and an ascending tone 

played from a speaker adjacent to the computer monitor. Each incorrect response caused 

a buzzing tone to be played from the same speaker, and no food reward to be dispensed. 

For each new manipulation in each experiment, new images for cues and outcomes were 

used and new spatial locations for cues and outcomes were assigned. 
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3.3 Experimental Procedures 

3.3.1 Experiment 1 Procedures 

Monkeys completed a computerized version of the classic weather prediction task 

of Gluck and colleagues (2002). On each trial, one, two, or three of four total cues 

simultaneously appeared onscreen as computer-generated visual images. The animal 

responded to these cues via a joystick deflection to one of two responses (R or S), also 

denoted onscreen as computer-generated images (Figure 3.1). 

Critically, the cues combined to offer incomplete, probabilistic evidence about 

which of the two responses would be rewarded (see Table 3.1). These probabilities were 

structured such that each cue appeared equally often in each 200 trial block and each 

response was rewarded equally often. Cues 1, 2, 3, and 4 were associated with Response 

R being rewarded at validities .2, .4, .6, and .8, respectively. 

A 1-second intertrial interval elapsed after correct responses, and a 4-second 

intertrial interval elapsed after incorrect responses. After each 1,000 completed trials, the 

images associated with cues and outcomes were replaced with new images, and the spatial 

orientations of the cues were reassigned (i.e., if the leftmost cue was cue 3 for the first 

1,000 trials, it might cease to be so in subsequent experiments). Experiment 1 concluded 

after 5,000 trials and five sets of images for cues and outcomes. 

 

3.3.2 Experiment 2 Procedures 

3.3.2.1 Experiment 2abc Procedures. 

Monkeys completed 1,000 trials of the design described in Experiment 1 for each of three 

new sets of response contingencies. In Experiment 2a, 4 seconds elapsed after correct 
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responses and 6 seconds elapsed after incorrect responses. In Experiment 2b, 5 seconds 

elapsed after correct responses and 8 seconds elapsed after incorrect responses. In 

Experiment 2c, 6 seconds elapsed after correct responses and 10 seconds elapsed after 

incorrect responses. These manipulations changed the overall reward rate of the task, in 

attempts to change the strategy use of the animals accordingly. 

 

3.3.2.2 Experiment 2d Procedures. 

Monkeys completed 1,000 trials of the design described in Experiment 1 with a 

modified probability table (Table 3.2). Cues 1, 2, 3, and 4 were associated with Response 

R at validities .28, .41, .59, and .72, respectively. This manipulation changed the relative 

information yielded by each cue, in an attempt to change the strategy use of the animals 

accordingly. 

 

3.3.2.3 Experiment 2e Procedures. 

Monkeys completed 1,000 trials of the design described in Experiment 1 with a 

modified probability table (Table 3.3). Cues 1, 2, 3, and 4 were associated with Response 

R at validities .33, .45, .55, and .67, respectively. 

 

3.3.3 Experiment 3 Procedures 

3.3.3.1 Experiment 3a Procedures. 

Monkeys completed 1,000 trials of the design described in Experiment 1 but with 

cues oriented such that they are spatially contiguous (Figure 3.2).  
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3.3.3.2 Experiment 3b Procedures. 

Monkeys completed 1,000 trials of the design described in Experiment 1 but with 

cues that were oriented as features on the face of a computerized version of a popular 

vegetable face man toy (Figure 3.3). Other weather prediction designs have used these 

toys as stimuli with human participants (e.g., Meeter et al., 2006; Shohamy et al., 2008). 

 

3.3.3.3 Experiment 3c Procedures. 

Monkeys completed 1,000 trials of the design described in Experiment 1 but public 

domain photographs of conspecific faces as cues. The animals depicted in the 

photographs were not familiar to any of the tested animals. 

 

3.3.3.4  Experiment 3d Procedures. 

 Monkeys completed 1,000 trials of the design described in Experiment 1 but with 

public domain photographs of conspecific bodies as cues. The animals depicted in the 

photographs were not familiar to any of the tested animals. 

 

3.3.4 Experiment 4 Procedures 

Monkeys completed 1,000 trials of the design described in Experiment 1 for each 

of four new sets of response contingencies. In Experiment 4a, 2 seconds elapsed after 

correct responses and 6 seconds elapsed after incorrect responses. In Experiment 4b, 3 

seconds elapsed after correct responses and 8 seconds elapsed after incorrect responses. 

In Experiment 4c, 4 seconds elapsed after correct responses and 10 seconds elapsed after 
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incorrect responses. In Experiment 4d, 4 seconds elapsed after correct responses and 14 

seconds elapsed after incorrect responses. 

 

3.3.5 Methods Summary 

The proposed sequence of experiments promised greater depth of experimental 

exploration (via the wealth of data comparative psychology can offer) and greater breadth 

of experimental manipulation (via the diversity of intraindividual designs that 

experimental psychology can offer) than any previous experimentation with the uniquely 

ecologically valid weather prediction task (see Table 3.4). How individuals independently 

come to conclude that available evidence is relatively strong or weak and how it may be 

associated with the true state of the universe is a fundamental, pressing issue for cognitive 

psychology.
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Table 3.1 Probability Structure of Experiment 1 
 

Cue 
Pattern 

Cue 1 
Present? 

Cue 2 
Present? 

Cue 3 
Present? 

Cue 4 
Present? 

Times Response 
R Rewarded 

Times Response 
S Rewarded 

Pattern 
appearances per 

200 trials 

A 0 0 0 1 17 2 19 

B 0 0 1 0 7 2 9 

C 0 0 1 1 24 2 26 

D 0 1 0 0 2 7 9 

E 0 1 0 1 10 2 12 

F 0 1 1 0 3 3 6 

G 0 1 1 1 17 2 19 

H 1 0 0 0 2 17 19 

I 1 0 0 1 3 3 6 

J 1 0 1 0 2 10 12 

K 1 0 1 1 5 4 9 

L 1 1 0 0 2 24 26 

M 1 1 0 1 4 5 9 

N 1 1 1 0 2 17 19 
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Table 3.2 Probability Structure of Experiment 2d 
 

Cue 
Pattern 

Cue 1 
Present? 

Cue 2 
Present? 

Cue 3 
Present? 

Cue 4 
Present? 

Times Response 
R Rewarded 

Times Response 
S Rewarded 

Pattern 
appearances per 

200 trials 

A 0 0 0 1 16 3 19 

B 0 0 1 0 6 3 9 

C 0 0 1 1 21 5 26 

D 0 1 0 0 3 6 9 

E 0 1 0 1 7 5 12 

F 0 1 1 0 3 3 6 

G 0 1 1 1 16 3 19 

H 1 0 0 0 3 16 19 

I 1 0 0 1 3 3 6 

J 1 0 1 0 5 7 12 

K 1 0 1 1 5 4 9 

L 1 1 0 0 5 21 26 

M 1 1 0 1 4 5 9 

N 1 1 1 0 3 16 19 
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Table 3.3 Probability Structure of Experiment 2e 
 

Cue 
Pattern 

Cue 1 
Present? 

Cue 2 
Present? 

Cue 3 
Present? 

Cue 4 
Present? 

Times Response 
R Rewarded 

Times Response 
S Rewarded 

Pattern 
appearances per 

200 trials 

A 0 0 0 1 14 5 19  

B 0 0 1 0 5 4 9  

C 0 0 1 1 19 7 26  

D 0 1 0 0 4 5 9  

E 0 1 0 1 8 4 12  

F 0 1 1 0 3 3 6  

G 0 1 1 1 14 5 19  

H 1 0 0 0 5 14 19  

I 1 0 0 1 3 3 6  

J 1 0 1 0 4 8 12  

K 1 0 1 1 5 4 9  

L 1 1 0 0 7 19 26  

M 1 1 0 1 4 5 9  

N 1 1 1 0 5 14 19  
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Table 3.4 Experimental Psychology of Weather Prediction 
 

Confirmatory / 
Exploratory Experiment Manipulation Hypothesis 

Confirmatory Experiment 1abcde Within-experiment 
replication, practice 
with task 

Hypothesis I: Strategy use during probabilistic categorization is a trait of 
an individual animal, and the same strategies used by an animal in one 
weather prediction task will be those used in another task. 

Experiment 2abc, 
4abcd 

Reward rate for 
chance responding 
decremented 

Hypothesis II: Behavior in weather prediction tasks is guided by factors 
other than an individual's preferred strategy, and titration of overall 
reward rate in the task will titrate strategy use accordingly. Specifically, 
the animals that use Random or Side-Bias strategies in Experiment 1 will 
use cue information to guide responding in Experiments 2a, 2b, and 2c. 

Experiment 2de Cue validities 
decremented 

Hypothesis III: Behavior in weather prediction tasks is guided by factors 
other than an individual's preferred strategy, and a set of task 
probabilities that demands multicue responding to maintain high reward 
rates will beget such responding in the animals that readily use strategies. 
Animals that do not readily use strategies will revert to Random or Side-
biased strategies. 

Exploratory Experiment 3a Cues spatially 
contiguous 

Hypothesis IV: Utilization of cues is, in part, a perceptual process, and 
design considerations that have been demonstrated to engender multicue 
perception will engender multicue strategy use. 

Experiment 3b Cues as face 

Experiment 3cd Socially-interesting 
cues 

Hypothesis V: Utilization of cues is, in part, a perceptual process, and cues 
that are qualitatively different than those of other experiments (socially-
interesting rather than asocial; discrete rather than abstract; inherently 
salient rather than sterilely controlled) should engender qualitatively 
different strategy use. 
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Figure 3.1 Demonstration of task screen for Experiments 1, 2, and 4. Cues, responses, and joystick-controlled cursor 
are labeled for clarity. All four cues are presented together only for demonstration purposes, as this pattern will not 
appear in any experiment. 
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Figure 3.2 Demonstration of task screen for Experiment 3a 
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Figure 3.3 Demonstration of task screen for Experiment 3b 
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4 RESULTS 

4.1 Analysis Plan 

 Whitham and Washburn's (2020) elaboration of the strategy-analysis technique of 

Meeter and colleagues (2006) was used to analyze data from each experiment. In such an 

analysis, each of an arbitrary number of possible response strategies that an animal might 

employ to complete the task is expressed formally as a model for the observed data, then 

model selection procedures are used to identify which of the strategies/models best 

accounts for the data. Any hypothetical strategy that can predict consistent responses to 

each cue pattern can be specified and tested. I tested the wide range of easily verbalizable 

strategies that was previously probed by Whitham and Washburn (2020).  

 Table 4.1 describes many of the strategies that humans and monkeys might use to 

solve the task. These strategies vary greatly in their cognitive and computational 

complexity. Some strategies predicted use of no cue information at all (e.g., Random, S or 

R Biases). Other strategies predicted responses on the basis of only a single cue (e.g., 

Singleton, Single-cue). Still other strategies predicted that the probabilistic information 

yielded by multiple cues would be synthesized suboptimally (e.g., Singleton-Prototype, 

Two v One, All but Two Strong Cards). Finally, a Perfect response strategy predicted that 

the optimal response will be made to each of the cue patterns. Because we expected that 

monkeys might adopt side biases when the strategy that they adopted does not offer a 

specific prediction, rather than choosing among the responses randomly, side-biased 

variants of many of the strategies were included. For example, a Singleton strategy 

predicted that the animal would make optimal responses any time a single cue was 

onscreen, and choose at chance otherwise; the side biased variants instead predicted that 
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the animal would make optimal responses any time a single cue is onscreen and make 

side-biased R or S responses otherwise.  

 The specific predictions made by each strategy, to each cue pattern, are listed in 

Table 4.2. Even an individual that adopted a strategy exactly as it is described in Table 

4.2, however, would be very unlikely to make every predicted response to each iteration 

of the various cue patterns. Perseverative or motoric errors, probability matching 

behaviors, and exploration of the problem space are but a few of the reasons why an 

individual might have deviated from the predicted response (Shanks et al., 2002; 

Speekenbrink et al., 2008). To account for this, the rate at which forecasted responses 

were made to cue patterns was instead described via an adherence rate parameter. Meeter 

and colleagues (2006), who innovated this approach with human participants, fixed the 

adherence rate parameter at .95. This indicates that individuals made responses 

consistent with the strategy they were understood to have adopted 95% of the time. 

Despite the apparent incongruity between inadherent monkeys and very high predicted 

adherence, the .95 adherence rate remained a sensible choice. Meeter and colleagues 

reported simulation data that suggested that even when simulated participants adhered 

to a strategy on fewer than 95% of trials, a .95 adherence rate did a superior job of 

correctly identifying the strategy that was used to simulate the data. Lee (2016) reported 

that in similar strategy analyses of human behavioral data, adherence is reliably very high. 

Although the monkeys’ decremented attention and propensity for perseverative errors 

with the joystick, to name two likely species differences, may have made them unlikely to 

adhere to a strategy so closely as do humans, assuming high adherence is the 

recommendation from both simulation and comparative cognition perspectives. 
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 Each 40 trials completed by an animal was analyzed as a separate block. The fit of 

a strategy to each of these 40 trials blocks was estimated in the following manner. First, 

the binomial likelihood of seeing x S responses in n exposures to a cue pattern when the 

probability of an S response is .95, .05, or .5 (see Table 4.2) was computed. Such a 

likelihood was computed for each cue pattern that an animal was exposed to in those 40 

trials (typically all cue patterns, for 14 likelihoods). Next, the product of these likelihoods 

was used to describe the extent to which that strategy was a good fit to the 40 trials. These 

two steps were repeated for each of the 25 probable strategies that were specified. The 

greatest value among these products (corresponding to the lowest Akaike's Information 

Criteria value; Akaike, 1974) was taken as the best fitting strategy for that set of trials. 

These steps were repeated for each block of 40 trials in an experiment, for every other 

experiment, and for every monkey. After the likeliest strategies were identified, inferences 

about strategy use trends were then assessed via analyses of strategy frequencies within 

and across experiments and animals, estimation of stability of strategy from block to 

block, visualization of strategy adoption/maintenance, and other analyses. 

 The optimal number of trials used to identify strategy use via this analysis, with 

these species, is unclear. Use of many trials would facilitate stronger fits of strategies to 

data when strategy use is consistent, because the influence of rare strategy inadherence 

on strategy fit is diluted. However, taking many trials as model input when strategy use is 

more inconsistent risks the model attempting to label use of multiple strategies as a single 

strategy. On the other end of the continuum, use of too few trials prevents the analysis 

from making accurate identifications in the first place. The sample size of 40 trials that 

this analysis plan takes as model input is informed by simulated data analyses reported 

by Meeter and colleagues (2006) and Whitham and Washburn (2020). This represents a 



54 

relative “Goldilocks number” at which the model input is neither too large (and risks 

misidentifying heterogeneous use of multiple strategies as a single strategy) nor too small 

(thwarting accurate strategy identification). Figure 4.1 shows the ability of the analysis 

perfectly or near-perfectly to recover the strategy used to simulate the data when high 

adherence is assumed. Accurate strategy recovery is reliably very high, with only the 

Perfect strategies (that make the most specific predictions) not always easily recovered 

from samples of 40 trials. 

 

4.2 Descriptive Analyses 

The probabilistic nature of weather prediction tasks divorces an animal’s 

responding from the feedback contingencies for completing a trial correctly. An animal 

can make the optimal response that is most likely to dispense a reward, but receive no 

reward. The proportion of trials in which a reward was received can be useful in some 

modeling contexts in which rewards are the molecular unit of learning. More useful for 

this study was a measure of optimal responding that described the rate at which the 

animal made the response that was most likely to cause a pellet to be dispensed. Such a 

measure describes, post-hoc, mature animal learning in the task. Greater-than-chance 

use of the optimal response suggests structured learning of the relationships among cues, 

responses, and outcomes.  

Figure 4.2 presents a visualization of the proportion of trials in which an animal 

made the optimal response in each block, of each experiment, by each monkey. Each cell 

describes an experiment (i.e., Experiment 1a, Experiment 1b, etc.), with the proportion of 

trials in which the optimal response was made to all cue patterns on the y-axis of the cell 

(ranging from no use of the optimal response to 100% use of the optimal response), 
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successive blocks presented along the x-axis of the cell, and a dashed line denoting chance 

use of the optimal response. Heavy black lines denote borders between Experiments 1, 2, 

3, and 4. Different line colors were used based on the number of experiments completed 

by a monkey. Monkey names are listed on the y-axis of the figure.  

Tables 4.3-6 report additional descriptive statistics for Experiments 1, 2, 3, and 4, 

respectively. The grand mean and standard deviation of the proportion of trials the 

optimal response was made were computed using the observed proportions of each of the 

25 blocks of 40 trials (25 x 40 = 1,000 blocks per experiment). The grand mean and 

standard deviation of response latency (time between stimulus onset and response, with 

outliers >7 sec removed) were computed in the same manner. 

Many animals (e.g., Han, Hank) never deviated from chance use of the optimal 

response. Many other animals (e.g., Albert throughout Experiment 2, Ingrid and Griffin 

throughout Experiments 1 and 2) demonstrated use of optimal responses at chance rates 

in early blocks of an experiment but at much higher rates as the experiment continued. 

The plotted data often form a characteristic, “lowercase m” shape. These individuals 

seemingly learned something of the relationships among cues, responses, and outcomes, 

with optimal response rates increasing over time as a result. When these relationships 

changed at the start of a new experiment, optimal response rates returned to chance and 

the animal began the learning process anew. The descriptive data suggest that many 

animals learned to use the optimal response at above-chance levels within the various 

experiments.  

Visual inspection and conventional statistical analyses of these optimal response 

proportions in comparison to chance only inconsistently describes how these animals 

solved the task. For example, a multilevel logistic regression model could estimate the 
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effects of individual differences, cue information, task experience, and any number of 

other variables on likelihood of selecting one response or another. This analysis would 

output correlation coefficients for individual parameters and individual animals, and 

faithfully identify experiments in which observed use of the optimal response differed 

from chance. But such an analysis would strain to effectively describe the root cause of a 

network of correlation coefficients. That a monkey learned to use the optimal response in 

Experiment 2a, then again in Experiment 2b, is largely tangential to the question of how, 

qualitatively, the animal completed the task. The strategy analyses, however, can identify 

these more qualitative differences. 

 

4.3 Experiment 1 Strategy Analysis 

Twenty capuchin monkeys and seven rhesus macaques finished Experiment 1, 

combining to produce 594 blocks of responses that used cue information in an identifiably 

strategic way. A visualization of the best fit strategies for each block of responses by each 

monkey is presented in Figure 4.3. Cue-based strategies were overwhelmingly those that 

used one cue to guide all responses. Many monkeys used a Single-cue Strong strategy in 

which one response was made when a specific high validity cue was present, and the 

opposite response was made otherwise. At other times the Strong Singleton strategy was 

adopted, in which optimal responses were made only when one of the cues with highest 

predictive validity was the only cue presented. 

Although this experiment functioned as a series of replications of Whitham and 

Washburn (2020), some patterns of responding were markedly different. Use of [Strong] 

Singleton strategies was not reported in that design, but was evidenced by several 

monkeys that used cue-based strategies in Experiment 1 (none of these monkeys was 
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included in the previous weather prediction design). The strategies used by those 

monkeys that used cue-based strategies did not change across the five iterations of the 

task. 

 

4.4 Experiment 2 Strategy Analysis 

Ten capuchin monkeys and seven rhesus macaques finished Experiment 2, in 

which ITIs, timeouts, and cue validities were adjusted. These animals combined to 

produce 274 blocks of responses that used cue information in an identifiably strategic 

way. A visualization of the best fit strategies for each block of responses by each monkey 

is presented in Figure 4.4. These [null] effects are noteworthy because, unlike in the 

mechanically identical manipulations of Experiment 1, Experiments 2a, 2b, 2c, 2d, and 

2e each manipulated either the reward rate or the validities of the cues. Importantly, there 

was no evidence for a change in strategy distribution towards new or more sophisticated 

strategy use was observed with these changes, and the rate of non-Single Cue strategy use 

remained very low. Changes to reward rate and cue validity also did not cause higher rates 

of cue-based strategy use. One capuchin monkey, Lily, that used cues strategically in 

Experiment 1 ceased to do so in Experiment 2, while a second capuchin monkey, Albert, 

started using cue information strategically in Experiment 2 after not doing so in 

Experiment 1.  

Curiously, both Griffin (capuchin) and Ingrid’s (capuchin) Single Cue Strong 

strategy adoption was strongest when the validity of the strong cues was weakest, in 

Experiment 2e. The reasons for this are unclear, and may represent artifacts of fitful data 

collection, but this result minimally demonstrates that the more equivalent validities of 

the four cues in Experiments 2d and 2e were tractable to the animals. That is, even though 
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the animals overwhelming used single, strongly predictive cues to guide cue-based 

strategy use, and even though these experiments presented strongly predictive cues that 

were not as strong as in other experiments, these animals still made reliable use of single-

cue strategies. This is a novel demonstration, given that manipulation of cue validities is 

very rare in probabilistic categorization designs, and that the cue validities and 

probability table of Gluck, Shohamy, and Myers (2002) (see Table 3.1) has been used in 

nearly every published probabilistic categorization task. 

 

4.5 Experiment 3 Strategy Analysis 

Nine capuchin monkeys and seven rhesus macaques finished Experiment 3, in 

which the cues were spatially contiguous or were depicted as photographs of conspecific 

faces or bodies. Together, these animals combined to produce 197 blocks of responses that 

used cue information in an identifiably strategic way. A visualization of the best fit 

strategies for each block of responses by each monkey is presented in Figure 4.5. The 

responses of each of Griffin (capuchin), Ingrid (capuchin), and Obi (rhesus) were 

consistently best fit in this experiment by strategies that use multiple cues, with the three 

animals best fit by these strategies ~93%, ~92%, and ~85% of blocks in the latter half of 

Experiment 3a, respectively. 

Obi was identified as using a Singleton-Prototype strategy that, despite inclusion 

in analyses of Meeter and colleagues (2006, 2008) and Whitham and Washburn (2020), 

had never been previously reported to be a good fit to human or animal probabilistic 

categorization data. The Singleton-Prototype strategy predicted optimal responses to cue 

combinations in which only one cue was onscreen, or those in which two cues were 

onscreen that predicted the same response. A restricted subset of these rhesus macaques 



59 

had taken part in many thousands of discrete categorization tasks with spatially localized, 

polygonal stimuli of similar appearance to those of Experiment 3a, and Obi’s data are 

often strongly represented in these designs (e.g., Smith et al., 2012). Obi may have been 

uniquely sensitive to this manipulation, and non-representative of strategy use in weather 

prediction tasks.  

But this fact of the animals' experimental history was not true of Ingrid and Griffin. 

Instead, presenting the cues more locally may have caused a greater proportion of the cue 

information to be attended to among these three animals that, across all experiments, 

were generally more attentive to the task overall. The spatially localized, polygonal cues 

of Experiment 3a may have facilitated slightly more global processing of the cues and their 

associated validities, as intended. Besides the aforementioned cue-based strategy use in 

Experiment 3a, the experimental manipulations of Experiment 3 had no effect on the 

distribution or speed of cue-based strategy use. Instead, use of the more unfamiliar 

stimulus images in the rest of Experiment 3 seemed to be less interesting or tractable to 

the animals, and strategic use of cues was nearly entirely absent. 

 

4.6 Experiment 4 Strategy Analysis 

Five capuchin monkeys and seven rhesus macaques finished Experiment 4, which 

extended the ITI and timeous manipulations of Experiment 2. These animals combined 

to produce 246 blocks of responses that used cue information in an identifiably strategic 

way. A visualization of the best fit strategies for each block of responses by each monkey 

is presented in Figure 4.6. Experiment 4’s extension of Experiment 2’s reward rate 

manipulations resulted in cue-based strategy use by five monkeys – Applesauce 

(capuchin), Irene (capuchin), Murph (rhesus), Liam (capuchin), and Lou (rhesus) - that 
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had not demonstrated any appreciable degree of strategy use in Experiments 1, 2, or 3 

(Liam, capuchin, used the Single-Cue strategy in unpublished data from the experiment 

of Whitham & Washburn, 2020). The changes to these animals’ performance was limited 

to their adoption of strategies that other animals used in previous experiments. The 

manipulations did not speed up the rate of strategy adoption, nor did they cause adoption 

of cue-based strategies that were new to this series of experiments. 

The strategy analysis (and descriptive data, see Figure 4.2 and Table 4.6) suggests 

strongly that Obi (rhesus) used multicue strategies in Experiment 4. In the latter halves 

of Experiments 4a, 4b, 4c, and 4d, Obi was best fit by multicue strategies ~71% of the time 

overall. However, successive blocks were rarely identified as the product of the same 

strategy (hence the paucity of plotted points in Figure 4.6, which only depicts multiple 

identical strategy identifications in a row). Without this control against strategy 

misidentification, the specific implications of this result can only be evaluated with 

caution. There are a few reasons why the strategy analysis may have reported such a 

diversity of multicue strategy use. Obi might have indeed changed strategies very rapidly 

among the multicue strategies, and the strategy analysis faithfully captured this suite of 

strategy use. Such a demonstration would be novel but intuitive: maintaining complex 

rules across hundreds or thousands of trials is cognitively effortful for humans, and would 

likely be more so for a rhesus macaque. Alternatively, Obi's multicue strategy use may 

have been consistent throughout, but the strategy analysis failed to identify it reliably. 

Analyses of simulated data (see Figure 4.1) discount this possibility somewhat, but a 

highly inconsistent adherence rate to a given strategy, for example, could spike the false 

identification rates much higher than those depicted in the figure. Finally, it is possible 
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that Obi consistently adopted the use of a strategy that was not specified in the strategy 

analysis. 

 

4.7 Strategy Analysis Summary 

Monkeys that reliably adopted cue-based strategies retained them within an 

experiment and often returned to them in each new experiment. Figure 4.7 presents a 

simplified Markov State diagram depicting the rates of strategy retention and switching 

among three groups of strategies: one group of side-biased blocks (R bias and S bias), one 

group of random blocks, and a third group of all blocks in which cue-based strategies were 

used. The state transitions depict rates of shifts from use of one of the strategy groups in 

a block to a different one of the strategy groups, as well as rates at which that strategy 

group was retained. Retention was very high overall, with the likeliest strategy for a block 

of responses by a monkey predicting the likeliest strategy for the next block a majority of 

the time for a majority of monkeys. Figure 4.8 depicts the proportion of blocks in which 

the highest likelihood strategy was the same across two blocks for each monkey, and 

overall.  

Monkeys that used cue-based strategies did not demonstrate strategy use at earlier 

blocks as experience with weather prediction tasks increased. Figures 4.9-10 depict the 

block at which a cue-based strategy was acquired (defined as the same strategy having the 

highest likelihood for a majority of five successive blocks) for each monkey and overall, 

respectively. No obvious relationship existed between cue-based strategy acquisition and 

experience in the task. This result, along with the strategy analyses depicted in Figures 

4.3-6, suggests no role of practice effects in the task and, instead, repeated measurement 

of identical series of behaviors to a series of mechanically identical tasks (with the 
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exceptions of Experiments 2d and 2e, which varied the probability table for the task yet 

still maintained the general results). 

 

4.8 Other Analyses 

Response latencies, both the time from trial onset to response and the total time in 

which the joystick was depressed, were also recorded for each trial. Although there were 

no specific hypotheses about response latencies, analyses of this additional measure 

might capture aspects of the monkeys’ performance in the task to which the strategy 

analysis was blind. For example, it may be the case that each strategy entails a certain 

amount of processing time, and that response time may be used as a behavioral marker 

of strategy use alongside rates of responding to the different cue patterns.  Differences in 

processing time would perhaps be evidenced in response latencies, and not captured by 

the strategy analysis alone (see Tables 4.3-6 for descriptive statistics of response 

latencies).  

Bayesian modeling was used to detect any differences in response latencies. 

Central tendency and scale parameters were estimated to describe the mean and standard 

deviation, respectively, of a latent distribution that modeled response latency. These 

parameters were estimated once for each of three groups of strategies. One central 

tendency and scale pair was estimated for trials in which the strategy analysis suggested 

R or S biased responding. A second pair was estimated for trials in which the strategy 

analysis suggested random responding. A third pair was estimated for trials in which the 

strategy analysis suggested cue-based responding. Because response latencies are heavily 

skewed (response latencies can extend to the end of the test session, but never be faster 

than around 1 second), two transformations of response latencies were made to facilitate 



63 

modeling (for strengths and weaknesses of this approach, see Grayson, 2004; Lo & 

Andrews, 2015). First, only response latencies faster than 7 sec were included in the 

analysis. This arbitrary cutoff removes the slowest 7% of trials, that likely represented 

monkey behaviors that are not of interest to the present investigation (e.g., drinking 

water, taking a nap, interactions with conspecifics, etc.), while preserving response 

latencies that could reasonably represent time taken to process the cue information and 

make a response. Second, response latencies were natural log transformed to remove 

remaining skew from the distribution and sharpen parameter estimates. The response 

latencies that capture time from trial onset to response were used, as processing time 

could plausibly include times in which the animal was not deflecting the joystick. 

Bayesian modeling techniques were used because they offer flexible matching of 

analysis to design, emphasize estimation of parameters of interest instead of binary 

decision criteria, facilitate identification of where differences demonstrably do not exist 

(akin to accepting the null hypothesis in frequentist significance testing), and cope well 

with unbalanced designs (Kruschke, 2018; Kruschke & Liddell, 2018a; McElreath, 2020). 

Although the central tendency and scale of response latency distributions would be 

expected to vary across individual monkeys as well, and thus could have been included in 

a Bayesian multilevel model, the severely unbalanced distribution of inferred strategy use 

prevented effective modeling of this potential predictor. Some monkeys only very rarely 

contributed response latencies due to cue-based strategy use, and the high retention rates 

described above made the individual monkeys highly correlated with their strategy of 

choice. Adding monkey identity to the model would only convolute measurement of the 

strategy group parameters of interest. Analyses were completed using the pandas and 

pymc3 packages of Python 3.7 (McKinney, 2011; Salvatier et al., 2016). Parameter 
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estimates were made using 20,000 Markov Chain Monte Carlo steps (10,000 tuning 

steps).  

Results of this response latency analysis, with distribution mean estimates 

transformed back to the original units (msec), are plotted in Figure 4.11. Trials from 

blocks in which side biases were inferred were demonstrably faster than trials from blocks 

in which random or cue-based strategies were inferred. Because processing of cues was 

likely very low for monkeys employing these side-biased strategies, akin to lever-pressing 

on a variable ratio reward schedule, this effect was to be expected. It is more interesting 

that no difference was observed between blocks in which random strategies were inferred 

and those in which cue-based strategies were inferred. If greater response latency 

suggests greater time processing the stimulus information, the equivalent response 

latencies of random strategy blocks and cue-based strategy blocks suggests sincere 

processing of cue information in random strategy blocks.  

This result may suggest use of a strategy that was not specified in the strategy 

analysis in these blocks. This failure of model specification and selection would be 

analogous to a Type II error – there is structure to the data, but the model is not sensitive 

enough to capture it and the analyst erroneously reports no effect. Many animals use win-

stay and lose-shift strategies in highly serialized tasks with binary response options (e.g., 

Levine, 1959). Figure 4.12 depicts the rate of win-stay/lose-shift strategy use by monkeys 

in blocks of random strategy use. As in Whitham and Washburn (2020), no evidence for 

use of this particular serial dependency in the monkeys’ responses was observed. Further 

descriptive analyses did not reveal any obvious cue dependency in the random blocks as 

might suggest specification of an additional, heretofore unidentified strategy. Taken 

together these analyses suggest that random strategy use reflected failed attempts to make 
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use of the available cue information, or otherwise misinformed guesses, rather than 

structured responding using an approach not included in the strategy analysis. 
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Table 4.1 Strategies 
 

 Description 

Random Each response is made randomly. 
 

R bias R responses are predicted to every cue combination. 
 

S bias S responses are predicted to every cue combination. 
 

Singleton Optimal responses are predicted when only one cue is onscreen. 
 
 
Random or side-biased responses are predicted when multiple cues are 
onscreen. 
 

Single-cue [cue] The presence or absence of one cue guides all responses - to the 
response predicted by that cue if that cue if it is present, or to the 
opposite response if it is not present. 
 

Singleton-Prototype Optimal responses are predicted when one cue is onscreen or two cues 
that predict the same response are onscreen. 
 
Random or side-biased responses are predicted when cues that predict 
opposite responses are onscreen. 
 

Two v One Optimal responses are predicted when one cue is onscreen, when two 
cues that predict the same response are onscreen, or when two cues that 
predict the same response and one cue that predicts the opposite 
response are onscreen. 
 
Random or side-biased responses are predicted when cues that predict 
opposite responses are onscreen and majority rule cannot guide 
responses. 
 

All but Two Strong 
Cues 

The optimal response is predicted for every cue combination except 
those in which both of the strongly predictive cues are onscreen 
together. 
 

Perfect The optimal response is predicted to every cue combination. 
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Table 4.2 Cue Patterns, Frequencies, and Strategies. Each row describes the set 
of responses a strategy predicts to the different cue patterns. A strategy predicted a 
deflection to the R response, the S response, or make no specific prediction (chance rates 
of responding among the two two responses, Rand). Cues can be strong (R or S) or weak 
(r or s) evidence that a response will be rewarded. The rate at which an animal will be 
assumed to adhere to a strategy is not 100%, to allow for anticipated deviations due to 
exploratory behavior, probability matching, and other factors. Each strategy predicted 
a unique set of R responses, S responses, and random responses to the 14 unique cue 
patterns. 

 

 Cue Patterns 
 A B C D E F G H I J K L M N 

 Cues Present 
 R r Rr s Rs rs Rrs S RS rS RrS Ss RSs rSs 

Strategies not based on cue 
information               

    Random Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand Rand 
    R bias R R R R R R R R R R R R R R 
    S bias S S S S S S S S S S S S S S 
Strategies based on a single cue               

    Strong Singleton R Rand Rand Rand Rand Rand Rand S Rand Rand Rand Rand Rand Rand 
        Strong Singleton w/ R bias R R R R R R R S R R R R R R 
        Strong Singleton w/ S bias R S S S S S S S S S S S S S 
    Singleton R R Rand S Rand Rand Rand S Rand Rand Rand Rand Rand Rand 
        Singleton w/ R bias R R R S R R R S R R R R R R 
        Singleton w/ S bias R R S S S S S S S S S S S S 
    Single-Cue Strong R R S R S R S R S R S R S R S 
    Single-Cue Weak R S R R S S R R S S R R S S R 
    Single-Cue Weak S R R R S S S S R R R R S S S 
    Single-Cue Strong S R R R R R R R S S S S S S S 
Strategies based on multiple cues               

    Singleton Prototype R R R S Rand Rand Rand S Rand Rand Rand S Rand Rand 
        Singleton Prototype w/ R bias R R R S R R R S R R R S R R 
        Singleton Prototype w/ S bias R R R S S S S S S S S S S S 
    Two v One R R R S Rand Rand R S Rand Rand R S S S 
        Two v One w/ R bias R R R S R R R S R R R S S S 
        Two v One w/ S bias R R R S S S R S S S R S S S 
    All but Two Strong Cards R R R S R Rand R S Rand S Rand S Rand S 
        All but Two Strong Cards w/ R bias R R R S R R R S R S R S R S 
        All but Two Strong Cards w/ S bias R R R S R S R S S S S S S S 
    Perfect R R R S R Rand R S Rand S R S S S 
        Perfect w/ R bias R R R S R R R S R S R S S S 
        Perfect w/ S bias R R R S R S R S S S R S S S 
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Table 4.3 Descriptive statistics for Experiment 1 
 

 Experiment 1a Experiment 1b Experiment 1c Experiment 1d Experiment 1e 

 p(Optimal) Latency p(Optimal) Latency p(Optimal) Latency p(Optimal) Latency p(Optimal) Latency 

 M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD 

Albert 0.50 0.06 1924 291 0.51 0.07 1847 270 0.51 0.09 1818 255 0.62 0.12 1857 228 0.65 0.11 1735 213 

Applesauce 0.50 0.07 2253 396 0.50 0.07 2357 327 0.50 0.08 2212 258 0.50 0.07 2294 220 0.50 0.08 2346 504 

Bailey 0.51 0.09 2357 281 0.64 0.16 2194 236 0.50 0.08 1688 613 0.50 0.07 1374 419 0.52 0.09 2026 230 

Benny 0.50 0.08 1301 255 0.50 0.08 1175 177 0.50 0.06 1211 158 0.50 0.07 1166 157 0.50 0.09 1075 87 

Chewie 0.50 0.08 1108 150 0.50 0.06 1134 151 0.50 0.08 1185 110 0.49 0.08 1147 119 0.50 0.07 1136 195 

Gabe 0.50 0.06 2160 252 0.50 0.07 2273 187 0.50 0.08 2089 217 0.50 0.09 2158 189 0.50 0.07 2065 178 

Gambit 0.55 0.08 3665 316 0.56 0.09 3531 366 0.52 0.09 3386 294 0.76 0.16 2983 234 0.79 0.17 3424 280 

Gonzo 0.53 0.08 2436 302 0.60 0.15 2513 249 0.58 0.12 2515 201 0.82 0.14 2509 269 0.60 0.23 2449 272 

Gretel 0.54 0.08 2543 279 0.69 0.17 2738 325 0.49 0.08 2633 274 0.63 0.09 2523 256 0.78 0.12 2265 231 

Griffin 0.51 0.09 2526 259 0.64 0.12 2243 253 0.76 0.16 2357 216 0.75 0.15 2150 283 0.66 0.15 2090 346 

Han 0.52 0.09 2094 402 0.49 0.08 2168 200 0.49 0.05 2232 265 0.49 0.07 1892 273 0.50 0.09 1631 288 

Hank 0.50 0.08 3222 267 0.50 0.07 2959 401 0.50 0.05 2799 228 0.50 0.07 2790 176 0.50 0.06 3015 330 

Ingrid 0.55 0.09 2531 311 0.77 0.16 2458 366 0.77 0.15 2351 216 0.75 0.19 2408 240 0.79 0.17 2312 264 

Ira 0.51 0.06 2609 438 0.50 0.07 2073 281 0.57 0.13 2083 258 0.80 0.12 2261 229 0.60 0.1 2252 206 

Irene 0.50 0.08 2875 307 0.50 0.05 2305 175 0.48 0.08 2540 219 0.54 0.11 2720 353 0.61 0.13 2775 225 

Ivory 0.50 0.10 2610 327 0.50 0.08 2285 211 0.50 0.07 2141 198 0.53 0.09 2061 328 0.51 0.1 2166 329 

Liam 0.57 0.07 2818 291 0.52 0.07 2325 265 0.55 0.07 2261 371 0.50 0.06 1883 224 0.47 0.08 2316 474 

Lily 0.49 0.07 2441 186 0.61 0.16 2176 213 0.59 0.13 2077 208 0.78 0.13 2257 252 0.60 0.12 2085 211 

Logan 0.51 0.09 2355 214 0.52 0.08 2517 241 0.49 0.1 2412 326 0.51 0.06 2555 211 0.58 0.1 2388 215 

Lou 0.48 0.07 2211 287 0.51 0.07 2263 286 0.54 0.06 2713 248 0.53 0.08 2368 265 0.49 0.07 2119 251 

Luke 0.50 0.05 1813 307 0.50 0.06 1805 238 0.50 0.08 1602 241 0.50 0.08 1297 179 0.50 0.08 1450 280 

Lychee 0.48 0.09 2698 290 0.48 0.08 2237 214 0.52 0.07 2257 305 0.50 0.08 2277 240 0.49 0.11 2004 219 

Mason 0.51 0.09 2758 411 0.50 0.07 2681 169 0.52 0.09 2583 194 0.48 0.07 2590 131 0.53 0.08 2809 297 

Murph 0.51 0.07 1475 235 0.50 0.08 1636 150 0.49 0.08 1646 135 0.51 0.08 1867 308 0.50 0.08 1510 180 

Nkima 0.53 0.08 2425 417 0.50 0.09 1634 423 0.50 0.07 1362 242 0.48 0.1 2626 218 0.48 0.06 2583 255 

Obi 0.53 0.08 2105 326 0.51 0.06 1945 176 0.51 0.08 1809 224 0.49 0.09 2055 317 0.50 0.07 1412 214 

Paddy 0.48 0.07 2879 209 0.52 0.08 2985 376 0.58 0.08 2802 448 0.70 0.13 2569 467 0.50 0.08 1070 40 

Widget 0.50 0.09 2047 119 0.50 0.06 1813 232 0.66 0.17 1750 218 0.73 0.13 1779 128 0.80 0.11 1871 213 

Wren 0.52 0.06 2280 310 0.57 0.09 2146 236 0.52 0.11 2024 178 0.71 0.13 2084 147 0.69 0.10 2261 223 
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Table 4.4 Descriptive statistics for Experiment 2 
 

 Experiment 2a Experiment 2b Experiment 2c Experiment 2d Experiment 2e 

 p(Optimal) Latency p(Optimal) Latency p(Optimal) Latency p(Optimal) Latency p(Optimal) Latency 

 M SD M SD M SD M SD M SD M SD M SD M SD M SD M SD 

Albert 0.75 0.15 2307 601 0.63 0.12 2353 265 0.69 0.19 2285 793 0.6 0.14 2704 310 0.68 0.15 2533 428 

Applesauce 0.51 0.07 2258 298 0.50 0.08 2317 261 0.56 0.14 2511 348 0.53 0.10 2999 312 0.50 0.08 2354 242 

Bailey 0.51 0.07 1644 314 0.51 0.07 1956 281 0.49 0.09 1835 210 0.49 0.09 1973 217 0.49 0.09 2282 363 

Chewie 0.50 0.06 1145 97 0.50 0.07 1158 87 0.50 0.08 1088 79 0.51 0.09 1135 98 0.50 0.07 1145 162 

Gabe 0.51 0.08 1474 239 0.50 0.06 1689 263 0.50 0.07 1919 258 0.50 0.07 2289 233 0.50 0.07 2261 210 

Griffin 0.62 0.11 2251 502 0.55 0.11 2732 337 0.57 0.11 2912 284 0.63 0.12 2718 271 0.76 0.15 2473 236 

Han 0.51 0.08 2110 349 0.52 0.08 2007 629 0.50 0.06 1043 0 0.50 0.07 1043 0 0.50 0.07 1043 0 

Hank 0.50 0.07 2388 250 0.50 0.07 2160 312 0.48 0.07 2602 435 0.50 0.07 3058 274 0.49 0.07 2998 352 

Ingrid 0.77 0.16 2955 445 0.61 0.09 2889 433 0.47 0.08 3021 231 0.64 0.22 2319 214 0.86 0.10 2586 211 

Irene 0.56 0.10 2302 316 0.54 0.10 2281 174 0.64 0.12 2535 390 0.50 0.09 2840 331 0.51 0.08 2301 339 

Ivory 0.50 0.09 1982 243 0.54 0.10 2233 313 0.50 0.07 2008 225 0.50 0.10 2189 381 0.50 0.06 1892 301 

Liam 0.53 0.08 1756 288 0.50 0.08 1471 235 0.51 0.06 1491 230 0.50 0.08 1415 324 0.50 0.09 1181 119 

Lily 0.49 0.08 2164 279 0.50 0.07 2428 626 0.48 0.07 2538 432 0.50 0.08 1999 238 0.50 0.08 2252 316 

Lou 0.48 0.09 2245 230 0.49 0.07 2069 212 0.56 0.09 2468 228 0.50 0.07 2073 263 0.49 0.07 2167 301 

Luke 0.50 0.07 1796 299 0.50 0.07 1711 202 0.50 0.08 1418 291 0.50 0.08 2002 280 0.50 0.08 1575 195 

Murph 0.52 0.09 1609 171 0.58 0.07 2101 359 0.52 0.09 1903 219 0.49 0.08 1685 281 0.52 0.09 1307 145 

Obi 0.54 0.08 2521 448 0.58 0.08 2545 370 0.55 0.08 2424 287 0.52 0.07 1761 172 0.50 0.07 1780 249 

Wren 0.56 0.09 2272 278 0.53 0.09 2427 784 0.42 0.10 2636 356 0.50 0.08 2524 268 0.55 0.07 2184 222 
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Table 4.5 Descriptive statistics for Experiment 3 
 

 Experiment 3a Experiment 3b Experiment 3c Experiment 3d 

 p(Optimal) Latency p(Optimal) Latency p(Optimal) Latency p(Optimal) Latency 

 M SD M SD M SD M SD M SD M SD M SD M SD 

Albert 0.69 0.14 2379 316 0.55 0.07 2668 467 0.65 0.11 2683 484 0.60 0.13 2157 451 

Applesauce 0.51 0.06 2416 369 0.49 0.07 2540 408 0.50 0.09 2652 378 0.51 0.09 2272 290 

Bailey 0.50 0.08 2188 268 0.51 0.07 2030 168 0.49 0.07 1842 272 0.49 0.10 1778 255 

Chewie 0.50 0.09 1142 149 0.50 0.08 1225 253 0.50 0.10 1079 80 0.50 0.08 1031 13 

Gabe 0.50 0.05 2177 296 0.50 0.06 2155 230 0.49 0.08 2141 246 0.50 0.09 2313 432 

Griffin 0.82 0.11 2132 146 0.53 0.08 2409 323 0.56 0.12 2413 335 0.70 0.17 2104 188 

Han 0.50 0.07 1042 1 0.50 0.08 1042 0 0.50 0.07 1043 0 0.51 0.09 1769 402 

Hank 0.51 0.05 3061 234 0.50 0.09 2924 240 0.50 0.08 2903 244 0.50 0.07 3058 316 

Ingrid 0.73 0.14 2502 177 0.52 0.09 2486 186 0.49 0.07 2653 228 0.47 0.08 2466 291 

Irene 0.49 0.07 2341 181 0.50 0.07 2505 302 0.60 0.07 2403 308 0.57 0.06 2529 331 

Liam 0.51 0.07 1933 522 0.51 0.06 1992 238 0.51 0.09 1747 130 0.50 0.10 1715 187 

Lily 0.50 0.08 2201 180 0.50 0.07 2385 530 0.50 0.09 2037 171 0.50 0.06 2150 364 

Lou 0.51 0.07 2119 321 0.50 0.06 1992 219 0.48 0.08 1902 247 0.51 0.08 2130 191 

Luke 0.50 0.07 1498 146 0.50 0.06 1711 271 0.50 0.08 1678 207 0.50 0.08 1611 184 

Murph 0.50 0.08 1242 94 0.51 0.09 1551 216 0.53 0.08 1282 136 0.52 0.08 1621 154 

Obi 0.71 0.13 2103 292 0.52 0.09 2116 252 0.55 0.09 1519 327 0.60 0.13 1578 177 
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Table 4.6 Descriptive statistics for Experiment 4 
 

 Experiment 4a Experiment 4b Experiment 4c Experiment 4d 

 p(Optimal) Latency p(Optimal) Latency p(Optimal) Latency p(Optimal) Latency 

 M SD M SD M SD M SD M SD M SD M SD M SD 

Applesauce 0.60 0.10 1988 289 0.51 0.07 2434 334 0.50 0.08 2610 525 0.77 0.08 2263 294 

Chewie 0.50 0.08 1087 73 0.50 0.06 1055 30 0.50 0.07 1232 200 0.50 0.07 1257 212 

Han 0.52 0.08 2257 207 0.54 0.08 2283 233 0.52 0.09 1388 402 0.51 0.08 1820 688 

Hank 0.51 0.07 2865 207 0.51 0.09 2414 254 0.50 0.06 2235 171 0.50 0.09 2458 334 

Ingrid 0.46 0.10 2499 204 0.48 0.06 2723 157 0.47 0.10 3039 415 0.53 0.11 3177 417 

Irene missing data 0.57 0.09 1967 195 0.53 0.12 2291 244 0.68 0.20 2394 242 

Liam 0.57 0.12 2203 660 0.61 0.10 2457 382 0.68 0.11 2381 237 0.76 0.11 2390 296 

Lily missing data 0.50 0.08 1832 212 0.52 0.07 2080 404 0.50 0.07 2315 570 

Lou 0.51 0.09 2280 271 0.46 0.08 2172 239 0.51 0.08 2237 246 0.78 0.15 2261 183 

Luke 0.50 0.07 2111 445 0.50 0.09 1572 245 0.50 0.09 1956 476 0.50 0.07 1767 397 

Murph 0.60 0.14 1515 372 0.64 0.11 1972 390 0.74 0.11 2199 284 0.83 0.07 2227 231 

Obi 0.71 0.10 2114 311 0.73 0.09 1880 200 0.74 0.15 2176 305 0.76 0.11 2141 303 
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Figure 4.1 Simulated strategy recovery. The strategy used to simulate response 

data is printed in the top-right corner of each plot. ‘Exact’ recoveries are the rate at 
which the strategy analysis recovered the exact strategy that was used to simulate 
response data. ‘Strategy’ recoveries are the rate at which the strategy analysis identified 
the correct strategy except for misidentifying the presence or absence of any S or R 
biases. Both of these types of recoveries are accurate. In ‘Other’ recoveries the strategy 
that was used to generate the data was misidentified. Figure adapted from Whitham & 
Washburn (2020). 
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Figure 4.2. Response optimality. The y-axis of each plot depicts the proportion 

of trials in which the optimal response was used in each experiment by each monkey.
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Figure 4.3  Strategy use in Experiment 1. The many possible strategies of the strategy analysis are grouped into 
four bins for plotting on the y-axis: no cue use (random or side-biased strategies), use of one cue (single-cue or singleton 
strategies), use of multiple cues (singleton-prototype, two vs one), or [nearly] perfect strategies (all but two strong cards 
and perfect strategies). The eight capuchin monkeys on the left side of the plot used cues in their responding substantially 
more than the other animals, and the strategies they used are annotated within each experiment accordingly. Note that 
these bins are only for visualization purposes, and were not incorporated into the modeling. 
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Figure 4.4 Strategy use in Experiment 2. The many possible strategies of the strategy analysis are grouped in the 

same way as in Figure 4.3. The three capuchin monkeys on the left side of the figure used cues in their responding 
substantially more than the other animals, and the strategies they used are annotated within each experiment 
accordingly. 
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Figure 4.5 Strategy use in Experiment 3. The many possible strategies of the strategy analysis are grouped in the 
same way as Figure 4.3. The four monkeys on the left side of the figure used cues in their responding substantially more 
than the other animals, and the strategies they used are annotated within each experiment accordingly. 
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Figure 4.6 Strategy use in Experiment 4. The many possible strategies of the strategy analysis are grouped in the 

same way as Figure 4.3. The five monkeys on the left side of the figure used cues in their responding substantially more 
than the other animals, and the strategies they used are annotated within each experiment accordingly. 
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Figure 4.7 Simplified Markov state diagram. Arrows denote block-over-block 

rates of switching and retention among R or S biased strategies, the random strategy, 
and cue-based strategies. 
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Figure 4.8 Strategy retention rates by individual monkeys and overall. 
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Figure 4.9 Strategy acquisition by experiment for each monkey. Black diamonds denote the block at which a 

majority of the highest likelihood strategies for the previous 5 blocks were the same, cue-based strategy. Experiments are 
depicted along the x-axis, with each tick one of the 1000 trial experiments (e.g., Experiment 1a, Experiment 1b, etc.). No 
obvious relationship exists between experiments and strategy acquisition. Monkeys did not use strategies earlier in 
experiments as they acquired more experience with the task. 

 

  



81 

 

Figure 4.10 Strategy acquisition by Experiment for all monkey. Black diamonds denote the block at which a 
majority of the highest likelihood strategies for the previous 5 blocks were the same, cue-based strategy for a monkey, in 
an experiment. These data are the same as in Figure 4.9, and many monkeys contributed multiple points to this plot by 
demonstrating strategy acquisition multiple times across the many experiments. Experiments are depicted along the x-
axis, with each tick one of the 1000-block experiments. No obvious relationship exists among the points, such that animals 
did not acquire strategies more quickly across repeated exposures to the various weather predictions tasks. 
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Figure 4.11 Central tendency of response latency distributions. Blocks were clustered as the product of side-biased, 

random, or cue-based strategies. The black diamond denotes the mean central tendency. Transparent grey diamonds are 
average monkey response latencies in a block inferred to be the product of the strategy group on the x-axis, included only 
as a reference to the distribution of the raw data. Random jitter along the x-axis was added to the grey diamonds to make 
a greater portion of the mean response latencies from blocked trials visible. 
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Figure 4.12 Win-stay or lose-shift strategy use. The height of each bar is the proportion of trials by each monkey in 
which a response in accordance with a win-stay or lose-shift strategy was observed in blocks of random strategy use. The 
dashed line indicates chance use of a win-stay or lose-shift strategy. 
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5 Discussion 

This dissertation was conceived of as an attempt to identify the cognitive, 

perceptual, and motivational determinants of monkey behavior in a probabilistic 

categorization task. The unique challenges to learning posed by both probabilistic and 

categorization tasks made the effective sample size (i.e., the number of unique individuals 

that contributed informationally rich data) of this series of experiments lower than 

anticipated across all experiments. Despite the sample size, conclusions from this series 

of studies are clear. Evidence for each of the potential determinants of the monkeys’ 

behavior will be evaluated and discussed in turn. 

 

5.1 Cognitive Determinants 

Hypothesis I: Strategy use during probabilistic categorization is a stable trait of an 

individual animal, and the same strategies used by an animal in one weather prediction 

task will be those used in another task. 

 

 Strategy use in probabilistic categorization tasks by individual monkeys was highly 

stable across blocks and experiments. Of critical concern to Hypothesis I, monkey strategy 

use did not at all resemble a series of random draws from the bank of specified strategies, 

or from any subset thereof with a length of more than one or two. Moreover, this was true 

to a similar extent for each monkey that demonstrated cue-based strategy use. No 

monkey, with the possible exception of Obi (rhesus) in Experiment 4, sampled widely 

among the available strategies within or across experiments. Hypothesis I was overall 

well-supported.  
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 However, contra Hypothesis I, monkeys did not evidence the rich interindividual 

variability in clustered individual differences that would suggest that use of “trait” would 

be appropriate. Instead, the various plausible determinants of nonhuman primate 

strategy use (e.g., selective attention, associative learning ability) seemingly do little to 

avert species-wide convergence to the same few, highly similar strategies. These results 

predict that the same strategies used by a species in one weather prediction task are 

strongly predictive of strategy use by that species in every weather prediction task. 

  

Hypothesis II: Behavior in weather prediction tasks is guided by factors other than an 

individual's preferred strategy, and titration of overall reward rate in the task will 

titrate strategy use accordingly. Specifically, the animals that used Random or Side-

Bias strategies in Experiment 1 will use cue information to guide responding in 

Experiments 2a, 2b, and 2c. 

 

 In accordance with Hypothesis II, strategy use was sensitive to experimental 

manipulations to reward rate. However, the sensitivity was only demonstrated to affect 

adoption of a Single-Cue strategy. When many animals that had not previously 

demonstrated cue-based strategy use began using cue-based strategies at the most 

extreme reward rates tested, in Experiment 4, they were observed only to adopt those 

strategies that other individuals were already using. These manipulations had no 

demonstrable effect on the observed distribution of cue-based strategies, the complexity 

of strategy use, or the speed of strategy adoption.  
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Hypothesis III: Behavior in weather prediction tasks is guided by factors other than an 

individual's preferred strategy, and a set of more egalitarian cue probabilities will beget 

greater multicue responding in the animals that readily use strategies. Animals that do 

not readily use strategies will revert to Random or Side-biased strategies. 

 

 Hypothesis III was not supported. Experiments 2d and 2e presented animals with 

a set of probabilistic relationships among cues, responses, and outcomes in which the 

most highly predictive cues were less predictive than in other experiments, and the least 

predictive cues were more predictive than in other experiments. This manipulation did 

not cause more diverse, complex, or rapid strategy use. 

 Trends in the individual animals’ strategy use seem to suggest that individual 

differences in learning rate could bear strongly on the observed rates of strategy adoption 

by the animals. Although the different animals largely arrived at use of the same strategy 

if they were going to use cues, how many trials were required before they used the cues 

reliably seemed to vary across individuals. Here, learning rate is used in the most rote 

associative and parametric of senses. Because such a learning rate is exclusively based on 

observation of behavior, it could be alternatively conceptualized not as reflecting the rate 

of internalization of cue information but instead as the rate of utilization of what 

information was learned (Speekenbrink et al., 2008). The source of any differences in 

learning rate could reasonably originate with differences in leveraging of attention, 

memory for what the animal did in previous trials, or any number of other, equivalently 

plausible cognitive constructs.  

 Consider the strategy analysis results from Experiment 2 for Ingrid (capuchin), 

Albert (capuchin), and Chewie (rhesus) (Figure 4.4). Ingrid reliably used Single-Cue 
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strategies in Experiment 2a and 2e from a very early block through the end of that 

experiment. Albert adopted use of the same Single-Cue strategy more fitfully, and nearer 

to the end of Experiments 2a, 2c, and 2d. Chewie did not evidence use of any strategy, but 

did reliably use Single-Cue strategies at higher block numbers in Whitham and Washburn 

(2020). Each of these observations fits neatly within an account of strategy use as 

dependent on a more global learning rate parameter. In such a conception, Ingrid learned 

one cue’s predictive validity rapidly and utilized it into Single-Cue responding for the 

remainder of the experiment. Instantiation of such a parameter may also explain Ingrid’s 

absent/decremented strategy use in other experiments, if what was internalized at an 

early trial was that no cue has predictive validity to either response. If Albert’s 

hypothetical learning rate parameter was lower, cue information would be learned more 

slowly, and cue-based strategy use would be evident only late in experiments. If Chewie’s 

learning rate was lower still, 1,000 trials of cue exposure could be insufficient for any 

demonstration of cue-based strategy use to emerge.  

 The apparent ceiling on the complexity of strategy use in probabilistic 

categorization may be underpinned by cognitive and associative mechanisms with a much 

longer history of experimental study. Conditioned blocking designs describe the 

remarkable degree to which cue information that does not contribute uniquely to a known 

cue/response relationship will not be acquired despite extensive opportunity for learning 

(Kamin, 1968; Kruschke, 2003). In such a design a participant first learns that cue A is 

strongly predictive of response 1 being rewarded, then is repeatedly exposed to cue A and 

cue B simultaneously, with response 1 still rewarded. Even though the participant 

experiences that cue B is also perfectly predictive of response 1 being rewarded, probe 
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trials with cue B reveal that participants do not behave as if cue B is perfectly predictive 

in this way.   

 A conception of probabilistic categorization in which utilization of single cues acts 

as a prerequisite for use of multiple cues, or even that learning of single cues is simply 

more likely than use of multiple cues, may inadvertently transform any weather 

prediction task into an approximation of a conditioned blocking design. In such a 

conception, learning of the first cue precludes learning of additional cues, even though 

the additional cues may be just as valid (and certainly contribute unique information 

relevant to optimal performance on the task). This synergy between observed strategy use 

and conditioned blocking designs is not perfect. Conditioned blocking designs typically 

require that the first cue learned is perfectly (or very highly) predictive of the response, 

and by definition no weather prediction task has this feature. That the first cue is not 

perfect, and thus does not perfectly block learning of other cues, may be what allows many 

humans to develop multicue responding. Across training, human participants may come 

to learn that the single cue-response relationship that they have learned is imperfect and 

“unblock” attention to other cues. However, animal learning is not prevented by initial 

learning in many other tasks in which animals spontaneously evidence new or superior 

cognition as performance matures. Moreover, in the best evidence for multicue strategy 

use among these experiments (Obi’s Experiment 4), use of multiple cues was not preceded 

by use of less complex strategies. If, when animals do use multicue strategies, they do so 

right away, the initial conditioning phase of the blocking design would not occur. 

Although these notes prevent conditioned blocking from entirely explaining the observed 

pattern of results, any conditioned gating of attention to other cues may have contributed 

to the overall lack of use of multiple cues by the monkeys. 
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 Information theory, more broadly, can present the problem of probabilistic 

categorization in similarly clarifying terms. The information yielded by a highly predictive 

cue was very high – offering an animal reward rates that were nearly at ceiling in most 

experiments from what would otherwise be the floor of chance responding. But once a 

valid cue was learned and utilized, learning a second, equally highly predictive cue offered 

the animal very little new information relevant to its decision-making. Although the 

superior reward rates yielded by the breadth of multicue strategies and the many patterns 

in which cue information might have appeared ensured that the informational and reward 

value of multicue learning was never literally absent, it may have been functionally so in 

many or all experiments.  

 It is also true that while experimenter and reviewer have omniscient insight into 

the structure of the task and the minor superiority of multicue strategy use, the monkeys 

likely lacked any such insight. To highly experimentally savvy animals, a task in which 

rewards are being dispensed at above-chance levels is solved. Moreover, successfully 

ignoring cue information that is not part of the selected, above-chance solution is a skill 

in many tasks that may feature irrelevant or incongruous cue information. Note that these 

considerations from information theory are important only to accounts in which strategic 

use of multiple cues develops incrementally from strategic use of single cues. Although 

this progression is what has been previously demonstrated in weather prediction tasks 

with humans, and was hypothesized in this study, it is not any exclusive way in which 

multiple items of cue information may be utilized. Presentation of weather prediction 

tasks to other species, or of weather prediction cues to primates in other experimental or 

naturalistic contexts, may reveal other routes through which strategic use of multiple cues 

develops. 
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  The discrepancy between the cues with the highest predictive validity and the cues 

with lower predictive validity was intended, and is part of the challenge of situations in 

which multiple sources of information can be productively synthesized. To return briefly 

to examples presented in Chapter I, the metrics that might commonly be highly predictive 

of student success or scholarly quality are imperfect. Some students with high 

standardized test scores will fall short of predicted achievement, and some impressive 

citation metrics do not reflect incredible contributions to science. Other metrics might 

have predicted these discrepancies. Nuance in evaluating the relative validity of multiple 

competing sources of information, and facilitating use of multiple sources of information 

most effectively when a single source would seemingly suffice, is a very desirable set of 

human behaviors. The present results do little to provide direct recommendations for 

producing this desirable type of learning and responding. To the extent that the observed 

strategy use of the capuchin monkeys and rhesus macaques might model that of humans 

in these novel manipulations to the task, none of primary reinforcement manipulation, 

cue manipulation, practice effects, or naturally occurring individual differences in 

attention, memory, or other relevant cognitive competencies are seemingly fruitful 

predictors of multicue strategy use. A set of experiments with human participants that 

manipulated weather prediction tasks in the same ways as this dissertation would bear 

much more strongly on this more applied dimension of the study of probabilistic 

categorization. 

 Any direct mapping between the performance of monkeys and humans on the task 

should be made with extreme caution. Humans have evidenced markedly different, and 

markedly more multicue, strategy use than did the monkeys of this series of experiments. 

As reviewed in Chapter 1, some humans come to evidence some use of multicue strategies 
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in as few as 200 total trials. Differences in the framing of the task may explain part of this 

distinction, as in many probability evaluation tasks (Nickerson, 2004). Those tasks that 

frame the cues as symptoms and the responses as fictional diagnoses, or the cues as 

human features and the responses as preferred ice cream flavors, would seem to make 

clear to human participants in very explicit, very linguistically-embedded way that each 

cue offers something unique to prediction of the response. This distinction aside, this 

series of experiments gave the animals dozens of opportunities, and unique incentives, to 

do what humans do in mechanically identical tasks relatively spontaneously, yet the 

animals never did so. This result, alongside the demonstration by Newell and colleagues 

(2011) of the primary role of explicit cognition in probabilistic categorization and related 

comparative data reviewed by Hampton and colleagues (2020), suggests much more 

strongly that differences in ability to leverage explicit cognition drives the observed 

species differences in probabilistic categorization. Animals do learn to use multiple 

informative cues to guide their responses, as robust literatures on contextual cuing and 

cognitive control demonstrate exhaustively (e.g., Smith & Beran, 2018). It is in the 

domain of this dissertation, the rare (in published cognition literature) or common (in 

human and monkey ecology) situation in which cues conflict and underspecify the 

outcome, that such a demonstration remains elusive. 

 If these results reflect a fundamentally cognitive difference between humans and 

monkeys, the specific nature of that difference likely reflects a unique, qualitative 

difference in learning (Rumbaugh, 1971). Comparative cognition is the study of many 

such differences, qualitative and quantitative alike, yet so severe a distinction among 

these species in a task with seemingly little language engagement is more unusual. A 

design in which human participants completed a standard weather prediction task under 
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conditions of articulatory suppression (e.g., verbally repeating "1, 2, 3, 4, a, b, c, d") might 

reveal some latent language engagement in the task. That the task not only engages 

explicit learning faculties more than it does implicit learning faculties, but also goes 

further still to engage high-level use of language, would be an unreported dimension to 

the task. This would add additional color to previously reported relationships between 

language impairments and probabilistic categorization. Those reports were motivated by 

the ostensible mediation of both language impairment and the weather prediction task by 

implicit, procedural processes, but may instead reflect the direct influence of language on 

weather prediction performance. 

  These data and analyses facilitate only speculation about the source of individual 

differences in strategy adoption across monkeys. No obvious effects of animal age or sex 

were observed, but formal analyses of any effect of these parameters are precluded by the 

small sample sizes.  The visualizations of the strategy analysis outputs (Figures 4.3-6) 

suggest a clear difference between the strategy use of capuchins and rhesus macaques in 

these experiments. That the capuchin monkeys were demonstrably superior in leveraging 

cognition of probable explicit nature is noteworthy, given that the species is often less 

adept with other tasks described in such terms (e.g., Smith et al., 2009, Smith et al., 2018). 

This superiority is largely relative, however; the capuchin monkeys did not evidence any 

rule-based cognition that they have not previously demonstrated in discrete 

categorization tasks (e.g., Smith et al., 2012) or the probabilistic categorization task of 

Whitham and Washburn (2020). Instead, it was the rhesus macaques that sharply 

diverged from species norms on categorization and decision-making tasks of this kind. 

Absent other behavioral evidence from the rhesus macaques, unanticipated tumult in 

their housing, uncharacteristically low-quality responses to this and other concurrent 
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computerized cognitive-behavioral tasks, and other unaccounted motivational factors 

(described below) likely drove the apparent species difference to a much greater degree 

than any purely cognitive factor. 

 

5.2 Perceptual Determinants 

Hypothesis IV: Utilization of cues is, in part, a perceptual process, and design 

considerations that have been demonstrated to engender multicue perception will 

engender multicue strategy use. 

 

 The data from Griffin (capuchin), Ingrid (capuchin), and Obi (rhesus) in 

Experiment 3a support Hypothesis IV. Presentation of all cue information as one, 

spatially-contiguous percept seemed to engender cue-based responding on the basis of 

more than one cue among a subset of animals that were already using single-cue strategies 

effectively. Further methodological considerations could do much to shrink the gulf 

between the strategy use of monkeys in this series of tasks and what is reported of 

humans. Multiple discrete cues (i.e., individual clipart images) were exclusively used in 

these and other weather prediction tasks purposefully. Multiple separable, and 

potentially opposing, cues must be synthesized in the ecologically relevant problems that 

the task purports to model. In the canonical example, of predicting rainy weather, one 

uses the discrete and separable cues of overhead cloud cover, the recent weather report, 

and whether passersby have raincoats to estimate whether rain is likely. Despite this deep 

embedding of use of discrete cues in the probabilistic categorization literature, it is 

possible that this format is simply incongruous with how monkey perception receives cue 

information. A weather prediction task in which the four cues were configured as 
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dimensional properties of a single stimulus might more faithfully detect their 

probabilistic categorization abilities without any corrupting influence of local precedence. 

For example, a single cue that varies in shape (e.g., rectangle vs trapezoid), orientation 

(e.g., upright vs horizontal), x-axis position onscreen (e.g., left vs right side of screen), and 

y-axis position onscreen (e.g., upper vs lower portion of screen) could represent each of 

the cue configurations of conventional weather prediction tasks. Such an arrangement is 

not without precedent in study of probabilistic categorization (e.g., Kruschke & Johansen, 

1999), and may be uniquely well-suited for comparative study of monkeys’ cognition. 

 It is possible that monkeys’ predisposition to process perceptual information more 

locally did not cause the observed pattern of results in Experiment 3a. With only 13 total 

cue patterns, and therefore 13 unique percepts, the strategies used by these animals may 

be equally well-described as an “explicit memorization of unique category memberships” 

strategy. Animals are known to excel at learning how to map far greater numbers of 

unique stimuli to category memberships in ways that are not necessarily subject to the 

algorithmic cue weighting that probabilistic categorization ostensibly demands (e.g., 

Herrnstein et al., 1976). A requisite limitation of the manipulations of Experiment 3 was 

the lack of any mechanism with which to validate that the manipulation had functioned 

as intended. That is, although available literature suggested that attempting to subvert 

global/local biases or increase stimulus salience were worthwhile manipulations given the 

species and cognitions under study, no data from this study can estimate either the 

magnitude of global/local biases or the degree to which they were subverted (or whether 

order effects not captured by Experiment 1 went on to contribute to the observed strategy 

elaboration in Experiment 3a). Instead, these data provide compelling evidence that 
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further explorations of the role of primate perceptual norms will be important to any 

further exploration of probabilistic categorization. 

  

Hypothesis V: Utilization of cues is, in part, a perceptual process, and cues that are 

qualitatively different than those of other experiments (socially-interesting rather than 

asocial; discrete rather than abstract; inherently salient rather than sterilely 

controlled) should engender qualitatively different strategy use. 

 

 Hypothesis V was not supported. Manipulation of neither the orientation nor the 

identity of the cue information caused strategy use to become more frequent or more 

complex. In contrast, those animals that completed previous experiments strategically 

often failed to do so in the same way in Experiment 3. Those animals that did not use cue-

based strategies in previous experiments were not prompted to do so by the ostensibly 

perceptual manipulations of Experiment 3. The salience manipulations of Experiment 3c 

and 3d were perhaps particularly fraught. Sourcing images from public databases for use 

on spectrographically uncalibrated computer monitors ensured that the color and 

luminance of the images were only inconsistently faithful to the color and luminance 

information in the scene being depicted, and highly unfaithful to the species under study 

(Stevens et al., 2009). The highly artificial nature of those images likely made them much 

more akin to the clipart images of the other experiments than was originally intended 

(although see Talbot et al., 2016, for a demonstration of capuchin monkeys’ ability to 

recognize and adaptively to use similarly formatted images). Any corrupting influence of 

these perceptual considerations was likely minor, but one of many contributors to lower 

than expected data quality. If feasible, any future exploration into this manipulation 
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should maximize the fidelity to real color and luminance of any digital images that are 

expected to function via their fidelity to real color and luminance. 

 The near-exclusive use of single cues among monkeys that used cue-based 

strategies is not without precedent in other perceptual tasks. In comparative perception, 

the same predisposition of monkeys to perceive local stimulus features rather than more 

global properties that motivated the manipulations of Experiments 3a and 3b can be 

readily conceptualized as a more modular form of Single-cue strategy use. The  

experimental evidence that was used to justify Experiment 3b, specifically, in which faces 

are sometimes found to be a class of stimuli that are processed more globally and 

holistically than other manner of stimuli, are party to their own flavor of nonhuman 

primates’ single-cue superiority. In human gaze perception research, participants use 

both the head orientation and ratio of iris to visible sclera to make gaze judgments 

(Emery, 2000). In limited testing nonhuman primates have not been demonstrated to do 

so, and instead seem to ignore head direction in favor of the single cue of iris/sclera 

(Tomonaga & Imura, 2010).  

 

5.3 Motivational Determinants 

Of least theoretical interest to the study of probabilistic categorization were 

motivational determinants. In few situations would we expect complex cognition to 

increase as motivation decreases. Moreover, motivation may have been directly 

dependent on strategy use in the task: some of the animals that in Experiment 1 appeared 

most primed to demonstrate variable or complex strategy use in later experiments nearly 

universally failed to complete all later experiments.  
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Lower, but still high, levels of responding on the basis of no cue information were 

reported in the mechanically identical task of Whitham and Washburn (2020). Many 

animals in each study, including some animals that participated in both projects, 

seemingly evaluated the rate of pellet reward of side-biased or random responding as 

worthwhile. The manipulations to reward rate that were already included in the planned 

series of tasks reduced the rate of this behavior only inconsistently. Unfortunately, 

correction trials after incorrect responses could not be incorporated into the design (as 

recommended by Smith et al., 2012) without thwarting the meticulously controlled 

cue/response relationships on which weather prediction tasks are based. 

The discrepancy between the rates of responding on the basis of no cue 

information in Whitham and Washburn (2020) and this series of tasks is more curious. 

Because 1,000 trials represented the extent of animals’ experience with each experiment 

in each series of the present tasks, but represented “early learning” in the task of Whitham 

and Washburn, it is possible that this dissertation oversampled animals’ earliest learning 

of a new task. Random or side-biased responses should be evident in these earliest trials, 

in the absence of any learning of cue information that could direct responding otherwise. 

However, those animals in both datasets that demonstrated use of cue based responding 

did so as early as in the first few blocks of a new experiment. A priori, few interindividual 

differences in learning rate within a species are of such magnitude as to require dozens-

fold differences in exposure to cue information for equivalently-complex responses to be 

made. This suggests even more strongly that the disparity in cue-based strategy use is one 

downstream from motivational factors of the monkeys and unquantified factors of their 

testing. Many of the same animals, tested two years later on a mechanically identical set 
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of tasks, demonstrated markedly different appetites for using their cognitive and 

perceptual powers to bolster their reward rate in the task. 

It is difficult, but not impossible, for future work to account better for these 

considerations. Because Experiment 4 demonstrated that (for some monkeys) there is 

some reward rate at which responses that are not based on cue information will give way 

to cue-based responding, it is perhaps reasonable to port these more extreme ITI and 

timeout durations to every experiment, for every monkey. However, just as the same 

parameter values of Whitham and Washburn (2020) were not sufficient to encourage the 

same degree of strategic responding in this dissertation, there is little reason to believe 

that any combination of parameter values will suit different animals (or the same animal 

at two different times) equally well. This challenge is common throughout comparative 

psychological study of animals with as many individual differences (and as rich a 

nontesting life, complete with variable diet, hormonal cycles, social forces, etc.) as 

nonhuman primates. The specific questions of this dissertation, ones of experimental 

manipulations’ effect on individual monkeys’ ability and inclination to deploy strategies 

of heretofore undocumented complexity, make the moving target of subjective motivation 

especially relevant. The design of this dissertation, in which reinforcement factors were 

rigorously controlled for but subjective motivation seemingly varied in uncontrolled and 

unmeasured fashion, leaves open the possibility that monkey would not demonstrate 

multicue strategy use, not necessarily that they could not. Evidence from Experiment 4 

falls short of justifying this last point, as the most extreme adjustments to reward rate 

only attenuated the most motoric, least cognitive of response strategies; they did not elicit 

any unique strategy use. 
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5.4 General Discussion 

This dissertation builds on the work of Whitham and Washburn (2020) to suggest 

much more strongly that monkeys are Single-Cue strategy users to an exceptional degree. 

Primates have proven to be accomplished rule-users in a variety of previous 

categorization tasks, dating to the earliest laboratory-based descriptions of rhesus 

monkey behavior (Hoffman et al., 2009; Kinnaman, 1902). That they were repeatedly 

demonstrated to lean heavily on simple rules when relationships among cues and 

responses were complex, probabilistic, and, perhaps, perceptually difficult to discern, fits 

neatly alongside existing scholarship in comparative and cognitive psychologies. 

The niche modeling used to produce this result is but one of many published 

procedures for analyzing probabilistic categorization data. The models largely produce 

similar results, given the same inputs, and the explanatory virtues that drove selection of 

the strategy analysis perspective employed in the preceding analyses held true. That said, 

every model is imperfect, and other parameters and models might offer additional 

insights into this design and others of its kind. 

In the few cases in which strategic use of multiple cues was identified by the 

strategy analysis above, analyzing blocks of greater than or fewer than 40 trials might 

have been clarifying. Use of 40 trial blocks was informed but arbitrary. An analysis of 

smaller block sizes would be better able to detect strategies that are changing rapidly, 

whereas an analysis of larger block sizes would provide the model with better information 

with which to identify strategy use. An extension of the strategy analysis presented in this 

manuscript might win both of these advantages simultaneously. Many strategy analyses 

could be run with the same data, but variable block sizes. For example, the same data 

could be analyzed three times with blocks made up of 25, 50, and 100 trials. Moreover, 
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the same analysis could use each of 25, 50, and 100 trial blocks in the same analysis (as 

actual strategy use surely changes much more irregularly than once every n trials). The 

analyst could then report the extent to which these analyses agree, and the distribution of 

model fits across the individual strategy analyses. 

Two parameters in particular, learning rate and previous strategy use, would seem 

to be obvious candidates for inclusion in future modeling. A virtue of the analyses 

reported above is that they are memoryless – the strategy identification for a given block 

is not dependent on any previous or future blocks. For questions that are fundamentally 

focused on description, rather than on prediction of future trends in a specific animal’s 

behavior, this feature maintains model sensitivity to what was often a dynamic shift from 

cueless to single-cue responding. The results presented in Chapter 4 make clear, however, 

that strategy identifications for consecutive blocks are very highly autocorrelated (Figure 

4.7). This autocorrelation, known to the experimenter but not to the model, would ideally 

be incorporated into the modeling process as an additional predictor of strategy use in a 

block. Such an incorporation would do much to sharpen strategy identifications above the 

rates of correct identification depicted in Figure 4.1. 

Bayesian model selection, psychologist adoption and interpretation of Bayesian 

techniques, and the tools for Bayesian mixture model specification and fitting have each 

advanced precipitously in the previous decade. Many Bayesian techniques would 

incorporate information from serialized blocks naturally via specification of a prior 

probability that is then updated with observed data (Kruschke & Liddell, 2018b).  As an 

ancillary benefit, estimation of strategy adherence rates would be incorporated into the 

model by default and provide an additional dependent measure on which hypotheses 

about strategy use and individual differences might be tested. Constraints would be 
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required to ensure that the model retains sensitivity to new data, and does not dismiss 

strategic responding because previous blocks were not strategic. Without these 

constraints, the model might get “stuck” with a strategy that was highly evidenced in early 

trials but was an inappropriate depiction of mature responding. With the proper 

constraints in place, an evolved, Bayesian version of the present strategy analysis (akin to 

the Bayesian strategy analysis of Lee, 2016, but on a much larger scale), could do much to 

sharpen detection of strategy use in weather prediction and offer additional description 

of its deployment. 

A principal advantage to the strategy analysis technique used above is that it can 

test an arbitrary number of strategy specifications against each other. Following Meeter 

and colleagues (2006), the strategies specified above ostensibly included all those that 

may reasonably have been employed by human participants. It remains possible, 

however, that another specification might better capture monkeys’ (or humans’) 

behaviors in the task than those represented in Table 4.1. Because of this reality, as well 

as these results’ apparent suitability for future synthesis with allied data on individual 

differences, the rich potential for alternative analysis strategies (Bayesian or otherwise), 

and the more far-reaching virtues of transparent science, all data and code to run analyses 

are publicly available in Open Science Foundation’s repositories. 

The profound, consistent null result of single cue strategy use is not sufficient to 

discriminate between more cognitive sources of the strong predisposition to single cues 

or more perceptual ones. To both the researcher interested in why monkey strategy use is 

not more like that of humans, and the allied researcher interested in what drives the 

complexity of human strategy use, a design that can make this distinction remains a key 

goal of future research. In much of the scholarship of comparative cognition, individual 
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animals, and primates specifically, are exemplary in the most literal of senses. Each 

individual evidences a unique suite of cognitive competencies and motivational 

dispositions that are dictated in part by their species, but often to an equal or greater 

degree by their other traits. In the series of experiments that comprises this dissertation 

this individuality may have been true in the motivational sense, but, uncharacteristically, 

not in the cognitive competencies evidenced by the animals. In the specific set of 

cognitions required to complete weather prediction tasks monkeys have, to this point, 

demonstrated that they are impressively of a kind. This result has held in spite of a 

diversity of task manipulations of theoretical or hypothetical import. Such a monkey 

monolith has few parallels in comparative psychology, and represents a fertile ground for 

continued exploration of what procedural determinants and species differences drive this 

unusual invariance.  
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