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ABSTRACT 

African Americans are twice as likely as non-Hispanic Whites to develop Alzheimer’s Disease. 

Current approaches to studying Alzheimer’s disease do not include a sufficient minority population 

needed to understand the nature of this disparity. Evidence from epidemiological and cerebrospinal fluid 

biomarker studies suggests that African Americans do indeed represent a unique phenotype of 

Alzheimer’s disease, partly driven by an elevated presence of risk factors. These risk factors include, but 

are not limited to an elevated presence of vascular disease which can manifest in the brain in the form of 

White Matter Hyperintensities (WMH). Functional magnetic resonance imaging is a method of detecting 

brain activity, and has been used to detect neurological changes within Alzheimer’s Disease in the form 

of functional connectivity (FC). FC is a measure of the correlation of activity between brain regions. In 

our first aim, we examined connectivity between a well-studied network, the default mode network and 

how race modifies the relationship between AD biomarkers and connectivity, and whether WMH in this 

network accounts for these racial differences. We found that race does modify the relationship between 



CSF t-Tau, Aβ42, and cognitive performance between the midline core and dorsomedial subsystems, but 

that WMH did not account for these differences. In our second aim, we analyzed connectivity between 

regions not typically associated with AD including the anterior putamen, pre and post central gyri, and 

superior and middle frontal gyri. We found that, independent of race, anterior putamen to pre and post 

central gyri increased as CSF Aβ42 decreased, but the connectivity decreased as regional WMH volume 

increased.  Within African Americans, connectivity between the middle and superior frontal connectivity 

decreased as CSF Aβ42 decreased, and as regional WMH volume increased. This work further 

characterizes the AA dementia profile, and provides novel regions of exploration that may be affected by 

AD. Furthermore, we provide neurological support for the claim that in studies of individuals with 

Alzheimer’s disease, race should be considered as an important factor of interest in analyses.  
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1 INTRODUCTION  

1.1 Purpose of the Study  

African Americans are twice as likely as Caucasians to develop Alzheimer’s disease (AD) in their 

lifetime1. While hypotheses exist to explain this disparity, there is no known mechanism that fully 

accounts for it2. This lack of knowledge may be attributable to the fact that AD studies typically contain 

data collected from upper-middle class NHWs (Non-Hispanic Whites) with lifestyle and genetic 

backgrounds dissimilar to those of African Americans (AAs)3. In order to determine the nature of the 

differences between Caucasians and African Americans with dementia, we must create models that 

consider the multifaceted concept of race. 

 One method of modeling neurological changes in dementia is magnetic resonance imaging 

(MRI)4. Functional neuroimaging (fMRI) can identify changes in brain activity that supplement current 

AD models5. Disease related fMRI changes correlate with AD biomarkers including tau deposition6, 

amyloid levels7, brain atrophy8, and cognitive performance9. The proposed study seeks to identify the 

unique characteristics of the functional imaging profile of African Americans and determine whether 

ischemic neurological damages in the form of white matter hyperintensities account for any observed 

disparities.  

1.2 A Short Discussion of Race 

Before delving into a discussion of the African American phenotype in the context of 

Alzheimer’s Disease, we must first operationalize the concept of race, and how we propose to study it in 

this body of work. For the purposes of this study, race is a self-reported measure of belonging to a 

specific ethno-cultural group, in this case either NHW or African American. Although it may seem to be 

more biologically viable to include only genetic information to determine race, it would exclude relevant 

lifestyle and cultural factors linked to Alzheimer’s disease such as diet, activity levels, and access to 

healthcare10–13. To understand the nature of racial disparities in dementia we will include race as a 



2 

variable in our models, and then unpack factors under the umbrella of race such as genetic risk factors, 

comorbidities, and socio-economic status (SES) to determine the extent to which these factors account for 

that variability attributed to race.  

1.3 Alzheimer’s Disease & Health Disparities 

Over 5 million Americans currently live with Alzheimer’s disease. It is the sixth leading cause of 

death in individuals over 651. Individuals with Alzheimer’s disease will eventually succumb to its effects, 

but usually not without a gradual decline in daily function. This places a tremendous burden not only on 

the individuals with AD, but caregivers and health professionals that must provide support for patients 

during the diseased period of their lives14. Despite these facts, it remains as the only disease within the top 

10 leading causes of death to have no concrete method to slow, prevent or, cure the disease1.  

1.3.1 Racial disparities in AD 

African Americans are twice as likely to develop AD within their lifetime as are NHWs 2. 

Additionally, unique ethnoracial AD profiles have been identified for CSF 2,15, blood proteomic16, 

genetic17, and lifestyle risk factors18. However, the overwhelming majority of data used to create 

diagnostic and progression models of AD are from NHW populations19. Recruitment and study 

participation bias likely results from an interplay between convenient sampling20, and a lack of active 

networking with diverse populations that may be less likely to seek healthcare at early stages of AD21, and 

exhibit more mistrust towards the scientific and medical community22. Analyses that explicitly consider 

race as a variable of interest may not only enable us to uncover the nature of dementia disparities, but 

indicate to the populations of interest that everyone’s unique life experiences and circumstances are 

valued and important to the scientific community, which could increase research participation of minority 

groups23.   
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1.4 Etiology and Clinical Diagnosis of Alzheimer’s disease 

While we do not fully understand the causes of and risk factors for AD, the disease pathology is 

fairly well defined. Alzheimer’s disease is characterized by the presence of two cellular abnormalities, 

amyloid beta plaques, and neurofibrillary (tau) tangles24. A definitive diagnosis of AD can only be given 

after autopsy of the brain25. The presence of neuro-fibrillary tau tangles (NFTs) and Amyloid-beta (Aβ42) 

plaques serves the basis for a post mortem diagnosis of AD, but this diagnosis is obviously not relevant 

for those living with AD. In the clinic, AD dementia is diagnosed using a multi-faceted approach. A 

diagnosis of Alzheimer’s disease usually comes after a consensus among imaging results, cognitive 

testing, clinical interviews, and, rarely, cerebral spinal fluid biomarkers (tau and Aβ42)26–28.  

Tau and Aβ42 can be detected in cerebrospinal fluid (CSF), and can aid in the diagnosis of AD, in 

that if they are present at pathological levels it would support a diagnosis of AD dementia versus another 

type of dementia29–31. Accumulation of Aβ42 is normal in the aging brain, but the molecular composition 

of plaques in AD is unique24. The Amyloid hypothesis implicates the accumulation of Aβ42 as the impetus 

for AD32: i.e.,  Aβ42 plaques accumulate, which then starts a host of cellular inflammatory responses that 

lead to NFTs, which then leads to neuronal degradation and atrophy33. Although it may seem that the 

presence of Aβ42 is pathogenic, we do not know the mechanism by which it is toxic34. Despite its 

widespread acceptance over the last decade, many clinical trials that decrease Aβ42 accumulation have 

failed, discrediting the amyloid hypothesis32. While the proposed study does not directly probe the 

cellular interactions of Aβ42, better characterizing the diverse population of individuals with AD may 

enable researchers to identify similarities in brain pathology that can aid in the refinement of the amyloid 

hypothesis.  

Despite the unanswered questions about Aβ42 toxicity, there is much evidence that tau 

accumulation and migration across the brain has deleterious effects35.  In its normal state, tau is a 

microtubule-associated protein whose function is to stabilize microtubules that maintain cell polarity and 

axonal transport36. In AD, tau is typically hyperphosphorylated, which may block necessary microtubule 

binding sites36. When tau is present, but does not serve to stabilize microtubules, the microtubules 
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disassemble, and tau accumulates in paired helical filaments, forming the classic neurofibrillary tangles 

(NFTs)36. Without the microtubule structure, axonal transport ceases, and the neuron eventually dies. 

Increased tau levels are detectable in the CSF, and CSF t-Tau serves as a better marker of disease 

progression than Aβ42, as it more closely correlates with cognition31,37,38.  

From a cognitive standpoint, memory impairment is the hallmark cognitive sign of Alzheimer’s 

disease, and is typically correlated with CSF biomarkers of AD and hippocampal atrophy39,40. Short term 

memory deficits are commonly reported in individuals that receive a diagnosis of Alzheimer’s Disease. In 

clinical diagnosis, memory complaints that impair with daily function are often sufficient to receive a 

diagnosis of AD40. However, an individual can present with a mixed cognitive profile, with visuospatial 

and executive function deficits as opposed to only memory complaints25–27.  In fact, African Americans 

are more likely to exhibit non-amnestic cognitive profiles than NHWs42.   

Much of the diagnostic process of AD involves ruling out other causes of dementia including 

stroke, vascular dementia, Parkinson’s disease, geriatric depression, etc. While CSF measures and PET 

images have greater specificity for AD, combined with magnetic resonance imaging (MRI), they are 

much more powerful, and MRI has been cited as more stable indicator of neuronal loss than CSF 

markers44. 

1.4.1 Racial Disparities in diagnostic models of AD 

In multiple cohorts, African Americans have lower CSF total tau than NHWs15,45 despite similar 

levels of Aβ42 and similar cognitive function. This may suggest that African Americans exhibit 

pathological processes after amyloid deposition distinct from NHWs. Additional considerations include 

genetic risk factors unique to race. APOE e4 and the ABCA7 alleles occur at increased rates in AAs, and 

confer different risks across races46. ABCA7 confers a greater risk for AD in AAs, and is present at higher 

rates in this population17,47.  Presence of the APOE e4 allele has differential effects on functional 

connectivity according to race48. We will carefully consider these risk genes in our analyses to determine 

whether their presence explains the racial differences we may observe in connectivity to biomarker 
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relationships. Furthering our understanding of the observed differential tau and genetic burden in the 

context of additional AD biomarkers may broaden our understanding of Alzheimer’s disease, and allow 

current models to be more generalizable.  

In general, African Americans may exhibit a distinct cognitive profile in the presence of AD. 

African Americans may be less likely to exhibit amnestic profiles (memory impairment), and thus more 

likely to exhibit dysexecutive syndromes and visual spatial impairment. Cognitive decline in the presence 

of AD may occur at a slower rate in African Americans than NHWs49, 29. This distinct cognitive profile 

may contribute to the under-diagnosis of AD in African Americans, as AD diagnosis is biased towards 

memory complaints and rapid decline12. However, standard clinical assessments typically underestimate 

daily function and overestimate cognitive impairment in African Americans50. While the cognitive profile 

of African Americans with AD is well-characterized, we still do not know the cause of the cognitive 

disparities. The measurement tools themselves may not possess the nuanced cultural relevance required to 

address cognitive impairment in minority populations, as they were developed and validated in a 

homogenous Non-Hispanic White population 51,52,53. Given the inaccuracies in cognitive assessment 

within African Americans, when comparing the relationship between cognition and other AD biomarkers, 

we must consider the underlying racial differences and normalize scores appropriately in statistical 

analyses54–56.  

1.5 Functional Neuroimaging 

Neuronal dysfunction can be indirectly measured by changes in blood flow to regions of the brain 

using the Blood Oxygen Level Dependent (BOLD) signal57. This type of imaging, known as functional 

magnetic resonance imaging (fMRI), can detect functional changes in the framework and meaning of 

“functional networks”. Structural changes occur well after cognitive changes can be detected in the 

trajectory of AD. Memory impairment usually begins before the hippocampus has noticeable atrophy, 

suggesting that neuronal dysfunctional precedes atrophy58. Figure 1 shows the progression of Alzheimer’s 

disease, and when specific biomarker changes occur in the context of symptom emergence. This figure 



6 

indicates the utility of resting state (rs)-fMRI over structural MRI to detect differences between healthy 

aging brains and those that show signs of dementia, and can be utilized throughout the disease spectrum. 

Of note, this figure shows the emergence of tau markers after rs-fMRI changes begin. Because resting 

state measures may not correlate with tau until an individual has reached a particular threshold of 

amyloid, we will analyze tau and resting measures in individuals who have a clinically significant burden 

of amyloid. The following sections will discuss the what is known about the functional profile of 

Alzheimer’s disease.  

 

Figure 1 Timecourse from Preclinical to Clinical AD: Pathophysiology and Imaging. Taken from 

Sheline, et. al., 2013. 

1.5.1 Default Mode Network in Alzheimer’s Disease 

Regions of the brain that exhibit highly correlated (or connected) BOLD single activity are 

known as “functional networks”. The default mode network (DMN) is perhaps the most commonly 

studied functional network, particularly in dementia59. Typically, regions, or nodes, of the default mode 

network include the ventromedial prefrontal cortex, the precuneus, posterior cingulate, and the inferior 

parietal lobule60,61, but others have divided the DMN into distinct functional subsystems62, and others 
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include the hippocampus as part of this network63. In this work, we focus on connectivity measures 

between nodes of the DMN subnetworks.  

Within Alzheimer’s disease, lower connectivity between DMN nodes is the most commonly 

reported fMRI finding58,64. Within AD, connectivity typically decreases over time, and is lower among all 

regions of the DMN65. DMN connectivity also correlates with other AD biomarkers such as CSF Aβ42 

levels, and hippocampal volumes such that as disease burden indicated by these biomarkers increases, 

DMN connectivity decreases45,66. However, DMN results are not consistent across all studies. Some 

studies have identified a spike in connectivity in the early stages of the disease, during a stage known as 

mild cognitive impairment (MCI), and then a gradual decline67,68. Some studies only report a decrease in 

connectivity between anterior and posterior DMN regions, and others indicate widespread DMN 

changes59,63,65,69. The reasons for these discrepancies may be methodological, but it is also possible that 

essential demographic variables, such as race, were not considered in the analysis. Because African 

Americans exhibit a unique phenotype of AD, and functional connectivity of the DMN is a potential a 

biomarker AD, it is important that racial differences in functional connectivity be explored. One aim of 

this work is to explore the correlates of DMN connectivity in individuals with Alzheimer’s disease, and 

examine how race may modify connectivity relationships to other biomarkers.  

1.5.2 Racial Disparities in Functional Connectivity  

Functional connectivity has not been adequately explored in the context of racial differences. 

Most studies that investigate functional connectivity in African Americans either do not report the racial 

makeup of their sample10, or recruit diverse samples, but do not include race as a factor of interest in 

statistical models70,71, or only recruit African Americans72,73,74. We are by no means suggesting that these 

approaches are flawed, but to point out the literature examining racial disparities in functional 

connectivity profiles is essentially non-existent. Indeed, outright study of racial disparities must be 

thoughtfully conducted as it would be easy to utilize these findings to support discriminatory ideologies. 

However, if we are to understand the nature of racial disparities in Alzheimer’s disease, explicitly 
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exploring racial differences is crucial. Because of the gap in the literature on this topic, we have looked to 

studies of racial disparities using other AD biomarkers to inform our hypotheses for this work, and we 

hope that these studies begin to fill this hole.  

1.6 The Putamen in Alzheimer’s Disease 

While much of the research in dementia has centered around the DMN, there is evidence that 

regions outside the DMN may be effected by AD pathology, as far as 10 years out from symptom onset75. 

The putamen is region that is susceptible to both vascular disease76,77 and the effects of AD75. This 

phenomenon has been observed in studies of pathology78, positron emission tomography (PET)79, and 

structural MRI75, with little evidence from functional MRI in AD. Unlike the DMN, the putamen and its 

network nodes are responsible for cognitive performance outside memory domains, including executive 

functions, motor coordination, language processing, and visual spatial function80,81. Many individuals, 

including a larger percentage within the AA population50, experience cognitive impairment in these 

domains in addition to memory41. Because the putamen is involved in these non-memory functions, but 

does exhibit vulnerability to AD, examining this region and its functional networks could provide a novel 

therapeutic target for interventions. However, we must first establish whether connectivity metrics within 

putamen networks correlate with known AD biomarkers.  

Functional putamen networks are fairly well defined in the motor-disease literature82,83. 

Tractography and functional connectivity studies have identified the caudate, parts of the thalamus, 

superior frontal gyrus, middle frontal gyrus, and pre-and post-central gyri as regions most structurally and 

functionally connected to the putamen84,83.  The anterior putamen has clear functional divisions on the 

anterior-posterior axis; the anterior putamen (APu) is classically viewed as a an associative region while 

the posterior putamen supports motor function 85.  The APu appears to be more affected by AD than its 

posterior counterpart in structural MRI86,87,88 and atrophy of the APu better correlates with cognitive 

decline75,89.  In this work, we investigate putaminal, specifically APu connectivity to further our 

understanding of the role of the putamen in AD.  Additionally, because the putamen is vulnerable to both 
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AD and vascular disease, we will investigate the role of white matter hyperintensities (WMH) in putamen 

connectivity.  

1.7 White Matter Hyperintensities  

White Matter Hyperintensities are a significant risk factor for subsequent development of dementia, 

and are related to a number of lifestyle and biological factors90. White Matter Hyperintensities (WMHs) 

are damaged areas of periventricular and subcortical white matter that appear hyperintense on T2 

weighted and Fluid Attenuated Inversion Recovery (FLAIR) scans91. Common neuropathological 

explanations of WMH include demyelination and axonal loss, endothelial dysfunction, and glial 

atrophy91. Their prevalence is variable in aging populations, and represent a risk factor for a host of 

neurological and cognitive complaints later in life such as an elevated risk of stroke or developing mild 

cognitive impairment92. Despite the prevalence of WMH in dementia, they are not specific to Alzheimer’s 

Disease92,93. Although WMH are a risk factor for AD, their absence does not rule out AD, and they can 

occur without amyloid and tau pathology94. Lifestyle and biological factors can affect the presence of 

WMHs such that individuals who smoke95, have diabetes96, or cardiovascular disease39 are at an increased 

risk of developing WMHs.  

White matter hyperintensities (WMH) are a common finding in individuals with Alzheimer’s 

disease (AD), but their etiologic role in AD is not well understood.  There is an increasing debate as to 

where amyloid and tau can cause WMH, or whether amyloid and WMH have a synergistic 

relationship98,99. Individuals with WMH typically have cognitive profiles different than those with “pure 

AD”, the former causing generalized, but less severe, cognitive deficits, and the latter causing memory 

impairment 100. However, recent evidence indicates that WMH could emerge independently of vascular 

disease and arise as a direct result of dementia, as an inflammatory response to amyloid beta 

plaques101,102. It is likely that the two pathologies have a synergistic relationship such that presence of 

WMH can increase vulnerability to AD pathology, particularly Aβ42 plaques. In this work, we will 
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examine WMH and their correlation with CSF levels of tau and amyloid to determine whether the two 

AD biomarkers are related, and whether race modifies this relationship.  

Some studies suggest that location of WMH determines whether they are AD related, or a result of 

vascular disease. WMH seem to have greater posterior involvement in individuals with AD, particularly 

in the parietal lobe98,103. Multiple studies have identified that the presence and volume of WMHs is greater 

in individuals with MCI and AD92,98,104. Some purport that WMHs provide a secondary neuronal insult 

that, in the presence of amyloid deposition, is necessary for the generation of AD105. Others cite the 

importance of the location of WMHs as indicative of disease processes, with AD particularly associated 

with posterior periventricular WMHs caused by tau41,42,102. In this work, we will examine the regional 

volume of WMH to determine if WMH in particular brain regions correlate with levels of CSF tau and 

amyloid which would support some type of causal mechanism between AD and WMH, and whether race 

modifies these relationships. 

WMH can influence functional connectivity measures. WMH along tracts that are between grey 

matter regions of interest (ROIs) can influence connectivity, with connectivity decreasing as internodal 

WMH burden increases106,107. This is likely a result of the decline in neurovascular coupling that occurs in 

the presence of general vascular disease, and, more specifically, ischemic damage, of which WMH are a 

symptom108. We have chosen to focus on regions that are typically associated with AD (DMN), and 

regions vulnerable to both AD and vascular disease (putamen networks) to determine if the connectivity 

measures among these regions more strongly correlates with AD biomarkers or WMH to determine the 

nature of the functional connectivity alterations that we may identify.  

1.7.1 Racial Disparities in White Matter Hyperintensities 

WMH volume better predicts cognitive outcomes than hippocampal volumes in African Americans 

with dementia and Alzheimer’s disease49,109–112. One explanation of this disparity is that African 

Americans are more likely than NHWs to exhibit mixed pathology in the presence of AD, particularly 

evidence of cardiovascular disease113, and that it is consideration of these contributing co-morbidities in 



11 

the presence of AD pathology that predicts cognitive outcomes in this population114. Any functional 

connectivity differences that we identify between races may be attributable to differences between 

regional distribution of  WMHs, as we have identified racial differences in the correlates of WMHs115,116. 

To date, no studies investigating differences between regional WMH volumes and functional connectivity 

in the context of race have been published.  

1.8 Dissertation Aims 

African Americans have a disproportionately high concentration of lifestyle risk factors, and are 

more likely to show mixed AD pathology when compared to NHWs. As previously mentioned, African 

Americans have higher rates of type-2 diabetes, that may have its roots in both genetic and lifestyle 

factors117. They also have higher rates of vascular disease, including atherosclerosis and peripheral 

vascular disease118,119. Both type-2 diabetes and vascular disease are risk factors for Alzheimer’s 

disease120–122. African Americans have a disproportionately high level of environmental and lifetime 

stressors, which contribute to over poorer brain health12. African Americans, on average, experience more 

perceived stress than age and education matched NHWs, and these stressful life events have a greater 

negative impact on cognition123,124. African Americans are more likely to  have a lower socioeconomic 

status, which usually carries with it substandard housing, low education, and unemployment, all of which 

are individual risk factors Alzheimer’s disease125–129. It is difficult to delineate lifestyle from genetic 

factors when individuals with similar genetic backgrounds have similar life experiences and 

surroundings130. However, in our analyses we will include as many of these relevant potential mediators 

as possible, to uncover biological mechanisms that may explain racial differences.  

African Americans have specific genetic risk factors for AD. The APOE e4 allele is more 

common in African Americans, and only one copy of the e4 variant is necessary to confer a greater AD 

risk for African Americans, unlike other races such as NHWs, in which two copies of the e4 allele are 

necessary to increase the risk of AD131,132. This risk is not purely genetic, as studies with African Yoruba 

tribes show that two copies of the allele are required to increase the risk of developing dementia133. The 
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ABCa7 gene is also associated with increased risk of developing Alzheimer’s disease within African 

Americans, but because the presence of the risk allele is highly collinear with race, its effect can only be 

analyzed within race134,17. Most of the studies that focus on these risk alleles logistically correlate the 

presence or absence of AD with presence or absence of one or two risk alleles. While useful in 

determining the whether a gene poses a risk, little is known about the disease mechanism behind the risk 

alleles and the subsequent effect on brain pathology. In our regression models, we will include the 

presence of APOE e4 as a factor, to determine if it is related to structural and functional neuroimaging 

measures.  

The current set of diagnostic criteria may not be applicable to the broad population of individuals 

with AD. Most of the current models of Alzheimer’s disease, and associated diagnostic cutoffs, have been 

generated in a primarily upper-middle class Caucasian population19,135–137. In order to expand current 

models of AD to a wider population, we must recruit individuals from more diverse backgrounds. African 

Americans often do not fit within the established diagnostic criteria, nor do they exhibit the same 

biomarker profile as NHWs12. Lower tau levels, weaker correlation between cognition and the regions of 

the brain most vulnerable to tau, and a higher prevalence of mixed pathology within African Americans 

point to a unique race-specific mechanism and disease trajectory yet to be defined by the scientific and 

medical community. Functional connectivity provides a method of examining neuronal alterations across 

the disease spectrum that can model the dynamic interactions between regions that may more accurately 

reflect cognitive changes, and respond to ischemic damage prevalent in the AA population.  

Chapter 2 includes the analysis for Aim 1a, an analysis of default mode network connectivity and 

an analysis of the role race in connectivity to biomarker relationships in the context of dementia. Chapter 

3 includes analyses for Aim 1b, which includes analysis of functional connectivity of the DMN and its 

subnetworks, and how these measures relate to regional hyperintensities, and the role of race. Chapter 4 

includes both Aims 2 a & b; an analysis of putamen network connectivity, the role of hyperintensities, 

and how race modifies some of these relationships.  
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1.9 Specific Aims 

1.9.1 Aim 1a: Determine the extent to which race modifies the relationship between connectivity of 

the DMN subnetworks and AD biomarkers.  

1.9.2 Aim 1b: Determine the extent to which regional WMH account for racial differences we 

observe in DMN connectivity to biomarker relationships.  

1.9.3 Aim 2a. Determine whether cortico-putamen connectivity correlates with AD biomarkers, and 

whether race modifies these relationships.  

1.9.4 Aim 2b. Determine whether regional WMH relates to connectivity and accounts for any 

observed differences in connectivity to biomarker relationships.  
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2 AIM 1A: RACE MODIFIES DEFAULT MODE CONNECTIVITY IN ALZHEIMER’S 

DISEASE 

Maria B Misiura, M.A. 1,2, J. Christina Howell, B.A.2,  Junjie Wu PhD3, Deqiang Qiu, PhD,3, Monica W. 

Parker, M.D.2, Jessica A.Turner, PhD1, William T Hu, M.D., PhD.2  

1Department of Psychology, Georgia State University. Atlanta, GA 

Departments of 2Neurology and 3Radiology, Emory University. Atlanta, GA 

 

Abstract 

Background: Older African Americans are more likely to develop Alzheimer’s disease (AD) than older 

Caucasians, and this difference cannot be readily explained by cerebrovascular and socioeconomic factors 

alone. We previously showed that mild cognitive impairment and AD dementia were associated with 

attenuated increases in the cerebrospinal fluid (CSF) levels of total and phosphorylated t-Tau in African 

Americans compared to Caucasians, even though there was no difference in beta-amyloid 1-42 level 

between the two races.   

Methods: We extend our work by analyzing early functional magnetic resonance imaging biomarkers of 

the default mode network MRI between older African Americans and Caucasians. We calculated 

connectivity between nodes of the regions belonging to the various default mode network subsystems and 

correlated these imaging biomarkers with non-imaging biomarkers implicated in AD (CSF amyloid, total 

tau, and cognitive performance).  

Results: We found that race modifies the relationship between functional connectivity of default mode 

network subsystems and cognitive performance, tau, and amyloid levels.  

Conclusion: These findings provide further support that race modifies the AD phenotypes downstream 

from cerebral amyloid deposition, and identifies key inter-subsystem connections for deep imaging and 

neuropathologic characterization.  
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2.1 Introduction 

It is not well understood why older African Americans are twice as likely to develop Alzheimer’s 

disease (AD) as older non-Hispanic Caucasian Americans (abbreviated as Caucasian hereafter).140,141  

While vascular disease12,126,142 has been speculated to contribute to the disparities in AD risks, genome-

wide association and clinical studies suggest race/ethnicity (hereafter referred to as race), outside of these 

factors, also modify the molecular pathways implicated in the development and manifestation of AD 

pathology.  For example, the APOE ε4 allele confers lower AD risks for African Americans than 

Caucasians,135,143 the ABCA7 risk allele confers greater AD risks for African Americans than 

Caucasians17, and AD is associated with less amnestic baseline and slower longitudinal decline in African 

Americans than Caucasians on neuropsychological analysis.42  These cohort-level differences may reflect 

intrinsic biological differences between race, lower correlation between clinically-suspected and 

pathologically-confirmed AD (~75% accurate), recruitment bias in one or both races, or a combination of 

these factors27,144.  Data-driven strategies are therefore necessary to provide mechanistic correlates of 

observed race-associated differences to more clearly understand AD disparity. 

One such approach is to use etiologic biomarkers associated with hallmark AD pathology to 

enhance the likelihood that those clinically suspected to have AD indeed have the pathology. We recently 

showed that in a group of older adults with mild cognitive impairment (MCI) or AD dementia, African 

Americans had lower cerebrospinal fluid (CSF) levels of t-Tau-related biomarkers than Caucasians15. This 

is despite similar changes in CSF levels beta-amyloid 1-42 (Aβ42).  We interpreted these findings as 

preliminary evidence for divergent biomarker trajectories and these differences have now been validated 

in one independent cohort in St. Louis and an independent younger cohort in Atlanta 145,146.   

Because we have not identified a difference in atrophy patterns between African Americans and 

Caucasians with AD, we hypothesized that rsfMRI would be a more sensitive approach to identify the 

effect of race on AD-related neurological changes.  We are particularly interested in resting state 

functional connectivity, as alterations in connectivity can be detected well before disease onset147 and 

track disease progression.148   To explore brain changes associated with AD which may differ between 
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races, we analyzed functional connectivity (hereafter referred to as connectivity) in the default mode 

network (DMN) using resting-state functional MRI (rsfMRI). The DMN is considered a potentially useful 

imaging biomarker for AD that is more widely available than amyloid PET65,68,149–152.    

In older adults, the DMN is broadly defined as correlated Blood Oxygen Level Dependent 

(BOLD) signal among the precuneus, posterior cingulate cortex (PCC), the inferior parietal lobule (IPL), 

the ventromedial prefrontal cortex (vmPFC). 68,153  The DMN overlaps with anatomical sites vulnerable to 

amyloid deposition and atrophy in early AD, 154  and reduced connectivity between DMN nodes (intra-

network connectivity) mirrors the stage-wise t-Tau deposition on PET imaging45,155 even before there is 

detectable atrophy.12  The trajectory of AD functional connectivity changes is complex. The 

overwhelming majority of studies examining four DMN nodes reported reduced connectivity in AD 

(dementia),61, 156, 67, 157, 158 with an exception reporting increased connectivity during early MCI.61  

However, few studies used etiologic biomarkers to distinguish between cognitive impairment due to AD, 

psychiatric illness, or cerebrovascular disease159. DMN hyperconnectivity has also been observed in 

asymptomatic APOE ε4 carriers when compared to non-carriers,160, 161 sometimes decades before 

symptom onset.162  DMN connectivity may therefore have different relationships with AD risks 

(including risk genes), pathologic markers, clinical phenotypes, and disease stage, making inclusion of 

etiologic and clinical biomarkers in AD-related DMN analysis critical to ensure the consistency of 

findings.   

As research on the DMN progresses, further fractionation of this complex network has revealed 

synchronous bold activity in regions outside traditional definitions of the DMN.  Core subsystems64 

(dorsomedial, medial temporal lobe, and midline core) have been proposed to each contain key regions 

which work in tandem to support cognitive processes in learning and memory, retrieval of 

autobiographical information, self-referential processes,163, and social processing164. Dividing the DMN 

into its subcomponents has thus far provided more sensitive timelines for disease progression in AD and 

other neurological disorders156. Studies have shown that connectivity within the medial temporal lobe, 

rather than average DMN connectivity between the four core nodes, more consistently relates to cognitive 
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impairment in AD30,148; increases in connectivity within the anterior subsystems during early AD is more 

consistently identified in studies analyzing DMN subsystems34,157; and memory impairment can be 

associated with decreased intra-subsystem connectivity within the medial temporal lobe165 but increased 

connectivity between dorsomedial and midline core subsystems166, 167. 

The vast majority of studies analyze connectivity changes within diagnostic categories of normal 

cognition (NC), MCI, and AD dementia. Given that differences in cognitive impairment between NC and 

MCI and between MCI and AD dementia can sometimes be small, a continuous measure of cognition is 

preferred168,169 especially when it remains controversial whether current diagnostic algorithms are valid in 

African Americans (even with race-adjusted norms)12,49. Thus, we also use a composite measure of 

cognitive performance derived from neuropsychological tests15 to serve as a continuous, rather than 

categorical, measure of disease burden. We hypothesized that race modifies the relationship between 

connectivity and AD-related cognitive impairment, and between connectivity and two CSF AD 

biomarkers (Aβ42170 and t-Tau171).  Furthermore, we specifically tested the generalizability of AD-

associated connectivity changes between DMN nodes and between DMN subsystems to extend the AD 

biomarker phenotype in African Americans.  

2.2 Methods 

Participants  

  This study analyzed previously collected data from a study that recruited self-reported 

Non-Hispanic Whites and African Americans over the age of 65 across the diagnostic spectrum of 

Alzheimer’s disease dementia including individuals with normal cognition (NC), individuals with mild 

cognitive impairment (MCI), and individuals with Alzheimer’s Disease (AD)15.  The study was approved 

by the Emory University Institutional Review Board.  Each participant underwent a detailed interview for 

demographic information, self-reported race (Caucasians of Hispanic or Latino ethnicity were not 

included in this study), vascular risk factors (coronary artery disease, congestive heart failure, atrial 

fibrillation, hypertension, hyperlipidemia, diabetes, suspected transient ischemic attack), other medical 
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comorbidities (e.g., cancer), and medications (e.g., use of angiotensin-converting enzyme inhibitors or 

angiotensin II receptor blockers). Each participant was then assigned a diagnosis according to consensus 

criteria including those for normal cognition (NC), MCI, and AD dementia (global Clinical Dementia 

Rating of 1 or 2.) Cognitively impaired subjects suspected of having a non-AD dementia (vascular, Lewy 

body, and frontotemporal dementia) were excluded.  While our cohort was not age and gender matched 

specifically, we did not find significant differences in age between races or gender (Table 1). As 

previously reported, diabetes and hypertension were more common in African Americans than 

Caucasians, but had lower brain total white matter hyperintensity (WMH) volumes than Caucasians.  

Demographic data in table 1 refer to individuals who passed MRI quality control standards (n=137) as 

described below.   

Cognitive, genetic, and CSF biomarkers 

Neuropsychological analysis was performed as previously described15.  Briefly, each subject 

underwent. Each subject also underwent a detailed neurologic examination and neuropsychological 

analysis for assessment of function in cognitive domains. These included(1) memory (Consortium to 

Establish A Registry for Alzheimer’s Disease word list delayed recall, Brief Visual Memory Test–

Revised [BVMT-R] delayed recall), (2) executive func-tion (Trail Making Test B, reverse digit span 

[RD], Symbol Digit Substitution Test, and letter-guided fluency), (3) language (Boston Naming Test [60 

items], category fluency), and (4) visuospatial function (Judgment of Line Orientation[JOLO], Rey-

Osterrieth complex figure test). With the exception of BVMT-R, JOLO, and RD, subtest Z-scores were 

calculated according to published normative data, adjusting for age, sex, education, and race. Z-scores for 

these three subtests were calculated using the same norms were used in Caucasians, but calculated using 

Atlanta-based, cognitively normal African Americans because published norms generated mean Z-scores 

of >2.  Domain-specific Z-scores were calculated by averaging subtest Z-scores, and Z-scores for the four 

domains were averaged to generate composite cognitive Z-scores. Subjects with MCI and AD dementia 

had lower MMSE and cognitive Z-scores than subjects with NC (p <.01 for all comparisons, Table 1). In 

addition, each subject underwent standardized collection of blood (for APOE and ABCA7 genotyping) and 
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CSF without overnight fasting according to a modified Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) protocol as previously described.34   

MRI acquisition and preprocessing 

  Each subject underwent MRI scanning using a modified ADNI protocol on a 3T scanner 

(Siemens AG) which included a T1-weighted 3D MPRAGE sequence (TR/TI/TE = 1620/950/3msec, flip 

angle = 30o, matrix = 192×256×160, and voxel size = 0.98×0.98×1mm3) and a 6 minute eyes-open resting 

state functional MRI scan (TR/TE = 3000ms/32ms flip angle = 90o, field of view 

(FOV) = 200 × 200 mm2, acquisition matrix = 64 × 64, voxel size = 3.1 × 3.1 × 3.5 mm3, slice = 33, time 

point = 124) at the Emory Center for Systems Imaging. For rsf-MRI, we used the DPABI v4.0.190305 

toolbox to preprocess the image data172 after discarding the first 10 volumes to allow the magnetization to 

approach a dynamic equilibrium, and to allow for more time for our participants to get comfortable inside 

the scanner158,173. Individual echo-planar imaging (EPI) data were slice time corrected. Participants whose 

head motion exceeded 3.0 mm in translation or 3° in rotation were excluded. We further reduced the 

confound of head motion by higher-order regression based on Friston's 24-parameter model 174, and the 

effect of physiological artifacts by covarying signals from CSF space and white matter.175  EPI data were 

normalized to a study specific template generated using the DARTEL algorithm in DPABI that is better 

suited for populations with larger amounts of atrophy than standard normalization to the MNI template.176  

A spatial filter of 6 mm full width at half maximum Gaussian kernel was used. Subsequently, a band pass 

temporal filter (0.01–0.08 Hz) was applied to reduce the low-frequency drifts and high-frequency noise.  

MRI Quality Control  

  To be eligible for this analysis, participants must have had a T1 suitable for use in 

segmentation, as well as a usable resting state scan. To further eliminate confounds from head motion, we 

removed anyone whose mean framewise displacement (MWFD) was 3mm and higher177.  Among 145 

subjects, 8 (5%) had rsf-MRI that did not pass quality control and were excluded from DMN analysis. 

Table 1 displays demographic data only for individuals included in the MRI analysis (n=137), and Table 

2 shows demographic data for individuals not included in the analysis. Compared to those included the 
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analysis, those excluded did not differ significantly in age, gender, diagnosis, or race. There was no 

significant difference in motion according to race or diagnosis.  

Rsf-MRI Independent Component Analysis 

  We used a data driven approach (Independent 

Component Analysis; ICA) using the Group ICA of fMRI Toolbox 

v4.0b (GIFT) to identify large-scale brain networks.178,179 We first 

performed independent components analysis with model-order of 80 

to empirically derive our regions of interest which enabled us to 

break the DMN into its various subregions, while still maintaining 

appropriate degrees of freedom. ICA is a data driven approach that 

allows for more adaptation to individual subject variability, which is 

essential in special populations, particularly those with atrophy as in 

our sample. The Default Mode and its subnetworks are relatively 

robust, and can easily be identified in a higher order ICA model148,180. 

We chose an ICA approach as it can be more sensitive to sample 

characteristics, such as brain atrophy in older populations, than 

standard atlas based seed-regions while still accurately identifying 

regions of interest181,182.  

To identify our regions of interest, we correlated all non-

artifactual components183 with templates of the default mode network 

and chose components with the highest correlation values to the 

templates (0.80 cutoff threshold).  Using the default mode network 

subdivisions and coordinates outlined by Andrews-Hanna,64 we 

identified 11 components that contained our regions of interest for 

the DMN subsystems. Components were manually confirmed using 

the xjview toolbox(http://www.alivelearn.net/xjview/) to ensure that 

Figure 2 Empirically derived 

component maps of nodes according to 
each DMN subsystem.  TP=  temporal pole, 

vlTC= ventro-lateral temporal cortex, 

dmPFC= dorsomedial prefrontal cortex, 
dlTC= dorso-lateral temporal cortex, TPJ= 

temporal parietal junction, 
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they contained only our regions of interest. Regions included the temporal pole (TP), lateral temporal 

cortex (2 regions; ventrolateral (vlTC) and dorsolateral (dlTC), dorsomedial prefrontal cortex(dmPFC), 

and the temporal parietal junction(TPJ) which comprised the dorsomedial subsystem. The 

parahippocampal gyrus (pHG), hippocampus, and posterior inferior parietal lobule (pIPL) comprised the 

medial temporal lobe subsystem. Finally, the precuneus, posterior cingulate (PCC), and ventromedial 

prefrontal cortex (vmPFC) comprised the midline core subsystem (Fig. 1). We then calculated functional 

connectivity in GIFT by correlating the time courses of signal fluctuations between the chosen 

components, and obtained a correlation value for each region pair for a total of 55 measures of pairwise 

connectivity.  

 

Statistical Analyses 

 Statistical analysis was performed in IBM SPSS 24.0 (Armonk, NY) and R version 3.3.3.184  

MANCOVA was used to determine if race modifies DMN connectivity according to cognition. First, we 

analyzed baseline connectivity differences (only within controls). Measures of intra-network connectivity 

between the DMN nodes were the dependent variables; cognitive scores, race, sex, age, and mean 

framewise displacement (MFWD) were independent variables. Next, we analyzed data from all 

participants using the same model, but included a higher order interaction term (race X cognitive scores). 

Separate models to additionally account for effects of APOE ε4, ABCA7 risk allele, hypertension, total 

white matter hyperintensity (WMH) volume, cardiovascular risk score, and diabetes on DMN 

connectivity were also analyzed.  For race-dependent connectivity changes, we accounted for multiple 

comparisons through the Benjamin-Hochberg method.185  False discovery rate was limited to 10% given 

our sample size and the number of nominally significant interactions with race.   

The same analysis was repeated according to Aβ42 levels in all subjects.  Because there is 

significant overlap in t-Tau levels between NC and AD, we performed a third analysis according to t-Tau 

levels only in subjects with reduced Aβ42 levels (<192 pg/mL)186consistent with cerebral amyloid 

deposition.187  Compared to using uncorrected nominal p<0.05 as a threshold, we reduced the number of 
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race-dependent node pairs from 23 to ten (six to four for cognition, from ten to two for CSF Aβ42, and 

from seven to four for CSF t-Tau).  Because we observed an over-representation of race’s effect on inter-

subsystem connectivity between nodes belonging to the midline core and dorsomedial (midline-

dorsomedial) subsystems regardless of the measure used for AD (cognition, Aβ42, t-Tau), we used 

bootstrapping (see below) to test whether the midline-dorsomedial connectivity was preferentially 

modified by race in AD compared to intra-subsystem and other inter-subsystem node pairs.  Finally, as 

confirmation, we used analysis of covariance (ANCOVA) to determine whether race influenced the mean 

midline-dorsomedial connectivity, midline-temporal connectivity, and dorsomedial-temporal connectivity 

adjusting for diagnosis, age, and gender.  Mean subsystem connectivity156 was calculated by averaging, 

for each individual, all pairwise inter-subsystem node pair connectivity between the two subsystems in 

question (15 pairs in midline-dorsomedial, 9 pairs in midline-temporal, and 15 pairs in dorsomedial-

temporal). 

Bootstrapping 

We developed a novel simulation-based approach to test whether there was empirical enrichment, 

or over-representation, for race modifying connectivity between midline core and dorsomedial 

subsystems.  To determine the likelihood of a concentration of significant interaction terms occurring by 

chance alone, we first obtained p-values for all Race x Cognitive Z-score interaction term for all potential 

node pairings (n=55; all subjects), and repeated the process for Aβ42 (n=55; all subjects) and t-Tau 

(n=55; only in subjects with Aβ42 < 192 pg/mL).  

 As these AD features are inter-related, we pooled all 165 (55 x 3) p-values together, and used 

bootstrapping analysis (“boot” package in R,188 with replacement) to create 1,500 simulated 3x5 (size of 

midline-dorsomedial matrix) matrices of p-values.  The number of “chance-only” matrices (out of 1,500) 

with three or more significant p-values is thus the probability of an observed concentration in any random 

3x5 matrix of node pairs resulting from chance alone.  At the same time, because this probability can be 

artificially reduced by a more stringent threshold at the matrix level (e.g., four or more significant p-

values), we created a second set of 1,500 simulated p-value matrices through the same bootstrapping 
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process to represent the range of possible midline-dorsomedial p-values.  Instead of drawing from all 

potential p-values, these 1,500 matrices were then only sampled from p-values pooled from the 45 

interaction p-values between midline-dorsomedial node pairs (n=15 each for Race x Cognitive Z-score, 

Race x Aβ42, and Race x t-Tau) (Figure 2).  The probability of having three or more significant p-value 

in each matrix in this second bootstrap is then compared with the first using Chi-squared test. We 

compared the proportion of significant vs. non-significant p values across the two bootstrapped 

distributions. The null hypothesis for this test was that the number of samples that contained more than 

three significant p values would not differ between the midline-dorsomedial bootstrap and the chance-

only bootstrap. We elected to use 1,500 as the bootstrap size as it is well within the commonly 

recommended threshold,189 but still a tiny fraction of all possible combinations.  

 

Figure 3  Illustrated workflow of the p-value bootstrapping analysis to confirm concentration of 

race’s effect on midline-dorsomedial connectivity.  Filled boxes represent node-pair connectivity 

modified by race, and empty boxes represent node-pair conne 
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2.3 Results 

Baseline connectivity differences 

We first compared baseline connectivity profiles between 

older African Americans and Caucasians with NC (n=58, Fig 3).  

Compared to Caucasians, African Americans had lower connectivity 

between the precuneus and the ventro-lateral temporal cortex (by 

0.31, 95 %         CI -0.16, -0.46, p=0.01), the inferior parietal lobule 

and parrahippocampal gyrus (by -0.15, 95 % -0.28, -0.03, p=0.01), and the 

temporal pole and hippocampus (by 0.19, 95 % CI -0.33, -0.04, 

p=0.01; Table 3).  There were otherwise no baseline connectivity 

differences in the remaining 52 inter-nodal connectivity values 

between the two racial groups. 

 

 

Race-independent changes centered in the medial 

temporal lobe subsystem of DMN  

 Because AD is characterized by reduced CSF Aβ42, 

increased CSF t-Tau, and cognitive impairment, we first analyzed the 

relationship between DMN connectivity, AD biomarkers (cognitive 

Z-score, Aβ42, t-Tau), and race to determine when race did not modify 

the relationship between AD biomarker and connectivity.  In both African 

Americans and Caucasians, lower (more abnormal) Aβ42 levels 

correlated with decreased connectivity between the inferior parietal lobule 

and the parrahippocampal gyrus (B= -.01, t(167)=-2.14, p =0.02).  

Because there is overlap in CSF t-Tau and p-Tau181 levels between 

Figure 4 Baseline connectivity 

differences between older African Americans 

and Caucasians with NC (p<0.04). Among nodes 

distributed along the three subsystems, three 

node pairs’ connectivity differed between the 

races.  In all instances, African Americans 

(green) with NC had lower connectivity between 

these node pairs than Caucasians (blue; bars 

represent mean values). TP=  temporal pole, 

vlTC= ventro-lateral temporal cortex, dmPFC= 

dorsomedial prefrontal cortex, dlTC= dorso-

lateral temporal cortex, TPJ= temporal parietal 

junction, pIPL= posterior inferior parietal lobule, 

pHG=parrahippocampal gyrus, vmPFC= ventro-

medial prefrontal cortex, PCC= posterior 

cingulate cortex. 
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controls and AD even though their levels are elevated at the group level, we restricted t-Tau-related 

analysis to those with Aβ42 levels consistent with AD (< 192 pg/mL).   

This also showed higher (more abnormal) t-Tau levels to correlate with decreased connectivity 

between multiple region pairs within the DMN, including hippocampus-temporal pole (B= .04, 

t(167)=1.58, p =.02) (Figure 4).  Connectivity correlated with cognitive impairment regardless of race 

appeared to occur between the medial temporal lobe and the midline core subsystems, and between the 

medial temporal lobe and the dorsomedial subsystems (Table 4, Figure 4). 

 

Figure 5 Race independent connectivity associations with biomarkers. Lines represent regions 

pairs for which connectivity was significantly related to the particular AD biomarker regardless of race 

(dashed line indicate CSF tau, solid line indicates cognition, and dotted line indicates CSF amyloid, red 

for positive relationship, blue for negative relationship, and grey for a relationship that did not survive 

correction for multiple comparisons). TP=  temporal pole, vlTC= ventro-lateral temporal cortex, dmPFC= 

dorsomedial prefrontal cortex, dlTC= dorso-lateral temporal cortex, TPJ= temporal parietal junction, 

pIPL= posterior inferior parietal lobule, pHG=parahippocampal gyrus, vmPFC= ventro-medial prefrontal 

cortex, PCC= posterior cingulate cortex. 

Race selectively modified the relationship between AD biomarkers and connectivity only 

between the MTL and Dorsomedial subsystem nodes 

We next examined node pairs whose connectivity relationship with AD biomarkers was modified 

by race (Table 5, Figure 5). In Caucasians, greater cognitive impairment was associated with decreased 

DMN connectivity between the precuneus and lateral temporal cortex, and between the precuneus and the 

temporal pole.  However, the opposite is true in African Americans, with greater cognitive impairment 

associated with increased connectivity between these same regions.  Similarly, lower (more abnormal) 
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Aβ42 levels correlated with greater connectivity between the precuneus and both lateral temporal cortex 

and dorsomedial prefrontal cortex only in African Americans.  Higher t-Tau levels (in those with Aβ42 

levels < 192 pg/mL) also correlated with greater connectivity between the lateral temporal cortex and 

precuneus, and between the temporal pole and both vmPFC and precuneus, and between the hippocampus 

and PCC, again only in African Americans.  Adjusting for risk genes (ABCA7, APOE) and other factors 

(hypertension, cardiovascular risk score, white matter hyperintensities, and diabetes) did not significantly 

influence connectivity values and race-associated differences persisted in connectivity relationship.  

 

Figure 6 Connectivity and biomarker relationships in African Americans for which interaction 

term regression coefficient (race X biomarker) is significantly greater than zero. Figure depicts regression 

relationship between connectivity and biomarkers in African Americans. Red line indicates connectivity 

increases as disease burden for that biomarker increases (see indication for each biomarker). Blue line 

indicates connectivity significantly decreases as disease burden for that biomarker increases (see 

indication for each biomarker). Gray outline indicates no significant relationship for African Americans 
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between connectivity and biomarker. Dashed line indicate CSF tau, solid line indicates cognitive 

performance, and dotted line indicates CSF amyloid. *=NHWs had significantly stronger (more negative) 

relationship than AAs. TP=  temporal pole, vlTC= ventro-lateral temporal cortex, dmPFC= dorsomedial 

prefrontal cortex, dlTC= dorso-lateral temporal cortex, TPJ= temporal parietal junction, pIPL= posterior 

inferior parietal lobule, pHG=parahippocampal gyrus, vmPFC= ventro-medial prefrontal cortex, PCC= 

posterior cingulate cortex.  

 

Visualizing race-independent (Fig 4) and race-dependent (Fig 5) DMN changes in AD, we 

observed a pattern of race-specific changes involving connectivity between two subsystems.  Whereas 

race-independent connectivity occurred between each pair of subsystems, nine out of ten race-dependent 

connectivity changes were between the midline core and dorsomedial subsystems.  For each subject, we 

calculated a mean connectivity value by averaging the all node-pair connectivity values between two 

subsystems.   

We further tested whether the midline-dorsomedial connectivity had an over-representation of 

node pairs whose connectivity was modified by race compared to the rest of DMN, we used bootstrapping 

(with replacement) to create 1,500 simulated 3x5 matrices drawn from midline-dorsomedial node pairs 

and 1,500 simulated matrices drawn from all node pairs.  We found that drawing from the midline-

dorsomedial matrices was more likely to result in identifying at least three significant race X AD 

biomarker effect than drawing from all node pairs: 791/1500 in the midline-dorsomedial sample vs. 

192/1500 in the chance-only sample, X2 (2, N=3000)=487.53, p= 0.00001.  ANCOVA adjusting for 

diagnosis, age, and gender confirms a main effect for race (F(2, 119)=3.255, p=0.074) for mean midline-

dorsomedial connectivity, but not for mean midline-temporal connectivity (F(2,119)=0.061, p=0.8060) or 

mean dorsomedial-temporal connectivity (F(2,119)=1.418, p=0.236).     

2.4 Discussion 

 Consistent with previous work, we found AD to alter connectivity between the medial temporal 

lobe and dorsomedial subsystems, but we identify race-specific changes associated with these alterations 

190,191. Importantly, we extend the effect of race on AD-related connectivity from the inter-nodal level to 

the inter-subsystem level through a novel analytical strategy.  To the best of our knowledge, this is the 
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first attempt to statistically identify enrichment of a factor’s effect on connectivity between two 

subsystems across multiple related measures (cognition, Aβ42, t-Tau).  The implication of this inter-

subsystem effect is not well understood.  Other conditions previously observed to confer similar 

specificity on inter-subsystem connectivity include PTSD,192 depression,193 and schizophrenia.194 

Interestingly, some of these conditions show racial disparities (schizophrenia195 and PTSD196 are more 

common in African Americans than Caucasians).  The inter-subsystem specificity may reflect shared 

vulnerability to neuropsychiatric disorders in African Americans, existence of disease subtypes, or 

divergent disease-associated pathways. We discuss these possibilities in the context of AD in African 

Americans below.  

In contrast to a uniformly slow disease process in African Americans, it is also possible that the 

multiple pathologic processes in AD may not proceed at the same pace in African Americans.  In post-

mortem studies of AD (involving primarily Caucasians), Aβ42-rich neuritic plaques are found early in the 

medial temporal as well as neocortical regions154. In contrast, tau-related changes appear in the medial 

temporal lobe before a stage-wise involvement of the frontal and then parietal cortical regions154. If we 

can interpret these observations as early co-localization of neuritic plaques and neurofibrillary tangles in 

the medial temporal lobe, the race-independent effect on inter-subsystem connectivity involving this 

region is in keeping with shared early AD changes by older African Americans and Caucasians when CSF 

Aβ42 alterations are detectable.  The attenuation of midline-dorsomedial connectivity in African 

Americans could then be interpreted as early compensation when AD is mild, or as pathological hyper-

connectivity 197,198. This would support the diminished cognitive reserve hypothesis in African Americans 

(potentially due to vascular disease199), and the prevailing longitudinal models that African Americans 

have slower decline in the presence of AD pathology.12,200  At the same time, the correspondence between 

ante-mortem DMN connectivity changes and post-mortem lesional mapping is known to be imperfect.  

For example, we found connectivity involving the posterior inferior parietal lobule (pIPL, a node in the 

medial temporal lobe subsystem) to be affected by AD independent of race.  This may suggest pIPL to be 

a locus of early AD pathology, but neurofibrillary tangles do not appear in this region until later in AD.201  
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The identified disparities in cognition and its relationship to functional connectivity are in 

keeping with current understanding of the African American cognitive profile in AD. African Americans 

exhibited an inverse relationship between cognition and FC compared to Caucasians such that as 

cognitive impairment increased, connectivity also increased. Typically, in AD, connectivity decreases as 

cognitive impairment increases. However, an increase in connectivity can be a result of disease 

processes198. An increase in connectivity in the mild cognitive impairment stage of AD, and in the 

presence of vascular disease is a fairly common finding199. Africans Americans generally exhibit slower 

cognitive decline in AD, and this increased connectivity could reflect an extension of early disease 

processes that generate the increased connectivity seen in many MCI studies.  

Other than milder AD-related tau pathology, the selectivity of race for midline-dorsomedial 

connectivity could result from non-AD pathologies outside these two subsystems or neuro-protective 

changes along the tracts connecting two subsystems.  Limited autopsy studies have shown African 

Americans more likely than Caucasians to have mixed AD and vascular lesions,114 and we previously 

showed in this cohort that African Americans experienced greater cognitive impact than Caucasians from 

the same degree of WMH.15  In the current study, we did not find total WMH volume to be related to race 

and connectivity.  However, the impact of regionally specific WMH has yet to be examined. The baseline 

differences in connectivity suggest existing differences in brain function separate from disease 

mechanisms that could be related to vascular disease, but the nature of these differences is not well 

understood, and the inclusion of vascular disease in our regression models did not alter our results. 

Although hypertension was more prevalent in our African American cohort, and African Americans had 

elevated cardiovascular risk scores, when we included this variable in our analyses, it did not explain the 

variability associated with race. Our identification of race-associated changes in midline-dorsomedial 

connectivity would support a search for WMH changes outside of these two subsystems.  Alternatively, 

Caucasians may be more likely to have WMH between these two subsystems.202   The vascular load in 

our cohort was mild to moderate, as it is not feasible, or ecologically valid to recruit older patients with 

minimal vascular disease. There are a variety of risk factors and contributing comorbidities for 
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Alzheimer’s Disease. It is possible that the various risk factors associated with AD may be different 

across different ethnic groups, such that AAs may have an increased vascular component of AD, while 

exhibiting AD pathology sufficient to meet diagnostic thresholds. WMH and AD are not mutually 

exclusive, and many have stated that WMH are a core feature of AD203,116, and a better predictor of 

disease burden in African Americans204. Future research will explore region-specific WMH between races 

and whether these differences relate to observed connectivity biomarker relationships.  

It would be remissive to not explore social factors which may contribute to these biological 

disparities.  The current work is the first to establish AD-related connectivity difference between races, 

and extends the neurobiological phenotype of AD in African Americans beyond a higher prevalence.  

How historical and current social inequalities may interact with genetic and environmental risks to give 

rise to these biological endpoints remains unknown. A variety of social disparities including income 

(amount vs. purchasing power), education (length vs. quality), and discrimination may additively or 

synergistically converge on the same biological endpoints. When analyzed separately, these factors may 

individually correlate with racial disparity but fail to capture the entire range of exposures facing different 

groups.  For example, individuals who experience racial discrimination and perceive it as such are more 

likely to have higher blood pressure and increased psychological distress,205,206,207 which in turn are risk 

factors for AD.208  Chronic stress also increases connectivity between the DMN and other networks at 

least in young adults,209 and may in part account for baseline and AD-related connectivity differences 

between the two racial groups.  We did not include household income as a surrogate measure of lifelong 

socioeconomic status because the two measures poorly correlate in retired people, and the sample size 

limited our ability to interpret results when we introduced a measure such as the Area Deprivation 

Index210. A larger sample size will be necessary to test mediation effects between discrimination, stress, 

cardiovascular disease, and negative health outcomes, and cohort studies need to explore biologically 

meaningful methods to characterize individual and group-based experiences of injustice.  

While we present the first biomarker-informed analysis of DMN inter-subsystem connectivity in 

African Americans, there are a number of limitations to our study. We tested two common AD risk 
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genotypes as mediators for race-associated differences, but we did not perform extensive genomic 

association analysis because of sample size.  While we observed multiple race-associated differences in 

DMN connectivity using ICA, we did not perform seed-based analysis of other large-scale brain networks 

(e.g., salience network).  This cohort’s African American participants had similar years of education and 

socioeconomic status as their Caucasian counterparts, but other medical, psychiatric, or psychosocial 

differences could contribute to inter-subsystem connectivity differences.  We did not identify a modifying 

effect of race on mean connectivity strength between the MTL and dorsomedial subsystem. Lastly, both 

racial groups include heterogeneous genetic backgrounds and in some cases mixed genetic heritage, so 

our results should be interpreted at the cohort level rather than the individual level.  Nevertheless, we 

present additional evidence that AD is associated with systematic biomarker differences between older 

African Americans and Caucasians.  Because CSF t-Tau-related findings similar to ours were replicated 

in a separate US cohort,2 independent replication of these DMN findings will further highlight the 

importance of diversity, inclusion, and disparities in on-going effort to elucidate mechanism-related 

biomarkers in AD.  

2.5 Conclusions 

We previously identified that African Americans and Caucasians share the same AD-associated 

CSF alterations related to amyloid deposition, but different CSF t-Tau biomarker levels regardless of AD 

status.15 Here we extend our findings to show older African Americans and Caucasians have similar AD-

associated subsystem connectivity changes involving the medial temporal subsystems. However, we also 

demonstrate race-specific patterns of connectivity between the midline core and dorsomedial subsystems, 

that are in-line with current studies that suggest divergent tau relationships between races.  Race modified 

the relationships between AD biomarkers and connectivity between the medial temporal lobe and 

dorsomedial subsystems. We thus propose adding DMN connectivity to the list of biomarkers with race-

dependent alterations in AD.  Similar to CSF, rsfMRI profiles for AD established in pre-dominantly 

Caucasian cohorts may under-diagnose the disease when applied directly to African Americans, and 
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negatively impact the interpretation of clinical trial outcomes when rsfMRI is used as surrogate marker of 

AD. The current work further provides specific regions of interest for imaging-based and molecular 

investigation of disease mechanisms. 
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2.6 Chapter 2 Tables 

 

Table 1 Demographic information. Sample reported here is the final imaging cohort of all individuals who 

passed imaging quality control. Note: T-tests were performed to compare races in the whole cohort and 

within each diagnostic category. *p<.05, **p<.001.  MMSE and CogZ scores were significantly different 

between diagnostic categories such, NC having highest MMSE scores and AD having lowest(MMSE: NC 

vs MCI, p= .007, MCI vs AD, p<.0001, CogZ: NC vs MCI, p<.0001, MCI vs AD, p<.0001). 
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Overall 

(N=137) 

Normal 

cognition MCI AD 

 

Caucasi

an  

(n=72) 

African 

Americ

an 

(n=65) 

Caucasi

an  

(n=31) 

African 

Americ

an 

(n=27)  

Caucasi

an  

(n=25) 

African 

America

n 

(n=28) 

Caucasi

an  

(n=16) 

African 

America

n 

(n=10) 

Age, 

years 

(SD)  

70.90(7

.84) 

69.20(7

.49) 71.65(8.

39)* 

67.48(6.

17)* 

71.52(5.

82) 

70.07(7.7

4) 

68.50(9.

41) 

71.4(9.6

5) 

Gender 35(37) 43(29) 19(12) 17(10) 15(10) 12(16) 9(7) 6(4) 

Years of 

Education 

(SD) 

16.32(2

.85) 

16.15(2

.85) 16.81(2.

69) 

15.78(2.

66) 

17.08(2.

58) 

16.29(2.8

1) 

14.19(1.

94) 

16.80(3.

55) 

MMSE 

(SD) 

26.32(4

.90) 

26.91(3

.57) 

28.84(0.

86) 

28.00(1.

86) 

27.64(1.

68) 

26.67(2.3

4) 

21.37(3.

38) 

20.22(6.

18) 

Cognitive 

Z Scores 

(SD) 

-

0.78(1.

12) 

-

0.72(0.

99) 

0.07(0.5

1) 

-

0.11(0.5

1) 

-

0.88(0.8

6) 

-

0.67(0.59

) 

-

2.24(0.6

6) 

-

2.36(1.0

2) 

White 

Matter 

Hyperinte

nsity 

volume 

(mm3) 

3984.40 

(4110.1

0)  

3886.03

(4964.9

3) 

3306.81

(3337.3

2) 

2440.93

(2576.1

5) 

4018.66(

4080.03) 

4313.70(

5330.60) 

5243.68(

5333.14) 

6730.21(

7607.48) 

Having A

BCA7 risk 

allele,   (

%) 

 

 

23.67* 

 

 

43.10* 

29.00 44.40 24.00 50.00 12.50 30.00 

Have 

Diabetes, 

(%) 

 

5.67** 

 

33.80** 

6.50** 33.33** 0* 28.60* 12.50* 50.00* 

Have 

Hypertens

ion(%) 

 

 

45.83** 

 

 

72.31** 45.16 62.96 56.00 78.57 31.25* 80.00* 

CSF 

Aβ42, 

pg/ml 

(SD) 

148.35(

95.02) 

168.48(

128.86) 

199.93 

(132.30) 

165.27 

(89.8) 

199.11 

(141.02) 

134.69 

(90.99) 

77.65(47

.39) 

133.55 

(140.71) 

CSF t-

Tau, 

pg/ml 

(SD) 

72.84(4

9.63)** 

40.92(2

0.79)** 

51.68 

(30.96)*

* 

36.04 

(11.63)

** 

63.99 

(33.71)* 

35.44 

(13.67)* 

108.48 

(77.43) 

75.8 

(33.52) 

CSF p-

Tau, 

pg/ml 

(SD) 

17.58 

(8.97)*

* 

25.81 

(12.47)

** 

23.47(9.

71)** 

14.05 

(5.07)*

* 

25.01 

(13.42)* 

17.74(7.2

1)* 

33.53(14

.64) 

24.54(10

.27) 

CSF t-

Tau/Aβ42 

0.73 

(0.91)* 

0.24 

(0.22)* 

0.46(0.7

4)* 

0.15 

(0.12)* 

0.44(0.4

2)* 

0.22(0.14

)* 

1.36(1.1

6) 

0.55(0.4

1) 
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Table 2 Demographic information for individuals excluded from analysis who did not pass QC 

 

 

 

 

 

  

 

  

Table 3 

 Overall (N=8) 

Normal 

cognition MCI 

 

Caucas

ian 

(n=5) 

African 

American (n=3) 

Caucasi

an 

(n=4) 

African 

Americ

an 

(n=2)  

Caucasi

an  

(n=1) 

African 

Americ

an 

(n=1) 

Age, years 

(SD) 

69.78(

5.83) 65.20(10.25) 

71.65(8.

39) 

67.48(

6.17) 71.52 70.07 

Years of Education 

(SD) 

16.82(

2.85) 

 

16.25 (2.63) 

16.8(2.6

9) 

16.78(

2.66) 17.08  16.29  

MMSE (SD) 

27.82(

4.90) 28.91(3.57) 

28.9(0.8

6) 

27.75(

1.86) 27.64  26.67  

Cognitive Z Scores 

0.89(2.

62) 0.82(1.89) 

-

0.02(0.6

2) 

0.01(0.

71) 

0.84 

 

0.75 

 

Having ABCA7 risk 

allele,   

(number) 

 

1 

 

 

2 0 1 1 1 

Have Diabetes, 

(number) 0 

 

1 0 1 0.0 0 

Have Hypertension 

(number) 

 

2 

 

 

2 1 1 1 1 

CSF Aβ42, pg/ml 

(SD) 

133.34

(95.02) 139.81(140.36) 

200.93(

132.40) 

164.27

(98.6) 201.11  134.69  
CSF t-Tau, pg/ml 

(SD) 

72.84(

49.63) 40.92(20.79) 

51.68(3

0.96) 

36.04(

11.63) 63.99  35.438  
CSF p-Tau, pg/ml 

(SD) 

42.71 

(20.98) 29.90 (15.60) 

37.44 

(16.29) 

22.95 

(8.46) 29.65 17.25 

CSF t-Tau/Aβ42 

0.79(0.

81) 0.26(0.21) 

0.85(0.8

7) 

0.15 

(0.16) 0.46 0.22 
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Connectivity B (95% Confidence interval) 

Unadjusted 

p 

Storey’s 

q 

Temporal Pole to Hippocampus -0.19(-0.33, -0.04) 0.01 0.137 

Ventro-Lateral Temporal Cortex 

to Precuneus 
-0.31(-0.46, -0.16) 0.01 

<0.001 

Inferior Parietal Lobule to 

Parrahippocampal gyrus 
-0.15(-0.28, -0.03) 0.01 

0.495 

Table 3 Baseline differences in functional connectivity between African Americans with NC and 

Caucasians with NC, adjusting for age, gender, and APOE ε4 allele. 
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Table 4 Factors associated with AD biomarkers (unadjusted p ≤ 0.01) independent of race, 

adjusting for age, gender, mean framewise displacement, and APOE ε4 allele.  Unadjusted p-values which 

remain significant after Benjamini-Hochberg step-up correction for multiple comparisons are bolded.  

Storey’s q-values are also shown with FDR < 10%. MTL= Medial Temporal Lobe. IPL= inferior parietal 

lobule. 

 

Subsystems Connectivity  Factor 
B (95% Confidence 

Interval) 
Unadjusted p 

Storey’s 

q 

MTL to  

MTL 

Posterior IPL 

to 

Hippocampus 

Race 0.019(-0.29, -0.05) 0.387  

t-Tau 
0.002( 0.00, 0.003) <0.001 

<0.001 

Posterior IPL 

to Parra-

Hippocampal 

gyrus 

Race 0.32(-0.14, .25) 0.710  

Aβ42 0.02(0.008, 0.40) 0.010 1.000 

MTL to 

midline core 

 

 

Posterior IPL 

to Ventro-

medial 

prefrontal 

cortex 

Race -0.05(-0.30, 0.20) 

 

0.675  

t-Tau 0.002( 0.00, 0.003) 0.001 0.004 

Parra-

Hippocampal  

gyrus to 

Precuneus 

Race -0.10( -0.30, 0.23) 0.358  

t-Tau 0.002(0.00, 0.002) 0.008 0.147 

MTL to 

dorsomedial  

Temporal 

Pole to 

Hippocampus 

Race -0.10(-0.30, 0.10) 0.337  

t-Tau 0.002( 0.00, 0.003) 0.009 0.247 
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Subsystem Connectivity 

Pair 

Variable 

Name 

B(95 % 

Confidence Interval) 

Unadjusted p Storey’s 

q 

Dorsomedial 

to midline 

core 

Dorsomedial 

prefrontal 

cortex to 

precuneus 

Race -0.02( -0.30, 0.25) 0.861  

Cognitive 

impairment 0.04( -0.13, 0.04) 0.292  

Race * 

Cognitive 

impairment -0.14( 0.07, 0.25) 0.005 0.092 

Ventrolateral 

temporal 

cortex to 

precuneus 

Race -0.24( -0.59, 0.11) 0.170  

Cognitive 

impairment -0.08( -0.02, 0.19) 0.103  

Race * 

Cognitive 

impairment 0.18( 0.02, 0.17) 0.001 

 

0.055 

Race -0.05(-0.32, 0.21) 0.695  

t-Tau -0.003( -0.02, -0.002) 0.712  

Race * t-Tau 0.02( -0.03, -0.0002) 0.001 0.055 

Dorsomedial 

prefrontal to  

posterior  

cingulate 

cortex 

Race 0.29( 0.08, 0.50) 0.007  

Cognitive 

Impairment 0.05( -0.15, 0.03) 0.407  

Race * 

Cognitive 

impairment 0.18( 0.02, 0.17) 0.007 0.096  

Temporal 

Pole  

to precuneus 

Race 0.05( -0.18, -0.29) 0.667  

Aβ42 0.0003( 0.00, 0.01) 0.345  

Race * Aβ42 

-0.001( -0.002, -

0.00001) 0.004 

 

0.073 

Race -0.80(-0.29, 0.13) 0.442  

t-Tau -0.002( -0.01, -0.001) 0.736  

Race *t-Tau 0.003( 0.001, 0.006) 0.005 0.069 

Dorso-lateral 

temporal 

cortex  

to precuneus 

Race -0.21(-0.12, 0.36) 0.112  

Aβ42 0.0002( -0.0001, 0.01) 0.345  

Race * Aβ42 

-0.002( -0.003, -

0.00001) 0.002 0.055 

Race -0.21(-0.43, 0.02) 0.070  

t-Tau -0.001( -0.002, -0.02) 0.066  

Race * t-Tau 0.004( 0.001, 0.006) 0.003 0.083 

Race -0.074(-0.20,0.54)  0.004  

Cognitive 

impairment 0.27(-0.04,0.09) 0.001  

Race * 

Cognitive 

impairment 0.20( 0.05, 0.25) 0.002 0.055 

MTL to 

midline core 

Race -0.001( -0.22, 0.22) 0.900  

t-Tau -0.001( -0.03, 0.002) 0.199  
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Table 5. Factors differentially associated with AD biomarkers according to race (unadjusted 

p≤0.01), adjusting for adjusting for age, gender, mean framewise displacement, and APOE ε4 allele.  

Unadjusted p-values which remain significant after Benjamini-Hochberg step-up correction for multiple 

comparisons are bolded.  Storey’s q-values are also shown with FDR < 10%. MTL= Medial Temporal 

Lobe. IPL= inferior parietal lobule. 

  

Posterior 

cingulate to 

hippocampus Race * t-Tau 0.003( 0.001, 0.052) 0.004 0.073 
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3 Aim 1B: WHITE MATTER HYPERINTESITIES DO NOT ACCOUNT FOR 

CONNECTIVITY DIFFRENCES ACCORDING TO RACE. 

3.1 Introduction 

Previous research has identified race associated differences between brain connectivity and 

Alzheimer’s disease burden209. As defined by Andrews-Hanna, the default mode network is composed of 

3 functionally distinct subsystems (dorsomedial, midline core, and medial temporal subsystem)190. 

Connectivity between the default mode network typically declines as Alzheimer’s disease progresses59. 

However, this finding has primarily been replicated in Non-Hispanic Whites (NHWs) with middle to high 

socio-economic status20. In a previous study, we investigated Alzheimer’s disease biomarkers in the form 

of CSF tau, Aβ42, and cognitive performance and their relationship to default mode subsystem 

connectivity in a sample including both African Americans and NHWs. Within NHWs, as AD disease 

burden increased, connectivity between the dorsomedial and midline core subsystems typically decreased. 

However, within African Americans, as disease burden increased, connectivity between these same 

subsystems increased, even after for controlling for APOE e4 phenotype, and total WMH volume. A 

potential explanation for this discrepancy was that African Americans had differences in the regional 

distribution of white matter hyperintensities, as AAs had higher percentages of vascular disease and type 

2 diabetes210. As the regional white matter hyperintensity volumes became available, we analyzed the 

plausibility of this explanation. In this study, we examined regional white matter hyperintensities in DMN 

subsystems, as well as other subcortical structures to determine whether WMH explained the increase in 

connectivity relate to AD observed in African Americans.  

3.2 Methods 

Participants 

We used previously calculated functional connectivity values of a cohort that was ethnically 

similar to our previously studied cohort, with the exception that this cohort did not contain any AAs with 

Alzheimer’s disease (only NC and MCI). Briefly, each participant underwent a detailed interview for 
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demographic information, self-reported race (Caucasians of Hispanic or Latino ethnicity were not 

included in this study), vascular risk factors (coronary artery disease, congestive heart failure, atrial 

fibrillation, hypertension, hyperlipidemia, diabetes, suspected transient ischemic attack), other medical 

comorbidities (e.g., cancer), and medications (e.g., use of angiotensin-converting enzyme inhibitors or 

angiotensin II receptor blockers). Each participant was then assigned a diagnosis according to consensus 

criteria including those for NC, MCI, and AD dementia (global Clinical Dementia Rating of 1 or 2.) 

Cognitively impaired subjects suspected of having a non-AD dementia (vascular, Lewy body, and 

frontotemporal dementia) were excluded.  Information for this cohort is available in the “cohort 1” 

information in chapter 4, table 1.  

MRI data collection & Analysis 

Scanning protocol included a T1-weighted 3D MPRAGE sequence (TR/TI/TE = 

2400/1060/2.31msec, flip angle = 8o, matrix =320x300, and voxel size = 0.8×0.8×0.8mm3) and a 6 minute 

eyes-open resting state functional MRI scan (TR/TE = 724ms/32ms flip angle = 52o, field of view 

(FOV) = 220 × 220 mm2, acquisition matrix = 104 × 104, voxel size = 2 × 2 × 2 mm3, slice = 91, time 

point = 550), and a T2-weighted Fluid attenuated inversion recovery (FLAIR) scan (TR/TI/TE = 

9000/2500/91 msec, flip angle = 150o, matrix =256x256, and voxel size = 0.8×0.8x5mm3).  

We conducted preprocessing pipelines with identical procedures for each cohort. To control for 

the difference in scanning parameters, we included cohort as a fixed effect in our statistical models. We 

utilized a standard preprocessing pipeline utilizing the DPARSFA toolbox 170. The first 10 timepoints 

were removed, scans were slice time corrected, manually re-oriented, realigned, normalized and smoothed 

using the DARTEL & algorithm211. This algorithm is more appropriate than standard normalization to the 

MNI template for special populations, such as those with atrophy. We then performed nuisance covariate 

regression (Friston’s 24 parameter head motion regressors, CSF, WM). We further removed motion-

confounds using ICA-AROMA and applied a high pass filter.  

Regional WMH analysis 
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Regional WMH volumes were derived from T2-weighted fluid-attenuated inversion recovery 

images software developed by researchers in the Brickman Lab at Columbia University 212. Briefly, each 

participant's fluid-attenuated inversion recovery image was corrected for intensity normalization, then 

skull-stripped and intensity normalized again. The skull-stripped images were sent through a high pass 

filter at the mode of the distribution of the image voxel intensity values. A half Gaussian mixture model 

was fit to the log-transformed histogram of the intensity values of each image. The Gaussian distribution 

that encapsulated the highest intensity values defined the hyperintense voxels and was labeled. Any 

cluster of labeled voxels that comprised fewer than five voxels was removed from the mask. The labeled 

images were visually inspected and false positives removed. The number of labeled voxels was summed 

and multiplied by voxel dimensions to yield a total volume in cm3. We obtained FLAIR data from 

individuals in Cohort 1 (Table 7) and performed this analysis on these 66 individuals. 

Seed based analysis  

We performed a seed based analysis using the regions described by Andrews hanna, et al.62 in the 

3 DMN subnetworks, namely: the Dorsomedial subsystem (DM): temporal pole, temporal parietal 

junction, lateral temporal cortex, dorsomedial prefrontal cortex; Medial temporal lobe subsystem (MTL): 

Hippocampal formation, parahippocampal cortex, retrosplenial cortex, posterior inferior parietal lobule, 

ventromedial prefrontal cortex; Midline core (MC): anterior medial prefrontal cortex, posterior cingulate 

and precuneus. We calculated measures of pairwise connectivity between each pair of regions, for a total 

of 56 measures of pairwise connectivity.  

DMN WMH value 

To obtain measures of DMN WMH across the subnetworks, we added together volumes across 

the subnetworks to obtain a volume of WMH for each subnetwork. For the MTL we included bilateral 

Hippocampal formation, parrahippocampal cortex, retrosplenial cortex, posterior inferior parietal lobule. 

For the MC we included the anterior medial prefrontal cortex and posterior cingulate and precuneus. For 

the DM subsystem we included temporal pole, temporal parietal junction, lateral temporal cortex, 

dorsomedial prefrontal cortex.  
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Statistical analysis 

DMN WMH across races 

To determine whether there was a difference between racial groups in DMN WMH volume, we 

constructed one multivariate linear model with the DMN WMH volumes as the outcome variable. Racial 

group was modeled as a fixed factor, and our covariates were age, gender, and APOE e4 status.  

DMN WMH and connectivity 

Because we previously identified racial differences in the relationships between connectivity and 

AD biomarkers for connectivity between the midline core and dorsomedial subsystems, we focused on 

these connectivity measures for the WMH analysis. We constructed linear regression models with our 

connectivity measures between the nodes of the midline core and dorsomedial subsystems as our outcome 

variables, and race and WMH volume as our independent variables of interest, while controlling for age, 

gender, and APOE status.  Additionally, we constructed a race by diagnosis interaction term to determine 

whether the relationship between WMH and connectivity differed according to racial group.  

To determine whether WMH within DMN nodes accounted for the racial differences that we 

identified in our previous work, we constructed Race X AD biomarker interaction terms (CSF Aβ42, CSF 

tau, and MoCA scores). We used these biomarker interaction as dependent variables, with the 

aforementioned covariates. We then included the three default mode WMH scores as independent 

variables to determine whether WMH accounted for racial differences we observed.  

3.3 Results 

DMN WMH across races 

There was no significant difference between racial groups in WMH volume of the DMN 

subnetworks: DM(B=0.02, t(3,72)=1.24, p=0.22), MTL(B=0.004, t(3,72)=0.16, p=0.88), MC(b=0.02, 

t(3,73)=0.42, p=0.68). The only subnetwork that had a large proportion of individuals that did not have 

any WMH was the DM subnetwork. Chi-squared tests for distribution of WMH across races for this 

subnetwork were not significant.  
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DMN WMH and connectivity 

In this re-analysis of the data, we were able to replicate one of our previous findings. There was a 

significant race x CSF Aβ42 interaction term for connectivity between the dorsomedial prefrontal cortex 

and the precuneus/posterior cingulate such that as CSF Aβ42 decreased, connectivity increased between 

these regions within AAs(B=-0.002, t(5,26)=-2.02, p=0.05).  We were not able to replicate our previous 

findings according to CSF t-Tau and cognition (Table 6).  

WMH volume within the specific regions of interest as well as within the midline core and 

dorsomedial subsystems was not related to our interaction terms. Because we had such a small number of 

regions for which the race X biomarker term was significantly relate to connectivity, we also included the 

dorsomedial prefrontal cortex and precuneus WMH volumes in our analysis. The inclusion of subsystem 

total WMH volumes within the MC, DM, and regional dorsomedial prefrontal cortex and precuneus 

WMH volumes into our model did not reduce the significance of the interaction term for the Aβ42 X 

Race interaction term.  

3.4 Discussion 

DMN white matter hyperintensity volumes were not significantly different between races, nor 

were there distributional differences between races. This indicates that the underlying cause of the 

disparate connectivity to biomarker relationships that we previously observed may not be the presence of 

WMH within these nodes. These findings lend credence to the hypothesis that WMH and Abeta have 

separate etiologies, but these findings should be considered with caution for the reason mentioned below. 

While we cannot say definitively that DMN WMH do not account for the observed differences in race to 

biomarker relationships, this preliminary data does suggest that the WMH in the DMN do not have a 

robust effect on connectivity.  Other hypotheses about the nature of the disparities are that African 

American connectivity profiles may be different as a result of tau distribution, as African Americans have 

lower tau.  
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While understanding the mechanism behind functional connectivity disparities has significance 

for treatment interventions and disease etiology and progression, the lack of a clear mechanism in this 

body of work does not make it insignificant. It is important to rule out potential biological mechanisms 

that could explain health disparities before jumping to social explanations as the cause. In this case, 

WMH did not explain the disparate Aβ42 to connectivity relationships we observed in this cohort, and 

thus it will be appropriate to explore other biological mechanisms and social constructs, (i.e. cytokines144 

or perceived stress124) that exhibit disparities along racial lines.   

It is difficult to transpose the findings from this analysis onto our previous results. This analysis 

was conducted in a separate, smaller cohort. We detected less significant race X biomarker interaction 

terms than our previous analyses. This is likely because this analysis is underpowered, and we did not 

have any AA individuals with AD in this cohort, which makes this particular sample non-representative 

of the AA with dementia population at-large. The lack of significant findings in this cohort should not be 

taken as evidence that WMH do not play a role in DMN connectivity, rather that our sample size was 

likely insufficient to detect a significant result, as previous studies with larger sample sizes have identified 

relationships between WMH and DMN connectivity in the context of AD4,213,214. An alternative 

explanation could be that WMH within the regions that we analyzed may not influence connectivity, and 

that other regions outside the DMN subnetworks may be influencing connectivity.  

We conducted power analysis to determine how many people we would need to detect a 

significant effect given the effect size of our interaction terms. Using the “pwr” package in R. we 

determined that we would need a sample size of 118 to detect a significant effect, and our sample size of 

66 falls short of this number. We are currently obtaining images from a larger set of both AA and NHW 

individuals with NC that also have FLAIR and fMRI data, and we plan to mine the large OASIS dataset 

that includes both cross sectional and longitudinal FLAIR and fMRI data of over 700 individuals, with 

more than 100 who self-identify as African American215.   
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3.5 Chapter 3 tables 

Table 4 Results from the replication analyses in the cohort for which we obtained regional WMH 

volume. N= 66. dmPFC = dorsomedial prefrontal cortex, PCC = precuneus and posterior cingulate, TC = 

lateral temporal cortex, TempP = temporal pole.    
B t p 

dmPFC 

to PCC 

Race X 

CSF Aβ42 

-0.002 -2.02 0.05 

Race X 

CSF tau 

0.004 0.88 0.39 

Race X 

Cognition 

-0.03 -1.29 0.2 

LTC to 

PCC 

Race X 

CSF Aβ42 

-0.0001 -0.2 0.84 

Race X 

CSF tau 

-0.003 -0.74 0.5 

Race X 

Cognition 

-0.02 -1.5 0.15 

TemP to 

PCC 

Race X 

CSF Aβ42 

-0.001 -0.5 0.62 

Race X 

CSF tau 

0.001 0.3 0.77 

Race X 

Cognition 

-0.02 -1.6 0.11 
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The following manuscript was submitted for publication and is under review at Brain Connectivity. We 

have reprinted it here for the purposes of satisfying the dissertation requirements.  
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Abstract 

Background: Pathologic and functional studies of Alzheimer’s disease (AD) indicate fronto-

putaminal networks as sources of neurological changes in response to disease. However, limited research 

has examined AD-associated changes in connectivity between the putamen and its supra- and infra-

tentorial outputs, and of their relationships with measures of ischemic injury. In this study, we set out to 

determine how functional connectivity between the anterior putamen (APu) and other brain regions 

relates to AD and regional white matter hyperintensity (WMH) volume. Because we previously identified 

disparate default mode network connectivity patterns between Black/African American (AA) and non-

Hispanic white (NHW) individuals according to AD, we also analyzed the impact of race on putamen-

related connectivity.  

Methods: In our sample of 267 individuals with normal cognition, mild cognitive impairment, 

and AD dementia, we measured functional connectivity between APu and multiple cortical regions. We 

then modeled the relationships between AD-associated features (cognition, CSF AD biomarker levels), 

regional WMH, APu-connectivity, and race.   

Results: Measures of AD (diagnosis, worse cognition, and decreased CSF Aβ42) were associated 

with increased connectivity between the APu and pre-/post- central gyrus in both races.  At the same time, 

race modified the relationship between connectivity and measures of AD between the APu and 

superior/middle frontal gyri.  Frontal and putaminal WMH also had more negative impact on the 

connectivity between APu and superior/middle frontal gyri in AA, even though WMH in the same 

regions had the opposite effects in NHW.  

Discussion: In this manuscript we argue three points: 1) AD alters connectivity between APu and 

its input (pre/post central gyrus) independent of race, 2) these changes extend to the superior and middle 

frontal gyrus in AAs, and 3) biomarkers of AD and WMH each exerted race-dependent influence on APu 

connectivity with the superior/middle frontal gyrus.  

Impact statement: This is the first study to specifically probe the APu-related connectivity 

according to AD and regional WMH volume. Similar to our prior observations in the default mode 



51 

network, APu connectivity to other brain regions is sensitive to race in some paths, yet independent of 

race in others.  These extend our previous finding that AD and vascular biomarkers are associated with 

differential – and sometimes opposite – functional consequences in AA and NHW. 

Acronyms: APu= anterior putamen, NC= normal cognition, AD= Alzheimer’s Disease, WMH= 

White matter hyperintensities, AA= African American, NHW= non-Hispanic white, DMN = Default 

mode network 
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4.1 Introduction 

While often overlooked in studies of Alzheimer’s disease (AD) research – including histological 

studies, PET, and structural neuroimaging – has shown the putamen and frontal lobe to be vulnerable to 

AD pathology as well as ischemic damage. The striatum, which includes the caudate and putamen, may 

exhibit amyloid deposition and AD-related atrophy as much as 10 years before symptom onset in 

individuals at risk for AD154, 215,216. Similarly, neuritic plaques as well as neurofibrillary tangles begin to 

appear in the frontal lobe in early and intermediate stages of AD217,218. The appearance of these pathologic 

lesions in AD has further been linked to neuronal dysfunctions through FDG-PET studies219,171,220,221 and 

MRI volumetric analysis77with the putamen much more affected by AD than the functionally-related and 

spatially adjacent caudate.  Therefore, an improved understanding of the putamen’s role in aging and 

early AD can provide a novel region for biomarker development and a potential target for clinical 

intervention studies.  

Functional connectivity is a widely used method for understanding disease related neurological 

changes. Functional connectivity is defined as a measure of the synchronicity of blood-oxygen level 

dependent (BOLD) signal between brain regions, typically collected during a resting-state functional 

magnetic resonance imaging scan 222. Within AD, the most studied regions lie within the default mode 

network (DMN) 223. There exist scientific rationale and precedent for examining the impact of AD on 

DMN 224, yet other local and large-scale brain connections are often overlooked 223.  The functional 

networks of the putamen are well-defined in neuroscience due to their importance in movement regulation 

and disease. Within the frontal lobe, the putamen is most structurally connected to the superior and 

middle frontal gyri, and pre and post central gyri86,126,108,225. These areas are thought to work together to 

meet visual spatial and motor demands226,227. The anterior putamen (APu) is classically viewed as a an 

associative region while the posterior putamen supports motor function 87.  The APu is also more affected 

by AD than its posterior counterpart in structural MRI88–90 and better correlates with cognitive decline91. 
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Because putamen’s connectivity with other brain regions is also most consistent across individuals among 

basal ganglia structures86, the APu is a logical focus of our investigation in AD.   

Consistent with this, limited evidence exists to implicate frontal-APu connectivity in AD228–230, 

but the opposite has also been reported231.  One caveat may be the presence of striatal – more specifically, 

putaminal – white matter hyperintensity (WMH) which is commonly observed in older individuals 

including those with AD 232. WMH has been linked to strokes and cerebrovascular risk factors (e.g., 

diabetes), 93 but also neuro-inflammation 233.  While there is agreement that total brain WMH volume is a 

risk factor for AD but is not a specific marker for AD, 234, it remains controversial whether WMH has 

uniform etiology or impact on cognition across the brain.  Region-specific WMH quantification 

implicates vascular disease to associate with amyloid deposition for posterior portion of periventricular 

WMH changes 94.  However, recent evidence indicates that WMH could emerge independently of 

vascular disease and arise as a direct inflammatory response to neuritic plaques in AD103,235.  

 Relevant to our APu connectivity analysis, WMH can disrupt BOLD synchronicity between 

brain regions 236. Decoupling of functional and structural connectivity increases as WMH burden 

increases on a global 236 and tract-specific scale108. In AD, regions of the DMN show decreased 

connectivity if the WM tracts connecting them have a high WMH burden166. Furthermore, WMH load in 

one WM tract can affect functional connectivity between nodes along a separate tract, suggesting direct 

and indirect impact on functional connections118. Regional distribution differences in WMH may generate 

unique functional network and therefore cognitive profiles that cannot be parsed apart by using total 

WMH volume. WMH typically correlate with tests of speed and executive function, and not with tests of 

fluid or crystallized intelligence102,237. This suggests that their presence may disrupt intracerebral brain 

connectivity, as tests of executive function rely on a coordinated effort of multiple brain regions to 

perform tasks 238. Due to their vascular origin and role in brain connectivity, regional WMH differences 

may explain many of the functional connectivity changes observed in aging and dementia. 

Like other AD biomarker studies, brain network analysis should examine potential differences 

between racial groups to test generalizability.  Independent of whether self-reported race reflects genetic 
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similarity according to region of ancestry, identification with an ethno-cultural group, or structural racism, 

there are real and observable biological outcomes from racial disparities which need to be measured 200. 

This is particularly true for studies of AD as African Americans (AA) are approximately twice as likely to 

develop AD in their lifetime as non-Hispanic whites (NHW), and are more likely to have existing 

comorbidities such as vascular disease and type-2 diabetes121,239,240. In keeping with AD biomarker 

differences between races, our previous DMN analysis showed disparate relationships between functional 

connectivity and AD biomarkers according to race 211. Specifically, AA individuals exhibited increased 

connectivity between two tau-related DMN subsystems as disease burden increased.  CSF studies have 

also shown African American individuals exhibit a unique tau – but not amyloid or neurofilament light 

chain – biomarker profiles15,241.  Given the complexity between AD, WMH, and race, here we present a 

study of APu connectivity in AA and NHW participants using three diverse cohorts recruited from the 

Atlanta area.  

4.2 Methods 

Data collection for all studies, including re-analysis of existing data were approved by the Emory 

University and Georgia State University Institutional review board.   

Participants 

Our analyses consisted of three cohorts of previously collected data from three studies. Separate 

tables for each cohort are included in the supplemental materials. Cohorts 1 and 2 (N=66 and 113; PI: Hu) 

recruited individuals over the age of 65 including individuals with normal cognition (NC), mild cognitive 

impairment (MCI), and AD dementia.  Cohort 3 (N=88, PI Wharton) was designed as a study of 

cardiovascular risk factors for dementia among African American women with normal cognition. Each 

participant underwent a detailed interview for demographic information, self-reported race (Caucasians of 

Hispanic or Latino ethnicity were not included in this study), vascular risk factors (coronary artery 

disease, congestive heart failure, atrial fibrillation, hypertension, hyperlipidemia, diabetes, suspected 

transient ischemic attack), other medical comorbidities (e.g., cancer), and medications (e.g., use of 
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angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers). Each participant was then 

assigned a diagnosis according to consensus criteria including those for NC, MCI, and AD dementia 

(global Clinical Dementia Rating of 1 or 2.) Cognitively impaired subjects suspected of having a non-AD 

dementia (vascular, Lewy body, and frontotemporal dementia) were excluded.   

For Cohort 3, middle-aged African American and Caucasian subjects were recruited into a study 

of cognitively normal subjects with a family history of AD dementia. Demographic (age, sex, education), 

diagnostic (syndrome, global Clinical Dementia Rating [CDR], Mini-Mental State Examination [MMSE]) 

and APOE allelic information were collected. Table 1 includes the demographic information across 

cohorts, and table 2 includes demographic information stratified by cohort. Total number of individuals 

with NC=187, MCI=53, AD=27.  

MRI data collection 

All participants were scanned on a Siemens 3T MRI machine at the Emory Center for Systems 

Imaging with scanning protocols for each cohort included below.  

Cohort 1 

Scanning protocol included a T1-weighted 3D MPRAGE sequence (TR/TI/TE = 

2400/1060/2.31msec, flip angle = 8o, matrix =320x300, and voxel size = 0.8×0.8×0.8mm3) and a 6 minute 

eyes-open resting state functional MRI scan (TR/TE = 724ms/32ms flip angle = 52o, field of view 

(FOV) = 220 × 220 mm2, acquisition matrix = 104 × 104, voxel size = 2 × 2 × 2 mm3, slice = 91, time 

point = 550), and a T2-weighted Fluid attenuated inversion recovery (FLAIR) can (TR/TI/TE = 

9000/2500/91 msec, flip angle = 150o, matrix =256x256, and voxel size = 0.8×0.8x5mm3).s  

Cohort 2 

Scanning protocol included a T1-weighted 3D MPRAGE sequence (TR/TI/TE = 

1620/950/3msec, flip angle = 30o, matrix = 192×256×160, and voxel size = 0.98×0.98×1mm3) and a 6 

minute eyes-open resting state functional MRI scan (TR/TE = 3000ms/32ms flip angle = 90o, field of 
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view (FOV) = 200 × 200 mm2, acquisition matrix = 64 × 64, voxel size = 3.1 × 3.1 × 3.5 mm3, slice = 33, 

time point = 124).  

Cohort 3  

Scanning protocol included a T1-weighted 3D MPRAGE sequence (TR/TI/TE = 

2300/800/2.89msec flip angle = 8o, matrix =256 x256x176, and voxel size = 1×1×1mm3) and a 4.25 

minute eyes-open resting state functional MRI scan (TR/TE = 3000ms/32ms flip angle = 90o, field of 

view (FOV) = 200 × 200 mm2, acquisition matrix = 220 × 220 x 144, voxel size = 2 x 2 x 2 mm3, 

slice = 48, time point = 170).  

MRI Data preprocessing 

We conducted preprocessing pipelines with identical procedures for each cohort. To control for 

the difference in scanning parameters, we included cohort as a fixed effect in our statistical models. We 

utilized a standard preprocessing pipeline utilizing the DPARSFA toolbox 172. The first 10 timepoints 

were removed, scans were slice time corrected, manually re-oriented, realigned, normalized and smoothed 

using the DARTEL & algorithm 213. This algorithm is more appropriate than standard normalization to 

the MNI template for special populations, such as those with atrophy. We then performed nuisance 

covariate regression (Friston’s 24 parameter head motion regressors, CSF, WM). We further removed 

motion-confounds using ICA-AROMA 242 and applied a high pass filter.  

Neuropsychological testing 

Each cohort utilized a different cognitive battery or test. Data collection for cohort 1 utilized a 

cognitive battery as previously described 15. Briefly, this battery included memory tests (Consortium to 

Establish A Registry for Alzheimer’s Disease word list delayed recall, Brief Visual Memory Test–

Revised [BVMT-R] delayed recall), (2) executive function tests (Trail Making Test B, reverse digit span 

[RD], Symbol Digit Substitution Test, and letter-guided fluency), (3) language tests (Boston Naming Test 

[60 items], category fluency), and (4) visuospatial function tests (Judgment of Line Orientation[JOLO], 

Rey-Osterrieth complex figure test). With the exception of BVMT-R, JOLO, and RD, subtest Z-scores 

were calculated according to published normative data, adjusting for age, sex, education, and race. Z-
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scores for the four domains were averaged to generate composite cognitive Z-scores. Neuropsychological 

data collection for cohort 2 included administration of the Montreal Cognitive assessment (MoCA). Data 

collection for cohort 3 included administration of the mini-mental state exam (MMSE). To control for the 

variety of scales and neuropsychological assessments between cohorts, we z-scored the data from cohorts 

2 and 3 according to race, and controlled for cohort in our statistical analysis.   In out statistical analyses, 

cognitive scores were multiplied by negative one so that an increasing score indicates declining cognitive 

performance.  

CSF collection 

CSF (20 mL) was collected using protocols modified from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) using 24G Sprotte atraumatic needles and syringe between 8AM and 

noon without overnight fasting, and transferred into two 15 mL polypropylene tubes. For the Emory 

cohort 3, CSF was centrifuged at 2,000 rpm for cellular studies; the supernatant was removed, 

immediately aliquoted (500 μL), labelled, and frozen (−80 °C) until analysis. Because CSF-tau is 

typically lower in African Americans 243, and tau related changes typically emerge after amyloid 

deposition (low CSF Aβ42) 244, we z scored CSF t-tau according to race, and only analyzed CSF t-tau 

within individuals with an amyloid z-score of less than 1. We multiplied CSF Aβ42 by -1 so that 

increasing amyloid levels indicate increasing amyloid burden.  

Area deprivation index 

To control for socioeconomic status, we utilized the online neighborhood atlas developed at the 

University of Wisconsin, Madison (https://www.neighborhoodatlas.medicine.wisc.edu/). Using 

participant addresses, we obtained area deprivation index scores.  
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Seed Based Analysis 

Using the Wake Forest University Pickatlas v3.0.5, we created 

an anterior and posterior putamen mask by creating a 9mm sphere 

around the center of the APu, and center of the posterior putamen in 

MNI space using coordinates outlined by Oberhuber et al., 2013, for 

each hemisphere (Yin et al., 2009. Frontal regions highly connected to 

the putamen, as determined by human tractography studies, include the 

superior frontal gyrus, precentral gyrus, middle frontal gyrus, 

postcentral gyrus (Cacciola et al., 2017). Additionally, the putamen is a 

highly lateralized region with strong ipsilateral connections (Cacciola et 

al., 2017). As such, we only considered connectivity values between 

ipsilateral nodes.  

We calculated seed to seed functional connectivity using the 

DPARSF-A toolbox. Using our own anterior and posterior putamen 

seeds and masks of the aforementioned regions as defined by the 

Automated Anatomical labeling atlas, we calculated connectivity 

between the putamen and these regions ( Table 3).    

Figure 7 Cross sectional images 

of the empirically defined anterior 

and posterior putamen seeds. 
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Figure 8 Visual representation of the connectivity measures used in this analysis. Supplemental 

figures include a 3-D representation of the seed maps. 

 

Regional white matter hyperintensity volumes 

Total WMH volumes were derived from T2-weighted fluid-attenuated inversion recovery images 

software developed by researchers in the Brickman Lab at Columbia University 214. Briefly, each 

participant's fluid-attenuated inversion recovery image was corrected for intensity normalization, then 

skull-stripped and intensity normalized again. The skull-stripped images were sent through a high pass 

filter at the mode of the distribution of the image voxel intensity values. A half Gaussian mixture model 

was fit to the log-transformed histogram of the intensity values of each image. The Gaussian distribution 

that encapsulated the highest intensity values defined the hyperintense voxels and was labeled. Any 

cluster of labeled voxels that comprised fewer than five voxels was removed from the mask. The labeled 

images were visually inspected and false positives removed. The number of labeled voxels was summed 

and multiplied by voxel dimensions to yield a total volume in cm3. We obtained FLAIR data from 

individuals in Cohort 1 and performed this analysis on these 66 individuals. 

Regional WMH load 
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Because we had many people that did not have a WMH in either the putamen or frontal nodes, 

rather than analyze the continuous volumes, we created scores that reflected whether a WMH volume was 

present in a particular region. To create regional WMH load, we coded volumes as 0 for not present in 

either the putamen or nodes in the analysis (pre and post central gyrus 1 for present in either putamen or 

sensorimotor nodes, and 2 for present in both putamen and sensorimotor nodes. We created a similar 

score using the same procedure for frontal nodes including the middle and superior frontal gyrus.  

Statistical analysis  

Anterior putamen connectivity and Alzheimer’s Disease Burden 

Diagnostic categories 

We created two multivariate linear regression models (one for each hemisphere) that included the 

8 pairwise measures of connectivity as dependent variables, self-reported race, gender, cohort, presence 

of hypertension and type-2 diabetes, and APOE ε4 carrier status as fixed factors, and age, area deprivation 

index, and mean frame-wise displacement as covariates. Diagnostic category was included as a fixed 

factor. We corrected for multiple comparisons using the Holm FWER correction method.  

AD biomarkers 

Next, we analyzed whether AD related biomarkers corresponded with observed connectivity 

changes. To further determine which disease biomarkers may be related to connectivity, we constructed 

models that did not include diagnosis, and instead included CSF t-tau, CSF Aβ42, cognitive scores, and 

putamen-frontal WMH scores, with the same covariates. We corrected for multiple comparisons using the 

Holm FWER correction method. To maintain consistency in presentation of our results, cognitive scores 

and CSF Aβ42 were inversed such that in our analyses and results, an increasing cognitive score indicates 

worse cognitive performance (greater cognitive impairment), and increasing CSF Aβ42 indicates 

increasing amyloid burden (lower CSF Aβ42).   

Racial differences in frontal to anterior putamen connectivity 

Racial differences in normal cognition 
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To establish underlying racial differences, we constructed two multivariate linear regression 

models (one for each hemisphere) that included the 8 pairwise measures of connectivity as dependent 

variables, self-reported race, gender, cohort, APOE ε4 carrier status, and presence of hypertension and 

type-2 diabetes as fixed factors, and age, area deprivation index, and mean frame-wise displacement as 

covariates. We corrected for multiple comparisons using the Holm FWER correction method. To 

maintain consistency in presentation of our results, cognitive scores and CSF Aβ42 were inversed such 

that in our analyses and results, an increasing cognitive score indicates worse cognitive performance 

(greater cognitive impairment), and increasing CSF Aβ42 indicates increasing amyloid burden (lower 

CSF Aβ42).  

White matter hyperintensities and connectivity 

We next wanted to establish whether there were regional differences between NHWs and AAs in 

individuals with mild cognitive impairment within and between the nodes of our fronto-putamen network, 

basal ganglia, and the default mode network. We did this using two methods; 1) Performed a chi-squared 

test to determine whether the distribution of WMH fronto-putamen scores was different according to race 

2) created a multivariate linear regression model that controlled for age, gender, and APOE ε4 status, and 

hypertension to determine whether WMH volume was significantly different between races within 

individuals with normal cognition.  

We also wanted to determine whether CSF Aβ42 was related to putamen frontal WMH load. In 

this linear model, CSF Aβ42 was the outcome variable. We controlled for age, gender, race, APOE ε4, 

and hypertension.  

Racial Differences in AD burden to connectivity relationships 

We next analyzed whether race modified biomarkers to connectivity relationships by constructing 

two linear mixed models that included diagnosis, CSF t-tau, CSF Aβ42, cognitive z-scores, and putamen 

frontal WMH scores and the following interaction terms: race X diagnosis, race X CSF t-Tau, race X CSF 

Aβ42 burden, Race X Cognitive impairment, and race X fronto-putamen WMH load. We included the 8 

pairwise measures of connectivity as dependent variables, self-reported race, gender, cohort, APOE ε4 



62 

carrier status, and presence of hypertension and type-2 diabetes as fixed factors, with age, area 

deprivation index, and mean frame-wise displacement as covariates. We corrected for multiple 

comparisons using the Holm FWER correction method. To maintain consistency in presentation of our 

results, cognitive scores and CSF amyloid were inversed such that in our analyses and results, an 

increasing cognitive score indicates worse cognitive performance (greater cognitive impairment), and 

increasing CSF Aβ42 indicates increasing amyloid burden (lower CSF Aβ42).   

4.3 Results 

Regions of interest 

We initially included separate ipsilateral nodes between the APu and the posterior putamen, 

caudate, insula, precentral gyrus, postcentral gyrus, middle frontal gyrus, and superior frontal gyrus, as 

these regions are the most structurally connected to the putamen (Cacciola, et. al, 2017). In our initial 

analyses, cognition and diagnosis were not significantly related to connectivity between the APu and the 

posterior putamen, caudate, and insula, and exhibited no racial differences in individuals with NC. Thus, 

we report here our analyses for connectivity measures between Apu and the following regions; pre and 

post central gyri, and middle and superior frontal gyri for the remainder of the results.  

APu connectivity and AD features 

Diagnostic categories 

After controlling for age, sex, race, and APOE ε4, connectivity between the right APu and the 

right precentral gyrus was significantly different among diagnostic categories (precentral: β=0.13, 

t(7,255)=1.65, p=0.05; postcentral: β=0.14, t(2,255)=1.79, p=0.05). Individuals with AD had significantly 

greater connectivity than individuals with NC and MCI between the right APu and the right precentral. 

(Table 3)  

Cognitive impairment 

 Connectivity between the right APu and pre and post central gyrus correlated with cognitive 

impairment such that as amyloid burden increased, connectivity also increased (pre-central gyrus: β=0.04, 
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t(6,251)=1.70, p=0.04;  postcentral gyrus: β=0.05, t(6,251)=2.21, p=0.03) (Figure 3A). There was no such 

finding in the left hemisphere. (Table 3)   

CSF biomarkers 

 Connectivity between the left APu and cortical regions correlated with Aβ42 burden (precentral 

gyrus: β=0.05, t(6,174)= 1.76, p=0.04; postcentral gyrus: β=0.05, t(6,174)= 1.68, p=0.05) (Figure 3B). 

CSF t-Tau was not significantly related to any of our connectivity measures of interest. Model results are 

included in the appendix.  

Regional WMH load 

 WMH load within pre and post central gyri and putamen was related to connectivity between 

the right and left APu and the respective pre and post central gyri. In the right hemisphere, as WMH load 

increased, precentral (β=-0.16, t(6,55)=-2.02, p=0.04) and postcentral(β=-0.18, t(6.55)=-2.43, p=0.01) 

gyrus connectivity decreased, and in the left hemisphere, precentral (β=0.09, t(6,55)=2.04, p=0.04) gyrus 

connectivity increased (Figure 3D).  Neither Regional WMH load was significantly related to CSF Aβ42, 

and when CSF Aβ42 was included in the WMH models, beta coefficients for functional connectivity 

values did not significantly change. Model results are included in the appendix. 
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Figure 9 Race independent connectivity to biomarker relationships. A) Amyloid and functional 

connectivity in the left hemisphere between the Apu and the pre and post central gyri.. Line color 

indicates region. B) Amyloid burden and functional connectivity in the right hemisphere between the Apu 

and pre and post central gyri. Line color indicates region. C) Regional WMH load and functional 

connectivity in the left hemisphere in cohort 2. Line color indicates region. D) Regional WMH load and 

functional connectivity in cohort 1 in the right hemisphere. Line color indicates region. Grey background 

indicates a 95% CI. E) Summary figure of race independent relationships. AA = African American, NC = 

normal cognition, WMH= white matter hyperintensities.  
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Racial differences in putamen connectivity 

Racial differences in individuals with normal cognition 

Within controls, African Americans had significantly lower connectivity than NHWs between the 

left APu and the left superior frontal (β=0.11, t(5,177)=2.10, p=0.04), left precentral gyrus (β=0.14, 

t(5,177)=2.31, p=0.02), left middle frontal gyrus(β=0.14, t(5,177)=2.79, p=0.01). In the right hemisphere, 

African Americans had significantly lower connectivity than NHWs between the right APu and the right 

middle frontal (β=0.16, t(6,167)=2.60, p=0.01), and right superior frontal(β=0.15, t(6,167)=2.54, p=0.01). 

The presence of type-2 diabetes, and hypertension, and area deprivation index scores did not account for 

the effect of race on connectivity. Model results are included in table 3.  

Racial differences in amyloid beta and fronto-putamen connectivity  

Race significantly modified the relationship between Aβ42 and connectivity between the left APu 

and left middle frontal gyrus (β=-0.12, t(7, 172)=-2.25, p=0.02), and the between the right APu and right 

middle frontal gyrus (β=-0.20,  t(7,172)=-3.30, p=0.001) and the right superior frontal gyrus (β=-0.16,  

t(7,172)= -2.36, p=0.02) such that within African Americans, as amyloid burden increased, connectivity 

decreased (Figure 4A). Model results are included in the supplemental table. 

Racial differences in regional WMH load and functional connectivity 

Race significantly modified the relationship between WMH load in the putamen, superior frontal, 

and middle frontal gyri and connectivity between the left APu and superior frontal gyrus (β=0.18, 

t(6,55)=2.34, p=0.02), and middle frontal gyrus (β=0.16, t(6,55)=1.98, =0.04) (Figure 4B). Model results 

are included in the supplemental table. 
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Figure 100 Race dependent connectivity to biomarker relationships. A) Amyloid burden and 

functional connectivity in the left hemisphere between the Apu and superior and middle frontal gyri. Line 

color indicates region. Dashed line indicates race, solid line indicates NHW. B) Amyloid burden and 

functional connectivity in the right  hemisphere between the Apu and superior and middle frontal gyri.   

Solid line indicates African American, dashed line indicates NHW. Grey background indicates a 95% CI. 

C) Regional WMH load in the left hemisphere between the middle and superior frontal gyri. Line colors 

indicates regions, Solid line indicates African American, dashed line indicates NHW. D) Regional WMH 

load in the right hemisphere between the middle and superior frontal gyri. Line colors indicates regions, 

Solid line indicates African American, dashed line indicates NHW. E) Summary figure of race dependent 

relationships. AA = African American, NC = normal cognition, WMH= white matter hyperintensities.  
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4.4 Discussion 

In this study, we found that fronto-putaminal functional connectivity is independently associated 

with AD and WMH. Connectivity between APu and its cortical inputs (pre-/post-central gyrus) were 

related to clinical and biochemical markers of AD.  Effects of AD further extended to connections linking 

APu with its cortical outputs (superior/middle frontal gyrus) only in African Americans, with opposite 

relationships between WMH and connectivity in these regions between African Americans and NHWs. 

These findings are consistent with our previous report that African Americans and NHWs may show 

opposite patterns of brain connectivity change in parts of the brain but not others.   

Prior studies have highlighted altered white matter track integrity between the putamen and its 

cortical inputs (post and pre central gyri) or outputs (middle and superior frontal gyri) (Purves, D et al., 

2001) in dementia. Within vascular dementia, the putamen exhibits atrophy and impaired white matter 

tract integrity 232. In early stages of AD (e.g., subjective cognitive complaints and mild cognitive 

impairment stages), the putamen and frontal lobe also exhibit impaired white matter integrity which 

correlates with increased amyloid burden101,248 and decreased regional cerebral blood flow 249.  One may 

thus expect APu-related connectivity to decrease over time, consistent with current models of decreased 

DMN connectivity in AD66,150 211. However, DMN connectivity includes both long and short range brain 

connections and is a conglomeration of multiple white matter tracts 250. If networks simplify in the 

presence of disease, connectivity between nodes may actually increase198.  Indeed, we previously 

observed increased connectivity in certain parts of the DMN among African Americans with AD 211. In 

the current work, increased connectivity between the APu and pre/post-central gyrus with more 

pathologic CSF Aβ42 for both races may also exemplify this phenomenon.  Thus we do not interpret this 

increase in cortical input to APu as strictly pathological or compensatory at this time. It is therefore not 

straightforward to reconcile our findings with white matter tract analysis. 

We also used a novel method to quantify WMH in the APu and its cortical connections impacted 

in AD.  WMH is found commonly in AD and vascular dementia, and their presence in those with vascular 

risk factors but no neurological symptoms further complicates their interpretation in 
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neurodegeneration102,103,251. A region-specific approach to WMH analysis may better identify the 

pathologic process in that anatomical context, but regional analysis has broadly included qualitative or 

semi-quantitative distinction between deep vs peri-ventricular, anterior vs posterior, cortical vs. 

subcortical, and lobar vs. Brodmann area102,250.  Building on the APu connectome, we were able to 

directly test whether WMH at APu network nodes influenced the inter-nodal connectivity within and 

across individuals. In this case, a negative association between nodal WMH and inter-nodal connectivity 

(e.g., right Apu-pre/post-central gyrus) supports the pathological role of nodal WMH, but a lack of 

association (e.g., right APu-superior/middle frontal gyrus) does not rule out the importance of WM tract 

abnormality.  Importantly, the distinct effects of greater plaque burden (more pathologic CSF Aβ42) and 

WMH on all but one APu-related connectivity examined do not suggest WMH in the APu network to 

reflect AD-related pathology, even if posterior peri-ventricular WMH has been found to more associate 

with AD pathology than anterior peri-ventricular WMH.    

APu-superior/middle frontal gyrus connectivity was the one measure which differed between 

African Americans and NHW.  The left APu-cortical connectivity also showed the same direction of 

change between AD and WMH in African Americans.  Although our analyses did not reveal a 

mechanistic explanation for the underlying connectivity differences, as connectivity values were not 

related to hypertension, presence of type-2 diabetes, or socioeconomic status, the magnitude and 

consistency of regions across hemispheres in which African Americans exhibited lower connectivity 

should not be discounted. Potential explanations of the underlying connectivity differences include 

dietary and lifestyle habits, brain-specific inflammatory responses 146, environmental and other exposure 

associated with poverty  252 and stress associated with social and racial inequity 207. In animal and human 

neuroimaging studies, stress does seem to exert regional influence on fronto-striatal circuitry, particularly 

the middle and superior frontal gyri253–255. The stress of perceived racism, and additional relevant 

biological and environmental disparities that exist within the African American population could 

predispose these regions to AD pathology, but more research on life stressors would be necessary to draw 

this conclusion126,256.  It is well recognized that standard predictors of disease progression such as 
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cognitive function and hippocampal volumes fall short in determining the rates of cognitive decline in 

African Americans113.  Limited multi-racial studies have suggested WMH to better track dementia 

progression in African Americans than in NHW113, yet many studies continue to exclude individuals with 

vascular disease or under-recruit minorities including African Americans.  This study reiterates the 

importance of including individuals with vascular disease in AD research, especially those with greater 

prevalence of vascular disease as well as greater incidence of dementia.   

This study has a number of limitations. We recruited more participants with NC and MCI than 

AD dementia, thus focusing our work on brain changes in older individuals without severe impairment at 

the expense of generalizability. Future research with increased AD dementia participants as well as 

longitudinal changes in WMH and AD pathology is necessary to validate the patterns we described.  The 

cognitive measures utilized were not consistent across cohorts. Although Z-transformation controlling for 

cohort effect did yield significant connectivity-to-cognition relationships, casting a more extensive 

neuropsychological battery across all cohorts would extend the region-specific analysis to also cognitive 

functions.  Amyloid and tau PET imaging was not performed in these subjects.  Even though CSF Aβ42 

levels closely correlate with global amyloid PET measures, the latter may provide higher resolution 

characterization of AD pathology in a region-specific manner257.   

Conclusion 

In this study, we intended to determine whether AD affected putaminal connectivity. We 

identified the pre and post central gyrus within a network vulnerable to AD independent of race, and the 

superior and middle frontal gyrus within a related network displaying race-specific associations with AD.  

Connectivity was increased or showed no change in AD among NHW participants, but decreased more 

often than increased in African Americans.   

These findings along with our previous work highlight that functional connectivity, like other 

intermediate measures of neurodegeneration, is not a linear metric of AD pathology or WMH.  It provides 

a dynamic profile of neurodegeneration, and region- and context-specific changes likely have pathologic 

correlates which need more detailed confirmation.  AD pathology appears to have a more consistent 
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connectivity profile between APu and its cortical inputs across races, with AD and WMH demonstrating 

different patterns of interaction between older African American and NHW participants.  This work is in 

line with previous research recommendations that considering amyloid, tau, or cognitive decline without 

WMH is insufficient for a functional profile of older individuals, yet treating WMH as a uniform measure 

of either AD or vascular disease according to qualitative divisions (e.g., anterior vs. posterior) likely 

undermines its pathologic significance.  Future experimental studies should focus on elucidating 

pathologic substrates which can selectively increase or decrease connectivity involving that region, and 

connectivity measures in these areas simultaneously vulnerable to AD, vascular injury, and neuro-

inflammation can then be used to identify the WMH etiologies. 
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4.5 Chapter 4 Tables 

 

  

Table 5 Combined demographic variables for all participants across cohorts. SD = standard deviation. M= male, 

F= female. MCI = mild cognitive impairment, AD = Alzheimer’s disease. 

 Normal Cognition 

(N=187) 

MCI (N=53) AD (N=27) 

 AA (n=95) NHW 

(n=92) 

AA (n=27) NHW (n=26) AA (n=8) NHW 

(n=19) 

Age 

mean(SD) 

62.96 (9.29) 65.65 (9.15) 69.38 (7.88) 72.06 (6.36) 70.13 

(10.34) 

68.86 (8.63) 

Gender 

%M/%F 

21.05/78.95 45.65/54.35 44.44/55.56 46.15/53.85 37.50/62.50 47.37/52.63 

National 

Area 

Deprivation 

Index 

mean(SD) 

50.83 

(24.10) 

33.12 

(21.99) 

51.69 

(23.18) 

32.12 

(20.73) 

59.83 

(32.08) 

35.38 (21.71) 

State Area 

Deprivation 

Index 

mean(SD) 

4.40 (2.56) 2.85 (2.10) 4.38 (2.53) 2.28 (1.49) 5.67 (3.27) 2.94 (1.73) 

Hypertension 

% have 

50.53 34.78 77.78 57.69 75.00 31.58 

Type-2 

Diabetes % 

have 

10.53 4.35 22.22 15.38 25.00 21.05 

Cognitive Z 

score  

Mean (SD) 

0.05 (0.92) 0.14 (0.81) -0.66 (0.58) -0.87 (0.80) -2.26 (1.12) -2.26 (0.70) 
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Table 6 Demographics stratified by cohort. AA = African American, NHW = Non-Hispanic White, SD = 

Standard Deviation.  

  

 Cohort 1 (N=66) Cohort 2 (N=113) Cohort 3 (N=88) 

 AA (n=24) NHW 

(n=42) 

AA (n=52) NHW 

(n=36) 

AA (n=54) NHW 

(n=59) 

Age 

mean(SD) 

69.27 

(7.82) 

70.03 

(6.57) 

58.49 

(8.34) 

58.58 

(6.55) 

68.92 

(7.68) 

71.00 (7.87) 

Gender 

%M/%F  

25.00/75.00 45.24/54.76 15.09/84.91 50.00/50.00 39.62/60.38 44.07/55.93 

National 

Area 

Deprivation 

Index 

mean(SD) 

47.83 

(23.85) 

27.95 

(19.25) 

53.19 

(21.17) 

37.11 

(23.19) 

51.35 

(27.47) 

34.65 (21.79) 

State Area 

Deprivation 

Index 

mean(SD) 

4.13 (2.52) 2.26 (1.43) 4.60 (2.24) 3.22 (2.26) 4.48 (2.97) 2.82 (2.04) 

Hypertension 

% with it 

62.50 30.95 43.40 33.33 69.81 47.46 

Type-2 

Diabetes % 

with it 

20.83 7.14 3.77 0 20.75 15.25 

Cognitive Z 

score  

Mean (SD) 

-0.06 (1.15) -0.08 (1.02) 0.07 (0.99) 0.02 (1.02) -0.66 (0.94) -0.87 (1.18) 
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Table 7 Coefficients for diagnosis, cognition, and racial differences and connectivity between the 

left and right anterior putamen and other regions of interest. 

 

 

  

Left Anterior Putamen 

  Diagnosis Cognition 

Lower in AA with 

NC 

  B t p B t p B t p 

Precentral 

Gyrus 
-0.07 -0.81 0.42 0.13 1.65 0.05 0.13 2.28 0.02 

Postcentral 

Gyrus 
-0.07 -0.78 0.43 0.14 1.79 0.05 0.06 1.05 0.29 

Superior 

Frontal 

Gyrus -0.05 -0.25 0.8 -0.03 -1.43 0.15 0.1 2.09 0.03 

Middle 

Frontal 

Gyrus -0.12 -0.56 0.58 -0.01 -0.58 0.56 0.14 2.81 0.01 

Posterior 

Putamen 0.12 0.56 0.57 0 0.03 0.98 0.04 0.8 0.43 

Caudate 0.18 0.09 0.93 0 0.05 0.96 0.02 0.04 0.66 

Insula 0.07 0.34 0.73 -0.02 -1.01 0.31 0.08 1.52 0.13 

Right Anterior Putamen 

  Diagnosis Cognition 

Lower in AA with 

NC 

  B t p B t p B t p 

Precentral 

Gyrus 
0.13 1.65 

0.0

5 
0.04 1.7 0.04 0.07 1.23 0.22 

Postcentr

al Gyrus 
0.14 1.79 

0.0

5 
0.05 2.21 0.03 0.06 1.09 0.28 

Superior 

Frontal 

Gyrus -0.07 -0.31 

0.7

6 -0.02 -1.39 0.16 0.12 2.27 0.02 

Middle 

Frontal 

Gyrus -0.12 -0.64 

0.5

2 -0.02 -1.02 0.31 0.13 2.3 0.02 

Posterior 

Putamen 0.11 0.47 

0.6

4 -0.01 -0.66 0.51 -0.01 -0.11 0.91 

Caudate -0.21 -0.93 

0.3

5 0 -0.36 0.72 0.05 0.96 0.34 

Insula 0.1 0.45 

0

.66 -0.02 -1.22 0.22 0.04 0.91 0.36 
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5 CONCLUSION 

In the following sections we integrate our findings across aims. We first introduce our research questions 

and a summary of related findings. We then discuss findings that are not dependent on race within the 

DMN and the putamen and integrate these findings across networks. This is followed by a discussion of 

race dependent findings in both the DMN and cortical output putamen nodes, and how these biomarker to 

connectivity relationships inform our understanding of AD within AAs. We then review the role, or lack 

thereof, of WMH in explaining these relationships, and review other potential explanations for our 

findings. We conclude with a discussion of race and how this study answers, but also poses a variety of 

questions related to how we should operationalize race in future research.  

5.1 Research Questions 

The following section includes our research questions as well as a summary of the findings for 

each question.  

Do African Americans have different connectivity to AD biomarker relationships than NHWs 

within the DMN and its subnetworks? 

African Americans exhibit a connectivity profile different from that of NHWs. Contrary to NHW 

models, precuneus and posterior cingulate connectivity to regions of the dorsomedial subsystem 

increases as disease burden increases.  

Does putaminal connectivity relate to AD biomarkers?  

Connectivity between cortical inputs and the anterior putamen correlates with Alzheimer’s 

disease burden such that as CSF Aβ42 decreased, connectivity between the anterior putamen and 

pre and post central gyri increased. In the right hemisphere, as cognitive performance decreased, 

connectivity increased in these same regions.  

Does race modify these relationships between putaminal connectivity and AD biomarkers? 
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In the data from the African American participants, as CSF Aβ42 decreased, connectivity 

between the anterior putamen and the superior and middle frontal gyri also decreased.  

Do hyperintensities in the DMN and in the putamen networks explain the observed racial 

differences? 

In our sample, hyperintensities in the DMN did not explain the significant race X Aβ42 

interaction for DMN connectivity, and did not account for the racial group differences in 

connectivity that we observed between APu and superior and middle frontal connectivity. 

However, regional hyperintensities within the putamen and these cortical output regions was 

related to connectivity in the left hemisphere in African Americans, such that as regional WMH 

burden increased, connectivity also decreased.  

5.2 Integrating race independent connectivity associations with AD biomarkers 

 We identified a number of regions for which the relationships between connectivity and AD 

biomarkers were consistent across racial groups. In the DMN, these measures include connectivity 

between regions of the medial temporal lobe subsystem and between the midline core and medial 

temporal subsystems such that as CSF t-Tau increased, connectivity also increased. Within the putamen 

network, the consistent measures include connectivity between the anterior putamen and the pre and post 

central gyri. Within these regions, as disease burden (measured by the particular biomarker) increased, 

connectivity also increased. Typically individuals with a higher AD burden exhibit lower connectivity 

between DMN regions, but results are inconsistent in the putamen64,258. The increased connectivity that 

we observed within the DMN may be driven by the relatively larger group of individuals with MCI 

compared to AD. Because an increase in connectivity is often observed in MCI59, and many studies 

consider diagnostic categories instead of continuous biomarker measures, and only a few studies have 

examined DMN subnetworks in AD259,260, our results may not directly map onto previous studies. 

However, because the DMN subnetworks have unique functions measures (i.e. MTL correlates with 

memory and midline core is responsible for self-reflection)62, and do not exhibit uniform relationships 
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with biomarkers as observed in the first aim, we recommend utilizing these subnetworks in future studies 

investigating DMN connectivity and continuous relationships with biomarkers.  

Connectivity between the anterior putamen and its cortical input nodes (pre-post central gyrus) 

were related to both cognition and amyloid. The hyperconnectivity that we observed could be a 

pathological response to disease presence, or functional compensation as other regions begin to succumb 

the effect of AD. These particular measures of connectivity were independent of race, and thus we would 

recommend them as ROI’s in future studies in diverse cohort. If others achieve replication of our results 

within this network, we could then recommend that this network be a preferred network of study in 

samples with diverse of individuals across the disease spectrum of AD. A previous EEG study identified 

hyperexcitability in the presence of AD within the sensorimotor cortex261, despite the fact that this region 

is relatively spared from atrophy. This finding highlights an advantage of functional connectivity 

approaches, as it can examine complex neurological interactions beyond cell death. A summary figure of 

the race independent relationships is included below.   

 

Figure 111 Summary figure of general race independent relationships between increasing disease 

burden as measured by AD biomarkers. Green line indicates the DMN MTL functional connectivity. 

Yellow indicates pre and post central gyri connectivity. DMN MTL = Default mode network medial 

temporal lobe, APu = anterior putamen.  

 

This works gives partial support to the amyloid hypothesis in that it is initial amyloid deposition 

that starts the dementia cascade. The DMN, the first network to be affected in the course of AD was 
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related to both CSF tau and amyloid58. However, the putamen and its cortical nodes were not related to 

tau, but more consistently related to amyloid. According to Braak staging, the frontal lobe is affected later 

in the course of disease199. The amyloid hypothesis states that amyloid build up causes a metabolic 

cascade that eventually leads to tau deposition, but precedes NFT’s by many years24. Atrophy typically 

correlates more strongly with tau, as the NFTs are what may trigger cell death. Amyloid buildup may 

signal the first stages of AD, and generate some of the functional changes that can be observed in fMRI 

studies. The consistent amyloid relationships that we identified in the putamen analyses could also reflect 

the overall impact of amyloid even in normal aging, as amyloid plaques are fairly common even in 

individuals with intact cognition. Further research would benefit from amyloid PET262 studies that 

identify whether regional amyloid buildup in the putamen network we describe relates to connectivity.  

The fact that tau was related to DMN MTL connectivity, but not to fronto-putaminal connectivity 

is in line with previous literature168. We would likely see significant relationships between tau and 

connectivity in a larger set of individuals in the later stages of dementia. Amyloid emerges earlier, and 

our cohort did have early MCI and individuals with NC. Based on Braak staging, frontal regions are not 

typically inundated with tau until later in the disease199, and our cohort did have a larger proportion of 

controls. It is likely that some of these individuals had amyloid deposition, but had not, or will never cross 

the threshold into the Braak stages of tau deposition in the frontal areas. Further tau-pet45 studies of 

individuals with MCI and AD should investigate these regions to determine if regional tau deposition may 

correlate with connectivity in the putamen nodes that we identified.  

We identified relationships with cognition and connectivity in both of our networks of interest. 

Although related inversely to connectivity within NHWs for our DMN measures, it is important to 

recognize that connectivity measures were related to cognition in Cohort 3, which included individuals 

across the dementia spectrum, including AAs with AD, and related to a variety of connectivity within the 

DMN between the midline core and dorsomedial subsystems. Within the putamen network, cognition 

correlated with connectivity measures in the right hemisphere, between the right anterior putamen and the 

right pre and post central gyri. The lack of many significant relationships between cognition and 
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connectivity identified between the putamen and network regions could be a result of the fact that our 

sample for the putamen connectivity analyses included a larger group of individuals who were younger 

and had normal cognition. Our findings could indicate that amyloid exerts greater influence on 

connectivity without much relationship to cognition in this putamen network particularly earlier in the 

stages of AD or eventual AD153. Before cognitive symptoms emerge, amyloid could exert influence on 

connectivity, in a variety of regions including the putamen and its cortical nodes, but connectivity in these 

regions may not exhibit relationships with cognition and tau until much later in the disease263. An 

alternative explanation could be that the cognitive tests utilized in these cohorts are better at detecting 

memory impairment than impairment in other cognitive domains. The cognitive scores utilized in the first 

aim were taken from an extensive cognitive battery, but the other cohorts only had the MMSE and the 

MoCA. While the MoCA is more sensitive to cognitive domains for which the putamen and the cortical 

nodes are responsible (motor and visual spatial impairment)52, utilizing a different cognitive measure for 

each cohort likely introduces noise that obfuscates relationships between cognition and putamen 

connectivity, especially given the cultural bias associated with these assessments that often over-predicts 

cognitive impairment in African Americans264. Future studies will investigate individuals with MCI and 

AD to determine whether putamen connectivity does indeed exhibit relationships with tau and cognition 

and whether these alterations manifest in cognitive performance, and investigate the relationships 

between cognitive domains outside of memory and the relationship to putamen connectivity. 

5.3 Race Dependent relationships with AD biomarkers 

Current consensus drawn from functional, structural, and pathological studies is that the 

hippocampus and the DMN are the primary regions affected by Alzheimer’s Disease59. While research of 

these areas has yielded a wealth of scientific findings with clinical utility, there are many questions about 

the etiology and disparities within AD that may be answered by broadening the scope beyond the DMN 

and hippocampus. The DMN has been thoroughly explored in AD, and results across studies with similar 

definitions of the DMN, and similar methodological approaches have fairly consistent findings indicating 
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that DMN within network connectivity is lower in individuals with AD compared to NC, and declines as 

the disease progresses59. This work adds to the current body of literature by replicating previous studies 

and that use the DMN subnetwork connectivity measures in our sample of NHWs, and providing 

measures that may be sensitive to the biological changes generated by diverse ethno-cultural 

backgrounds.  

Our findings within the NHW sample support previous literature that, within this group, DMN 

connectivity typically declines as AD burden increases. Our data-driven ICA approach to identifying 

components of the DMN, rather than utilizing seed-maps, could have been responsible for the increases 

we observed in AA, in that our data driven component maps perhaps did not represent the established 

DMN regions. However, because we identified the typical pattern of AD-related connectivity decline in 

NHWs, we can be fairly certain our methodology choice does not account for the disparate connectivity 

to biomarker relationships that we observed.  

 

African Americans are less likely to exhibit amnestic profiles than their NHW counterparts; they 

have slower cognitive and functional decline, and different predictors of cognition. These facts 

compounded with evidence for a unique functional profile point to a possible sub classification of 

Alzheimer’s disease that includes a consideration of lifestyle and genetic risk factors. Some papers 

suggest that MCI is characterized by a temporary increase in DMN connectivity, followed by the gradual 

decline associated with AD. AAs in our sample could be exhibiting an extended MCI-like connectivity 

profile. The diagnosis of AD within AA could be generated by a lower level of pathology, yet is 

exacerbated by comorbidities such as vascular disease.  This may seem counter intuitive, but it suggests 

contributing comorbidities extant in AAs cause AD symptoms to emerge with a much lower pathology 

burden than in NHWs. This also may contribute to their greater life expectancy as the AA phenotype of 

AD may not be as severe, and may be more attributable to other neurological burdens. These results 

would be in line with other studies that have identified slower rates of cognitive decline in African 

Americans109, and these connectivity increases could be an extension of this MCI hyperconnected phase. 
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Further studies investigating a greater number of AA individuals with AD would be necessary to explore 

this hypothesis.  

In Alzheimer’s disease, the hippocampus is typically included in default mode network analyses155. 

The DMN supports self-referential cognitive processes, including memory. Lower functional connectivity 

between DMN regions typically correlates with worse general cognition, higher AD burden, and worse 

memory performance63. Our findings from the first aim provide a neurological basis for the increased 

prevalence of non-amnestic MCI in African Americans and possibly explain why cognitive decline tends 

to progress more slowly in African Americans. Cognitive assessments tend to rely heavily on working 

memory265. The MMSE and MoCA both include at last one question that relies on memory, and lower 

working memory capabilities can impair assessment performance even on questions designed to assess 

visuospatial abilities. MoCA is more sensitive to detecting cognitive impairment other than memory, but 

both of these assessments are most commonly used to detect Alzheimer’s disease265. Cognitive tasks that 

specifically assess motor function may be more sensitive to AD detection in African Americans as a result 

of underlying vulnerable region.  

African Americans exhibited decreased connectivity between the APu and superior and middle 

frontal gyrus as CSF Aβ42 decreased. It is possible that the hyperconnectivity between the cortical input 

regions and the APu that we observed is a form of functional compensation for connectivity decline in 

other brain regions. We observed a decline in connectivity between DMN nodes in NHWs as AD burden 

increases, and between APu and superior and middle frontal in AAs (Figure 11). In individuals with 

normal cognition, African Americans exhibited lower connectivity between the anterior putamen and the 

superior and middle frontal gyrus. This finding, coupled with the increase in connectivity between the 

putamen and the pre and post central gyrus across races suggests that while there are uniform 

relationships between AD pathology and motor-putamen circuits, downstream frontal regions may be 

preferentially affected by race.  
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Figure 122  summary figure of race dependent relationships between increasing disease burden as 

measured by AD biomarkers. Only relationships within African Americans are displayed in this figure. 

Green line indicates the DMN MTL functional connectivity. Yellow indicates pre and post central gyri 

connectivity. DMN MTL = Default mode network medial temporal lobe, APu = anterior putamen.  

 

We were not able to identify any variables that fully accounted the differences in biomarkers 

across racial groups. Many of the variables typically entangled with race, such as socio-economic status, 

hypertension, and white matter hyperintensity volume did not account for the effect of race on the 

biomarker to connectivity relationships in the DMN or in the putamen. Explanations for our findings 

could be a result of a complex interplay of biological and sociological factors whose measurement was 

outside the scope of this study. African Americans in these samples on average had lower socioeconomic 

status as measured by the ADI. However, including ADI in our analyses did not account for the 

significance of interaction terms. It is possible the ADI serves as a crude measure of SES, as it is merely a 

snapshot of where an individual resides at a particular time, and that is not the only factor entangled with 

race that may explain these racial differences. Low socio-economic-status266 and perceived racial 

discrimination, both commonly reported in AAs205, can affect the brain throughout the developmental 

spectrum. These factors create decreased connectivity across large scale brain networks that could create 

reliance on small scale networks267, and these connections would then be reinforced over time. This could 

create a functional connectome that relies heavily on a functionally segregated, rather than integrated, 
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networks.  Resilience to negative outcomes associated with challenging life events is associated with 

increased connectivity between the sensorimotor cortex and the putamen, a phenomenon that we observed 

in both races, though unrelated to resilience268. The slow decline observed in African Americans could be 

a result of the fact that previous reliance on small scale networks would be less impacted by Alzheimer’s 

disease than NHWs, and that our NHW cohort exhibits functional integration that declines in response to 

disease. This could explain the slow decline exhibited by African Americans, as the networks would 

already be organized into functionally segregated networks, and the presence of disease may just enhance 

this underlying network structure. However, in NHWs in our sample, cognitive function would be 

primarily reliant on functional integration, and a disruption in this integration caused by AD pathology 

would lead to segregation and force networks to reorganize at a more rapid pace. A graph theoretical 

approach, particularly of longitudinal data, would allow us to test these hypotheses.  

5.4 WMH and DMN connectivity 

Our hypothesis that regional WMH within the DMN explained the significant effect of race on 

connectivity and biomarker relationships was not supported. WMH within these regions were not related 

to connectivity, and did not account for the significant race interaction term. However, this finding is not 

conclusive, and warrants further exploration in a larger dataset. Our cohort that included the connectivity 

and WMH data was not the same cohort used for our Aim 1 analyses. There were less participants in the 

WMH dataset, and we did not identify identical relationships between biomarkers and connectivity within 

this dataset. This is likely that we were underpowered to detect an effect, and that our cohorts had a 

different diagnostic distribution. In our WMH analysis dataset, we did not have any AAs with AD, only 

NC and MCI, but we did have NHWs across all diagnostic categories. Furthermore, the cognitive data 

from this cohort was limited to one general measure of cognition rather than from a battery of 

neuropsychological tests.  

We did not identify regional differences between AA and NHW in WMH volume within the 

tracts of the DMN regions that we investigated. These DMN subsystem WMH volumes were not related 
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to CSF Aβ42 or CSF T-tau, even when we only utilized data from individuals with MCI and AD. If we 

did identify a significant relationship between CSF biomarkers and regional WMH volume, it would 

support the notion that WMH in these regions may be caused by AD pathology. However, our results do 

not support this hypothesis. Our findings are not conclusive, as we had a relatively small sample size (23 

individuals with some form of cognitive impairment), and of those individuals, only 10 had 

corresponding CSF data. It is likely that we were underpowered, and a larger sample size would be 

necessary to detect a significant relationship between WMH and CSF biomarkers, especially given the 

differences in CSF T-tau levels between NHW and AAs.  

WMH within the default mode subnetworks did not mediate the race by biomarker interaction 

terms. This finding should not be taken as conclusive evidence that WMH do not play a role in DMN 

connectivity. We were not able to replicate same race and biomarker interactions that we identified in the 

cohort of our first aim. This is likely a result of the limited distribution of our sample across race and 

diagnostic categories. However, previous studies do support these findings. Studies have inconsistently 

identified a relationship between amyloid and WMH, and between tau and WMH99,102,269. Many of the 

studies that correlate tau with WMH do so at a pathological post-mortem level, and identify WMH based 

on pathology rather than MR imaging. Little research exists that probes the mechanistic relationship 

between tau and WMH, and without longitudinal models, it will be difficult to establish a causal 

relationship. However, as tau-pet becomes more widely used, answering this question will become more 

feasible.  

5.5 WMH and Putamen Connectivity  

This work illustrates the importance of considering not only racial groups in analyses of 

individuals with AD, but comorbidities. Ruling out individuals who have contributing comorbidities may 

be appropriate to generate models that specifically study mechanisms related only to AD, but if other 

comorbidities are in fact risk factors for the disease being studies270, the synergistic mechanisms between 

the disease of study and the comorbidities will be largely ignored. This research emphasizes the important 
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role of the contributing factors of vascular insult in the form of small vessel disease, as represented by the 

presence of WMH in the brain. Because we identified WMH burden in many controls in the absence of 

elevated amyloid beta, WMH may be generated ahead of amyloid burden, and not directly caused by ad 

pathology. This WMH does play a role in decreasing basal ganglia function particularly in AAs, which 

manifests as lower mid and superior connectivity. It is likely that in fronto-putamen regions, WMH 

increases susceptibility to the effects of Aβ42, rather than Aβ42 generating WMH. This finding adds to 

the hypothesis that AD related WMH are located in more posterior and temporal regions101 rather than 

frontal and subcortical WMH, which seem to be more vascular in nature271. This work also adds to the 

hypotheses that WMH can disrupt pathways not only along tracts, but also within nodes65. Current 

research is limited to tract specific findings, but this work demonstrates that nodal WMH can also 

influence functional connectivity, particularly in metabolically active areas sensitive to oxygen and 

nutrient deficits.  

The putamen and thalamus are regions particularly vulnerable to ischemic changes272. Metabolic 

studies indicate that these regions are highly metabolically active. This increased metabolic activity would 

make them particularly susceptible to the oxygen and nutrient deficits generated by ischemia and small 

vessel disease273.  However, it is not likely that putamen WMH are the cause of the connectivity 

relationships we identified as being related to AD. In this work, we identified what regions exhibit 

connectivity changes related to AD, and those related to WMH. These two factors likely have a 

synergistic effect on connectivity, with African Americans exhibiting greater susceptibility to WMH. 

Why AAs exhibit this vulnerability remains unclear.  

The current work supports the notion that amyloid burden is not related to WMH etiology. Within 

the amyloid literature, the relationship between WMH and amyloid is also controversial. The evidence 

that amyloid and WMH have a causal relationship is weak, and many studies have found no relationship 

between the two biomarkers even across different modalities of amyloid measurement (amyloid pet, 

amyloid staining, and CSF amyloid).  
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5.6 Limitations & Future Directions 

Our findings should be considered in context of this work’s limitations. We did not have uniform 

measures across all participants. Our cognitive measures were different across the three cohorts, and we 

did not have regional WMH for all participants. We were able to identify consistent relationships between 

connectivity and cognition across the cohort despite this limitation, but the extensive cognitive battery 

with standardized scores as we have for cohort 2 would obviously provide more accurate measures of 

cognition that would not exhibit the racial bias evident in more general tests of cognition. The lack of AA 

individuals with AD in the WMH limits the generalizability and validity of our findings such that we 

cannot fully overlay our functional relationships identified in Aim 1 on our WMH results. Future analyses 

will explore regional WMH and connectivity in a larger cohort with particular emphasis on a larger 

number of AA individuals with AD. 

Our analyses were limited to studying race and biomarker interaction terms, and considering the 

effects of gender were outside the scope of this study. In addition to race, gender also has biological and 

social definitions. Disparities exist between genders such that women are more likely to develop AD274, 

but live longer than men with AD. Studying the impact of intersectionality in Alzheimer’s Disease can 

widen the net of individuals with whom clinicians should consider at risk for AD and allow for more 

targeted public health campaigns and interventions to address some of the modifiable factors of AD that 

may be entangled with these social and biological categories.  

Although we were able to include a large percentage of AA individuals across our cohorts, we did 

not have a sufficient number of AA individuals with AD to completely replicate our findings from Aim 1. 

While we did identify some consistent relationships across cohorts in cohort 1, a larger sample of AA 

individuals with AD would be ideal to determine the generalizability of our results. While this work does 

establish biological manifestations of health disparities, there are a number of biological and sociological 

factors that we did not consider that may play a role in the manifestation of these disparities. As 

previously mentioned, the sociological aspects of race, while socially constructed in nature, can generate 

disparate health outcomes. For example, perceived racial discrimination205, lower socio-economic 
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status275, education quality276, and residential environment during childhood252, family and community 

bonds, and resilience277, all of which show differences across racial groups, can have negative and 

protective effects on brain health. Our sample of African Americans should in no way be taken as 

representative of all African Americans. A nuanced approach of examining the aforementioned variables 

should be the focus of future analyses, rather than broad categorization of individuals based on race. 

However, in order to increase participation of individuals of diverse in science studies and make the case 

for national investment of funds in this effort, establishing gross racial differences is the first step. 

The only measures of pathology that we used were derived from CSF. While this is useful in 

determining the validity of our connectivity measures and whether they are related to gross levels of CSF 

tau and amyloid, it would be valuable to investigate the regional distribution of tau and amyloid through 

PET scans, and whether regional distribution of these pathologies are related to connectivity and regional 

WMH. This would enable us to more accurately add to the WMH etiology debate, and determine how 

these pathologies may affect connectivity, i.e. are tau and Aβ42 within the DMN generating functional 

connectivity changes, or is the DMN responding to amyloid and tau deposition elsewhere is the brain.  

This study used cross-sectional data across the disease spectrum to understand how biomarkers 

and connectivity are related to one another at varying levels of disease burden. However, to uncover 

casual mechanisms and develop disease trajectories that may be specific to a particular race, longitudinal 

models would be necessary. We modeled the biomarker and connectivity relationships using linear 

functions, as that is the simplest and most logical place to begin an analysis. However, our understanding 

of how CSF biomarkers change over the course of the disease is limited, particularly within African 

Americans. The relationship between CSF Aβ42 and connectivity could be stronger in the earlier phases 

of the disease, and then plateau as the amyloid threshold for the development of AD is reached37. While 

this can be modeled in a cross sectional analysis, a longitudinal analysis would provide more sensitivity to 

track changes across disease development, and we can adjust current disease trajectory models to include 

race, and introduce regional staging of functional connectivity changes. We would also like to confirm 

that WMH emerge before functional connectivity changes using a longitudinal model, and whether CSF 
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tau and amyloid alterations in the CSF occur before the emergence of WMH. While it seems logical that 

WMH could influence FC, we are still not sure whether the two variables are correlated or causally 

related. It also seems logical that WMH would be present before CSF and tau alterations, but that is under 

the assumption that WMH are not caused by AD pathology278. While this study suggests that WMH are 

independent of AD pathology, a longitudinal analysis would provide more conclusive evidence either 

way. 

This work brings into question the definition of race. Many people try to define race as a purely 

genetic concept193, but the lines between races from a purely genetic standpoint are nonexistent in the US 

at least. In fact, many NHWs in the U.S. exhibit similar genetic profiles to AAs279. This leads others to 

argue that race is purely a social construct with little biological utility11. The answer most likely lies 

somewhere in the middle, as this work can attest to. A failing of this work is that we have had to include 

African Americans as one group, when in fact “African Americans” are a diverse minority group with a 

variety of socioeconomic, genetic, and lifestyle backgrounds. The term “African American” obviously 

has some utility in the clinic, as African Americans do have higher prevalence rates of AD1. However, 

when we controlled for many of the factors that could potentially explain the racial disparities that we 

identified, such as presence of vascular disease, type-2 diabetes, socio-economic status, and risk genes, 

we still had significant racial differences that no variable fully explained. This work supports the notion 

that “race” in the context of Alzheimer’s Disease is more of a complex interplay between ethnicity, 

ancestry, and lifestyles, and that “ethno-cultural” group may more accurately describe the African 

American diaspora280. Furthermore, cohort effects may impact our results, as many of the older 

individuals in our studies grew up in a time of racial turmoil during or just after the conclusion of the civil 

rights movement276. While the current time leaves much to be desired in the area of race relations, the 

level of institutional racism present during the time of segregation and just after could create a lingering 

impression on brain health that cannot be captured by merely examining biological and lifestyle factors276. 

While we have to establish meaningful differences in order to encourage the inclusion of a diverse cohort 
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in future studies, we hope that in the future, more nuanced and precision approaches to quantifying ethno-

cultural backgrounds can be adopted.   

As this work conclusively shows, characterizing the functional profile of individuals with 

Alzheimer’s disease must be an inclusive process. A one-brain-fits-all approach doesn’t address the 

unique differences between sample populations. Even structural templates vary based on sample 

population, let alone functional connectomes with a larger number of variables. While we identified 

regions that did exhibit the same biomarker to connectivity patterns across races a number of these 

measures, particularly in the network most commonly studied in AD, we must carefully choose our 

regions of interest, and consider the makeup of our sample accordingly. Putamen input nodes seem to be 

consistently related to amyloid across races, while DMN connectivity should be considered with race as a 

variable of interest for analyses in cohorts that include African Americans and NHWs. If functional data 

is to be used as a biomarker for early detection of AD, or to predict conversion from MCI to AD, we must 

strive to create a profile that includes not just individuals from all backgrounds, but individuals who at the 

greatest risk of developing the disease.  

 .  

  



89 

REFERENCES 

1. 2010 Alzheimer’s disease facts and figures. Alzheimers Dement. 6, 158–194 (2010). 

2. Morris, J. C. et al. Assessment of Racial Disparities in Biomarkers for Alzheimer DiseaseAssessment 

of Racial Disparities in Biomarkers for Alzheimer DiseaseAssessment of Racial Disparities in 

Biomarkers for Alzheimer Disease. JAMA Neurol. 76, 264–273 (2019). 

3. Ighodaro, E. T. et al. Challenges and Considerations Related to Studying Dementia in Blacks/African 

Americans. J. Alzheimers Dis. JAD 60, 1–10 (2017). 

4. Balachandar, R. et al. A study of structural and functional connectivity in early Alzheimer’s disease 

using rest fMRI and diffusion tensor imaging. Int. J. Geriatr. Psychiatry 30, 497–504 (2015). 

5. Jalilianhasanpour, R., Beheshtian, E., Sherbaf, G., Sahraian, S. & Sair, H. I. Functional Connectivity 

in Neurodegenerative Disorders: Alzheimer’s Disease and Frontotemporal Dementia. Top. Magn. 

Reson. Imaging 28, (2019). 

6. Ossenkoppele, R. et al. Tau covariance patterns in Alzheimer’s disease patients match intrinsic 

connectivity networks in the healthy brain. NeuroImage Clin. 23, 101848 (2019). 

7. Keller, A. S. & Christopher, L. Distinct Phases of Tau, Amyloid, and Functional Connectivity in 

Healthy Older Adults. J. Neurosci. Off. J. Soc. Neurosci. 37, 8857–8859 (2017). 

8. Chabran, E. et al. Changes in gray matter volume and functional connectivity in dementia with Lewy 

bodies compared to Alzheimer’s disease and normal aging: implications for fluctuations. Alzheimers 

Res. Ther. 12, 9 (2020). 

9. Van Hooren, R. W. E., Riphagen, J. M., Jacobs, H. I. L. & For the Alzheimer’s Disease 

Neuroimaging Initiative. Inter-network connectivity and amyloid-beta linked to cognitive decline in 

preclinical Alzheimer’s disease: a longitudinal cohort study. Alzheimers Res. Ther. 10, 88 (2018). 

10. National Research Council. Critical Perspectives on Racial and Ethnic Differences in Health in Late 

Life. (The National Academies Press, 2004). doi:10.17226/11086. 

11. Yudell, M., Roberts, D., DeSalle, R. & Tishkoff, S. Taking race out of human genetics. Science 351, 

564 (2016). 



90 

12. Barnes, L. L. & Bennett, D. A. Alzheimer’s Disease In African Americans: Risk Factors And 

Challenges For The Future. Health Aff. Proj. Hope 33, 580–586 (2014). 

13. Weiner, M. F. Perspective on Race and Ethnicity in Alzheimer’s Disease Research. Alzheimers 

Dement. J. Alzheimers Assoc. 4, 233–238 (2008). 

14. KOCA, E., TAŞKAPILIOĞLU, Ö. & BAKAR, M. Caregiver Burden in Different Stages of 

Alzheimer’s Disease. Arch. Neuropsychiatry 54, 82–86 (2017). 

15. Howell, J. C. et al. Race modifies the relationship between cognition and Alzheimer’s disease 

cerebrospinal fluid biomarkers. Alzheimers Res. Ther. 9, 88 (2017). 

16. Kim, C. X. et al. Sex and ethnic differences in 47 candidate proteomic markers of cardiovascular 

disease: the Mayo Clinic proteomic markers of arteriosclerosis study. PloS One 5, e9065–e9065 

(2010). 

17. Hollingworth, P. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and 

CD2AP are associated with Alzheimer’s disease. Nat Genet 43, (2011). 

18. Weuve, J. et al. Cognitive Aging in Black and White Americans: Cognition, Cognitive Decline, and 

Incidence of Alzheimer Disease Dementia. Epidemiology 29, (2018). 

19. Zhou, Y. et al. African Americans are less likely to enroll in preclinical Alzheimer’s disease clinical 

trials. Alzheimers Dement. N. Y. N 3, 57–64 (2016). 

20. Brodaty, H. et al. Influence of population versus convenience sampling on sample characteristics in 

studies of cognitive aging. Ann. Epidemiol. 24, 63–71 (2014). 

21. Williams, M. M. et al. Barriers and Facilitators of African American Participation in Alzheimer’s 

Disease Biomarker Research. Alzheimer Dis. Assoc. Disord. 24, S24–S29 (2010). 

22. Jefferson, A. L. et al. Factors Associated With African-American and White Elders’ Participation in a 

Brain Donation Program. Alzheimer Dis. Assoc. Disord. 25, 11–16 (2011). 

23. Wendler, D. et al. Are racial and ethnic minorities less willing to participate in health research? PLoS 

Med. 3, e19–e19 (2006). 

24. Goedert, M. & Spillantini, M. G. A Century of Alzheimer’s Disease. Science 314, 777 (2006). 



91 

25. Wade, J. P. H. et al. The Clinical Diagnosis of Alzheimer’s Disease. Arch. Neurol. 44, 24–29 (1987). 

26. Adi Kurnia Susanto, T., Pua, E. & Zhou, J. Cognition, Brain Atrophy, and Cerebrospinal Fluid 

Biomarkers Changes from Preclinical to Dementia Stage of Alzheimer’s Disease and the Influence of 

Apolipoprotein E. vol. 45 (2014). 

27. Beach, T. G., Monsell, S. E., Phillips, L. E. & Kukull, W. Accuracy of the Clinical Diagnosis of 

Alzheimer Disease at National Institute on Aging Alzheimer Disease Centers, 2005–2010. J. 

Neuropathol. Exp. Neurol. 71, 266–273 (2012). 

28. Albert, M. S. et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: 

recommendations from the National Institute on Aging and Alzheimer’s Association Workgroup. 

Alzheimers Dement 7, (2011). 

29. Bateman, R. J., Wen, G., Morris, J. C. & Holtzman, D. M. Fluctuations of CSF amyloid-β levels: 

implications for a diagnostic and therapeutic biomarker. Neurology 68, (2007). 

30. De Leon, M. J. et al. MRI and CSF studies in the early diagnosis of Alzheimer’s disease. J. Intern. 

Med. 256, 205–223 (2004). 

31. Han, S. D. et al. Beta Amyloid, Tau, Neuroimaging, and Cognition: Sequence Modeling of 

Biomarkers for Alzheimer’s Disease. Brain Imaging Behav. 6, 610–620 (2012). 

32. Kametani, F. & Hasegawa, M. Reconsideration of Amyloid Hypothesis and Tau Hypothesis in 

Alzheimer’s Disease. Front. Neurosci. 12, 25 (2018). 

33. Reitz, C. Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. Int. J. 

Alzheimers Dis. 2012, 369808–369808 (2012). 

34. Hu, W. T. et al. CSF β-amyloid 1–42 – what are we measuring in Alzheimer’s disease? Ann Clin 

Transl Neurol 2, (2015). 

35. Wang, Y. & Mandelkow, E. Tau in physiology and pathology. Nat Rev Neurosci 17, 22–35 (2016). 

36. Brier, M. R. et al. Tau and Aβ imaging, CSF measures, and cognition in Alzheimer’s disease. Sci. 

Transl. Med. 8, 338ra66-338ra66 (2016). 



92 

37. Iqbal, K., Liu, F., Gong, C.-X. & Grundke-Iqbal, I. Tau in Alzheimer Disease and Related 

Tauopathies. Curr. Alzheimer Res. 7, 656–664 (2010). 

38. Bejanin, A. et al. Tau pathology and neurodegeneration contribute to cognitive impairment in 

Alzheimer’s disease. Brain 140, 3286–3300 (2017). 

39. Petersen, R. C. et al. Aging, Memory, and Mild Cognitive Impairment. Int. Psychogeriatr. 9, 65–69 

(1997). 

40. Jahn, H. Memory loss in Alzheimer’s disease. Dialogues Clin. Neurosci. 15, 445–454 (2013). 

41. Csukly, G. et al. The Differentiation of Amnestic Type MCI from the Non-Amnestic Types by 

Structural MRI. Front. Aging Neurosci. 8, 52 (2016). 

42. Mez, J. et al. Dysexecutive versus amnestic Alzheimer’s disease subgroups: Analysis of 

demographic, genetic, and vascular factors. Alzheimer Dis. Assoc. Disord. 27, 218–225 (2013). 

43. Baudic, S. et al. Executive function deficits in early Alzheimer’s disease and their relations with 

episodic memory. Arch. Clin. Neuropsychol. 21, 15–21 (2006). 

44. Vemuri, P. & Jack, C. R. Role of structural MRI in Alzheimer’s disease. Alzheimers Res. Ther. 2, 23 

(2010). 

45. Seemiller, J., Tahmasian, M., Yakushev, I. & Drzezga, A. In vivo Tau-PET indicates expansion of 

tau pathology within the default mode network in Alzheimer’s disease. Alzheimers Dement. J. 

Alzheimers Assoc. 11, P109–P110 (2015). 

46. Berg, C. N., Sinha, N. & Gluck, M. A. The Effects of APOE and ABCA7 on Cognitive Function and 

Alzheimer’s Disease Risk in African Americans: A Focused Mini Review. Front. Hum. Neurosci. 13, 

387 (2019). 

47. Turney, I. C. et al. APOE ε4 and resting-state functional connectivity in racially/ethnically diverse 

older adults. Alzheimers Dement. Diagn. Assess. Dis. Monit. 12, e12094 (2020). 

48. Livney, M. G. et al. Ethnoracial differences in the clinical characteristics of Alzheimer’s disease at 

initial presentation at an urban Alzheimer’s disease center. Am J Geriatr Psychiatry 19, (2011). 



93 

49. Gamaldo, A. A., Allaire, J. C., Sims, R. C. & Whitfield, K. E. Assessing Mild Cognitive Impairment 

among Older African Americans. Int. J. Geriatr. Psychiatry 25, 748–755 (2010). 

50. Campbell, A. L. et al. Caveats in the neuropsychological assessment of African Americans. J. Natl. 

Med. Assoc. 94, 591–601 (2002). 

51. Rossetti, H. C. et al. Montreal Cognitive Assessment Performance among Community-Dwelling 

African Americans. Arch. Clin. Neuropsychol. 32, 238–244 (2017). 

52. Romero, H. R. et al. Challenges in the Neuropsychological Assessment of Ethnic Minorities: Summit 

Proceedings. Clin. Neuropsychol. 23, 761–779 (2009). 

53. Manly, J. J. Advantages and Disadvantages of Separate Norms for African Americans. Clin. 

Neuropsychol. 19, 270–275 (2005). 

54. Norman, M. A. et al. Demographically Corrected Norms for African Americans and Caucasians on 

the Hopkins Verbal Learning Test-Revised, Brief Visuospatial Memory Test-Revised, Stroop Color 

and Word Test, and Wisconsin Card Sorting Test 64-Card Version. J. Clin. Exp. Neuropsychol. 33, 

793–804 (2011). 

55. Lucas, J. A. et al. Mayo’s Older African Americans Normative Studies: norms for Boston Naming 

Test, Controlled Oral Word Association, Category Fluency, Animal Naming, Token Test, WRAT-3 

Reading, Trail Making Test, Stroop Test, and Judgment of Line Orientation. Clin Neuropsychol 19, 

(2005). 

56. Agosta, F. et al. Resting state fMRI in Alzheimer’s disease: beyond the default mode network. 

Neurobiol. Aging 33, 1564–1578 (2012). 

57. Kim, J., Kim, Y.-H. & Lee, J.-H. Research Report: Hippocampus–precuneus functional connectivity 

as an early sign of Alzheimer’s disease: A preliminary study using structural and functional magnetic 

resonance imaging data. Brain Res. 1495, 18–29 (2013). 

58. Zhou, J., Liu, S., Ng, K. K. & Wang, J. Applications of Resting-State Functional Connectivity to 

Neurodegenerative Disease. Neuroimaging Clin. N. Am. 27, 663–683 (2017). 



94 

59. Anckaerts, C. et al. Early functional connectivity deficits and progressive microstructural alterations 

in the TgF344-AD rat model of Alzheimer’s Disease: A longitudinal MRI study. Neurobiol. Dis. 

(2018). 

60. Sheline, Y. I. & Raichle, M. E. Resting State Functional Connectivity in Preclinical Alzheimer’s 

Disease: A Review. Biol. Psychiatry 74, 340–347 (2013). 

61. Badhwar, A. et al. Resting-state network dysfunction in Alzheimer’s disease: A systematic review 

and meta-analysis. Alzheimers Dement. Amst. Neth. 8, 73–85 (2017). 

62. Bluhm, R. L. et al. Default mode network connectivity: effects of age, sex, and analytic approach. 

NeuroReport 19, (2008). 

63. Greicius, M. Resting-state functional connectivity in neuropsychiatric disorders. Curr. Opin. Neurol. 

21, (2008). 

64. Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R. & Buckner, R. L. Functional-Anatomic 

Fractionation of the Brain’s Default Network. Neuron 65, 550–562 (2010). 

65. Greicius, M. D., Srivastava, G., Reiss, A. L. & Menon, V. Default-mode network activity 

distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proc. Natl. 

Acad. Sci. U. S. A. 101, 4637–4642 (2004). 

66. Binnewijzend, M. A. A. et al. Resting-state fMRI changes in Alzheimer’s disease and mild cognitive 

impairment. Neurobiol. Aging 33, 2018–2028 (2012). 

67. Zhu, D. C., Majumdar, S., Korolev, I. O., Berger, K. L. & Bozoki, A. C. Alzheimer’s Disease and 

Amnestic Mild Cognitive Impairment Weaken Connections Within the Default-Mode Network: A 

Multi-Modal Imaging Study. J. Alzheimers Dis. 34, 969–984 (2013). 

68. Hafkemeijer, A., van der Grond, J. & Rombouts, S. A. R. B. Imaging the default mode network in 

aging and dementia. Imaging Brain Aging Neurodegener. Dis. 1822, 431–441 (2012). 

69. Westlye, E. T., Lundervold, A., Rootwelt, H., Lundervold, A. J. & Westlye, L. T. Increased 

Hippocampal Default Mode Synchronization during Rest in Middle-Aged and Elderly APOE ε4 

Carriers: Relationships with Memory Performance. J. Neurosci. 31, 7775 (2011). 



95 

70. Harrison, T. M., Burggren, A. C., Small, G. W. & Bookheimer, S. Y. Altered memory-related 

functional connectivity of the anterior and posterior hippocampus in older adults at increased genetic 

risk for Alzheimer’s disease. Hum. Brain Mapp. 37, 366–380 (2016). 

71. Toussaint, P.-J. et al. Characteristics of the default mode functional connectivity in normal ageing 

and Alzheimer’s disease using resting state fMRI with a combined approach of entropy-based and 

graph theoretical measurements. NeuroImage 101, 778–786 (2014). 

72. Clark, U. S., Miller, E. R. & Hegde, R. R. Experiences of Discrimination Are Associated With 

Greater Resting Amygdala Activity and Functional Connectivity. Biol. Psychiatry Cogn. Neurosci. 

Neuroimaging 3, 367–378 (2018). 

73. Crane, N. T., Hayes, J. M., Viviano, R. P., Bogg, T. & Damoiseaux, J. S. Resting-state functional 

brain connectivity in a predominantly African-American sample of older adults: exploring links 

among personality traits, cognitive performance, and the default mode network. Personal. Neurosci. 

3, e3–e3 (2020). 

74. Fani, N. et al. Fear-potentiated startle during extinction is associated with white matter microstructure 

and functional connectivity. Cortex J. Devoted Study Nerv. Syst. Behav. 64, 249–259 (2015). 

75. Holmes, C. J. et al. Parenting and Salience Network Connectivity Among African Americans: A 

Protective Pathway for Health-Risk Behaviors. Biol. Psychiatry 84, 365–371 (2018). 

76. Fani, N. et al. STRUCTURAL AND FUNCTIONAL CONNECTIVITY IN POSTTRAUMATIC 

STRESS DISORDER: ASSOCIATIONS WITH FKBP5. Depress. Anxiety 33, 300–307 (2016). 

77. de Jong, L. W. et al. Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: an 

MRI study. Brain J. Neurol. 131, 3277–3285 (2008). 

78. Sun, Y. et al. Characterizing Brain Iron Deposition in Patients with Subcortical Vascular Mild 

Cognitive Impairment Using Quantitative Susceptibility Mapping: A Potential Biomarker. Front. 

Aging Neurosci. 9, 81–81 (2017). 

79. Liu, C. et al. Characterizing brain iron deposition in subcortical ischemic vascular dementia using 

susceptibility-weighted imaging: An in vivo MR study. Behav. Brain Res. 288, 33–38 (2015). 



96 

80. Hamasaki, H. et al. Tauopathy in basal ganglia involvement is exacerbated in a subset of patients 

with Alzheimer’s disease: The Hisayama study. Alzheimers Dement. Amst. Neth. 11, 415–423 (2019). 

81. Youn, Y. C. et al. (11)C-PIB PET imaging reveals that amyloid deposition in cases with early-onset 

Alzheimer’s disease in the absence of known mutations retains higher levels of PIB in the basal 

ganglia. Clin. Interv. Aging 12, 1041–1048 (2017). 

82. Kotz, S. A., Schwartze, M. & Schmidt-Kassow, M. Non-motor basal ganglia functions: a review and 

proposal for a model of sensory predictability in auditory language perception. Cortex J. Devoted 

Study Nerv. Syst. Behav. 45, 982–90 (2009). 

83. Leh, S. E., Petrides, M. & Strafella, A. P. The neural circuitry of executive functions in healthy 

subjects and Parkinson’s disease. Neuropsychopharmacol. Off. Publ. Am. Coll. 

Neuropsychopharmacol. 35, 70–85 (2010). 

84. Manes, J. L. et al. Altered resting-state functional connectivity of the putamen and internal globus 

pallidus is related to speech impairment in Parkinson’s disease. Brain Behav. 8, e01073 (2018). 

85. Szewczyk-Krolikowski, K. et al. Functional connectivity in the basal ganglia network differentiates 

PD patients from controls. Neurology 83, 208–214 (2014). 

86. Cacciola, A. et al. A Connectomic Analysis of the Human Basal Ganglia Network. Front. Neuroanat. 

11, 85–85 (2017). 

87. Wymbs, N. F., Bassett, D. S., Mucha, P. J., Porter, M. A. & Grafton, S. T. Differential recruitment of 

the sensorimotor putamen and frontoparietal cortex during motor chunking in humans. Neuron 74, 

936–946 (2012). 

88. de Jong, L. W. et al. Shape Abnormalities of the Striatum in Alzheimer’s Disease. J. Alzheimers Dis. 

23, 49–59 (2011). 

89. Zhang, H. et al. Gray matter atrophy patterns of mild cognitive impairment subtypes. J. Neurol. Sci. 

315, 26–32 (2012). 



97 

90. Tabatabaei-Jafari, H., Walsh, E., Shaw, M. E., Cherbuin, N. & Alzheimer’s Disease Neuroimaging 

Initiative (ADNI). The cerebellum shrinks faster than normal ageing in Alzheimer’s disease but not in 

mild cognitive impairment. Hum. Brain Mapp. 38, 3141–3150 (2017). 

91. Lin, C.-Y., Chen, C.-H., Tom, S. E., Kuo, S.-H. & for the Alzheimer’s Disease Neuroimaging 

Initiative. Cerebellar Volume Is Associated with Cognitive Decline in Mild Cognitive Impairment: 

Results from ADNI. The Cerebellum 19, 217–225 (2020). 

92. Debette, S. & Markus, H. S. The clinical importance of white matter hyperintensities on brain 

magnetic resonance imaging: systematic review and meta-analysis. BMJ 341, c3666–c3666 (2010). 

93. Wardlaw, J. M., Valdés Hernández, M. C. & Muñoz-Maniega, S. What are White Matter 

Hyperintensities Made of?: Relevance to Vascular Cognitive Impairment. J. Am. Heart Assoc. 

Cardiovasc. Cerebrovasc. Dis. 4, e001140 (2015). 

94. Yoshita, M. et al. Extent and distribution of white matter hyperintensities in normal aging, MCI, and 

AD. Neurology 67, 2192–2198 (2006). 

95. Morris, Z. et al. Incidental findings on brain magnetic resonance imaging: systematic review and 

meta-analysis. The BMJ 339, b3016 (2009). 

96. Debette, S. et al. Association of MRI markers of vascular brain injury with incident stroke, mild 

cognitive impairment, dementia, and mortality: the Framingham Offspring Study. Stroke 41, 600–606 

(2010). 

97. Gons, R. A. R. et al. Cigarette smoking is associated with reduced microstructural integrity of 

cerebral white matter. Brain 134, 2116–2124 (2011). 

98. Tamura, Y. & Araki, A. Diabetes mellitus and white matter hyperintensity. Geriatr. Gerontol. Int. 15, 

34–42 (2015). 

99. Brisset, M. et al. Large-vessel correlates of cerebral small-vessel disease. Neurology 80, 662–669 

(2013). 

100. Brickman, A. M., Muraskin, J. & Zimmerman, M. E. Structural neuroimaging in Alzheimer’s 

disease: do white matter hyperintensities matter? Dialogues Clin. Neurosci. 11, 181–190 (2009). 



98 

101. Graff-Radford, J. et al. White matter hyperintensities: relationship to amyloid and tau burden. 

Brain 142, 2483–2491 (2019). 

102. Prins, N. D. & Scheltens, P. White matter hyperintensities, cognitive impairment and dementia: 

an update. Nat. Rev. Neurol. 11, 157–165 (2015). 

103. Provenzano, F. A. et al. White matter hyperintensities and cerebral amyloidosis: necessary and 

sufficient for clinical expression of Alzheimer disease? JAMA Neurol. 70, 455–461 (2013). 

104. McAleese, K. E. et al. Parietal white matter lesions in Alzheimer’s disease are associated with 

cortical neurodegenerative pathology, but not with small vessel disease. Acta Neuropathol. (Berl.) 

134, 459–473 (2017). 

105. Yoshiura, T. et al. Diffusion tensor in posterior cingulate gyrus: correlation with cognitive decline 

in Alzheimer’s disease. NeuroReport 13, (2002). 

106. Kim, J. H. et al. Regional white matter hyperintensities in normal aging, single domain amnestic 

mild cognitive impairment, and mild Alzheimer’s disease. J. Clin. Neurosci. 18, 1101–1106 (2011). 

107. Provenzano, F. A. et al. White matter hyperintensities and cerebral amyloidosis: Necessary and 

sufficient for clinical expression of Alzheimer’s disease? JAMA Neurol. 70, 455–461 (2013). 

108. Taylor, A. N. W. et al. Tract-specific white matter hyperintensities disrupt neural network 

function in Alzheimer’s disease. Alzheimers Dement. J. Alzheimers Assoc. 13, 225–235 (2017). 

109. Langen, C. D. et al. White matter lesions relate to tract-specific reductions in functional 

connectivity. Neurobiol. Aging 51, 97–103 (2017). 

110. Reijmer, Y. D. et al. Decoupling of structural and functional brain connectivity in older adults 

with white matter hyperintensities. NeuroImage 117, 222–229 (2015). 

111. Gavett, B. E. et al. Ethnoracial differences in brain structure change and cognitive change. 

Neuropsychology 32, 529–540 (2018). 

112. DeCarli, C. et al. Brain Behavior Relationships amongst African Americans, Caucasians and 

Hispanics. Alzheimer Dis. Assoc. Disord. 22, 382–391 (2008). 



99 

113. Brickman AM, Schupf N, Manly JJ & et al. Brain morphology in older african americans, 

caribbean hispanics, and whites from northern manhattan. Arch. Neurol. 65, 1053–1061 (2008). 

114. Meier, I. B. et al. White Matter Predictors of Cognitive Functioning in Older Adults. J. Int. 

Neuropsychol. Soc. 18, 414–427 (2012). 

115. Barnes, L. L. et al. Mixed pathology is more likely in black than white decedents with Alzheimer 

dementia. Neurology 85, (2015). 

116. Brickman, A. M. et al. Regional white matter hyperintensity volume, not hippocampal atrophy, 

predicts incident Alzheimer’s disease in the community. Arch. Neurol. 69, 1621–1627 (2012). 

117. Hahn, C. et al. Apathy and white matter integrity in Alzheimer’s disease: a whole brain analysis 

with tract-based spatial statistics. PLoS One 8, e53493 (2013). 

118. Taylor, A. N. W. et al. Tract-specific white matter hyperintensities disrupt neural network 

function in Alzheimer’s disease. Alzheimers Dement. 13, 225–235 (2017). 

119. Brancati FL, Kao W, Folsom AR, Watson RL & Szklo M. Incident type 2 diabetes mellitus in 

african american and white adults: The atherosclerosis risk in communities study. JAMA 283, 2253–

2259 (2000). 

120. Saab, K. R. et al. New Insights on the Risk for Cardiovascular Disease in African Americans: The 

Role of Added Sugars. J. Am. Soc. Nephrol. 26, 247 (2015). 

121. Ghidei, W. & Collins, T. C. African Americans and Peripheral Arterial Disease: A Review 

Article. ISRN Vasc. Med. 2012, 1–9 (2012). 

122. Akter, K. et al. Diabetes mellitus and Alzheimer’s disease: shared pathology and treatment? Br. J. 

Clin. Pharmacol. 71, 365–376 (2011). 

123. Knopman, D. S. et al. Vascular risk factors and longitudinal changes on brain MRI. Neurology 

76, 1879 (2011). 

124. Gottesman RF, Schneider AC, Zhou Y & et al. Association between midlife vascular risk factors 

and estimated brain amyloid deposition. JAMA 317, 1443–1450 (2017). 



100 

125. Stevens-Watkins, D., Perry, B., Pullen, E., Jewell, J. & Oser, C. Examining the Associations of 

Racism, Sexism, and Stressful Life Events on Psychological Distress Among African-American 

Women. vol. 20 (2014). 

126. Turner, A. D., James, B. D., Capuano, A. W., Aggarwal, N. T. & Barnes, L. L. Perceived Stress 

and Cognitive Decline in Different Cognitive Domains in a Cohort of Older African Americans. Am. 

J. Geriatr. Psychiatry Off. J. Am. Assoc. Geriatr. Psychiatry 25, 25–34 (2017). 

127. Al Hazzouri, A. Z., Elfassy, T., Sidney, S., Jacobs, D. R., Jr. & Yaffe, K. Impact of sustained 

economic hardship on cognitive functioning. Alzheimers Dement. J. Alzheimers Assoc. 11, P591 

(2015). 

128. Kalaria, R. N. et al. Alzheimer’s disease and vascular dementia in developing countries: 

prevalence, management, and risk factors. Lancet Neurol. 7, 812–826 (2008). 

129. Shpanskaya, K. S. et al. Educational attainment and hippocampal atrophy in the Alzheimer’s 

disease neuroimaging initiative cohort. J. Neuroradiol. 41, 350–357 (2014). 

130. Russ, T. C. et al. Socioeconomic status as a risk factor for dementia death: individual participant 

meta-analysis of 86 508 men and women from the UK. Br. J. Psychiatry J. Ment. Sci. 203, 10–17 

(2013). 

131. Williams, D. R., Priest, N. & Anderson, N. B. Understanding associations among race, 

socioeconomic status, and health: Patterns and prospects. Health Psychol. Off. J. Div. Health 

Psychol. Am. Psychol. Assoc. 35, 407–411 (2016). 

132. Egede, L. E. Race, ethnicity, culture, and disparities in health care. J. Gen. Intern. Med. 21, 667–

669 (2006). 

133. Tang, M. X. et al. Relative risk of Alzheimer disease and age-at-onset distributions, based on 

APOE genotypes among elderly African Americans, Caucasians, and Hispanics in New York City. 

Am. J. Hum. Genet. 58, 574–584 (1996). 

134. Logue, M. W. et al. A comprehensive genetic association study of Alzheimer disease in African 

Americans. Arch Neurol 68, (2011). 



101 

135. Hendrie, H. C. et al. APOE ε4 and the risk for Alzheimer disease and cognitive decline in African 

Americans and Yoruba. Int. Psychogeriatr. IPA 26, 977–985 (2014). 

136. Reitz, C. et al. Variants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E ε4, 

and the risk of late-onset Alzheimer disease in African Americans. JAMA 309, (2013). 

137. Britton, A. et al. Threats to Applicability of Randomised Trials: Exclusions and Selective 

Participation. J. Health Serv. Res. Policy 4, 112–121 (1999). 

138. Gill, P. S., Plumridge, G., Khunti, K. & Greenfield, S. Under-representation of minority ethnic 

groups in cardiovascular research: a semi-structured interview study. Fam. Pract. 30, 233–241 

(2013). 

139. Shin, J. & Doraiswamy, P. M. Underrepresentation of African-Americans in Alzheimer’s Trials: 

A Call for Affirmative Action. Front. Aging Neurosci. 8, 123 (2016). 

140. Fitzpatrick, A. L. et al. Incidence and Prevalence of Dementia in the Cardiovascular Health 

Study. J. Am. Geriatr. Soc. 52, 195–204 (2004). 

141. Potter, G. G. et al. Cognitive performance and informant reports in the diagnosis of cognitive 

impairment and dementia in African Americans and whites. Alzheimers Dement. J. Alzheimers Assoc. 

5, 445–453 (2009). 

142. Wilson, R. S., Capuano, A. W., Sytsma, J., Bennett, D. A. & Barnes, L. L. Cognitive Aging in 

Older Black and White Persons. Psychol. Aging 30, 279–285 (2015). 

143. Logue, M. W. et al. Two rare AKAP9 variants are associated with Alzheimer disease in African 

Americans. Alzheimers Dement. J. Alzheimers Assoc. 10, 609-618.e11 (2014). 

144. Bonner, G. J., Darkwa, O. K. & Gorelick, P. B. Autopsy Recruitment Program for African 

Americans. Alzheimer Dis. Assoc. Disord. 14, (2000). 

145. Ozturk, T. et al. Linked CSF reduction of phosphorylated tau and IL-8 in HIV associated 

neurocognitive disorder. Sci. Rep. 9, 8733 (2019). 

146. Wharton, W. et al. Interleukin 9 alterations linked to alzheimer disease in african americans. Ann. 

Neurol. 0, (2019). 



102 

147. Beason-Held, L. L. et al. Changes in brain function occur years before the onset of cognitive 

impairment. J. Neurosci. Off. J. Soc. Neurosci. 33, 18008–18014 (2013). 

148. Damoiseaux, J. S., Prater, K. E., Miller, B. L. & Greicius, M. D. Functional connectivity tracks 

clinical deterioration in Alzheimer’s disease. Neurobiol. Aging 33, 828.e19-828.e8.28E30 (2012). 

149. Brier, M. R. et al. Loss of Intranetwork and Internetwork Resting State Functional Connections 

with Alzheimer’s Disease Progression. J. Neurosci. 32, 8890 (2012). 

150. Damoiseaux, J. S. et al. Reduced resting-state brain activity in the “default network” in normal 

aging. Cereb. Cortex 18, 1856–1864 (2008). 

151. He, X. et al. Abnormal salience network in normal aging and in amnestic mild cognitive 

impairment and Alzheimer’s disease. Hum. Brain Mapp. 35, 3446–3464 (2014). 

152. Simioni, A. C., Dagher, A. & Fellows, L. K. Compensatory striatal–cerebellar connectivity in 

mild–moderate Parkinson’s disease. NeuroImage Clin. 10, 54–62 (2016). 

153. Uddin, L. Q., Clare Kelly, A. M., Biswal, B. B., Castellanos, F. X. & Milham, M. P. Functional 

connectivity of default mode network components: correlation, anticorrelation, and causality. Hum. 

Brain Mapp. 30, 10.1002/hbm.20531 (2009). 

154. Braak, H. & Braak, E. Frequency of Stages of Alzheimer-Related Lesions in Different Age 

Categories. Neurobiol. Aging 18, 351–357 (1997). 

155. Palmqvist, S. et al. Earliest accumulation of β-amyloid occurs within the default-mode network 

and concurrently affects brain connectivity. Nat. Commun. 8, (2017). 

156. Qi, H., Liu, H., Hu, H., He, H. & Zhao, X. Primary Disruption of the Memory-Related 

Subsystems of the Default Mode Network in Alzheimer’s Disease: Resting-State Functional 

Connectivity MRI Study. Front. Aging Neurosci. 10, 344–344 (2018). 

157. Grieder, M., Wang, D. J. J., Dierks, T., Wahlund, L.-O. & Jann, K. Default Mode Network 

Complexity and Cognitive Decline in Mild Alzheimer’s Disease. Front. Neurosci. 12, 770–770 

(2018). 



103 

158. Nuttall, R., Pasquini, L., Scherr, M. & Sorg, C. Degradation in intrinsic connectivity networks 

across the Alzheimer’s disease spectrum. Alzheimers Dement. Amst. Neth. 5, 35–42 (2016). 

159. Qi, Z. et al. Impairment and compensation coexist in amnestic MCI default mode network. 

NeuroImage 50, 48–55 (2010). 

160. Dickerson, B. C. et al. Increased hippocampal activation in mild cognitive impairment compared 

to normal aging and AD. Neurology 65, 404–411 (2005). 

161. Fleisher, A. S. et al. Resting-state BOLD networks versus task-associated functional MRI for 

distinguishing Alzheimer’s disease risk groups. NeuroImage 47, 1678–1690 (2009). 

162. Filippini, N. et al. Distinct patterns of brain activity in young carriers of the APOE-epsilon4 

allele. Proc. Natl. Acad. Sci. U. S. A. 106, 7209–7214 (2009). 

163. Andrews-Hanna, J. R., Smallwood, J. & Spreng, R. N. The default network and self-generated 

thought: component processes, dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci. 1316, 

29–52 (2014). 

164. Gusnard, D. A., Akbudak, E., Shulman, G. L. & Raichle, M. E. Medial prefrontal cortex and self-

referential mental activity: relation to a default mode of brain function. Proc. Natl. Acad. Sci. U. S. A. 

98, 4259–4264 (2001). 

165. Qi, H., Liu, H., Hu, H., He, H. & Zhao, X. Primary Disruption of the Memory-Related 

Subsystems of the Default Mode Network in Alzheimer’s Disease: Resting-State Functional 

Connectivity MRI Study. Front. Aging Neurosci. 10, 344 (2018). 

166. Vipin, A. et al. Cerebrovascular disease influences functional and structural network connectivity 

in patients with amnestic mild cognitive impairment and Alzheimer’s disease. Alzheimers Res. Ther. 

10, 82 (2018). 

167. Bai, F. et al. Abnormal whole-brain functional connection in amnestic mild cognitive impairment 

patients. Behav. Brain Res. 216, 666–672 (2011). 

168. Busse, A., Angermeyer, M. C. & Riedel-Heller, S. G. Progression of mild cognitive impairment 

to dementia: a challenge to current thinking. Br. J. Psychiatry 189, 399–404 (2006). 



104 

169. Allegri, R. F., Glaser, F. B., Taragano, F. E. & Buschke, H. Mild cognitive impairment: Believe it 

or not? Int. Rev. Psychiatry 20, 357–363 (2008). 

170. Wang, L. et al. Cerebrospinal Fluid Aβ42, Phosphorylated Tau181, and Resting-State Functional 

ConnectivityCSF Aβ42, Tau181, and Resting-State ConnectivityCSF Aβ42, Tau181, and Resting-

State Connectivity. JAMA Neurol. 70, 1242–1248 (2013). 

171. Li, K. et al. Aberrant functional connectivity network in subjective memory complaint 

individuals relates to pathological biomarkers. Transl. Neurodegener. 7, 27–27 (2018). 

172. Yan, C. & Zang, Y. DPARSF: a MATLAB toolbox for ‘pipeline’ data analysis of resting-state 

fMRI. Front. Syst. Neurosci. 4, 13 (2010). 

173. Wang, B. et al. Decreased Complexity in Alzheimer’s Disease: Resting-State fMRI Evidence of 

Brain Entropy Mapping. Front. Aging Neurosci. 9, 378–378 (2017). 

174. Yan, C.-G. et al. A Comprehensive Assessment of Regional Variation in the Impact of Head 

Micromovements on Functional Connectomics. NeuroImage 76, 183–201 (2013). 

175. Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B. & Bandettini, P. A. The impact of 

global signal regression on resting state correlations: Are anti-correlated networks introduced? 

NeuroImage 44, 893–905 (2009). 

176. Ashburner, J. A fast diffeomorphic image registration algorithm. NeuroImage 38, 95–113 (2007). 

177. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but 

systematic correlations in functional connectivity MRI networks arise from subject motion. 

Neuroimage 59, 2142–2154 (2012). 

178. Calhoun, V. D., Adali, T., Pearlson, G. D. & Pekar, J. J. A method for making group inferences 

from functional MRI data using independent component analysis. Hum. Brain Mapp. 14, 140–151 

(2001). 

179. Calhoun, V. D., Liu, J. & Adali, T. A review of group ICA for fMRI data and ICA for joint 

inference of imaging, genetic, and ERP data. NeuroImage 45, S163–72 (2009). 



105 

180. Dipasquale, O. et al. High-Dimensional ICA Analysis Detects Within-Network Functional 

Connectivity Damage of Default-Mode and Sensory-Motor Networks in Alzheimer’s Disease. Front. 

Hum. Neurosci. 9, 43 (2015). 

181. Yu, Q. et al. Comparing brain graphs in which nodes are regions of interest or independent 

components: A simulation study. J. Neurosci. Methods 291, 61–68 (2017). 

182. Calhoun, V. D. & de Lacy, N. Ten Key Observations on the Analysis of Resting-state Functional 

MR Imaging Data Using Independent Component Analysis. Neuroimaging Clin. N. Am. 27, 561–579 

(2017). 

183. Allen, E. A. et al. A Baseline for the Multivariate Comparison of Resting-State Networks. Front. 

Syst. Neurosci. 5, 2 (2011). 

184. R: A language and environment for statistical computing. (R   Foundation for Statistical 

Computing, 2015). 

185. Yoav Benjamini & Yosef Hochberg. Controlling the false discovery rate: A practical and 

powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995). 

186. Palmqvist, S., Mattsson, N., Hansson, O. & Alzheimer’s Disease Neuroimaging Initiative. 

Cerebrospinal fluid analysis detects cerebral amyloid-β accumulation earlier than positron emission 

tomography. Brain J. Neurol. 139, 1226–1236 (2016). 

187. Fletcher, E. et al. Staging of amyloid β, t-tau, regional atrophy rates, and cognitive change in a 

nondemented cohort: Results of serial mediation analyses. Alzheimers Dement. Amst. Neth. 10, 382–

393 (2018). 

188. Canty, Angelo & Ripley, Brian. boot: Bootstrap R (S-Plus) Functions. (2017). 

189. Raschka, S. Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning. 

ArXiv181112808 Cs Stat (2018). 

190. Kenny, E. R., Blamire, A. M., Firbank, M. J. & O’Brien, J. T. Functional connectivity in cortical 

regions in dementia with Lewy bodies and Alzheimer’s disease. Brain 135, 569–581 (2012). 



106 

191. Wang, L. et al. Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: 

Evidence from resting state fMRI. NeuroImage 31, 496–504 (2006). 

192. Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R. & Buckner, R. L. Functional-

anatomic fractionation of the brain’s default network. Neuron 65, 550–562 (2010). 

193. Zhu, X., Zhu, Q., Shen, H., Liao, W. & Yuan, F. Rumination and Default Mode Network 

Subsystems Connectivity in First-episode, Drug-Naive Young Patients with Major Depressive 

Disorder. Sci. Rep. 7, 43105–43105 (2017). 

194. Du, Y. et al. Interaction among subsystems within default mode network diminished in 

schizophrenia patients: A dynamic connectivity approach. Schizophr. Res. 170, 55–65 (2016). 

195. Blokland, G. A. M. et al. The Genetics of Endophenotypes of Neurofunction to Understand 

Schizophrenia (GENUS) consortium: A collaborative cognitive and neuroimaging genetics project. 

Schizophr. Res. doi:10.1016/j.schres.2017.09.024. 

196. Alexander, A. C. et al. Racial Differences in Posttraumatic Stress Disorder Vulnerability 

Following Hurricane Katrina Among a Sample of Adult Cigarette Smokers from New Orleans. J. 

Racial Ethn. Health Disparities 4, 94–103 (2017). 

197. Hird, A. M. et al. Altered Functional Brain Connectivity in Mild Cognitive Impairment during a 

Cognitively Complex Car Following Task. Geriatrics 3, (2018). 

198. Hillary, F. G. et al. Hyperconnectivity is a fundamental response to neurological disruption. 

Neuropsychology 29, 59–75 (2015). 

199. Wang, P. et al. Aberrant intra- and inter-network connectivity architectures in Alzheimer’s 

disease and mild cognitive impairment. 5, 14824 (2015). 

200. Miles, T. P., Froehlich, T. E., Bogardus, S. T. & Inouye, S. K. Dementia and Race: Are There 

Differences Between African Americans and Caucasians? J. Am. Geriatr. Soc. 49, 477–484 (2001). 

201. Braak, H. & Del Tredici, K. Spreading of Tau Pathology in Sporadic Alzheimer’s Disease Along 

Cortico-cortical Top-Down Connections. Cereb. Cortex N. Y. N 1991 28, 3372–3384 (2018). 



107 

202. Sun, Y. et al. Abnormal functional connectivity in patients with vascular cognitive impairment, 

no dementia: A resting-state functional magnetic resonance imaging study. Behav. Brain Res. 223, 

388–394 (2011). 

203. Alosco, M. L. et al. A Clinicopathological Investigation of White Matter Hyperintensities and 

Alzheimer’s Disease Neuropathology. J. Alzheimers Dis. JAD 63, 1347–1360 (2018). 

204. Zahodne, L. B. et al. Structural MRI predictors of late-life cognition differ across African 

Americans, Hispanics, and Whites. Curr. Alzheimer Res. 12, 632–639 (2015). 

205. Krieger, N. & Sidney, S. Racial discrimination and blood pressure: the CARDIA Study of young 

black and white adults. Am. J. Public Health 86, 1370–1378 (1996). 

206. Sawyer, P. J., Major, B., Casad, B. J., Townsend, S. S. M. & Mendes, W. B. Discrimination and 

the stress response: psychological and physiological consequences of anticipating prejudice in 

interethnic interactions. Am. J. Public Health 102, 1020–1026 (2012). 

207. Berger, M. & Sarnyai, Z. “More than skin deep”: stress neurobiology and mental health 

consequences of racial discrimination. Stress 18, 1–10 (2015). 

208. Bisht, K., Sharma, K. & Tremblay, M.-È. Chronic stress as a risk factor for Alzheimer’s disease: 

Roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiol. 

Stress 9, 9–21 (2018). 

209. Soares, J. M. et al. Stress Impact on Resting State Brain Networks. PLOS ONE 8, e66500 (2013). 

210. Kind, A. J. H. & Buckingham, W. R. Making Neighborhood-Disadvantage Metrics Accessible — 

The Neighborhood Atlas. N. Engl. J. Med. 378, 2456–2458 (2018). 

211. Misiura, M. B. et al. Race modifies default mode connectivity in Alzheimer’s disease. Transl. 

Neurodegener. 9, 8 (2020). 

212. Chin, A. L., Negash, S. & Hamilton, R. Diversity and Disparity in Dementia: The Impact of 

Ethnoracial Differences in Alzheimer’s Disease. Alzheimer Dis. Assoc. Disord. 25, 187–195 (2011). 

213. Komatsu, J. et al. Optimization of DARTEL Settings for the Detection of Alzheimer Disease. 

Am. J. Neuroradiol. 39, 473 (2018). 



108 

214. Brown, P. J. et al. Frailty and Its Correlates in Adults With Late Life Depression. Am. J. Geriatr. 

Psychiatry 28, 145–154 (2020). 

215. Klunk, W. E. et al. Amyloid deposition begins in the striatum of presenilin-1 mutation carriers 

from two unrelated pedigrees. J. Neurosci. Off. J. Soc. Neurosci. 27, 6174–6184 (2007). 

216. Vitanova, K. S., Stringer, K. M., Benitez, D. P., Brenton, J. & Cummings, D. M. Dementia 

associated with disorders of the basal ganglia. J. Neurosci. Res. 97, 1728–1741 (2019). 

217. Johnson, K. A., Fox, N. C., Sperling, R. A. & Klunk, W. E. Brain Imaging in Alzheimer Disease. 

Cold Spring Harb. Perspect. Med. 2, a006213 (2012). 

218. Braak, H. & Braak, E. Alzheimer’s disease affects limbic nuclei of the thalamus. Acta 

Neuropathol. (Berl.) 81, 261–268 (1991). 

219. Akiyama, H., Harrop, R., McGeer, P. L., Peppard, R. & McGeer, E. G. Crossed cerebellar and 

uncrossed basal ganglia and thalarnic diaschisis in Alzheimer’s disease. Neurology 39, 541 (1989). 

220. Timmers, T. et al. Associations between quantitative [18F]flortaucipir tau PET and atrophy 

across the Alzheimer’s disease spectrum. Alzheimers Res. Ther. 11, 60 (2019). 

221. Mosconi, L. & McHugh, P. F. FDG- and amyloid-PET in Alzheimer’s disease: is the whole 

greater than the sum of the parts? Q. J. Nucl. Med. Mol. Imaging Off. Publ. Ital. Assoc. Nucl. Med. 

AIMN Int. Assoc. Radiopharmacol. IAR Sect. Soc. Of 55, 250–264 (2011). 

222. van den Heuvel, M. P. & Hulshoff Pol, H. E. Exploring the brain network: A review on resting-

state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20, 519–534 (2010). 

223. Badhwar, A. et al. Resting-state network dysfunction in Alzheimer’s disease: A systematic 

review and meta-analysis. Alzheimers Dement. Amst. Neth. 8, 73–85 (2017). 

224. Damoiseaux, J. S. Resting-state fMRI as a biomarker for Alzheimer’s disease? Alzheimers Res. 

Ther. 4, 8–8 (2012). 

225. Anticevic, A. et al. Global resting-state functional magnetic resonance imaging analysis identifies 

frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-compulsive disorder. Biol. 

Psychiatry 75, 595–605 (2014). 



109 

226. Shen, B. et al. Altered putamen and cerebellum connectivity among different subtypes of 

Parkinson’s disease. CNS Neurosci. Ther. 26, 207–214 (2020). 

227. Seidler, R. D., Noll, D. C. & Chintalapati, P. Bilateral basal ganglia activation associated with 

sensorimotor adaptation. Exp. Brain Res. 175, 544–555 (2006). 

228. McLaren, D. G. et al. Tracking cognitive change over 24 weeks with longitudinal functional 

magnetic resonance imaging in Alzheimer’s disease. Neurodegener. Dis. 9, 176–186 (2012). 

229. Huijbers, W. et al. Amyloid-β deposition in mild cognitive impairment is associated with 

increased hippocampal activity, atrophy and clinical progression. Brain J. Neurol. 138, 1023–1035 

(2015). 

230. Braskie, M. N. et al. Increased fMRI signal with age in familial Alzheimer’s disease mutation 

carriers. Neurobiol. Aging 33, 424.e11-424.e21 (2012). 

231. Son, S.-J., Kim, J. & Park, H. Structural and functional connectional fingerprints in mild 

cognitive impairment and Alzheimer’s disease patients. PLOS ONE 12, e0173426 (2017). 

232. Thong, J. Y. J. et al. Abnormalities of cortical thickness, subcortical shapes, and white matter 

integrity in subcortical vascular cognitive impairment. Hum. Brain Mapp. 35, 2320–2332 (2014). 

233. Abraham, H. M. A. et al. Cardiovascular risk factors and small vessel disease of the brain: Blood 

pressure, white matter lesions, and functional decline in older persons. J. Cereb. Blood Flow Metab. 

Off. J. Int. Soc. Cereb. Blood Flow Metab. 36, 132–142 (2016). 

234. Mortamais, M., Artero, S. & Ritchie, K. Cerebral white matter hyperintensities in the prediction 

of cognitive decline and incident dementia. Int. Rev. Psychiatry Abingdon Engl. 25, 686–698 (2013). 

235. Brickman, A. M. et al. Regional white matter hyperintensity volume, not hippocampal atrophy, 

predicts incident Alzheimer disease in the community. Arch. Neurol. 69, 1621–1627 (2012). 

236. De Marco, M., Manca, R., Mitolo, M. & Venneri, A. White Matter Hyperintensity Load 

Modulates Brain Morphometry and Brain Connectivity in Healthy Adults: A Neuroplastic 

Mechanism? Neural Plast. 2017, 4050536 (2017). 



110 

237. Young, V. G., Halliday, G. M. & Kril, J. J. Neuropathologic correlates of white matter 

hyperintensities. Neurology 71, 804 (2008). 

238. Elliott, R. Executive functions and their disorders: Imaging in clinical neuroscience. Br. Med. 

Bull. 65, 49–59 (2003). 

239. Morris, J. C. et al. Assessment of Racial Disparities in Biomarkers for Alzheimer 

DiseaseAssessment of Racial Disparities in Biomarkers for Alzheimer DiseaseAssessment of Racial 

Disparities in Biomarkers for Alzheimer Disease. JAMA Neurol. 76, 264–273 (2019). 

240. Barnes, L. L. et al. Racial differences in the progression of cognitive decline in Alzheimer 

disease. Am J Geriatr Psychiatry 13, (2005). 

241. Morris, J. C. et al. Assessment of Racial Disparities in Biomarkers for Alzheimer 

DiseaseAssessment of Racial Disparities in Biomarkers for Alzheimer DiseaseAssessment of Racial 

Disparities in Biomarkers for Alzheimer Disease. JAMA Neurol. 76, 264–273 (2019). 

242. Pruim, R. H. R. et al. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts 

from fMRI data. NeuroImage 112, 267–277 (2015). 

243. Garrett, S. L. et al. Racial Disparity in Cerebrospinal Fluid Amyloid and Tau Biomarkers and 

Associated Cutoffs for Mild Cognitive Impairment. JAMA Netw. Open 2, e1917363–e1917363 

(2019). 

244. Buchhave, P. et al. Cerebrospinal Fluid Levels ofβ-Amyloid 1-42, but Not of Tau, Are Fully 

Changed Already 5 to 10 Years Before the Onset of Alzheimer Dementia. Arch. Gen. Psychiatry 69, 

98–106 (2012). 

245. Oberhuber, M. et al. Functionally distinct contributions of the anterior and posterior putamen 

during sublexical and lexical reading. Front. Hum. Neurosci. 7, 787–787 (2013). 

246. Cacciola, A. et al. A Connectomic Analysis of the Human Basal Ganglia Network. Front. 

Neuroanat. 11, 85–85 (2017). 

247. Purves, D, Augustine, GJ & Fitzpatrick, D. Neuroscience 2nd edition. (Sinauer Associates, 2001). 



111 

248. Wang, X.-N. et al. Abnormal organization of white matter networks in patients with subjective 

cognitive decline and mild cognitive impairment. Oncotarget 7, 48953–48962 (2016). 

249. Ishibashi, M., Kimura, N., Aso, Y. & Matsubara, E. Effects of white matter lesions on brain 

perfusion in patients with mild cognitive impairment. Clin. Neurol. Neurosurg. 168, 7–11 (2018). 

250. Tao, Y. et al. The Structural Connectivity Pattern of the Default Mode Network and Its 

Association with Memory and Anxiety. Front. Neuroanat. 9, 152–152 (2015). 

251. Roseborough, A., Ramirez, J., Black, S. E. & Edwards, J. D. Associations between amyloid β and 

white matter hyperintensities: A systematic review. Alzheimers Dement. 13, 1154–1167 (2017). 

252. Teixeira, S. & Zuberi, A. Mapping the Racial Inequality in Place: Using Youth Perceptions to 

Identify Unequal Exposure to Neighborhood Environmental Hazards. Int. J. Environ. Res. Public. 

Health 13, 844 (2016). 

253. Arnsten, A. F. T. Stress signalling pathways that impair prefrontal cortex structure and function. 

Nat. Rev. Neurosci. 10, 410–422 (2009). 

254. Arnsten, A. F. T., Raskind, M. A., Taylor, F. B. & Connor, D. F. The effects of stress exposure 

on prefrontal cortex: Translating basic research into successful treatments for post-traumatic stress 

disorder. Stress Resil. 1, 89–99 (2015). 

255. Wang, S. et al. Stress and the brain: Perceived stress mediates the impact of the superior frontal 

gyrus spontaneous activity on depressive symptoms in late adolescence. Hum. Brain Mapp. 40, 

4982–4993 (2019). 

256. Harrell, J. P., Hall, S. & Taliaferro, J. Physiological responses to racism and discrimination: an 

assessment of the evidence. Am. J. Public Health 93, 243–248 (2003). 

257. Cohen, A. D. et al. Fluid and PET biomarkers for amyloid pathology in Alzheimer’s disease. Dis. 

Signat. Biomarkersindicators Neurodegener. 97, 3–17 (2019). 

258. Xiang, J., Guo, H., Cao, R., Liang, H. & Chen, J. An abnormal resting-state functional brain 

network indicates progression towards Alzheimer’s disease. Neural Regen. Res. 8, 2789–2799 

(2013). 



112 

259. Antoine, N. et al. Anosognosia and default mode subnetwork dysfunction in Alzheimer’s disease. 

Hum. Brain Mapp. 40, 5330–5340 (2019). 

260. Yuan, B. et al. Differential effects of APOE genotypes on the anterior and posterior subnetworks 

of default mode network in amnestic mild cognitive impairment. J. Alzheimers Dis. 54, 1409–1423 

(2016). 

261. Ferreri, F. et al. Sensorimotor cortex excitability and connectivity in Alzheimer’s disease: A 

TMS-EEG Co-registration study. Hum. Brain Mapp. 37, 2083–2096 (2016). 

262. Clark, C. M. et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA 305, 

(2011). 

263. Jiang, Y. et al. Alzheimer’s Biomarkers are Correlated with Brain Connectivity in Older Adults 

Differentially during Resting and Task States. Front. Aging Neurosci. 8, 15 (2016). 

264. Ford, G., Haley, W., Thrower, S., West, C. & Harrell, L. Utility of Mini-Mental State Exam 

scores in predicting functional impairment among white and African American dementia patients. J. 

Gerontol. 51A, 185–188 (1996). 

265. Schweizer, T. A., Al-Khindi, T. & Macdonald, R. L. Mini-Mental State Examination versus 

Montreal Cognitive Assessment: Rapid assessment tools for cognitive and functional outcome after 

aneurysmal subarachnoid hemorrhage. J. Neurol. Sci. 316, 137–140 (2012). 

266. Luo, X. et al. Intrinsic functional connectivity alterations in cognitively intact elderly APOE ε4 

carriers measured by eigenvector centrality mapping are related to cognition and CSF biomarkers: a 

preliminary study. Brain Imaging Behav. 11, 1290–1301 (2017). 

267. Sripada, R. K., Swain, J. E., Evans, G. W., Welsh, R. C. & Liberzon, I. Childhood Poverty and 

Stress Reactivity Are Associated with Aberrant Functional Connectivity in Default Mode Network. 

Neuropsychopharmacology 39, 2244–2251 (2014). 

268. Lipira, L. et al. Religiosity, Social Support, and Ethnic Identity: Exploring ‘Resilience Resources’ 

for African-American Women Experiencing HIV-Related Stigma. J. Acquir. Immune Defic. Syndr. 

1999 81, 175–183 (2019). 



113 

269. Morese, R., Lamm, C., Bosco, F. M., Valentini, M. C. & Silani, G. Social support modulates the 

neural correlates underlying social exclusion. Soc. Cogn. Affect. Neurosci. 14, 633–643 (2019). 

270. McAleese, K. E. et al. Cortical tau load is associated with white matter hyperintensities. Acta 

Neuropathol. Commun. 3, 60–60 (2015). 

271. Cechetto, D. F., Hachinski, V. & Whitehead, S. N. Vascular risk factors and Alzheimer’s disease. 

Expert Rev. Neurother. 8, 743–750 (2008). 

272. Alber, J. et al. White matter hyperintensities in vascular contributions to cognitive impairment 

and dementia (VCID): Knowledge gaps and opportunities. Alzheimers Dement. N. Y. N 5, 107–117 

(2019). 

273. Pickett, E. R., Kuniholm, E., Protopapas, A., Friedman, J. & Lieberman, P. Selective speech 

motor, syntax and cognitive deficits associated with bilateral damage to the putamen and the head of 

the caudate nucleus: a case study. Neuropsychologia 36, 173–188 (1998). 

274. Levy, R. & Dubois, B. Apathy and the functional anatomy of the prefrontal cortex-basal ganglia 

circuits. Cereb Cortex 16, 916–928 (2006). 

275. Nebel, R. A. et al. Understanding the impact of sex and gender in Alzheimer’s disease: A call to 

action. Alzheimers Dement. J. Alzheimers Assoc. 14, 1171–1183 (2018). 

276. Blair, C. & Raver, C. C. Poverty, Stress, and Brain Development: New Directions for Prevention 

and Intervention. Acad. Pediatr. 16, S30–S36 (2016). 

277. Aiken-Morgan, A. T., Gamaldo, A. A., Sims, R. C., Allaire, J. C. & Whitfield, K. E. Education 

Desegregation and Cognitive Change in African American Older Adults. J. Gerontol. Ser. B 70, 348–

356 (2015). 

278. Gong, N.-J., Wong, C.-S., Chan, C.-C., Leung, L.-M. & Chu, Y.-C. Aging in deep gray matter 

and white matter revealed by diffusional kurtosis imaging. Neurobiol. Aging 35, 2203–2216 (2014). 

279. Donnez, J. & Dolmans, M.-M. Uterine fibroid management: from the present to the future. Hum. 

Reprod. Update 22, 665–686 (2016). 

 



114 

 

 


	Decoding the Disparity: An Analysis of the Functional Connectivity Profile of Elderly African Americans with and without Alzheimer’s Disease
	Recommended Citation

	tmp.1606322592.pdf.U7mI0

