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ABSTRACT 

Children’s early ability to implicitly learn the underlying patterns in their environment, 

also known as statistical learning (SL), is a crucial component of typical cognitive development. 

SL is essential for visual perception and language processing in infants, children, and adults. 

However, previous studies have not explored the association between children’s environment 

and underlying neural mechanisms of SL ability in children. Socioeconomic status (SES) is one 

of the most important indicators of the quality of this environment. Children who live in low SES 

families have less exposure to cognitive and linguistic stimulation and show atypical structural 

and functional neural patterns compared to those with high SES. In this study, I explored the 

influence of SES (i.e., parental education level and household income) on gray matter volume of 

brain regions involved in SL ability in 232 healthy children ages 5-12 years recruited by the 

Human Connectome Project. These brain regions consisted of sensory/perceptual (primary visual 

and auditory cortices) and frontal/subcortical (Broca’s area and caudate nucleus) regions 

previously reported to be involved in SL. In addition, I investigated the role of age in the 

potential interaction of SES with differences in these brain structures. The findings showed 

neither SES measure to be a predictor of variance in the volume of sensory/perceptual brain 

regions. In contrast, parental education was a strong predictor of variance in volume of one of the 

frontal/subcortical regions, namely caudate nucleus. Age, however, did not influence the 

association between SES measures and either region of interest. This study is the first to explore 

the influence of various SES factors on gray matter volume of sensory/perceptual and 

frontal/subcortical regions involved in SL in children. 

 

INDEX WORDS: Socioeconomic status (SES), Structural magnetic resonance imaging (sMRI), 

Statistical learning, Cognitive development, Parental education, Household income 
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1 INTRODUCTION  

One important early emerging cognitive ability in children is the ability to detect and encode 

statistical patterns in the environment—a process known as statistical learning—which allows 

children to predict upcoming sensory events (Conway, 2020; Saffran et al., 1996). Statistical 

Learning (SL) can take place without conscious awareness (Cleeremans & McClelland, 1991) 

and the detection of underlying patterns in the environment may be processed either 

simultaneously in the visual domain (e.g., pictures; Fiser & Aslin, 2001) or sequentially in the 

auditory domain (e.g. musical tones; Creel, Newport, & Aslin, 2004). SL is a crucial component 

of visual perception (Fiser & Aslin, 2002; Turk-Browne, Jungé, & Scholl, 2005), music 

perception and production (Creel, Newport, & Aslin, 2004), and language processing in infants 

(Saffran, Aslin & Newport, 1996; Shafto, Conway, Field & Houston, 2012), children (Kidd & 

Arciuli, 2016; Lum et al., 2012), and adults (Christiansen, Conway, & Onnis, 2012; Misyak, 

Christiansen, & Tomblin 2010). Even though earlier research suggests that SL ability plays an 

important role in various cognitive abilities, there is no work—except for Eghbalzad, Deocampo, 

and Conway, 2020—that has explored the influence of social and environmental factors on SL 

ability, highlighting it as an important domain in need of further research. The main goal of this 

study is to fill in this important gap by examining the relationship between social factors and 

morphology (specifically gray matter volume) of brain regions associated with SL in children 

ages 5-12 years, using the Human Connectome Project-Development (HCP-D) archived dataset.  

1.1 Role of Statistical Learning in Language and Perception 

Over the past few decades, various studies have demonstrated the importance of SL ability in 

development of language. For instance, in a well-known word-segmentation study conducted by 

Saffran, Aslin, and Newport (1996), after only 2 minutes of exposure to novel speech input, 8-
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month-old infants demonstrated an ability to segment words from the auditory speech stream by 

learning the transitional probabilities between the syllables, suggesting that young infants can 

detect these probabilities in the auditory input. Shafto and colleagues (2012) take these findings 

one step further investigating the relationship between SL, auditory perception (i.e., language) 

and visual perception (i.e., gesture comprehension) in 8- to 13-month-old infants. Using infants’ 

looking time onset at the appropriate location of the upcoming stimulus as an index of their 

reaction time, they showed that the infants’ SL ability on this visual serial reaction time task was 

correlated with their vocabulary comprehension at the time of testing (at 8 months) and with 

their gesture comprehension 5 months later demonstrating the essential role of SL in children’s 

acquisition of age-relevant language skills. 

Focusing on the role of SL in perceptual domains, numerous studies have examined the 

effect of statistical learning in visual and auditory domains. In a study by Fiser and Aslin (2002), 

examining the role of SL in visual perception, adult participants viewed an animation of moving 

shapes across the screen for 6 minutes without any specific task. These participants were not 

aware of the embedded sequences underlying presentation of these shapes as ‘triplets’; however, 

in a surprise forced-choice familiarity task, they correctly identified 95% of shape-triplets as 

familiar, suggesting that statistical visual sequences can be learned with only 6 minutes of 

exposure. In a similar study by Turk-Browne, Jungé, & Scholl (2005), adult participants were 

able to learn underlying statistical patterns between shapes that were presented in temporal 

sequences even when instructed to only identify repetitions of presented shapes. Their results 

thus suggest that adults learn embedded statistical patterns in visual stimuli without explicit 

instructions. 
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As part of a larger study, Conway and Christiansen (2005) conducted an experiment to 

investigate auditory SL ability in adults. During the training phase, the participants listened to 

sequences of pure tones of varying frequencies with underlying embedded patterns. During 

testing, the participants listened to new sequences as well as sequences with same underlying 

patterns as the training phase; they were then asked to report whether any of the sequences 

sounded familiar to them. The authors reported that participants correctly recognized 75% of 

auditory sequences as familiar without having explicit knowledge of the underlying patterns, 

suggesting that SL plays an important role in perception of patterns embedded in tonal 

sequences. Overall, the existing studies, thus, demonstrate the essential role SL plays in various 

processes—from audition and vision to language.  

1.2 Developmental Trajectory of Statistical Learning  

Various studies have explored the role of age in SL ability from childhood to adulthood 

(Arciuli, 2017; Arciuli & von Koss Torkildsen, 2012; Arciuli and Simpson, 2011; Arciuli and 

Conway, 2018; Raviv and Arnon, 2017; Daltrozzo & Conway, 2014; Janacsek, Fiser, Nemeth, 

2012). However, the results are not consistent across these studies. For example, Arciuli and 

Simpson (2011) found an increase in visual SL ability with age in a sample of children ages 5 to 

12 years and suggested that late period of neural development of fronto-parietal regions involved 

in SL ability may underlie their findings. In a cross-sectional study investigating the influence of 

age on SL ability, Raviv and Arnon (2017), in their sample of 5- to 12-year-olds, reported that 

older children performed better on a visual SL task, whereas performance on linguistic auditory 

SL task remained unchanged across this age range. In a follow-up study, Shufaniya & Arnon 

(2018) investigated the effect of age on SL ability in 5- to 12-year-old children. Different from 

earlier work, however, they changed the auditory SL task from linguistic to a non-linguistic task. 



4 

 

Their results showed that visual and auditory SL ability both improved with age. Accordingly, 

they concluded that lack of age-related change reported in the original study (Raviv & Arnon, 

2017) was related to the linguistic nature of the auditory task but not the modality-specific input. 

These findings suggest that in non-linguistic stimuli, regardless of input modality, SL ability 

shows an effect of age with steady improvements from age 5 to 12 years.  

In a related vein, Janacsek, Fiser, and Nemeth (2012) found that across 400 individuals 

with ages between 4 to 85, 4- to 12-year-olds showed the highest statistical learning effect, as 

measured by their reaction time in a serial reaction time task. This learning effect started to 

decline after age 12 through late adulthood. However, accuracy scores showed a different 

trajectory. The accuracy scores on the serial reaction time task were lowest in children and older 

adults, with middle age adults showing the highest accuracy. Thus, they suggested that SL may 

consist of distinct, but related, learning systems with different developmental trajectories. 

Related to these findings, in an extensive review of the literature on age-related changes in SL, 

Conway (2020) proposed that SL consists of 2 distinct mechanisms with different developmental 

trajectories. One is the implicit/bottom-up mechanism which is involved in learning simple 

patterns and associations in various modalities (e.g., visual, auditory). This system is present 

during infancy (Saffran et al., 1996; Pelucchi et al., 2009) and involves automatic processing of 

stimuli without needing much attention. This system must be available early in development to 

create a foundation for learning more complex regularities in the environment later on (Daltrozzo 

& Conway, 2014).  The second system is the explicit/top-down mechanism which is present 

during early childhood (Cameron-Faulkner et al., 2003; Thomas et al., 2004) and is involved in 

learning more complex/abstract patterns which require attention and executive function 
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processes. Following this framework, it is important to consider SL ability as a multi-mechanism 

system with different developmental trajectories evident in each mechanism. 

1.3 Neural Mechanisms of Statistical Learning  

Most of the earlier work that focused on SL used behavioral measures (e.g., reaction 

time) and only a few have investigated neural mechanisms associated with SL—a difference that 

is particularly pronounced in studies with children. Neuroimaging studies on adults have 

highlighted involvement of 2 types of neural networks during SL which map onto those proposed 

by Conway (2020): sensory/perceptual networks (Karuza, et al., 2013; McNealy, et al., 2006; 

Turk-Browne et al., 2009, 2010) that rely on bottom-up processing and frontal and subcortical 

networks (Conway & Pisoni, 2008; Karuza, et al., 2017; McNealy et al., 2006; Schapiro, 

Gregory, Landau, McCloskey, & Turk-Browne, 2014; Turk-Browne et al., 2009) that use more 

top-down processing. Research examining sensory-specific networks in SL processing in adults 

showed involvement of temporal regions such as the superior temporal gyrus in auditory SL 

tasks (Karuza, et al., 2013; McNealy, et al., 2006) and involvement of medial occipital (Turk-

Browne et al., 2010) and lateral occipital areas (Turk-Browne et al., 2009) in visual SL tasks. 

Another study, also with adult participants, examining  top-down associations in frontal and 

subcortical networks showed involvement of the prefrontal cortex (Conway & Pisoni, 2008; 

McNealy et al., 2006; Turk-Browne et al., 2009), Broca’s area (Bahlmann, Schubotz, & 

Friederici, 2008; Petersson, Folia, & Hagoort, 2012; Uddén, Ingvar, Hagoort, & Petersson, 2017) 

as well as subcortical regions such as basal ganglia (Conway & Pisoni, 2008; Hikosaka et al., 

1999; Ulanet et al., 2014; Karuza, et al., 2017)and hippocampus (Karuza, et al., 2017; Schapiro, 

Gregory, Landau, McCloskey, & Turk-Browne, 2014) during SL tasks. In addition to magnetic 

resonance imaging studies mentioned above, Christiansen et al. (2012) reported possible overlap 
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between neural mechanisms utilized for top-down cognitive abilities (i.e., processing syntactic 

rules of English) and SL ability in adults by using electroencephalography (EEG). They reported 

evidence of the same ERP component (P600; elicited by a “grammatical” error) during both an 

English reading task and an SL task suggesting involvement of higher-order networks during SL.   

Studies investigating the neural basis of SL ability in children remain relatively scarce.  

Of the few existing studies, Finn, Kharitonova, Holtby, and Sheridan (2019) conducted a 

structural MRI study investigating the morphometric differences (i.e., gray matter thickness and 

volume) underlying SL in 5- to 8-year-old children on a priori regions of interest (ROIs), namely 

hippocampus, Broca’s area (left inferior prefrontal cortex), and the caudate nucleus (a subsection 

of basal ganglia). They reported that cortical thickness—a morphometric measure highly 

associated with gray matter volume—of Broca’s area and volume of the right hippocampus 

predicted SL ability in children. They also found an interaction between age and cortical 

thickness, showing that in older children (older than 6;11) the right hippocampus thickness 

strongly predicted performance on SL tasks compared to younger children (younger than 6;11). 

The authors concluded that differences in SL ability can be explained by neural mechanisms 

underlying memory and learning processes associated with hippocampus as well as language and 

top-down control processes associated with prefrontal cortex (Leung, Gore, & Goldman-Rakic, 

2002; Xang, Leung, & Johnson, 2003)—a finding that  is consistent with aforementioned studies 

with adults ( e.g., Conway & Pisoni, 2008; Karuza, et al., 2017; McNealy et al., 2006; Schapiro, 

Gregory, Landau, McCloskey, & Turk-Browne, 2014; Turk-Browne et al., 2009) . Another study 

examining neural basis of SL in children (ages 9;6-10;7) by McNealy, Mazziotta, and Dapretto 

(2010) employed fMRI to explore brain activity in children during a visual task consisting of 

statistical regularities and random items. They reported increased activity of temporal cortices 
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and left inferior frontal cortex in association with processing statistically regular items in the 

task, suggesting the involvement of these regions in SL.  

In a more recent fMRI study (Conway et al., 2020), which also forms the basis for the 

proposed study, researchers investigated underlying neural structures involved in processing 

errors in SL patterns in adults. Adults were presented a visual artificial grammar-learning task in 

which sequences of printed nonsense syllables containing adjacent (e.g., "A-B") versus 

nonadjacent (e.g., "A-X-B") dependencies were presented—with the assumption that the latter 

impose cognitive demands (Gómez, 2002; Newport & Aslin, 2004), After incidentally learning 

these grammatical sequences, 20 healthy adults made familiarity judgments on either novel 

grammatical sequences with no adjacent dependency violations or novel ungrammatical 

sequences with adjacent dependency violations. The results showed that violation of adjacent 

dependencies (i.e., ungrammatical sequences with adjacent dependency violations) was 

associated with increased blood oxygen-level dependent (BOLD) activation in both occipital and 

frontal regions compared to grammatical sequences. Activation of these modality-specific 

sensory regions, such as the lateral occipital cortex, during implicit SL has also been reported in 

previous studies (e.g., Conway & Pisoni, 2008; Frost et al., 2015). In addition, results showed 

increased activation in prefrontal cortex, specifically Broca’s area and frontal pole, which 

previously has been associated with language production (Caplan, 2006; Gewe et al., 2005; 

Rodd, Davis, & Johnsrude, 2005) working memory (Sarnthein et al., 1998), goal-directed 

positioning and maintenance of attention (Hopfinger, Buonocore, & Mangun, 2000), as well as 

directing attention and detection of unexpected stimuli (Conway & Pisoni, 2008; Corbetta, 

Kincade, Ollinger, McAvoy, & Shulman, 2000; Folia & Petersson, 2014). These results suggest 

that learning and processing of adjacent sequential dependencies (i.e., SL) involve a distributed 
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network that mediates both sensory/perceptual and higher-order operations in frontal/subcortical 

networks. Conway and colleagues (2020) added that violation of nonadjacent dependencies (i.e., 

ungrammatical sequences with nonadjacent dependency violations) was associated with 

increased BOLD activation in subcallosal and paracingulate cortices as well as anterior cingulate 

cortex (ACC). Previous studies have reported activation of these regions to be associated with 

error detection, inhibition, and distribution of attention resources (e.g., Nebel et al., 2005; Nobre 

et al., 1997; Woodward et al., 2006). In sum, the detection of violations of dependencies appear 

to involve distinct neural networks, consistent with recent proposals that statistical-sequential 

learning is not a unified construct but depends on the interaction of multiple neural mechanisms 

acting together (Conway, 2020; Daltrozzo and Conway, 2014). The results from Conway et al., 

(2020), in addition to providing possible answers to questions on the underlying neural 

mechanisms of SL ability in adults, also raise new questions about the development and 

plasticity of brain regions involved in SL.  

The reviewed neuroimaging results suggest that the underlying mechanisms of SL 

include a distributed network of neural processes involved in modality-specific perception, 

learning, memory, and executive function, all working together to detect and process statistical 

regularities in the input (Arciuli, 2017; Conway, Deocampo, Smith, & Eghbalzad, 2016; 

Daltrozzo & Conway, 2014; Frost, Armstrong, Siegelman, & Christiansen, 2015; Sawi & 

Rueckl, 2018; Thiessen, Kronstein, & Hufnagle, 2013). Collectively, the reported results also 

provide support for the idea that SL is mediated by two primary sets of neural networks (Arciuli, 

2017; Conway & Pisoni, 2008; Daltrozzo & Conway, 2014; Frost et al., 2015; Conway, 2020): 

areas involved in bottom-up processes (i.e., sensory/perceptual regions involved in perception; 

Karuza, et al., 2013; McNealy, et al., 2006; Turk-Browne et al., 2009, 2010) and another that 
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comprises domain-general brain regions involved in top-down processes (frontal and subcortical 

regions involved in memory and attention; Conway & Pisoni, 2008; Karuza, et al., 2017; 

McNealy et al., 2006; Schapiro, Gregory, Landau, McCloskey, & Turk-Browne, 2014; Turk-

Browne et al., 2009).   

In summary, SL ability is found to play a critical role in typical development of language 

and perception (auditory and visual). This ability involves at least two underlying systems which 

include two primary sets of neural networks. The bottom-up system, present from birth, 

comprises modality-specific areas (sensory and perceptual regions) and facilitates learning 

sensory structures in the input. Conversely, the top-down system involves domain-general brain 

regions (frontal and subcortical) and facilitates learning more abstract structures of input which 

continues to develop through childhood and adolescence.  The reviewed findings emphasize the 

importance of considering SL as a cognitive ability with multiple underlying neural components 

with distinct developmental periods, however, studies investigating the role of environmental 

factors on SL and its neural correlates are scarce. 

1.4 Construct of Socioeconomic Status 

Like any other cognitive ability, it is possible that SL ability is not just the product of 

multiple neural components working together. It may also be the outcome of these neural 

components interacting with environmental factors that children are exposed to, such as financial 

stability, nutrition, safety, medical access, and education. Among various such factors, one of the 

most important indicators of the quality of environment is family socioeconomic status (SES). 

SES consists of many distinct, but interrelated components which can individually and/or 

cumulatively influence children’s development. These components include, but are not limited 

to, parental education level (e.g., Brito & Noble, 2014; Hoff, Tian, 2005; Hupp et al, 2011; 
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Mueller & Parcel, 1981; Noble et al., 2007; Roberts et al., 1999; Sheridan, et al, 2012; Stanton-

Chapman, et al, 2002), household income (e.g., Betancourt, et al., 2016; Hanson et al, 2011; 

Hottenlocher et al, 2010; McLoyd, 1998; Noble et al., 2012; Noble et al., 2005; Petterson & 

Albers, 2001; Romeo et al, 2018; Sirin, 2005), home environment (Davis-kean, 2005; NICHD 

Early Childcare Research Network, 2000), neighborhood safety, maternal mental health (Pan, 

Rowe, Singer & Snow, 2005; Petterson & Albers, 2001), school type (Ardila, 2005), and stress 

level of the child (Brito & Noble, 2014; Noble et al., 2012; Sheridan, et al, 2012).  

Numerous studies have found a relationship between children’s SES level and academic 

outcomes mediated by behavioral and/or neural measures (Feldman et al., 2003; NICHHD, 2000; 

Pan, Rowe, Singer, & Snow, 2005; Hoff et al., 2012). Children who live in low SES families are 

reported to have less exposure to cognitive and linguistic stimulation (Hart & Risley, 1995; 

Rowe and Goldin-Meadow, 2009) and experience more stress in their environment (Sheridan et 

al., 2012). This experience detrimentally impacts their language and cognitive development and 

leads to poor academic performance (U.S. Census Bureau, 2017). Therefore, it is of great 

importance to investigate the impact of SES on the neural structures underlying development of 

SL in children. 

1.5 Neurocognitive Mechanisms Affected by Socioeconomic Status 

SES impacts neurocognitive development in a number of ways.  For instance, some studies 

have investigated the influence of SES on morphometric properties (e.g., volume, thickness, and 

surface area) of various brain regions in children. For instance, Noble and colleagues (2012) 

analyzed morphometric properties of the amygdala and hippocampal regions by using structural 

brain imaging in participants between ages 5 and 18 years from various SES level households. 

They measured SES by collecting data on parental education and calculating the participants’ 
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income to need ratio (i.e., dividing total household income by the federal poverty level reported 

for a household of that size). The results showed that those with lower parental education 

displayed larger amygdala volumes. According to Tottenham et al. (2010), a larger amygdala 

volume in humans may be related to increased exposure to stress. Noble and colleagues (2012) 

posited that, from an evolutionary perspective, the brain needs a larger amygdala to learn more 

of what to fear since there is more fear to be discovered in the environment. Noble et al., also 

found smaller hippocampal volume in participants with lower SES, which they attributed to 

inhibition of neurogenesis caused by increased exposure to stress prenatally and during infancy. 

Looking further into the influence of SES on the brain, Betancourt et al. (2016) reported 

differences in gray matter volume in infants (ages 4-6 weeks) from high and low SES 

households. Infants with lower SES had smaller cortical gray and deep gray volumes, 

substantiating the influence of SES on subcortical regions such as basal ganglia and 

hippocampus. The authors also suggest that stressors that are more directly related to income, 

such as limited access to material resources, have a greater influence on the development of these 

subcortical regions compared to stressors that are more closely tied to parental education, such as 

parenting style or cognitive stimulation. 

In addition to reported structural brain differences in children with various SES levels, Brito 

and Noble (2014) proposed a model with two main pathways by which functioning of certain 

brain regions relates to SES: linguistic exposure and stress. They suggested that SES is related to 

development of syntactic ability through the effect of linguistic environment on left inferior 

frontal gyrus. Furthermore, they proposed that SES is related to memory via the influence of 

stress on hippocampus, amygdala, and prefrontal cortex (Brito & Noble, 2014). In support of this 

model, there is increasing evidence suggesting that SES can impact brain regions that are 
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associated with executive function and language. For instance, Romeo et al. (2018) reported that 

children’s SES, as measured by parental education level, was directly related to children’s 

performance on lexical and syntactic tasks. More importantly, this relationship was mediated by 

activation in the left inferior frontal gyrus (IFG) during a narrative task. In this fMRI task, 

children (ages 4-6) passively listened to simple stories about events that children are likely to be 

familiar with. The participants were divided into 2 groups: those who heard normally-narrated 

stories and those who heard stories in reverse. The group with normal narration showed a higher 

activation in the left superior temporal sulcus. Notably, children who had more linguistic 

exposure at home showed higher activation in left IFG compared to those with less exposure. 

These results suggest that children with low SES, who are not receiving rich linguistic input from 

their environment, may be at higher risk of experiencing lower activation in certain brain regions 

involved in lexical and syntactic processing which provides support for the linguistic exposure 

pathway proposed in the model by Brito & Noble (2014). 

Another fMRI study on 8- to 12-year-old children from low and high SES homes (Sheridan 

et al., 2012) provided further support for the model proposed by Brito & Noble (2014). During 

the fMRI task, children participated in a stimulus-response mapping task in which they had to 

learn to associate one of four buttons with a certain family of stimuli and another button with the 

second family of stimuli. This rule learning task has been associated with high prefrontal cortex 

activity. The results showed excessive activation of the prefrontal region in children with low 

SES which could be due to those children needing more time to learn the associations, thus 

resulting in greater reliance on the prefrontal brain region (Sheridan et al., 2012). Conversely, 

children from high SES homes were exposed to a more complex linguistic input, leading to 

improved prefrontal cortex function with lower activation levels. The authors added that children 
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from low SES homes had experienced more pronounced changes in their cortisol levels, likely to 

be an outcome of their exposure to greater stress during development which resulted in less 

efficient prefrontal cortex function. These results suggest that chronic exposure to high stress 

leads to a decrease in neural dendritic spines in prefrontal cortex. A decline in the number of 

these spines, in turn, makes it more difficult to transmit messages between neuronal networks in 

prefrontal cortex. Sheridan and colleagues (2012) refer to this phenomenon as “biological 

embedding” of SES. These results may further hint that the effects of environmental stressors, 

such as economic and social stressors, may cause physiological changes very early in children’s 

lives. 

Surprisingly, given the extensive neuroimaging research exploring SES and 

neurocognitive mechanism, there is only one study that has investigated the relationship between 

SES and SL ability in children. Eghbalzad and colleagues (2016) used the EEG technique to 

measure SL ability during a visual predictor-target SL task. In this task, the participants were 

presented with sequences of flashing stimuli which consisted of “standard”, “predictor”, and 

“target” stimuli; predictors were followed by targets with varying transitional probabilities. Some 

predictors were followed by targets 80% of the time (high predictability condition) and others 

were followed by targets 20% of the time (low predictability condition). The participants were 

instructed to press a button as fast as they can to “catch” the targets, without being aware of the 

transitional properties underlying the sequences. SL performance (measured by the difference in 

ERP amplitude between 2 conditions) moderated the relationship between SES and syntactic 

comprehension scores in children. They reported that children with low SES appeared to have 

better syntactic ability only if they performed well on the SL task.  In other words, the negative 

effect of low SES on syntactic ability appeared to be dampened by high SL ability. Thus, 
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children who were raised in households with lower SES showed more typical language scores if 

they had good SL skills. Conversely, for children with lower SL ability, their syntactic 

comprehension was more directly related to the level of their SES. Although this study addresses 

an important gap in the literature regarding the effect of social environment on neural processing 

of SL, it does not specify which underlying neural networks (involved in SL) are influenced by 

children’s environment and in what way (e.g., structural vs. functional differences). Thus, new 

studies need to explore individual differences in development of neural structures underlying SL. 

2 CURRENT STUDY 

Most of the earlier work that investigated the neural basis of SL ability is focused on adults 

and very few studies have focused on children (Finn, Kharitonova, Holtby, & Sheridan, 2018; 

McNealy, Mazziotta, & Dapretto, 2010). Moreover, except for the study by Eghbalzad, 

Deocampo and Conway (2020), none of the previous studies have investigated the neural 

components of SL in children who are exposed to environmental adversity. This stands out as an 

important gap in the literature because SES is one of the most important indicators of the quality 

of environment and has a great influence on children’s development. In this study, I investigated 

the influence of the two most commonly used indicators of SES (parental education and 

household income), on cortical and subcortical volume of brain regions associated with SL 

ability in children between 5;0-12;11 years of age.   

2.1 Study Aims and Hypotheses 

The first aim of this study was to examine the influence of SES on the morphology of 

two key systems associated with SL, namely the gray matter volume of bottom-up sensory-

perceptual regions and top-down frontal/subcortical brain regions in school-aged (5-12) children, 

using structural imaging methodology. The second aim was to investigate whether children’s age 
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played a role in the influence of SES on morphometric properties of brain regions involved in 

SL. Earlier research showed that non-linguistic SL ability improves with age during childhood 

(Arciuli & Simpson, 2011; Shufaniya & Arnon, 2018; Conway, 2020), but it is not clear whether 

age will influence underlying neural properties of regions associated with SL ability, particularly 

in the presence of environmental adversity (i.e., lower SES). I have attempted to answer 2 

questions, each tied to a specific aim: 

 

1. How does SES influence the volume of sensory/perceptual regions (lateral 

occipital and primary auditory cortices) differently from the volume of 

frontal/subcortical brain regions (Broca’s area and caudate nucleus) in young 

children? 

 

Previous studies conducted on the influence of SES on structural development of the 

brain do not report a direct effect of SES on sensory perceptual regions (see a review by Brito & 

Noble, 2014). The lack of a reported association may be due to the early developmental 

trajectory of these regions and shorter period of exposure to environmental adversity. This short 

time-window may be a protective factor, resulting in typical development of fundamental 

sensory areas in the brain. However, contrary to sensory/perceptual regions, research suggests a 

strong influence of SES on development of higher-order cognitive skills and the 

frontal/subcortical brain regions involved in these skills (D’Angiulli, Herdman, Stapells, & 

Hertzman ,2008; Betancourt, et al., 2016; Brito & Noble, 2014; Farah et al., 2006; Garcia-Sierra, 

Ramirez-Esparza & Kuhl, 2016; Hanson et al, 2011; Noble et al., 2012; Noble et al., 2007, 2005, 

2006; Romeo et al, 2018; Sheridan, et al, 2012). Based on these findings, I predicted that there 
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will be no association between SES and volume of sensory/perceptual areas, however, based on 

earlier research (Sheridan et al, 2012), that showed impairments in the prefrontal cortex in 

children from low SES families due to excessive activation of HPA (hypothalamic-pituitary-

adrenal) axis caused by chronic stress, I expected to see a negative effect of SES on the 

frontal/subcortical brain structures (Broca’s area and caudate nucleus), resulting in smaller 

volumes in children from families with low SES.  

 

2. What is the added effect of age in the influence of SES on sensory/perceptual and 

frontal/subcortical brain regions involved in SL? 

 

Previous research (e.g., Brito & Noble, 2014) exploring differences in brain morphology 

of children from varying SES environments, showed no effect of SES on sensory/perceptual 

regions even after controlling for age. To my knowledge, there is no research that has yet 

examined the role age plays on the effect of SES on frontal/subcortical regions. One possibility is 

that in children with low SES, the brain regions that take longer to develop are also exposed to 

environmental deprivation for a longer period of time compared to those regions that are 

developed much earlier (e.g., prefrontal cortex, Petanjek et al., 2011; Tsujimoto, 2008); as such 

the negative effect of lower family SES on prefrontal areas may only be evident in later 

childhood or early adolescence (Brito & Noble, 2014). Based on these earlier findings, I 

predicted that the relationship between SES and sensory/perceptual regions would not be 

affected by child age. In contrast, I expected that age would play a mediating role in the 

association between SES and frontal/subcortical regions associated with SL. 
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3 METHOD 

3.1 Participants 

The data for this study were derived from an archival database of healthy participants 

collected by the Lifespan Human Connectome Project-Development (HCP-D)1. HCP-D is a 

national project launched at 4 different sites in the United States (Somerville, et al., 2018) and is 

freely available under the approval of National Institute of Mental Health data archive (approval 

obtained by Leyla Eghbalzad on 11/5/2019; renewed on 11/5/2020). This database consists of 

demographic, neuropsychological, and neuroimaging data collected from 665 healthy 

participants, between ages 5-21. The structural imaging data were available for download in 

2018 and the demographics data (e.g., SES) were released in the Spring of 2021. As depicted in 

Figure 1, out of 665 healthy participants, 244 were between ages 5;0-12;11 and had both imaging 

and parental education data available. Out of 244 participants, one participant was excluded due 

to poor quality of imaging data (see section 3.3.3) which resulted in a sample size of 243. From 

these 243 participants, 232 reported income data. In this database, the exclusion criteria for 

healthy participants included (1) presence of safety concerns (harming self or others) and (2) any 

atypicality in cognitive, behavioral, or neurological assessments. All participants provided 

written assent in addition to written consent from their parents or guardians. 

The age range of 5;0 to 12;11 in this study provided an appropriate time window for two 

reasons: (1) at age 5, children show steady improvements in SL ability as reported in previous 

work (Arciuli and Simpson, 2011; Raviv and Arnon, 2017), and (2) age 12 is when the effect of 

 
1 Originally, I had proposed to use data from 2 datasets: HCP-D and Healthy Brain Network (HBN). 

However, after pre-processing brain images from HBN, I found majority of the images to be of low quality due to 

excessive motion in the scanner in this age range. Therefore, I decided not to include data from HBN database in my 

study. Even though this narrowed my originally proposed sample size from 331 to 232, a power analysis with one 

less control variable in the regression models (i.e., database) showed enough power to detect reliable effects (see 

section 3.2 for more details). 
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age on SL ability is reduced, based on earlier work (Janacsek, Fiser, and Nemeth, 2012) that 

showed that implicit learning (e.g., SL) becomes stable and does not improve after age 12. 

In this earlier work, researchers also argued that it was around age 12 that children begin 

to show sensitivity to more complex aspects of the environment and rely more on model-based 

interpretations of prior implicit learning experiences acquired during early childhood (Orban, 

Fiser, Aslin & Lengyel, 2008). At the same time, the significant changes in sensitivity to more 

complex aspects of environment around 12 years of age may be associated with structural 

changes in the brain beginning after age 12, further marking age 12 as the appropriate cut-off 

point in examining effect of age in this study. 

 

 

Figure 1. Flow Diagram of Available Data from HCP-D Dataset. 

 

Parental education data

(n=244)

HCP-D database

(n=655)

Structural MRI data

(n=655)
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(n=296)

Sample used for 
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3.2 Power Analysis 

According to a sensitivity power analysis using G*Power 3 tool (based on G*Power by 

Erdfelder, Faul, & Buchner, 1996), the sample size of N = 232 will give 95% power (alpha level 

of .05) to detect a marginally small effect size (f2= 0.07) for the proposed analyses of multiple 

hierarchical regression with 3 independent variables and 3 covariates (see section 4.3). In 

addition, previous studies have not reported significant volumetric differences between low vs. 

high SES groups in the set of brain regions (sensory/perceptual vs. frontal/subcortical) targeted 

in this study. However, an earlier comprehensive review on the associations between SES and 

brain (Brito & Noble, 2014) reported that most of the structural neuroimaging studies in children 

between ages 5 to 12 years used samples with 145 or fewer participants (e.g., Jednoróg et al., 

2012; Luby et al., 2013; Raizada et al., 2008). Their results showed significant associations 

between SES and gray matter volume (ranges across studies: t < 2.11-3.74 >; p-values < .05) and 

significant two-way interactions (F-change < 5.76 - 6.28 >; adjusted R2 < .19 - .63 >; p-values < 

.05). According to the power analysis and previous literature, the sample size of 232 provides 

adequate power to detect reliable differential effects of SES on sensory/perceptual vs. 

frontal/subcortical regions.  

3.3 Procedure 

3.3.1 Collecting Data Across Study Sites 

In the HCP-D dataset, images were acquired at 4 different sites: Harvard University, 

University of California-Los Angeles, University of Minnesota, and Washington University in 

St. Louis. Imaging data were collected using a common platform with the same software version 

across all sites. To assure quality control across all 4 sites, the HCP team created a set of 

“standard operating procedures”, frequent communications across sites, and regular training 
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sessions for experimenters involved (Harms et al., 2018). All of the sites used a Siemens 3T 

Prisma scanner with a 32-channel head coil, except for 2 sites (Washington University and 

UCLA) that used a pediatric 32-channel head coil developed by Ceresensa in participants ages 5-

7. Compared to the Siemens 32-channel coil, this coil has a smaller inner space which makes it 

more appropriate for pediatric head sizes and neck lengths (Supplemental Material for Hamers et 

al., 2018).  

In addition to the potential confound created by using 2 different head coils across sites, it 

was important to consider that these data were collected at multiple locations, by different MRI 

technicians/experimenters, and in different environments; therefore, study site was included in 

the analyses as a categorical covariate to control for the potential effect of scanner location on 

outcome variables. 

3.3.2 Magnetic Resonance Imaging (MRI) Acquisition Parameters 

According to the HCP MRI parameters reported by Hamers et al (2018), all structural 

images were acquired by a single T1w scan with 0.8 mm isotropic voxels using a multi-echo 

magnetization prepared rapid gradient echo (ME-MPRAGE) sequence. The sagittal field of view 

(FOV) used was 256x240x166 mm with a matrix size of 320x300x208 slices. Slice oversampling 

of 7.7% was used with a pixel bandwidth of 744Hz/Px and 2-fold in-plane acceleration 

(GRAPPA) in the phase encoding direction. Specific T1w scan parameters include 

TR/TI=2500/1000, TE=1.8/3.6/5.4/7.2ms, and flip angle= 8 degree (up to 30TRs allowed for 

motion-induced reacquisition). To reduce signal from bone marrow and fat, water excitation was 

employed. In extension, subject motion was corrected for via embedded “volumetric navigators” 

(vNavs) by which motion-corrupted lines in k-space were selectively re-acquired. Through this 

process, 3D echo-planar imaging vNavs were collected, once for each TR period, and registered 
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in real-time. Positional information derived from these images were used to update the position 

of FOV for the scan duration (Hamers et al., 2008). This real-time motion correction technique is 

reported to reduce motion-related bias in interpreting imaging results (Reuter et al., 2015).  

3.3.3 Image Preprocessing and Quality Assurance 

Imaging data were downloaded from HCP-D database onto a secure server located at the 

Georgia State University/Georgia Institute of Technology/Emory University Center for 

Translational Research in Neuroimaging and Data Science (TReNDS). The image preprocessing 

and quality assurance procedures were conducted remotely through the TReNDS server by using 

MobaXterm software installed on a Mac computer with a Windows operating system (as 

recommended by GSU Psychology IT team).   

Structural MRI images were used to measure differences in gray matter volume of 4 

regions of interest (ROIs), 2 involving sensory/perceptual regions (bilateral transverse temporal 

gyrus, bilateral cuneus gyrus) and 2 involving frontal/subcortical regions (i.e., Broca’s area: pars 

opercularis and pars triangularis; bilateral caudate nuclei as a subsection of basal ganglia) for 

each individual child. I used FreeSurfer v.6.0.0 image analysis pipeline (Fischl et al., 

2002; http://surfer.nmr.mgh.harvard.edu/) to process and analyze structural brain imaging data. 

FreeSurfer has been widely used in investigations on morphometric properties in many 

populations due to its high rate of reproducibility, accuracy, and user-friendly composition 

(Fischl, et al., 2002; Tae et al., 2008; Bhojraj et al., 2011). In addition, FreeSurfer provides a set 

of fully automated analytic tools that are freely available to the public (see Fischl et al., 2002 and 

Fischl et al., 2004 for technical details of the analyses).  

As the first step in pre-processing brain images, I visually inspected the quality of all the 

raw T1-w images. Although I had expected to exclude many T1 images in order to ensure high 

http://surfer.nmr.mgh.harvard.edu/
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quality of final images, I only excluded 1 participant due to blurred regions on the brain images 

potentially caused by radiofrequency artefacts, reducing the final sample size to 232. After this 

step, I used the reconall tool to run the images through a series of processing tools that generate 

estimates of morphometric measures of specific ROIs.  First, the images were registered to a 

Talairach atlas space (http://surfer.nmr.mgh.harvard.edu/), which linearly transformed them into 

a common coordinate system. Following registration, FreeSurfer assigned an initial label to each 

voxel (basic building blocks of a 3-D MRI image, similar to pixels of a 2-D image) based on the 

voxel’s intensity. Voxel intensity gradients were used to identify transition between gray matter 

to white matter to facilitate tissue segmentation (Fischl & Dale, 2000).  

During tissue segmentation, non-brain tissues were removed by utilizing a fully 

automated algorithm. Then, subcortical structures were separated into white matter, gray matter, 

and cerebrospinal fluid depending on constraints and intensity of neighboring voxels. During a 

process called ‘intensity normalization’, the range of these voxel intensity values were changed 

to correct for variations across voxels. This step is helpful in processing images with low contrast 

which may have been caused by motion during the scan. Often, Freesurfer fails to correctly label 

brain tissue during segmentation and/or intensity normalization steps. For example, in certain 

regions dura matter may be mistakenly marked as part of the pial surface or gray matter may be 

incorrectly included as white matter. Thus, I used Freeview tool to manually check and fix the 

results of brain registration and segmentation outcomes for all individuals with such errors. 

These edits included erasing mislabeled gray/white matter voxels and inserting control points to 

correctly identify the white matter voxels in coronal, axial, and sagittal views. Those images with 

manual edits (90% of images) were resubmitted through the automated reconall process and 

were rechecked to assure that the changes made were implemented. 

http://surfer.nmr.mgh.harvard.edu/
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3.4 Measures 

3.4.1 Volume of ROIs 

After manually correcting white matter and gray matter segmentation errors using 

Freeview, I used FreeSurfer’s automated process to assign a final label to each voxel based on 

subject-dependent and subject-independent probabilities using the Destrieux atlas (Destrieux et 

al., 2010; Fischl et al., 2004). As a result, adjacent voxels that were assigned different labels 

created structural boundaries in the brain and the segmented images were transformed back to 

their native space. Similar to the first quality check step, I used Freeview to visually inspect the 

boundaries for all ROIs. None of the images needed extensive editing in this step. In the final 

stage of the processes, I used the asegstats (for subcortical regions) and aparcstats (for cortical 

regions) tools to automatically count the number of voxels contained within boundaries of each 

structure and generate the volume (mm3) for bilateral transverse temporal gyrus, bilateral cuneus 

gyri, Broca’s region, and bilateral caudate nuclei by rest. Volume of each structure (except for 

Broca’s area: left pars opercularis and left pars triangularis) was calculated separately for each 

hemisphere. Then for each structure, volume of regions in both hemispheres were added to create 

total volumes of bilateral structures: bilateral transverse temporal gyri, bilateral cuneus gyri, and 

bilateral caudate nuclei. These are the values that were entered into SPSS for further analyses. 

3.4.2 Estimated Total Intracranial Volume (eTIV) 

In addition to volume of ROIs, Freesurfer estimates the total volume of cranium which 

contains cerebrospinal fluid (CSF), gray matter, and white matter 

(https://surfer.nmr.mgh.harvard.edu/fswiki/BrainVolume). Total intracranial volume needs to be 

controlled for to account for head size variations among participants (Buckner et al., 2004). For 

example, a greater volume of caudate nucleus may be a result of having a larger head but not be 
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related to the effect of predictor variables. Therefore, including TIV as a control variable will 

help reduce its potential confounding effect (O’Brian et al., 2011).  

3.4.3 SES and Demographics 

SES is defined as a multi-dimensional construct, consisting of various components 

including parental education level, household income, home and school environment, and 

neighborhood safety—each of which can individually or cumulatively influence children’s 

development. In this study, I used parental education and household income as the two measures 

for SES because these are the most commonly used indicators of SES in neuroimaging studies 

(see review by Brito & Noble, 2014). Parental education is reported to be related to children’s 

verbal executive function (Ardila et al., 2005), working memory (Roberts, et al., 1999), and 

language (Hupp et al., 2011; Pan, Rowe, Singer & Snow, 2005; Romeo et al., 2018) through 

cognitive and linguistic stimulation (Brito & Noble, 2014). Household income has been shown to 

influence children’s total gray matter volume (Hanson et al., 2013; Noble et al., 2012) and full-

scale IQ (Lange et al., 2010) which is related positively to their access to educational resources 

and negatively to their stress levels (e.g., Luby et al., 2013; Noble et al., 2012; Romeo et al., 

2018).  

Given my interest in the investigation of the ‘unique’ influence of each of the two SES 

components (i.e., parental education and household income) on differences in morphometric 

properties of the brain, I avoided using a composite score for SES, as has been done in some of 

the earlier work (e.g., Betancourt et al., 2016; Dickinson, Adelson, 2014; Ensminger, Fothergill, 

2014; Hoff, Laursen, & Bridges, 2012).  Instead, I used parental education (average of both 

parents’ education level) and household income, separately as indicators of SES in the current 

study. Parental education was reported for all participants and was averaged across two parents 
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on a scale of 0-6, as: 0 = Less than High School; 1 = High School; 2 = Some college; 3 = 

Associate’s degree; 4 = Bachelor’s degree; 5 = Master’s degree; 6 = PhD/Professional degree. 

For single-parent households, I used the present parent’s education level using the same scale. 

Household income was coded as raw total annual household income amount which ranged 

between $5000 and $500,000. A summary of SES measures is reported in Table 1.  

3.4.4 Handedness 

Differences in hand preference have been found to be related to differences in 

morphology of the brain (Amunts, Jancke, Mohlberg, Steinmetz, & Zilles, 2000; Good 

et al., 2001; Ocklenburg, Friedrich, Gunturkun, & Genc, 2016; Ocklenburg, Garland, Strockens, 

& Uber Reinert, 2015). In the HCP-D data set, handedness was assessed with the Edinburgh 

Handedness Inventory (EHI; Oldfield, 1971). In this inventory, handedness is calculated from 

answers to questions about hand preference in 10 daily activities. Each question is scored on a 

scale of -2 to +2, with score of ‘-2’ being high preference for left hand and ‘+2’ being high 

preference for right hand. Only 29 out of 232 participants were left-handed (see Table 1). I 

conducted Pearson correlation analysis to investigate whether handedness should be included as 

a control variable in further analyses and found that it was not significantly correlated with any 

of the measures and, therefore, was not included in the analyses. These correlation results are 

presented in Appendix A. 

4 ANALYSIS 

4.1 Test of Assumptions for Linear Regression 

To investigate the assumptions of parametric statistical tests (linear regression), first I 

visually inspected the normality of distribution for each variable of interest using histograms. 

Second, I used ‘stem and leaf’ plots to identify extreme outliers (>3 standard deviations from the 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516604/#brb3730-bib-0002
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516604/#brb3730-bib-0016
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516604/#brb3730-bib-0028
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mean; Hoaglin, Iglewicz, &Tukey, 1986) in the variables of interest. To avoid losing data, 

instead of excluding participants with extreme values, I replaced the extreme high or low values 

by the next highest or lowest value in the variable as advised by (Dixon, 1960; Dixon, 1980; 

Tukey, 1962). Third, I used Tolerance and variance inflation factors (VIFs) as indices of 

multicollinearity between predictors in the statistical models. Forth, the assumptions of linearity 

and homoscedasticity were tested using the scatterplots and histograms of standardized residuals 

of the data (Hair et al., 1998). Finally, all variables of interest were tested for the assumption of 

non-zero variance using the variance statistics.  

4.2 Hierarchical Linear Regression Models 

After processing structural data for all subjects using FreeSurfer (section 3.3.1), I used 

Statistical Package for the Social Sciences (SPSS Inc., Chicago, IL) to conduct 4 hierarchical 

linear regressions (1 for each region of interest).  In each model, parental education level was 

entered as the first predictor to determine whether it explains any variance in brain volume. 

Household income was entered as the predictor in the second step of the model to measure 

whether income adds or takes away from variance in brain volume explained by parental 

education. Given that household income was only reported for 232 out of 243 participants and 1 

participant was excluded due to poor imaging data, the regression analyses were conducted with 

total of 232 participants. In the third step, the control variables: sex, study site, and estimated 

total intracranial volume (eTIV; calculated via FreeSurfer software) were entered to investigate 

whether these variables influence the effect of predictors entered into previous steps of the 

model. The same model was created for the volume of each region of interest as the outcome 

variable for a total of 4 models. Using hierarchical regression models allowed me to determine 

how much of variance in the outcome variable (volume of each region) is explained by each 
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predictor variable that is above and beyond the other predictors and control variables entered in 

each model. To address the issue of multiple comparisons caused by conducting 4 regression 

models, I adjusted for the family-wise error rate (FWER; probability of committing one or more 

Type I errors) using the Holm-Bonferonni method (Holm, 1979; Aickin & Gensler, 1996).  

5 RESULTS 

5.1 Sample Descriptive Statistics 

Descriptive statistics for all participants (n=243) as well as those participants whose 

household income data were used in the regression analyses (n=232) are presented in Table 1. 

Given that 92.4% of participants were between ages 8-12 years, I presented the descriptive 

statistics for 2 separate age groups: ages 5;0-7;11 and ages 8;0-12;11. Table 1 shows that all 

participants in this study showed average linguistic and general intelligence shown by their 

performance on standardized neuropsychology assessments of receptive vocabulary (Peabody 

Picture Vocabulary Test -PPVT; Dunn & Dunn, 2007) and perceptual and abstract reasoning 

(Wechsler Intelligence Scale for Children -WISC; Kaplan et al., 2004). Appendix B shows the 

distribution of these variables across study sites.   

 

Table 1.Sample Distribution and Descriptive Statistics. 

  Total sample a 

Sample used 

in regression 

analyses 

Ages 5;0-7;11 

years a 

Ages 8;0-12;11 

years a 

n 243 232 18(7.6%) 214 (92.4%) 

Age in years  10.18 ± 1.59 10.18± 1.57 7.13 ± 0.79 10.43 ± 1.34 

Sex     
Female 136 130 12 118 

Male 107 102 6 96 

Edinburgh Handedness      
Left 31 29 1 28 

Right 212 203 17 186 

Race      
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American 

Indian/Alaskan  1 1 0 1 

Asian 11 10 1 9 

Black or African 

American 10 10 2 8 

White/Caucasian 171 166 6 160 

More than one race 45 41 8 33 

Unknown/Not 

reported 5 4 1 3 

Study site      
Harvard 71 69 0 69 

UCLA 50 47 9 38 

UMinn 70 64 0 64 

WashU 52 52 9 43 

Annual household income 

$/1000 (n=232) 
142.55 ± 89.68 142.55 ± 89.68 94.85 ± 85.67 146.56 ± 89.03 

Parents’ education average     
0. Did not graduate 

high school 2 2 1 1 

1. High school 

diploma 8 7 2 5 

2. Some college 27 25 2 23 

3. Associate’s degree 28 27 5 22 

4. Bachelor’s degree 94 90 4 86 

5. Master’s degree 71 69 4 65 

6. Ph.D./ Professional 

degree 13 12 0 12 

Neuropsychological 

assessments  

 

  
PPVT (n=166) 113.72 ± 816.19 113.81 ± 16.01 108.43 ±11.57 114.06 ±16.17 

WISC (n=238) 11.01 ± 3.25 11.03 ± 3.28 9.60 ± 2.87 11.13 ±3.29 

         
a Mean ± SD for continuous variables, N for categorical variables 

Abbreviations: UCLA=University of California Los Angeles; UMinn= University of Minnesota; 
WashU= Washington University in St. Louis; PPVT= Peabody Picture Vocabulary Test; WISC= 

Wechsler Intelligence Scale for Children 

 

5.2 Test of Assumptions for Linear Regression 

Household income data for two participants were identified as extreme outliers (> 3 

standard deviations from the mean). These values were replaced by a score that was the next 

highest score in the distribution of each variable (Dixon, 1980; reflected in Table 1). No outliers 
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for any other variables of interest were identified. Tests exploring the assumption of collinearity 

showed that multicollinearity between predictor variables was not a concern (parental education 

level, Tolerance = 0.80, VIF = 1.25; household income, Tolerance = 0.80, VIF = 1.25). The 

assumptions of normality, linearity, and homoscedasticity were met according to the scatterplots 

and histograms of standardized residuals of the data (Hair et al., 1998). Finally, all variables of 

interest met the assumption of non-zero variance (Variance < 0). 

5.3 Aim 1: How does SES influence the volume of sensory/perceptual regions (primary 

visual and auditory cortices) differently from the volume of frontal/subcortical brain 

regions (Broca’s area and caudate nucleus) in young children? 

5.3.1 SES and Sensory/Perceptual Regions 

I first asked whether there was an association between each SES measure (parental 

education, household income) and cortical volume of sensory/perceptual regions in children. I 

tested this question with two separate regression analyses for each brain region as the outcome 

variable: one for cortical volume of primary visual cortex (bilateral cuneus gyri) and the other for 

primary auditory cortex (bilateral transverse temporal gyri). Each model included parental 

education average and household income as predictors in the first and second steps, respectively. 

Participants’ sex, study site, and total intracranial volume were entered as control variables in the 

last step of the regression analysis.  

In the model with primary visual cortex (V1) as the outcome, parental education level 

did not significantly predict variance in the volume of primary visual cortex β = 0.09, p = 0.15. 

Similarly, adding household income to the model did not explain any additional variance in 

volume of primary visual cortex β = -0.75, p = 0.30. Adding the control variables of sex, study 

site, total intracranial volume did not change the outcomes of the first model. However, total 
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intracranial volume was a significant predictor of variance in the volume of primary visual cortex 

β = 0.39, p < 0.001, R2 
adj = .19, F(3, 226) = 11.60, p < 0.001(see Table 2 for regression 

results). 

Table 2. Hierarchical regression analysis testing the effect of SES on gray matter volume 

of primary visual cortex. 

  

    
Unstandardized 

Coefficients 

Standardized 

Coefficients t Δ R2 

    b SE β 

Step 1           0.009 

V1 volume   7268.23 272.12  26.71**  
Parental education level   91.64 63.3 0.95 1.45   

Step 2           0.005 

V1 volume  7280.48 272.34  26.73**  

Parental education level  122.12 69.85 0.13 1.75  

Household income   -0.001 0.001 -0.08 -1.03   

Step 3           0.191** 

V1 volume  2576.02 971.44  2.65**  

Parental education level  43.16 64.09 0.05 0.67  

Household income  -0.001 0.001 -0.09 -1.39  

Sex  -170.06 168.43 -0.07 -1.01  

Study Site  117.87 65.83 0.11 1.79  

eTIV   0.003 0.001 0.39 5.33**   

N= 232 

V1= bilateral cuneus gyri (primary visual cortices)    

eTIV= estimated Total Intracranial Volume   

*p < .05, **p < .01 

 

The model with primary auditory cortex (A1) as the outcome showed similar results. 

Neither parental education level (β = 0.11, p = 0.09) nor household income (β = 0.90, p = 0.22) 

predicted variance in the volume of the primary auditory cortex.  Adding the control variables to 

the model did not change the outcomes of previous steps in the model. Similarly to the volume of 

the primary visual cortex, total intracranial volume significantly explained variance in the 
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volume of primary auditory cortex β = 0.52, p < 0.001, R2 
adj = .22, F(3, 226) = 13.8, p < 

0.001(see Table 3 for regression results). 

Table 3. Hierarchical regression analysis testing the effect of SES on gray matter volume 

of primary auditory cortex. 

  

    
Unstandardized 

Coefficients 

Standardized 

Coefficients t Δ R2 

    b SE β 

Step 1           0.012 

A1 volume   2278.32 104.26   21.85**  
Parental education level   41.21 24.25 0.11 1.7   

Step 2           0.007 

A1 volume  2272.72 104.24   21.8**   

Parental education level  27.26 26.74 0.07 1.02  

Household income   0.0004 0.0004 0.09 1.23   

Step 3           0.215** 

A1 volume  -85.02 365.79   -0.23  

Parental education level  0.41 24.13 0.001 0.02  

Household income  0.0003 0.0003 0.05 0.82  

Sex  92.24 63.42 0.1 1.45  

Study Site  -19.6 24.79 -0.05 -0.79  

eTIV   0.002 0.0002 0.52 7.25**   

N= 232 

*p < .05, **p < .01 
              

A1= bilateral transverse temporal gyri (primary auditory cortices)     

eTIV= estimated Total Intracranial Volume     

     

 

5.3.2 SES and Frontal/Subcortical Regions 

Next, I asked whether there was an association between each SES measure (parental 

education, household income) and cortical volume of frontal/subcortical regions in children. I 

tested this question with two separate regression analyses for each brain region as the outcome 

variable: one for total cortical volume of left pars opercularis and pars triangularis (i.e., Broca’s 

region) and the other for subcortical volume of bilateral caudate nuclei. Each model included 

parental education average and household income as predictors in the first and second steps, 
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respectively. Participants’ sex, study site, and total intracranial volume (eTIV) were entered as 

control variables in the last step of the regression analysis. In the model with Broca’s region as 

the outcome, neither parental education level (β = 0.08, p = 0.23) nor household income 

explained any variance in volume of Broca’s area, β = -0.01, p = 0.87. As a control variable, sex 

did not explain any variance in the volume of Broca’s area. However, total intracranial volume 

and study site were significant predictors of variance in the volume of the Broca’s region, β = 

0.44, p < 0.001 and β = -0.12, p < 0.05, respectively (R2 
adj = .17, F(3, 226) = 10.43, p < 0.001; 

see Table 4 for regression results). Although, these control variables were significant predictors 

of variance in the volume of Broca’s area, they did not change the non-significant effect of SES 

measures in the model. Exploratory post-hoc comparisons using Tukey-HSD test did not show 

any significant differences in the mean volume of Broca’s area between study sites (F(3, 228) = 

1.71, p = 0.17).  

Table 4. Hierarchical regression analysis testing the effect of SES on gray matter volume 

of Broca’s area. 

  

  
Unstandardized 

Coefficients 

Standardized 

Coefficients t Δ R2 

  b SE β 

Step 1         0.006 

Broca's volume  7884.97 292.51  26.96**  
Parental education level 82.51 68.05 0.8 1.21   

Step 2         0.0001 

Broca's volume 7887.02 293.41   26.88**   

Parental education level 87.63 75.25 0.09 1.16  

Household income 0.0001 0.001 -0.01 -0.16   

Step 3           0.181** 

Broca's volume 2551.31 1053.72  2.42*  

Parental education level 25.6 69.51 0.03 0.37  

Household income 0.0005 0.001 -0.04 -0.53  

Sex 135.43 182.7 0.05 -0.74  

Study Site -141.89 71.4 -0.12 -1.99*  
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In the model with caudate nucleus as the outcome, parental education level was a 

significant predictor, β = 0.21, p < 0.01, R
2 

adj = .05, F(1, 230) = 10.75, p < 0.01. Even after 

adding household income to the model which did not show a significant main effect (β = -0.07, p 

= 0.36), parental education level remained a significant predictor of variance in the volume of 

caudate nucleus, β = 0.21, p < 0.01. Most importantly, adding the control variables to the model 

did not change the significant effect of parental education level, β = 0.13, p < 0.05, R
2 

adj = .40, 

F(3, 226) = 31.70, p < 0.001. In addition to parental education level, total intracranial volume 

also served as a significant predictor of variance in volume of caudate nucleus β = 0.65, p < 

0.001 (see Table 5 for regression results).  

Table 5. Hierarchical regression analysis testing the effect of SES on gray matter volume 

of caudate nuclei. 

  

  
Unstandardized 

Coefficients 

Standardized 

Coefficients t Δ R2 

  b SE β 

Step 1         0.05** 

CN volume  7351.42 233.08  31.54**  
Parental education level 177.77 54.22 0.21 3.28**   

Step 2         0.004 

CN volume 7360.79 233.38   31.54**   

Parental education level 201.07 59.86 0.24 3.36**  

Household income -0.001 0.001 -0.07 3.36   

Step 3           0.36** 

CN volume 505.88 728.29   0.7   

Parental education level 113.07 48.05 0.13 2.35*  

Household income -0.001 0.001 -0.11 -1.9  

eTIV 0.004 0.001 0.44 5.98**   

N= 232 

*p < .05, **p < .01 

Broca= left pars opercularis & pars triangularis   

eTIV= estimated Total Intracranial Volume   
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Sex 145.81 126.27 0.07 1.16  

Study Site 35.88 49.35 0.04 0.73  

eTIV 0.004 0.0004 0.65 10.4**   

N= 232 

*p < .05, **p < .01 

CN= bilateral caudate nuclei   

eTIV= estimated Total Intracranial Volume   

 

 

  
In order to further explore the main effect of parental education level on volume of 

caudate nucleus, I divided the parental education variable into two groups: those with a college 

degree and those without a college degree. In a review of the SES literature, Ardila and 

colleagues (2005) suggested that college-educated mothers are more likely to talk to their 

children, use more complex vocabulary, and read more books to their children which could, in 

turn, lead to children’s increased exposure to linguistic and cognitive stimulation.  Therefore, I 

conducted an exploratory post-hoc analysis to compare the volume of caudate nucleus between 

children of parents with a college degree and those without a college degree. The results 

indicated that the mean volume of caudate nucleus is significantly smaller in children with 

parents who did not earn a college degree (N= 61, M=7779.24, SD= 867.61) compared to those 

children with parents who earned a college degree (N= 171, M=8194.21, SD= 1041.90, 

t(125.86) = -3.03, p= 0.003, equality of variances not assumed). Figure 2 shows this significant 

group difference in the volume of caudate nucleus. It is important to mention that there were no 

sex group differences between those participants in the low parental education and those in the 

high parental education groups. In other words, both low and high education groups consisted of 

more female participants than male participants suggesting that participants’ sex is not a 

potential confound in these analyses.  
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In summary, these results show that SES variables do not significantly explain the 

variance in the volume of the perceptual/sensory regions and Broca’s area; however, parental 

education level does account for 5% of variance in the volume of bilateral caudate nuclei.  

 

 

Figure 2. Significant Difference in Mean Volume of Bilateral Caudate Nuclei Across 

Parental Education Groups. Error bars represent standard error.  

 

5.4 Aim 2: What is the added effect of age in the influence of SES on sensory/perceptual 

and frontal/subcortical brain regions involved in SL? 

5.4.1 Contribution of age to the association between SES and Sensory/Perceptual Regions 

To determine the influence of age on the effect of SES on volume of sensory/perceptual 

regions, I conducted the same hierarchical regression analyses outlined under section 4.2, with an 

additional predictor, namely child age, as the last step in the hierarchical regression model.  
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In the model with primary visual cortex as the outcome, age significantly predicted the 

variance in the volume of primary visual cortex (β = - 0.30, p < 0.001). At the same time, 

however, age did not change the non-significant effect of parental education level on the volume 

of primary visual cortex (β = 0.05, p = 0.44). Similarly, the effect of household income on the 

volume of primary visual cortex remained non-significant (β = -0.07, p = 0.24; see Table 6 for 

regression results). 

Table 6. Hierarchical regression analysis testing the effect of age on the association 

between SES and gray matter volume of primary visual cortex. 

  

  
Unstandardized 

Coefficients 

Standardized 

Coefficients t Δ R2 

  B SE β 

Step 1         0.009 

V1 volume  7268.23 272.12   26.71**  
Parental education level 91.64 63.30 0.10 1.45   

Step 2         0.005 

V1 volume 7280.47 272.34   26.73** 
 

Parental education level 122.16 69.85 0.13 1.75 
 

Household income -0.001 0.001 -0.07 -1.03   

Step 3         0.19** 

V1 volume 2576.02 971.43   2.65**  

Parental education level 43.16 64.08 0.04 0.67 
 

Household income -0.001 0.001 -0.09 -1.38  

Sex -170.16 168.43 -0.07 -1.01  

Study Site 117.87 65.82 0.11 1.79  

eTIV 0.003 0.001 0.39 5.32   

Step 4         0.08** 

V1 volume 3457.14 940.96   3.67**  

Parental education level 47.34 60.97 0.05 0.77  

Household income -0.001 0.001 -0.07 -1.18 
 

Sex -125.02 160.48 -0.05 -0.77  

Study Site 95.17 62.78 0.08 1.51  
eTIV 0.004 0.001 0.49 6.83**   

Age -18.47 3.71 -0.3 -4.97**   

N= 232 

*p < .05, **p < .01 
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V1= bilateral cuneus gyri (primary visual cortices)   

eTIV= estimated Total Intracranial Volume  

       

 

Similarly, In the model with primary auditory cortex as the outcome, the results showed 

that age has a significant main effect on the volume of primary auditory cortex (β = - 0.23, p < 

0.001). At the same time, age did not change the non-significant effect of parental education 

level (β = 0.004, p = 0.94;) and household income (β = 0.07, p = 0.29) on the volume of primary 

auditory cortex (see Table 7 for the regression results). 

Table 7. Hierarchical regression analysis testing the effect of age on the association 

between SES and gray matter volume of primary auditory cortex. 

  

  
Unstandardized 

Coefficients 

Standardized 

Coefficients t Δ R2 

  b SE β 

Step 1         0.012 

A1 volume  2278.32 104.26  21.85**  
Parental education level 41.21 24.25 0.11 1.07   

Step 2         0.007 

A1 volume 2272.72 104.24  21.8**  

Parental education level 27.26 26.74 0.07 1.02  

Household income 0.0004 0.0004 0.09 1.23   

Step 3         0.215** 

A1 volume -85.02 265.79  -0.23  

Parental education level 0.41 24.13 0.001 0.02  

Household income 0.0003 0.0003 0.05 0.82  

Sex 92.24 63.42 0.1 1.45  

Study Site -19.6 24.79 -0.05 -0.79  

eTIV 0.002 0.0002 0.52 7.25**   

Step 4         0.047** 

A1 volume 177.43 361.52  0.49  

Parental education level 1.66 23.43 0.004 0.07  

Household income 0.0003 0.0003 0.07 1.06  

Sex 105.68 61.66 0.12 1.71  

Study Site -26.36 24.12 -0.06 -1.09  
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eTIV 0.002 0.0002 0.6 8.28**  
Age -5.5 1.43 -0.23 -3.86**   

N= 232 

*p < .05, **p < .01 

A1= bilateral transverse temporal gyri (primary auditory cortices)   

eTIV= estimated Total Intracranial Volume   

 

 

5.4.2 Contribution of age to the influence of SES on Frontal/Subcortical Regions 

To answer the second study question investigating the influence of age on the effect of SES 

on volume of frontal/subcortical regions, I conducted the same hierarchical regression analyses 

outlined under section 4.2, with an additional predictor, namely child age, as the last step in each 

hierarchical regression model.  

In the model with Broca’s region as the outcome, the results showed that age had a 

significant main effect on volume of this region (β = - 0.18, p < 0.001), however, even after 

including age, parental education level and household income remained as non-significant 

predictors of variance in the volume of Broca’s area, β = 0.03, p = 0.68 and  β = - 0.03, p = 0.70, 

respectively (see Table 8 for regression results).  

Table 8. Hierarchical regression analysis testing the effect of age on the association 

between SES and gray matter volume of Broca’s area. 

  

  
Unstandardized 

Coefficients 

Standardized 

Coefficients t Δ R2 

  b SE β 

Step 1         0.006 

Broca's volume  7884.97 292.51   26.95**  
Parental education level 82.51 68.04 0.08 1.21   

Step 2         0.0001 

Broca's volume 7887.03 293.41   26.88**   

Parental education level 87.63 75.25 0.08 1.16 
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Household income -0.0002 0.001 -0.01 -0.16   

Step 3         0.18** 

Broca's volume 2551.31 1053.72   2.42** 
 

Parental education level 25.59 69.51 0.02 0.36  

Household income -0.0005 0.001 -0.03 -0.53 
 

Sex 135.42 182.69 0.05 0.74  

Study Site -141.89 71.40 -0.12 -1.98*  

eTIV 0.004 0.001 0.44 5.98   

Step 4         0.03** 

Broca's volume 3130.03 1055.59   2.96** 
 

Parental education level 28.34 68.39 0.02 0.41  

Household income -0.0003 0.001 -0.02 -0.38 
 

Sex 165.07 180.03 0.06 0.91  

Study Site -156.79 70.43 -0.13 -2.22*  
eTIV 0.004 0.001 0.50 6.67**  

Age -12.13 4.16 -0.18 -2.91**   

N= 232 

*p < .05, **p < .01 
            

Broca= left pars opercularis & pars triangularis  

eTIV= estimated Total Intracranial Volume  

       

 However, in the model with caudate nucleus as the outcome, the results showed that 

age did not have a significant main effect on the volume of this region (β = - 0.01, p = 0.10). 

More importantly, after adding age to the model, parental education level remained a significant 

predictor of variance in volume of caudate nucleus (β = 0.14, p < 0.05); however, household 

income remained a non-significant predictor (β = - 0.10, p = 0.07; see Table 9 for the regression 

results).  

In summary, the results showed that age is a significant predictor of volume of visual and 

auditory cortices as well as volume of Broca’s area; however, there was no main effect of age on 

the volume of caudate nucleus. Interestingly, adding age to the models did not influence the 

effect of SES predictors on the volume of sensory/perceptual or frontal/subcortical regions. Thus, 
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parental education level remained a significant predictor of variance in volume of caudate 

nucleus.   

Table 9. Hierarchical regression analysis testing the effect of age on the association 

between SES and gray matter volume of caudate nuclei. 

  

  
Unstandardized 

Coefficients 

Standardized 

Coefficients t Δ R2 

  b SE β 

Step 1         0.05** 

CN volume  7351.42 233.08   31.54**  
Parental education level 177.77 54.22 0.21 3.28**   

Step 2         0.004 

CN volume 7360.78 233.37   31.54**   

Parental education level 201.07 59.85 0.23 3.36** 
 

Household income -0.001 0.001 -0.06 -0.92   

Step 3         0.36** 

CN volume 505.87 728.29   0.69   

Parental education level 113.06 48.04 0.13 2.35*  

Household income -0.001 0.001 -0.11 -1.89 
 

Sex 145.81 126.27 0.07 1.15  

Study Site 35.88 49.35 0.04 0.73 
 

eTIV 0.004 0.0004 0.65 10.40*   

Step 4         0.007 

CN volume 734.08 738.8   0.99   

Parental education level 114.14 47.87 0.13 2.38* 
 

Household income -0.001 0.001 -0.10 -1.81 
 

Sex 157.49 126.005 0.08 1.25 
 

Study Site 30.003 49.29 0.03 0.61  
eTIV 0.005 0.0004 0.68 10.45*  

Age -4.78 2.91 -0.09 -1.64   

N= 232 

*p < .05, **p < .01 
            

CN= bilateral caudate nuclei  

eTIV= estimated Total Intracranial Volume  
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6 DISCUSSION 

SL ability plays an important role in the development of language and perception. At 

least two underlying systems with two primary sets of neural networks are involved in SL: the 

bottom-up system which facilitates learning sensory structures in the input and the top-down 

system that involves frontal and subcortical regions facilitating learning more abstract structures 

of input (Daltrozzo & Conway, 2014; Conway, 2020). This study is the first to investigate the 

association between SES and morphometric measures of brain regions involved in SL ability in 

children. 

6.1 SES and Dual Mechanisms Underlying Statistical Learning  

To determine if social environmental factors could play a role in children’s cognitive 

development, the first aim of this study was to investigate the association between indices of SES 

and volume of the brain regions associated with bottom-up (primary visual and auditory cortices) 

vs. with top-down (Broca’s area and caudate nucleus) processing of statistical patterns. The 

current results, in line with previous work (Brito & Noble, 2014), showed that neither parental 

education nor income explained any variance in the volume of sensory/perceptual regions. One 

possible explanation for lack of an association between SES and volume of sensory brain regions 

is that these regions are more developed relative to subcortical and frontal regions in this age 

range (e.g., Bishop et al., 2011; Litovsky, 2015;). Therefore, structural differences in sensory 

regions may be more affected by genetic indicators of SES (e.g., maternal physical and mental 

health pre- and during pregnancy; Evans, 2004; Shonkoff et al., 2009) rather than environmental 

factors such as parental education and income. These results, also in line with earlier work, 

showed some evidence of a significant association between measures of SES and volume of 

brain regions that are involved in complex learning processes. Specifically, parental education 
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level (not household income) significantly explained variance in the volume of caudate 

nucleus—but not Broca’s area. Similar to the findings of earlier work (e.g., Betancourt et al., 

2016; Machlin, McLaughlin, & Sheridan, 2019), the results suggest that low SES—as indexed 

by parental education—is associated with smaller volume of subcortical regions in children ages 

5-12. It has been reported that children who live in low SES families have less exposure to 

cognitive and linguistic stimulation in their environment. This lack of exposure can reduce 

children’s experience with behavior inhibition and regulation which are among the important 

functions of caudate nucleus (Padmanabhan, Geier, Ordaz, Teslovich, & Luna, 2011). Notably, 

caudate nucleus is reported to be involved in SL ability which is an essential component of 

language processing in infants (Saffran, Aslin & Newport, 1996; Shafto, Conway, Field & 

Houston, 2012), children (Kidd & Arciuli, 2016; Lum et al., 2012), and adults (Christiansen, 

Conway, & Onnis, 2012; Misyak, Christiansen, & Tomblin 2010). Seemingly, the influence of 

SES can last throughout the lifespan as smaller caudate volume has been reported in adults who 

were exposed to life stressors during early childhood (Cohen et al., 2006).  

Contrary to the hypothesis, SES did not explain any variance in volume of Broca’s area—a 

finding that is in contrast to the earlier fMRI results reported by Romeo and colleagues (2018). A 

possible explanation is that although caudate nucleus and Broca’s area are both involved in 

learning, they are functionally distinct. According to Ullman and colleagues (2020), caudate 

nucleus is more involved in procedural memory and learning information by making predictions 

during perceptual learning. On the other hand, medial temporal lobe systems, including Broca’s 

area, are more involved in declarative memory and learning co-occurring stimuli and 

associations. It is possible that parental education level is more influential on regions associated 

with implicit learning as well as procedural memory, both of which are primarily processed by 
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the caudate nucleus. Furthermore, it is possible that effect of SES on language-related regions 

such as Broca’s area in this sample is more pronounced in children raised in poverty and is not 

related to parental education (see section 6.3 for further discussion).  

6.2 Role of Caudate Nucleus in Learning 

The results of this study suggest that volume of subcortical structures underlying SL, 

specifically caudate nucleus, is impacted by the social environment that a child is raised in. 

Importantly, in addition to its involvement in SL, caudate nucleus (as a subsection of basal 

ganglia) is also involved in learning skills/functions such as habit formation and procedural 

learning, to name a few (Ashby & Crossley 2012). Ullman et al., (2020), in his declarative vs. 

procedural learning model, explains how caudate nucleus is involved in gradual learning of 

associations which takes place through predictions and repeated exposures to stimuli. This model 

states that learning these associations involves procedural memory. Interestingly, learning 

grammatical rules in language also relies on procedural memory. That is, dependencies between 

elements in a sequence (e.g., noun and verb agreement in a sentence) are learned gradually and 

become automatic over time (Ullman, 2016). According to a meta-analysis by Hamrick and 

colleagues (2018), children and adults who showed better procedural learning also showed better 

grammatical knowledge compared to lexical knowledge. Finally, a meta-analysis on functional 

studies with adults reported activation in basal ganglia during grammar learning, but not during 

word learning (Tagarelli et al. 2019). Collectively, as reported previously, caudate nucleus is 

greatly involved in SL ability and also plays a critical role in learning linguistic (grammar) and 

nonlinguistic (e.g., habit formation) regularities; Therefore, according to Ullman’s model of 

declarative vs. procedural learning (2020) these results can help explain delays and/or challenges 

in the development of language (specifically syntax) and other cognitive capacities in children 
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who are raised with low SES (e.g., Feldman et al., 2003; NICHHD, 2000; Pan, Rowe, Singer, & 

Snow, 2005; Hoff et al., 2012; Rowe and Goldin-Meadow, 2009; Sheridan et al., 2012).  

Consequently, the results of this study raise broader implications than SL ability in children. 

For instance, significant structural differences in caudate nucleus in children with low SES can 

shed light on the negative influence of adversity on other cognitive skills associated with this 

region such as motor learning, executive function, inhibitory control, and emotion regulation 

(Malenka, Nestler, & Hyman, 2009). These are valuable skills for academic success and building 

a career in adulthood. If we understand the neural differences associated with adversity, then we 

can have a better understanding of the underlying causes of the negative short-term and long-

term consequences that will follow. The results of this study, along with those focusing on the 

association between adversity and neurocognitive development in children, can ultimately create 

the foundation for early intervention programs.   

6.3 Construct of SES 

Based on earlier work (e.g. Ardila, 2005; Betancourt, et al., 2016; Brito & Noble, 2014; 

Hanson et al, 2011; Hoff, Tian, 2005; Hupp et al, 2011), I predicted that parental education level 

would account for the largest variance in the volume of the caudate nucleus compared to 

household income. Parental education has been reported to influence brain regions involved in 

complex cognitive processes, such as language and executive function, through providing 

adequate linguistic and cognitive stimulation in children’s environment (Ardila et al., 2005; Brito 

& Noble, 2014; Hupp et al., 2011; Roberts, et al., 1999; Romeo et al., 2018). According to Ardila 

and colleagues (2005), more educated parents tend to talk more to their children and use more 

complex language. More educated parents are also reported to use conversational parenting 

techniques as opposed to directive and punishment-based strategies (Hoff, Laursen, & Tardif, 
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2002). This enriched linguistic environment (or lack of) can change the neural function (Romeo 

et al, 2018) and structure (Merz et al., 2019) underlying complex cognitive abilities in children.  

Income is also reported to be a strong indicator of availability of resources and overall 

quality of the environment, which, in turn, influences children’s neural development (e. g. Lange 

et al., 2010; Noble et al., 2012; Noble et al., 2005; Romeo et al, 2018; Sirin, 2005). However, the 

results of the current study showed that household income did not explain any variance in the 

volume of the caudate nucleus. This lack of association may be explained by, first, low 

variability in household income in this sample. The mean annual household income for the 

sample in this study was $142,551 and only 3% (n=7) of the participants reported living in 

poverty (calculated income-to-needs ratio based on the poverty threshold reported in 2019; U.S. 

Census Bureau, 2020); Second, 5% (n=11) of the participants did not report their income level 

which is reported to be a common issue among participants with lower incomes. Kim and 

colleagues (2007) report that social stigma, fear of judgment, and lack of privacy are potential 

reasons for difficulties in collecting income level data.  

Aside from parental education level and household income, other various components of SES 

may be individually and cumulatively influencing these results. For example, on the family-

level, previous research suggests that parental mental health (Wadsworth & Compas, 2002), 

parental stress level (Appleyard et al., 2005; Korat et al., 2007), and the quality of parent-child 

interactions (Dallaire et al., 2008) are all examples of how SES influences developmental 

outcomes in children and adolescents. Low SES could indirectly influence children via the 

mental health status of the parents (Petterson & Albers, 2001). Parental anxiety has been 

associated with higher levels of stress in children (McLoyd & Wilson, 1990) which is reported to 

influence cortical volume of hippocampus, amygdala, and prefrontal cortex. Consequently, 
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higher stress levels lead to impairments in working memory and emotion regulation in children 

(Brito & Noble, 2014; Noble et al., 2012; Sheridan, et al, 2012). On the community-level, 

research suggests that SES affects development and academic achievement through 

neighborhood quality (Sirin, 2005) and opportunities for attending better schools (Ardila, 2005; 

Sheridan, et al, 2012).  

6.4 Lack of Evidence for Influence of Age  

 The second aim of this study was to explore the influence of age on the possible influence of 

SES on volume of sensory/perceptual and subcortical/frontal regions. Lack of an association 

between SES factors and structure of sensory/perceptual regions in children remained unchanged 

even with the addition of child age as a predictor. These results support previous developmental 

studies exploring whole-brain differences in children from varying SES environments which did 

not report a significant effect of SES on sensory perceptual regions even after controlling for the 

age of the participants (see review by Brito & Noble, 2014). Similarly, age did not have a 

significant role on the association between parental education level and volume of caudate 

nucleus. Specifically, the main effect of SES remained significant across all ages. In line with 

earlier work, it is possible that SES and age may interact differently across development. For 

instance, cross-sectional studies focusing on a similar age range as this study have reported a 

stable effect of SES on cortical and subcortical gray matter volume across age groups (Lawson et 

al., 2013; McDermott et al., 2019; Noble et al., 2015). However, studies exploring this 

interaction in children younger than 4 years reported a strong interaction between SES and gray 

matter volume which increased by age (hippocampus; Hanson et al., 2013). Therefore, 

longitudinal studies are needed to explore the effect of age on the association between SES and 

brain morphometry. 
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6.5 Limitations and Future Directions 

Even though this study is the first to investigate the association between SES indicators 

and brain morphometry in neural substrates of SL, it does not tell us about how parental 

education level influences children’s neurocognitive development. To address this issue, as 

reviewed earlier, Brito and Noble (2006) proposed a theoretical model which describes how 

individual factors of SES can affect neurocognitive development in children through different 

pathways. The influence of SES factors on the brain structures may be mediated by levels of 

linguistic stimulation and stress level in the environment; this mediation varies depending on the 

specific brain structure. They propose that the well-known effect of SES on language-specific 

brain regions (e.g., language cortex) is mediated by the amount of linguistic stimulation present 

in children’s environment. For instance, highly educated parents are reported to spend more time 

with their children (Guryan et al., 2008) and also engage in more varied and linguistically 

complex communication with their children (Hart & Risely, 1995; Hoff, 2003), compared to 

parents with lower education. This increased stimulation may, in turn, lead to larger gray matter 

volume of linguistic brain regions and better language skills in children with higher SES.  

Furthermore, Brito & Noble (2006) add that the effect of SES on neurocognitive development in 

children can also be mediated by their stress level. For instance, they suggest that the established 

relationship between SES and cognitive abilities such as memory, cognitive control, and socio-

emotional processes are mediated by the direct effect of cortisol (stress hormone) levels on brain 

structures such as hippocampus, prefrontal cortex, and amygdala. Families with low SES tend to 

experience more financial and emotional hardship which, in turn, can lead to increased stress and 

consequently higher cortisol levels in children compared to high SES families. Therefore, it is of 

great importance for future neurocognitive studies to investigate not only if but also how SES can 
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influence underlying neural structures for SL in children by including parent-child interaction 

and stress-related measures in their designs. A related limitation is that the current study focused 

only on two of the several variables that define SES, namely parental education and household 

income. Future studies should focus on additional SES components related to children’s schools 

and community environments and examine their effects on neural processes underlying SL. 

Nonetheless, by showing evidence of subcortical structural differences across SES levels in early 

childhood, the current study paves the way for future research to investigate the impact of 

various family-level and community-level factors on children’s neurobiological development 

and, consequently, to develop more targeted interventions. 

The analyses in this study tested the linear association between SES and gray matter 

volume. However, given the complex multifaceted construct of SES, it is also possible that SES 

influences brain morphometry in a nonlinear fashion. In other words, it is likely that SES is 

related to structural brain differences only in children with low SES and not in high SES, or vice 

versa. In a developmental study by Piccolo and colleagues (2016) they reported a curvilinear 

association between age and cortical thickness in children with low SES, however, in high SES 

participants there was only a linear association between age and cortical thickness. In addition, 

this nonlinear association was only evident in a global measure of cortical thickness and not 

region-specific thickness. It is also possible that not all brain regions show a linear association 

with SES. For instance, lack of an association between SES and gray matter volume in Broca’s 

area in this study may be due to the nonlinear nature of the association between this structure and 

SES variables. Structure of Broca’s area may only be impacted by greater exposure to adversity 

such as in low SES and/or extreme lack of exposure to adversity in high SES families, with 

middle SES not showing any associations with morphometry of Broca’s area. Thus, it is 
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important to further explore the nonlinear interaction between SES and brain morphometry. 

Regarding measuring SES, it is important to note that parent’s education level was collected by 

the HCP-D group as an ordinal variable which was then averaged across both parents/caregivers’ 

education level to create the parental education level variable used in these analyses. As with any 

ordinal variable, the distance between categories in this variable is not equal; However, due to 

the lack of consensus regarding this issue and using previously collected data from an archived 

database, I assumed linearity between categories of this SES variable.  

It is important to note that this study only relied on neural measures of SL, leaving 

behavioral measures of SL unexamined which could have provided a more complete picture of 

the differences across SES groups. An earlier study by Eghbalzad and colleagues, (2021) 

examining the association between SES (measured by parental education level) and SL 

(measured by ERPs and reaction time) in children, showed an effect of SES at the neural, but not 

the behavioral measures of SL, suggesting that neural indices might be better outcomes in 

detecting effects of SES on SL in children compared to behavioral measures. Nevertheless, 

future studies can use SL tasks from behavioral studies (i.e., the EEG study conducted by 

Eghbalzad et al., 2021) to create functional imaging tasks that help explore the relationship 

between behavioral correlates in addition to neural correlates of SL and SES in children. 

 Lastly, although the results of this study supported previous findings on the role of age in 

SES-related changes in morphology of the brain, the cross-sectional design of the current study 

prevented me from exploring within-subject changes over the course of development. In 

addition, as mentioned in section 5.1, the majority of the participants (92.4%) were between the 

ages 8 to 12;11 years which created an abnormal distribution. However, conducting the same 

analyses only with participants older than 8 years showed the same pattern of results as reported 
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for the analyses with all participants, suggesting that the small number of participants younger 

than 8 does not influence these results. Nonetheless, it is imperative for future research to 

conduct longitudinal studies from birth through childhood and adolescence in an attempt to shed 

light on the dynamic relationship between SES measures and brain morphology (especially 

subcortical/frontal regions) and work toward eliminating negative influence of adversity before it 

is developmentally too late. 

6.6 Conclusion 

This study showed that SES is associated with morphometry of brain regions associated 

with SL ability in children. However, this association was not homogenous across all neural 

substrates of SL. Specifically, the association between SES and gray matter volume was only 

evident in the caudate nucleus and not in Broca’s area or sensory-perceptual regions in the brain.   

Understanding the neural differences associated with adversity can facilitate cognitive 

development in children who are raised in low SES families by minimizing the impact of being 

raised in a less than optimal social and linguistic home environment with the ultimate goal of 

mitigating the effects of unequal childhoods on children’s development. 
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Turk-Browne, N. B., Jungé, J. A., & Scholl, B. J. (2005). The automaticity of visual statistical 

learning. Journal of Experimental Psychology: General, 134, 552–564. 

Turk-Browne, N. B., Scholl, B. J., Chun, M. M., & Johnson, M. K. (2009). Neural evidence of 

statistical learning: Efficient detection of visual regularities without awareness. Journal 

of Cognitive Neuroscience, 21, 1934–1945. 

https://doi.org/10.1080/15475440701377477
https://doi.org/10.1177/1073858408316002


71 

 

Uddén, J., Ingvar, M., Hagoort, P., & Petersson, K.M. (2017). Broca’s region: A causal role in 

implicit processing of grammars with crossed non-adjacent dependencies. Cognition, 

164, 188-198. doi: 10.1016/j.cognition.2017.03.010  

Ullanet, P.G. et al. (2014). Correlation of neurocognitive processing subtypes with language 

performance in young children with cochlear implants. Cochlear Implants International, 

15, 230-240. 

Ullman, M.T. (2004). Contributions of memory circuits to language: The declarative/procedural 

model. Cognition, 92, 231-270. 

Ullman, M. T., Earle, F. S., Walenski, M., & Janacsek, K. (2020). The Neurocognition of 

Developmental Disorders of Language. Annual review of psychology, 71, 389–417. 

https://doi.org/10.1146/annurev-psych-122216-011555 

U.S. Census Bureau (2017, September 12). Income and Poverty in the United States: 2016 

(Report No. P60-259). Washington, DC: U.S. Government Printing Office. 

U.S. Census Bureau (2020). Income and Poverty in the United States: 2019. Washington, DC: 

U.S. Government Printing Office. 

von Stumm, S., & Plomin, R. (2015). Socioeconomic status and the growth of intelligence from 

infancy through adolescence. Intelligence, 48, 30–36. doi:10.1016/j.intell.2014.10.002 

Wadsworth, M. E., & Compas, B. E. (2002). Coping with family conflict and economic strain: 

The adolescent perspective. Journal of Research on Adolescence, 12, 243–274. 

Wechsler, D. (2014). The Wechsler intelligence scale for children—fifth edition. San Antonio, 

TX: The Psychological Corporation. 

Wiig, E.H., Secord, W.A., & Semel, E. (2013) Clinical Evaluation of Language Fundamentals – 

Fifth Edition. Pearson, San Antonio, TX. 



72 

 

Woodward, T. S., Ruff, C. C., & Ngan, E. C. (2006). Short- and long-term changes in anterior 

cingulate activation during resolution of task-set competition. Brain Research, 1068(1), 

161–169. 

Xang, J.X., Leung, H.C., & Johnson, M.K. (2003). Frontal activations associated with accessing 

and evaluating information in working memory: An fMRI study. Neuroimage, 20(3), 

1531-1539. 

 

  



73 

 

APPENDICES 

Appendix A 

The table below shows the Pearson correlation statistics between all measures of interest. 

It is important to note that parental education level was positively correlated with eTIV (r = 0.21, 

p = 0.001) and volume of bilateral caudate nuclei (r = 0.21, p = 0.001). Those children of parents 

with higher average education level showed larger overall intracranial volume and larger 

subcortical gray matter volume in bilateral caudate nuclei.  Also, the results show that eTIV is 

larger in older children in this sample (r = 0.33, p < .001).  

 

  1 2 3 4 5 6 7 8 9 10 11 

1. Age --                     

2. Sex (binary) -0.098 --                   

3. Household 

income 

0.107 0.049 --                 

4. Parental 

education 

average  

0.120 -0.043 .423** --               

5. eTIV .325** -.532** 0.124 .210** --             

6. Bilateral A1 

volume 

-0.029 -.172** 0.120 .132* .479** --           

7. Bilateral V1 

volume 

-.134* -.289** -0.021 0.107 .423** .291** --         

8. Broca's area 

volume 

-0.020 -.184** 0.024 0.075 .412** .393** .266** --       

9. Bilateral CN 

volume 

0.124 -.298** 0.036 .206** .623** .324** .244** .322*

* 

--     

10. PPVT 0.096 0.008 .163* .289** .171* 0.096 0.116 0.082 .228** --   

11. WISC-Matrix 

Reasoning 

.141* 0.052 0.121 .264** .134* -0.018 -0.077 0.054 0.121 .376** -- 

12. Edinburgh 

Handedness 

(binary) 

-0.109 0.083 -0.076 -0.030 -0.022 -0.015 0.016 0.041 -0.016 -0.074 -0.051 

*p < .05, **p < .01                     

Coefficients in bold remained significant after Bonferroni correction, p = 0.004      

eTIV= estimated Total Intracranial Volume     

A1= bilateral transverse temporal gyri (primary auditory cortices)      

V1= bilateral cuneus gyri (primary visual cortices)      

Broca's area= left pars opercularis & pars triangularis     

CN= caudate nuclei     

PPVT= Peabody Picture Vocabulary Test     

WISC= Wechsler Intelligence Scale for Children     
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Appendix B 

To further explore the sample characteristics, I grouped sample descriptive statistics 

across 4 study sites. The table shows that the younger participants between the ages 5;0-7;11 years 

were only recruited at UCLA and WashU. In addition, UCLA has the highest number of participants with 

low parental education level (no college degree = 22) and Harvard has the highest number of participants 

with high parental education level (with college degree = 59) with highest reported mean income 

(M$/1000 = 153.50).  

 

Study site  Harvard UCLA UMinn WashU 

n 69 47 64  52 

Age in years a 10.53 ± 1.39 9.95 ± 1.81 10.31± 1.47 9.75 ± 1.61 

5;0-7;11 years (n) 0 9 0 9  

8;0-12;11 years (n)  69  38  64  43 

Sex (n)  
 

  
Female 37 27 36 30 

Male 32 20 28 22 

Edinburgh Handedness (n)  
 

   

Left 12 3 8 6 

Right 57 44  56  46 

Race (n)  
 

   

American Indian/Alaskan  0 1 0 0 

Asian 1 5 1 3 

Black or African American 2 2 0 6 

White/Caucasian 53 20 53 40 

More than one race 13 16 9 3 

Unknown/Not reported 0 3 1 0 

Annual household income $/1000 a  
153.50 ± 

73.52 

121.75 ± 

97.8 

142.16 ± 

92.76 

147.31 ± 

96.83 

Parents’ education average (n)  
 

   

0. Did not graduate high school 0 2 0 0 

1. High school diploma 1 3 0 3 

2. Some college 4 9 8 4 

3. Associate’s degree 5 8 5 9 

4. Bachelor’s degree 24 18 29 19 
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5. Master’s degree 28 6 20 15 

6. Ph.D./ Professional degree 7 1 2 2 

Neuropsychological assessments a  
 

   

PPVT  
115.83 ± 

18.23 

111.65 ± 

12.4 

118.77 ± 

17.12 

111.10 ± 

14.61 

WISC  11.29 ± 2.80 10.67 ± 3.13 11.34 ± 3.77 10.58 ± 3.63 

         
a Mean ± SD  

Abbreviations: UCLA=University of California Los Angeles; UMinn= University of Minnesota; 
WashU= Washington University in St. Louis; PPVT= Peabody Picture Vocabulary Test; WISC= 

Wechsler Intelligence Scale for Children 
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