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ABSTRACT 

Multiple-systems theorists assume that different brain systems facilitate different types of 

category learning. This project focuses on whether perceptual learning facilitates family-

resemblance category learning. Rhesus macaques were tested to see if they were able to learn a 

single category prototype and also learn about two category prototypes simultaneously through 

mere exposure. Classic COVIS theory predicted exposure would benefit learning a single 

category prototype but not learning simultaneously about two category prototypes. COVIS plus 

theory predicted exposure would benefit in both situations. Results showed that exposure was 

clearly beneficial when learning a single category, but harmed learning two categories. Results 

from prototype modeling suggest that relevant exposure did allow the macaques to build two 

separate prototype representations but did not aid categorization. This was not predicted by either 

theory. Further research needs to be done to distinguish between the two theories.  
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1 INTRODUCTION  

Over the past few decades, categorization has been a popular subject of exploration by 

cognitive scientists and neuroscientists. The ability to make proper category decisions allows us 

to successfully navigate the world around us. Therefore, researchers have been searching to 

understand how humans and animals learn perceptual categories (Ashby & Maddox, 2005; Smith 

& Church, 2018; Smith & Minda, 1998; Smith et al., 2016; Squire & Knowlton, 1995; Vogels et 

al., 2002; Zaki et al., 2003). Some theorists posit that there is a single system for category 

learning (Bruner et al., 1956; Hull, 1920; Levine, 1975; Restle, 1962). However, a number of 

researchers have more recently theorized that humans may be able to learn categories using 

multiple methods, as opposed to just one (e.g., Ashby et al., 2011; Minda & Smith, 2001; 

Nosofsky et al., 1994; Smith & Church, 2018; Smith et al., 2016). Multiple-systems theorists 

have tried to fully understand how different brain systems may facilitate different types of 

category learning. In the current studies, I focused on whether perceptual learning facilitates 

family-resemblance category learning. Specifically, I tested rhesus macaques to see if they are 

able to simultaneously learn about two category prototypes through mere exposure. This had 

never been tested in rhesus macaques before, and still has not been tested in humans using novel 

stimuli. This study allowed us to see if prototype knowledge about each category can generalize 

to new members after receiving exposure and no direct training. I predicted receiving exposure 

to relevant category members would provide benefit to participants in a later categorization test, 

as they would have built cortical representations of the prototypes through perceptual learning. 

This finding could make important contributions to both the categorization and perceptual 

learning literatures, because it is not predicted by important categorization and perceptual 

learning theories and can, therefore, distinguish between competing theories in both fields. In the 
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sections that follow, I will begin by detailing the theories of category learning and present 

evidence of mixed models through patient data. Next, I will discuss the theories of perceptual 

learning, and compare and contrast evidence for each. I will then describe how a hybrid model 

that integrates an influential multiple-systems category theory with one of the dominant 

perceptual learning theories may provide a fuller understanding of category learning, explain 

why it differentially predicts that primates can learn to distinguish two equally familiar 

categories from mere exposure, and present the one previous human study that has tried to test 

this possibility. 

2 THEORIES OF CATEGORY LEARNING 

Theories of category learning are continuously evolving. There are several major 

types of category learning theories: categorization by learning defining criteria (rule 

learning), exemplar comparison, prototype comparison, and associative learning (e.g., 

Bruner et al., 1956; Medin & Schaffer, 1978; Pavlov, 1927; Rosch, 1973). It has been a 

long running interest of researchers to determine which of these theories best describes 

the way humans and animals create and learn categories (e.g., Ashby & Valentin, 2017; 

Le Pelley, 2014; Newell et al., 2010; Nosofsky 1987; Smith & Minda, 1998). 

In the human literature, the classical theory of category learning assumes that we 

learn categories by discovering defining criteria (category rules). Initially, researchers 

thought this was the only way categories were formed for humans (Bruner et al., 1956; 

Hull, 1920; Levine, 1975; Restle, 1962). In this view, humans define perceptual 

categories by focusing attention to particular stimulus features and explicitly finding 

those that can correctly define the category. For example, the features four sides of equal 

length with equal angles sufficiently describes the square category because every entity 
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with these attributes is a square (Ashby & Maddox, 1998). When a stimulus is presented to the 

subject, the subject retrieves the set of features associated with one of the categories and then the 

stimulus is tested to see whether it possesses the exact set of features. We rely on working 

memory (Fuster, 1989) and executive functions (Posner & Peterson, 1990) to evaluate these 

featural hypotheses. Though many researchers have concluded that rule learning plays a role in 

human categorization (e.g., Ashby & Maddox, 2005; Bruner et al., 1956; Nosofsky et al., 1994), 

it quickly became apparent that many natural categories have no clear defining criteria (e.g., an 

ostrich in the bird category, a peanut in the vegetable category) and there must be other ways to 

learn categories (e.g., Rosch, 1973, 1975).  

As it became evident that not all category learning could be described by the discovery of 

defining criteria, the prototype comparison theory of categorization was developed (e.g., Rosch 

1973, 1975). Prototype comparison theory suggests that we average our experiences with 

multiple category members into a single schema or prototype that we then compare with new 

examples to determine if they belong to the category. This theory gained a wide following as it 

could easily explain many categorization phenomena (Homa et al., 1981; Minda & Smith, 2001; 

Posner & Keele, 1968, 1970; Reed, 1972; Rosch, 1973, 1975; Smith & Minda, 1998). However, 

this theory had difficulty explaining people’s ability to learn odd category members that do not 

share common features with the other members. 

To better explain how atypical category members were learned, exemplar comparison 

theory emerged (e.g., Medin & Schaffer, 1978). Exemplar comparison theory assumes that 

people categorize a novel object by comparing its similarity to the memory representations of all 

previous exemplars from each relevant category (e.g., Hintzman, 1986; Medin & Schaffer, 1978; 

Nosofsky, 1987). Instead of having just one prototype representation of a dog, people have all 
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the different representations of dogs they have seen, and they can compare new furry friends to 

all these representations to determine overall similarity. This overall similarity to most exemplars 

determines how quickly or accurately a category decision can be made (the typicality effect; 

Rosch, 1973, 1975), while still allowing atypical members to be learned over time because of 

similarity to their exemplars (e.g., Nosofsky, 1987). Exemplar theory has come under criticism 

for its unrealistic view of memory storage and retrieval, and its inability to accurately predict a 

number of categorization phenomena (Smith & Minda, 1998, 2001; for review, see Smith, 2014). 

As prototype and exemplar comparison theories battled for dominance in the 

human category learning literature, associative learning theory was dominant in the 

animal category learning literature (see Smith & Church, 2018). Associative learning, in 

the category learning literature, focuses on operant learning. Operant learning is a 

mechanism by which stimuli can be linked to responses through reinforcement. An 

animal sees a stimulus and it makes a response to that stimulus. If the animal is then 

rewarded with a reinforcer, the stimulus is associated to the response, making that 

response more likely to be triggered by that stimulus (or others similar to it) in the future. 

Research in neuroscience suggests this type of operant associative learning happens 

slowly across multiple instances and requires time-locked sequences of stimulus-response 

and reinforcement (see Ashby & Valentin, 2005, 2017). When the subject makes a 

correct categorization response and receives an immediate reward, dopamine is released 

to the striatum causing the most recently active synaptic connections between stimulus 

and response to be strengthened. If there is no reward or it does not arrive during the 

relatively short time window before activity returns to baseline (Yagishita et al., 2014), 

then this strengthening does not happen (Yin et al., 2005). Many researchers believe that 
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associative learning is the only way animals learn (e.g., Le Pelley, 2014; Le Pelley et al., 2019). 

This focus on associative learning created a seemingly unbridgeable divide between the human 

and animal category learning literatures (Smith & Church, 2018). 

However, more recently some initial bridging cables have been built as a number of 

researchers have theorized that humans (and perhaps some animals) may be able to learn 

categories using multiple methods, as opposed to just one (e.g., Ashby et al., 2011; Minda & 

Smith, 2001; Nosofsky et al., 1994; Smith & Church, 2018; Smith et al., 2016). These mixed 

models of category learning have sparked a lot of controversy in the literature. Some single 

theorists have worked to disprove the idea of mixed models in categorization altogether (e.g., Le 

Pelley, 2014; Le Pelley et al., 2019). Even those who support mixed models do not agree on 

exactly how category learning is accomplished. For example, some mixed model researchers 

theorize that we can switch between comparing possible category members to a prototype or to a 

limited number of exemplars in memory (e.g., Minda & Smith, 2001). There is evidence 

showing that humans do in fact default to comparing to a prototype when categories have large 

numbers of exemplars, but they may simply memorize individuals when a small number of 

exemplars repeat often (e.g., Minda & Smith, 2001). Smith et al. (2008) used different types of 

category structures (Shepard et al., 1961) and showed that macaques tend to use prototype 

comparison. However, by using an exclusive-XOR task, Smith et al. (2008) showed that when an 

exemplar approach optimizes reward, macaques are able to switch to this approach instead of 

their default prototype approach. Results from these studies suggest that humans and macaques 

use either approach depending on the situation, thus supporting mixed model views of 

categorization. On the other hand, Nosofsky et al. (1994) created a mixed model known as rule-

plus-exception model (RULEX). According to this model, we learn categories by creating and 
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testing simple logical rules, and then memorizing the occasional exceptions to the rules 

(Nosofsky et al., 1994). For each person, one or two rules is stored along with its few exceptions 

as an exemplar. These rules are learned slowly, on a trial-by-trial basis (Nosofsky et al., 

1994). The participant searches for a consistent single-dimensional rule, and once found, 

the participants can move on to looking for a second, less consistent single-dimensional 

rule, and so on. This model easily accounts for the individual differences found in the 

categorization literature, because of differences in the ability to remember the exceptions 

and strategies for finding rules. 

Another mixed model view is the multiple category learning systems theory, COVIS 

(Competition between Verbal and Implicit Systems). This model has been supported by 

cognitive and neuroscience findings (for review, see Ashby et al., 2011). This model assumes 

that category learning can take place by either associative learning or discovering defining 

criteria (rule learning). Associative learning is thought to be supported by the implicit-procedural 

system, which learns by associating responses to whole stimuli and generalizing based on 

similarity. These associations are not conscious or easily verbalizable. Rule learning is thought to 

be supported by the explicit-declarative system which instead focuses on features of stimuli that 

are predictive of its category, which are typically verbalizable. There is evidence of this 

dissociation in the cognitive behavioral literature for both humans (for review, see Ashby & 

Valentin, 2005, 2017) and monkeys (Smith et al., 2010, 2012).  

3 CATEGORIZATION IN PATIENTS WITH BRAIN DAMAGE: SUPPORT FOR 

MIXED MODELS 

Several researchers have focused on testing patients with amnesia’s category and 

memory decision abilities which has helped us to better understand the role of exemplar memory 
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in categorization. This research focused on what categorization abilities were still intact, when 

explicit memory for exemplars was absent. For example, Knowlton et al. (1992) investigated 

whether the ability to classify on the basis of rules can be learned without memory for the 

specific instances used to teach the rules. They tested patients with amnesia and control 

participants on an artificial grammar learning task. Patients with amnesia were just as able as 

control participants to classify letter strings that had been generated according to rules of an 

artificial grammar (Knowlton et al., 1992). The patients with amnesia were only impaired in their 

ability to recognize the exemplars that had been used to teach them the rules. They concluded 

that rule learning does not require intact explicit memory. To follow up, Squire and Knowlton 

(1995) presented a patient with amnesia, E.P. with 40 dot distortion patterns and then later tested 

him to determine whether new dot patterns belonged to the category or not, as well as his ability 

to recognize viewed patterns in a recognition memory task. E.P. exhibited an intact ability to 

classify novel dot patterns according to whether they did or did not belong to the same category 

as the training patterns. His intact ability to acquire category-level information occurred despite a 

complete failure to recognize previously presented dot patterns as familiar. Squire and Knowlton 

suggested that E.P. performed well on classification, in contrast to recognition, because E.P. was 

still able to abstract and retain a single prototype after seeing 40 related dot patterns, even though 

he could not remember the particular exemplars. These studies were taken as evidence against a 

unitary exemplar comparison theory since the ability to acquire rules and other category-level 

information was intact despite failures of exemplar memory. However, it is still unclear whether 

the patients (and controls) in Knowlton et al.’s (1992) study using an artificial grammar task had 

actually learned the underlying rules or if they simply learned to classify on the basis of 
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similarity to a prototypical string (Servan-Schreiber & Anderson, 1990). If the latter is true, it 

would suggest that only prototype learning may survive deficits in explicit memory. 

Further evidence for prototype formation in patients with amnesia comes from Kolodny 

(1994), who tested category learning and recognition memory in amnesic patients and controls 

using dot patterns. Participants were told the patterns fell into three different categories. During a 

training phase, participants were shown the dot patterns along with its category label (A, B, C). 

Later, participants were told they would see more clusters of both old and new patterns, but the 

categories still applied. As the patterns were presented, participants circled A, B, or C on a sheet 

of paper to categorize the images. The same study was repeated using paintings from three 

different artists with different styles. Patients with amnesia learned the dot patterns categories at 

the same rate as controls and showed equivalent transfer. However, the patients with amnesia 

were not able to categorize the paintings based on style whereas the controls could successfully 

do so. During a recognition test, the control participants were significantly more accurate at 

recognizing old and new items with both the dot patterns and paintings than the patients with 

amnesia. This result suggests that participants were able to learn categories and their labels 

through training, even when explicit memory was absent. Kolodny suggested that patients with 

amnesia were successful with the dot-patterns and not the painting classification because the dot-

pattern task was a purely perceptual, whereas the painting were more abstract. 

 To determine whether patients with amnesia could only learn category information at a 

perceptual level of analyses, Reed et al. (1999) tested the patients’ category knowledge on 

stimuli that had easily verbalizable discrete features using a mere exposure phase and then a 

categorization phase. They hypothesized that if exposure items were more discrete and easier to 

label, the individuals would acquire category knowledge declaratively, that is, explicitly as 
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propositional knowledge about the regularities among the training items (Reed et al., 1999). 

Results indicated that the patients with amnesia categorized accurately on the basis of discrete 

features as accurately as controls. This suggested, once again, that even verbalizable rule-like 

category knowledge can be obtained without explicit memory. These results have been replicated 

by other researchers testing both typical and atypical populations (i.e., Sinha, 1999; Zaki et al., 

2003).  

There is also evidence from patient work that categorization can depend on implicit-

procedural processes. For example, to examine probabilistic category learning, Knowlton and 

colleagues (1994) examined amnesia patients’ performance on the weather prediction task in 

comparison to healthy controls. The patients with amnesia exhibited normal learning of the 

probabilistic relationship between the cues and outcomes during the first 50 training trials 

(Knowlton et al., 1994). These results suggested that categorization was not dependent on short-

term memory but instead depended on a more long-term, nondeclarative process. In addition, a 

variety of patient groups are known to have deficits in both rule-based learning and tasks thought 

to require associative learning, yet they show normal prototype distortion learning when asked to 

decide whether items belong to the category or not (Ashby & Maddox, 2005). This includes 

patients with Parkinson’s disease (Reber & Squire, 1999), schizophrenia (Kéri et al., 2001), and 

Alzheimer’s disease (Sinha, 1999).  

Taken together, these patient studies suggest that people can acquire category 

information about even complex stimuli without a conscious memory for exemplars or rules 

(Knowlton et al.,1992; Lewicki et al.,1988; Reber & Allen 1978), even with deficits in 

associative learning. All of which supports the idea that multiple category learning systems may 

support different types of category learning. From a neuroscience perspective, we know a lot 
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about the brain systems involved in learning exemplars (Palmeri, 2014), associative learning 

(Yin et al., 2005), and rule learning (Ashby & Ell, 2001). However, we know less about the 

neural underpinnings of prototype formation, though there is an assumption that it is part of basic 

perceptual processing (Goldstone, 1998) and may under some circumstances come about because 

of perceptual learning. 

4 PERCEPTUAL LEARNING THEORIES 

To better understand how perceptual learning may allow for prototype formation, it is 

important to understand the theories behind perceptual learning. Perceptual learning has been 

defined as “a relatively permanent and consistent change in the perception of a stimulus array, 

following practice or experience with this array” (Gibson, 1963). Perceptual learning and 

categorization are both sources of perceptual structuring of our environment (Carvalho & 

Goldstone, 2016). For example, a color wheel is made up of various shades of color. If we were 

to perceive it directly, we would see a continuous set of shades. However, what we actually see 

is a series of different colors that can be named and defined. This example demonstrates how our 

perception can be influenced by categories. Categorization not only provides organization to a 

complex world but also works to adapt the perceptual features used to perceive this world. 

Categorization is thus the result of perceptual experience and simultaneously a pervasive 

influence on that same perceptual experience (Goldstone, 2000; Goldstone et al., 2000; Schyns et 

al., 1998; Schyns & Murphy, 1994). Since perceptual and category learning constitute two 

different levels of processing information (e.g., their specificity and level of abstraction), they 

have had separately developing literatures (Carvalho & Goldstone, 2016). However, here I hope 

to provide a bridge between the perceptual and category learning literatures. Theories of 

perceptual learning historically fall into three main categories. 
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4.1 Representational Theories 

Goldstone (1998) first defined representational theories of perceptual learning when he 

introduced the ideas of unitization and differentiation to the perceptual learning literature.  

Differentiation involves an increased ability to discriminate between dimensions or 

stimuli that were psychologically fused together (Carvalho & Goldstone, 2016). Once separated, 

discriminations can be made between percepts that were originally indistinguishable. 

Differentiation can happen with whole stimuli as well as parts within stimuli. Simple pre-

exposure to stimuli to be distinguished promotes their differentiation. Gibson and Gibson (1955) 

showed that even when no feedback is provided, practice in identifying visual scribbles increases 

their discriminability. Discrimination training is often highly specific to the task. Trained 

performance on a horizontal discrimination task frequently does not transfer to a vertical version 

of the same task (Fahle & Edelman, 1993; Poggio et al., 1992), to new retinal locations (Shiu & 

Pashler, 1992), or even from the trained eye to the untrained eye (Fahle et al., 1995). 

Unitization is roughly the counterpart to differentiation. Here, the person perceives the 

stimulus as a single property as opposed to perceiving its distinct properties. For example, those 

who read in English fluently do not view familiar words as the distinct letters, but rather view 

those letters as a single word. Czerwinski et al. (1992) described a process by which 

conjunctions of stimulus features are “chunked” together so that they become perceived as a 

single unit. Shiffrin and Lightfoot (1997) argued that even separated line segments can become 

unitized following prolonged practice with the materials. One obvious role for perceptual 

learning processes in category learning could be the unitization of prototype representations. 

Representational views assume that exposure or training actually change the way that stimuli are 

perceptually represented, and those representations are believed to be potentially more unitized 
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and/or more distinguishable from other representations than representations that have not been 

pre-exposed (Church et al., 2013).  

4.2 Associative Theories 

Another dominant explanation of perceptual learning comes from associative theories. 

The classic gradient interaction theory suggests that positive excitatory gradients of 

generalization develop around reinforced stimuli, while negative inhibitory gradients surround 

nonreinforced stimuli (Spence, 1937). An individual’s ability to discriminate is governed by the 

summation of these gradients. When reinforced and nonreinforced stimulus gradients are 

overlapping and difficult to discriminate, they will cancel each other out, and learning will 

proceed more slowly. If the gradients are overlapping but are more separated their summation 

will produce a stronger difference between the reinforced and nonreinforced stimulus that can 

generalize (see McLaren et al., 1989; McLaren & Mackintosh, 2000). Elemental-associative 

theory, referred to as MKM after the authors (McLaren, Kate, & Mackintosh) assumes that 

learning requires associations between the perceptual inputs and responses (McLaren et al., 

1989). The MKM model proposes that stimuli are made up of a combination of similar and 

unique elements that differentiate stimuli. The authors of this model assume it is more difficult to 

discriminate stimuli when they have several shared common elements, which may seem obvious. 

However, a less obvious assumption of this model is that when elements co-occur, there will be a 

reduction in the salience of those elements. This is often referred to as latent inhibition. For 

example, if you have two stimuli, AX and BX, they will have unique elements (A and B 

elements) but will share some things in common (X elements). The X elements are the basis for 

any generalization between them. So, if BX is pre-exposed for some time before AX is paired 

with an unconditioned stimulus, less conditioning will generalize to BX, as compared with a 
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control group that received no pre-exposure because the X elements will be latently inhibited 

(therefore having reduced salience) by pre-exposure. These inhibited elements will then be 

overshadowed by the A elements which will acquire the most associative strength to the 

unconditioned stimulus, leaving less strength to accrue to the X elements and hence generalize to 

BX (McLaren & Mackintosh, 2000). Consequently, one of the principal effects of pre-exposure 

is that elements that frequently co-occur reduce in salience more quickly than elements that 

rarely co-occur (Milton et al., 2019). This means that the unique elements that discriminate one 

stimulus from another will tend to be higher in salience than the common elements that both 

stimuli share, because the common elements will have been presented more often and because 

they are good predictors of one another. According to MKM theory this preferential processing 

of the unique elements, which discriminate between items, compared with the common elements, 

which do not discriminate, is what leads to the increased differentiation of stimuli after pre-

exposure (Milton et al., 2019; McLaren et al., 1989).  

4.3 Attentional Theories 

Attentional theories have been a dominant explanation of perceptual learning, especially 

in the visual domain. There are two primary types of attentional theories of perceptual learning, 

attentional weighting and attentional spotlight theories. Although they are both considered 

attention-based theories, their assumptions are quite different, and therefore it is important to 

understand each individually. 

Attentional spotlight theories typically involve participants using some sort of search 

process to find the unique aspects of the representation, and once found, the participant can pay 

attention to these particular aspects and not others (Pashler & Mozer, 2013). Participants 

intentionally direct their attention to the various stimulus dimensions until the most relevant is 
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identified. This happens suddenly through insightful explicit discovery. Once they identify the 

most relevant dimension, they perceive it more minutely (e.g., Pashler & Moser, 2013). This is a 

very explicit, intentional, and often quick process. 

Attentional weighting on the other hand, involves something more akin to associative 

processes. Attentional weighting theories assume that there are incremental changes in the 

attention to relevant perceptual dimensions. Attentional weighting models utilize activation of 

artificial visual cortical neurons with fixed response profiles as inputs to associative learning-

based artificial networks. Researchers that utilize these models have suggested that associative 

weights represent weights of attention (Lu et al., 2011). These models use incremental attentional 

weighting to gradually learn which visual features are shared across different events and which 

are unique to each event (Petrov et al., 2005). During learning, unique elements become more 

strongly associated with the output over time. If a novel event activates these elements to a 

greater degree than a trained stimulus, an individual will respond more to the novel event (e.g., 

Lu et al., 2011). The idea is that the input of certain sensory representations to a decision, for 

example, those with location, orientation, and spatial frequency that correspond to the trained 

stimulus, should be strengthened, while other irrelevant inputs are down-weighted in the decision 

(Dosher & Lu, 2009). When presented with a stimulus, the output neuron will calculate an 

activity level by multiplying activity in each input neuron by the weight of the connection. Then, 

these values for each input are summed together. The assumptions for attentional weighting are 

as follows: 1) there is a fixed stimulus representation; 2) learning involves decreasing the 

absolute value of weights on parts of that representation that are irrelevant for discriminating; 

and 3) learning involves increasing the absolute values of weights on parts of the representation 

that are critical for making a discrimination (Wisniewski et al., 2019). 
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4.4 Evidence for Perceptual Learning Theories 

To investigate how perceptual learning may aid in category learning, it is important to 

compare and contrast the evidence behind the theories just discussed. A lot of the evidence 

supporting attentional weighting and spotlighting theories comes from the visual perceptual 

learning literature using simple stimuli with basic visual features (Song et al., 2005). If the 

stimuli are easy to discriminate, it is hard to tell how much learning is truly taking place. Several 

studies have shown that many examples of perceptual learning are highly specific to the training 

situation (e.g., Ball & Sekuler, 1982; Fiorentini & Berardi, 1980; Karni & Sagi, 1991; Poggio et 

al., 1992). Participants’ enhanced discriminability produced by experience was restricted to the 

stimulus orientation and retinal position used in training and did not transfer to situations in 

which these were changed (Dwyer & Mundy, 2016). The neurons with the requisite location and 

orientation specificity are found in primary visual cortex and not further along the visual 

processing stream (Dwyer & Mundy, 2016). One observes a high degree of specificity when 

simple stimuli are used because it is happening so early in the visual system, and this has been 

taken to suggest that perceptual learning cannot involve actual representational change because 

these early areas of visual cortex are thought to be fixed and relatively unchanging early in 

development. However, when one uses more complex stimuli, perceptual learning is not as basic 

as was once thought. For example, one study used event-related potentials to test whether 

perceptual learning of different complexities of stimuli involved different levels of visual cortical 

processing (Song et al., 2005). For simple stimuli, learning effects were focused over the 

occipital cortex. For complex stimuli, learning effects were focused over the central/parietal 

regions (Song et al., 2005). This suggest that perceptual learning modifies the response at 

different levels of visual cortical processing related to the complexity of the stimulus. A PET 
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study showed that perceptual learning of visually complex stimuli enhanced the activity of 

inferior temporal regions (Dolan et al., 1997). This again suggests that perceptual learning is not 

always happening as early in the visual system as once believed and suggested by some 

attentional theories. 

Support for attentional theories has also come from studies looking at easy-to-hard 

effects. Attentional spotlighting theory suggests that initial easy trials direct learners’ attention to 

the relevant dimensions. Once the most relevant dimension is spotted, learners ignore the 

irrelevant dimensions and pay more attention to those they have found to be relevant. Several 

studies have tested attentional spotlighting theories directly to see if they can adequately explain 

easy-to-hard effects (progressive training) in perceptual learning (Wisniewski et al., 2017; 

Wisniewski et al., 2019). According to attentional spotlighting views, the benefits from 

progressive training are the result of discovering the relevant dimensions through an explicit 

search process. Therefore, any benefit of progressive similarity should generalize for the critical 

dimension to a new frequency space in an auditory task (Pashler & Mozer, 2013). In contrast, 

learning theories based on how representations are reorganized and modified, predict that 

benefits should be partially specific to the feature values of trained stimuli. Wisniewski et al. 

(2017) showed in an auditory task that participants trained to discriminate the rate of periodic, 

frequency-modulated tones in one frequency range (300-600 Hz or 3000-6000 Hz) only showed 

an advantage of progressive training if they were tested in the same frequency range. Perceptual 

learning theories that suggest experience-dependent changes in stimulus representations predict 

the observed specificity of easy-to-hard effects, whereas attentional-spotlighting theories do not 

(Wisniewski et al., 2017). Attentional spotlighting theory also incorrectly predicts that when a 

participant's attention is explicitly and repeatedly drawn to relevant dimensions early in training 



DOES PRE-EXPOSURE AFFECT CATEGORY LEARNING?    17 

(e.g., by the presentation of easy contrasts in one range of that dimension), then he or she should 

show no within-subject benefits of progressive training (e.g., Pashler & Mozer, 2013, 

Wisniewski et al., 2017). In contrast to the attentional-spotlighting, representational 

modification/reweighting learning mechanisms (e.g., Saksida, 1999) are able to account for the 

specificity of easy-to-hard effects to trained sounds and the presence of an easy-to-hard effect 

when relevant dimensions are clearly revealed. In another study, predictions of attentional 

theories were pitted against representational theories by testing how “easy” initial levels should 

be to yield easy-to-hard effects (Wisniewski et al., 2019). Representational theories predict that 

extremely easy trials will make it less likely that representations will be modified enough to aid 

discrimination on a harder version of the task. Attentional spotlight models predict that the easy 

trials should facilitate performance as long as the discrimination-relevant dimension is made 

obvious. Results showed that training protocols where initial blocks are too easy or too difficult 

produce less benefit than blocks of intermediate difficulty (Wisniewski et al., 2019). This result, 

which was observed for two different acoustic dimensions, was predicted by representational 

accounts of learning, and runs counter to predictions of attentional spotlighting.  

Another study pitted representational theories against associative models like MKM. 

Church et al. (2013) examined whether the sequencing during pre-testing exposure to the stimuli 

mattered. Progressive sequencing of stimuli during pre-exposure led to a more accurate 

performance with the critical difficult contrast and greater generalization to new contrasts in the 

task, compared with equally variable training in either a random or an anti-progressive order. 

This greater accuracy was even evident when participants experienced the progressively 

sequenced stimuli in an incidental learning task that did not involve direct training for the test. 

The results suggest that progressive training advantages cannot be fully explained by direct 
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associations between stimulus features and the corresponding responses. Therefore, the 

advantage of progressive training cannot be explained by elemental-associative or selective 

incremental attention theories that assume that the advantage is caused by learning task-relevant 

features. Taken together, it does not seem as though associative or attentional theories can fully 

explain all phenomena of perceptual learning. Overall, this research suggests that perceptual 

learning may often reflect representational change producing differentiation or unitization of 

perceptual representations.  

5 COMBINING MIXED MODELS OF CATEGORIZATION AND MODELS OF 

PERCEPTUAL LEARNING 

The classic COVIS theory assumes that family resemblance information is learned 

implicitly. On the other hand, single atypical exemplars are learned explicitly through 

memorization. Classic COVIS suggests that learning single family-resemblance categories can 

be learned without feedback because of fluency. This happens because the prototype induces a 

graded pattern of activation in the visual cortex, and the group of cells will fire more rapidly to 

the presentation of this prototype pattern (Ashby & Maddox, 2005). These same cells will 

repeatedly fire throughout exposure of the category members, causing an enhanced visual 

response to the category stimuli (Ashby & Maddox, 2005). When the variable nonmember 

stimuli are shown, the same cells will not fire, and therefore activation will be slower. During the 

transfer or testing phase of the experiment, the participant can use the increased sensitivity of the 

cell group to respond accurately. This fluency can be used as a cue to category membership. A 

participant in a task can rely on feelings of familiarity/fluency to decide which stimuli belong in 

the category. This view makes the clear predictions that there will be problems learning more 

than one category simultaneously by exposure. Using the classic COVIS model logic, both 
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categories would become familiar, as the exemplars from prototype A would cause cell group A 

to fire faster, and the exemplars from prototype B would cause cell group B to fire faster. During 

the categorization phase, stimuli from both categories would elicit an enhanced visual response 

(Ashby & Maddox, 2005). So, As and Bs will all feel familiar; therefore, they cannot be 

differentially categorized. This view predicts that we can learn to discriminate single family-

resemblance categories without feedback, but not to discriminate between two family-

resemblance categories. 

However, this classical COVIS view is not the only possibility. If the cortical activation 

during exposure doesn’t simply create faster future activation but rather creates a unitized 

representation of the prototypes (representational theories of perceptual learning), it should aid 

learning in both situations. To instantiate this possibility, I hypothesize a COVIS plus theory. 

This theory would still support the idea of separate implicit and explicit systems; however, it 

would suggest that we can build real cortical representations of prototypes through perceptual 

learning, and therefore, family resemblance learning from exposure does not have to be based on 

fluency or feelings of familiarity. By building actual representations of the prototypes, we would 

be able to more quickly map stimuli that share similarity with those prototypes, old or new, to 

categories. This view would predict that initial exposure to category members would create 

representations that would aid family-resemblance category learning in both single category 

learning and in discriminating between two categories. 

6 EVIDENCE FOR LEARNING TWO CATEGORIES THROUGH EXPOSURE 

Currently, no studies have directly investigated whether humans or macaques show a 

benefit in an A-B (two category) categorization task and then transfer prototype knowledge to 

novel stimuli after being exposed to exemplars from each category. However, there is one study 
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that has provided related results to the proposed study indicating that exposure to two categories 

can change family-resemblance categorization in humans. Milton et al. (2019) examined the 

effect that prior exposure to perceptual stimuli has on the prevalence of overall similarity 

(family-resemblance) categorization in a free classification task. To do this, the researchers 

exposed participants to either relevant or irrelevant stimuli of two categories before giving them 

a free-sort task. The researchers were specifically interested in how people naturally form 

categories without any feedback. Previous work has shown that many natural categories appear 

to possess a family resemblance or overall similarity structure (e.g., Rosch & Mervis, 1975; 

Rosch et al., 1976) in which categories are organized around a number of characteristic but not 

defining features. If an item has enough features characteristic of a category, it can be considered 

a member of that category even if it does not have a particular feature (Milton et al., 2019). 

However, early work suggested that when participants are asked to group items without any 

feedback, they have a strong tendency to create categories based on a single dimension and 

rarely sort by overall similarity (e.g., Ahn & Medin, 1992; Ashby et al., 1999; Imai & Garner, 

1965; Medin et al., 1987). Milton et al. (2019) predicted that the categories created in these 

laboratory studies did not reflect the assumed underlying structure of natural categories because 

the participants had little or no exposure to the stimuli before classifying a very limited number 

of items (e.g., Ahn & Medin, 1992; Medin et al., 1987; Milton & Wills, 2004). Milton et al. 

(2019) believed that the lack of familiarity/experience with the stimuli contributed to the lack of 

family-resemblance categorization in these studies. To test their theory, two stimulus sets were 

used, one containing artificial lamps, and the other artificial boats. Each set was made up of 10 

stimuli. The stimuli consisted of four binary-valued dimensions, and were organized around two 

prototypes, each representative of one of the categories. One prototype was constructed by taking 
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all of the positive values on the dimensions, whereas the other category prototype was created by 

taking all of the zero values on the dimensions. Stimuli were mild distortions of these prototypes 

(a change in 1 feature). Participants were randomly assigned to the same-stimuli (relevant) 

exposure, or unrelated-stimuli (irrelevant) exposure conditions. In the same-stimuli condition, 

participants were exposed to the exact same stimuli that they would later categorize. In the 

unrelated-stimuli condition, participants were exposed to different stimuli than those they would 

later classify (e.g., they were exposed to boat stimuli but had to classify lamp stimuli). 

Participants were exposed to all 10 stimuli twice in each exposure block. During the exposure 

blocks, one of the stimuli from the set appeared in the middle of the screen for 3,000 ms, and 

then participants were instructed to press a labeled “x” if they had seen the stimulus already 

during this block, and press “m” if they had not. At the end of each block, feedback was given. 

Participants were given 16 blocks of 20 trials each. In the categorization blocks, participants 

were told they could classify stimuli however they saw fit. Categorization blocks began with the 

two category prototypes presented at the top of the screen representing categories A and B, and 

then below in the center was one of the 10 stimuli. Participants categorized the stimulus as 

belonging to category A or B. No feedback was provided for the categorization phases. All 

stimuli in the set appeared once in each block. In between each categorization block, participants 

were asked to write down their strategy for classify the stimuli to see if a similarity strategy was 

used or not, and then moved on to the next categorization block (six in total). Results indicated 

that participants who were pre-exposed to the same stimuli showed greater levels of overall 

similarity sorting than those in the unrelated-stimuli conditions. Further testing showed that this 

was modulated by the perceptual difficulty of the stimuli. Pre-exposure increased the overall 

similarity sorting for perceptually easy stimuli but not the difficult stimuli (Milton et al., 2019). 
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These results are important for the current study. Overall, this study indicates that participants 

experience an ease of family resemblance comparison after exposure to the exact exemplars they 

later categorized. However, Milton et al. did not test whether this advantage generalizes to novel 

category members, and testing generalization to novel members is necessary to differentiate 

between our theories of interest.  

7 THE CURRENT STUDY 

Evidence for multiple systems has been growing in the human and animal categorization 

literature. It has been shown that humans are able to learn slowly through associative processes, 

as well as through hypothesis testing and rule creation (Ashby & Valentin, 2005). We can also 

change strategies between prototype and exemplar comparison approaches (Minda & Smith, 

2001), and even categorize without intact declarative memory (Knowlton et al., 1992). Research 

with rhesus macaques also supports the idea that they can successfully complete rule-based and 

information-integration tasks (Smith et al., 2010), as well as utilize prototype and exemplar 

comparison strategies (Smith, 2014). For the purpose of this study, I focused on comparing the 

classic COVIS model (Ashby et al., 2011) that assumes prototype learning strategies are 

generally part of the reinforcement based implicit memory to a model that adopts many of the 

assumptions of COVIS, but assumes that prototype formation can occur without the striatum via 

cortical perceptual learning (e.g., Church et al., 2013; Goldstone, 1998). To do this, I focused on 

how perceptual learning during a stimulus exposure phase affected category representation. In 

the classic COVIS model, this type of exposure learning is thought to produce basic perceptual 

priming (perceptual fluency) that could be used to guide judgments about whether items belong 

to a new family-resemblance category or not (A-not-A tasks), but could not be used to 

differentiate between two equally primed categories (A-B tasks) (for review, see Ashby & 
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Maddox, 2005), because no actual prototype representations are formed/changed. However, 

theories that assume perceptual learning can produce representational unitization would predict 

that prototype formation during exposure could aid category learning in both types of tasks (e.g., 

Church et al., 2013; Goldstone, 1998; Wisniewski et al., 2019). Therefore, this COVIS plus 

model predicts that both types of category tasks should benefit from previous exposure. As seen 

above, studies have shown that humans, including patients with amnesia, are able to learn single 

category tasks through mere exposure (e.g., Reed et al.,1999). Studies have also shown that 

rhesus macaques are able to learn single category tasks (A-not-A) and are able to transfer their 

prototype knowledge to novel stimuli using reinforcement (Smith et al., 2008). Previous to the 

current studies, no one had tested whether rhesus macaques can learn this task through mere 

exposure. My goal was to investigate this, and then determine if the macaques could also show a 

benefit in a two-category discrimination task (A-B) after exposure. 

Initial piloting to find a working methodology had started with human participants. 

However, due to COVID19 restrictions, piloting with humans ended before a working 

methodology could be refined. Testing occurred with rhesus macaques instead. The type of 

learning being tested should not differ between species (Mitchell & Hall, 2014). The tasks for 

humans and macaques would only differ in that humans could receive written or verbal 

instructions on how to complete the task, whereas the macaques required an initial training phase 

to teach them that they need to categorize stimuli on the basis of visual similarity. Also, because 

of the small number of macaques, an ABA small-N research design was used (Task 1, Task 2, 

Task 1 again), but with humans I would have counterbalanced order of task across participants. 

The design of this study differed in several ways from the Milton et al. (2019) task 

design. In this study, since I was looking to see if exposing participants to exemplars causes a 
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mental representation of the prototype to be built, I did not expose the participants to the 

prototype or ask participants to group exemplars based on the prototype on screen. Instead, the 

prototype was mixed in with other exemplars during the categorization phase to see if 

participants were able to correctly identify the A vs B prototypes. Feedback was also 

provided to participants during the categorization phase since I was interested in how 

exposure benefits category learning and not how participants naturally divide the stimuli. 

Another critical difference is that participants were asked to categorize novel stimuli that 

they were not previously exposed to. I predicted that if a representation of the prototype 

was created, participants would successfully categorize novel stimuli for both categories.  

For this study I used prototype distortion tasks instead of free classification tasks. 

Prototype distortion tasks are often used when testing family-resemblance category 

learning. In these tasks, categories are created by first generating a category prototype, 

and then exemplars are made by generating distortions of varying (but controlled) 

similarity to the prototype (Posner & Keele, 1968, 1970). Stimuli used are often dot 

patterns, or polygon shapes. A-B and A-not-A tasks are popular prototype distortion 

tasks. In an A-B task, participants are presented with exemplars based on two category 

prototypes (A and B). Participants must then correctly label each stimulus on each trial. 

In an A-not-A task there is a single, central prototype (A) from which category members 

are generated and random foils. Participants must decide if the stimulus on each trial is 

part of the category by responding “Yes” or “No.” Researchers can then look at the 

endorsements of the distortions to see if the participant was able to learn the prototype 

from the distortions.  
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 The main goal of the pilot study was to see if macaques learned an A-not-A task through 

mere exposure and transferred the category knowledge to novel members, as this had never been 

tested before. The pilot also allowed me to find a working methodology that promoted successful 

learning and generalization of a single category through exposure on an A-not-A task. It also 

helped to determine the proper proportion of distortion levels (how similar/dissimilar the 

exemplar is from the prototype) during the exposure phase to aid categorization, as well as how 

many exposure trials were needed. After this was established, I was able to conduct the next 

experiment using two categories (A-B), as opposed to one category and random stimuli, to assess 

if it is possible to learn two categories through mere exposure. Each macaque completed a 

condition that provided no relevant pre-exposure of category members (irrelevant task) as well as 

two tasks that used pre-exposure to category members (relevant task). This allowed a comparison 

to be made to see how beneficial pre-exposure was to learning categories. This initial finding 

was necessary because all theories predict that pre-exposure should aid performance in an A not 

A task; so, it is an important methodological check. The procedure for the pilot task is below, 

and then follows the A-B task.  

8 METHODS: PILOT STUDY 

8.1 Participants 

Four male rhesus macaques Murph, Lou, Han, and Obi (approximately, 27, 27, 18 and 17 

years of age) were tested. All had been previously trained to respond to computer-graphic stimuli 

by manipulating a joystick (Washburn & Rumbaugh, 1992). The macaques were tested in their 

home cages and given access to the testing apparatus whenever they choose. They also had free 

access to water at all times. They worked for fruit-flavored primate pellets. They were not food 
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deprived for the purposes of this or any other experiment. They received daily fruits and 

vegetables independent of task participation. 

8.2 Apparatus 

Testing took place at the Language Research Center using a computerized testing system, 

comprised of a computer, joystick, color monitor, pellet dispenser, and programming code 

written in Turbo Pascal 7.0. Trials were presented on a 17-inch color monitor with 800 X 600 

resolution. Joystick responses are made with a Logitech Precision gamepad, which is mounted 

vertically to the test station. Monkeys manipulated the joystick, which extended horizontally 

through the mesh of their home cages and produced movements of a graphic cursor on the 

screen. Touching the correct response with the cursor provided them a 64-mg fruit-flavored 

chow pellet (Bio-Serve, Frenchtown, NJ) using either a Med Associates ENV-203-45 or a 

Gerbrands 5120 dispenser interfaced to the computer through a relay box and output board (PIO-

12 and ERA-01; Keithley Instruments, Cleveland, OH; or ADU252; Ontrak Control Systems, 

Ontario, Canada). 

8.3 Stimuli 

Prototypes were created using nine points that were randomly selected from a 50 X 50 

grid. The distortions (exemplars) were created by applying a series of probabilities that 

determines whether each dot kept the same position it had in the prototype, and if not, how far it 

moved. Once prototypes were established, distortions were built by probabilistically moving 

each dot into one of five areas that covered the 20 X 20 grid of pixels that surrounded it (for 

specific algorithms see Minda & Smith, 2002; Smith et al., 2008). Different levels of distortions 

were arranged by adjusting the probabilities that dots would make small or large movements 

away from their original position. Each pixel position in the distortion algorithm was mapped to 
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a 3x3 pixel square on the screen, and the dot was placed in the center of the appropriate 9-pixel 

cell on the screen. Level 2 (lowest), level 3 (low), level 4 (low-medium), level 5 (medium), and 

level 7 (high) distortions of the prototype were used. The Draw Poly procedure in Turbo Pascal 

7.0 connected successive dots with lines and filled the resulting polygon shape in purple. This 

follows the common practice of presenting dot distortions as random polygon shapes (Homa et 

al., 1979, 1981). Figure 8.1 presents examples of possible prototypes and their different 

distortion levels.   

 

Figure 8.1 Examples of Stimuli. Illustrating randomly generated prototypes and examples of its 

varying distortion levels.  

 

8.4 Procedure 

Each monkey completed one training task, three exposure tasks and three categorization 

tasks. The first task was always a training task, followed by a relevant exposure task and 

categorization task, then an irrelevant exposure task and categorization task, and then another 

relevant exposure and categorization task. Relevant here means that the exemplars created during 

the exposure phase were based on the same prototype that was used during the categorization 

phase. Irrelevant task means that exemplars were based off of a different prototype than the one 

that was used in the categorization phase. The initial training task was simply a categorization 
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task (described below) without pre-exposure in which half of the shapes were based on a single 

prototype and half randomly generated.  

In the exposure phases, the monkeys saw 120 shapes total, 60 belonging to a category 

and 60 random shapes. For the first relevant exposure phase, half of the monkeys received the 

category members as their first 60 shapes, and the random shapes as their second 60. The other 

half of the monkeys received the 60 random shapes first and then the 60 category members 

during their first relevant exposure phase. For the irrelevant exposure phase, all shapes were 

unrelated to the category in which they would be tested in the categorization task. Then, in the 

third exposure phase (the second relevant task), the order in which the monkeys received the 

stimuli the first time was reversed. Those who originally saw category members first and random 

shapes second, now received random shapes first and category members second. This allowed 

me to look for primacy and recency effects in the subsequent categorization task. Table 8.1 

shows the exposure schedule for each monkey in each task. The exposure category shapes 

consisted of 20 level-3, 20 level-5, and 20 level-7 prototype distortions. The shapes appeared in 

the center of the screen, and the monkeys used their joystick to simply touch the shape. In this 

task, pellet rewards were given for every three shapes that were touched by the cursor. 

  After each exposure phase, a categorization task was present. In the categorization tasks, 

half of the polygon shapes belonged to the category and the other half did not. The categorization 

tasks that were presented after relevant exposure used the same category prototype. The 

categorization task presented after the irrelevant task used a new prototype for the category. The 

shapes used for the categorization tasks were comprised of 5% prototype, 5% level-2, 10% level-

3, 10% level-4, 10% level-5, 10% level-7 prototype distortions of the category. The shape 

appeared in the center of the screen, beneath the shape appeared a Y to the left of a cross cursor, 



DOES PRE-EXPOSURE AFFECT CATEGORY LEARNING?    29 

and an N to the right of the cursor. The objective was for the monkey to move their joystick to 

the left or right to decide if the shape that appeared was a part of the category (Y), or not (N). 

They received a pellet reward and heard a familiar whooping sound when they selected Y for 

correct category members and selected N for nonmembers. If they made the wrong 

categorization decision, a familiar buzzing sound was played, and they received a 20 second 

timeout. The monkeys automatically moved to the next task after reaching a criterion of 85% 

accuracy over approximately 120 trials. The program automatically transitioned to the next task 

by looking at the last 120-trials, however the program uses an internal array to keep score which 

automatically starts at 50% accuracy. This allows the monkey to potentially move on in less than 

120 trials. The program generated random prototypes for each task. If a monkey did not finish a 

task (exposure or categorization task) before the program was closed out, they restarted with the 

last exposure task and a new prototype. For example, if they had finished Training, Task 1-

exposure, and were working on Task 1-categorization test but had not finished it, the next time 

the program was reopened they started on Task 1-exposure with a different prototype than 

before. 

Table 8.1 Order of Tasks.  

 

  Relevant 1 Irrelevant Relevant 2 

Murph 60 Relevant- 60 Random 60 Random-60 Random 60 Random- 60 Relevant 

Han 60 Relevant- 60 Random 60 Random-60 Random 60 Random- 60 Relevant 

Obi 60 Random- 60 Relevant 60 Random-60 Random 60 Relevant- 60 Random 

Lou 60 Random- 60 Relevant 60 Random-60 Random 60 Relevant- 60 Random 

Note. Relevant stimuli were made from the same prototype as category members in the categorization 

phase, and random were random shapes not part of a category. No stimuli from the exposure phase 

repeated in the categorization phase. 
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9 PILOT RESULTS 

9.1 Trials to Criterion 

All four monkeys completed all tasks for the pilot experiment, and their proportion 

correct and trials to criteria can be seen in Table 9.1. Figure 9.1 A shows the number of trials it 

took to complete each task (including unfinished sessions) and Figure 9.1 B shows the number of 

trials it took to meet criterion in their last session for each task. Murph finished his first relevant 

task (relevant shapes then random shapes during exposure) in one session, and it took 586 trials 

to meet criterion. It took Murph three sessions to finish his irrelevant task, in which he met 

criterion in 785 trials. In his second relevant task (random shapes first then relevant shapes), he 

met criterion in his first session in 265 trials. Both relevant tasks were completed in fewer 

trials/number of sessions than the irrelevant task. Obi, in his first relevant task (random shapes 

then relevant shapes), met criterion in 136 trials in his first session. Obi met criterion in the 

irrelevant task in 913 trials across three sessions. Obi completed his second relevant task 

(relevant shapes then random shapes), in 303 trials during his first session. Han finished his first 

relevant task (relevant shapes then random shapes) in 127 trials in his first session. Han 

attempted his irrelevant task but was not able to meet criterion. He completed over 5,000 trials 

across eight different sessions. Since he completed over 5,000 trials without performance above 

chance, he was moved to the next task. It took Han five sessions to finish his second relevant 

task. This time he received 60 random shapes and then 60 category members and it took 2,287 

trials to meet criterion. Lou finished his first relevant task (random shapes and then relevant) in 

409 trials across two sessions total. He completed his irrelevant task in two sessions, 958 trials 

total. In the second relevant task (relevant shapes and then relevant), Lou met criterion in 116 

trials in his first session.  
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Table 9.1 Proportion Correct in Each Task 
 

HAN 

Trials to 

Criterion  

Total Trials Prop. 

Correct 

Trials in Last 

Session 

Prop. Correct 

Overall Last 

Session 

Prop. Correct 

First 120 Last 

Session 

Rel-

Rand(1) 127 0.84 127 0.84 0.83333 

Irrelevant 5163 0.59 1066 0.71 0.62 
Rand-

Rel(2) 2286 0.57 283 0.74 0.65 

            

MURPH 

Trials to 

Criterion  

Total Trials Prop. 

Correct 

Trials in Last 

Session 

Prop. Correct 

Overall Last 

Session 

Prop. Correct 

First 120 Last 

Session 

Rel-

Rand(1) 586 0.73 586 0.73 0.68 

Irrelevant 785 0.68 689 0.68 0.63333 
Rand-

Rel(2) 265 0.82 265 0.82 0.81 

            

OBI 

Trials to 

Criterion  

Total Trials Prop. 

Correct 

Trials in Last 

Session 

Prop. Correct 

Overall Last 

Session 

Prop. Correct 

First 120 Last 

Session 

Rand-

Rel(1) 136 0.81 136 0.81 0.8 

Irrelevant 913 0.75 608 0.77 0.66 
Rel-

Rand(2) 303 0.74 303 0.74 0.63333 

            

LOU 

Trials to 

Criterion  

Total Trials Prop. 

Correct 

Trials in Last 

Session 

Prop. Correct 

Overall Last 

Session 

Prop. Correct 

First 120 Last 

Session 

Rand-

Rel(1) 409 0.71 299 0.71 0.64 

Irrelevant 958 0.76 665 0.75 0.69 
Rel-

Rand(2) 116 0.88 116 0.88 0.88 

Note. Rel-Rand represents the relevant exposure task in which relevant category members were first and 

shape shapes second. Rand-Rel represents the opposite exposure schedule. The number in parentheses 

indicates whether that monkey received that exposure schedule as the first or second relevant task. 

Italicized numbers indicate the task was never finished. 
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Figure 9.1 Trials to Criterion 

 

Note. Rel-Rand represents the relevant exposure task in which relevant category members were first and 

shape shapes second. Rand-Rel represents the opposite exposure schedule. Han never completed his 

irrelevant task, therefore trials to criterion last session contains his longest single session.  

 

Table 9.2 presents the means (M) and standard deviations (SD) information for the trials 

to criterion for each task. Due to the small N design and the strong directional predictions, all 

analyses use an alpha level of .10. Han’s data have been excluded in analyses looking at trials to 

criterion that make comparisons with the irrelevant task, as he never met criterion. Looking at 

the relevant tasks combined and irrelevant task, there was a significant difference between 

relevant and irrelevant trials to criterion, t(5) = 6.569, p < .001 , d = 4.164. Additional analyses 

were done to investigate possible order of task effects on trials to criterion. There was a 

significant difference between the first relevant task and the irrelevant task, t(2) = -3.024, p = 

.094, d = 1.746, and the irrelevant and second relevant task , t(2) = 6.853, p = .021, d = 3.957. 

There was no significant difference of trials to criterion between the first relevant task and the 

second relevant task, t(2) = -.728, p = .519. Differences between tasks based on exposure 

schedule was also investigated. There was no difference in trials to criterion between the two 

relevant tasks t(2) = .372, p = .758. There was a significant difference between the relevant task 
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with relevant shapes first and random shapes second and irrelevant task, t(2) = 2.927, p = .100, d 

= 1.690, and between the relevant task with random shapes first then relevant shapes and the 

irrelevant task, t(2) = 7.572, p = .017, d = 3.357. 

Table 9.2 Means and Standard Deviations of the Total Trials to Criterion 

 

Overall Trials to 

Criterion 

M SD 

Relevant All 528.5 728.21 

Relevant 1 314.5 223.35 

Relevant 2 742.5 1032.16 

Relevant-Random 283 219.42 

Random-Relevant 774 1014.15 

Excluding Han's Trials 
  

Relevant All 302 176.42 

Irrelevant 885.33 89.76 

Relevant 1 377 226.7 

Relevant 2 228 98.84 

Relevant-Random 335 136.62 

Random-Relevant 270 136.57 

Note. Relevant 1 indicates the first relevant task, Relevant 2 indicates the second relevant task. Relevant-

Random represents the relevant category member then random shape exposure schedule. Random-

Relevant represents the opposite exposure schedule. 

 

Each time the pilot program was restarted, a monkey received a new prototype. 

Therefore, if a monkey was in the middle of a categorization task and the program had to end for 

scheduling reasons, the next session would restart in the last exposure phase with a new 

prototype. For this reason, analyses were also performed looking specifically at the number of 

trials to criterion in the session of each task in which they met criterion, excluding trials from 

previous session where criterion was not met. Once again, because Han did not meet criterion in 

the irrelevant task, his data were excluded for all analyses in which comparisons are made with 

the irrelevant task. Table 9.3 presents the means (M) and standard deviations (SD) for the trials to 

criterion in their last session. There was an overall significant difference in trials to criterion in 

their last session of each task when comparing the relevant trials and irrelevant tasks trials, t(5) = 
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-5.071, p = .002, d = 2.129. I also investigated to see if there was an effect of order. There was a 

significant difference between the irrelevant task and the second relevant task, t(2) = 11.348, p = 

.008, d = 6.551. However, there was no significant difference between the first relevant task and 

the irrelevant task, t(2) = 2.550, p = .125, or between the two relevant tasks, t(3) = .369, p = .737. 

Analyses were also done to look for differences in the trials it took to meet criterion in the last 

session due to exposure schedule. The key finding here is there was no significant difference 

between the two relevant exposure schedules, t(3) = .301, p = .783. There was also no significant 

difference between the irrelevant exposure schedule and the relevant then random schedule, t(2) 

= 2.474, p = .132. There was a significant different between the irrelevant and random then 

relevant tasks exposure schedules t(2) = 13.727, p = .005, d = 7.929. 

Table 9.3 Means and Standard Deviations of the Number of Trials to Criterion for the Last 

Session 

 

Last Session Trials to 

Criterion 

M SD 

Relevant All 264.375 152.99 

Relevant 1 287 214.43 

Relevant 2 241.75 85.26 

Relevant-Random 283 219.42 

Random-Relevant 245.75 74.27 

Excluding Han's Trials 
  

Relevant All 284.167 168.688 

Irrelevant 654 41.6 

Relevant 1 340.33 227.83 

Relevant 2 228 98.84 

Relevant-Random 335 236.63 

Random-Relevant 233.333 85.99 

Note. Relevant 1 indicates the first relevant task, Relevant 2 indicates the second relevant task. Relevant-

Random represents the relevant category member then random shape exposure schedule. Random-

Relevant represents the opposite exposure schedule. 
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9.2 Categorization Performance 

Data from the last session were used for each task to look at each monkey’s 

categorization performance. This is the session in which they met criterion, except Han, who was 

never able to meet criterion in his irrelevant task. To statistically compare categorization 

performance, the Fisher’s exact test was used to compare the overall performance difference 

between the relevant tasks and irrelevant task. Cochran’s Q test was used to look at performance 

for the first 120 trials. Friedman’s ANOVA was used to look at overall performance. The first 

120 trials were tested because I predicted that the monkeys would build a prototype 

representation during relevant exposure, and therefore would be able to more quickly identify 

whether a shape was a category member or not. In the irrelevant tasks, category learning would 

not take place until the first categorization trial, so performance at the beginning was predicted to 

not be as successful. For the individual analyses, alpha was set at .05. Analyses using pairwise 

comparisons to look at all three tasks have had a Bonferroni correction applied, and is denoted 

with cp. This correction multiplies the significance value to the number of comparisons in order 

to reduce Type 1 error, this can result in a p-value over 1.000 which is denoted here as p = 1.000. 

Figure 9.2 depicts Murph’s category endorsements for the first 120 trials, overall, and last 

120 trials. In his first 120 trials, Murph was most successful endorsing the prototype in the 

second relevant task. He also was at chance with the random shapes in the early trials of both the 

irrelevant and first relevant tasks. Looking at his endorsements in all trials in Figure 9.2C, Murph 

shows the expected general trend of higher endorsements with the prototype and lower distortion 

levels and then declines with the level 5 and 7 distortions. However, he was generally more 

successful in his prototype and lower distortion level endorsements in the two relevant tasks. 

There was an overall significant difference in Murph’s performance between the relevant tasks 
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and the irrelevant tasks, χ2(1) = 9.906, p = .002, φ = .002. The Cochran’s Q test confirmed that 

there was a significant difference between Murph’s performance on the tasks in the first 120 

trials χ2(2) = 9.139, p = .010. Planned pairwise comparisons showed that his performance was 

significantly higher in the second relevant task (random shapes then relevant) than the irrelevant 

task (cp = 0.011). There was no significant difference between the first relevant (relevant shapes 

then random shapes) and the irrelevant task (cp = 1.00) or between the two relevant tasks (cp = 

.082). Friedman’s ANOVA test showed that there was a significant difference in overall 

performance to criterion, χ2 (2) = 27.607, p < .001. Pairwise comparisons showed that his 

performance was significantly different between his second relevant task (random then relevant 

shapes) and his irrelevant task (cp = .001). There was no significant difference between the two 

relevant tasks (cp = .080), or between the first relevant task (relevant shapes and random) and the 

irrelevant task (cp = .455). 
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Figure 9.2 Murph’s Proportion of Endorsements 
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Note. (A) The proportion of endorsements for each item type in Murph’s first 120 trials for each task. (B) 

The proportion of endorsements for each item type in all of Murph’s trials for each task. (C) The 

proportion of endorsements for each item type in the last 120 trials for each task.  

 

Figure 9.3 depicts Obi’s category endorsements for the first 120 trials, overall, and last 

120 trials. In his first 120 trials, Obi was able to successfully endorse the prototype every time in 

all tasks. However, he was at chance with the random shapes in the irrelevant and second 

relevant tasks. Figure 9.3C depicts Obi’s endorsements in all trials. He endorsed the prototype 

every time throughout all tasks. Overall, Obi did very well endorsing the prototype and lower 

level distortions regardless of task. 

There was no overall significant difference in Obi’s performance between the relevant 

tasks and the irrelevant task, χ2(1) = .213, p = .644. Looking at the tasks individually, the 

Cochran’s Q test confirmed there was a significant different in performance for Obi between 

tasks in the first 120 trials, χ2(2) = 9.562, p = 0.008. Pairwise comparisons showed that there 

were significant differences between the two relevant tasks (cp = 0.012), and the irrelevant and 

first relevant task (random shapes then category members) (cp = .044). There was no significant 

difference between the irrelevant and second relevant (relevant then random shapes) (cp = 1.00). 

Obi’s overall performance was also significantly different between tasks, χ2(2) = 11.415, p = 

0.003. Pairwise comparisons show that there was a significant difference again between both 

relevant tasks (cp = .004), and the irrelevant and first relevant task (random then relevant shape 

order) (cp = .045). There was no significant difference in the overall performance between the 

irrelevant task and the second relevant task (relevant then random shape order) (cp = 1.000). For 

Obi, performance was significantly better when the relevant shapes were presented right before 

the categorization task.  
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Figure 9.3 Obi’s Proportion of Endorsements 
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Note. (A) The proportion of endorsements for each item type in Obi’s first 120 trials for each task. (B) 

The proportion of endorsements for each item type in all of Obi’s trials for each task. (C) The proportion 

of endorsements for each item type in the last 120 trials for each task. Obi finished the first relevant task 

in 136 trials.  

 

Figure 9.4 depicts Han’s category endorsements for the first 120 trials, overall, and last 

120 trials. In his first 120 trials, Han was at chance for the prototype and distortion levels 2-5 in 

the irrelevant task. In the first relevant task, Han endorsed the prototype every time. Han 

struggled to endorse the prototype in the second relevant task but was still above chance. He was 

also at chance with the random shapes in the irrelevant and second relevant task. Figure 9.4C 

depicts Han’s endorsement for all trials. He continued to endorse the prototype every time in the 

first relevant task.  

There was an overall significant difference in Han’s performance between the relevant 

tasks and the irrelevant tasks, χ2(1) = 77.271, p < .001, φ = .281. The Cochran’s Q test shows 

that in the first 120 trials, there was a significant difference between tasks, χ2(2) = 33.083, p < 

0.0001. The pairwise comparison shows that there are significant differences between the two 

relevant tasks, (cp = .018), the irrelevant and first relevant task (relevant then random shapes) (cp 

< .001), and the irrelevant and the second relevant task (random then relevant shapes) (cp = 

.008). The Friedman’s ANOVA also showed significant differences on his performance over all 

trials in his last session of each task, χ2(2) = 35.204, p < 0.001. Pairwise comparisons show 

again, the two relevant tasks are significantly different (cp = .025), and the irrelevant and first 

relevant task (relevant then random shapes) (cp < .0001). There was no significant difference 

between the irrelevant and second relevant task (random then relevant shapes) (cp = .144). 
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Figure 9.4 Han’s Proportion of Endorsements 
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Note. (A) The proportion of endorsements for each item type in Han’s first 120 trials for each task. (B) 

The proportion of endorsements for each item type in all of Han’s trials for each task. (C) The proportion 

of endorsements for each item type in the last 120 trials for each task. Han never met criterion in the 

irrelevant task, information represents his last session. 

 

Figure 9.5 depicts Lou’s category endorsements for the first 120 trials, overall, and last 

120 trials. In his first 120 trials, Lou successfully endorsed the prototype every time in each task. 

Lou did well endorsing the lower distortion levels in all tasks. However, Lou was at chance for 

the random shapes in the irrelevant task and was endorsing the majority of random shapes as 

category members in the first relevant task. Figure 9.5C depicts Lou’s endorsements for all trials. 

He remained successful in his endorsements for the prototype and lower level distortions in all 

tasks. He remained inaccurate with the random shapes in the irrelevant and first relevant task.  

There was no significant difference between his overall relevant and irrelevant task 

performance χ2(1) = .020, p = .942. The Cochran’s Q test shows that in the first 120 trials, there 

was a significant difference in task performance χ2(2) = 16.935, p < 0.001. The pairwise 

comparisons show that there is a significant performance difference between the two relevant 

tasks (cp < .001), and with the irrelevant task and the second relevant task (relevant then random 

shapes) (cp = .006). There was no significant difference between the irrelevant task and the first 

relevant task (random then relevant shapes) (cp = 1.000).  Friedman’s ANOVA shows there is 

also a significant difference in task performance when looking at all trials in the last session, χ2 

(2) = 16.935, p < .001. Pairwise comparisons show that there was a significant difference in 

performance between the two relevant tasks (cp = .014). However, there was no overall 

difference between the irrelevant and first relevant task (random then relevant shapes) (cp = 

1.000), or between the irrelevant and the second relevant task (cp = .147).  
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Figure 9.5 Lou’s Proportion of Endorsements 
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Note. (A) The proportion of endorsements for each item type in Lou’s first 120 trials for each task. (B) 

The proportion of endorsements for each item type in all of Lou’s trials for each task. (C) The proportion 

of endorsements for each item type in the last 120 trials for each task. Lou completed his second relevant 

task in 116 trials. 

 

9.3 Prototype Modeling 

Prototype modeling was done for each monkey for each task. The prototype model 

assumes that the participants are comparing the to-be categorized items (TBCIs) to the category 

prototype to make their category membership decisions. Therefore, this modeling is helpful in 

determining whether the findings fit the supposition that a mental representation of the prototype 

was created during exposure. If they were able to create this prototype representation, I would 

expect them to have good fit to the prototype model. The model compares a TBCI to the 

prototype, and the psychological distance between them is converted to a measure of similarity. 

Psychological distance, in this particular case, is the actual physical distance of the nine-

dimensional Pythagorean distance between the distortion and the prototype. This physical 

distance is then converted into a similarity measure. It is not a perfectly precise measure, as the 

dot configurations will affect the mind differently as they form different lines or angles.  

TBCI types for the pilot included the prototype, Level 2, Level 3, Level 4, Level 5, Level 

7 distortion, and randoms. For experiment 1, TBCI types included the prototype, Level 2, Level 

3, Level 4, Level 5, Level 7 distortions for both the A and B categories. The psychological 

similarity between the TBCIs (i) and the category prototype (p) is estimated in order to predict 

the strength of category endorsement for each item type. The model used the following 

parameters in the equation: RCat = category response, Si = given item type, = psychological 

similarity, k = criterion quantity (a proportionalizing free parameter), P = prototype. The 

criterion quantity represents the general similarity between the items and members of other 
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categories. The equation below states the probability of category endorsement, given the TBCI 

type: 

(A) 

P(RCat | Si) =    __ip__ 

                                    ip + k 
 

The psychological similarity between the TBCI type (i) and the prototype (p) is compared 

with the proportionalizing threshold k. The psychological similarity is calculated by taking the 

average Pythagorean distance that the corresponding dots were moved between the patterns of 

the (i) and (p) (Smith et al., 2008). This psychological distance measurement is set equal to the 

equation ln (1+ mean Pythagorean distance). It has been well documented that the average 

logarithmic distances between the prototype and the prototype, Level 2, Level 3, Level 4, Level 

5, Level 7 and randoms are 0.0000, 0.4497, 0.6401, 0.8687, 1.094, 1.762, and 2.8479 (Church et 

al., 2010; Smith et al., 2008). These distances are transformed into psychological similarities 

using an exponential-decay function that incorporates a sensitivity parameter (c), the prototype 

model’s second free parameter. The sensitivity parameter is a measure of the participants 

sensitivity to the perceptual distance from the prototype. This parameter reflects the steepness of 

the decay of similarity around the prototype. The similarity between a transfer item type and the 

prototype is represented below: 

(B) 

ip = e-cdip 

Psychological similarity () is entered into the choice rule (A) above, and the probability 

of endorsement (model-predicted endorsement) is calculated for each item type.  
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9.3.1 Model Fitting 

Hill-climbing procedures were used to find the best possible prototype model fits to the 

data. This algorithm maximized the fit by minimizing the differential between the predicted and 

observed profiles. Hill-climbing procedures have been used reliably in categorization research 

and involve seeding the model to find the best fit (e.g., Smith et al., 2008). Seeding the model is 

a process in which a random configuration of the parameters (sensitivity and criterion) is selected 

and then the predicted categorization probabilities for the item types according to that 

configuration is calculated. The degree of fit between the predicted and observed categorization 

probabilities is the sum of the squared deviations (SSD) between them. Then the hill-climbing 

mechanism makes small adjustments to the provisional best-fitting parameter settings, and the 

new settings are adopted if they produced a better fit (i.e., a smaller SSD between predicted and 

observed performance). The directional changes are always very small (1/10,000,000 for 

criterion and 1/10,000 for sensitivity) and respect the upper and lower bounds of the free 

parameters (0.0000001 and .1 for criterion and .0001 and 10 for sensitivity). This can happen 

hundreds of times before finding the best fit. The sum of squared deviation (SSD), best fit, 

sensitivity (c), and criterion (k) free parameters are recorded once the best fit has been 

determined. A higher SSD denotes a worse fit and a lower SSD would indicate better fit. I 

compared the fits for each monkey on each task and determined in which task their observed 

endorsements were closest to the predicted. I hypothesized that the monkeys would be building 

prototype representations during the exposure phase, and therefore I expected that each monkey 

showed better fit for this model in the relevant tasks than the irrelevant task. 

Table 9.4 shows the criterion, sensitivity and fit in the first 120, and all trials for each 

monkey in each task. The fit (SSD) value for each monkey in each task was low, which 
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represents a good fit. When looking at the first 120 trials, Han’s best fit is in the irrelevant task. 

When looking at his overall performance, his best fit in is the relevant task where he received 

random shapes and then relevant shapes during exposure. Obi’s best fit in the first 120, and 

overall trials is in the relevant task when exposure was presented with relevant then random 

shapes. Murph’s best fit in the first 120 and overall trials was in the relevant task with relevant 

then random shape exposure order. Lou’s best fit in all cases was in the relevant task when the 

random then relevant shapes were presented.  

Table 9.4 Prototype Modeling 

 

 Task 
Monke

y 

Overall 

Criterion 

Overall 

Sensitivity 
Overall Fit 

120 

Criterion 

120 

Sensitivity 
120 Fit 

Rel-

Rand 
Han 0.1241 0.3578 0.132 0.133 0.4018 0.179 

  Obi 0.0663 0.8745 0.0324 0.1284 0.7806 0.019 

  Murph 0.1466 0.5852 0.1072 0.1858 0.5122 0.09 

  Lou 0.0601 0.5517 0.1355 0.0601 0.5517 0.136 

Rand-

Rel 
Han 0.2992 0.0861 0.0263 0.1475 0.635 0.091 

  Obi 0.1518 0.3235 0.1404 0.1648 0.3222 0.169 

  Murph 0.2427 0.2388 0.4174 0.1155 0.2846 0.206 

  Lou 0.0172 1.4419 0.0057 0.0015 2.5102 0.077 

Irrel Han 0.6277 0.2244 0.0342 0.6277 0.2244 0.034 

  Obi 0.1155 0.5838 0.1398 0.0974 0.8912 0.128 

  Murph 0.2838 0.3846 0.1083 0.1095 0.9157 0.093 

  Lou 0.0492 0.9743 0.0676 0.0709 0.9106 0.106 

Note. Rel-Rand represents the relevant exposure task in which relevant category members were first and 

shape shapes second. Rand-Rel represents the opposite exposure schedule. Irrel represents the irrelevant 

task. The best fit for each monkey is depicted for the overall, and first 120 trials in bold. 

 

10 DISCUSSION 

Criterion was met significantly faster in the relevant tasks when looking at all sessions 

and the last session. There were no significant differences between the exposure schedules of the 

relevant tasks for meeting criterion indicating that the relevant shapes being exposed before or 

after the random shapes did not affect how quickly the monkeys were able to meet criterion. 
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Murph and Han’s performance was significantly better in the relevant tasks (combined) than in 

the irrelevant task. Looking at individual tasks, Murph and Obi had significantly better 

performance in the relevant task in which the relevant shapes were shown second. Han and Lou 

both had significantly better performance on the opposite relevant task, when relevant shapes 

were presented before random shapes.  

Overall, relevant exposure, in at least one of the relevant tasks, provided benefit in the 

later categorization task. The results may be due to building a representation of the prototype 

during the exposure phase. This is the first time that macaques have been tested in an A-not-A 

task with mere exposure. Not only did they learn the category, but they were able to transfer their 

category knowledge to novel shapes. Due to the recency effect shown by two of the monkeys in 

the relevant task with random shapes first and relevant shapes shown second, Experiment 1 used 

a different exposure schedule.  

11 METHODS: EXPERMENT 1 

Four male rhesus macaques Murph, Lou, Han, and Obi were tested in the same way as in 

the pilot study with the same apparatus. Stimuli were made in the same way as mentioned in the 

pilot. The main difference was that instead of creating random non-category members for 

comparison, a second prototype was created as the basis for a B category during both exposure 

and test, and they had to decide during the categorization phase if the shape belonged to category 

A or B. The distortion types and proportions for the B category were the same as for the A 

category described earlier. 

11.1 Procedure 

Just as in the pilot, each monkey completed one training task, three exposure tasks and 

three categorization tasks. The tasks were presented in the same order as before: training, 
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relevant exposure and categorization task, irrelevant exposure and categorization task, and 

relevant exposure and categorization task. In the training task, half of the polygon shapes 

belonged to category A and the other half belonged to category B. The shapes were comprised of 

5% prototype, 5% level-2, 10% level-3, 10% level-4, 10% level-5, 10% level-7 prototype 

distortions from each category. The shape appeared in the center of the screen, then beneath the 

shape appeared an A to the left of a cross cursor, and a B to the right of the cursor. The objective 

now was for the monkey to move their joystick to the left or right to decide if the shape that 

appeared belonged to category A or category B. They received a pellet reward and heard a 

familiar whooping sound when they selected A for category A members, and B for category B 

members. If they made the wrong categorization decision, a familiar buzzing sound was heard, 

and they received a 20 second timeout. The monkeys automatically moved to the next task after 

reaching a criterion of 85% accuracy over approximately 120 trials. Due to a strong recency 

effect found for some monkeys in the pilot, the category A and B stimuli were randomly 

intermixed at the beginning and end of the exposure phases, and in-between there were 

alternating blocks of 10 Category A and Category B members. In one of the relevant tasks, the 

exposure phase presented 20 trials with Category A and B members intermixed, then 10 

Category A members, 10 Category B members, 10 Category A members, 10 Category B 

members, 10 Category A members, 10 Category B members, 10 Category A members, 10 

Category B members, and 20 intermixed exposure trials. For the other relevant task, the first and 

last block consisted of 20 trials Category A and B members intermixed, then the alternating 

blocks began with 10 Category B members, and then 10 Category A members, etc. The category 

shapes consisted of 20 level-3, 20 level-5, and 20 level-7 prototype distortions from each 

category during exposure. The shapes appeared in the center of the screen, and the monkey used 



DOES PRE-EXPOSURE AFFECT CATEGORY LEARNING?    50 

their joystick to simply touch the shape. In this task, pellet rewards were given for every three 

shapes that were touched by the cursor. After each exposure phase, the monkeys completed a 

categorization task. A shape appeared in the center of the screen, and the monkey used his cursor 

to select A if it belonged to category A and B if it belonged to category B. The program 

generated random prototypes for each task. If a monkey did not finish a task (exposure or 

categorization task) before the program closed, they were restarted at the last exposure task 

(completed or not) with two new prototypes. 

12 EXPERIMENT 1 RESULTS 

12.1 Trials to Criterion 

Three of the four monkeys completed all three tasks. Their proportion correct and trials to 

criteria can be seen in Table 12.1. Figure 12.1A shows the number of trials it took to complete 

each task (including unfinished sessions), and Figure 12.1B shows the number of trials it took to 

meet criterion in their last session for each task. Murph finished his first relevant task (Category 

A shown first after intermixing) in two sessions, it took 275 trials to meet criterion. It took 

Murph one session of 190 trials to meet criterion in his irrelevant task. In his second relevant task 

(Category B presented first after intermixing), Murph met criterion in one session, 152 trials. Obi 

met criterion in his first relevant task (Category B presented first after intermixing) in his first 

session of 170 trials. In his irrelevant task, Obi met criterion in his first session in 114 trials. In 

his second relevant task (Category A presented first after intermixing), Obi met criterion after 

two sessions with 617 trials. Lou finished his relevant task (Category B presented first after 

intermixing) in eight sessions with 603 trials. In his irrelevant condition, Lou met criterion in his 

first session in 306 trials. Lou met criterion in his second relevant task (Category A presented 

first after intermixing) in three sessions after 624 trials. 
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Table 12.1 Proportion Correct in Each Task 

 

MURPH 
Trials to 

Criterion  

Total Trials Prop 

Correct 

Trials in 

Last Sess 

Prop Correct 

Last Sess 

First 120 

Last Sess 

Prop Correct 

Cat A 

Prop Correct 

Cat B 

Rel-AB (1) 275 0.64 233 0.66 0.51 0.71 0.68 

Irrelevant 190 0.84 190 0.84 0.82 0.69 0.98 

Rel-BA (2) 152 0.75 152 0.75 0.7 0.85 0.65 

                

OBI 
Trials to 

Criterion  

Total Trials Prop 

Correct 

Trials in 

Last Sess 

Prop Correct 

Last Sess 

First 120 

Last Sess 

Prop Correct 

Cat A 

Prop Correct 

Cat B 

Rel-BA (1) 170 0.75 170 0.75 0.73 0.68 0.84 

Irrelevant 114 0.85 114 0.85 0.85 0.8 1 

Rel-AB (2) 617 0.55 294 0.68 0.58 0.63 0.72 

                

LOU 
Trials to 

Criterion  

Total Trials Prop 

Correct 

Trials in 

Last Sess 

Prop Correct 

Last Sess 

First 120 

Last Sess 

Prop Correct 

Cat A 

Prop Correct 

Cat B 

Rel-BA (1) 603 0.59 230 0.78 0.68 0.77 0.78 

Irrelevant 306 0.73 306 0.73 0.63 0.76 0.71 

Rel-AB (2) 624 0.5 304 0.73 0.68 0.72 0.75 

Note. Rel-AB represents the relevant exposure when the Category A members were presented first after 

intermixing both categories. Rel-BA represents the relevant exposure conditions when Category B was 

presented first after intermixing. The 1 or 2 represents whether it was the first or second relevant task for 

that monkey. 

 

 

Figure 12.1 Trials to Criterion 

Note. AB represents the relevant exposure when the Category A members were presented first after 

intermixing both categories. BA represents the relevant exposure conditions when Category B was 

presented first after intermixing. 
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Table 12.2 presents the means (M) and standard deviations (SD) information for the trials 

to criterion for each task. Due to the small N design and the strong directional predictions, all 

analyses use an alpha level of .10.  

Looking at the relevant tasks combined and irrelevant task, there was no significant 

difference between relevant and irrelevant trials to criterion, t(7) = 1.4215, p = .198. Differences 

between tasks based on exposure schedule was also investigated. There was no difference 

between the relevant task in which Category A was presented first and the irrelevant task, t(2) = 

2.497, p = .130, or the relevant task in which Category B was presented first and the irrelevant 

task t(2) = -1.053, p = .403, or between the two relevant tasks, t(2) = 1.534, p = .265. 

Table 12.2 Means and Standard Deviations of the Total Trials to Criterion 

 

Overall Trials to 

Criterion M SD 

Relevant All 406.83 231.61 

Relevant 1 349.33 225.86 

Irrelevant 203.33 96.69 

Relevant 2 464.33 270.51 

Rel-AB 505.33 199.50 

Rel-BA 308.33 255.34 

 

Analyses were also performed looking at the number of trials to criterion only from the 

session in which they met criterion for each task. Table 12.3 presents the means (M) and standard 

deviations (SD) for the trials to criterion in the last session. There was no overall significant 

difference in trials to criterion in the last session of each task when comparing the relevant trials 

and irrelevant tasks trials, t(8) = .617, p = .458. Analyses were also done to look at differences in 

the trials it took to meet criterion in the last session due to exposure order. There was a 

significant difference between the two exposure schedules, t(2) = 5.950, p = .027, d = 3.433. 

There was no significant difference between the relevant task in which Category A was 



DOES PRE-EXPOSURE AFFECT CATEGORY LEARNING?    53 

presented first and the irrelevant task , t(2) = 1.346, p = .311, or between the relevant task in 

which Category B was presented first and the irrelevant task, , t(2) = .493, p = .671. 

Table 12.3 Means and Standard Deviations of the Number of Trials to Criterion for the Last 

Session 

 

Last Session Trials to 

Criterion M SD 

Relevant All 230.33 96.69 

Relevant 1 211 35.53 

Irrelevant 203.33 96.69 

Relevant 2 250 85.02 

Rel-AB 277 40.84 

Rel-BA 184 40.84 
Note. Rel-AB represents the relevant exposure when the Category A members were presented first after 

intermixing both categories. Rel-BA represents the relevant exposure conditions when Category B was 

presented first after intermixing. 

 

12.2 Categorization Performance 

Data from the last session was used from each task to examine each monkey’s 

categorization performance. This only includes the session in which criterion was met. To 

statistically compare categorization performance, the Fisher’s Exact test was used to compare the 

proportion correct between the relevant tasks and irrelevant task. Cochran’s Q test was used to 

look at performance for the first 120 trials. McNemar’s test was used to see if there was a 

significant difference in performance with Category A and Category B members. For the 

individual analyses, alpha was set to .05. Analyses using pairwise comparisons to examine all 

three tasks have a Bonferroni correction applied, denoted as cp. This correction multiplies the 

significance value to the number of comparisons in order to reduce Type 1 error, this can result 

in a p-value over 1.000 which is denoted here as p = 1.000. 

Figure 12.3 depicts Murph’s category endorsements for the first 120, and all trials. In his 

first relevant task, Murph learned the prototypes of each category equally by the end. However, 

in his first 120 trials, he was at chance with the prototypes and level 2 and 3 distortions for both 
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categories, suggesting he had not learned the correct response for the categories yet. In the 

irrelevant task, performance was perfect for the prototype of Category B throughout the task, but 

he was at chance with the prototype of Category A even by the end of the task. His endorsements 

of Category A also did not show the normal typicality gradient. In the second relevant task, he 

learned the Category A prototype perfectly by the end, but he was only 78% correct with the 

Category B prototype.  However, both categories showed a normal typicality gradient. 

A Fisher’s Exact test found Murph’s performance was significantly better in the 

irrelevant task than the relevant tasks, χ2(1) = 10.742, p = .0012, φ = -.138. The Cochran’s Q test 

confirmed this significant difference between Murph’s performance on the tasks in the first 120 

trials χ2(2) = 27.136, p < .001. Planned pairwise comparisons show the proportion correct in the 

irrelevant task was significantly better than in the first relevant task (cp < .001), and the 

proportion correct in the second relevant task was significantly high than the first relevant task 

(cp = .005). There was no significant difference between the second relevant task and the 

irrelevant task (cp = .124).  

McNemar’s test found a significant difference in proportion correct between two 

categories in the irrelevant task (p < .001), and in the second relevant task (p = .006), indicating 

Murph learned one category significantly better than the other. There was no significant 

difference in Category A and Category B performance in the first relevant task, p = .200. 
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Figure 12.2 Murph's Category Performance 
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Figure 12.3 Murph’s Proportion of Endorsements 

 

Figure 12.5 depicts Obi’s category endorsements for the first 120, and all trials. In the 

first relevant task, Obi correctly endorsed the Category B prototype every time, and correctly 

categorized the Category A prototype 89% of the time overall. In the irrelevant task, Obi had 
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than Category A. There was no significant difference in Category A and Category B 

performance in the first relevant task, p = .059, or the second relevant task, p = .396. 

 
 

Figure 12.4 Obi's Category Performance 
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Figure 12.5 Obi's Proportion of Endorsements 

 

Figure 12.7 depicts Lou’s category endorsements for the first 120 and all trials. Early in 

the first relevant task, Lou was performing well with the Category B prototype (88%) but was at 

chance with the Category A prototype. By the end of the task, his performance with each 

category was similar. In the irrelevant task, early performance again shows that he learned one 

category (Category B) better than the other, but by the end, performance with the two categories 

was similar. In the second relevant task, Lou’s early performance with Category B exemplars 

was better than performance with Category A members. By the end of the session, he was still 

endorsing the Category B prototype accurately, but was at chance with the Category A prototype, 

his performance was similar with the other distortion levels.  
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The Fisher’s Exact test found no overall significant difference in Lou’s performance in 

the relevant and irrelevant tasks, χ2(1) = .443, p = .511. The Cochran’s Q test also found no 

significant differences between the tasks in the first 120 trials, χ2(2) = .575, p = .750.  

McNemar’s test shows there were no significant differences in Category A or Category B 

performance in the first relevant task (p = 1.00), the irrelevant task (p = .422), or the second 

relevant task (p = .464), suggesting he always learned the categories relatively equally.  

 
 

Figure 12.6 Lou's Category Performance 
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Figure 12.7 Lou's Proportion of Endorsements 
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categories in his irrelevant tasks was not good. Looking at all trials, Murph had really good fits 

for both categories in both relevant tasks, but still did not have a good fit for both categories in 

the irrelevant task. In Obi’s first 120 trials and overall trials, he only had a decent fit for both 

categories in his first relevant task (B presented first). In Lou’s first 120 trials, he only had a 

good fit for both categories in his second relevant task (A presented first). Looking at all trials, 

Lou still had a really good fit for both categories in his second relevant task, but also in his 

irrelevant task.  

Table 12.4 Prototype Modeling 

 

Murph 

Overall 

Criterion 

Overall 

Sensitivity 

Overall 

Fit 

120 

Criterion 

120 

Sensitivity 120 Fit 

A_Irrel 0.3762 0.0001 0.2459 0.4247 0.0001 0.2584 

B_Irrel 0.0027 1.7979 0.0018 0.0111 1.1211 0.0058 

A_AB 0.3081 0.2608 0.0633 0.7506 0.0001 0.1656 

B_AB 0.4545 0.0001 0.0341 0.7518 0.0001 0.0999 

A_BA 0.09 0.6963 0.0356 0.1074 0.6071 0.0928 

B_BA 0.4712 0.0001 0.1053 0.5866 0.0001 0.1847 

Obi 

Overall 

Criterion 

Overall 

Sensitivity 

Overall 

Fit 

120 

Criterion 

120 

Sensitivity 120 Fit 

A_Irrel 0.2351 0.0001 0.2363 0.2351 0.0001 0.2363 

B_Irrel 0.0005 2.1512 0.0006 0.0005 2.1512 0.0006 

A_AB 0.3035 0.5021 0.3426 0.3828 0.247 0.4532 

B_AB 0.4447 0.0001 0.1743 0.7498 0.0001 0.5519 

A_BA 0.3964 0.0614 0.1695 0.447 0.0001 0.1608 

B_BA 0.084 0.6226 0.0325 0.1312 0.3838 0.0575 

Lou 

Overall 

Criterion 

Overall 

Sensitivity 

Overall 

Fit 

120 

Criterion 

120 

Sensitivity 120 Fit 

A_Irrel 0.2772 0.1105 0.0481 0.7497 0.0001 0.4091 

B_Irrel 0.408 0.0001 0.043 0.1362 0.3393 0.0383 

A_AB 0.4081 0.0001 0.0656 0.743 0.0001 0.1812 

B_AB 0.2381 0.2684 0.0168 0.2516 0.03 0.0322 

A_BA 0.2276 0.2854 0.1737 0.5723 0.0001 0.153 

B_BA 0.2088 0.293 0.1086 0.2909 0.2643 0.3175 
Note. Below .1 is a good fit, between .1 and .2 is an okay fit, and .2 and above is a bad fit. A_Irrel 

represents Category A after irrelevant exposure. B_Irrel represents Category B after irrelevant exposure. 

A_AB represents Category A after relevant exposure when the Category A members were presented first 
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after intermixing both categories. B_AB represents Category B after relevant exposure when the Category 

A members were presented first after intermixing both categories. A_BA represents Category A after 

relevant exposure when the Category B members were presented first after intermixing both categories. 

B_BA represents Category B after relevant exposure when the Category B members were presented first 

after intermixing both categories.  

 

13 GENERAL DISCUSSION 

Multiple-systems theorists have tried to understand how different brain systems facilitate 

different types of category learning. One model, COVIS, assumes that category learning takes 

place either through associative learning or by discovering defining criteria (rule learning). 

Associative learning is thought to be supported by the implicit-procedural system, which learns 

by associating responses to whole stimuli and generalizing based on similarity. Rule learning is 

thought to be supported by the explicit-declarative system, which focuses on features of stimuli 

that are predictive of its category and are typically verbalizable. This classic COVIS theory 

assumes that family resemblance (overall similarity) information is learned implicitly, whereas 

single atypical exemplars are learned explicitly through memorization. However, the classic 

COVIS theory has some difficulty with the finding that some family-resemblance based 

categorization tasks can be learned without feedback or reinforcement. To explain this finding, it 

has been suggested that we are able to learn family-resemblance categories without feedback due 

to fluency (Ashby & Maddox, 2005). Fluency happens when a previous experience that induces 

a graded pattern of activation in the visual cortex causes that group of cells to fire more rapidly 

to the presentation of similar patterns in the future (Ashby & Maddox, 2005). In other words, 

during exposure to category members, cells common to category members repeatedly fire 

causing an enhanced visual response, then, during the transfer phase, participants can use the 

feeling of fluency to decide which stimuli belong to the category. This presents problems if you 

are trying to learn more than one category simultaneously without feedback, as stimuli from both 

categories will feel fluent and cannot be differentially categorized.  
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In this paper, I questioned whether fluency was the only option for explaining learning 

without feedback in family-resemblance categorization tasks, or if actual unitized prototype 

representation in the visual cortex through perceptual learning could better explain these 

findings. Representational perceptual learning theories predict that as we have perceptual 

experience with stimuli, the way they are represented changes, and they become more unitized 

and more distinguished from other representations. Instead of the cortical activation during 

exposure simply creating faster future activation (fluency), it may create a unitized 

representation of the prototypes (representational theories of perceptual learning). Therefore, 

exposure should aid in single and multiple family-resemblance category learning. I proposed a 

COVIS plus theory, which still assumes separate implicit and explicit systems. However, it also 

assumes that the visual perceptual system feeding inputs into both these systems can build 

cortical representations of prototypes through perceptual learning that can later aid either type of 

category learning allowing sorting or quick mapping onto multiple categories as well as single 

categories. Therefore, family-resemblance learning from exposure does not have to be based 

simply on fluency. With clear visual representations of the prototypes, one would be able to 

more quickly map stimuli that share similarity with those prototype representations to categories. 

This view predicts that initial exposure to category members creates representations that should 

aid family-resemblance category learning in both single category learning (A-not-A tasks) and in 

discriminating between two categories (A-B tasks).  

Previous research has shown that humans, including amnesic patients, are able to learn 

single category tasks through mere exposure (e.g., Reed et al.,1999), and rhesus macaques are 

able to learn single category tasks (A-not-A) and are able to transfer their prototype knowledge 

to novel stimuli (Smith et al., 2008). However, this was the first time that rhesus macaques were 
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tested to see if they could learn this single category task (A-not-A) through mere exposure. My 

goal through these studies was to answer that question and determine (for the first time in 

humans or monkeys) if the macaques can also show a benefit in a two-category discrimination 

task (A-B) after exposure. 

13.1 Findings 

In the pilot study, macaques were exposed to a single category and random shapes, and 

then were tested in a one category A-not-A task. The macaques met criterion significantly faster 

after receiving relevant exposure to category members. When learning one category, all of the 

macaques had a significantly higher proportion correct in one of the relevant conditions than the 

irrelevant condition, and two macaques had a significantly higher proportion correct in both 

relevant conditions. When the proportion of endorsements for each item type was analyzed using 

standard prototype modeling, results showed that all but one of the monkeys’ best fit was in one 

of the relevant conditions.  

In Experiment 1, when trying to learn two categories simultaneously, there were no 

consistent significant differences in the number of trials it took to meet criterion between the 

relevant and irrelevant tasks. Therefore, the original COVIS plus theory prediction was not 

confirmed. However, two of the three monkeys actually had significantly higher proportions 

correct in the irrelevant task than the relevant tasks, suggesting that exposure was having some 

type of effect. These two monkeys also learned one category significantly better than the other 

category in the irrelevant condition. This may suggest that exposure to two categories produced 

learning (or fluency) about both categories but being able to fixate on a single category and 

ignore the other led to better performance. When looking to see whether both categories had 

good fits in the different conditions, all monkeys had relatively good fits for both categories in at 
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least one of the relevant conditions, but fits were only good for one category in the irrelevant 

conditions (exception for Lou). In the pilot study and Experiment 1, the best fits to the predicted 

model were almost always in the relevant conditions, suggesting that exposure was somehow 

helping prototype comparison. The better fits in the relevant tasks than the irrelevant tasks are 

consistent with the hypothesis that exposure helps to build representations of prototypes.  

The original alternative prediction assumed by the classic COVIS theory was that there 

would be no effect of exposure at all in a two-category task. The results of Experiment 1 are not 

consistent with this prediction either. It is not that there is no effect of exposure, as predicted by 

classic COVIS, and it is not clearly beneficial as initially predicted by representational views. 

Instead, it seems exposure to two categories may actually be harmful to the speed of learning and 

proportion correct. However, the macaques typically showed better prototype comparison fits for 

both categories after relevant exposure. This may suggest that the monkeys are indeed building 

two prototypes during exposure, but it is not making it faster for them to do the mapping. 

Instead, it may be easier for monkeys to map responses when they focus on and learn one 

category and can easily ignore the other.  

13.2 Intra-study Issues 

The current study succeeded in showing that relevant exposure affected the monkeys’ 

categorization decisions. It allowed the monkeys to create two separate representations, as shown 

by the similar performance and prototype-like comparisons of both categories after relevant 

exposure, but not after irrelevant exposure. This also suggests that the prototype representations 

were still accessible to the monkeys even when reinforcement was present, and that the visual 

representations and the reinforcement-based system were not competing with each other to guide 

categorization decisions. Though both classic COVIS and COVIS plus assume that any changes 
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(in activation or representation) in the visual perceptual system would feed as inputs to the 

implicit system, an alternative theory might assume that these visual representations comprise a 

third independent system that might compete to control the decision process. As noted above, 

this data clearly does not support this alternative.  

 However, this study has failed to clearly distinguish between classic COVIS and COVIS 

plus. It is possible that slower learning is the result of the difficulty mapping two representations 

to category responses when the task (without pesky pre-representation) can be learned simply 

mapping one. It is also possible that fluency due to exposure is making it harder to distinguish 

A’s and B’s. The current methodology of only having two categorization options during the test 

phase does not allow me to distinguish between these alternatives.  

13.3 Future Study 

To further investigate this issue, I plan to test macaques as well as humans in a 

categorization task similar to Experiment 1. However, instead of only including Category A and 

B, I would add random shapes to the test phase and have a third categorization option (N for 

nonmember). Adding this third non-category response will help distinguish whether the 

participants have created two category representations and are having trouble mapping them to 

the category symbols, or if everything is just fluent or not. 

In order to help participants distinguish between the two categories they are learning 

about, I plan to use only an intermixed exposure schedule. Blocked exposure can be beneficial 

when trying to learn similarities within a category (Dwyer & Mundy, 2016). This may be why it 

was beneficial in the pilot study, as the category members shared overall similarity and the 

random shapes did not. If the goal is to discriminate two categories from each other, and to 

create two separate representations, an intermixed exposure schedule may be more beneficial. 
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Research on exposure schedules suggests that intermixing categories is significantly better for 

discriminating between categories than blocked exposure for both humans (Dwyer et al., 2004; 

Lavis & Mitchell, 2006) and animals (Symonds & Hall, 1995).  

I will change the criterion to 80% correct with both categories in the last 120 trials, as 

opposed to just 85% overall correct in the last 120 trials. This way the participants have to learn 

both categories to the same criterion, and I can measure how quickly they are able to learn to 

map both categories in the relevant and irrelevant conditions. 

13.4 Importance of Multiple Systems 

The research with patients with amnesia demonstrates the benefit of having multiple 

systems. For example, it has been shown that patients with amnesia are able to learn rules even 

when they cannot recognize the exemplars that had been used to teach them, demonstrating that 

rule learning does not require intact episodic memory (Knowlton et al., 1992). Kolodny (1994) 

and Reed et al. (1999) showed that patients with amnesia were able to learn categories and their 

labels through training, even when explicit memory was absent. Conversely, Knowlton et al. 

(1994) showed that categorization by patients with amnesia in the weather prediction task was 

not dependent on short-term memory, but instead depended on a more long-term, nondeclarative 

process. In addition, a variety of patient groups are known to have deficits in both rule-based 

learning and tasks thought to require associative learning, yet they show normal prototype 

distortion learning when asked to decide whether items belong to the category or not (Ashby & 

Maddox, 2005). This includes patients with Parkinson’s disease (Reber & Squire, 1999), 

schizophrenia (Kéri et al., 2001), and Alzheimer’s disease (Sinha, 1999). The failure or absence 

of one system does not mean all categorization abilities are lost. Patients are still able to learn 

and thrive.  
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Having multiple systems can also be beneficial in cognitive aging. As we age, it becomes 

more difficult to learn exceptional items, but our categorization performance of prototypical 

stimuli remains intact (Schenk et al., 2016) allowing for most categorization items to be correctly 

classified. This suggests that there is a decline in explicit category learning (Glass et al., 2012), 

but implicit categorization (e.g., A-not-A prototype learning) remains intact (Casale & Ashby, 

2008; Heindel et al., 2013). Cognitive decline can also be compensated for by enhanced 

perceptual processing and a broader selective attention to individual stimulus features (Lighthall 

et al., 2014; Madden, 2007).  

Having multiple systems available for category learning is beneficial. When one system 

fails us, we have a backup system. We have the implicit-associative system that requires no 

conscious awareness and produces stable performance and behavior. However, this system fails 

without immediate reinforcement and repetition. The explicit-declarative system complements 

the implicit-associative system working almost as an opposite. This system works through rule 

learning which is fast, conscious, can be abstracted, and does not require immediate 

reinforcement and repetition. The perceptual representation systems (different ones for different 

modalities) feed information to the implicit-associative and explicit-declarative systems. 

However little research has been done before now to investigate how perceptual learning and 

representation affects category learning. Though the current results are not conclusive, it is 

possible that through perceptual learning, we are able to take in information and create cortical 

representations which can then be used by the implicit-associative and explicit-declarative 

systems to help inform categorization decisions. This seems to be the case when learning a single 

category, but its role in learning multiple categories is less clear. Hopefully, this will be 

answered through future research. 
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